xref: /dragonfly/sys/vfs/hammer/hammer_btree.c (revision 81c11cd3)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_btree.c,v 1.76 2008/08/06 15:38:58 dillon Exp $
35  */
36 
37 /*
38  * HAMMER B-Tree index
39  *
40  * HAMMER implements a modified B+Tree.  In documentation this will
41  * simply be refered to as the HAMMER B-Tree.  Basically a HAMMER B-Tree
42  * looks like a B+Tree (A B-Tree which stores its records only at the leafs
43  * of the tree), but adds two additional boundary elements which describe
44  * the left-most and right-most element a node is able to represent.  In
45  * otherwords, we have boundary elements at the two ends of a B-Tree node
46  * instead of sub-tree pointers.
47  *
48  * A B-Tree internal node looks like this:
49  *
50  *	B N N N N N N B   <-- boundary and internal elements
51  *       S S S S S S S    <-- subtree pointers
52  *
53  * A B-Tree leaf node basically looks like this:
54  *
55  *	L L L L L L L L   <-- leaf elemenets
56  *
57  * The radix for an internal node is 1 less then a leaf but we get a
58  * number of significant benefits for our troubles.
59  *
60  * The big benefit to using a B-Tree containing boundary information
61  * is that it is possible to cache pointers into the middle of the tree
62  * and not have to start searches, insertions, OR deletions at the root
63  * node.   In particular, searches are able to progress in a definitive
64  * direction from any point in the tree without revisting nodes.  This
65  * greatly improves the efficiency of many operations, most especially
66  * record appends.
67  *
68  * B-Trees also make the stacking of trees fairly straightforward.
69  *
70  * INSERTIONS:  A search performed with the intention of doing
71  * an insert will guarantee that the terminal leaf node is not full by
72  * splitting full nodes.  Splits occur top-down during the dive down the
73  * B-Tree.
74  *
75  * DELETIONS: A deletion makes no attempt to proactively balance the
76  * tree and will recursively remove nodes that become empty.  If a
77  * deadlock occurs a deletion may not be able to remove an empty leaf.
78  * Deletions never allow internal nodes to become empty (that would blow
79  * up the boundaries).
80  */
81 #include "hammer.h"
82 #include <sys/buf.h>
83 #include <sys/buf2.h>
84 
85 static int btree_search(hammer_cursor_t cursor, int flags);
86 static int btree_split_internal(hammer_cursor_t cursor);
87 static int btree_split_leaf(hammer_cursor_t cursor);
88 static int btree_remove(hammer_cursor_t cursor);
89 static int btree_node_is_full(hammer_node_ondisk_t node);
90 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor,
91 			hammer_tid_t mirror_tid);
92 static void hammer_make_separator(hammer_base_elm_t key1,
93 			hammer_base_elm_t key2, hammer_base_elm_t dest);
94 static void hammer_cursor_mirror_filter(hammer_cursor_t cursor);
95 
96 /*
97  * Iterate records after a search.  The cursor is iterated forwards past
98  * the current record until a record matching the key-range requirements
99  * is found.  ENOENT is returned if the iteration goes past the ending
100  * key.
101  *
102  * The iteration is inclusive of key_beg and can be inclusive or exclusive
103  * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
104  *
105  * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
106  * may be modified by B-Tree functions.
107  *
108  * cursor->key_beg may or may not be modified by this function during
109  * the iteration.  XXX future - in case of an inverted lock we may have
110  * to reinitiate the lookup and set key_beg to properly pick up where we
111  * left off.
112  *
113  * If HAMMER_CURSOR_ITERATE_CHECK is set it is possible that the cursor
114  * was reverse indexed due to being moved to a parent while unlocked,
115  * and something else might have inserted an element outside the iteration
116  * range.  When this case occurs the iterator just keeps iterating until
117  * it gets back into the iteration range (instead of asserting).
118  *
119  * NOTE!  EDEADLK *CANNOT* be returned by this procedure.
120  */
121 int
122 hammer_btree_iterate(hammer_cursor_t cursor)
123 {
124 	hammer_node_ondisk_t node;
125 	hammer_btree_elm_t elm;
126 	hammer_mount_t hmp;
127 	int error = 0;
128 	int r;
129 	int s;
130 
131 	/*
132 	 * Skip past the current record
133 	 */
134 	hmp = cursor->trans->hmp;
135 	node = cursor->node->ondisk;
136 	if (node == NULL)
137 		return(ENOENT);
138 	if (cursor->index < node->count &&
139 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
140 		++cursor->index;
141 	}
142 
143 	/*
144 	 * HAMMER can wind up being cpu-bound.
145 	 */
146 	if (++hmp->check_yield > hammer_yield_check) {
147 		hmp->check_yield = 0;
148 		lwkt_user_yield();
149 	}
150 
151 
152 	/*
153 	 * Loop until an element is found or we are done.
154 	 */
155 	for (;;) {
156 		/*
157 		 * We iterate up the tree and then index over one element
158 		 * while we are at the last element in the current node.
159 		 *
160 		 * If we are at the root of the filesystem, cursor_up
161 		 * returns ENOENT.
162 		 *
163 		 * XXX this could be optimized by storing the information in
164 		 * the parent reference.
165 		 *
166 		 * XXX we can lose the node lock temporarily, this could mess
167 		 * up our scan.
168 		 */
169 		++hammer_stats_btree_iterations;
170 		hammer_flusher_clean_loose_ios(hmp);
171 
172 		if (cursor->index == node->count) {
173 			if (hammer_debug_btree) {
174 				kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
175 					(long long)cursor->node->node_offset,
176 					cursor->index,
177 					(long long)(cursor->parent ? cursor->parent->node_offset : -1),
178 					cursor->parent_index,
179 					curthread);
180 			}
181 			KKASSERT(cursor->parent == NULL || cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
182 			error = hammer_cursor_up(cursor);
183 			if (error)
184 				break;
185 			/* reload stale pointer */
186 			node = cursor->node->ondisk;
187 			KKASSERT(cursor->index != node->count);
188 
189 			/*
190 			 * If we are reblocking we want to return internal
191 			 * nodes.  Note that the internal node will be
192 			 * returned multiple times, on each upward recursion
193 			 * from its children.  The caller selects which
194 			 * revisit it cares about (usually first or last only).
195 			 */
196 			if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
197 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
198 				return(0);
199 			}
200 			++cursor->index;
201 			continue;
202 		}
203 
204 		/*
205 		 * Check internal or leaf element.  Determine if the record
206 		 * at the cursor has gone beyond the end of our range.
207 		 *
208 		 * We recurse down through internal nodes.
209 		 */
210 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
211 			elm = &node->elms[cursor->index];
212 
213 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
214 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
215 			if (hammer_debug_btree) {
216 				kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d (td=%p)\n",
217 					(long long)cursor->node->node_offset,
218 					cursor->index,
219 					(long long)elm[0].internal.base.obj_id,
220 					elm[0].internal.base.rec_type,
221 					(long long)elm[0].internal.base.key,
222 					elm[0].internal.base.localization,
223 					r,
224 					curthread
225 				);
226 				kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
227 					(long long)cursor->node->node_offset,
228 					cursor->index + 1,
229 					(long long)elm[1].internal.base.obj_id,
230 					elm[1].internal.base.rec_type,
231 					(long long)elm[1].internal.base.key,
232 					elm[1].internal.base.localization,
233 					s
234 				);
235 			}
236 
237 			if (r < 0) {
238 				error = ENOENT;
239 				break;
240 			}
241 			if (r == 0 && (cursor->flags &
242 				       HAMMER_CURSOR_END_INCLUSIVE) == 0) {
243 				error = ENOENT;
244 				break;
245 			}
246 
247 			/*
248 			 * Better not be zero
249 			 */
250 			KKASSERT(elm->internal.subtree_offset != 0);
251 
252 			if (s <= 0) {
253 				/*
254 				 * If running the mirror filter see if we
255 				 * can skip one or more entire sub-trees.
256 				 * If we can we return the internal node
257 				 * and the caller processes the skipped
258 				 * range (see mirror_read).
259 				 */
260 				if (cursor->flags &
261 				    HAMMER_CURSOR_MIRROR_FILTERED) {
262 					if (elm->internal.mirror_tid <
263 					    cursor->cmirror->mirror_tid) {
264 						hammer_cursor_mirror_filter(cursor);
265 						return(0);
266 					}
267 				}
268 			} else {
269 				/*
270 				 * Normally it would be impossible for the
271 				 * cursor to have gotten back-indexed,
272 				 * but it can happen if a node is deleted
273 				 * and the cursor is moved to its parent
274 				 * internal node.  ITERATE_CHECK will be set.
275 				 */
276 				KKASSERT(cursor->flags &
277 					 HAMMER_CURSOR_ITERATE_CHECK);
278 				kprintf("hammer_btree_iterate: "
279 					"DEBUG: Caught parent seek "
280 					"in internal iteration\n");
281 			}
282 
283 			error = hammer_cursor_down(cursor);
284 			if (error)
285 				break;
286 			KKASSERT(cursor->index == 0);
287 			/* reload stale pointer */
288 			node = cursor->node->ondisk;
289 			continue;
290 		} else {
291 			elm = &node->elms[cursor->index];
292 			r = hammer_btree_cmp(&cursor->key_end, &elm->base);
293 			if (hammer_debug_btree) {
294 				kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
295 					(long long)cursor->node->node_offset,
296 					cursor->index,
297 					(elm[0].leaf.base.btype ?
298 					 elm[0].leaf.base.btype : '?'),
299 					(long long)elm[0].leaf.base.obj_id,
300 					elm[0].leaf.base.rec_type,
301 					(long long)elm[0].leaf.base.key,
302 					elm[0].leaf.base.localization,
303 					r
304 				);
305 			}
306 			if (r < 0) {
307 				error = ENOENT;
308 				break;
309 			}
310 
311 			/*
312 			 * We support both end-inclusive and
313 			 * end-exclusive searches.
314 			 */
315 			if (r == 0 &&
316 			   (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
317 				error = ENOENT;
318 				break;
319 			}
320 
321 			/*
322 			 * If ITERATE_CHECK is set an unlocked cursor may
323 			 * have been moved to a parent and the iterate can
324 			 * happen upon elements that are not in the requested
325 			 * range.
326 			 */
327 			if (cursor->flags & HAMMER_CURSOR_ITERATE_CHECK) {
328 				s = hammer_btree_cmp(&cursor->key_beg,
329 						     &elm->base);
330 				if (s > 0) {
331 					kprintf("hammer_btree_iterate: "
332 						"DEBUG: Caught parent seek "
333 						"in leaf iteration\n");
334 					++cursor->index;
335 					continue;
336 				}
337 			}
338 			cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
339 
340 			/*
341 			 * Return the element
342 			 */
343 			switch(elm->leaf.base.btype) {
344 			case HAMMER_BTREE_TYPE_RECORD:
345 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
346 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
347 					++cursor->index;
348 					continue;
349 				}
350 				error = 0;
351 				break;
352 			default:
353 				error = EINVAL;
354 				break;
355 			}
356 			if (error)
357 				break;
358 		}
359 		/*
360 		 * node pointer invalid after loop
361 		 */
362 
363 		/*
364 		 * Return entry
365 		 */
366 		if (hammer_debug_btree) {
367 			int i = cursor->index;
368 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
369 			kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
370 				cursor->node, i,
371 				(long long)elm->internal.base.obj_id,
372 				elm->internal.base.rec_type,
373 				(long long)elm->internal.base.key,
374 				elm->internal.base.localization
375 			);
376 		}
377 		return(0);
378 	}
379 	return(error);
380 }
381 
382 /*
383  * We hit an internal element that we could skip as part of a mirroring
384  * scan.  Calculate the entire range being skipped.
385  *
386  * It is important to include any gaps between the parent's left_bound
387  * and the node's left_bound, and same goes for the right side.
388  */
389 static void
390 hammer_cursor_mirror_filter(hammer_cursor_t cursor)
391 {
392 	struct hammer_cmirror *cmirror;
393 	hammer_node_ondisk_t ondisk;
394 	hammer_btree_elm_t elm;
395 
396 	ondisk = cursor->node->ondisk;
397 	cmirror = cursor->cmirror;
398 
399 	/*
400 	 * Calculate the skipped range
401 	 */
402 	elm = &ondisk->elms[cursor->index];
403 	if (cursor->index == 0)
404 		cmirror->skip_beg = *cursor->left_bound;
405 	else
406 		cmirror->skip_beg = elm->internal.base;
407 	while (cursor->index < ondisk->count) {
408 		if (elm->internal.mirror_tid >= cmirror->mirror_tid)
409 			break;
410 		++cursor->index;
411 		++elm;
412 	}
413 	if (cursor->index == ondisk->count)
414 		cmirror->skip_end = *cursor->right_bound;
415 	else
416 		cmirror->skip_end = elm->internal.base;
417 
418 	/*
419 	 * clip the returned result.
420 	 */
421 	if (hammer_btree_cmp(&cmirror->skip_beg, &cursor->key_beg) < 0)
422 		cmirror->skip_beg = cursor->key_beg;
423 	if (hammer_btree_cmp(&cmirror->skip_end, &cursor->key_end) > 0)
424 		cmirror->skip_end = cursor->key_end;
425 }
426 
427 /*
428  * Iterate in the reverse direction.  This is used by the pruning code to
429  * avoid overlapping records.
430  */
431 int
432 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
433 {
434 	hammer_node_ondisk_t node;
435 	hammer_btree_elm_t elm;
436 	hammer_mount_t hmp;
437 	int error = 0;
438 	int r;
439 	int s;
440 
441 	/* mirror filtering not supported for reverse iteration */
442 	KKASSERT ((cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) == 0);
443 
444 	/*
445 	 * Skip past the current record.  For various reasons the cursor
446 	 * may end up set to -1 or set to point at the end of the current
447 	 * node.  These cases must be addressed.
448 	 */
449 	node = cursor->node->ondisk;
450 	if (node == NULL)
451 		return(ENOENT);
452 	if (cursor->index != -1 &&
453 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
454 		--cursor->index;
455 	}
456 	if (cursor->index == cursor->node->ondisk->count)
457 		--cursor->index;
458 
459 	/*
460 	 * HAMMER can wind up being cpu-bound.
461 	 */
462 	hmp = cursor->trans->hmp;
463 	if (++hmp->check_yield > hammer_yield_check) {
464 		hmp->check_yield = 0;
465 		lwkt_user_yield();
466 	}
467 
468 	/*
469 	 * Loop until an element is found or we are done.
470 	 */
471 	for (;;) {
472 		++hammer_stats_btree_iterations;
473 		hammer_flusher_clean_loose_ios(hmp);
474 
475 		/*
476 		 * We iterate up the tree and then index over one element
477 		 * while we are at the last element in the current node.
478 		 */
479 		if (cursor->index == -1) {
480 			error = hammer_cursor_up(cursor);
481 			if (error) {
482 				cursor->index = 0; /* sanity */
483 				break;
484 			}
485 			/* reload stale pointer */
486 			node = cursor->node->ondisk;
487 			KKASSERT(cursor->index != node->count);
488 			--cursor->index;
489 			continue;
490 		}
491 
492 		/*
493 		 * Check internal or leaf element.  Determine if the record
494 		 * at the cursor has gone beyond the end of our range.
495 		 *
496 		 * We recurse down through internal nodes.
497 		 */
498 		KKASSERT(cursor->index != node->count);
499 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
500 			elm = &node->elms[cursor->index];
501 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
502 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
503 			if (hammer_debug_btree) {
504 				kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
505 					(long long)cursor->node->node_offset,
506 					cursor->index,
507 					(long long)elm[0].internal.base.obj_id,
508 					elm[0].internal.base.rec_type,
509 					(long long)elm[0].internal.base.key,
510 					elm[0].internal.base.localization,
511 					r
512 				);
513 				kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
514 					(long long)cursor->node->node_offset,
515 					cursor->index + 1,
516 					(long long)elm[1].internal.base.obj_id,
517 					elm[1].internal.base.rec_type,
518 					(long long)elm[1].internal.base.key,
519 					elm[1].internal.base.localization,
520 					s
521 				);
522 			}
523 
524 			if (s >= 0) {
525 				error = ENOENT;
526 				break;
527 			}
528 
529 			/*
530 			 * It shouldn't be possible to be seeked past key_end,
531 			 * even if the cursor got moved to a parent.
532 			 */
533 			KKASSERT(r >= 0);
534 
535 			/*
536 			 * Better not be zero
537 			 */
538 			KKASSERT(elm->internal.subtree_offset != 0);
539 
540 			error = hammer_cursor_down(cursor);
541 			if (error)
542 				break;
543 			KKASSERT(cursor->index == 0);
544 			/* reload stale pointer */
545 			node = cursor->node->ondisk;
546 
547 			/* this can assign -1 if the leaf was empty */
548 			cursor->index = node->count - 1;
549 			continue;
550 		} else {
551 			elm = &node->elms[cursor->index];
552 			s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
553 			if (hammer_debug_btree) {
554 				kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
555 					(long long)cursor->node->node_offset,
556 					cursor->index,
557 					(elm[0].leaf.base.btype ?
558 					 elm[0].leaf.base.btype : '?'),
559 					(long long)elm[0].leaf.base.obj_id,
560 					elm[0].leaf.base.rec_type,
561 					(long long)elm[0].leaf.base.key,
562 					elm[0].leaf.base.localization,
563 					s
564 				);
565 			}
566 			if (s > 0) {
567 				error = ENOENT;
568 				break;
569 			}
570 
571 			/*
572 			 * It shouldn't be possible to be seeked past key_end,
573 			 * even if the cursor got moved to a parent.
574 			 */
575 			cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
576 
577 			/*
578 			 * Return the element
579 			 */
580 			switch(elm->leaf.base.btype) {
581 			case HAMMER_BTREE_TYPE_RECORD:
582 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
583 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
584 					--cursor->index;
585 					continue;
586 				}
587 				error = 0;
588 				break;
589 			default:
590 				error = EINVAL;
591 				break;
592 			}
593 			if (error)
594 				break;
595 		}
596 		/*
597 		 * node pointer invalid after loop
598 		 */
599 
600 		/*
601 		 * Return entry
602 		 */
603 		if (hammer_debug_btree) {
604 			int i = cursor->index;
605 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
606 			kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
607 				cursor->node, i,
608 				(long long)elm->internal.base.obj_id,
609 				elm->internal.base.rec_type,
610 				(long long)elm->internal.base.key,
611 				elm->internal.base.localization
612 			);
613 		}
614 		return(0);
615 	}
616 	return(error);
617 }
618 
619 /*
620  * Lookup cursor->key_beg.  0 is returned on success, ENOENT if the entry
621  * could not be found, EDEADLK if inserting and a retry is needed, and a
622  * fatal error otherwise.  When retrying, the caller must terminate the
623  * cursor and reinitialize it.  EDEADLK cannot be returned if not inserting.
624  *
625  * The cursor is suitably positioned for a deletion on success, and suitably
626  * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
627  * specified.
628  *
629  * The cursor may begin anywhere, the search will traverse the tree in
630  * either direction to locate the requested element.
631  *
632  * Most of the logic implementing historical searches is handled here.  We
633  * do an initial lookup with create_tid set to the asof TID.  Due to the
634  * way records are laid out, a backwards iteration may be required if
635  * ENOENT is returned to locate the historical record.  Here's the
636  * problem:
637  *
638  * create_tid:    10      15       20
639  *		     LEAF1   LEAF2
640  * records:         (11)        (18)
641  *
642  * Lets say we want to do a lookup AS-OF timestamp 17.  We will traverse
643  * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
644  * not visible and thus causes ENOENT to be returned.  We really need
645  * to check record 11 in LEAF1.  If it also fails then the search fails
646  * (e.g. it might represent the range 11-16 and thus still not match our
647  * AS-OF timestamp of 17).  Note that LEAF1 could be empty, requiring
648  * further iterations.
649  *
650  * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
651  * and the cursor->create_check TID if an iteration might be needed.
652  * In the above example create_check would be set to 14.
653  */
654 int
655 hammer_btree_lookup(hammer_cursor_t cursor)
656 {
657 	int error;
658 
659 	cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
660 	KKASSERT ((cursor->flags & HAMMER_CURSOR_INSERT) == 0 ||
661 		  cursor->trans->sync_lock_refs > 0);
662 	++hammer_stats_btree_lookups;
663 	if (cursor->flags & HAMMER_CURSOR_ASOF) {
664 		KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
665 		cursor->key_beg.create_tid = cursor->asof;
666 		for (;;) {
667 			cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
668 			error = btree_search(cursor, 0);
669 			if (error != ENOENT ||
670 			    (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
671 				/*
672 				 * Stop if no error.
673 				 * Stop if error other then ENOENT.
674 				 * Stop if ENOENT and not special case.
675 				 */
676 				break;
677 			}
678 			if (hammer_debug_btree) {
679 				kprintf("CREATE_CHECK %016llx\n",
680 					(long long)cursor->create_check);
681 			}
682 			cursor->key_beg.create_tid = cursor->create_check;
683 			/* loop */
684 		}
685 	} else {
686 		error = btree_search(cursor, 0);
687 	}
688 	if (error == 0)
689 		error = hammer_btree_extract(cursor, cursor->flags);
690 	return(error);
691 }
692 
693 /*
694  * Execute the logic required to start an iteration.  The first record
695  * located within the specified range is returned and iteration control
696  * flags are adjusted for successive hammer_btree_iterate() calls.
697  *
698  * Set ATEDISK so a low-level caller can call btree_first/btree_iterate
699  * in a loop without worrying about it.  Higher-level merged searches will
700  * adjust the flag appropriately.
701  */
702 int
703 hammer_btree_first(hammer_cursor_t cursor)
704 {
705 	int error;
706 
707 	error = hammer_btree_lookup(cursor);
708 	if (error == ENOENT) {
709 		cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
710 		error = hammer_btree_iterate(cursor);
711 	}
712 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
713 	return(error);
714 }
715 
716 /*
717  * Similarly but for an iteration in the reverse direction.
718  *
719  * Set ATEDISK when iterating backwards to skip the current entry,
720  * which after an ENOENT lookup will be pointing beyond our end point.
721  *
722  * Set ATEDISK so a low-level caller can call btree_last/btree_iterate_reverse
723  * in a loop without worrying about it.  Higher-level merged searches will
724  * adjust the flag appropriately.
725  */
726 int
727 hammer_btree_last(hammer_cursor_t cursor)
728 {
729 	struct hammer_base_elm save;
730 	int error;
731 
732 	save = cursor->key_beg;
733 	cursor->key_beg = cursor->key_end;
734 	error = hammer_btree_lookup(cursor);
735 	cursor->key_beg = save;
736 	if (error == ENOENT ||
737 	    (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
738 		cursor->flags |= HAMMER_CURSOR_ATEDISK;
739 		error = hammer_btree_iterate_reverse(cursor);
740 	}
741 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
742 	return(error);
743 }
744 
745 /*
746  * Extract the record and/or data associated with the cursor's current
747  * position.  Any prior record or data stored in the cursor is replaced.
748  * The cursor must be positioned at a leaf node.
749  *
750  * NOTE: All extractions occur at the leaf of the B-Tree.
751  */
752 int
753 hammer_btree_extract(hammer_cursor_t cursor, int flags)
754 {
755 	hammer_node_ondisk_t node;
756 	hammer_btree_elm_t elm;
757 	hammer_off_t data_off;
758 	hammer_mount_t hmp;
759 	int32_t data_len;
760 	int error;
761 
762 	/*
763 	 * The case where the data reference resolves to the same buffer
764 	 * as the record reference must be handled.
765 	 */
766 	node = cursor->node->ondisk;
767 	elm = &node->elms[cursor->index];
768 	cursor->data = NULL;
769 	hmp = cursor->node->hmp;
770 
771 	/*
772 	 * There is nothing to extract for an internal element.
773 	 */
774 	if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
775 		return(EINVAL);
776 
777 	/*
778 	 * Only record types have data.
779 	 */
780 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
781 	cursor->leaf = &elm->leaf;
782 
783 	if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
784 		return(0);
785 	if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
786 		return(0);
787 	data_off = elm->leaf.data_offset;
788 	data_len = elm->leaf.data_len;
789 	if (data_off == 0)
790 		return(0);
791 
792 	/*
793 	 * Load the data
794 	 */
795 	KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
796 	cursor->data = hammer_bread_ext(hmp, data_off, data_len,
797 					&error, &cursor->data_buffer);
798 
799 	/*
800 	 * Mark the data buffer as not being meta-data if it isn't
801 	 * meta-data (sometimes bulk data is accessed via a volume
802 	 * block device).
803 	 */
804 	if (error == 0) {
805 		switch(elm->leaf.base.rec_type) {
806 		case HAMMER_RECTYPE_DATA:
807 		case HAMMER_RECTYPE_DB:
808 			hammer_io_notmeta(cursor->data_buffer);
809 			break;
810 		default:
811 			break;
812 		}
813 	}
814 
815 	/*
816 	 * Deal with CRC errors on the extracted data.
817 	 */
818 	if (error == 0 &&
819 	    hammer_crc_test_leaf(cursor->data, &elm->leaf) == 0) {
820 		kprintf("CRC DATA @ %016llx/%d FAILED\n",
821 			(long long)elm->leaf.data_offset, elm->leaf.data_len);
822 		if (hammer_debug_critical)
823 			Debugger("CRC FAILED: DATA");
824 		if (cursor->trans->flags & HAMMER_TRANSF_CRCDOM)
825 			error = EDOM;	/* less critical (mirroring) */
826 		else
827 			error = EIO;	/* critical */
828 	}
829 	return(error);
830 }
831 
832 
833 /*
834  * Insert a leaf element into the B-Tree at the current cursor position.
835  * The cursor is positioned such that the element at and beyond the cursor
836  * are shifted to make room for the new record.
837  *
838  * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
839  * flag set and that call must return ENOENT before this function can be
840  * called.
841  *
842  * The caller may depend on the cursor's exclusive lock after return to
843  * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
844  *
845  * ENOSPC is returned if there is no room to insert a new record.
846  */
847 int
848 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm,
849 		    int *doprop)
850 {
851 	hammer_node_ondisk_t node;
852 	int i;
853 	int error;
854 
855 	*doprop = 0;
856 	if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
857 		return(error);
858 	++hammer_stats_btree_inserts;
859 
860 	/*
861 	 * Insert the element at the leaf node and update the count in the
862 	 * parent.  It is possible for parent to be NULL, indicating that
863 	 * the filesystem's ROOT B-Tree node is a leaf itself, which is
864 	 * possible.  The root inode can never be deleted so the leaf should
865 	 * never be empty.
866 	 *
867 	 * Remember that the right-hand boundary is not included in the
868 	 * count.
869 	 */
870 	hammer_modify_node_all(cursor->trans, cursor->node);
871 	node = cursor->node->ondisk;
872 	i = cursor->index;
873 	KKASSERT(elm->base.btype != 0);
874 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
875 	KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
876 	if (i != node->count) {
877 		bcopy(&node->elms[i], &node->elms[i+1],
878 		      (node->count - i) * sizeof(*elm));
879 	}
880 	node->elms[i].leaf = *elm;
881 	++node->count;
882 	hammer_cursor_inserted_element(cursor->node, i);
883 
884 	/*
885 	 * Update the leaf node's aggregate mirror_tid for mirroring
886 	 * support.
887 	 */
888 	if (node->mirror_tid < elm->base.delete_tid) {
889 		node->mirror_tid = elm->base.delete_tid;
890 		*doprop = 1;
891 	}
892 	if (node->mirror_tid < elm->base.create_tid) {
893 		node->mirror_tid = elm->base.create_tid;
894 		*doprop = 1;
895 	}
896 	hammer_modify_node_done(cursor->node);
897 
898 	/*
899 	 * Debugging sanity checks.
900 	 */
901 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
902 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
903 	if (i) {
904 		KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
905 	}
906 	if (i != node->count - 1)
907 		KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
908 
909 	return(0);
910 }
911 
912 /*
913  * Delete a record from the B-Tree at the current cursor position.
914  * The cursor is positioned such that the current element is the one
915  * to be deleted.
916  *
917  * On return the cursor will be positioned after the deleted element and
918  * MAY point to an internal node.  It will be suitable for the continuation
919  * of an iteration but not for an insertion or deletion.
920  *
921  * Deletions will attempt to partially rebalance the B-Tree in an upward
922  * direction, but will terminate rather then deadlock.  Empty internal nodes
923  * are never allowed by a deletion which deadlocks may end up giving us an
924  * empty leaf.  The pruner will clean up and rebalance the tree.
925  *
926  * This function can return EDEADLK, requiring the caller to retry the
927  * operation after clearing the deadlock.
928  */
929 int
930 hammer_btree_delete(hammer_cursor_t cursor)
931 {
932 	hammer_node_ondisk_t ondisk;
933 	hammer_node_t node;
934 	hammer_node_t parent;
935 	int error;
936 	int i;
937 
938 	KKASSERT (cursor->trans->sync_lock_refs > 0);
939 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
940 		return(error);
941 	++hammer_stats_btree_deletes;
942 
943 	/*
944 	 * Delete the element from the leaf node.
945 	 *
946 	 * Remember that leaf nodes do not have boundaries.
947 	 */
948 	node = cursor->node;
949 	ondisk = node->ondisk;
950 	i = cursor->index;
951 
952 	KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
953 	KKASSERT(i >= 0 && i < ondisk->count);
954 	hammer_modify_node_all(cursor->trans, node);
955 	if (i + 1 != ondisk->count) {
956 		bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
957 		      (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
958 	}
959 	--ondisk->count;
960 	hammer_modify_node_done(node);
961 	hammer_cursor_deleted_element(node, i);
962 
963 	/*
964 	 * Validate local parent
965 	 */
966 	if (ondisk->parent) {
967 		parent = cursor->parent;
968 
969 		KKASSERT(parent != NULL);
970 		KKASSERT(parent->node_offset == ondisk->parent);
971 	}
972 
973 	/*
974 	 * If the leaf becomes empty it must be detached from the parent,
975 	 * potentially recursing through to the filesystem root.
976 	 *
977 	 * This may reposition the cursor at one of the parent's of the
978 	 * current node.
979 	 *
980 	 * Ignore deadlock errors, that simply means that btree_remove
981 	 * was unable to recurse and had to leave us with an empty leaf.
982 	 */
983 	KKASSERT(cursor->index <= ondisk->count);
984 	if (ondisk->count == 0) {
985 		error = btree_remove(cursor);
986 		if (error == EDEADLK)
987 			error = 0;
988 	} else {
989 		error = 0;
990 	}
991 	KKASSERT(cursor->parent == NULL ||
992 		 cursor->parent_index < cursor->parent->ondisk->count);
993 	return(error);
994 }
995 
996 /*
997  * PRIMAY B-TREE SEARCH SUPPORT PROCEDURE
998  *
999  * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
1000  *
1001  * The search can begin ANYWHERE in the B-Tree.  As a first step the search
1002  * iterates up the tree as necessary to properly position itself prior to
1003  * actually doing the sarch.
1004  *
1005  * INSERTIONS: The search will split full nodes and leaves on its way down
1006  * and guarentee that the leaf it ends up on is not full.  If we run out
1007  * of space the search continues to the leaf (to position the cursor for
1008  * the spike), but ENOSPC is returned.
1009  *
1010  * The search is only guarenteed to end up on a leaf if an error code of 0
1011  * is returned, or if inserting and an error code of ENOENT is returned.
1012  * Otherwise it can stop at an internal node.  On success a search returns
1013  * a leaf node.
1014  *
1015  * COMPLEXITY WARNING!  This is the core B-Tree search code for the entire
1016  * filesystem, and it is not simple code.  Please note the following facts:
1017  *
1018  * - Internal node recursions have a boundary on the left AND right.  The
1019  *   right boundary is non-inclusive.  The create_tid is a generic part
1020  *   of the key for internal nodes.
1021  *
1022  * - Leaf nodes contain terminal elements only now.
1023  *
1024  * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
1025  *   historical search.  ASOF and INSERT are mutually exclusive.  When
1026  *   doing an as-of lookup btree_search() checks for a right-edge boundary
1027  *   case.  If while recursing down the left-edge differs from the key
1028  *   by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
1029  *   with cursor->create_check.  This is used by btree_lookup() to iterate.
1030  *   The iteration backwards because as-of searches can wind up going
1031  *   down the wrong branch of the B-Tree.
1032  */
1033 static
1034 int
1035 btree_search(hammer_cursor_t cursor, int flags)
1036 {
1037 	hammer_node_ondisk_t node;
1038 	hammer_btree_elm_t elm;
1039 	int error;
1040 	int enospc = 0;
1041 	int i;
1042 	int r;
1043 	int s;
1044 
1045 	flags |= cursor->flags;
1046 	++hammer_stats_btree_searches;
1047 
1048 	if (hammer_debug_btree) {
1049 		kprintf("SEARCH   %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td = %p)\n",
1050 			(long long)cursor->node->node_offset,
1051 			cursor->index,
1052 			(long long)cursor->key_beg.obj_id,
1053 			cursor->key_beg.rec_type,
1054 			(long long)cursor->key_beg.key,
1055 			(long long)cursor->key_beg.create_tid,
1056 			cursor->key_beg.localization,
1057 			curthread
1058 		);
1059 		if (cursor->parent)
1060 		    kprintf("SEARCHP %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
1061 			(long long)cursor->parent->node_offset,
1062 			cursor->parent_index,
1063 			(long long)cursor->left_bound->obj_id,
1064 			(long long)cursor->parent->ondisk->elms[cursor->parent_index].internal.base.obj_id,
1065 			(long long)cursor->right_bound->obj_id,
1066 			(long long)cursor->parent->ondisk->elms[cursor->parent_index+1].internal.base.obj_id,
1067 			cursor->left_bound,
1068 			&cursor->parent->ondisk->elms[cursor->parent_index],
1069 			cursor->right_bound,
1070 			&cursor->parent->ondisk->elms[cursor->parent_index+1]
1071 		    );
1072 	}
1073 
1074 	/*
1075 	 * Move our cursor up the tree until we find a node whos range covers
1076 	 * the key we are trying to locate.
1077 	 *
1078 	 * The left bound is inclusive, the right bound is non-inclusive.
1079 	 * It is ok to cursor up too far.
1080 	 */
1081 	for (;;) {
1082 		r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
1083 		s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
1084 		if (r >= 0 && s < 0)
1085 			break;
1086 		KKASSERT(cursor->parent);
1087 		++hammer_stats_btree_iterations;
1088 		error = hammer_cursor_up(cursor);
1089 		if (error)
1090 			goto done;
1091 	}
1092 
1093 	/*
1094 	 * The delete-checks below are based on node, not parent.  Set the
1095 	 * initial delete-check based on the parent.
1096 	 */
1097 	if (r == 1) {
1098 		KKASSERT(cursor->left_bound->create_tid != 1);
1099 		cursor->create_check = cursor->left_bound->create_tid - 1;
1100 		cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1101 	}
1102 
1103 	/*
1104 	 * We better have ended up with a node somewhere.
1105 	 */
1106 	KKASSERT(cursor->node != NULL);
1107 
1108 	/*
1109 	 * If we are inserting we can't start at a full node if the parent
1110 	 * is also full (because there is no way to split the node),
1111 	 * continue running up the tree until the requirement is satisfied
1112 	 * or we hit the root of the filesystem.
1113 	 *
1114 	 * (If inserting we aren't doing an as-of search so we don't have
1115 	 *  to worry about create_check).
1116 	 */
1117 	while ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1118 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1119 			if (btree_node_is_full(cursor->node->ondisk) == 0)
1120 				break;
1121 		} else {
1122 			if (btree_node_is_full(cursor->node->ondisk) ==0)
1123 				break;
1124 		}
1125 		if (cursor->node->ondisk->parent == 0 ||
1126 		    cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
1127 			break;
1128 		}
1129 		++hammer_stats_btree_iterations;
1130 		error = hammer_cursor_up(cursor);
1131 		/* node may have become stale */
1132 		if (error)
1133 			goto done;
1134 	}
1135 
1136 	/*
1137 	 * Push down through internal nodes to locate the requested key.
1138 	 */
1139 	node = cursor->node->ondisk;
1140 	while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
1141 		/*
1142 		 * Scan the node to find the subtree index to push down into.
1143 		 * We go one-past, then back-up.
1144 		 *
1145 		 * We must proactively remove deleted elements which may
1146 		 * have been left over from a deadlocked btree_remove().
1147 		 *
1148 		 * The left and right boundaries are included in the loop
1149 		 * in order to detect edge cases.
1150 		 *
1151 		 * If the separator only differs by create_tid (r == 1)
1152 		 * and we are doing an as-of search, we may end up going
1153 		 * down a branch to the left of the one containing the
1154 		 * desired key.  This requires numerous special cases.
1155 		 */
1156 		++hammer_stats_btree_iterations;
1157 		if (hammer_debug_btree) {
1158 			kprintf("SEARCH-I %016llx count=%d\n",
1159 				(long long)cursor->node->node_offset,
1160 				node->count);
1161 		}
1162 
1163 		/*
1164 		 * Try to shortcut the search before dropping into the
1165 		 * linear loop.  Locate the first node where r <= 1.
1166 		 */
1167 		i = hammer_btree_search_node(&cursor->key_beg, node);
1168 		while (i <= node->count) {
1169 			++hammer_stats_btree_elements;
1170 			elm = &node->elms[i];
1171 			r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
1172 			if (hammer_debug_btree > 2) {
1173 				kprintf(" IELM %p %d r=%d\n",
1174 					&node->elms[i], i, r);
1175 			}
1176 			if (r < 0)
1177 				break;
1178 			if (r == 1) {
1179 				KKASSERT(elm->base.create_tid != 1);
1180 				cursor->create_check = elm->base.create_tid - 1;
1181 				cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1182 			}
1183 			++i;
1184 		}
1185 		if (hammer_debug_btree) {
1186 			kprintf("SEARCH-I preI=%d/%d r=%d\n",
1187 				i, node->count, r);
1188 		}
1189 
1190 		/*
1191 		 * These cases occur when the parent's idea of the boundary
1192 		 * is wider then the child's idea of the boundary, and
1193 		 * require special handling.  If not inserting we can
1194 		 * terminate the search early for these cases but the
1195 		 * child's boundaries cannot be unconditionally modified.
1196 		 */
1197 		if (i == 0) {
1198 			/*
1199 			 * If i == 0 the search terminated to the LEFT of the
1200 			 * left_boundary but to the RIGHT of the parent's left
1201 			 * boundary.
1202 			 */
1203 			u_int8_t save;
1204 
1205 			elm = &node->elms[0];
1206 
1207 			/*
1208 			 * If we aren't inserting we can stop here.
1209 			 */
1210 			if ((flags & (HAMMER_CURSOR_INSERT |
1211 				      HAMMER_CURSOR_PRUNING)) == 0) {
1212 				cursor->index = 0;
1213 				return(ENOENT);
1214 			}
1215 
1216 			/*
1217 			 * Correct a left-hand boundary mismatch.
1218 			 *
1219 			 * We can only do this if we can upgrade the lock,
1220 			 * and synchronized as a background cursor (i.e.
1221 			 * inserting or pruning).
1222 			 *
1223 			 * WARNING: We can only do this if inserting, i.e.
1224 			 * we are running on the backend.
1225 			 */
1226 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1227 				return(error);
1228 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1229 			hammer_modify_node_field(cursor->trans, cursor->node,
1230 						 elms[0]);
1231 			save = node->elms[0].base.btype;
1232 			node->elms[0].base = *cursor->left_bound;
1233 			node->elms[0].base.btype = save;
1234 			hammer_modify_node_done(cursor->node);
1235 		} else if (i == node->count + 1) {
1236 			/*
1237 			 * If i == node->count + 1 the search terminated to
1238 			 * the RIGHT of the right boundary but to the LEFT
1239 			 * of the parent's right boundary.  If we aren't
1240 			 * inserting we can stop here.
1241 			 *
1242 			 * Note that the last element in this case is
1243 			 * elms[i-2] prior to adjustments to 'i'.
1244 			 */
1245 			--i;
1246 			if ((flags & (HAMMER_CURSOR_INSERT |
1247 				      HAMMER_CURSOR_PRUNING)) == 0) {
1248 				cursor->index = i;
1249 				return (ENOENT);
1250 			}
1251 
1252 			/*
1253 			 * Correct a right-hand boundary mismatch.
1254 			 * (actual push-down record is i-2 prior to
1255 			 * adjustments to i).
1256 			 *
1257 			 * We can only do this if we can upgrade the lock,
1258 			 * and synchronized as a background cursor (i.e.
1259 			 * inserting or pruning).
1260 			 *
1261 			 * WARNING: We can only do this if inserting, i.e.
1262 			 * we are running on the backend.
1263 			 */
1264 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1265 				return(error);
1266 			elm = &node->elms[i];
1267 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1268 			hammer_modify_node(cursor->trans, cursor->node,
1269 					   &elm->base, sizeof(elm->base));
1270 			elm->base = *cursor->right_bound;
1271 			hammer_modify_node_done(cursor->node);
1272 			--i;
1273 		} else {
1274 			/*
1275 			 * The push-down index is now i - 1.  If we had
1276 			 * terminated on the right boundary this will point
1277 			 * us at the last element.
1278 			 */
1279 			--i;
1280 		}
1281 		cursor->index = i;
1282 		elm = &node->elms[i];
1283 
1284 		if (hammer_debug_btree) {
1285 			kprintf("RESULT-I %016llx[%d] %016llx %02x "
1286 				"key=%016llx cre=%016llx lo=%02x\n",
1287 				(long long)cursor->node->node_offset,
1288 				i,
1289 				(long long)elm->internal.base.obj_id,
1290 				elm->internal.base.rec_type,
1291 				(long long)elm->internal.base.key,
1292 				(long long)elm->internal.base.create_tid,
1293 				elm->internal.base.localization
1294 			);
1295 		}
1296 
1297 		/*
1298 		 * We better have a valid subtree offset.
1299 		 */
1300 		KKASSERT(elm->internal.subtree_offset != 0);
1301 
1302 		/*
1303 		 * Handle insertion and deletion requirements.
1304 		 *
1305 		 * If inserting split full nodes.  The split code will
1306 		 * adjust cursor->node and cursor->index if the current
1307 		 * index winds up in the new node.
1308 		 *
1309 		 * If inserting and a left or right edge case was detected,
1310 		 * we cannot correct the left or right boundary and must
1311 		 * prepend and append an empty leaf node in order to make
1312 		 * the boundary correction.
1313 		 *
1314 		 * If we run out of space we set enospc and continue on
1315 		 * to a leaf to provide the spike code with a good point
1316 		 * of entry.
1317 		 */
1318 		if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1319 			if (btree_node_is_full(node)) {
1320 				error = btree_split_internal(cursor);
1321 				if (error) {
1322 					if (error != ENOSPC)
1323 						goto done;
1324 					enospc = 1;
1325 				}
1326 				/*
1327 				 * reload stale pointers
1328 				 */
1329 				i = cursor->index;
1330 				node = cursor->node->ondisk;
1331 			}
1332 		}
1333 
1334 		/*
1335 		 * Push down (push into new node, existing node becomes
1336 		 * the parent) and continue the search.
1337 		 */
1338 		error = hammer_cursor_down(cursor);
1339 		/* node may have become stale */
1340 		if (error)
1341 			goto done;
1342 		node = cursor->node->ondisk;
1343 	}
1344 
1345 	/*
1346 	 * We are at a leaf, do a linear search of the key array.
1347 	 *
1348 	 * On success the index is set to the matching element and 0
1349 	 * is returned.
1350 	 *
1351 	 * On failure the index is set to the insertion point and ENOENT
1352 	 * is returned.
1353 	 *
1354 	 * Boundaries are not stored in leaf nodes, so the index can wind
1355 	 * up to the left of element 0 (index == 0) or past the end of
1356 	 * the array (index == node->count).  It is also possible that the
1357 	 * leaf might be empty.
1358 	 */
1359 	++hammer_stats_btree_iterations;
1360 	KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1361 	KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1362 	if (hammer_debug_btree) {
1363 		kprintf("SEARCH-L %016llx count=%d\n",
1364 			(long long)cursor->node->node_offset,
1365 			node->count);
1366 	}
1367 
1368 	/*
1369 	 * Try to shortcut the search before dropping into the
1370 	 * linear loop.  Locate the first node where r <= 1.
1371 	 */
1372 	i = hammer_btree_search_node(&cursor->key_beg, node);
1373 	while (i < node->count) {
1374 		++hammer_stats_btree_elements;
1375 		elm = &node->elms[i];
1376 
1377 		r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1378 
1379 		if (hammer_debug_btree > 1)
1380 			kprintf("  ELM %p %d r=%d\n", &node->elms[i], i, r);
1381 
1382 		/*
1383 		 * We are at a record element.  Stop if we've flipped past
1384 		 * key_beg, not counting the create_tid test.  Allow the
1385 		 * r == 1 case (key_beg > element but differs only by its
1386 		 * create_tid) to fall through to the AS-OF check.
1387 		 */
1388 		KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1389 
1390 		if (r < 0)
1391 			goto failed;
1392 		if (r > 1) {
1393 			++i;
1394 			continue;
1395 		}
1396 
1397 		/*
1398 		 * Check our as-of timestamp against the element.
1399 		 */
1400 		if (flags & HAMMER_CURSOR_ASOF) {
1401 			if (hammer_btree_chkts(cursor->asof,
1402 					       &node->elms[i].base) != 0) {
1403 				++i;
1404 				continue;
1405 			}
1406 			/* success */
1407 		} else {
1408 			if (r > 0) {	/* can only be +1 */
1409 				++i;
1410 				continue;
1411 			}
1412 			/* success */
1413 		}
1414 		cursor->index = i;
1415 		error = 0;
1416 		if (hammer_debug_btree) {
1417 			kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1418 				(long long)cursor->node->node_offset, i);
1419 		}
1420 		goto done;
1421 	}
1422 
1423 	/*
1424 	 * The search of the leaf node failed.  i is the insertion point.
1425 	 */
1426 failed:
1427 	if (hammer_debug_btree) {
1428 		kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1429 			(long long)cursor->node->node_offset, i);
1430 	}
1431 
1432 	/*
1433 	 * No exact match was found, i is now at the insertion point.
1434 	 *
1435 	 * If inserting split a full leaf before returning.  This
1436 	 * may have the side effect of adjusting cursor->node and
1437 	 * cursor->index.
1438 	 */
1439 	cursor->index = i;
1440 	if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1441 	     btree_node_is_full(node)) {
1442 		error = btree_split_leaf(cursor);
1443 		if (error) {
1444 			if (error != ENOSPC)
1445 				goto done;
1446 			enospc = 1;
1447 		}
1448 		/*
1449 		 * reload stale pointers
1450 		 */
1451 		/* NOT USED
1452 		i = cursor->index;
1453 		node = &cursor->node->internal;
1454 		*/
1455 	}
1456 
1457 	/*
1458 	 * We reached a leaf but did not find the key we were looking for.
1459 	 * If this is an insert we will be properly positioned for an insert
1460 	 * (ENOENT) or spike (ENOSPC) operation.
1461 	 */
1462 	error = enospc ? ENOSPC : ENOENT;
1463 done:
1464 	return(error);
1465 }
1466 
1467 /*
1468  * Heuristical search for the first element whos comparison is <= 1.  May
1469  * return an index whos compare result is > 1 but may only return an index
1470  * whos compare result is <= 1 if it is the first element with that result.
1471  */
1472 int
1473 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
1474 {
1475 	int b;
1476 	int s;
1477 	int i;
1478 	int r;
1479 
1480 	/*
1481 	 * Don't bother if the node does not have very many elements
1482 	 */
1483 	b = 0;
1484 	s = node->count;
1485 	while (s - b > 4) {
1486 		i = b + (s - b) / 2;
1487 		++hammer_stats_btree_elements;
1488 		r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
1489 		if (r <= 1) {
1490 			s = i;
1491 		} else {
1492 			b = i;
1493 		}
1494 	}
1495 	return(b);
1496 }
1497 
1498 
1499 /************************************************************************
1500  *			   SPLITTING AND MERGING 			*
1501  ************************************************************************
1502  *
1503  * These routines do all the dirty work required to split and merge nodes.
1504  */
1505 
1506 /*
1507  * Split an internal node into two nodes and move the separator at the split
1508  * point to the parent.
1509  *
1510  * (cursor->node, cursor->index) indicates the element the caller intends
1511  * to push into.  We will adjust node and index if that element winds
1512  * up in the split node.
1513  *
1514  * If we are at the root of the filesystem a new root must be created with
1515  * two elements, one pointing to the original root and one pointing to the
1516  * newly allocated split node.
1517  */
1518 static
1519 int
1520 btree_split_internal(hammer_cursor_t cursor)
1521 {
1522 	hammer_node_ondisk_t ondisk;
1523 	hammer_node_t node;
1524 	hammer_node_t parent;
1525 	hammer_node_t new_node;
1526 	hammer_btree_elm_t elm;
1527 	hammer_btree_elm_t parent_elm;
1528 	struct hammer_node_lock lockroot;
1529 	hammer_mount_t hmp = cursor->trans->hmp;
1530 	hammer_off_t hint;
1531 	int parent_index;
1532 	int made_root;
1533 	int split;
1534 	int error;
1535 	int i;
1536 	const int esize = sizeof(*elm);
1537 
1538 	hammer_node_lock_init(&lockroot, cursor->node);
1539 	error = hammer_btree_lock_children(cursor, 1, &lockroot, NULL);
1540 	if (error)
1541 		goto done;
1542 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1543 		goto done;
1544 	++hammer_stats_btree_splits;
1545 
1546 	/*
1547 	 * Calculate the split point.  If the insertion point is at the
1548 	 * end of the leaf we adjust the split point significantly to the
1549 	 * right to try to optimize node fill and flag it.  If we hit
1550 	 * that same leaf again our heuristic failed and we don't try
1551 	 * to optimize node fill (it could lead to a degenerate case).
1552 	 */
1553 	node = cursor->node;
1554 	ondisk = node->ondisk;
1555 	KKASSERT(ondisk->count > 4);
1556 	if (cursor->index == ondisk->count &&
1557 	    (node->flags & HAMMER_NODE_NONLINEAR) == 0) {
1558 		split = (ondisk->count + 1) * 3 / 4;
1559 		node->flags |= HAMMER_NODE_NONLINEAR;
1560 	} else {
1561 		/*
1562 		 * We are splitting but elms[split] will be promoted to
1563 		 * the parent, leaving the right hand node with one less
1564 		 * element.  If the insertion point will be on the
1565 		 * left-hand side adjust the split point to give the
1566 		 * right hand side one additional node.
1567 		 */
1568 		split = (ondisk->count + 1) / 2;
1569 		if (cursor->index <= split)
1570 			--split;
1571 	}
1572 
1573 	/*
1574 	 * If we are at the root of the filesystem, create a new root node
1575 	 * with 1 element and split normally.  Avoid making major
1576 	 * modifications until we know the whole operation will work.
1577 	 */
1578 	if (ondisk->parent == 0) {
1579 		parent = hammer_alloc_btree(cursor->trans, 0, &error);
1580 		if (parent == NULL)
1581 			goto done;
1582 		hammer_lock_ex(&parent->lock);
1583 		hammer_modify_node_noundo(cursor->trans, parent);
1584 		ondisk = parent->ondisk;
1585 		ondisk->count = 1;
1586 		ondisk->parent = 0;
1587 		ondisk->mirror_tid = node->ondisk->mirror_tid;
1588 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1589 		ondisk->elms[0].base = hmp->root_btree_beg;
1590 		ondisk->elms[0].base.btype = node->ondisk->type;
1591 		ondisk->elms[0].internal.subtree_offset = node->node_offset;
1592 		ondisk->elms[1].base = hmp->root_btree_end;
1593 		hammer_modify_node_done(parent);
1594 		/* ondisk->elms[1].base.btype - not used */
1595 		made_root = 1;
1596 		parent_index = 0;	/* index of current node in parent */
1597 	} else {
1598 		made_root = 0;
1599 		parent = cursor->parent;
1600 		parent_index = cursor->parent_index;
1601 	}
1602 
1603 	/*
1604 	 * Calculate a hint for the allocation of the new B-Tree node.
1605 	 * The most likely expansion is coming from the insertion point
1606 	 * at cursor->index, so try to localize the allocation of our
1607 	 * new node to accomodate that sub-tree.
1608 	 *
1609 	 * Use the right-most sub-tree when expandinging on the right edge.
1610 	 * This is a very common case when copying a directory tree.
1611 	 */
1612 	if (cursor->index == ondisk->count)
1613 		hint = ondisk->elms[cursor->index - 1].internal.subtree_offset;
1614 	else
1615 		hint = ondisk->elms[cursor->index].internal.subtree_offset;
1616 
1617 	/*
1618 	 * Split node into new_node at the split point.
1619 	 *
1620 	 *  B O O O P N N B	<-- P = node->elms[split] (index 4)
1621 	 *   0 1 2 3 4 5 6	<-- subtree indices
1622 	 *
1623 	 *       x x P x x
1624 	 *        s S S s
1625 	 *         /   \
1626 	 *  B O O O B    B N N B	<--- inner boundary points are 'P'
1627 	 *   0 1 2 3      4 5 6
1628 	 */
1629 	new_node = hammer_alloc_btree(cursor->trans, 0, &error);
1630 	if (new_node == NULL) {
1631 		if (made_root) {
1632 			hammer_unlock(&parent->lock);
1633 			hammer_delete_node(cursor->trans, parent);
1634 			hammer_rel_node(parent);
1635 		}
1636 		goto done;
1637 	}
1638 	hammer_lock_ex(&new_node->lock);
1639 
1640 	/*
1641 	 * Create the new node.  P becomes the left-hand boundary in the
1642 	 * new node.  Copy the right-hand boundary as well.
1643 	 *
1644 	 * elm is the new separator.
1645 	 */
1646 	hammer_modify_node_noundo(cursor->trans, new_node);
1647 	hammer_modify_node_all(cursor->trans, node);
1648 	ondisk = node->ondisk;
1649 	elm = &ondisk->elms[split];
1650 	bcopy(elm, &new_node->ondisk->elms[0],
1651 	      (ondisk->count - split + 1) * esize);
1652 	new_node->ondisk->count = ondisk->count - split;
1653 	new_node->ondisk->parent = parent->node_offset;
1654 	new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1655 	new_node->ondisk->mirror_tid = ondisk->mirror_tid;
1656 	KKASSERT(ondisk->type == new_node->ondisk->type);
1657 	hammer_cursor_split_node(node, new_node, split);
1658 
1659 	/*
1660 	 * Cleanup the original node.  Elm (P) becomes the new boundary,
1661 	 * its subtree_offset was moved to the new node.  If we had created
1662 	 * a new root its parent pointer may have changed.
1663 	 */
1664 	elm->internal.subtree_offset = 0;
1665 	ondisk->count = split;
1666 
1667 	/*
1668 	 * Insert the separator into the parent, fixup the parent's
1669 	 * reference to the original node, and reference the new node.
1670 	 * The separator is P.
1671 	 *
1672 	 * Remember that base.count does not include the right-hand boundary.
1673 	 */
1674 	hammer_modify_node_all(cursor->trans, parent);
1675 	ondisk = parent->ondisk;
1676 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1677 	parent_elm = &ondisk->elms[parent_index+1];
1678 	bcopy(parent_elm, parent_elm + 1,
1679 	      (ondisk->count - parent_index) * esize);
1680 	parent_elm->internal.base = elm->base;	/* separator P */
1681 	parent_elm->internal.base.btype = new_node->ondisk->type;
1682 	parent_elm->internal.subtree_offset = new_node->node_offset;
1683 	parent_elm->internal.mirror_tid = new_node->ondisk->mirror_tid;
1684 	++ondisk->count;
1685 	hammer_modify_node_done(parent);
1686 	hammer_cursor_inserted_element(parent, parent_index + 1);
1687 
1688 	/*
1689 	 * The children of new_node need their parent pointer set to new_node.
1690 	 * The children have already been locked by
1691 	 * hammer_btree_lock_children().
1692 	 */
1693 	for (i = 0; i < new_node->ondisk->count; ++i) {
1694 		elm = &new_node->ondisk->elms[i];
1695 		error = btree_set_parent(cursor->trans, new_node, elm);
1696 		if (error) {
1697 			panic("btree_split_internal: btree-fixup problem");
1698 		}
1699 	}
1700 	hammer_modify_node_done(new_node);
1701 
1702 	/*
1703 	 * The filesystem's root B-Tree pointer may have to be updated.
1704 	 */
1705 	if (made_root) {
1706 		hammer_volume_t volume;
1707 
1708 		volume = hammer_get_root_volume(hmp, &error);
1709 		KKASSERT(error == 0);
1710 
1711 		hammer_modify_volume_field(cursor->trans, volume,
1712 					   vol0_btree_root);
1713 		volume->ondisk->vol0_btree_root = parent->node_offset;
1714 		hammer_modify_volume_done(volume);
1715 		node->ondisk->parent = parent->node_offset;
1716 		if (cursor->parent) {
1717 			hammer_unlock(&cursor->parent->lock);
1718 			hammer_rel_node(cursor->parent);
1719 		}
1720 		cursor->parent = parent;	/* lock'd and ref'd */
1721 		hammer_rel_volume(volume, 0);
1722 	}
1723 	hammer_modify_node_done(node);
1724 
1725 	/*
1726 	 * Ok, now adjust the cursor depending on which element the original
1727 	 * index was pointing at.  If we are >= the split point the push node
1728 	 * is now in the new node.
1729 	 *
1730 	 * NOTE: If we are at the split point itself we cannot stay with the
1731 	 * original node because the push index will point at the right-hand
1732 	 * boundary, which is illegal.
1733 	 *
1734 	 * NOTE: The cursor's parent or parent_index must be adjusted for
1735 	 * the case where a new parent (new root) was created, and the case
1736 	 * where the cursor is now pointing at the split node.
1737 	 */
1738 	if (cursor->index >= split) {
1739 		cursor->parent_index = parent_index + 1;
1740 		cursor->index -= split;
1741 		hammer_unlock(&cursor->node->lock);
1742 		hammer_rel_node(cursor->node);
1743 		cursor->node = new_node;	/* locked and ref'd */
1744 	} else {
1745 		cursor->parent_index = parent_index;
1746 		hammer_unlock(&new_node->lock);
1747 		hammer_rel_node(new_node);
1748 	}
1749 
1750 	/*
1751 	 * Fixup left and right bounds
1752 	 */
1753 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1754 	cursor->left_bound = &parent_elm[0].internal.base;
1755 	cursor->right_bound = &parent_elm[1].internal.base;
1756 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1757 		 &cursor->node->ondisk->elms[0].internal.base) <= 0);
1758 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1759 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1760 
1761 done:
1762 	hammer_btree_unlock_children(cursor->trans->hmp, &lockroot, NULL);
1763 	hammer_cursor_downgrade(cursor);
1764 	return (error);
1765 }
1766 
1767 /*
1768  * Same as the above, but splits a full leaf node.
1769  *
1770  * This function
1771  */
1772 static
1773 int
1774 btree_split_leaf(hammer_cursor_t cursor)
1775 {
1776 	hammer_node_ondisk_t ondisk;
1777 	hammer_node_t parent;
1778 	hammer_node_t leaf;
1779 	hammer_mount_t hmp;
1780 	hammer_node_t new_leaf;
1781 	hammer_btree_elm_t elm;
1782 	hammer_btree_elm_t parent_elm;
1783 	hammer_base_elm_t mid_boundary;
1784 	hammer_off_t hint;
1785 	int parent_index;
1786 	int made_root;
1787 	int split;
1788 	int error;
1789 	const size_t esize = sizeof(*elm);
1790 
1791 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1792 		return(error);
1793 	++hammer_stats_btree_splits;
1794 
1795 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1796 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1797 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1798 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1799 
1800 	/*
1801 	 * Calculate the split point.  If the insertion point is at the
1802 	 * end of the leaf we adjust the split point significantly to the
1803 	 * right to try to optimize node fill and flag it.  If we hit
1804 	 * that same leaf again our heuristic failed and we don't try
1805 	 * to optimize node fill (it could lead to a degenerate case).
1806 	 *
1807 	 * Spikes are made up of two leaf elements which cannot be
1808 	 * safely split.
1809 	 */
1810 	leaf = cursor->node;
1811 	ondisk = leaf->ondisk;
1812 	KKASSERT(ondisk->count > 4);
1813 	if (cursor->index == ondisk->count &&
1814 	    (leaf->flags & HAMMER_NODE_NONLINEAR) == 0) {
1815 		split = (ondisk->count + 1) * 3 / 4;
1816 		leaf->flags |= HAMMER_NODE_NONLINEAR;
1817 	} else {
1818 		split = (ondisk->count + 1) / 2;
1819 	}
1820 
1821 #if 0
1822 	/*
1823 	 * If the insertion point is at the split point shift the
1824 	 * split point left so we don't have to worry about
1825 	 */
1826 	if (cursor->index == split)
1827 		--split;
1828 #endif
1829 	KKASSERT(split > 0 && split < ondisk->count);
1830 
1831 	error = 0;
1832 	hmp = leaf->hmp;
1833 
1834 	elm = &ondisk->elms[split];
1835 
1836 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
1837 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
1838 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
1839 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
1840 
1841 	/*
1842 	 * If we are at the root of the tree, create a new root node with
1843 	 * 1 element and split normally.  Avoid making major modifications
1844 	 * until we know the whole operation will work.
1845 	 */
1846 	if (ondisk->parent == 0) {
1847 		parent = hammer_alloc_btree(cursor->trans, 0, &error);
1848 		if (parent == NULL)
1849 			goto done;
1850 		hammer_lock_ex(&parent->lock);
1851 		hammer_modify_node_noundo(cursor->trans, parent);
1852 		ondisk = parent->ondisk;
1853 		ondisk->count = 1;
1854 		ondisk->parent = 0;
1855 		ondisk->mirror_tid = leaf->ondisk->mirror_tid;
1856 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1857 		ondisk->elms[0].base = hmp->root_btree_beg;
1858 		ondisk->elms[0].base.btype = leaf->ondisk->type;
1859 		ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1860 		ondisk->elms[1].base = hmp->root_btree_end;
1861 		/* ondisk->elms[1].base.btype = not used */
1862 		hammer_modify_node_done(parent);
1863 		made_root = 1;
1864 		parent_index = 0;	/* insertion point in parent */
1865 	} else {
1866 		made_root = 0;
1867 		parent = cursor->parent;
1868 		parent_index = cursor->parent_index;
1869 	}
1870 
1871 	/*
1872 	 * Calculate a hint for the allocation of the new B-Tree leaf node.
1873 	 * For now just try to localize it within the same bigblock as
1874 	 * the current leaf.
1875 	 *
1876 	 * If the insertion point is at the end of the leaf we recognize a
1877 	 * likely append sequence of some sort (data, meta-data, inodes,
1878 	 * whatever).  Set the hint to zero to allocate out of linear space
1879 	 * instead of trying to completely fill previously hinted space.
1880 	 *
1881 	 * This also sets the stage for recursive splits to localize using
1882 	 * the new space.
1883 	 */
1884 	ondisk = leaf->ondisk;
1885 	if (cursor->index == ondisk->count)
1886 		hint = 0;
1887 	else
1888 		hint = leaf->node_offset;
1889 
1890 	/*
1891 	 * Split leaf into new_leaf at the split point.  Select a separator
1892 	 * value in-between the two leafs but with a bent towards the right
1893 	 * leaf since comparisons use an 'elm >= separator' inequality.
1894 	 *
1895 	 *  L L L L L L L L
1896 	 *
1897 	 *       x x P x x
1898 	 *        s S S s
1899 	 *         /   \
1900 	 *  L L L L     L L L L
1901 	 */
1902 	new_leaf = hammer_alloc_btree(cursor->trans, 0, &error);
1903 	if (new_leaf == NULL) {
1904 		if (made_root) {
1905 			hammer_unlock(&parent->lock);
1906 			hammer_delete_node(cursor->trans, parent);
1907 			hammer_rel_node(parent);
1908 		}
1909 		goto done;
1910 	}
1911 	hammer_lock_ex(&new_leaf->lock);
1912 
1913 	/*
1914 	 * Create the new node and copy the leaf elements from the split
1915 	 * point on to the new node.
1916 	 */
1917 	hammer_modify_node_all(cursor->trans, leaf);
1918 	hammer_modify_node_noundo(cursor->trans, new_leaf);
1919 	ondisk = leaf->ondisk;
1920 	elm = &ondisk->elms[split];
1921 	bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1922 	new_leaf->ondisk->count = ondisk->count - split;
1923 	new_leaf->ondisk->parent = parent->node_offset;
1924 	new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1925 	new_leaf->ondisk->mirror_tid = ondisk->mirror_tid;
1926 	KKASSERT(ondisk->type == new_leaf->ondisk->type);
1927 	hammer_modify_node_done(new_leaf);
1928 	hammer_cursor_split_node(leaf, new_leaf, split);
1929 
1930 	/*
1931 	 * Cleanup the original node.  Because this is a leaf node and
1932 	 * leaf nodes do not have a right-hand boundary, there
1933 	 * aren't any special edge cases to clean up.  We just fixup the
1934 	 * count.
1935 	 */
1936 	ondisk->count = split;
1937 
1938 	/*
1939 	 * Insert the separator into the parent, fixup the parent's
1940 	 * reference to the original node, and reference the new node.
1941 	 * The separator is P.
1942 	 *
1943 	 * Remember that base.count does not include the right-hand boundary.
1944 	 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1945 	 */
1946 	hammer_modify_node_all(cursor->trans, parent);
1947 	ondisk = parent->ondisk;
1948 	KKASSERT(split != 0);
1949 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1950 	parent_elm = &ondisk->elms[parent_index+1];
1951 	bcopy(parent_elm, parent_elm + 1,
1952 	      (ondisk->count - parent_index) * esize);
1953 
1954 	hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1955 	parent_elm->internal.base.btype = new_leaf->ondisk->type;
1956 	parent_elm->internal.subtree_offset = new_leaf->node_offset;
1957 	parent_elm->internal.mirror_tid = new_leaf->ondisk->mirror_tid;
1958 	mid_boundary = &parent_elm->base;
1959 	++ondisk->count;
1960 	hammer_modify_node_done(parent);
1961 	hammer_cursor_inserted_element(parent, parent_index + 1);
1962 
1963 	/*
1964 	 * The filesystem's root B-Tree pointer may have to be updated.
1965 	 */
1966 	if (made_root) {
1967 		hammer_volume_t volume;
1968 
1969 		volume = hammer_get_root_volume(hmp, &error);
1970 		KKASSERT(error == 0);
1971 
1972 		hammer_modify_volume_field(cursor->trans, volume,
1973 					   vol0_btree_root);
1974 		volume->ondisk->vol0_btree_root = parent->node_offset;
1975 		hammer_modify_volume_done(volume);
1976 		leaf->ondisk->parent = parent->node_offset;
1977 		if (cursor->parent) {
1978 			hammer_unlock(&cursor->parent->lock);
1979 			hammer_rel_node(cursor->parent);
1980 		}
1981 		cursor->parent = parent;	/* lock'd and ref'd */
1982 		hammer_rel_volume(volume, 0);
1983 	}
1984 	hammer_modify_node_done(leaf);
1985 
1986 	/*
1987 	 * Ok, now adjust the cursor depending on which element the original
1988 	 * index was pointing at.  If we are >= the split point the push node
1989 	 * is now in the new node.
1990 	 *
1991 	 * NOTE: If we are at the split point itself we need to select the
1992 	 * old or new node based on where key_beg's insertion point will be.
1993 	 * If we pick the wrong side the inserted element will wind up in
1994 	 * the wrong leaf node and outside that node's bounds.
1995 	 */
1996 	if (cursor->index > split ||
1997 	    (cursor->index == split &&
1998 	     hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
1999 		cursor->parent_index = parent_index + 1;
2000 		cursor->index -= split;
2001 		hammer_unlock(&cursor->node->lock);
2002 		hammer_rel_node(cursor->node);
2003 		cursor->node = new_leaf;
2004 	} else {
2005 		cursor->parent_index = parent_index;
2006 		hammer_unlock(&new_leaf->lock);
2007 		hammer_rel_node(new_leaf);
2008 	}
2009 
2010 	/*
2011 	 * Fixup left and right bounds
2012 	 */
2013 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
2014 	cursor->left_bound = &parent_elm[0].internal.base;
2015 	cursor->right_bound = &parent_elm[1].internal.base;
2016 
2017 	/*
2018 	 * Assert that the bounds are correct.
2019 	 */
2020 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
2021 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
2022 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
2023 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
2024 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
2025 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
2026 
2027 done:
2028 	hammer_cursor_downgrade(cursor);
2029 	return (error);
2030 }
2031 
2032 #if 0
2033 
2034 /*
2035  * Recursively correct the right-hand boundary's create_tid to (tid) as
2036  * long as the rest of the key matches.  We have to recurse upward in
2037  * the tree as well as down the left side of each parent's right node.
2038  *
2039  * Return EDEADLK if we were only partially successful, forcing the caller
2040  * to try again.  The original cursor is not modified.  This routine can
2041  * also fail with EDEADLK if it is forced to throw away a portion of its
2042  * record history.
2043  *
2044  * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
2045  */
2046 struct hammer_rhb {
2047 	TAILQ_ENTRY(hammer_rhb) entry;
2048 	hammer_node_t	node;
2049 	int		index;
2050 };
2051 
2052 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
2053 
2054 int
2055 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
2056 {
2057 	struct hammer_mount *hmp;
2058 	struct hammer_rhb_list rhb_list;
2059 	hammer_base_elm_t elm;
2060 	hammer_node_t orig_node;
2061 	struct hammer_rhb *rhb;
2062 	int orig_index;
2063 	int error;
2064 
2065 	TAILQ_INIT(&rhb_list);
2066 	hmp = cursor->trans->hmp;
2067 
2068 	/*
2069 	 * Save our position so we can restore it on return.  This also
2070 	 * gives us a stable 'elm'.
2071 	 */
2072 	orig_node = cursor->node;
2073 	hammer_ref_node(orig_node);
2074 	hammer_lock_sh(&orig_node->lock);
2075 	orig_index = cursor->index;
2076 	elm = &orig_node->ondisk->elms[orig_index].base;
2077 
2078 	/*
2079 	 * Now build a list of parents going up, allocating a rhb
2080 	 * structure for each one.
2081 	 */
2082 	while (cursor->parent) {
2083 		/*
2084 		 * Stop if we no longer have any right-bounds to fix up
2085 		 */
2086 		if (elm->obj_id != cursor->right_bound->obj_id ||
2087 		    elm->rec_type != cursor->right_bound->rec_type ||
2088 		    elm->key != cursor->right_bound->key) {
2089 			break;
2090 		}
2091 
2092 		/*
2093 		 * Stop if the right-hand bound's create_tid does not
2094 		 * need to be corrected.
2095 		 */
2096 		if (cursor->right_bound->create_tid >= tid)
2097 			break;
2098 
2099 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2100 		rhb->node = cursor->parent;
2101 		rhb->index = cursor->parent_index;
2102 		hammer_ref_node(rhb->node);
2103 		hammer_lock_sh(&rhb->node->lock);
2104 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2105 
2106 		hammer_cursor_up(cursor);
2107 	}
2108 
2109 	/*
2110 	 * now safely adjust the right hand bound for each rhb.  This may
2111 	 * also require taking the right side of the tree and iterating down
2112 	 * ITS left side.
2113 	 */
2114 	error = 0;
2115 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2116 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2117 		if (error)
2118 			break;
2119 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2120 		hammer_unlock(&rhb->node->lock);
2121 		hammer_rel_node(rhb->node);
2122 		kfree(rhb, hmp->m_misc);
2123 
2124 		switch (cursor->node->ondisk->type) {
2125 		case HAMMER_BTREE_TYPE_INTERNAL:
2126 			/*
2127 			 * Right-boundary for parent at internal node
2128 			 * is one element to the right of the element whos
2129 			 * right boundary needs adjusting.  We must then
2130 			 * traverse down the left side correcting any left
2131 			 * bounds (which may now be too far to the left).
2132 			 */
2133 			++cursor->index;
2134 			error = hammer_btree_correct_lhb(cursor, tid);
2135 			break;
2136 		default:
2137 			panic("hammer_btree_correct_rhb(): Bad node type");
2138 			error = EINVAL;
2139 			break;
2140 		}
2141 	}
2142 
2143 	/*
2144 	 * Cleanup
2145 	 */
2146 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2147 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2148 		hammer_unlock(&rhb->node->lock);
2149 		hammer_rel_node(rhb->node);
2150 		kfree(rhb, hmp->m_misc);
2151 	}
2152 	error = hammer_cursor_seek(cursor, orig_node, orig_index);
2153 	hammer_unlock(&orig_node->lock);
2154 	hammer_rel_node(orig_node);
2155 	return (error);
2156 }
2157 
2158 /*
2159  * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
2160  * bound going downward starting at the current cursor position.
2161  *
2162  * This function does not restore the cursor after use.
2163  */
2164 int
2165 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
2166 {
2167 	struct hammer_rhb_list rhb_list;
2168 	hammer_base_elm_t elm;
2169 	hammer_base_elm_t cmp;
2170 	struct hammer_rhb *rhb;
2171 	struct hammer_mount *hmp;
2172 	int error;
2173 
2174 	TAILQ_INIT(&rhb_list);
2175 	hmp = cursor->trans->hmp;
2176 
2177 	cmp = &cursor->node->ondisk->elms[cursor->index].base;
2178 
2179 	/*
2180 	 * Record the node and traverse down the left-hand side for all
2181 	 * matching records needing a boundary correction.
2182 	 */
2183 	error = 0;
2184 	for (;;) {
2185 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2186 		rhb->node = cursor->node;
2187 		rhb->index = cursor->index;
2188 		hammer_ref_node(rhb->node);
2189 		hammer_lock_sh(&rhb->node->lock);
2190 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2191 
2192 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2193 			/*
2194 			 * Nothing to traverse down if we are at the right
2195 			 * boundary of an internal node.
2196 			 */
2197 			if (cursor->index == cursor->node->ondisk->count)
2198 				break;
2199 		} else {
2200 			elm = &cursor->node->ondisk->elms[cursor->index].base;
2201 			if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
2202 				break;
2203 			panic("Illegal leaf record type %02x", elm->btype);
2204 		}
2205 		error = hammer_cursor_down(cursor);
2206 		if (error)
2207 			break;
2208 
2209 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2210 		if (elm->obj_id != cmp->obj_id ||
2211 		    elm->rec_type != cmp->rec_type ||
2212 		    elm->key != cmp->key) {
2213 			break;
2214 		}
2215 		if (elm->create_tid >= tid)
2216 			break;
2217 
2218 	}
2219 
2220 	/*
2221 	 * Now we can safely adjust the left-hand boundary from the bottom-up.
2222 	 * The last element we remove from the list is the caller's right hand
2223 	 * boundary, which must also be adjusted.
2224 	 */
2225 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2226 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2227 		if (error)
2228 			break;
2229 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2230 		hammer_unlock(&rhb->node->lock);
2231 		hammer_rel_node(rhb->node);
2232 		kfree(rhb, hmp->m_misc);
2233 
2234 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2235 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2236 			hammer_modify_node(cursor->trans, cursor->node,
2237 					   &elm->create_tid,
2238 					   sizeof(elm->create_tid));
2239 			elm->create_tid = tid;
2240 			hammer_modify_node_done(cursor->node);
2241 		} else {
2242 			panic("hammer_btree_correct_lhb(): Bad element type");
2243 		}
2244 	}
2245 
2246 	/*
2247 	 * Cleanup
2248 	 */
2249 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2250 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2251 		hammer_unlock(&rhb->node->lock);
2252 		hammer_rel_node(rhb->node);
2253 		kfree(rhb, hmp->m_misc);
2254 	}
2255 	return (error);
2256 }
2257 
2258 #endif
2259 
2260 /*
2261  * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
2262  * (cursor->node).  Returns 0 on success, EDEADLK if we could not complete
2263  * the operation due to a deadlock, or some other error.
2264  *
2265  * This routine is initially called with an empty leaf and may be
2266  * recursively called with single-element internal nodes.
2267  *
2268  * It should also be noted that when removing empty leaves we must be sure
2269  * to test and update mirror_tid because another thread may have deadlocked
2270  * against us (or someone) trying to propagate it up and cannot retry once
2271  * the node has been deleted.
2272  *
2273  * On return the cursor may end up pointing to an internal node, suitable
2274  * for further iteration but not for an immediate insertion or deletion.
2275  */
2276 static int
2277 btree_remove(hammer_cursor_t cursor)
2278 {
2279 	hammer_node_ondisk_t ondisk;
2280 	hammer_btree_elm_t elm;
2281 	hammer_node_t node;
2282 	hammer_node_t parent;
2283 	const int esize = sizeof(*elm);
2284 	int error;
2285 
2286 	node = cursor->node;
2287 
2288 	/*
2289 	 * When deleting the root of the filesystem convert it to
2290 	 * an empty leaf node.  Internal nodes cannot be empty.
2291 	 */
2292 	ondisk = node->ondisk;
2293 	if (ondisk->parent == 0) {
2294 		KKASSERT(cursor->parent == NULL);
2295 		hammer_modify_node_all(cursor->trans, node);
2296 		KKASSERT(ondisk == node->ondisk);
2297 		ondisk->type = HAMMER_BTREE_TYPE_LEAF;
2298 		ondisk->count = 0;
2299 		hammer_modify_node_done(node);
2300 		cursor->index = 0;
2301 		return(0);
2302 	}
2303 
2304 	parent = cursor->parent;
2305 
2306 	/*
2307 	 * Attempt to remove the parent's reference to the child.  If the
2308 	 * parent would become empty we have to recurse.  If we fail we
2309 	 * leave the parent pointing to an empty leaf node.
2310 	 *
2311 	 * We have to recurse successfully before we can delete the internal
2312 	 * node as it is illegal to have empty internal nodes.  Even though
2313 	 * the operation may be aborted we must still fixup any unlocked
2314 	 * cursors as if we had deleted the element prior to recursing
2315 	 * (by calling hammer_cursor_deleted_element()) so those cursors
2316 	 * are properly forced up the chain by the recursion.
2317 	 */
2318 	if (parent->ondisk->count == 1) {
2319 		/*
2320 		 * This special cursor_up_locked() call leaves the original
2321 		 * node exclusively locked and referenced, leaves the
2322 		 * original parent locked (as the new node), and locks the
2323 		 * new parent.  It can return EDEADLK.
2324 		 *
2325 		 * We cannot call hammer_cursor_removed_node() until we are
2326 		 * actually able to remove the node.  If we did then tracked
2327 		 * cursors in the middle of iterations could be repointed
2328 		 * to a parent node.  If this occurs they could end up
2329 		 * scanning newly inserted records into the node (that could
2330 		 * not be deleted) when they push down again.
2331 		 *
2332 		 * Due to the way the recursion works the final parent is left
2333 		 * in cursor->parent after the recursion returns.  Each
2334 		 * layer on the way back up is thus able to call
2335 		 * hammer_cursor_removed_node() and 'jump' the node up to
2336 		 * the (same) final parent.
2337 		 *
2338 		 * NOTE!  The local variable 'parent' is invalid after we
2339 		 *	  call hammer_cursor_up_locked().
2340 		 */
2341 		error = hammer_cursor_up_locked(cursor);
2342 		parent = NULL;
2343 
2344 		if (error == 0) {
2345 			hammer_cursor_deleted_element(cursor->node, 0);
2346 			error = btree_remove(cursor);
2347 			if (error == 0) {
2348 				KKASSERT(node != cursor->node);
2349 				hammer_cursor_removed_node(
2350 					node, cursor->node,
2351 					cursor->index);
2352 				hammer_modify_node_all(cursor->trans, node);
2353 				ondisk = node->ondisk;
2354 				ondisk->type = HAMMER_BTREE_TYPE_DELETED;
2355 				ondisk->count = 0;
2356 				hammer_modify_node_done(node);
2357 				hammer_flush_node(node, 0);
2358 				hammer_delete_node(cursor->trans, node);
2359 			} else {
2360 				/*
2361 				 * Defer parent removal because we could not
2362 				 * get the lock, just let the leaf remain
2363 				 * empty.
2364 				 */
2365 				/**/
2366 			}
2367 			hammer_unlock(&node->lock);
2368 			hammer_rel_node(node);
2369 		} else {
2370 			/*
2371 			 * Defer parent removal because we could not
2372 			 * get the lock, just let the leaf remain
2373 			 * empty.
2374 			 */
2375 			/**/
2376 		}
2377 	} else {
2378 		KKASSERT(parent->ondisk->count > 1);
2379 
2380 		hammer_modify_node_all(cursor->trans, parent);
2381 		ondisk = parent->ondisk;
2382 		KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2383 
2384 		elm = &ondisk->elms[cursor->parent_index];
2385 		KKASSERT(elm->internal.subtree_offset == node->node_offset);
2386 		KKASSERT(ondisk->count > 0);
2387 
2388 		/*
2389 		 * We must retain the highest mirror_tid.  The deleted
2390 		 * range is now encompassed by the element to the left.
2391 		 * If we are already at the left edge the new left edge
2392 		 * inherits mirror_tid.
2393 		 *
2394 		 * Note that bounds of the parent to our parent may create
2395 		 * a gap to the left of our left-most node or to the right
2396 		 * of our right-most node.  The gap is silently included
2397 		 * in the mirror_tid's area of effect from the point of view
2398 		 * of the scan.
2399 		 */
2400 		if (cursor->parent_index) {
2401 			if (elm[-1].internal.mirror_tid <
2402 			    elm[0].internal.mirror_tid) {
2403 				elm[-1].internal.mirror_tid =
2404 				    elm[0].internal.mirror_tid;
2405 			}
2406 		} else {
2407 			if (elm[1].internal.mirror_tid <
2408 			    elm[0].internal.mirror_tid) {
2409 				elm[1].internal.mirror_tid =
2410 				    elm[0].internal.mirror_tid;
2411 			}
2412 		}
2413 
2414 		/*
2415 		 * Delete the subtree reference in the parent.  Include
2416 		 * boundary element at end.
2417 		 */
2418 		bcopy(&elm[1], &elm[0],
2419 		      (ondisk->count - cursor->parent_index) * esize);
2420 		--ondisk->count;
2421 		hammer_modify_node_done(parent);
2422 		hammer_cursor_removed_node(node, parent, cursor->parent_index);
2423 		hammer_cursor_deleted_element(parent, cursor->parent_index);
2424 		hammer_flush_node(node, 0);
2425 		hammer_delete_node(cursor->trans, node);
2426 
2427 		/*
2428 		 * cursor->node is invalid, cursor up to make the cursor
2429 		 * valid again.  We have to flag the condition in case
2430 		 * another thread wiggles an insertion in during an
2431 		 * iteration.
2432 		 */
2433 		cursor->flags |= HAMMER_CURSOR_ITERATE_CHECK;
2434 		error = hammer_cursor_up(cursor);
2435 	}
2436 	return (error);
2437 }
2438 
2439 /*
2440  * Propagate cursor->trans->tid up the B-Tree starting at the current
2441  * cursor position using pseudofs info gleaned from the passed inode.
2442  *
2443  * The passed inode has no relationship to the cursor position other
2444  * then being in the same pseudofs as the insertion or deletion we
2445  * are propagating the mirror_tid for.
2446  *
2447  * WARNING!  Because we push and pop the passed cursor, it may be
2448  *	     modified by other B-Tree operations while it is unlocked
2449  *	     and things like the node & leaf pointers, and indexes might
2450  *	     change.
2451  */
2452 void
2453 hammer_btree_do_propagation(hammer_cursor_t cursor,
2454 			    hammer_pseudofs_inmem_t pfsm,
2455 			    hammer_btree_leaf_elm_t leaf)
2456 {
2457 	hammer_cursor_t ncursor;
2458 	hammer_tid_t mirror_tid;
2459 	int error;
2460 
2461 	/*
2462 	 * We do not propagate a mirror_tid if the filesystem was mounted
2463 	 * in no-mirror mode.
2464 	 */
2465 	if (cursor->trans->hmp->master_id < 0)
2466 		return;
2467 
2468 	/*
2469 	 * This is a bit of a hack because we cannot deadlock or return
2470 	 * EDEADLK here.  The related operation has already completed and
2471 	 * we must propagate the mirror_tid now regardless.
2472 	 *
2473 	 * Generate a new cursor which inherits the original's locks and
2474 	 * unlock the original.  Use the new cursor to propagate the
2475 	 * mirror_tid.  Then clean up the new cursor and reacquire locks
2476 	 * on the original.
2477 	 *
2478 	 * hammer_dup_cursor() cannot dup locks.  The dup inherits the
2479 	 * original's locks and the original is tracked and must be
2480 	 * re-locked.
2481 	 */
2482 	mirror_tid = cursor->node->ondisk->mirror_tid;
2483 	KKASSERT(mirror_tid != 0);
2484 	ncursor = hammer_push_cursor(cursor);
2485 	error = hammer_btree_mirror_propagate(ncursor, mirror_tid);
2486 	KKASSERT(error == 0);
2487 	hammer_pop_cursor(cursor, ncursor);
2488 	/* WARNING: cursor's leaf pointer may change after pop */
2489 }
2490 
2491 
2492 /*
2493  * Propagate a mirror TID update upwards through the B-Tree to the root.
2494  *
2495  * A locked internal node must be passed in.  The node will remain locked
2496  * on return.
2497  *
2498  * This function syncs mirror_tid at the specified internal node's element,
2499  * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2500  */
2501 static int
2502 hammer_btree_mirror_propagate(hammer_cursor_t cursor, hammer_tid_t mirror_tid)
2503 {
2504 	hammer_btree_internal_elm_t elm;
2505 	hammer_node_t node;
2506 	int error;
2507 
2508 	for (;;) {
2509 		error = hammer_cursor_up(cursor);
2510 		if (error == 0)
2511 			error = hammer_cursor_upgrade(cursor);
2512 
2513 		/*
2514 		 * We can ignore HAMMER_CURSOR_ITERATE_CHECK, the
2515 		 * cursor will still be properly positioned for
2516 		 * mirror propagation, just not for iterations.
2517 		 */
2518 		while (error == EDEADLK) {
2519 			hammer_recover_cursor(cursor);
2520 			error = hammer_cursor_upgrade(cursor);
2521 		}
2522 		if (error)
2523 			break;
2524 
2525 		/*
2526 		 * If the cursor deadlocked it could end up at a leaf
2527 		 * after we lost the lock.
2528 		 */
2529 		node = cursor->node;
2530 		if (node->ondisk->type != HAMMER_BTREE_TYPE_INTERNAL)
2531 			continue;
2532 
2533 		/*
2534 		 * Adjust the node's element
2535 		 */
2536 		elm = &node->ondisk->elms[cursor->index].internal;
2537 		if (elm->mirror_tid >= mirror_tid)
2538 			break;
2539 		hammer_modify_node(cursor->trans, node, &elm->mirror_tid,
2540 				   sizeof(elm->mirror_tid));
2541 		elm->mirror_tid = mirror_tid;
2542 		hammer_modify_node_done(node);
2543 		if (hammer_debug_general & 0x0002) {
2544 			kprintf("mirror_propagate: propagate "
2545 				"%016llx @%016llx:%d\n",
2546 				(long long)mirror_tid,
2547 				(long long)node->node_offset,
2548 				cursor->index);
2549 		}
2550 
2551 
2552 		/*
2553 		 * Adjust the node's mirror_tid aggregator
2554 		 */
2555 		if (node->ondisk->mirror_tid >= mirror_tid)
2556 			return(0);
2557 		hammer_modify_node_field(cursor->trans, node, mirror_tid);
2558 		node->ondisk->mirror_tid = mirror_tid;
2559 		hammer_modify_node_done(node);
2560 		if (hammer_debug_general & 0x0002) {
2561 			kprintf("mirror_propagate: propagate "
2562 				"%016llx @%016llx\n",
2563 				(long long)mirror_tid,
2564 				(long long)node->node_offset);
2565 		}
2566 	}
2567 	if (error == ENOENT)
2568 		error = 0;
2569 	return(error);
2570 }
2571 
2572 hammer_node_t
2573 hammer_btree_get_parent(hammer_transaction_t trans, hammer_node_t node,
2574 			int *parent_indexp, int *errorp, int try_exclusive)
2575 {
2576 	hammer_node_t parent;
2577 	hammer_btree_elm_t elm;
2578 	int i;
2579 
2580 	/*
2581 	 * Get the node
2582 	 */
2583 	parent = hammer_get_node(trans, node->ondisk->parent, 0, errorp);
2584 	if (*errorp) {
2585 		KKASSERT(parent == NULL);
2586 		return(NULL);
2587 	}
2588 	KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
2589 
2590 	/*
2591 	 * Lock the node
2592 	 */
2593 	if (try_exclusive) {
2594 		if (hammer_lock_ex_try(&parent->lock)) {
2595 			hammer_rel_node(parent);
2596 			*errorp = EDEADLK;
2597 			return(NULL);
2598 		}
2599 	} else {
2600 		hammer_lock_sh(&parent->lock);
2601 	}
2602 
2603 	/*
2604 	 * Figure out which element in the parent is pointing to the
2605 	 * child.
2606 	 */
2607 	if (node->ondisk->count) {
2608 		i = hammer_btree_search_node(&node->ondisk->elms[0].base,
2609 					     parent->ondisk);
2610 	} else {
2611 		i = 0;
2612 	}
2613 	while (i < parent->ondisk->count) {
2614 		elm = &parent->ondisk->elms[i];
2615 		if (elm->internal.subtree_offset == node->node_offset)
2616 			break;
2617 		++i;
2618 	}
2619 	if (i == parent->ondisk->count) {
2620 		hammer_unlock(&parent->lock);
2621 		panic("Bad B-Tree link: parent %p node %p\n", parent, node);
2622 	}
2623 	*parent_indexp = i;
2624 	KKASSERT(*errorp == 0);
2625 	return(parent);
2626 }
2627 
2628 /*
2629  * The element (elm) has been moved to a new internal node (node).
2630  *
2631  * If the element represents a pointer to an internal node that node's
2632  * parent must be adjusted to the element's new location.
2633  *
2634  * XXX deadlock potential here with our exclusive locks
2635  */
2636 int
2637 btree_set_parent(hammer_transaction_t trans, hammer_node_t node,
2638 		 hammer_btree_elm_t elm)
2639 {
2640 	hammer_node_t child;
2641 	int error;
2642 
2643 	error = 0;
2644 
2645 	switch(elm->base.btype) {
2646 	case HAMMER_BTREE_TYPE_INTERNAL:
2647 	case HAMMER_BTREE_TYPE_LEAF:
2648 		child = hammer_get_node(trans, elm->internal.subtree_offset,
2649 					0, &error);
2650 		if (error == 0) {
2651 			hammer_modify_node_field(trans, child, parent);
2652 			child->ondisk->parent = node->node_offset;
2653 			hammer_modify_node_done(child);
2654 			hammer_rel_node(child);
2655 		}
2656 		break;
2657 	default:
2658 		break;
2659 	}
2660 	return(error);
2661 }
2662 
2663 /*
2664  * Initialize the root of a recursive B-Tree node lock list structure.
2665  */
2666 void
2667 hammer_node_lock_init(hammer_node_lock_t parent, hammer_node_t node)
2668 {
2669 	TAILQ_INIT(&parent->list);
2670 	parent->parent = NULL;
2671 	parent->node = node;
2672 	parent->index = -1;
2673 	parent->count = node->ondisk->count;
2674 	parent->copy = NULL;
2675 	parent->flags = 0;
2676 }
2677 
2678 /*
2679  * Initialize a cache of hammer_node_lock's including space allocated
2680  * for node copies.
2681  *
2682  * This is used by the rebalancing code to preallocate the copy space
2683  * for ~4096 B-Tree nodes (16MB of data) prior to acquiring any HAMMER
2684  * locks, otherwise we can blow out the pageout daemon's emergency
2685  * reserve and deadlock it.
2686  *
2687  * NOTE: HAMMER_NODE_LOCK_LCACHE is not set on items cached in the lcache.
2688  *	 The flag is set when the item is pulled off the cache for use.
2689  */
2690 void
2691 hammer_btree_lcache_init(hammer_mount_t hmp, hammer_node_lock_t lcache,
2692 			 int depth)
2693 {
2694 	hammer_node_lock_t item;
2695 	int count;
2696 
2697 	for (count = 1; depth; --depth)
2698 		count *= HAMMER_BTREE_LEAF_ELMS;
2699 	bzero(lcache, sizeof(*lcache));
2700 	TAILQ_INIT(&lcache->list);
2701 	while (count) {
2702 		item = kmalloc(sizeof(*item), hmp->m_misc, M_WAITOK|M_ZERO);
2703 		item->copy = kmalloc(sizeof(*item->copy),
2704 				     hmp->m_misc, M_WAITOK);
2705 		TAILQ_INIT(&item->list);
2706 		TAILQ_INSERT_TAIL(&lcache->list, item, entry);
2707 		--count;
2708 	}
2709 }
2710 
2711 void
2712 hammer_btree_lcache_free(hammer_mount_t hmp, hammer_node_lock_t lcache)
2713 {
2714 	hammer_node_lock_t item;
2715 
2716 	while ((item = TAILQ_FIRST(&lcache->list)) != NULL) {
2717 		TAILQ_REMOVE(&lcache->list, item, entry);
2718 		KKASSERT(item->copy);
2719 		KKASSERT(TAILQ_EMPTY(&item->list));
2720 		kfree(item->copy, hmp->m_misc);
2721 		kfree(item, hmp->m_misc);
2722 	}
2723 	KKASSERT(lcache->copy == NULL);
2724 }
2725 
2726 /*
2727  * Exclusively lock all the children of node.  This is used by the split
2728  * code to prevent anyone from accessing the children of a cursor node
2729  * while we fix-up its parent offset.
2730  *
2731  * If we don't lock the children we can really mess up cursors which block
2732  * trying to cursor-up into our node.
2733  *
2734  * On failure EDEADLK (or some other error) is returned.  If a deadlock
2735  * error is returned the cursor is adjusted to block on termination.
2736  *
2737  * The caller is responsible for managing parent->node, the root's node
2738  * is usually aliased from a cursor.
2739  */
2740 int
2741 hammer_btree_lock_children(hammer_cursor_t cursor, int depth,
2742 			   hammer_node_lock_t parent,
2743 			   hammer_node_lock_t lcache)
2744 {
2745 	hammer_node_t node;
2746 	hammer_node_lock_t item;
2747 	hammer_node_ondisk_t ondisk;
2748 	hammer_btree_elm_t elm;
2749 	hammer_node_t child;
2750 	struct hammer_mount *hmp;
2751 	int error;
2752 	int i;
2753 
2754 	node = parent->node;
2755 	ondisk = node->ondisk;
2756 	error = 0;
2757 	hmp = cursor->trans->hmp;
2758 
2759 	/*
2760 	 * We really do not want to block on I/O with exclusive locks held,
2761 	 * pre-get the children before trying to lock the mess.  This is
2762 	 * only done one-level deep for now.
2763 	 */
2764 	for (i = 0; i < ondisk->count; ++i) {
2765 		++hammer_stats_btree_elements;
2766 		elm = &ondisk->elms[i];
2767 		if (elm->base.btype != HAMMER_BTREE_TYPE_LEAF &&
2768 		    elm->base.btype != HAMMER_BTREE_TYPE_INTERNAL) {
2769 			continue;
2770 		}
2771 		child = hammer_get_node(cursor->trans,
2772 					elm->internal.subtree_offset,
2773 					0, &error);
2774 		if (child)
2775 			hammer_rel_node(child);
2776 	}
2777 
2778 	/*
2779 	 * Do it for real
2780 	 */
2781 	for (i = 0; error == 0 && i < ondisk->count; ++i) {
2782 		++hammer_stats_btree_elements;
2783 		elm = &ondisk->elms[i];
2784 
2785 		switch(elm->base.btype) {
2786 		case HAMMER_BTREE_TYPE_INTERNAL:
2787 		case HAMMER_BTREE_TYPE_LEAF:
2788 			KKASSERT(elm->internal.subtree_offset != 0);
2789 			child = hammer_get_node(cursor->trans,
2790 						elm->internal.subtree_offset,
2791 						0, &error);
2792 			break;
2793 		default:
2794 			child = NULL;
2795 			break;
2796 		}
2797 		if (child) {
2798 			if (hammer_lock_ex_try(&child->lock) != 0) {
2799 				if (cursor->deadlk_node == NULL) {
2800 					cursor->deadlk_node = child;
2801 					hammer_ref_node(cursor->deadlk_node);
2802 				}
2803 				error = EDEADLK;
2804 				hammer_rel_node(child);
2805 			} else {
2806 				if (lcache) {
2807 					item = TAILQ_FIRST(&lcache->list);
2808 					KKASSERT(item != NULL);
2809 					item->flags |= HAMMER_NODE_LOCK_LCACHE;
2810 					TAILQ_REMOVE(&lcache->list,
2811 						     item, entry);
2812 				} else {
2813 					item = kmalloc(sizeof(*item),
2814 						       hmp->m_misc,
2815 						       M_WAITOK|M_ZERO);
2816 					TAILQ_INIT(&item->list);
2817 				}
2818 
2819 				TAILQ_INSERT_TAIL(&parent->list, item, entry);
2820 				item->parent = parent;
2821 				item->node = child;
2822 				item->index = i;
2823 				item->count = child->ondisk->count;
2824 
2825 				/*
2826 				 * Recurse (used by the rebalancing code)
2827 				 */
2828 				if (depth > 1 && elm->base.btype == HAMMER_BTREE_TYPE_INTERNAL) {
2829 					error = hammer_btree_lock_children(
2830 							cursor,
2831 							depth - 1,
2832 							item,
2833 							lcache);
2834 				}
2835 			}
2836 		}
2837 	}
2838 	if (error)
2839 		hammer_btree_unlock_children(hmp, parent, lcache);
2840 	return(error);
2841 }
2842 
2843 /*
2844  * Create an in-memory copy of all B-Tree nodes listed, recursively,
2845  * including the parent.
2846  */
2847 void
2848 hammer_btree_lock_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2849 {
2850 	hammer_mount_t hmp = cursor->trans->hmp;
2851 	hammer_node_lock_t item;
2852 
2853 	if (parent->copy == NULL) {
2854 		KKASSERT((parent->flags & HAMMER_NODE_LOCK_LCACHE) == 0);
2855 		parent->copy = kmalloc(sizeof(*parent->copy),
2856 				       hmp->m_misc, M_WAITOK);
2857 	}
2858 	KKASSERT((parent->flags & HAMMER_NODE_LOCK_UPDATED) == 0);
2859 	*parent->copy = *parent->node->ondisk;
2860 	TAILQ_FOREACH(item, &parent->list, entry) {
2861 		hammer_btree_lock_copy(cursor, item);
2862 	}
2863 }
2864 
2865 /*
2866  * Recursively sync modified copies to the media.
2867  */
2868 int
2869 hammer_btree_sync_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2870 {
2871 	hammer_node_lock_t item;
2872 	int count = 0;
2873 
2874 	if (parent->flags & HAMMER_NODE_LOCK_UPDATED) {
2875 		++count;
2876 		hammer_modify_node_all(cursor->trans, parent->node);
2877 		*parent->node->ondisk = *parent->copy;
2878                 hammer_modify_node_done(parent->node);
2879 		if (parent->copy->type == HAMMER_BTREE_TYPE_DELETED) {
2880 			hammer_flush_node(parent->node, 0);
2881 			hammer_delete_node(cursor->trans, parent->node);
2882 		}
2883 	}
2884 	TAILQ_FOREACH(item, &parent->list, entry) {
2885 		count += hammer_btree_sync_copy(cursor, item);
2886 	}
2887 	return(count);
2888 }
2889 
2890 /*
2891  * Release previously obtained node locks.  The caller is responsible for
2892  * cleaning up parent->node itself (its usually just aliased from a cursor),
2893  * but this function will take care of the copies.
2894  *
2895  * NOTE: The root node is not placed in the lcache and node->copy is not
2896  *	 deallocated when lcache != NULL.
2897  */
2898 void
2899 hammer_btree_unlock_children(hammer_mount_t hmp, hammer_node_lock_t parent,
2900 			     hammer_node_lock_t lcache)
2901 {
2902 	hammer_node_lock_t item;
2903 	hammer_node_ondisk_t copy;
2904 
2905 	while ((item = TAILQ_FIRST(&parent->list)) != NULL) {
2906 		TAILQ_REMOVE(&parent->list, item, entry);
2907 		hammer_btree_unlock_children(hmp, item, lcache);
2908 		hammer_unlock(&item->node->lock);
2909 		hammer_rel_node(item->node);
2910 		if (lcache) {
2911 			/*
2912 			 * NOTE: When placing the item back in the lcache
2913 			 *	 the flag is cleared by the bzero().
2914 			 *	 Remaining fields are cleared as a safety
2915 			 *	 measure.
2916 			 */
2917 			KKASSERT(item->flags & HAMMER_NODE_LOCK_LCACHE);
2918 			KKASSERT(TAILQ_EMPTY(&item->list));
2919 			copy = item->copy;
2920 			bzero(item, sizeof(*item));
2921 			TAILQ_INIT(&item->list);
2922 			item->copy = copy;
2923 			if (copy)
2924 				bzero(copy, sizeof(*copy));
2925 			TAILQ_INSERT_TAIL(&lcache->list, item, entry);
2926 		} else {
2927 			kfree(item, hmp->m_misc);
2928 		}
2929 	}
2930 	if (parent->copy && (parent->flags & HAMMER_NODE_LOCK_LCACHE) == 0) {
2931 		kfree(parent->copy, hmp->m_misc);
2932 		parent->copy = NULL;	/* safety */
2933 	}
2934 }
2935 
2936 /************************************************************************
2937  *			   MISCELLANIOUS SUPPORT 			*
2938  ************************************************************************/
2939 
2940 /*
2941  * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2942  *
2943  * Note that for this particular function a return value of -1, 0, or +1
2944  * can denote a match if create_tid is otherwise discounted.  A create_tid
2945  * of zero is considered to be 'infinity' in comparisons.
2946  *
2947  * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2948  */
2949 int
2950 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2951 {
2952 	if (key1->localization < key2->localization)
2953 		return(-5);
2954 	if (key1->localization > key2->localization)
2955 		return(5);
2956 
2957 	if (key1->obj_id < key2->obj_id)
2958 		return(-4);
2959 	if (key1->obj_id > key2->obj_id)
2960 		return(4);
2961 
2962 	if (key1->rec_type < key2->rec_type)
2963 		return(-3);
2964 	if (key1->rec_type > key2->rec_type)
2965 		return(3);
2966 
2967 	if (key1->key < key2->key)
2968 		return(-2);
2969 	if (key1->key > key2->key)
2970 		return(2);
2971 
2972 	/*
2973 	 * A create_tid of zero indicates a record which is undeletable
2974 	 * and must be considered to have a value of positive infinity.
2975 	 */
2976 	if (key1->create_tid == 0) {
2977 		if (key2->create_tid == 0)
2978 			return(0);
2979 		return(1);
2980 	}
2981 	if (key2->create_tid == 0)
2982 		return(-1);
2983 	if (key1->create_tid < key2->create_tid)
2984 		return(-1);
2985 	if (key1->create_tid > key2->create_tid)
2986 		return(1);
2987 	return(0);
2988 }
2989 
2990 /*
2991  * Test a timestamp against an element to determine whether the
2992  * element is visible.  A timestamp of 0 means 'infinity'.
2993  */
2994 int
2995 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
2996 {
2997 	if (asof == 0) {
2998 		if (base->delete_tid)
2999 			return(1);
3000 		return(0);
3001 	}
3002 	if (asof < base->create_tid)
3003 		return(-1);
3004 	if (base->delete_tid && asof >= base->delete_tid)
3005 		return(1);
3006 	return(0);
3007 }
3008 
3009 /*
3010  * Create a separator half way inbetween key1 and key2.  For fields just
3011  * one unit apart, the separator will match key2.  key1 is on the left-hand
3012  * side and key2 is on the right-hand side.
3013  *
3014  * key2 must be >= the separator.  It is ok for the separator to match key2.
3015  *
3016  * NOTE: Even if key1 does not match key2, the separator may wind up matching
3017  * key2.
3018  *
3019  * NOTE: It might be beneficial to just scrap this whole mess and just
3020  * set the separator to key2.
3021  */
3022 #define MAKE_SEPARATOR(key1, key2, dest, field)	\
3023 	dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
3024 
3025 static void
3026 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
3027 		      hammer_base_elm_t dest)
3028 {
3029 	bzero(dest, sizeof(*dest));
3030 
3031 	dest->rec_type = key2->rec_type;
3032 	dest->key = key2->key;
3033 	dest->obj_id = key2->obj_id;
3034 	dest->create_tid = key2->create_tid;
3035 
3036 	MAKE_SEPARATOR(key1, key2, dest, localization);
3037 	if (key1->localization == key2->localization) {
3038 		MAKE_SEPARATOR(key1, key2, dest, obj_id);
3039 		if (key1->obj_id == key2->obj_id) {
3040 			MAKE_SEPARATOR(key1, key2, dest, rec_type);
3041 			if (key1->rec_type == key2->rec_type) {
3042 				MAKE_SEPARATOR(key1, key2, dest, key);
3043 				/*
3044 				 * Don't bother creating a separator for
3045 				 * create_tid, which also conveniently avoids
3046 				 * having to handle the create_tid == 0
3047 				 * (infinity) case.  Just leave create_tid
3048 				 * set to key2.
3049 				 *
3050 				 * Worst case, dest matches key2 exactly,
3051 				 * which is acceptable.
3052 				 */
3053 			}
3054 		}
3055 	}
3056 }
3057 
3058 #undef MAKE_SEPARATOR
3059 
3060 /*
3061  * Return whether a generic internal or leaf node is full
3062  */
3063 static int
3064 btree_node_is_full(hammer_node_ondisk_t node)
3065 {
3066 	switch(node->type) {
3067 	case HAMMER_BTREE_TYPE_INTERNAL:
3068 		if (node->count == HAMMER_BTREE_INT_ELMS)
3069 			return(1);
3070 		break;
3071 	case HAMMER_BTREE_TYPE_LEAF:
3072 		if (node->count == HAMMER_BTREE_LEAF_ELMS)
3073 			return(1);
3074 		break;
3075 	default:
3076 		panic("illegal btree subtype");
3077 	}
3078 	return(0);
3079 }
3080 
3081 #if 0
3082 static int
3083 btree_max_elements(u_int8_t type)
3084 {
3085 	if (type == HAMMER_BTREE_TYPE_LEAF)
3086 		return(HAMMER_BTREE_LEAF_ELMS);
3087 	if (type == HAMMER_BTREE_TYPE_INTERNAL)
3088 		return(HAMMER_BTREE_INT_ELMS);
3089 	panic("btree_max_elements: bad type %d\n", type);
3090 }
3091 #endif
3092 
3093 void
3094 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
3095 {
3096 	hammer_btree_elm_t elm;
3097 	int i;
3098 
3099 	kprintf("node %p count=%d parent=%016llx type=%c\n",
3100 		ondisk, ondisk->count,
3101 		(long long)ondisk->parent, ondisk->type);
3102 
3103 	/*
3104 	 * Dump both boundary elements if an internal node
3105 	 */
3106 	if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
3107 		for (i = 0; i <= ondisk->count; ++i) {
3108 			elm = &ondisk->elms[i];
3109 			hammer_print_btree_elm(elm, ondisk->type, i);
3110 		}
3111 	} else {
3112 		for (i = 0; i < ondisk->count; ++i) {
3113 			elm = &ondisk->elms[i];
3114 			hammer_print_btree_elm(elm, ondisk->type, i);
3115 		}
3116 	}
3117 }
3118 
3119 void
3120 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
3121 {
3122 	kprintf("  %2d", i);
3123 	kprintf("\tobj_id       = %016llx\n", (long long)elm->base.obj_id);
3124 	kprintf("\tkey          = %016llx\n", (long long)elm->base.key);
3125 	kprintf("\tcreate_tid   = %016llx\n", (long long)elm->base.create_tid);
3126 	kprintf("\tdelete_tid   = %016llx\n", (long long)elm->base.delete_tid);
3127 	kprintf("\trec_type     = %04x\n", elm->base.rec_type);
3128 	kprintf("\tobj_type     = %02x\n", elm->base.obj_type);
3129 	kprintf("\tbtype 	= %02x (%c)\n",
3130 		elm->base.btype,
3131 		(elm->base.btype ? elm->base.btype : '?'));
3132 	kprintf("\tlocalization	= %02x\n", elm->base.localization);
3133 
3134 	switch(type) {
3135 	case HAMMER_BTREE_TYPE_INTERNAL:
3136 		kprintf("\tsubtree_off  = %016llx\n",
3137 			(long long)elm->internal.subtree_offset);
3138 		break;
3139 	case HAMMER_BTREE_TYPE_RECORD:
3140 		kprintf("\tdata_offset  = %016llx\n",
3141 			(long long)elm->leaf.data_offset);
3142 		kprintf("\tdata_len     = %08x\n", elm->leaf.data_len);
3143 		kprintf("\tdata_crc     = %08x\n", elm->leaf.data_crc);
3144 		break;
3145 	}
3146 }
3147