xref: /dragonfly/sys/vfs/hammer/hammer_btree.c (revision 927da715)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_btree.c,v 1.76 2008/08/06 15:38:58 dillon Exp $
35  */
36 
37 /*
38  * HAMMER B-Tree index
39  *
40  * HAMMER implements a modified B+Tree.  In documentation this will
41  * simply be refered to as the HAMMER B-Tree.  Basically a HAMMER B-Tree
42  * looks like a B+Tree (A B-Tree which stores its records only at the leafs
43  * of the tree), but adds two additional boundary elements which describe
44  * the left-most and right-most element a node is able to represent.  In
45  * otherwords, we have boundary elements at the two ends of a B-Tree node
46  * instead of sub-tree pointers.
47  *
48  * A B-Tree internal node looks like this:
49  *
50  *	B N N N N N N B   <-- boundary and internal elements
51  *       S S S S S S S    <-- subtree pointers
52  *
53  * A B-Tree leaf node basically looks like this:
54  *
55  *	L L L L L L L L   <-- leaf elemenets
56  *
57  * The radix for an internal node is 1 less then a leaf but we get a
58  * number of significant benefits for our troubles.
59  *
60  * The big benefit to using a B-Tree containing boundary information
61  * is that it is possible to cache pointers into the middle of the tree
62  * and not have to start searches, insertions, OR deletions at the root
63  * node.   In particular, searches are able to progress in a definitive
64  * direction from any point in the tree without revisting nodes.  This
65  * greatly improves the efficiency of many operations, most especially
66  * record appends.
67  *
68  * B-Trees also make the stacking of trees fairly straightforward.
69  *
70  * INSERTIONS:  A search performed with the intention of doing
71  * an insert will guarantee that the terminal leaf node is not full by
72  * splitting full nodes.  Splits occur top-down during the dive down the
73  * B-Tree.
74  *
75  * DELETIONS: A deletion makes no attempt to proactively balance the
76  * tree and will recursively remove nodes that become empty.  If a
77  * deadlock occurs a deletion may not be able to remove an empty leaf.
78  * Deletions never allow internal nodes to become empty (that would blow
79  * up the boundaries).
80  */
81 #include "hammer.h"
82 #include <sys/buf.h>
83 #include <sys/buf2.h>
84 
85 static int btree_search(hammer_cursor_t cursor, int flags);
86 static int btree_split_internal(hammer_cursor_t cursor);
87 static int btree_split_leaf(hammer_cursor_t cursor);
88 static int btree_remove(hammer_cursor_t cursor);
89 static int btree_node_is_full(hammer_node_ondisk_t node);
90 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor,
91 			hammer_tid_t mirror_tid);
92 static void hammer_make_separator(hammer_base_elm_t key1,
93 			hammer_base_elm_t key2, hammer_base_elm_t dest);
94 static void hammer_cursor_mirror_filter(hammer_cursor_t cursor);
95 
96 /*
97  * Iterate records after a search.  The cursor is iterated forwards past
98  * the current record until a record matching the key-range requirements
99  * is found.  ENOENT is returned if the iteration goes past the ending
100  * key.
101  *
102  * The iteration is inclusive of key_beg and can be inclusive or exclusive
103  * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
104  *
105  * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
106  * may be modified by B-Tree functions.
107  *
108  * cursor->key_beg may or may not be modified by this function during
109  * the iteration.  XXX future - in case of an inverted lock we may have
110  * to reinitiate the lookup and set key_beg to properly pick up where we
111  * left off.
112  *
113  * NOTE!  EDEADLK *CANNOT* be returned by this procedure.
114  */
115 int
116 hammer_btree_iterate(hammer_cursor_t cursor)
117 {
118 	hammer_node_ondisk_t node;
119 	hammer_btree_elm_t elm;
120 	int error = 0;
121 	int r;
122 	int s;
123 
124 	/*
125 	 * Skip past the current record
126 	 */
127 	node = cursor->node->ondisk;
128 	if (node == NULL)
129 		return(ENOENT);
130 	if (cursor->index < node->count &&
131 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
132 		++cursor->index;
133 	}
134 
135 	/*
136 	 * Loop until an element is found or we are done.
137 	 */
138 	for (;;) {
139 		/*
140 		 * We iterate up the tree and then index over one element
141 		 * while we are at the last element in the current node.
142 		 *
143 		 * If we are at the root of the filesystem, cursor_up
144 		 * returns ENOENT.
145 		 *
146 		 * XXX this could be optimized by storing the information in
147 		 * the parent reference.
148 		 *
149 		 * XXX we can lose the node lock temporarily, this could mess
150 		 * up our scan.
151 		 */
152 		++hammer_stats_btree_iterations;
153 		hammer_flusher_clean_loose_ios(cursor->trans->hmp);
154 
155 		if (cursor->index == node->count) {
156 			if (hammer_debug_btree) {
157 				kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
158 					cursor->node->node_offset,
159 					cursor->index,
160 					(cursor->parent ? cursor->parent->node_offset : -1),
161 					cursor->parent_index,
162 					curthread);
163 			}
164 			KKASSERT(cursor->parent == NULL || cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
165 			error = hammer_cursor_up(cursor);
166 			if (error)
167 				break;
168 			/* reload stale pointer */
169 			node = cursor->node->ondisk;
170 			KKASSERT(cursor->index != node->count);
171 
172 			/*
173 			 * If we are reblocking we want to return internal
174 			 * nodes.
175 			 */
176 			if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
177 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
178 				return(0);
179 			}
180 			++cursor->index;
181 			continue;
182 		}
183 
184 		/*
185 		 * Check internal or leaf element.  Determine if the record
186 		 * at the cursor has gone beyond the end of our range.
187 		 *
188 		 * We recurse down through internal nodes.
189 		 */
190 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
191 			elm = &node->elms[cursor->index];
192 
193 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
194 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
195 			if (hammer_debug_btree) {
196 				kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d (td=%p)\n",
197 					cursor->node->node_offset,
198 					cursor->index,
199 					elm[0].internal.base.obj_id,
200 					elm[0].internal.base.rec_type,
201 					elm[0].internal.base.key,
202 					elm[0].internal.base.localization,
203 					r,
204 					curthread
205 				);
206 				kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
207 					cursor->node->node_offset,
208 					cursor->index + 1,
209 					elm[1].internal.base.obj_id,
210 					elm[1].internal.base.rec_type,
211 					elm[1].internal.base.key,
212 					elm[1].internal.base.localization,
213 					s
214 				);
215 			}
216 
217 			if (r < 0) {
218 				error = ENOENT;
219 				break;
220 			}
221 			if (r == 0 && (cursor->flags &
222 				       HAMMER_CURSOR_END_INCLUSIVE) == 0) {
223 				error = ENOENT;
224 				break;
225 			}
226 			KKASSERT(s <= 0);
227 
228 			/*
229 			 * Better not be zero
230 			 */
231 			KKASSERT(elm->internal.subtree_offset != 0);
232 
233 			/*
234 			 * If running the mirror filter see if we can skip
235 			 * one or more entire sub-trees.  If we can we
236 			 * return the internal mode and the caller processes
237 			 * the skipped range (see mirror_read)
238 			 */
239 			if (cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) {
240 				if (elm->internal.mirror_tid <
241 				    cursor->cmirror->mirror_tid) {
242 					hammer_cursor_mirror_filter(cursor);
243 					return(0);
244 				}
245 			}
246 
247 			error = hammer_cursor_down(cursor);
248 			if (error)
249 				break;
250 			KKASSERT(cursor->index == 0);
251 			/* reload stale pointer */
252 			node = cursor->node->ondisk;
253 			continue;
254 		} else {
255 			elm = &node->elms[cursor->index];
256 			r = hammer_btree_cmp(&cursor->key_end, &elm->base);
257 			if (hammer_debug_btree) {
258 				kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
259 					cursor->node->node_offset,
260 					cursor->index,
261 					(elm[0].leaf.base.btype ?
262 					 elm[0].leaf.base.btype : '?'),
263 					elm[0].leaf.base.obj_id,
264 					elm[0].leaf.base.rec_type,
265 					elm[0].leaf.base.key,
266 					elm[0].leaf.base.localization,
267 					r
268 				);
269 			}
270 			if (r < 0) {
271 				error = ENOENT;
272 				break;
273 			}
274 
275 			/*
276 			 * We support both end-inclusive and
277 			 * end-exclusive searches.
278 			 */
279 			if (r == 0 &&
280 			   (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
281 				error = ENOENT;
282 				break;
283 			}
284 
285 			switch(elm->leaf.base.btype) {
286 			case HAMMER_BTREE_TYPE_RECORD:
287 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
288 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
289 					++cursor->index;
290 					continue;
291 				}
292 				error = 0;
293 				break;
294 			default:
295 				error = EINVAL;
296 				break;
297 			}
298 			if (error)
299 				break;
300 		}
301 		/*
302 		 * node pointer invalid after loop
303 		 */
304 
305 		/*
306 		 * Return entry
307 		 */
308 		if (hammer_debug_btree) {
309 			int i = cursor->index;
310 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
311 			kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
312 				cursor->node, i,
313 				elm->internal.base.obj_id,
314 				elm->internal.base.rec_type,
315 				elm->internal.base.key,
316 				elm->internal.base.localization
317 			);
318 		}
319 		return(0);
320 	}
321 	return(error);
322 }
323 
324 /*
325  * We hit an internal element that we could skip as part of a mirroring
326  * scan.  Calculate the entire range being skipped.
327  *
328  * It is important to include any gaps between the parent's left_bound
329  * and the node's left_bound, and same goes for the right side.
330  */
331 static void
332 hammer_cursor_mirror_filter(hammer_cursor_t cursor)
333 {
334 	struct hammer_cmirror *cmirror;
335 	hammer_node_ondisk_t ondisk;
336 	hammer_btree_elm_t elm;
337 
338 	ondisk = cursor->node->ondisk;
339 	cmirror = cursor->cmirror;
340 
341 	/*
342 	 * Calculate the skipped range
343 	 */
344 	elm = &ondisk->elms[cursor->index];
345 	if (cursor->index == 0)
346 		cmirror->skip_beg = *cursor->left_bound;
347 	else
348 		cmirror->skip_beg = elm->internal.base;
349 	while (cursor->index < ondisk->count) {
350 		if (elm->internal.mirror_tid >= cmirror->mirror_tid)
351 			break;
352 		++cursor->index;
353 		++elm;
354 	}
355 	if (cursor->index == ondisk->count)
356 		cmirror->skip_end = *cursor->right_bound;
357 	else
358 		cmirror->skip_end = elm->internal.base;
359 
360 	/*
361 	 * clip the returned result.
362 	 */
363 	if (hammer_btree_cmp(&cmirror->skip_beg, &cursor->key_beg) < 0)
364 		cmirror->skip_beg = cursor->key_beg;
365 	if (hammer_btree_cmp(&cmirror->skip_end, &cursor->key_end) > 0)
366 		cmirror->skip_end = cursor->key_end;
367 }
368 
369 /*
370  * Iterate in the reverse direction.  This is used by the pruning code to
371  * avoid overlapping records.
372  */
373 int
374 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
375 {
376 	hammer_node_ondisk_t node;
377 	hammer_btree_elm_t elm;
378 	int error = 0;
379 	int r;
380 	int s;
381 
382 	/* mirror filtering not supported for reverse iteration */
383 	KKASSERT ((cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) == 0);
384 
385 	/*
386 	 * Skip past the current record.  For various reasons the cursor
387 	 * may end up set to -1 or set to point at the end of the current
388 	 * node.  These cases must be addressed.
389 	 */
390 	node = cursor->node->ondisk;
391 	if (node == NULL)
392 		return(ENOENT);
393 	if (cursor->index != -1 &&
394 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
395 		--cursor->index;
396 	}
397 	if (cursor->index == cursor->node->ondisk->count)
398 		--cursor->index;
399 
400 	/*
401 	 * Loop until an element is found or we are done.
402 	 */
403 	for (;;) {
404 		++hammer_stats_btree_iterations;
405 		hammer_flusher_clean_loose_ios(cursor->trans->hmp);
406 
407 		/*
408 		 * We iterate up the tree and then index over one element
409 		 * while we are at the last element in the current node.
410 		 */
411 		if (cursor->index == -1) {
412 			error = hammer_cursor_up(cursor);
413 			if (error) {
414 				cursor->index = 0; /* sanity */
415 				break;
416 			}
417 			/* reload stale pointer */
418 			node = cursor->node->ondisk;
419 			KKASSERT(cursor->index != node->count);
420 			--cursor->index;
421 			continue;
422 		}
423 
424 		/*
425 		 * Check internal or leaf element.  Determine if the record
426 		 * at the cursor has gone beyond the end of our range.
427 		 *
428 		 * We recurse down through internal nodes.
429 		 */
430 		KKASSERT(cursor->index != node->count);
431 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
432 			elm = &node->elms[cursor->index];
433 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
434 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
435 			if (hammer_debug_btree) {
436 				kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
437 					cursor->node->node_offset,
438 					cursor->index,
439 					elm[0].internal.base.obj_id,
440 					elm[0].internal.base.rec_type,
441 					elm[0].internal.base.key,
442 					elm[0].internal.base.localization,
443 					r
444 				);
445 				kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
446 					cursor->node->node_offset,
447 					cursor->index + 1,
448 					elm[1].internal.base.obj_id,
449 					elm[1].internal.base.rec_type,
450 					elm[1].internal.base.key,
451 					elm[1].internal.base.localization,
452 					s
453 				);
454 			}
455 
456 			if (s >= 0) {
457 				error = ENOENT;
458 				break;
459 			}
460 			KKASSERT(r >= 0);
461 
462 			/*
463 			 * Better not be zero
464 			 */
465 			KKASSERT(elm->internal.subtree_offset != 0);
466 
467 			error = hammer_cursor_down(cursor);
468 			if (error)
469 				break;
470 			KKASSERT(cursor->index == 0);
471 			/* reload stale pointer */
472 			node = cursor->node->ondisk;
473 
474 			/* this can assign -1 if the leaf was empty */
475 			cursor->index = node->count - 1;
476 			continue;
477 		} else {
478 			elm = &node->elms[cursor->index];
479 			s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
480 			if (hammer_debug_btree) {
481 				kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
482 					cursor->node->node_offset,
483 					cursor->index,
484 					(elm[0].leaf.base.btype ?
485 					 elm[0].leaf.base.btype : '?'),
486 					elm[0].leaf.base.obj_id,
487 					elm[0].leaf.base.rec_type,
488 					elm[0].leaf.base.key,
489 					elm[0].leaf.base.localization,
490 					s
491 				);
492 			}
493 			if (s > 0) {
494 				error = ENOENT;
495 				break;
496 			}
497 
498 			switch(elm->leaf.base.btype) {
499 			case HAMMER_BTREE_TYPE_RECORD:
500 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
501 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
502 					--cursor->index;
503 					continue;
504 				}
505 				error = 0;
506 				break;
507 			default:
508 				error = EINVAL;
509 				break;
510 			}
511 			if (error)
512 				break;
513 		}
514 		/*
515 		 * node pointer invalid after loop
516 		 */
517 
518 		/*
519 		 * Return entry
520 		 */
521 		if (hammer_debug_btree) {
522 			int i = cursor->index;
523 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
524 			kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
525 				cursor->node, i,
526 				elm->internal.base.obj_id,
527 				elm->internal.base.rec_type,
528 				elm->internal.base.key,
529 				elm->internal.base.localization
530 			);
531 		}
532 		return(0);
533 	}
534 	return(error);
535 }
536 
537 /*
538  * Lookup cursor->key_beg.  0 is returned on success, ENOENT if the entry
539  * could not be found, EDEADLK if inserting and a retry is needed, and a
540  * fatal error otherwise.  When retrying, the caller must terminate the
541  * cursor and reinitialize it.  EDEADLK cannot be returned if not inserting.
542  *
543  * The cursor is suitably positioned for a deletion on success, and suitably
544  * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
545  * specified.
546  *
547  * The cursor may begin anywhere, the search will traverse the tree in
548  * either direction to locate the requested element.
549  *
550  * Most of the logic implementing historical searches is handled here.  We
551  * do an initial lookup with create_tid set to the asof TID.  Due to the
552  * way records are laid out, a backwards iteration may be required if
553  * ENOENT is returned to locate the historical record.  Here's the
554  * problem:
555  *
556  * create_tid:    10      15       20
557  *		     LEAF1   LEAF2
558  * records:         (11)        (18)
559  *
560  * Lets say we want to do a lookup AS-OF timestamp 17.  We will traverse
561  * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
562  * not visible and thus causes ENOENT to be returned.  We really need
563  * to check record 11 in LEAF1.  If it also fails then the search fails
564  * (e.g. it might represent the range 11-16 and thus still not match our
565  * AS-OF timestamp of 17).  Note that LEAF1 could be empty, requiring
566  * further iterations.
567  *
568  * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
569  * and the cursor->create_check TID if an iteration might be needed.
570  * In the above example create_check would be set to 14.
571  */
572 int
573 hammer_btree_lookup(hammer_cursor_t cursor)
574 {
575 	int error;
576 
577 	KKASSERT ((cursor->flags & HAMMER_CURSOR_INSERT) == 0 ||
578 		  cursor->trans->sync_lock_refs > 0);
579 	++hammer_stats_btree_lookups;
580 	if (cursor->flags & HAMMER_CURSOR_ASOF) {
581 		KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
582 		cursor->key_beg.create_tid = cursor->asof;
583 		for (;;) {
584 			cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
585 			error = btree_search(cursor, 0);
586 			if (error != ENOENT ||
587 			    (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
588 				/*
589 				 * Stop if no error.
590 				 * Stop if error other then ENOENT.
591 				 * Stop if ENOENT and not special case.
592 				 */
593 				break;
594 			}
595 			if (hammer_debug_btree) {
596 				kprintf("CREATE_CHECK %016llx\n",
597 					cursor->create_check);
598 			}
599 			cursor->key_beg.create_tid = cursor->create_check;
600 			/* loop */
601 		}
602 	} else {
603 		error = btree_search(cursor, 0);
604 	}
605 	if (error == 0)
606 		error = hammer_btree_extract(cursor, cursor->flags);
607 	return(error);
608 }
609 
610 /*
611  * Execute the logic required to start an iteration.  The first record
612  * located within the specified range is returned and iteration control
613  * flags are adjusted for successive hammer_btree_iterate() calls.
614  */
615 int
616 hammer_btree_first(hammer_cursor_t cursor)
617 {
618 	int error;
619 
620 	error = hammer_btree_lookup(cursor);
621 	if (error == ENOENT) {
622 		cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
623 		error = hammer_btree_iterate(cursor);
624 	}
625 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
626 	return(error);
627 }
628 
629 /*
630  * Similarly but for an iteration in the reverse direction.
631  *
632  * Set ATEDISK when iterating backwards to skip the current entry,
633  * which after an ENOENT lookup will be pointing beyond our end point.
634  */
635 int
636 hammer_btree_last(hammer_cursor_t cursor)
637 {
638 	struct hammer_base_elm save;
639 	int error;
640 
641 	save = cursor->key_beg;
642 	cursor->key_beg = cursor->key_end;
643 	error = hammer_btree_lookup(cursor);
644 	cursor->key_beg = save;
645 	if (error == ENOENT ||
646 	    (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
647 		cursor->flags |= HAMMER_CURSOR_ATEDISK;
648 		error = hammer_btree_iterate_reverse(cursor);
649 	}
650 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
651 	return(error);
652 }
653 
654 /*
655  * Extract the record and/or data associated with the cursor's current
656  * position.  Any prior record or data stored in the cursor is replaced.
657  * The cursor must be positioned at a leaf node.
658  *
659  * NOTE: All extractions occur at the leaf of the B-Tree.
660  */
661 int
662 hammer_btree_extract(hammer_cursor_t cursor, int flags)
663 {
664 	hammer_mount_t hmp;
665 	hammer_node_ondisk_t node;
666 	hammer_btree_elm_t elm;
667 	hammer_off_t data_off;
668 	int32_t data_len;
669 	int error;
670 
671 	/*
672 	 * The case where the data reference resolves to the same buffer
673 	 * as the record reference must be handled.
674 	 */
675 	node = cursor->node->ondisk;
676 	elm = &node->elms[cursor->index];
677 	cursor->data = NULL;
678 	hmp = cursor->node->hmp;
679 
680 	/*
681 	 * There is nothing to extract for an internal element.
682 	 */
683 	if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
684 		return(EINVAL);
685 
686 	/*
687 	 * Only record types have data.
688 	 */
689 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
690 	cursor->leaf = &elm->leaf;
691 
692 	if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
693 		return(0);
694 	if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
695 		return(0);
696 	data_off = elm->leaf.data_offset;
697 	data_len = elm->leaf.data_len;
698 	if (data_off == 0)
699 		return(0);
700 
701 	/*
702 	 * Load the data
703 	 */
704 	KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
705 	cursor->data = hammer_bread_ext(hmp, data_off, data_len,
706 					&error, &cursor->data_buffer);
707 	if (hammer_crc_test_leaf(cursor->data, &elm->leaf) == 0) {
708 		kprintf("CRC DATA @ %016llx/%d FAILED\n",
709 			elm->leaf.data_offset, elm->leaf.data_len);
710 		Debugger("CRC FAILED: DATA");
711 	}
712 	return(error);
713 }
714 
715 
716 /*
717  * Insert a leaf element into the B-Tree at the current cursor position.
718  * The cursor is positioned such that the element at and beyond the cursor
719  * are shifted to make room for the new record.
720  *
721  * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
722  * flag set and that call must return ENOENT before this function can be
723  * called.
724  *
725  * The caller may depend on the cursor's exclusive lock after return to
726  * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
727  *
728  * ENOSPC is returned if there is no room to insert a new record.
729  */
730 int
731 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm,
732 		    int *doprop)
733 {
734 	hammer_node_ondisk_t node;
735 	int i;
736 	int error;
737 
738 	*doprop = 0;
739 	if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
740 		return(error);
741 	++hammer_stats_btree_inserts;
742 
743 	/*
744 	 * Insert the element at the leaf node and update the count in the
745 	 * parent.  It is possible for parent to be NULL, indicating that
746 	 * the filesystem's ROOT B-Tree node is a leaf itself, which is
747 	 * possible.  The root inode can never be deleted so the leaf should
748 	 * never be empty.
749 	 *
750 	 * Remember that the right-hand boundary is not included in the
751 	 * count.
752 	 */
753 	hammer_modify_node_all(cursor->trans, cursor->node);
754 	node = cursor->node->ondisk;
755 	i = cursor->index;
756 	KKASSERT(elm->base.btype != 0);
757 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
758 	KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
759 	if (i != node->count) {
760 		bcopy(&node->elms[i], &node->elms[i+1],
761 		      (node->count - i) * sizeof(*elm));
762 	}
763 	node->elms[i].leaf = *elm;
764 	++node->count;
765 	hammer_cursor_inserted_element(cursor->node, i);
766 
767 	/*
768 	 * Update the leaf node's aggregate mirror_tid for mirroring
769 	 * support.
770 	 */
771 	if (node->mirror_tid < elm->base.delete_tid) {
772 		node->mirror_tid = elm->base.delete_tid;
773 		*doprop = 1;
774 	}
775 	if (node->mirror_tid < elm->base.create_tid) {
776 		node->mirror_tid = elm->base.create_tid;
777 		*doprop = 1;
778 	}
779 	hammer_modify_node_done(cursor->node);
780 
781 	/*
782 	 * Debugging sanity checks.
783 	 */
784 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
785 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
786 	if (i) {
787 		KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
788 	}
789 	if (i != node->count - 1)
790 		KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
791 
792 	return(0);
793 }
794 
795 /*
796  * Delete a record from the B-Tree at the current cursor position.
797  * The cursor is positioned such that the current element is the one
798  * to be deleted.
799  *
800  * On return the cursor will be positioned after the deleted element and
801  * MAY point to an internal node.  It will be suitable for the continuation
802  * of an iteration but not for an insertion or deletion.
803  *
804  * Deletions will attempt to partially rebalance the B-Tree in an upward
805  * direction, but will terminate rather then deadlock.  Empty internal nodes
806  * are never allowed by a deletion which deadlocks may end up giving us an
807  * empty leaf.  The pruner will clean up and rebalance the tree.
808  *
809  * This function can return EDEADLK, requiring the caller to retry the
810  * operation after clearing the deadlock.
811  */
812 int
813 hammer_btree_delete(hammer_cursor_t cursor)
814 {
815 	hammer_node_ondisk_t ondisk;
816 	hammer_node_t node;
817 	hammer_node_t parent;
818 	int error;
819 	int i;
820 
821 	KKASSERT (cursor->trans->sync_lock_refs > 0);
822 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
823 		return(error);
824 	++hammer_stats_btree_deletes;
825 
826 	/*
827 	 * Delete the element from the leaf node.
828 	 *
829 	 * Remember that leaf nodes do not have boundaries.
830 	 */
831 	node = cursor->node;
832 	ondisk = node->ondisk;
833 	i = cursor->index;
834 
835 	KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
836 	KKASSERT(i >= 0 && i < ondisk->count);
837 	hammer_modify_node_all(cursor->trans, node);
838 	if (i + 1 != ondisk->count) {
839 		bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
840 		      (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
841 	}
842 	--ondisk->count;
843 	hammer_modify_node_done(node);
844 	hammer_cursor_deleted_element(node, i);
845 
846 	/*
847 	 * Validate local parent
848 	 */
849 	if (ondisk->parent) {
850 		parent = cursor->parent;
851 
852 		KKASSERT(parent != NULL);
853 		KKASSERT(parent->node_offset == ondisk->parent);
854 	}
855 
856 	/*
857 	 * If the leaf becomes empty it must be detached from the parent,
858 	 * potentially recursing through to the filesystem root.
859 	 *
860 	 * This may reposition the cursor at one of the parent's of the
861 	 * current node.
862 	 *
863 	 * Ignore deadlock errors, that simply means that btree_remove
864 	 * was unable to recurse and had to leave us with an empty leaf.
865 	 */
866 	KKASSERT(cursor->index <= ondisk->count);
867 	if (ondisk->count == 0) {
868 		error = btree_remove(cursor);
869 		if (error == EDEADLK)
870 			error = 0;
871 	} else {
872 		error = 0;
873 	}
874 	KKASSERT(cursor->parent == NULL ||
875 		 cursor->parent_index < cursor->parent->ondisk->count);
876 	return(error);
877 }
878 
879 /*
880  * PRIMAY B-TREE SEARCH SUPPORT PROCEDURE
881  *
882  * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
883  *
884  * The search can begin ANYWHERE in the B-Tree.  As a first step the search
885  * iterates up the tree as necessary to properly position itself prior to
886  * actually doing the sarch.
887  *
888  * INSERTIONS: The search will split full nodes and leaves on its way down
889  * and guarentee that the leaf it ends up on is not full.  If we run out
890  * of space the search continues to the leaf (to position the cursor for
891  * the spike), but ENOSPC is returned.
892  *
893  * The search is only guarenteed to end up on a leaf if an error code of 0
894  * is returned, or if inserting and an error code of ENOENT is returned.
895  * Otherwise it can stop at an internal node.  On success a search returns
896  * a leaf node.
897  *
898  * COMPLEXITY WARNING!  This is the core B-Tree search code for the entire
899  * filesystem, and it is not simple code.  Please note the following facts:
900  *
901  * - Internal node recursions have a boundary on the left AND right.  The
902  *   right boundary is non-inclusive.  The create_tid is a generic part
903  *   of the key for internal nodes.
904  *
905  * - Leaf nodes contain terminal elements only now.
906  *
907  * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
908  *   historical search.  ASOF and INSERT are mutually exclusive.  When
909  *   doing an as-of lookup btree_search() checks for a right-edge boundary
910  *   case.  If while recursing down the left-edge differs from the key
911  *   by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
912  *   with cursor->create_check.  This is used by btree_lookup() to iterate.
913  *   The iteration backwards because as-of searches can wind up going
914  *   down the wrong branch of the B-Tree.
915  */
916 static
917 int
918 btree_search(hammer_cursor_t cursor, int flags)
919 {
920 	hammer_node_ondisk_t node;
921 	hammer_btree_elm_t elm;
922 	int error;
923 	int enospc = 0;
924 	int i;
925 	int r;
926 	int s;
927 
928 	flags |= cursor->flags;
929 	++hammer_stats_btree_searches;
930 
931 	if (hammer_debug_btree) {
932 		kprintf("SEARCH   %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td = %p)\n",
933 			cursor->node->node_offset,
934 			cursor->index,
935 			cursor->key_beg.obj_id,
936 			cursor->key_beg.rec_type,
937 			cursor->key_beg.key,
938 			cursor->key_beg.create_tid,
939 			cursor->key_beg.localization,
940 			curthread
941 		);
942 		if (cursor->parent)
943 		    kprintf("SEARCHP %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
944 			cursor->parent->node_offset, cursor->parent_index,
945 			cursor->left_bound->obj_id,
946 			cursor->parent->ondisk->elms[cursor->parent_index].internal.base.obj_id,
947 			cursor->right_bound->obj_id,
948 			cursor->parent->ondisk->elms[cursor->parent_index+1].internal.base.obj_id,
949 			cursor->left_bound,
950 			&cursor->parent->ondisk->elms[cursor->parent_index],
951 			cursor->right_bound,
952 			&cursor->parent->ondisk->elms[cursor->parent_index+1]
953 		    );
954 	}
955 
956 	/*
957 	 * Move our cursor up the tree until we find a node whos range covers
958 	 * the key we are trying to locate.
959 	 *
960 	 * The left bound is inclusive, the right bound is non-inclusive.
961 	 * It is ok to cursor up too far.
962 	 */
963 	for (;;) {
964 		r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
965 		s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
966 		if (r >= 0 && s < 0)
967 			break;
968 		KKASSERT(cursor->parent);
969 		++hammer_stats_btree_iterations;
970 		error = hammer_cursor_up(cursor);
971 		if (error)
972 			goto done;
973 	}
974 
975 	/*
976 	 * The delete-checks below are based on node, not parent.  Set the
977 	 * initial delete-check based on the parent.
978 	 */
979 	if (r == 1) {
980 		KKASSERT(cursor->left_bound->create_tid != 1);
981 		cursor->create_check = cursor->left_bound->create_tid - 1;
982 		cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
983 	}
984 
985 	/*
986 	 * We better have ended up with a node somewhere.
987 	 */
988 	KKASSERT(cursor->node != NULL);
989 
990 	/*
991 	 * If we are inserting we can't start at a full node if the parent
992 	 * is also full (because there is no way to split the node),
993 	 * continue running up the tree until the requirement is satisfied
994 	 * or we hit the root of the filesystem.
995 	 *
996 	 * (If inserting we aren't doing an as-of search so we don't have
997 	 *  to worry about create_check).
998 	 */
999 	while ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1000 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1001 			if (btree_node_is_full(cursor->node->ondisk) == 0)
1002 				break;
1003 		} else {
1004 			if (btree_node_is_full(cursor->node->ondisk) ==0)
1005 				break;
1006 		}
1007 		if (cursor->node->ondisk->parent == 0 ||
1008 		    cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
1009 			break;
1010 		}
1011 		++hammer_stats_btree_iterations;
1012 		error = hammer_cursor_up(cursor);
1013 		/* node may have become stale */
1014 		if (error)
1015 			goto done;
1016 	}
1017 
1018 	/*
1019 	 * Push down through internal nodes to locate the requested key.
1020 	 */
1021 	node = cursor->node->ondisk;
1022 	while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
1023 		/*
1024 		 * Scan the node to find the subtree index to push down into.
1025 		 * We go one-past, then back-up.
1026 		 *
1027 		 * We must proactively remove deleted elements which may
1028 		 * have been left over from a deadlocked btree_remove().
1029 		 *
1030 		 * The left and right boundaries are included in the loop
1031 		 * in order to detect edge cases.
1032 		 *
1033 		 * If the separator only differs by create_tid (r == 1)
1034 		 * and we are doing an as-of search, we may end up going
1035 		 * down a branch to the left of the one containing the
1036 		 * desired key.  This requires numerous special cases.
1037 		 */
1038 		++hammer_stats_btree_iterations;
1039 		if (hammer_debug_btree) {
1040 			kprintf("SEARCH-I %016llx count=%d\n",
1041 				cursor->node->node_offset,
1042 				node->count);
1043 		}
1044 
1045 		/*
1046 		 * Try to shortcut the search before dropping into the
1047 		 * linear loop.  Locate the first node where r <= 1.
1048 		 */
1049 		i = hammer_btree_search_node(&cursor->key_beg, node);
1050 		while (i <= node->count) {
1051 			++hammer_stats_btree_elements;
1052 			elm = &node->elms[i];
1053 			r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
1054 			if (hammer_debug_btree > 2) {
1055 				kprintf(" IELM %p %d r=%d\n",
1056 					&node->elms[i], i, r);
1057 			}
1058 			if (r < 0)
1059 				break;
1060 			if (r == 1) {
1061 				KKASSERT(elm->base.create_tid != 1);
1062 				cursor->create_check = elm->base.create_tid - 1;
1063 				cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1064 			}
1065 			++i;
1066 		}
1067 		if (hammer_debug_btree) {
1068 			kprintf("SEARCH-I preI=%d/%d r=%d\n",
1069 				i, node->count, r);
1070 		}
1071 
1072 		/*
1073 		 * These cases occur when the parent's idea of the boundary
1074 		 * is wider then the child's idea of the boundary, and
1075 		 * require special handling.  If not inserting we can
1076 		 * terminate the search early for these cases but the
1077 		 * child's boundaries cannot be unconditionally modified.
1078 		 */
1079 		if (i == 0) {
1080 			/*
1081 			 * If i == 0 the search terminated to the LEFT of the
1082 			 * left_boundary but to the RIGHT of the parent's left
1083 			 * boundary.
1084 			 */
1085 			u_int8_t save;
1086 
1087 			elm = &node->elms[0];
1088 
1089 			/*
1090 			 * If we aren't inserting we can stop here.
1091 			 */
1092 			if ((flags & (HAMMER_CURSOR_INSERT |
1093 				      HAMMER_CURSOR_PRUNING)) == 0) {
1094 				cursor->index = 0;
1095 				return(ENOENT);
1096 			}
1097 
1098 			/*
1099 			 * Correct a left-hand boundary mismatch.
1100 			 *
1101 			 * We can only do this if we can upgrade the lock,
1102 			 * and synchronized as a background cursor (i.e.
1103 			 * inserting or pruning).
1104 			 *
1105 			 * WARNING: We can only do this if inserting, i.e.
1106 			 * we are running on the backend.
1107 			 */
1108 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1109 				return(error);
1110 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1111 			hammer_modify_node_field(cursor->trans, cursor->node,
1112 						 elms[0]);
1113 			save = node->elms[0].base.btype;
1114 			node->elms[0].base = *cursor->left_bound;
1115 			node->elms[0].base.btype = save;
1116 			hammer_modify_node_done(cursor->node);
1117 		} else if (i == node->count + 1) {
1118 			/*
1119 			 * If i == node->count + 1 the search terminated to
1120 			 * the RIGHT of the right boundary but to the LEFT
1121 			 * of the parent's right boundary.  If we aren't
1122 			 * inserting we can stop here.
1123 			 *
1124 			 * Note that the last element in this case is
1125 			 * elms[i-2] prior to adjustments to 'i'.
1126 			 */
1127 			--i;
1128 			if ((flags & (HAMMER_CURSOR_INSERT |
1129 				      HAMMER_CURSOR_PRUNING)) == 0) {
1130 				cursor->index = i;
1131 				return (ENOENT);
1132 			}
1133 
1134 			/*
1135 			 * Correct a right-hand boundary mismatch.
1136 			 * (actual push-down record is i-2 prior to
1137 			 * adjustments to i).
1138 			 *
1139 			 * We can only do this if we can upgrade the lock,
1140 			 * and synchronized as a background cursor (i.e.
1141 			 * inserting or pruning).
1142 			 *
1143 			 * WARNING: We can only do this if inserting, i.e.
1144 			 * we are running on the backend.
1145 			 */
1146 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1147 				return(error);
1148 			elm = &node->elms[i];
1149 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1150 			hammer_modify_node(cursor->trans, cursor->node,
1151 					   &elm->base, sizeof(elm->base));
1152 			elm->base = *cursor->right_bound;
1153 			hammer_modify_node_done(cursor->node);
1154 			--i;
1155 		} else {
1156 			/*
1157 			 * The push-down index is now i - 1.  If we had
1158 			 * terminated on the right boundary this will point
1159 			 * us at the last element.
1160 			 */
1161 			--i;
1162 		}
1163 		cursor->index = i;
1164 		elm = &node->elms[i];
1165 
1166 		if (hammer_debug_btree) {
1167 			kprintf("RESULT-I %016llx[%d] %016llx %02x "
1168 				"key=%016llx cre=%016llx lo=%02x\n",
1169 				cursor->node->node_offset,
1170 				i,
1171 				elm->internal.base.obj_id,
1172 				elm->internal.base.rec_type,
1173 				elm->internal.base.key,
1174 				elm->internal.base.create_tid,
1175 				elm->internal.base.localization
1176 			);
1177 		}
1178 
1179 		/*
1180 		 * We better have a valid subtree offset.
1181 		 */
1182 		KKASSERT(elm->internal.subtree_offset != 0);
1183 
1184 		/*
1185 		 * Handle insertion and deletion requirements.
1186 		 *
1187 		 * If inserting split full nodes.  The split code will
1188 		 * adjust cursor->node and cursor->index if the current
1189 		 * index winds up in the new node.
1190 		 *
1191 		 * If inserting and a left or right edge case was detected,
1192 		 * we cannot correct the left or right boundary and must
1193 		 * prepend and append an empty leaf node in order to make
1194 		 * the boundary correction.
1195 		 *
1196 		 * If we run out of space we set enospc and continue on
1197 		 * to a leaf to provide the spike code with a good point
1198 		 * of entry.
1199 		 */
1200 		if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1201 			if (btree_node_is_full(node)) {
1202 				error = btree_split_internal(cursor);
1203 				if (error) {
1204 					if (error != ENOSPC)
1205 						goto done;
1206 					enospc = 1;
1207 				}
1208 				/*
1209 				 * reload stale pointers
1210 				 */
1211 				i = cursor->index;
1212 				node = cursor->node->ondisk;
1213 			}
1214 		}
1215 
1216 		/*
1217 		 * Push down (push into new node, existing node becomes
1218 		 * the parent) and continue the search.
1219 		 */
1220 		error = hammer_cursor_down(cursor);
1221 		/* node may have become stale */
1222 		if (error)
1223 			goto done;
1224 		node = cursor->node->ondisk;
1225 	}
1226 
1227 	/*
1228 	 * We are at a leaf, do a linear search of the key array.
1229 	 *
1230 	 * On success the index is set to the matching element and 0
1231 	 * is returned.
1232 	 *
1233 	 * On failure the index is set to the insertion point and ENOENT
1234 	 * is returned.
1235 	 *
1236 	 * Boundaries are not stored in leaf nodes, so the index can wind
1237 	 * up to the left of element 0 (index == 0) or past the end of
1238 	 * the array (index == node->count).  It is also possible that the
1239 	 * leaf might be empty.
1240 	 */
1241 	++hammer_stats_btree_iterations;
1242 	KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1243 	KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1244 	if (hammer_debug_btree) {
1245 		kprintf("SEARCH-L %016llx count=%d\n",
1246 			cursor->node->node_offset,
1247 			node->count);
1248 	}
1249 
1250 	/*
1251 	 * Try to shortcut the search before dropping into the
1252 	 * linear loop.  Locate the first node where r <= 1.
1253 	 */
1254 	i = hammer_btree_search_node(&cursor->key_beg, node);
1255 	while (i < node->count) {
1256 		++hammer_stats_btree_elements;
1257 		elm = &node->elms[i];
1258 
1259 		r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1260 
1261 		if (hammer_debug_btree > 1)
1262 			kprintf("  ELM %p %d r=%d\n", &node->elms[i], i, r);
1263 
1264 		/*
1265 		 * We are at a record element.  Stop if we've flipped past
1266 		 * key_beg, not counting the create_tid test.  Allow the
1267 		 * r == 1 case (key_beg > element but differs only by its
1268 		 * create_tid) to fall through to the AS-OF check.
1269 		 */
1270 		KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1271 
1272 		if (r < 0)
1273 			goto failed;
1274 		if (r > 1) {
1275 			++i;
1276 			continue;
1277 		}
1278 
1279 		/*
1280 		 * Check our as-of timestamp against the element.
1281 		 */
1282 		if (flags & HAMMER_CURSOR_ASOF) {
1283 			if (hammer_btree_chkts(cursor->asof,
1284 					       &node->elms[i].base) != 0) {
1285 				++i;
1286 				continue;
1287 			}
1288 			/* success */
1289 		} else {
1290 			if (r > 0) {	/* can only be +1 */
1291 				++i;
1292 				continue;
1293 			}
1294 			/* success */
1295 		}
1296 		cursor->index = i;
1297 		error = 0;
1298 		if (hammer_debug_btree) {
1299 			kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1300 				cursor->node->node_offset, i);
1301 		}
1302 		goto done;
1303 	}
1304 
1305 	/*
1306 	 * The search of the leaf node failed.  i is the insertion point.
1307 	 */
1308 failed:
1309 	if (hammer_debug_btree) {
1310 		kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1311 			cursor->node->node_offset, i);
1312 	}
1313 
1314 	/*
1315 	 * No exact match was found, i is now at the insertion point.
1316 	 *
1317 	 * If inserting split a full leaf before returning.  This
1318 	 * may have the side effect of adjusting cursor->node and
1319 	 * cursor->index.
1320 	 */
1321 	cursor->index = i;
1322 	if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1323 	     btree_node_is_full(node)) {
1324 		error = btree_split_leaf(cursor);
1325 		if (error) {
1326 			if (error != ENOSPC)
1327 				goto done;
1328 			enospc = 1;
1329 		}
1330 		/*
1331 		 * reload stale pointers
1332 		 */
1333 		/* NOT USED
1334 		i = cursor->index;
1335 		node = &cursor->node->internal;
1336 		*/
1337 	}
1338 
1339 	/*
1340 	 * We reached a leaf but did not find the key we were looking for.
1341 	 * If this is an insert we will be properly positioned for an insert
1342 	 * (ENOENT) or spike (ENOSPC) operation.
1343 	 */
1344 	error = enospc ? ENOSPC : ENOENT;
1345 done:
1346 	return(error);
1347 }
1348 
1349 /*
1350  * Heuristical search for the first element whos comparison is <= 1.  May
1351  * return an index whos compare result is > 1 but may only return an index
1352  * whos compare result is <= 1 if it is the first element with that result.
1353  */
1354 int
1355 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
1356 {
1357 	int b;
1358 	int s;
1359 	int i;
1360 	int r;
1361 
1362 	/*
1363 	 * Don't bother if the node does not have very many elements
1364 	 */
1365 	b = 0;
1366 	s = node->count;
1367 	while (s - b > 4) {
1368 		i = b + (s - b) / 2;
1369 		++hammer_stats_btree_elements;
1370 		r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
1371 		if (r <= 1) {
1372 			s = i;
1373 		} else {
1374 			b = i;
1375 		}
1376 	}
1377 	return(b);
1378 }
1379 
1380 
1381 /************************************************************************
1382  *			   SPLITTING AND MERGING 			*
1383  ************************************************************************
1384  *
1385  * These routines do all the dirty work required to split and merge nodes.
1386  */
1387 
1388 /*
1389  * Split an internal node into two nodes and move the separator at the split
1390  * point to the parent.
1391  *
1392  * (cursor->node, cursor->index) indicates the element the caller intends
1393  * to push into.  We will adjust node and index if that element winds
1394  * up in the split node.
1395  *
1396  * If we are at the root of the filesystem a new root must be created with
1397  * two elements, one pointing to the original root and one pointing to the
1398  * newly allocated split node.
1399  */
1400 static
1401 int
1402 btree_split_internal(hammer_cursor_t cursor)
1403 {
1404 	hammer_node_ondisk_t ondisk;
1405 	hammer_node_t node;
1406 	hammer_node_t parent;
1407 	hammer_node_t new_node;
1408 	hammer_btree_elm_t elm;
1409 	hammer_btree_elm_t parent_elm;
1410 	hammer_node_locklist_t locklist = NULL;
1411 	hammer_mount_t hmp = cursor->trans->hmp;
1412 	int parent_index;
1413 	int made_root;
1414 	int split;
1415 	int error;
1416 	int i;
1417 	const int esize = sizeof(*elm);
1418 
1419 	error = hammer_btree_lock_children(cursor, &locklist);
1420 	if (error)
1421 		goto done;
1422 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1423 		goto done;
1424 	++hammer_stats_btree_splits;
1425 
1426 	/*
1427 	 * We are splitting but elms[split] will be promoted to the parent,
1428 	 * leaving the right hand node with one less element.  If the
1429 	 * insertion point will be on the left-hand side adjust the split
1430 	 * point to give the right hand side one additional node.
1431 	 */
1432 	node = cursor->node;
1433 	ondisk = node->ondisk;
1434 	split = (ondisk->count + 1) / 2;
1435 	if (cursor->index <= split)
1436 		--split;
1437 
1438 	/*
1439 	 * If we are at the root of the filesystem, create a new root node
1440 	 * with 1 element and split normally.  Avoid making major
1441 	 * modifications until we know the whole operation will work.
1442 	 */
1443 	if (ondisk->parent == 0) {
1444 		parent = hammer_alloc_btree(cursor->trans, &error);
1445 		if (parent == NULL)
1446 			goto done;
1447 		hammer_lock_ex(&parent->lock);
1448 		hammer_modify_node_noundo(cursor->trans, parent);
1449 		ondisk = parent->ondisk;
1450 		ondisk->count = 1;
1451 		ondisk->parent = 0;
1452 		ondisk->mirror_tid = node->ondisk->mirror_tid;
1453 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1454 		ondisk->elms[0].base = hmp->root_btree_beg;
1455 		ondisk->elms[0].base.btype = node->ondisk->type;
1456 		ondisk->elms[0].internal.subtree_offset = node->node_offset;
1457 		ondisk->elms[1].base = hmp->root_btree_end;
1458 		hammer_modify_node_done(parent);
1459 		/* ondisk->elms[1].base.btype - not used */
1460 		made_root = 1;
1461 		parent_index = 0;	/* index of current node in parent */
1462 	} else {
1463 		made_root = 0;
1464 		parent = cursor->parent;
1465 		parent_index = cursor->parent_index;
1466 	}
1467 
1468 	/*
1469 	 * Split node into new_node at the split point.
1470 	 *
1471 	 *  B O O O P N N B	<-- P = node->elms[split]
1472 	 *   0 1 2 3 4 5 6	<-- subtree indices
1473 	 *
1474 	 *       x x P x x
1475 	 *        s S S s
1476 	 *         /   \
1477 	 *  B O O O B    B N N B	<--- inner boundary points are 'P'
1478 	 *   0 1 2 3      4 5 6
1479 	 *
1480 	 */
1481 	new_node = hammer_alloc_btree(cursor->trans, &error);
1482 	if (new_node == NULL) {
1483 		if (made_root) {
1484 			hammer_unlock(&parent->lock);
1485 			hammer_delete_node(cursor->trans, parent);
1486 			hammer_rel_node(parent);
1487 		}
1488 		goto done;
1489 	}
1490 	hammer_lock_ex(&new_node->lock);
1491 
1492 	/*
1493 	 * Create the new node.  P becomes the left-hand boundary in the
1494 	 * new node.  Copy the right-hand boundary as well.
1495 	 *
1496 	 * elm is the new separator.
1497 	 */
1498 	hammer_modify_node_noundo(cursor->trans, new_node);
1499 	hammer_modify_node_all(cursor->trans, node);
1500 	ondisk = node->ondisk;
1501 	elm = &ondisk->elms[split];
1502 	bcopy(elm, &new_node->ondisk->elms[0],
1503 	      (ondisk->count - split + 1) * esize);
1504 	new_node->ondisk->count = ondisk->count - split;
1505 	new_node->ondisk->parent = parent->node_offset;
1506 	new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1507 	new_node->ondisk->mirror_tid = ondisk->mirror_tid;
1508 	KKASSERT(ondisk->type == new_node->ondisk->type);
1509 	hammer_cursor_split_node(node, new_node, split);
1510 
1511 	/*
1512 	 * Cleanup the original node.  Elm (P) becomes the new boundary,
1513 	 * its subtree_offset was moved to the new node.  If we had created
1514 	 * a new root its parent pointer may have changed.
1515 	 */
1516 	elm->internal.subtree_offset = 0;
1517 	ondisk->count = split;
1518 
1519 	/*
1520 	 * Insert the separator into the parent, fixup the parent's
1521 	 * reference to the original node, and reference the new node.
1522 	 * The separator is P.
1523 	 *
1524 	 * Remember that base.count does not include the right-hand boundary.
1525 	 */
1526 	hammer_modify_node_all(cursor->trans, parent);
1527 	ondisk = parent->ondisk;
1528 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1529 	parent_elm = &ondisk->elms[parent_index+1];
1530 	bcopy(parent_elm, parent_elm + 1,
1531 	      (ondisk->count - parent_index) * esize);
1532 	parent_elm->internal.base = elm->base;	/* separator P */
1533 	parent_elm->internal.base.btype = new_node->ondisk->type;
1534 	parent_elm->internal.subtree_offset = new_node->node_offset;
1535 	parent_elm->internal.mirror_tid = new_node->ondisk->mirror_tid;
1536 	++ondisk->count;
1537 	hammer_modify_node_done(parent);
1538 	hammer_cursor_inserted_element(parent, parent_index + 1);
1539 
1540 	/*
1541 	 * The children of new_node need their parent pointer set to new_node.
1542 	 * The children have already been locked by
1543 	 * hammer_btree_lock_children().
1544 	 */
1545 	for (i = 0; i < new_node->ondisk->count; ++i) {
1546 		elm = &new_node->ondisk->elms[i];
1547 		error = btree_set_parent(cursor->trans, new_node, elm);
1548 		if (error) {
1549 			panic("btree_split_internal: btree-fixup problem");
1550 		}
1551 	}
1552 	hammer_modify_node_done(new_node);
1553 
1554 	/*
1555 	 * The filesystem's root B-Tree pointer may have to be updated.
1556 	 */
1557 	if (made_root) {
1558 		hammer_volume_t volume;
1559 
1560 		volume = hammer_get_root_volume(hmp, &error);
1561 		KKASSERT(error == 0);
1562 
1563 		hammer_modify_volume_field(cursor->trans, volume,
1564 					   vol0_btree_root);
1565 		volume->ondisk->vol0_btree_root = parent->node_offset;
1566 		hammer_modify_volume_done(volume);
1567 		node->ondisk->parent = parent->node_offset;
1568 		if (cursor->parent) {
1569 			hammer_unlock(&cursor->parent->lock);
1570 			hammer_rel_node(cursor->parent);
1571 		}
1572 		cursor->parent = parent;	/* lock'd and ref'd */
1573 		hammer_rel_volume(volume, 0);
1574 	}
1575 	hammer_modify_node_done(node);
1576 
1577 	/*
1578 	 * Ok, now adjust the cursor depending on which element the original
1579 	 * index was pointing at.  If we are >= the split point the push node
1580 	 * is now in the new node.
1581 	 *
1582 	 * NOTE: If we are at the split point itself we cannot stay with the
1583 	 * original node because the push index will point at the right-hand
1584 	 * boundary, which is illegal.
1585 	 *
1586 	 * NOTE: The cursor's parent or parent_index must be adjusted for
1587 	 * the case where a new parent (new root) was created, and the case
1588 	 * where the cursor is now pointing at the split node.
1589 	 */
1590 	if (cursor->index >= split) {
1591 		cursor->parent_index = parent_index + 1;
1592 		cursor->index -= split;
1593 		hammer_unlock(&cursor->node->lock);
1594 		hammer_rel_node(cursor->node);
1595 		cursor->node = new_node;	/* locked and ref'd */
1596 	} else {
1597 		cursor->parent_index = parent_index;
1598 		hammer_unlock(&new_node->lock);
1599 		hammer_rel_node(new_node);
1600 	}
1601 
1602 	/*
1603 	 * Fixup left and right bounds
1604 	 */
1605 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1606 	cursor->left_bound = &parent_elm[0].internal.base;
1607 	cursor->right_bound = &parent_elm[1].internal.base;
1608 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1609 		 &cursor->node->ondisk->elms[0].internal.base) <= 0);
1610 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1611 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1612 
1613 done:
1614 	hammer_btree_unlock_children(&locklist);
1615 	hammer_cursor_downgrade(cursor);
1616 	return (error);
1617 }
1618 
1619 /*
1620  * Same as the above, but splits a full leaf node.
1621  *
1622  * This function
1623  */
1624 static
1625 int
1626 btree_split_leaf(hammer_cursor_t cursor)
1627 {
1628 	hammer_node_ondisk_t ondisk;
1629 	hammer_node_t parent;
1630 	hammer_node_t leaf;
1631 	hammer_mount_t hmp;
1632 	hammer_node_t new_leaf;
1633 	hammer_btree_elm_t elm;
1634 	hammer_btree_elm_t parent_elm;
1635 	hammer_base_elm_t mid_boundary;
1636 	int parent_index;
1637 	int made_root;
1638 	int split;
1639 	int error;
1640 	const size_t esize = sizeof(*elm);
1641 
1642 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1643 		return(error);
1644 	++hammer_stats_btree_splits;
1645 
1646 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1647 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1648 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1649 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1650 
1651 	/*
1652 	 * Calculate the split point.  If the insertion point will be on
1653 	 * the left-hand side adjust the split point to give the right
1654 	 * hand side one additional node.
1655 	 *
1656 	 * Spikes are made up of two leaf elements which cannot be
1657 	 * safely split.
1658 	 */
1659 	leaf = cursor->node;
1660 	ondisk = leaf->ondisk;
1661 	split = (ondisk->count + 1) / 2;
1662 	if (cursor->index <= split)
1663 		--split;
1664 	error = 0;
1665 	hmp = leaf->hmp;
1666 
1667 	elm = &ondisk->elms[split];
1668 
1669 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
1670 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
1671 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
1672 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
1673 
1674 	/*
1675 	 * If we are at the root of the tree, create a new root node with
1676 	 * 1 element and split normally.  Avoid making major modifications
1677 	 * until we know the whole operation will work.
1678 	 */
1679 	if (ondisk->parent == 0) {
1680 		parent = hammer_alloc_btree(cursor->trans, &error);
1681 		if (parent == NULL)
1682 			goto done;
1683 		hammer_lock_ex(&parent->lock);
1684 		hammer_modify_node_noundo(cursor->trans, parent);
1685 		ondisk = parent->ondisk;
1686 		ondisk->count = 1;
1687 		ondisk->parent = 0;
1688 		ondisk->mirror_tid = leaf->ondisk->mirror_tid;
1689 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1690 		ondisk->elms[0].base = hmp->root_btree_beg;
1691 		ondisk->elms[0].base.btype = leaf->ondisk->type;
1692 		ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1693 		ondisk->elms[1].base = hmp->root_btree_end;
1694 		/* ondisk->elms[1].base.btype = not used */
1695 		hammer_modify_node_done(parent);
1696 		made_root = 1;
1697 		parent_index = 0;	/* insertion point in parent */
1698 	} else {
1699 		made_root = 0;
1700 		parent = cursor->parent;
1701 		parent_index = cursor->parent_index;
1702 	}
1703 
1704 	/*
1705 	 * Split leaf into new_leaf at the split point.  Select a separator
1706 	 * value in-between the two leafs but with a bent towards the right
1707 	 * leaf since comparisons use an 'elm >= separator' inequality.
1708 	 *
1709 	 *  L L L L L L L L
1710 	 *
1711 	 *       x x P x x
1712 	 *        s S S s
1713 	 *         /   \
1714 	 *  L L L L     L L L L
1715 	 */
1716 	new_leaf = hammer_alloc_btree(cursor->trans, &error);
1717 	if (new_leaf == NULL) {
1718 		if (made_root) {
1719 			hammer_unlock(&parent->lock);
1720 			hammer_delete_node(cursor->trans, parent);
1721 			hammer_rel_node(parent);
1722 		}
1723 		goto done;
1724 	}
1725 	hammer_lock_ex(&new_leaf->lock);
1726 
1727 	/*
1728 	 * Create the new node and copy the leaf elements from the split
1729 	 * point on to the new node.
1730 	 */
1731 	hammer_modify_node_all(cursor->trans, leaf);
1732 	hammer_modify_node_noundo(cursor->trans, new_leaf);
1733 	ondisk = leaf->ondisk;
1734 	elm = &ondisk->elms[split];
1735 	bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1736 	new_leaf->ondisk->count = ondisk->count - split;
1737 	new_leaf->ondisk->parent = parent->node_offset;
1738 	new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1739 	new_leaf->ondisk->mirror_tid = ondisk->mirror_tid;
1740 	KKASSERT(ondisk->type == new_leaf->ondisk->type);
1741 	hammer_modify_node_done(new_leaf);
1742 	hammer_cursor_split_node(leaf, new_leaf, split);
1743 
1744 	/*
1745 	 * Cleanup the original node.  Because this is a leaf node and
1746 	 * leaf nodes do not have a right-hand boundary, there
1747 	 * aren't any special edge cases to clean up.  We just fixup the
1748 	 * count.
1749 	 */
1750 	ondisk->count = split;
1751 
1752 	/*
1753 	 * Insert the separator into the parent, fixup the parent's
1754 	 * reference to the original node, and reference the new node.
1755 	 * The separator is P.
1756 	 *
1757 	 * Remember that base.count does not include the right-hand boundary.
1758 	 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1759 	 */
1760 	hammer_modify_node_all(cursor->trans, parent);
1761 	ondisk = parent->ondisk;
1762 	KKASSERT(split != 0);
1763 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1764 	parent_elm = &ondisk->elms[parent_index+1];
1765 	bcopy(parent_elm, parent_elm + 1,
1766 	      (ondisk->count - parent_index) * esize);
1767 
1768 	hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1769 	parent_elm->internal.base.btype = new_leaf->ondisk->type;
1770 	parent_elm->internal.subtree_offset = new_leaf->node_offset;
1771 	parent_elm->internal.mirror_tid = new_leaf->ondisk->mirror_tid;
1772 	mid_boundary = &parent_elm->base;
1773 	++ondisk->count;
1774 	hammer_modify_node_done(parent);
1775 	hammer_cursor_inserted_element(parent, parent_index + 1);
1776 
1777 	/*
1778 	 * The filesystem's root B-Tree pointer may have to be updated.
1779 	 */
1780 	if (made_root) {
1781 		hammer_volume_t volume;
1782 
1783 		volume = hammer_get_root_volume(hmp, &error);
1784 		KKASSERT(error == 0);
1785 
1786 		hammer_modify_volume_field(cursor->trans, volume,
1787 					   vol0_btree_root);
1788 		volume->ondisk->vol0_btree_root = parent->node_offset;
1789 		hammer_modify_volume_done(volume);
1790 		leaf->ondisk->parent = parent->node_offset;
1791 		if (cursor->parent) {
1792 			hammer_unlock(&cursor->parent->lock);
1793 			hammer_rel_node(cursor->parent);
1794 		}
1795 		cursor->parent = parent;	/* lock'd and ref'd */
1796 		hammer_rel_volume(volume, 0);
1797 	}
1798 	hammer_modify_node_done(leaf);
1799 
1800 	/*
1801 	 * Ok, now adjust the cursor depending on which element the original
1802 	 * index was pointing at.  If we are >= the split point the push node
1803 	 * is now in the new node.
1804 	 *
1805 	 * NOTE: If we are at the split point itself we need to select the
1806 	 * old or new node based on where key_beg's insertion point will be.
1807 	 * If we pick the wrong side the inserted element will wind up in
1808 	 * the wrong leaf node and outside that node's bounds.
1809 	 */
1810 	if (cursor->index > split ||
1811 	    (cursor->index == split &&
1812 	     hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
1813 		cursor->parent_index = parent_index + 1;
1814 		cursor->index -= split;
1815 		hammer_unlock(&cursor->node->lock);
1816 		hammer_rel_node(cursor->node);
1817 		cursor->node = new_leaf;
1818 	} else {
1819 		cursor->parent_index = parent_index;
1820 		hammer_unlock(&new_leaf->lock);
1821 		hammer_rel_node(new_leaf);
1822 	}
1823 
1824 	/*
1825 	 * Fixup left and right bounds
1826 	 */
1827 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1828 	cursor->left_bound = &parent_elm[0].internal.base;
1829 	cursor->right_bound = &parent_elm[1].internal.base;
1830 
1831 	/*
1832 	 * Assert that the bounds are correct.
1833 	 */
1834 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1835 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1836 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1837 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1838 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
1839 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
1840 
1841 done:
1842 	hammer_cursor_downgrade(cursor);
1843 	return (error);
1844 }
1845 
1846 #if 0
1847 
1848 /*
1849  * Recursively correct the right-hand boundary's create_tid to (tid) as
1850  * long as the rest of the key matches.  We have to recurse upward in
1851  * the tree as well as down the left side of each parent's right node.
1852  *
1853  * Return EDEADLK if we were only partially successful, forcing the caller
1854  * to try again.  The original cursor is not modified.  This routine can
1855  * also fail with EDEADLK if it is forced to throw away a portion of its
1856  * record history.
1857  *
1858  * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
1859  */
1860 struct hammer_rhb {
1861 	TAILQ_ENTRY(hammer_rhb) entry;
1862 	hammer_node_t	node;
1863 	int		index;
1864 };
1865 
1866 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
1867 
1868 int
1869 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
1870 {
1871 	struct hammer_rhb_list rhb_list;
1872 	hammer_base_elm_t elm;
1873 	hammer_node_t orig_node;
1874 	struct hammer_rhb *rhb;
1875 	int orig_index;
1876 	int error;
1877 
1878 	TAILQ_INIT(&rhb_list);
1879 
1880 	/*
1881 	 * Save our position so we can restore it on return.  This also
1882 	 * gives us a stable 'elm'.
1883 	 */
1884 	orig_node = cursor->node;
1885 	hammer_ref_node(orig_node);
1886 	hammer_lock_sh(&orig_node->lock);
1887 	orig_index = cursor->index;
1888 	elm = &orig_node->ondisk->elms[orig_index].base;
1889 
1890 	/*
1891 	 * Now build a list of parents going up, allocating a rhb
1892 	 * structure for each one.
1893 	 */
1894 	while (cursor->parent) {
1895 		/*
1896 		 * Stop if we no longer have any right-bounds to fix up
1897 		 */
1898 		if (elm->obj_id != cursor->right_bound->obj_id ||
1899 		    elm->rec_type != cursor->right_bound->rec_type ||
1900 		    elm->key != cursor->right_bound->key) {
1901 			break;
1902 		}
1903 
1904 		/*
1905 		 * Stop if the right-hand bound's create_tid does not
1906 		 * need to be corrected.
1907 		 */
1908 		if (cursor->right_bound->create_tid >= tid)
1909 			break;
1910 
1911 		rhb = kmalloc(sizeof(*rhb), M_HAMMER, M_WAITOK|M_ZERO);
1912 		rhb->node = cursor->parent;
1913 		rhb->index = cursor->parent_index;
1914 		hammer_ref_node(rhb->node);
1915 		hammer_lock_sh(&rhb->node->lock);
1916 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
1917 
1918 		hammer_cursor_up(cursor);
1919 	}
1920 
1921 	/*
1922 	 * now safely adjust the right hand bound for each rhb.  This may
1923 	 * also require taking the right side of the tree and iterating down
1924 	 * ITS left side.
1925 	 */
1926 	error = 0;
1927 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1928 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
1929 		if (error)
1930 			break;
1931 		TAILQ_REMOVE(&rhb_list, rhb, entry);
1932 		hammer_unlock(&rhb->node->lock);
1933 		hammer_rel_node(rhb->node);
1934 		kfree(rhb, M_HAMMER);
1935 
1936 		switch (cursor->node->ondisk->type) {
1937 		case HAMMER_BTREE_TYPE_INTERNAL:
1938 			/*
1939 			 * Right-boundary for parent at internal node
1940 			 * is one element to the right of the element whos
1941 			 * right boundary needs adjusting.  We must then
1942 			 * traverse down the left side correcting any left
1943 			 * bounds (which may now be too far to the left).
1944 			 */
1945 			++cursor->index;
1946 			error = hammer_btree_correct_lhb(cursor, tid);
1947 			break;
1948 		default:
1949 			panic("hammer_btree_correct_rhb(): Bad node type");
1950 			error = EINVAL;
1951 			break;
1952 		}
1953 	}
1954 
1955 	/*
1956 	 * Cleanup
1957 	 */
1958 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1959 		TAILQ_REMOVE(&rhb_list, rhb, entry);
1960 		hammer_unlock(&rhb->node->lock);
1961 		hammer_rel_node(rhb->node);
1962 		kfree(rhb, M_HAMMER);
1963 	}
1964 	error = hammer_cursor_seek(cursor, orig_node, orig_index);
1965 	hammer_unlock(&orig_node->lock);
1966 	hammer_rel_node(orig_node);
1967 	return (error);
1968 }
1969 
1970 /*
1971  * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
1972  * bound going downward starting at the current cursor position.
1973  *
1974  * This function does not restore the cursor after use.
1975  */
1976 int
1977 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
1978 {
1979 	struct hammer_rhb_list rhb_list;
1980 	hammer_base_elm_t elm;
1981 	hammer_base_elm_t cmp;
1982 	struct hammer_rhb *rhb;
1983 	int error;
1984 
1985 	TAILQ_INIT(&rhb_list);
1986 
1987 	cmp = &cursor->node->ondisk->elms[cursor->index].base;
1988 
1989 	/*
1990 	 * Record the node and traverse down the left-hand side for all
1991 	 * matching records needing a boundary correction.
1992 	 */
1993 	error = 0;
1994 	for (;;) {
1995 		rhb = kmalloc(sizeof(*rhb), M_HAMMER, M_WAITOK|M_ZERO);
1996 		rhb->node = cursor->node;
1997 		rhb->index = cursor->index;
1998 		hammer_ref_node(rhb->node);
1999 		hammer_lock_sh(&rhb->node->lock);
2000 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2001 
2002 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2003 			/*
2004 			 * Nothing to traverse down if we are at the right
2005 			 * boundary of an internal node.
2006 			 */
2007 			if (cursor->index == cursor->node->ondisk->count)
2008 				break;
2009 		} else {
2010 			elm = &cursor->node->ondisk->elms[cursor->index].base;
2011 			if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
2012 				break;
2013 			panic("Illegal leaf record type %02x", elm->btype);
2014 		}
2015 		error = hammer_cursor_down(cursor);
2016 		if (error)
2017 			break;
2018 
2019 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2020 		if (elm->obj_id != cmp->obj_id ||
2021 		    elm->rec_type != cmp->rec_type ||
2022 		    elm->key != cmp->key) {
2023 			break;
2024 		}
2025 		if (elm->create_tid >= tid)
2026 			break;
2027 
2028 	}
2029 
2030 	/*
2031 	 * Now we can safely adjust the left-hand boundary from the bottom-up.
2032 	 * The last element we remove from the list is the caller's right hand
2033 	 * boundary, which must also be adjusted.
2034 	 */
2035 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2036 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2037 		if (error)
2038 			break;
2039 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2040 		hammer_unlock(&rhb->node->lock);
2041 		hammer_rel_node(rhb->node);
2042 		kfree(rhb, M_HAMMER);
2043 
2044 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2045 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2046 			hammer_modify_node(cursor->trans, cursor->node,
2047 					   &elm->create_tid,
2048 					   sizeof(elm->create_tid));
2049 			elm->create_tid = tid;
2050 			hammer_modify_node_done(cursor->node);
2051 		} else {
2052 			panic("hammer_btree_correct_lhb(): Bad element type");
2053 		}
2054 	}
2055 
2056 	/*
2057 	 * Cleanup
2058 	 */
2059 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2060 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2061 		hammer_unlock(&rhb->node->lock);
2062 		hammer_rel_node(rhb->node);
2063 		kfree(rhb, M_HAMMER);
2064 	}
2065 	return (error);
2066 }
2067 
2068 #endif
2069 
2070 /*
2071  * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
2072  * (cursor->node).  Returns 0 on success, EDEADLK if we could not complete
2073  * the operation due to a deadlock, or some other error.
2074  *
2075  * This routine is initially called with an empty leaf and may be
2076  * recursively called with single-element internal nodes.
2077  *
2078  * It should also be noted that when removing empty leaves we must be sure
2079  * to test and update mirror_tid because another thread may have deadlocked
2080  * against us (or someone) trying to propagate it up and cannot retry once
2081  * the node has been deleted.
2082  *
2083  * On return the cursor may end up pointing to an internal node, suitable
2084  * for further iteration but not for an immediate insertion or deletion.
2085  */
2086 static int
2087 btree_remove(hammer_cursor_t cursor)
2088 {
2089 	hammer_node_ondisk_t ondisk;
2090 	hammer_btree_elm_t elm;
2091 	hammer_node_t node;
2092 	hammer_node_t parent;
2093 	const int esize = sizeof(*elm);
2094 	int error;
2095 
2096 	node = cursor->node;
2097 
2098 	/*
2099 	 * When deleting the root of the filesystem convert it to
2100 	 * an empty leaf node.  Internal nodes cannot be empty.
2101 	 */
2102 	ondisk = node->ondisk;
2103 	if (ondisk->parent == 0) {
2104 		KKASSERT(cursor->parent == NULL);
2105 		hammer_modify_node_all(cursor->trans, node);
2106 		KKASSERT(ondisk == node->ondisk);
2107 		ondisk->type = HAMMER_BTREE_TYPE_LEAF;
2108 		ondisk->count = 0;
2109 		hammer_modify_node_done(node);
2110 		cursor->index = 0;
2111 		return(0);
2112 	}
2113 
2114 	parent = cursor->parent;
2115 	hammer_cursor_removed_node(node, parent, cursor->parent_index);
2116 
2117 	/*
2118 	 * Attempt to remove the parent's reference to the child.  If the
2119 	 * parent would become empty we have to recurse.  If we fail we
2120 	 * leave the parent pointing to an empty leaf node.
2121 	 *
2122 	 * We have to recurse successfully before we can delete the internal
2123 	 * node as it is illegal to have empty internal nodes.  Even though
2124 	 * the operation may be aborted we must still fixup any unlocked
2125 	 * cursors as if we had deleted the element prior to recursing
2126 	 * (by calling hammer_cursor_deleted_element()) so those cursors
2127 	 * are properly forced up the chain by the recursion.
2128 	 */
2129 	if (parent->ondisk->count == 1) {
2130 		/*
2131 		 * This special cursor_up_locked() call leaves the original
2132 		 * node exclusively locked and referenced, leaves the
2133 		 * original parent locked (as the new node), and locks the
2134 		 * new parent.  It can return EDEADLK.
2135 		 */
2136 		error = hammer_cursor_up_locked(cursor);
2137 		if (error == 0) {
2138 			hammer_cursor_deleted_element(cursor->node, 0);
2139 			error = btree_remove(cursor);
2140 			if (error == 0) {
2141 				hammer_modify_node_all(cursor->trans, node);
2142 				ondisk = node->ondisk;
2143 				ondisk->type = HAMMER_BTREE_TYPE_DELETED;
2144 				ondisk->count = 0;
2145 				hammer_modify_node_done(node);
2146 				hammer_flush_node(node);
2147 				hammer_delete_node(cursor->trans, node);
2148 			} else {
2149 				kprintf("Warning: BTREE_REMOVE: Defering "
2150 					"parent removal1 @ %016llx, skipping\n",
2151 					node->node_offset);
2152 			}
2153 			hammer_unlock(&node->lock);
2154 			hammer_rel_node(node);
2155 		} else {
2156 			kprintf("Warning: BTREE_REMOVE: Defering parent "
2157 				"removal2 @ %016llx, skipping\n",
2158 				node->node_offset);
2159 		}
2160 	} else {
2161 		KKASSERT(parent->ondisk->count > 1);
2162 
2163 		hammer_modify_node_all(cursor->trans, parent);
2164 		ondisk = parent->ondisk;
2165 		KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2166 
2167 		elm = &ondisk->elms[cursor->parent_index];
2168 		KKASSERT(elm->internal.subtree_offset == node->node_offset);
2169 		KKASSERT(ondisk->count > 0);
2170 
2171 		/*
2172 		 * We must retain the highest mirror_tid.  The deleted
2173 		 * range is now encompassed by the element to the left.
2174 		 * If we are already at the left edge the new left edge
2175 		 * inherits mirror_tid.
2176 		 *
2177 		 * Note that bounds of the parent to our parent may create
2178 		 * a gap to the left of our left-most node or to the right
2179 		 * of our right-most node.  The gap is silently included
2180 		 * in the mirror_tid's area of effect from the point of view
2181 		 * of the scan.
2182 		 */
2183 		if (cursor->parent_index) {
2184 			if (elm[-1].internal.mirror_tid <
2185 			    elm[0].internal.mirror_tid) {
2186 				elm[-1].internal.mirror_tid =
2187 				    elm[0].internal.mirror_tid;
2188 			}
2189 		} else {
2190 			if (elm[1].internal.mirror_tid <
2191 			    elm[0].internal.mirror_tid) {
2192 				elm[1].internal.mirror_tid =
2193 				    elm[0].internal.mirror_tid;
2194 			}
2195 		}
2196 
2197 		/*
2198 		 * Delete the subtree reference in the parent
2199 		 */
2200 		bcopy(&elm[1], &elm[0],
2201 		      (ondisk->count - cursor->parent_index) * esize);
2202 		--ondisk->count;
2203 		hammer_modify_node_done(parent);
2204 		hammer_cursor_deleted_element(parent, cursor->parent_index);
2205 		hammer_flush_node(node);
2206 		hammer_delete_node(cursor->trans, node);
2207 
2208 		/*
2209 		 * cursor->node is invalid, cursor up to make the cursor
2210 		 * valid again.
2211 		 */
2212 		error = hammer_cursor_up(cursor);
2213 	}
2214 	return (error);
2215 }
2216 
2217 /*
2218  * Propagate cursor->trans->tid up the B-Tree starting at the current
2219  * cursor position using pseudofs info gleaned from the passed inode.
2220  *
2221  * The passed inode has no relationship to the cursor position other
2222  * then being in the same pseudofs as the insertion or deletion we
2223  * are propagating the mirror_tid for.
2224  */
2225 void
2226 hammer_btree_do_propagation(hammer_cursor_t cursor,
2227 			    hammer_pseudofs_inmem_t pfsm,
2228 			    hammer_btree_leaf_elm_t leaf)
2229 {
2230 	hammer_cursor_t ncursor;
2231 	hammer_tid_t mirror_tid;
2232 	int error;
2233 
2234 	/*
2235 	 * We do not propagate a mirror_tid if the filesystem was mounted
2236 	 * in no-mirror mode.
2237 	 */
2238 	if (cursor->trans->hmp->master_id < 0)
2239 		return;
2240 
2241 	/*
2242 	 * This is a bit of a hack because we cannot deadlock or return
2243 	 * EDEADLK here.  The related operation has already completed and
2244 	 * we must propagate the mirror_tid now regardless.
2245 	 *
2246 	 * Generate a new cursor which inherits the original's locks and
2247 	 * unlock the original.  Use the new cursor to propagate the
2248 	 * mirror_tid.  Then clean up the new cursor and reacquire locks
2249 	 * on the original.
2250 	 *
2251 	 * hammer_dup_cursor() cannot dup locks.  The dup inherits the
2252 	 * original's locks and the original is tracked and must be
2253 	 * re-locked.
2254 	 */
2255 	mirror_tid = cursor->node->ondisk->mirror_tid;
2256 	KKASSERT(mirror_tid != 0);
2257 	ncursor = hammer_push_cursor(cursor);
2258 	error = hammer_btree_mirror_propagate(ncursor, mirror_tid);
2259 	KKASSERT(error == 0);
2260 	hammer_pop_cursor(cursor, ncursor);
2261 }
2262 
2263 
2264 /*
2265  * Propagate a mirror TID update upwards through the B-Tree to the root.
2266  *
2267  * A locked internal node must be passed in.  The node will remain locked
2268  * on return.
2269  *
2270  * This function syncs mirror_tid at the specified internal node's element,
2271  * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2272  */
2273 static int
2274 hammer_btree_mirror_propagate(hammer_cursor_t cursor, hammer_tid_t mirror_tid)
2275 {
2276 	hammer_btree_internal_elm_t elm;
2277 	hammer_node_t node;
2278 	int error;
2279 
2280 	for (;;) {
2281 		error = hammer_cursor_up(cursor);
2282 		if (error == 0)
2283 			error = hammer_cursor_upgrade(cursor);
2284 		while (error == EDEADLK) {
2285 			hammer_recover_cursor(cursor);
2286 			error = hammer_cursor_upgrade(cursor);
2287 		}
2288 		if (error)
2289 			break;
2290 		node = cursor->node;
2291 		KKASSERT (node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2292 
2293 		/*
2294 		 * Adjust the node's element
2295 		 */
2296 		elm = &node->ondisk->elms[cursor->index].internal;
2297 		if (elm->mirror_tid >= mirror_tid)
2298 			break;
2299 		hammer_modify_node(cursor->trans, node, &elm->mirror_tid,
2300 				   sizeof(elm->mirror_tid));
2301 		elm->mirror_tid = mirror_tid;
2302 		hammer_modify_node_done(node);
2303 		if (hammer_debug_general & 0x0002) {
2304 			kprintf("mirror_propagate: propagate "
2305 				"%016llx @%016llx:%d\n",
2306 				mirror_tid, node->node_offset, cursor->index);
2307 		}
2308 
2309 
2310 		/*
2311 		 * Adjust the node's mirror_tid aggregator
2312 		 */
2313 		if (node->ondisk->mirror_tid >= mirror_tid)
2314 			return(0);
2315 		hammer_modify_node_field(cursor->trans, node, mirror_tid);
2316 		node->ondisk->mirror_tid = mirror_tid;
2317 		hammer_modify_node_done(node);
2318 		if (hammer_debug_general & 0x0002) {
2319 			kprintf("mirror_propagate: propagate "
2320 				"%016llx @%016llx\n",
2321 				mirror_tid, node->node_offset);
2322 		}
2323 	}
2324 	if (error == ENOENT)
2325 		error = 0;
2326 	return(error);
2327 }
2328 
2329 hammer_node_t
2330 hammer_btree_get_parent(hammer_node_t node, int *parent_indexp, int *errorp,
2331 			int try_exclusive)
2332 {
2333 	hammer_node_t parent;
2334 	hammer_btree_elm_t elm;
2335 	int i;
2336 
2337 	/*
2338 	 * Get the node
2339 	 */
2340 	parent = hammer_get_node(node->hmp, node->ondisk->parent, 0, errorp);
2341 	if (*errorp) {
2342 		KKASSERT(parent == NULL);
2343 		return(NULL);
2344 	}
2345 	KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
2346 
2347 	/*
2348 	 * Lock the node
2349 	 */
2350 	if (try_exclusive) {
2351 		if (hammer_lock_ex_try(&parent->lock)) {
2352 			hammer_rel_node(parent);
2353 			*errorp = EDEADLK;
2354 			return(NULL);
2355 		}
2356 	} else {
2357 		hammer_lock_sh(&parent->lock);
2358 	}
2359 
2360 	/*
2361 	 * Figure out which element in the parent is pointing to the
2362 	 * child.
2363 	 */
2364 	if (node->ondisk->count) {
2365 		i = hammer_btree_search_node(&node->ondisk->elms[0].base,
2366 					     parent->ondisk);
2367 	} else {
2368 		i = 0;
2369 	}
2370 	while (i < parent->ondisk->count) {
2371 		elm = &parent->ondisk->elms[i];
2372 		if (elm->internal.subtree_offset == node->node_offset)
2373 			break;
2374 		++i;
2375 	}
2376 	if (i == parent->ondisk->count) {
2377 		hammer_unlock(&parent->lock);
2378 		panic("Bad B-Tree link: parent %p node %p\n", parent, node);
2379 	}
2380 	*parent_indexp = i;
2381 	KKASSERT(*errorp == 0);
2382 	return(parent);
2383 }
2384 
2385 /*
2386  * The element (elm) has been moved to a new internal node (node).
2387  *
2388  * If the element represents a pointer to an internal node that node's
2389  * parent must be adjusted to the element's new location.
2390  *
2391  * XXX deadlock potential here with our exclusive locks
2392  */
2393 int
2394 btree_set_parent(hammer_transaction_t trans, hammer_node_t node,
2395 		 hammer_btree_elm_t elm)
2396 {
2397 	hammer_node_t child;
2398 	int error;
2399 
2400 	error = 0;
2401 
2402 	switch(elm->base.btype) {
2403 	case HAMMER_BTREE_TYPE_INTERNAL:
2404 	case HAMMER_BTREE_TYPE_LEAF:
2405 		child = hammer_get_node(node->hmp, elm->internal.subtree_offset,
2406 					0, &error);
2407 		if (error == 0) {
2408 			hammer_modify_node_field(trans, child, parent);
2409 			child->ondisk->parent = node->node_offset;
2410 			hammer_modify_node_done(child);
2411 			hammer_rel_node(child);
2412 		}
2413 		break;
2414 	default:
2415 		break;
2416 	}
2417 	return(error);
2418 }
2419 
2420 /*
2421  * Exclusively lock all the children of node.  This is used by the split
2422  * code to prevent anyone from accessing the children of a cursor node
2423  * while we fix-up its parent offset.
2424  *
2425  * If we don't lock the children we can really mess up cursors which block
2426  * trying to cursor-up into our node.
2427  *
2428  * On failure EDEADLK (or some other error) is returned.  If a deadlock
2429  * error is returned the cursor is adjusted to block on termination.
2430  */
2431 int
2432 hammer_btree_lock_children(hammer_cursor_t cursor,
2433 			   struct hammer_node_locklist **locklistp)
2434 {
2435 	hammer_node_t node;
2436 	hammer_node_locklist_t item;
2437 	hammer_node_ondisk_t ondisk;
2438 	hammer_btree_elm_t elm;
2439 	hammer_node_t child;
2440 	int error;
2441 	int i;
2442 
2443 	node = cursor->node;
2444 	ondisk = node->ondisk;
2445 	error = 0;
2446 
2447 	/*
2448 	 * We really do not want to block on I/O with exclusive locks held,
2449 	 * pre-get the children before trying to lock the mess.
2450 	 */
2451 	for (i = 0; i < ondisk->count; ++i) {
2452 		++hammer_stats_btree_elements;
2453 		elm = &ondisk->elms[i];
2454 		if (elm->base.btype != HAMMER_BTREE_TYPE_LEAF &&
2455 		    elm->base.btype != HAMMER_BTREE_TYPE_INTERNAL) {
2456 			continue;
2457 		}
2458 		child = hammer_get_node(node->hmp,
2459 					elm->internal.subtree_offset,
2460 					0, &error);
2461 		if (child)
2462 			hammer_rel_node(child);
2463 	}
2464 
2465 	/*
2466 	 * Do it for real
2467 	 */
2468 	for (i = 0; error == 0 && i < ondisk->count; ++i) {
2469 		++hammer_stats_btree_elements;
2470 		elm = &ondisk->elms[i];
2471 
2472 		switch(elm->base.btype) {
2473 		case HAMMER_BTREE_TYPE_INTERNAL:
2474 		case HAMMER_BTREE_TYPE_LEAF:
2475 			KKASSERT(elm->internal.subtree_offset != 0);
2476 			child = hammer_get_node(node->hmp,
2477 						elm->internal.subtree_offset,
2478 						0, &error);
2479 			break;
2480 		default:
2481 			child = NULL;
2482 			break;
2483 		}
2484 		if (child) {
2485 			if (hammer_lock_ex_try(&child->lock) != 0) {
2486 				if (cursor->deadlk_node == NULL) {
2487 					cursor->deadlk_node = child;
2488 					hammer_ref_node(cursor->deadlk_node);
2489 				}
2490 				error = EDEADLK;
2491 				hammer_rel_node(child);
2492 			} else {
2493 				item = kmalloc(sizeof(*item),
2494 						M_HAMMER, M_WAITOK);
2495 				item->next = *locklistp;
2496 				item->node = child;
2497 				*locklistp = item;
2498 			}
2499 		}
2500 	}
2501 	if (error)
2502 		hammer_btree_unlock_children(locklistp);
2503 	return(error);
2504 }
2505 
2506 
2507 /*
2508  * Release previously obtained node locks.
2509  */
2510 void
2511 hammer_btree_unlock_children(struct hammer_node_locklist **locklistp)
2512 {
2513 	hammer_node_locklist_t item;
2514 
2515 	while ((item = *locklistp) != NULL) {
2516 		*locklistp = item->next;
2517 		hammer_unlock(&item->node->lock);
2518 		hammer_rel_node(item->node);
2519 		kfree(item, M_HAMMER);
2520 	}
2521 }
2522 
2523 /************************************************************************
2524  *			   MISCELLANIOUS SUPPORT 			*
2525  ************************************************************************/
2526 
2527 /*
2528  * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2529  *
2530  * Note that for this particular function a return value of -1, 0, or +1
2531  * can denote a match if create_tid is otherwise discounted.  A create_tid
2532  * of zero is considered to be 'infinity' in comparisons.
2533  *
2534  * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2535  */
2536 int
2537 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2538 {
2539 	if (key1->localization < key2->localization)
2540 		return(-5);
2541 	if (key1->localization > key2->localization)
2542 		return(5);
2543 
2544 	if (key1->obj_id < key2->obj_id)
2545 		return(-4);
2546 	if (key1->obj_id > key2->obj_id)
2547 		return(4);
2548 
2549 	if (key1->rec_type < key2->rec_type)
2550 		return(-3);
2551 	if (key1->rec_type > key2->rec_type)
2552 		return(3);
2553 
2554 	if (key1->key < key2->key)
2555 		return(-2);
2556 	if (key1->key > key2->key)
2557 		return(2);
2558 
2559 	/*
2560 	 * A create_tid of zero indicates a record which is undeletable
2561 	 * and must be considered to have a value of positive infinity.
2562 	 */
2563 	if (key1->create_tid == 0) {
2564 		if (key2->create_tid == 0)
2565 			return(0);
2566 		return(1);
2567 	}
2568 	if (key2->create_tid == 0)
2569 		return(-1);
2570 	if (key1->create_tid < key2->create_tid)
2571 		return(-1);
2572 	if (key1->create_tid > key2->create_tid)
2573 		return(1);
2574 	return(0);
2575 }
2576 
2577 /*
2578  * Test a timestamp against an element to determine whether the
2579  * element is visible.  A timestamp of 0 means 'infinity'.
2580  */
2581 int
2582 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
2583 {
2584 	if (asof == 0) {
2585 		if (base->delete_tid)
2586 			return(1);
2587 		return(0);
2588 	}
2589 	if (asof < base->create_tid)
2590 		return(-1);
2591 	if (base->delete_tid && asof >= base->delete_tid)
2592 		return(1);
2593 	return(0);
2594 }
2595 
2596 /*
2597  * Create a separator half way inbetween key1 and key2.  For fields just
2598  * one unit apart, the separator will match key2.  key1 is on the left-hand
2599  * side and key2 is on the right-hand side.
2600  *
2601  * key2 must be >= the separator.  It is ok for the separator to match key2.
2602  *
2603  * NOTE: Even if key1 does not match key2, the separator may wind up matching
2604  * key2.
2605  *
2606  * NOTE: It might be beneficial to just scrap this whole mess and just
2607  * set the separator to key2.
2608  */
2609 #define MAKE_SEPARATOR(key1, key2, dest, field)	\
2610 	dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
2611 
2612 static void
2613 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
2614 		      hammer_base_elm_t dest)
2615 {
2616 	bzero(dest, sizeof(*dest));
2617 
2618 	dest->rec_type = key2->rec_type;
2619 	dest->key = key2->key;
2620 	dest->obj_id = key2->obj_id;
2621 	dest->create_tid = key2->create_tid;
2622 
2623 	MAKE_SEPARATOR(key1, key2, dest, localization);
2624 	if (key1->localization == key2->localization) {
2625 		MAKE_SEPARATOR(key1, key2, dest, obj_id);
2626 		if (key1->obj_id == key2->obj_id) {
2627 			MAKE_SEPARATOR(key1, key2, dest, rec_type);
2628 			if (key1->rec_type == key2->rec_type) {
2629 				MAKE_SEPARATOR(key1, key2, dest, key);
2630 				/*
2631 				 * Don't bother creating a separator for
2632 				 * create_tid, which also conveniently avoids
2633 				 * having to handle the create_tid == 0
2634 				 * (infinity) case.  Just leave create_tid
2635 				 * set to key2.
2636 				 *
2637 				 * Worst case, dest matches key2 exactly,
2638 				 * which is acceptable.
2639 				 */
2640 			}
2641 		}
2642 	}
2643 }
2644 
2645 #undef MAKE_SEPARATOR
2646 
2647 /*
2648  * Return whether a generic internal or leaf node is full
2649  */
2650 static int
2651 btree_node_is_full(hammer_node_ondisk_t node)
2652 {
2653 	switch(node->type) {
2654 	case HAMMER_BTREE_TYPE_INTERNAL:
2655 		if (node->count == HAMMER_BTREE_INT_ELMS)
2656 			return(1);
2657 		break;
2658 	case HAMMER_BTREE_TYPE_LEAF:
2659 		if (node->count == HAMMER_BTREE_LEAF_ELMS)
2660 			return(1);
2661 		break;
2662 	default:
2663 		panic("illegal btree subtype");
2664 	}
2665 	return(0);
2666 }
2667 
2668 #if 0
2669 static int
2670 btree_max_elements(u_int8_t type)
2671 {
2672 	if (type == HAMMER_BTREE_TYPE_LEAF)
2673 		return(HAMMER_BTREE_LEAF_ELMS);
2674 	if (type == HAMMER_BTREE_TYPE_INTERNAL)
2675 		return(HAMMER_BTREE_INT_ELMS);
2676 	panic("btree_max_elements: bad type %d\n", type);
2677 }
2678 #endif
2679 
2680 void
2681 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
2682 {
2683 	hammer_btree_elm_t elm;
2684 	int i;
2685 
2686 	kprintf("node %p count=%d parent=%016llx type=%c\n",
2687 		ondisk, ondisk->count, ondisk->parent, ondisk->type);
2688 
2689 	/*
2690 	 * Dump both boundary elements if an internal node
2691 	 */
2692 	if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2693 		for (i = 0; i <= ondisk->count; ++i) {
2694 			elm = &ondisk->elms[i];
2695 			hammer_print_btree_elm(elm, ondisk->type, i);
2696 		}
2697 	} else {
2698 		for (i = 0; i < ondisk->count; ++i) {
2699 			elm = &ondisk->elms[i];
2700 			hammer_print_btree_elm(elm, ondisk->type, i);
2701 		}
2702 	}
2703 }
2704 
2705 void
2706 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
2707 {
2708 	kprintf("  %2d", i);
2709 	kprintf("\tobj_id       = %016llx\n", elm->base.obj_id);
2710 	kprintf("\tkey          = %016llx\n", elm->base.key);
2711 	kprintf("\tcreate_tid   = %016llx\n", elm->base.create_tid);
2712 	kprintf("\tdelete_tid   = %016llx\n", elm->base.delete_tid);
2713 	kprintf("\trec_type     = %04x\n", elm->base.rec_type);
2714 	kprintf("\tobj_type     = %02x\n", elm->base.obj_type);
2715 	kprintf("\tbtype 	= %02x (%c)\n",
2716 		elm->base.btype,
2717 		(elm->base.btype ? elm->base.btype : '?'));
2718 	kprintf("\tlocalization	= %02x\n", elm->base.localization);
2719 
2720 	switch(type) {
2721 	case HAMMER_BTREE_TYPE_INTERNAL:
2722 		kprintf("\tsubtree_off  = %016llx\n",
2723 			elm->internal.subtree_offset);
2724 		break;
2725 	case HAMMER_BTREE_TYPE_RECORD:
2726 		kprintf("\tdata_offset  = %016llx\n", elm->leaf.data_offset);
2727 		kprintf("\tdata_len     = %08x\n", elm->leaf.data_len);
2728 		kprintf("\tdata_crc     = %08x\n", elm->leaf.data_crc);
2729 		break;
2730 	}
2731 }
2732