xref: /dragonfly/sys/vfs/hammer/hammer_btree.c (revision 9ddb8543)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_btree.c,v 1.76 2008/08/06 15:38:58 dillon Exp $
35  */
36 
37 /*
38  * HAMMER B-Tree index
39  *
40  * HAMMER implements a modified B+Tree.  In documentation this will
41  * simply be refered to as the HAMMER B-Tree.  Basically a HAMMER B-Tree
42  * looks like a B+Tree (A B-Tree which stores its records only at the leafs
43  * of the tree), but adds two additional boundary elements which describe
44  * the left-most and right-most element a node is able to represent.  In
45  * otherwords, we have boundary elements at the two ends of a B-Tree node
46  * instead of sub-tree pointers.
47  *
48  * A B-Tree internal node looks like this:
49  *
50  *	B N N N N N N B   <-- boundary and internal elements
51  *       S S S S S S S    <-- subtree pointers
52  *
53  * A B-Tree leaf node basically looks like this:
54  *
55  *	L L L L L L L L   <-- leaf elemenets
56  *
57  * The radix for an internal node is 1 less then a leaf but we get a
58  * number of significant benefits for our troubles.
59  *
60  * The big benefit to using a B-Tree containing boundary information
61  * is that it is possible to cache pointers into the middle of the tree
62  * and not have to start searches, insertions, OR deletions at the root
63  * node.   In particular, searches are able to progress in a definitive
64  * direction from any point in the tree without revisting nodes.  This
65  * greatly improves the efficiency of many operations, most especially
66  * record appends.
67  *
68  * B-Trees also make the stacking of trees fairly straightforward.
69  *
70  * INSERTIONS:  A search performed with the intention of doing
71  * an insert will guarantee that the terminal leaf node is not full by
72  * splitting full nodes.  Splits occur top-down during the dive down the
73  * B-Tree.
74  *
75  * DELETIONS: A deletion makes no attempt to proactively balance the
76  * tree and will recursively remove nodes that become empty.  If a
77  * deadlock occurs a deletion may not be able to remove an empty leaf.
78  * Deletions never allow internal nodes to become empty (that would blow
79  * up the boundaries).
80  */
81 #include "hammer.h"
82 #include <sys/buf.h>
83 #include <sys/buf2.h>
84 
85 static int btree_search(hammer_cursor_t cursor, int flags);
86 static int btree_split_internal(hammer_cursor_t cursor);
87 static int btree_split_leaf(hammer_cursor_t cursor);
88 static int btree_remove(hammer_cursor_t cursor);
89 static int btree_node_is_full(hammer_node_ondisk_t node);
90 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor,
91 			hammer_tid_t mirror_tid);
92 static void hammer_make_separator(hammer_base_elm_t key1,
93 			hammer_base_elm_t key2, hammer_base_elm_t dest);
94 static void hammer_cursor_mirror_filter(hammer_cursor_t cursor);
95 
96 /*
97  * Iterate records after a search.  The cursor is iterated forwards past
98  * the current record until a record matching the key-range requirements
99  * is found.  ENOENT is returned if the iteration goes past the ending
100  * key.
101  *
102  * The iteration is inclusive of key_beg and can be inclusive or exclusive
103  * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
104  *
105  * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
106  * may be modified by B-Tree functions.
107  *
108  * cursor->key_beg may or may not be modified by this function during
109  * the iteration.  XXX future - in case of an inverted lock we may have
110  * to reinitiate the lookup and set key_beg to properly pick up where we
111  * left off.
112  *
113  * NOTE!  EDEADLK *CANNOT* be returned by this procedure.
114  */
115 int
116 hammer_btree_iterate(hammer_cursor_t cursor)
117 {
118 	hammer_node_ondisk_t node;
119 	hammer_btree_elm_t elm;
120 	hammer_mount_t hmp;
121 	int error = 0;
122 	int r;
123 	int s;
124 
125 	/*
126 	 * Skip past the current record
127 	 */
128 	hmp = cursor->trans->hmp;
129 	node = cursor->node->ondisk;
130 	if (node == NULL)
131 		return(ENOENT);
132 	if (cursor->index < node->count &&
133 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
134 		++cursor->index;
135 	}
136 
137 	/*
138 	 * HAMMER can wind up being cpu-bound.
139 	 */
140 	if (++hmp->check_yield > hammer_yield_check) {
141 		hmp->check_yield = 0;
142 		lwkt_user_yield();
143 	}
144 
145 
146 	/*
147 	 * Loop until an element is found or we are done.
148 	 */
149 	for (;;) {
150 		/*
151 		 * We iterate up the tree and then index over one element
152 		 * while we are at the last element in the current node.
153 		 *
154 		 * If we are at the root of the filesystem, cursor_up
155 		 * returns ENOENT.
156 		 *
157 		 * XXX this could be optimized by storing the information in
158 		 * the parent reference.
159 		 *
160 		 * XXX we can lose the node lock temporarily, this could mess
161 		 * up our scan.
162 		 */
163 		++hammer_stats_btree_iterations;
164 		hammer_flusher_clean_loose_ios(hmp);
165 
166 		if (cursor->index == node->count) {
167 			if (hammer_debug_btree) {
168 				kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
169 					(long long)cursor->node->node_offset,
170 					cursor->index,
171 					(long long)(cursor->parent ? cursor->parent->node_offset : -1),
172 					cursor->parent_index,
173 					curthread);
174 			}
175 			KKASSERT(cursor->parent == NULL || cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
176 			error = hammer_cursor_up(cursor);
177 			if (error)
178 				break;
179 			/* reload stale pointer */
180 			node = cursor->node->ondisk;
181 			KKASSERT(cursor->index != node->count);
182 
183 			/*
184 			 * If we are reblocking we want to return internal
185 			 * nodes.  Note that the internal node will be
186 			 * returned multiple times, on each upward recursion
187 			 * from its children.  The caller selects which
188 			 * revisit it cares about (usually first or last only).
189 			 */
190 			if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
191 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
192 				return(0);
193 			}
194 			++cursor->index;
195 			continue;
196 		}
197 
198 		/*
199 		 * Check internal or leaf element.  Determine if the record
200 		 * at the cursor has gone beyond the end of our range.
201 		 *
202 		 * We recurse down through internal nodes.
203 		 */
204 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
205 			elm = &node->elms[cursor->index];
206 
207 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
208 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
209 			if (hammer_debug_btree) {
210 				kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d (td=%p)\n",
211 					(long long)cursor->node->node_offset,
212 					cursor->index,
213 					(long long)elm[0].internal.base.obj_id,
214 					elm[0].internal.base.rec_type,
215 					(long long)elm[0].internal.base.key,
216 					elm[0].internal.base.localization,
217 					r,
218 					curthread
219 				);
220 				kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
221 					(long long)cursor->node->node_offset,
222 					cursor->index + 1,
223 					(long long)elm[1].internal.base.obj_id,
224 					elm[1].internal.base.rec_type,
225 					(long long)elm[1].internal.base.key,
226 					elm[1].internal.base.localization,
227 					s
228 				);
229 			}
230 
231 			if (r < 0) {
232 				error = ENOENT;
233 				break;
234 			}
235 			if (r == 0 && (cursor->flags &
236 				       HAMMER_CURSOR_END_INCLUSIVE) == 0) {
237 				error = ENOENT;
238 				break;
239 			}
240 			KKASSERT(s <= 0);
241 
242 			/*
243 			 * Better not be zero
244 			 */
245 			KKASSERT(elm->internal.subtree_offset != 0);
246 
247 			/*
248 			 * If running the mirror filter see if we can skip
249 			 * one or more entire sub-trees.  If we can we
250 			 * return the internal mode and the caller processes
251 			 * the skipped range (see mirror_read)
252 			 */
253 			if (cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) {
254 				if (elm->internal.mirror_tid <
255 				    cursor->cmirror->mirror_tid) {
256 					hammer_cursor_mirror_filter(cursor);
257 					return(0);
258 				}
259 			}
260 
261 			error = hammer_cursor_down(cursor);
262 			if (error)
263 				break;
264 			KKASSERT(cursor->index == 0);
265 			/* reload stale pointer */
266 			node = cursor->node->ondisk;
267 			continue;
268 		} else {
269 			elm = &node->elms[cursor->index];
270 			r = hammer_btree_cmp(&cursor->key_end, &elm->base);
271 			if (hammer_debug_btree) {
272 				kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
273 					(long long)cursor->node->node_offset,
274 					cursor->index,
275 					(elm[0].leaf.base.btype ?
276 					 elm[0].leaf.base.btype : '?'),
277 					(long long)elm[0].leaf.base.obj_id,
278 					elm[0].leaf.base.rec_type,
279 					(long long)elm[0].leaf.base.key,
280 					elm[0].leaf.base.localization,
281 					r
282 				);
283 			}
284 			if (r < 0) {
285 				error = ENOENT;
286 				break;
287 			}
288 
289 			/*
290 			 * We support both end-inclusive and
291 			 * end-exclusive searches.
292 			 */
293 			if (r == 0 &&
294 			   (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
295 				error = ENOENT;
296 				break;
297 			}
298 
299 			switch(elm->leaf.base.btype) {
300 			case HAMMER_BTREE_TYPE_RECORD:
301 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
302 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
303 					++cursor->index;
304 					continue;
305 				}
306 				error = 0;
307 				break;
308 			default:
309 				error = EINVAL;
310 				break;
311 			}
312 			if (error)
313 				break;
314 		}
315 		/*
316 		 * node pointer invalid after loop
317 		 */
318 
319 		/*
320 		 * Return entry
321 		 */
322 		if (hammer_debug_btree) {
323 			int i = cursor->index;
324 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
325 			kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
326 				cursor->node, i,
327 				(long long)elm->internal.base.obj_id,
328 				elm->internal.base.rec_type,
329 				(long long)elm->internal.base.key,
330 				elm->internal.base.localization
331 			);
332 		}
333 		return(0);
334 	}
335 	return(error);
336 }
337 
338 /*
339  * We hit an internal element that we could skip as part of a mirroring
340  * scan.  Calculate the entire range being skipped.
341  *
342  * It is important to include any gaps between the parent's left_bound
343  * and the node's left_bound, and same goes for the right side.
344  */
345 static void
346 hammer_cursor_mirror_filter(hammer_cursor_t cursor)
347 {
348 	struct hammer_cmirror *cmirror;
349 	hammer_node_ondisk_t ondisk;
350 	hammer_btree_elm_t elm;
351 
352 	ondisk = cursor->node->ondisk;
353 	cmirror = cursor->cmirror;
354 
355 	/*
356 	 * Calculate the skipped range
357 	 */
358 	elm = &ondisk->elms[cursor->index];
359 	if (cursor->index == 0)
360 		cmirror->skip_beg = *cursor->left_bound;
361 	else
362 		cmirror->skip_beg = elm->internal.base;
363 	while (cursor->index < ondisk->count) {
364 		if (elm->internal.mirror_tid >= cmirror->mirror_tid)
365 			break;
366 		++cursor->index;
367 		++elm;
368 	}
369 	if (cursor->index == ondisk->count)
370 		cmirror->skip_end = *cursor->right_bound;
371 	else
372 		cmirror->skip_end = elm->internal.base;
373 
374 	/*
375 	 * clip the returned result.
376 	 */
377 	if (hammer_btree_cmp(&cmirror->skip_beg, &cursor->key_beg) < 0)
378 		cmirror->skip_beg = cursor->key_beg;
379 	if (hammer_btree_cmp(&cmirror->skip_end, &cursor->key_end) > 0)
380 		cmirror->skip_end = cursor->key_end;
381 }
382 
383 /*
384  * Iterate in the reverse direction.  This is used by the pruning code to
385  * avoid overlapping records.
386  */
387 int
388 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
389 {
390 	hammer_node_ondisk_t node;
391 	hammer_btree_elm_t elm;
392 	int error = 0;
393 	int r;
394 	int s;
395 
396 	/* mirror filtering not supported for reverse iteration */
397 	KKASSERT ((cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) == 0);
398 
399 	/*
400 	 * Skip past the current record.  For various reasons the cursor
401 	 * may end up set to -1 or set to point at the end of the current
402 	 * node.  These cases must be addressed.
403 	 */
404 	node = cursor->node->ondisk;
405 	if (node == NULL)
406 		return(ENOENT);
407 	if (cursor->index != -1 &&
408 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
409 		--cursor->index;
410 	}
411 	if (cursor->index == cursor->node->ondisk->count)
412 		--cursor->index;
413 
414 	/*
415 	 * Loop until an element is found or we are done.
416 	 */
417 	for (;;) {
418 		++hammer_stats_btree_iterations;
419 		hammer_flusher_clean_loose_ios(cursor->trans->hmp);
420 
421 		/*
422 		 * We iterate up the tree and then index over one element
423 		 * while we are at the last element in the current node.
424 		 */
425 		if (cursor->index == -1) {
426 			error = hammer_cursor_up(cursor);
427 			if (error) {
428 				cursor->index = 0; /* sanity */
429 				break;
430 			}
431 			/* reload stale pointer */
432 			node = cursor->node->ondisk;
433 			KKASSERT(cursor->index != node->count);
434 			--cursor->index;
435 			continue;
436 		}
437 
438 		/*
439 		 * Check internal or leaf element.  Determine if the record
440 		 * at the cursor has gone beyond the end of our range.
441 		 *
442 		 * We recurse down through internal nodes.
443 		 */
444 		KKASSERT(cursor->index != node->count);
445 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
446 			elm = &node->elms[cursor->index];
447 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
448 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
449 			if (hammer_debug_btree) {
450 				kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
451 					(long long)cursor->node->node_offset,
452 					cursor->index,
453 					(long long)elm[0].internal.base.obj_id,
454 					elm[0].internal.base.rec_type,
455 					(long long)elm[0].internal.base.key,
456 					elm[0].internal.base.localization,
457 					r
458 				);
459 				kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
460 					(long long)cursor->node->node_offset,
461 					cursor->index + 1,
462 					(long long)elm[1].internal.base.obj_id,
463 					elm[1].internal.base.rec_type,
464 					(long long)elm[1].internal.base.key,
465 					elm[1].internal.base.localization,
466 					s
467 				);
468 			}
469 
470 			if (s >= 0) {
471 				error = ENOENT;
472 				break;
473 			}
474 			KKASSERT(r >= 0);
475 
476 			/*
477 			 * Better not be zero
478 			 */
479 			KKASSERT(elm->internal.subtree_offset != 0);
480 
481 			error = hammer_cursor_down(cursor);
482 			if (error)
483 				break;
484 			KKASSERT(cursor->index == 0);
485 			/* reload stale pointer */
486 			node = cursor->node->ondisk;
487 
488 			/* this can assign -1 if the leaf was empty */
489 			cursor->index = node->count - 1;
490 			continue;
491 		} else {
492 			elm = &node->elms[cursor->index];
493 			s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
494 			if (hammer_debug_btree) {
495 				kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
496 					(long long)cursor->node->node_offset,
497 					cursor->index,
498 					(elm[0].leaf.base.btype ?
499 					 elm[0].leaf.base.btype : '?'),
500 					(long long)elm[0].leaf.base.obj_id,
501 					elm[0].leaf.base.rec_type,
502 					(long long)elm[0].leaf.base.key,
503 					elm[0].leaf.base.localization,
504 					s
505 				);
506 			}
507 			if (s > 0) {
508 				error = ENOENT;
509 				break;
510 			}
511 
512 			switch(elm->leaf.base.btype) {
513 			case HAMMER_BTREE_TYPE_RECORD:
514 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
515 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
516 					--cursor->index;
517 					continue;
518 				}
519 				error = 0;
520 				break;
521 			default:
522 				error = EINVAL;
523 				break;
524 			}
525 			if (error)
526 				break;
527 		}
528 		/*
529 		 * node pointer invalid after loop
530 		 */
531 
532 		/*
533 		 * Return entry
534 		 */
535 		if (hammer_debug_btree) {
536 			int i = cursor->index;
537 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
538 			kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
539 				cursor->node, i,
540 				(long long)elm->internal.base.obj_id,
541 				elm->internal.base.rec_type,
542 				(long long)elm->internal.base.key,
543 				elm->internal.base.localization
544 			);
545 		}
546 		return(0);
547 	}
548 	return(error);
549 }
550 
551 /*
552  * Lookup cursor->key_beg.  0 is returned on success, ENOENT if the entry
553  * could not be found, EDEADLK if inserting and a retry is needed, and a
554  * fatal error otherwise.  When retrying, the caller must terminate the
555  * cursor and reinitialize it.  EDEADLK cannot be returned if not inserting.
556  *
557  * The cursor is suitably positioned for a deletion on success, and suitably
558  * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
559  * specified.
560  *
561  * The cursor may begin anywhere, the search will traverse the tree in
562  * either direction to locate the requested element.
563  *
564  * Most of the logic implementing historical searches is handled here.  We
565  * do an initial lookup with create_tid set to the asof TID.  Due to the
566  * way records are laid out, a backwards iteration may be required if
567  * ENOENT is returned to locate the historical record.  Here's the
568  * problem:
569  *
570  * create_tid:    10      15       20
571  *		     LEAF1   LEAF2
572  * records:         (11)        (18)
573  *
574  * Lets say we want to do a lookup AS-OF timestamp 17.  We will traverse
575  * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
576  * not visible and thus causes ENOENT to be returned.  We really need
577  * to check record 11 in LEAF1.  If it also fails then the search fails
578  * (e.g. it might represent the range 11-16 and thus still not match our
579  * AS-OF timestamp of 17).  Note that LEAF1 could be empty, requiring
580  * further iterations.
581  *
582  * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
583  * and the cursor->create_check TID if an iteration might be needed.
584  * In the above example create_check would be set to 14.
585  */
586 int
587 hammer_btree_lookup(hammer_cursor_t cursor)
588 {
589 	int error;
590 
591 	KKASSERT ((cursor->flags & HAMMER_CURSOR_INSERT) == 0 ||
592 		  cursor->trans->sync_lock_refs > 0);
593 	++hammer_stats_btree_lookups;
594 	if (cursor->flags & HAMMER_CURSOR_ASOF) {
595 		KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
596 		cursor->key_beg.create_tid = cursor->asof;
597 		for (;;) {
598 			cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
599 			error = btree_search(cursor, 0);
600 			if (error != ENOENT ||
601 			    (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
602 				/*
603 				 * Stop if no error.
604 				 * Stop if error other then ENOENT.
605 				 * Stop if ENOENT and not special case.
606 				 */
607 				break;
608 			}
609 			if (hammer_debug_btree) {
610 				kprintf("CREATE_CHECK %016llx\n",
611 					(long long)cursor->create_check);
612 			}
613 			cursor->key_beg.create_tid = cursor->create_check;
614 			/* loop */
615 		}
616 	} else {
617 		error = btree_search(cursor, 0);
618 	}
619 	if (error == 0)
620 		error = hammer_btree_extract(cursor, cursor->flags);
621 	return(error);
622 }
623 
624 /*
625  * Execute the logic required to start an iteration.  The first record
626  * located within the specified range is returned and iteration control
627  * flags are adjusted for successive hammer_btree_iterate() calls.
628  *
629  * Set ATEDISK so a low-level caller can call btree_first/btree_iterate
630  * in a loop without worrying about it.  Higher-level merged searches will
631  * adjust the flag appropriately.
632  */
633 int
634 hammer_btree_first(hammer_cursor_t cursor)
635 {
636 	int error;
637 
638 	error = hammer_btree_lookup(cursor);
639 	if (error == ENOENT) {
640 		cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
641 		error = hammer_btree_iterate(cursor);
642 	}
643 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
644 	return(error);
645 }
646 
647 /*
648  * Similarly but for an iteration in the reverse direction.
649  *
650  * Set ATEDISK when iterating backwards to skip the current entry,
651  * which after an ENOENT lookup will be pointing beyond our end point.
652  *
653  * Set ATEDISK so a low-level caller can call btree_last/btree_iterate_reverse
654  * in a loop without worrying about it.  Higher-level merged searches will
655  * adjust the flag appropriately.
656  */
657 int
658 hammer_btree_last(hammer_cursor_t cursor)
659 {
660 	struct hammer_base_elm save;
661 	int error;
662 
663 	save = cursor->key_beg;
664 	cursor->key_beg = cursor->key_end;
665 	error = hammer_btree_lookup(cursor);
666 	cursor->key_beg = save;
667 	if (error == ENOENT ||
668 	    (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
669 		cursor->flags |= HAMMER_CURSOR_ATEDISK;
670 		error = hammer_btree_iterate_reverse(cursor);
671 	}
672 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
673 	return(error);
674 }
675 
676 /*
677  * Extract the record and/or data associated with the cursor's current
678  * position.  Any prior record or data stored in the cursor is replaced.
679  * The cursor must be positioned at a leaf node.
680  *
681  * NOTE: All extractions occur at the leaf of the B-Tree.
682  */
683 int
684 hammer_btree_extract(hammer_cursor_t cursor, int flags)
685 {
686 	hammer_node_ondisk_t node;
687 	hammer_btree_elm_t elm;
688 	hammer_off_t data_off;
689 	hammer_mount_t hmp;
690 	int32_t data_len;
691 	int error;
692 
693 	/*
694 	 * The case where the data reference resolves to the same buffer
695 	 * as the record reference must be handled.
696 	 */
697 	node = cursor->node->ondisk;
698 	elm = &node->elms[cursor->index];
699 	cursor->data = NULL;
700 	hmp = cursor->node->hmp;
701 
702 	/*
703 	 * There is nothing to extract for an internal element.
704 	 */
705 	if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
706 		return(EINVAL);
707 
708 	/*
709 	 * Only record types have data.
710 	 */
711 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
712 	cursor->leaf = &elm->leaf;
713 
714 	if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
715 		return(0);
716 	if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
717 		return(0);
718 	data_off = elm->leaf.data_offset;
719 	data_len = elm->leaf.data_len;
720 	if (data_off == 0)
721 		return(0);
722 
723 	/*
724 	 * Load the data
725 	 */
726 	KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
727 	cursor->data = hammer_bread_ext(hmp, data_off, data_len,
728 					&error, &cursor->data_buffer);
729 	if (hammer_crc_test_leaf(cursor->data, &elm->leaf) == 0) {
730 		kprintf("CRC DATA @ %016llx/%d FAILED\n",
731 			(long long)elm->leaf.data_offset, elm->leaf.data_len);
732 		if (hammer_debug_debug & 0x0001)
733 			Debugger("CRC FAILED: DATA");
734 		if (cursor->trans->flags & HAMMER_TRANSF_CRCDOM)
735 			error = EDOM;	/* less critical (mirroring) */
736 		else
737 			error = EIO;	/* critical */
738 	}
739 	return(error);
740 }
741 
742 
743 /*
744  * Insert a leaf element into the B-Tree at the current cursor position.
745  * The cursor is positioned such that the element at and beyond the cursor
746  * are shifted to make room for the new record.
747  *
748  * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
749  * flag set and that call must return ENOENT before this function can be
750  * called.
751  *
752  * The caller may depend on the cursor's exclusive lock after return to
753  * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
754  *
755  * ENOSPC is returned if there is no room to insert a new record.
756  */
757 int
758 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm,
759 		    int *doprop)
760 {
761 	hammer_node_ondisk_t node;
762 	int i;
763 	int error;
764 
765 	*doprop = 0;
766 	if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
767 		return(error);
768 	++hammer_stats_btree_inserts;
769 
770 	/*
771 	 * Insert the element at the leaf node and update the count in the
772 	 * parent.  It is possible for parent to be NULL, indicating that
773 	 * the filesystem's ROOT B-Tree node is a leaf itself, which is
774 	 * possible.  The root inode can never be deleted so the leaf should
775 	 * never be empty.
776 	 *
777 	 * Remember that the right-hand boundary is not included in the
778 	 * count.
779 	 */
780 	hammer_modify_node_all(cursor->trans, cursor->node);
781 	node = cursor->node->ondisk;
782 	i = cursor->index;
783 	KKASSERT(elm->base.btype != 0);
784 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
785 	KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
786 	if (i != node->count) {
787 		bcopy(&node->elms[i], &node->elms[i+1],
788 		      (node->count - i) * sizeof(*elm));
789 	}
790 	node->elms[i].leaf = *elm;
791 	++node->count;
792 	hammer_cursor_inserted_element(cursor->node, i);
793 
794 	/*
795 	 * Update the leaf node's aggregate mirror_tid for mirroring
796 	 * support.
797 	 */
798 	if (node->mirror_tid < elm->base.delete_tid) {
799 		node->mirror_tid = elm->base.delete_tid;
800 		*doprop = 1;
801 	}
802 	if (node->mirror_tid < elm->base.create_tid) {
803 		node->mirror_tid = elm->base.create_tid;
804 		*doprop = 1;
805 	}
806 	hammer_modify_node_done(cursor->node);
807 
808 	/*
809 	 * Debugging sanity checks.
810 	 */
811 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
812 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
813 	if (i) {
814 		KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
815 	}
816 	if (i != node->count - 1)
817 		KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
818 
819 	return(0);
820 }
821 
822 /*
823  * Delete a record from the B-Tree at the current cursor position.
824  * The cursor is positioned such that the current element is the one
825  * to be deleted.
826  *
827  * On return the cursor will be positioned after the deleted element and
828  * MAY point to an internal node.  It will be suitable for the continuation
829  * of an iteration but not for an insertion or deletion.
830  *
831  * Deletions will attempt to partially rebalance the B-Tree in an upward
832  * direction, but will terminate rather then deadlock.  Empty internal nodes
833  * are never allowed by a deletion which deadlocks may end up giving us an
834  * empty leaf.  The pruner will clean up and rebalance the tree.
835  *
836  * This function can return EDEADLK, requiring the caller to retry the
837  * operation after clearing the deadlock.
838  */
839 int
840 hammer_btree_delete(hammer_cursor_t cursor)
841 {
842 	hammer_node_ondisk_t ondisk;
843 	hammer_node_t node;
844 	hammer_node_t parent;
845 	int error;
846 	int i;
847 
848 	KKASSERT (cursor->trans->sync_lock_refs > 0);
849 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
850 		return(error);
851 	++hammer_stats_btree_deletes;
852 
853 	/*
854 	 * Delete the element from the leaf node.
855 	 *
856 	 * Remember that leaf nodes do not have boundaries.
857 	 */
858 	node = cursor->node;
859 	ondisk = node->ondisk;
860 	i = cursor->index;
861 
862 	KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
863 	KKASSERT(i >= 0 && i < ondisk->count);
864 	hammer_modify_node_all(cursor->trans, node);
865 	if (i + 1 != ondisk->count) {
866 		bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
867 		      (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
868 	}
869 	--ondisk->count;
870 	hammer_modify_node_done(node);
871 	hammer_cursor_deleted_element(node, i);
872 
873 	/*
874 	 * Validate local parent
875 	 */
876 	if (ondisk->parent) {
877 		parent = cursor->parent;
878 
879 		KKASSERT(parent != NULL);
880 		KKASSERT(parent->node_offset == ondisk->parent);
881 	}
882 
883 	/*
884 	 * If the leaf becomes empty it must be detached from the parent,
885 	 * potentially recursing through to the filesystem root.
886 	 *
887 	 * This may reposition the cursor at one of the parent's of the
888 	 * current node.
889 	 *
890 	 * Ignore deadlock errors, that simply means that btree_remove
891 	 * was unable to recurse and had to leave us with an empty leaf.
892 	 */
893 	KKASSERT(cursor->index <= ondisk->count);
894 	if (ondisk->count == 0) {
895 		error = btree_remove(cursor);
896 		if (error == EDEADLK)
897 			error = 0;
898 	} else {
899 		error = 0;
900 	}
901 	KKASSERT(cursor->parent == NULL ||
902 		 cursor->parent_index < cursor->parent->ondisk->count);
903 	return(error);
904 }
905 
906 /*
907  * PRIMAY B-TREE SEARCH SUPPORT PROCEDURE
908  *
909  * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
910  *
911  * The search can begin ANYWHERE in the B-Tree.  As a first step the search
912  * iterates up the tree as necessary to properly position itself prior to
913  * actually doing the sarch.
914  *
915  * INSERTIONS: The search will split full nodes and leaves on its way down
916  * and guarentee that the leaf it ends up on is not full.  If we run out
917  * of space the search continues to the leaf (to position the cursor for
918  * the spike), but ENOSPC is returned.
919  *
920  * The search is only guarenteed to end up on a leaf if an error code of 0
921  * is returned, or if inserting and an error code of ENOENT is returned.
922  * Otherwise it can stop at an internal node.  On success a search returns
923  * a leaf node.
924  *
925  * COMPLEXITY WARNING!  This is the core B-Tree search code for the entire
926  * filesystem, and it is not simple code.  Please note the following facts:
927  *
928  * - Internal node recursions have a boundary on the left AND right.  The
929  *   right boundary is non-inclusive.  The create_tid is a generic part
930  *   of the key for internal nodes.
931  *
932  * - Leaf nodes contain terminal elements only now.
933  *
934  * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
935  *   historical search.  ASOF and INSERT are mutually exclusive.  When
936  *   doing an as-of lookup btree_search() checks for a right-edge boundary
937  *   case.  If while recursing down the left-edge differs from the key
938  *   by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
939  *   with cursor->create_check.  This is used by btree_lookup() to iterate.
940  *   The iteration backwards because as-of searches can wind up going
941  *   down the wrong branch of the B-Tree.
942  */
943 static
944 int
945 btree_search(hammer_cursor_t cursor, int flags)
946 {
947 	hammer_node_ondisk_t node;
948 	hammer_btree_elm_t elm;
949 	int error;
950 	int enospc = 0;
951 	int i;
952 	int r;
953 	int s;
954 
955 	flags |= cursor->flags;
956 	++hammer_stats_btree_searches;
957 
958 	if (hammer_debug_btree) {
959 		kprintf("SEARCH   %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td = %p)\n",
960 			(long long)cursor->node->node_offset,
961 			cursor->index,
962 			(long long)cursor->key_beg.obj_id,
963 			cursor->key_beg.rec_type,
964 			(long long)cursor->key_beg.key,
965 			(long long)cursor->key_beg.create_tid,
966 			cursor->key_beg.localization,
967 			curthread
968 		);
969 		if (cursor->parent)
970 		    kprintf("SEARCHP %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
971 			(long long)cursor->parent->node_offset,
972 			cursor->parent_index,
973 			(long long)cursor->left_bound->obj_id,
974 			(long long)cursor->parent->ondisk->elms[cursor->parent_index].internal.base.obj_id,
975 			(long long)cursor->right_bound->obj_id,
976 			(long long)cursor->parent->ondisk->elms[cursor->parent_index+1].internal.base.obj_id,
977 			cursor->left_bound,
978 			&cursor->parent->ondisk->elms[cursor->parent_index],
979 			cursor->right_bound,
980 			&cursor->parent->ondisk->elms[cursor->parent_index+1]
981 		    );
982 	}
983 
984 	/*
985 	 * Move our cursor up the tree until we find a node whos range covers
986 	 * the key we are trying to locate.
987 	 *
988 	 * The left bound is inclusive, the right bound is non-inclusive.
989 	 * It is ok to cursor up too far.
990 	 */
991 	for (;;) {
992 		r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
993 		s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
994 		if (r >= 0 && s < 0)
995 			break;
996 		KKASSERT(cursor->parent);
997 		++hammer_stats_btree_iterations;
998 		error = hammer_cursor_up(cursor);
999 		if (error)
1000 			goto done;
1001 	}
1002 
1003 	/*
1004 	 * The delete-checks below are based on node, not parent.  Set the
1005 	 * initial delete-check based on the parent.
1006 	 */
1007 	if (r == 1) {
1008 		KKASSERT(cursor->left_bound->create_tid != 1);
1009 		cursor->create_check = cursor->left_bound->create_tid - 1;
1010 		cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1011 	}
1012 
1013 	/*
1014 	 * We better have ended up with a node somewhere.
1015 	 */
1016 	KKASSERT(cursor->node != NULL);
1017 
1018 	/*
1019 	 * If we are inserting we can't start at a full node if the parent
1020 	 * is also full (because there is no way to split the node),
1021 	 * continue running up the tree until the requirement is satisfied
1022 	 * or we hit the root of the filesystem.
1023 	 *
1024 	 * (If inserting we aren't doing an as-of search so we don't have
1025 	 *  to worry about create_check).
1026 	 */
1027 	while ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1028 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1029 			if (btree_node_is_full(cursor->node->ondisk) == 0)
1030 				break;
1031 		} else {
1032 			if (btree_node_is_full(cursor->node->ondisk) ==0)
1033 				break;
1034 		}
1035 		if (cursor->node->ondisk->parent == 0 ||
1036 		    cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
1037 			break;
1038 		}
1039 		++hammer_stats_btree_iterations;
1040 		error = hammer_cursor_up(cursor);
1041 		/* node may have become stale */
1042 		if (error)
1043 			goto done;
1044 	}
1045 
1046 	/*
1047 	 * Push down through internal nodes to locate the requested key.
1048 	 */
1049 	node = cursor->node->ondisk;
1050 	while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
1051 		/*
1052 		 * Scan the node to find the subtree index to push down into.
1053 		 * We go one-past, then back-up.
1054 		 *
1055 		 * We must proactively remove deleted elements which may
1056 		 * have been left over from a deadlocked btree_remove().
1057 		 *
1058 		 * The left and right boundaries are included in the loop
1059 		 * in order to detect edge cases.
1060 		 *
1061 		 * If the separator only differs by create_tid (r == 1)
1062 		 * and we are doing an as-of search, we may end up going
1063 		 * down a branch to the left of the one containing the
1064 		 * desired key.  This requires numerous special cases.
1065 		 */
1066 		++hammer_stats_btree_iterations;
1067 		if (hammer_debug_btree) {
1068 			kprintf("SEARCH-I %016llx count=%d\n",
1069 				(long long)cursor->node->node_offset,
1070 				node->count);
1071 		}
1072 
1073 		/*
1074 		 * Try to shortcut the search before dropping into the
1075 		 * linear loop.  Locate the first node where r <= 1.
1076 		 */
1077 		i = hammer_btree_search_node(&cursor->key_beg, node);
1078 		while (i <= node->count) {
1079 			++hammer_stats_btree_elements;
1080 			elm = &node->elms[i];
1081 			r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
1082 			if (hammer_debug_btree > 2) {
1083 				kprintf(" IELM %p %d r=%d\n",
1084 					&node->elms[i], i, r);
1085 			}
1086 			if (r < 0)
1087 				break;
1088 			if (r == 1) {
1089 				KKASSERT(elm->base.create_tid != 1);
1090 				cursor->create_check = elm->base.create_tid - 1;
1091 				cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1092 			}
1093 			++i;
1094 		}
1095 		if (hammer_debug_btree) {
1096 			kprintf("SEARCH-I preI=%d/%d r=%d\n",
1097 				i, node->count, r);
1098 		}
1099 
1100 		/*
1101 		 * These cases occur when the parent's idea of the boundary
1102 		 * is wider then the child's idea of the boundary, and
1103 		 * require special handling.  If not inserting we can
1104 		 * terminate the search early for these cases but the
1105 		 * child's boundaries cannot be unconditionally modified.
1106 		 */
1107 		if (i == 0) {
1108 			/*
1109 			 * If i == 0 the search terminated to the LEFT of the
1110 			 * left_boundary but to the RIGHT of the parent's left
1111 			 * boundary.
1112 			 */
1113 			u_int8_t save;
1114 
1115 			elm = &node->elms[0];
1116 
1117 			/*
1118 			 * If we aren't inserting we can stop here.
1119 			 */
1120 			if ((flags & (HAMMER_CURSOR_INSERT |
1121 				      HAMMER_CURSOR_PRUNING)) == 0) {
1122 				cursor->index = 0;
1123 				return(ENOENT);
1124 			}
1125 
1126 			/*
1127 			 * Correct a left-hand boundary mismatch.
1128 			 *
1129 			 * We can only do this if we can upgrade the lock,
1130 			 * and synchronized as a background cursor (i.e.
1131 			 * inserting or pruning).
1132 			 *
1133 			 * WARNING: We can only do this if inserting, i.e.
1134 			 * we are running on the backend.
1135 			 */
1136 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1137 				return(error);
1138 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1139 			hammer_modify_node_field(cursor->trans, cursor->node,
1140 						 elms[0]);
1141 			save = node->elms[0].base.btype;
1142 			node->elms[0].base = *cursor->left_bound;
1143 			node->elms[0].base.btype = save;
1144 			hammer_modify_node_done(cursor->node);
1145 		} else if (i == node->count + 1) {
1146 			/*
1147 			 * If i == node->count + 1 the search terminated to
1148 			 * the RIGHT of the right boundary but to the LEFT
1149 			 * of the parent's right boundary.  If we aren't
1150 			 * inserting we can stop here.
1151 			 *
1152 			 * Note that the last element in this case is
1153 			 * elms[i-2] prior to adjustments to 'i'.
1154 			 */
1155 			--i;
1156 			if ((flags & (HAMMER_CURSOR_INSERT |
1157 				      HAMMER_CURSOR_PRUNING)) == 0) {
1158 				cursor->index = i;
1159 				return (ENOENT);
1160 			}
1161 
1162 			/*
1163 			 * Correct a right-hand boundary mismatch.
1164 			 * (actual push-down record is i-2 prior to
1165 			 * adjustments to i).
1166 			 *
1167 			 * We can only do this if we can upgrade the lock,
1168 			 * and synchronized as a background cursor (i.e.
1169 			 * inserting or pruning).
1170 			 *
1171 			 * WARNING: We can only do this if inserting, i.e.
1172 			 * we are running on the backend.
1173 			 */
1174 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1175 				return(error);
1176 			elm = &node->elms[i];
1177 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1178 			hammer_modify_node(cursor->trans, cursor->node,
1179 					   &elm->base, sizeof(elm->base));
1180 			elm->base = *cursor->right_bound;
1181 			hammer_modify_node_done(cursor->node);
1182 			--i;
1183 		} else {
1184 			/*
1185 			 * The push-down index is now i - 1.  If we had
1186 			 * terminated on the right boundary this will point
1187 			 * us at the last element.
1188 			 */
1189 			--i;
1190 		}
1191 		cursor->index = i;
1192 		elm = &node->elms[i];
1193 
1194 		if (hammer_debug_btree) {
1195 			kprintf("RESULT-I %016llx[%d] %016llx %02x "
1196 				"key=%016llx cre=%016llx lo=%02x\n",
1197 				(long long)cursor->node->node_offset,
1198 				i,
1199 				(long long)elm->internal.base.obj_id,
1200 				elm->internal.base.rec_type,
1201 				(long long)elm->internal.base.key,
1202 				(long long)elm->internal.base.create_tid,
1203 				elm->internal.base.localization
1204 			);
1205 		}
1206 
1207 		/*
1208 		 * We better have a valid subtree offset.
1209 		 */
1210 		KKASSERT(elm->internal.subtree_offset != 0);
1211 
1212 		/*
1213 		 * Handle insertion and deletion requirements.
1214 		 *
1215 		 * If inserting split full nodes.  The split code will
1216 		 * adjust cursor->node and cursor->index if the current
1217 		 * index winds up in the new node.
1218 		 *
1219 		 * If inserting and a left or right edge case was detected,
1220 		 * we cannot correct the left or right boundary and must
1221 		 * prepend and append an empty leaf node in order to make
1222 		 * the boundary correction.
1223 		 *
1224 		 * If we run out of space we set enospc and continue on
1225 		 * to a leaf to provide the spike code with a good point
1226 		 * of entry.
1227 		 */
1228 		if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1229 			if (btree_node_is_full(node)) {
1230 				error = btree_split_internal(cursor);
1231 				if (error) {
1232 					if (error != ENOSPC)
1233 						goto done;
1234 					enospc = 1;
1235 				}
1236 				/*
1237 				 * reload stale pointers
1238 				 */
1239 				i = cursor->index;
1240 				node = cursor->node->ondisk;
1241 			}
1242 		}
1243 
1244 		/*
1245 		 * Push down (push into new node, existing node becomes
1246 		 * the parent) and continue the search.
1247 		 */
1248 		error = hammer_cursor_down(cursor);
1249 		/* node may have become stale */
1250 		if (error)
1251 			goto done;
1252 		node = cursor->node->ondisk;
1253 	}
1254 
1255 	/*
1256 	 * We are at a leaf, do a linear search of the key array.
1257 	 *
1258 	 * On success the index is set to the matching element and 0
1259 	 * is returned.
1260 	 *
1261 	 * On failure the index is set to the insertion point and ENOENT
1262 	 * is returned.
1263 	 *
1264 	 * Boundaries are not stored in leaf nodes, so the index can wind
1265 	 * up to the left of element 0 (index == 0) or past the end of
1266 	 * the array (index == node->count).  It is also possible that the
1267 	 * leaf might be empty.
1268 	 */
1269 	++hammer_stats_btree_iterations;
1270 	KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1271 	KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1272 	if (hammer_debug_btree) {
1273 		kprintf("SEARCH-L %016llx count=%d\n",
1274 			(long long)cursor->node->node_offset,
1275 			node->count);
1276 	}
1277 
1278 	/*
1279 	 * Try to shortcut the search before dropping into the
1280 	 * linear loop.  Locate the first node where r <= 1.
1281 	 */
1282 	i = hammer_btree_search_node(&cursor->key_beg, node);
1283 	while (i < node->count) {
1284 		++hammer_stats_btree_elements;
1285 		elm = &node->elms[i];
1286 
1287 		r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1288 
1289 		if (hammer_debug_btree > 1)
1290 			kprintf("  ELM %p %d r=%d\n", &node->elms[i], i, r);
1291 
1292 		/*
1293 		 * We are at a record element.  Stop if we've flipped past
1294 		 * key_beg, not counting the create_tid test.  Allow the
1295 		 * r == 1 case (key_beg > element but differs only by its
1296 		 * create_tid) to fall through to the AS-OF check.
1297 		 */
1298 		KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1299 
1300 		if (r < 0)
1301 			goto failed;
1302 		if (r > 1) {
1303 			++i;
1304 			continue;
1305 		}
1306 
1307 		/*
1308 		 * Check our as-of timestamp against the element.
1309 		 */
1310 		if (flags & HAMMER_CURSOR_ASOF) {
1311 			if (hammer_btree_chkts(cursor->asof,
1312 					       &node->elms[i].base) != 0) {
1313 				++i;
1314 				continue;
1315 			}
1316 			/* success */
1317 		} else {
1318 			if (r > 0) {	/* can only be +1 */
1319 				++i;
1320 				continue;
1321 			}
1322 			/* success */
1323 		}
1324 		cursor->index = i;
1325 		error = 0;
1326 		if (hammer_debug_btree) {
1327 			kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1328 				(long long)cursor->node->node_offset, i);
1329 		}
1330 		goto done;
1331 	}
1332 
1333 	/*
1334 	 * The search of the leaf node failed.  i is the insertion point.
1335 	 */
1336 failed:
1337 	if (hammer_debug_btree) {
1338 		kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1339 			(long long)cursor->node->node_offset, i);
1340 	}
1341 
1342 	/*
1343 	 * No exact match was found, i is now at the insertion point.
1344 	 *
1345 	 * If inserting split a full leaf before returning.  This
1346 	 * may have the side effect of adjusting cursor->node and
1347 	 * cursor->index.
1348 	 */
1349 	cursor->index = i;
1350 	if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1351 	     btree_node_is_full(node)) {
1352 		error = btree_split_leaf(cursor);
1353 		if (error) {
1354 			if (error != ENOSPC)
1355 				goto done;
1356 			enospc = 1;
1357 		}
1358 		/*
1359 		 * reload stale pointers
1360 		 */
1361 		/* NOT USED
1362 		i = cursor->index;
1363 		node = &cursor->node->internal;
1364 		*/
1365 	}
1366 
1367 	/*
1368 	 * We reached a leaf but did not find the key we were looking for.
1369 	 * If this is an insert we will be properly positioned for an insert
1370 	 * (ENOENT) or spike (ENOSPC) operation.
1371 	 */
1372 	error = enospc ? ENOSPC : ENOENT;
1373 done:
1374 	return(error);
1375 }
1376 
1377 /*
1378  * Heuristical search for the first element whos comparison is <= 1.  May
1379  * return an index whos compare result is > 1 but may only return an index
1380  * whos compare result is <= 1 if it is the first element with that result.
1381  */
1382 int
1383 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
1384 {
1385 	int b;
1386 	int s;
1387 	int i;
1388 	int r;
1389 
1390 	/*
1391 	 * Don't bother if the node does not have very many elements
1392 	 */
1393 	b = 0;
1394 	s = node->count;
1395 	while (s - b > 4) {
1396 		i = b + (s - b) / 2;
1397 		++hammer_stats_btree_elements;
1398 		r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
1399 		if (r <= 1) {
1400 			s = i;
1401 		} else {
1402 			b = i;
1403 		}
1404 	}
1405 	return(b);
1406 }
1407 
1408 
1409 /************************************************************************
1410  *			   SPLITTING AND MERGING 			*
1411  ************************************************************************
1412  *
1413  * These routines do all the dirty work required to split and merge nodes.
1414  */
1415 
1416 /*
1417  * Split an internal node into two nodes and move the separator at the split
1418  * point to the parent.
1419  *
1420  * (cursor->node, cursor->index) indicates the element the caller intends
1421  * to push into.  We will adjust node and index if that element winds
1422  * up in the split node.
1423  *
1424  * If we are at the root of the filesystem a new root must be created with
1425  * two elements, one pointing to the original root and one pointing to the
1426  * newly allocated split node.
1427  */
1428 static
1429 int
1430 btree_split_internal(hammer_cursor_t cursor)
1431 {
1432 	hammer_node_ondisk_t ondisk;
1433 	hammer_node_t node;
1434 	hammer_node_t parent;
1435 	hammer_node_t new_node;
1436 	hammer_btree_elm_t elm;
1437 	hammer_btree_elm_t parent_elm;
1438 	struct hammer_node_lock lockroot;
1439 	hammer_mount_t hmp = cursor->trans->hmp;
1440 	hammer_off_t hint;
1441 	int parent_index;
1442 	int made_root;
1443 	int split;
1444 	int error;
1445 	int i;
1446 	const int esize = sizeof(*elm);
1447 
1448 	hammer_node_lock_init(&lockroot, cursor->node);
1449 	error = hammer_btree_lock_children(cursor, 1, &lockroot);
1450 	if (error)
1451 		goto done;
1452 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1453 		goto done;
1454 	++hammer_stats_btree_splits;
1455 
1456 	/*
1457 	 * We are splitting but elms[split] will be promoted to the parent,
1458 	 * leaving the right hand node with one less element.  If the
1459 	 * insertion point will be on the left-hand side adjust the split
1460 	 * point to give the right hand side one additional node.
1461 	 */
1462 	node = cursor->node;
1463 	ondisk = node->ondisk;
1464 	split = (ondisk->count + 1) / 2;
1465 	if (cursor->index <= split)
1466 		--split;
1467 
1468 	/*
1469 	 * If we are at the root of the filesystem, create a new root node
1470 	 * with 1 element and split normally.  Avoid making major
1471 	 * modifications until we know the whole operation will work.
1472 	 */
1473 	if (ondisk->parent == 0) {
1474 		parent = hammer_alloc_btree(cursor->trans, node->node_offset,
1475 					    &error);
1476 		if (parent == NULL)
1477 			goto done;
1478 		hammer_lock_ex(&parent->lock);
1479 		hammer_modify_node_noundo(cursor->trans, parent);
1480 		ondisk = parent->ondisk;
1481 		ondisk->count = 1;
1482 		ondisk->parent = 0;
1483 		ondisk->mirror_tid = node->ondisk->mirror_tid;
1484 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1485 		ondisk->elms[0].base = hmp->root_btree_beg;
1486 		ondisk->elms[0].base.btype = node->ondisk->type;
1487 		ondisk->elms[0].internal.subtree_offset = node->node_offset;
1488 		ondisk->elms[1].base = hmp->root_btree_end;
1489 		hammer_modify_node_done(parent);
1490 		/* ondisk->elms[1].base.btype - not used */
1491 		made_root = 1;
1492 		parent_index = 0;	/* index of current node in parent */
1493 	} else {
1494 		made_root = 0;
1495 		parent = cursor->parent;
1496 		parent_index = cursor->parent_index;
1497 	}
1498 
1499 	/*
1500 	 * Calculate a hint for the allocation of the new B-Tree node.
1501 	 * The most likely expansion is coming from the insertion point
1502 	 * at cursor->index, so try to localize the allocation of our
1503 	 * new node to accomodate that sub-tree.
1504 	 *
1505 	 * Use the right-most sub-tree when expandinging on the right edge.
1506 	 * This is a very common case when copying a directory tree.
1507 	 */
1508 	if (cursor->index == ondisk->count)
1509 		hint = ondisk->elms[cursor->index - 1].internal.subtree_offset;
1510 	else
1511 		hint = ondisk->elms[cursor->index].internal.subtree_offset;
1512 
1513 	/*
1514 	 * Split node into new_node at the split point.
1515 	 *
1516 	 *  B O O O P N N B	<-- P = node->elms[split] (index 4)
1517 	 *   0 1 2 3 4 5 6	<-- subtree indices
1518 	 *
1519 	 *       x x P x x
1520 	 *        s S S s
1521 	 *         /   \
1522 	 *  B O O O B    B N N B	<--- inner boundary points are 'P'
1523 	 *   0 1 2 3      4 5 6
1524 	 */
1525 	new_node = hammer_alloc_btree(cursor->trans, hint, &error);
1526 	if (new_node == NULL) {
1527 		if (made_root) {
1528 			hammer_unlock(&parent->lock);
1529 			hammer_delete_node(cursor->trans, parent);
1530 			hammer_rel_node(parent);
1531 		}
1532 		goto done;
1533 	}
1534 	hammer_lock_ex(&new_node->lock);
1535 
1536 	/*
1537 	 * Create the new node.  P becomes the left-hand boundary in the
1538 	 * new node.  Copy the right-hand boundary as well.
1539 	 *
1540 	 * elm is the new separator.
1541 	 */
1542 	hammer_modify_node_noundo(cursor->trans, new_node);
1543 	hammer_modify_node_all(cursor->trans, node);
1544 	ondisk = node->ondisk;
1545 	elm = &ondisk->elms[split];
1546 	bcopy(elm, &new_node->ondisk->elms[0],
1547 	      (ondisk->count - split + 1) * esize);
1548 	new_node->ondisk->count = ondisk->count - split;
1549 	new_node->ondisk->parent = parent->node_offset;
1550 	new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1551 	new_node->ondisk->mirror_tid = ondisk->mirror_tid;
1552 	KKASSERT(ondisk->type == new_node->ondisk->type);
1553 	hammer_cursor_split_node(node, new_node, split);
1554 
1555 	/*
1556 	 * Cleanup the original node.  Elm (P) becomes the new boundary,
1557 	 * its subtree_offset was moved to the new node.  If we had created
1558 	 * a new root its parent pointer may have changed.
1559 	 */
1560 	elm->internal.subtree_offset = 0;
1561 	ondisk->count = split;
1562 
1563 	/*
1564 	 * Insert the separator into the parent, fixup the parent's
1565 	 * reference to the original node, and reference the new node.
1566 	 * The separator is P.
1567 	 *
1568 	 * Remember that base.count does not include the right-hand boundary.
1569 	 */
1570 	hammer_modify_node_all(cursor->trans, parent);
1571 	ondisk = parent->ondisk;
1572 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1573 	parent_elm = &ondisk->elms[parent_index+1];
1574 	bcopy(parent_elm, parent_elm + 1,
1575 	      (ondisk->count - parent_index) * esize);
1576 	parent_elm->internal.base = elm->base;	/* separator P */
1577 	parent_elm->internal.base.btype = new_node->ondisk->type;
1578 	parent_elm->internal.subtree_offset = new_node->node_offset;
1579 	parent_elm->internal.mirror_tid = new_node->ondisk->mirror_tid;
1580 	++ondisk->count;
1581 	hammer_modify_node_done(parent);
1582 	hammer_cursor_inserted_element(parent, parent_index + 1);
1583 
1584 	/*
1585 	 * The children of new_node need their parent pointer set to new_node.
1586 	 * The children have already been locked by
1587 	 * hammer_btree_lock_children().
1588 	 */
1589 	for (i = 0; i < new_node->ondisk->count; ++i) {
1590 		elm = &new_node->ondisk->elms[i];
1591 		error = btree_set_parent(cursor->trans, new_node, elm);
1592 		if (error) {
1593 			panic("btree_split_internal: btree-fixup problem");
1594 		}
1595 	}
1596 	hammer_modify_node_done(new_node);
1597 
1598 	/*
1599 	 * The filesystem's root B-Tree pointer may have to be updated.
1600 	 */
1601 	if (made_root) {
1602 		hammer_volume_t volume;
1603 
1604 		volume = hammer_get_root_volume(hmp, &error);
1605 		KKASSERT(error == 0);
1606 
1607 		hammer_modify_volume_field(cursor->trans, volume,
1608 					   vol0_btree_root);
1609 		volume->ondisk->vol0_btree_root = parent->node_offset;
1610 		hammer_modify_volume_done(volume);
1611 		node->ondisk->parent = parent->node_offset;
1612 		if (cursor->parent) {
1613 			hammer_unlock(&cursor->parent->lock);
1614 			hammer_rel_node(cursor->parent);
1615 		}
1616 		cursor->parent = parent;	/* lock'd and ref'd */
1617 		hammer_rel_volume(volume, 0);
1618 	}
1619 	hammer_modify_node_done(node);
1620 
1621 	/*
1622 	 * Ok, now adjust the cursor depending on which element the original
1623 	 * index was pointing at.  If we are >= the split point the push node
1624 	 * is now in the new node.
1625 	 *
1626 	 * NOTE: If we are at the split point itself we cannot stay with the
1627 	 * original node because the push index will point at the right-hand
1628 	 * boundary, which is illegal.
1629 	 *
1630 	 * NOTE: The cursor's parent or parent_index must be adjusted for
1631 	 * the case where a new parent (new root) was created, and the case
1632 	 * where the cursor is now pointing at the split node.
1633 	 */
1634 	if (cursor->index >= split) {
1635 		cursor->parent_index = parent_index + 1;
1636 		cursor->index -= split;
1637 		hammer_unlock(&cursor->node->lock);
1638 		hammer_rel_node(cursor->node);
1639 		cursor->node = new_node;	/* locked and ref'd */
1640 	} else {
1641 		cursor->parent_index = parent_index;
1642 		hammer_unlock(&new_node->lock);
1643 		hammer_rel_node(new_node);
1644 	}
1645 
1646 	/*
1647 	 * Fixup left and right bounds
1648 	 */
1649 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1650 	cursor->left_bound = &parent_elm[0].internal.base;
1651 	cursor->right_bound = &parent_elm[1].internal.base;
1652 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1653 		 &cursor->node->ondisk->elms[0].internal.base) <= 0);
1654 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1655 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1656 
1657 done:
1658 	hammer_btree_unlock_children(cursor, &lockroot);
1659 	hammer_cursor_downgrade(cursor);
1660 	return (error);
1661 }
1662 
1663 /*
1664  * Same as the above, but splits a full leaf node.
1665  *
1666  * This function
1667  */
1668 static
1669 int
1670 btree_split_leaf(hammer_cursor_t cursor)
1671 {
1672 	hammer_node_ondisk_t ondisk;
1673 	hammer_node_t parent;
1674 	hammer_node_t leaf;
1675 	hammer_mount_t hmp;
1676 	hammer_node_t new_leaf;
1677 	hammer_btree_elm_t elm;
1678 	hammer_btree_elm_t parent_elm;
1679 	hammer_base_elm_t mid_boundary;
1680 	hammer_off_t hint;
1681 	int parent_index;
1682 	int made_root;
1683 	int split;
1684 	int error;
1685 	const size_t esize = sizeof(*elm);
1686 
1687 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1688 		return(error);
1689 	++hammer_stats_btree_splits;
1690 
1691 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1692 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1693 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1694 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1695 
1696 	/*
1697 	 * Calculate the split point.  If the insertion point will be on
1698 	 * the left-hand side adjust the split point to give the right
1699 	 * hand side one additional node.
1700 	 *
1701 	 * Spikes are made up of two leaf elements which cannot be
1702 	 * safely split.
1703 	 */
1704 	leaf = cursor->node;
1705 	ondisk = leaf->ondisk;
1706 	KKASSERT(ondisk->count > 2);
1707 	split = (ondisk->count + 1) / 2;
1708 	if (cursor->index <= split)
1709 		--split;
1710 	error = 0;
1711 	hmp = leaf->hmp;
1712 
1713 	elm = &ondisk->elms[split];
1714 
1715 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
1716 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
1717 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
1718 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
1719 
1720 	/*
1721 	 * If we are at the root of the tree, create a new root node with
1722 	 * 1 element and split normally.  Avoid making major modifications
1723 	 * until we know the whole operation will work.
1724 	 */
1725 	if (ondisk->parent == 0) {
1726 		parent = hammer_alloc_btree(cursor->trans, leaf->node_offset,
1727 					    &error);
1728 		if (parent == NULL)
1729 			goto done;
1730 		hammer_lock_ex(&parent->lock);
1731 		hammer_modify_node_noundo(cursor->trans, parent);
1732 		ondisk = parent->ondisk;
1733 		ondisk->count = 1;
1734 		ondisk->parent = 0;
1735 		ondisk->mirror_tid = leaf->ondisk->mirror_tid;
1736 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1737 		ondisk->elms[0].base = hmp->root_btree_beg;
1738 		ondisk->elms[0].base.btype = leaf->ondisk->type;
1739 		ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1740 		ondisk->elms[1].base = hmp->root_btree_end;
1741 		/* ondisk->elms[1].base.btype = not used */
1742 		hammer_modify_node_done(parent);
1743 		made_root = 1;
1744 		parent_index = 0;	/* insertion point in parent */
1745 	} else {
1746 		made_root = 0;
1747 		parent = cursor->parent;
1748 		parent_index = cursor->parent_index;
1749 	}
1750 
1751 	/*
1752 	 * Calculate a hint for the allocation of the new B-Tree leaf node.
1753 	 * For now just try to localize it within the same bigblock as
1754 	 * the current leaf.
1755 	 *
1756 	 * If the insertion point is at the end of the leaf we recognize a
1757 	 * likely append sequence of some sort (data, meta-data, inodes,
1758 	 * whatever).  Set the hint to zero to allocate out of linear space
1759 	 * instead of trying to completely fill previously hinted space.
1760 	 *
1761 	 * This also sets the stage for recursive splits to localize using
1762 	 * the new space.
1763 	 */
1764 	ondisk = leaf->ondisk;
1765 	if (cursor->index == ondisk->count)
1766 		hint = 0;
1767 	else
1768 		hint = leaf->node_offset;
1769 
1770 	/*
1771 	 * Split leaf into new_leaf at the split point.  Select a separator
1772 	 * value in-between the two leafs but with a bent towards the right
1773 	 * leaf since comparisons use an 'elm >= separator' inequality.
1774 	 *
1775 	 *  L L L L L L L L
1776 	 *
1777 	 *       x x P x x
1778 	 *        s S S s
1779 	 *         /   \
1780 	 *  L L L L     L L L L
1781 	 */
1782 	new_leaf = hammer_alloc_btree(cursor->trans, hint, &error);
1783 	if (new_leaf == NULL) {
1784 		if (made_root) {
1785 			hammer_unlock(&parent->lock);
1786 			hammer_delete_node(cursor->trans, parent);
1787 			hammer_rel_node(parent);
1788 		}
1789 		goto done;
1790 	}
1791 	hammer_lock_ex(&new_leaf->lock);
1792 
1793 	/*
1794 	 * Create the new node and copy the leaf elements from the split
1795 	 * point on to the new node.
1796 	 */
1797 	hammer_modify_node_all(cursor->trans, leaf);
1798 	hammer_modify_node_noundo(cursor->trans, new_leaf);
1799 	ondisk = leaf->ondisk;
1800 	elm = &ondisk->elms[split];
1801 	bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1802 	new_leaf->ondisk->count = ondisk->count - split;
1803 	new_leaf->ondisk->parent = parent->node_offset;
1804 	new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1805 	new_leaf->ondisk->mirror_tid = ondisk->mirror_tid;
1806 	KKASSERT(ondisk->type == new_leaf->ondisk->type);
1807 	hammer_modify_node_done(new_leaf);
1808 	hammer_cursor_split_node(leaf, new_leaf, split);
1809 
1810 	/*
1811 	 * Cleanup the original node.  Because this is a leaf node and
1812 	 * leaf nodes do not have a right-hand boundary, there
1813 	 * aren't any special edge cases to clean up.  We just fixup the
1814 	 * count.
1815 	 */
1816 	ondisk->count = split;
1817 
1818 	/*
1819 	 * Insert the separator into the parent, fixup the parent's
1820 	 * reference to the original node, and reference the new node.
1821 	 * The separator is P.
1822 	 *
1823 	 * Remember that base.count does not include the right-hand boundary.
1824 	 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1825 	 */
1826 	hammer_modify_node_all(cursor->trans, parent);
1827 	ondisk = parent->ondisk;
1828 	KKASSERT(split != 0);
1829 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1830 	parent_elm = &ondisk->elms[parent_index+1];
1831 	bcopy(parent_elm, parent_elm + 1,
1832 	      (ondisk->count - parent_index) * esize);
1833 
1834 	hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1835 	parent_elm->internal.base.btype = new_leaf->ondisk->type;
1836 	parent_elm->internal.subtree_offset = new_leaf->node_offset;
1837 	parent_elm->internal.mirror_tid = new_leaf->ondisk->mirror_tid;
1838 	mid_boundary = &parent_elm->base;
1839 	++ondisk->count;
1840 	hammer_modify_node_done(parent);
1841 	hammer_cursor_inserted_element(parent, parent_index + 1);
1842 
1843 	/*
1844 	 * The filesystem's root B-Tree pointer may have to be updated.
1845 	 */
1846 	if (made_root) {
1847 		hammer_volume_t volume;
1848 
1849 		volume = hammer_get_root_volume(hmp, &error);
1850 		KKASSERT(error == 0);
1851 
1852 		hammer_modify_volume_field(cursor->trans, volume,
1853 					   vol0_btree_root);
1854 		volume->ondisk->vol0_btree_root = parent->node_offset;
1855 		hammer_modify_volume_done(volume);
1856 		leaf->ondisk->parent = parent->node_offset;
1857 		if (cursor->parent) {
1858 			hammer_unlock(&cursor->parent->lock);
1859 			hammer_rel_node(cursor->parent);
1860 		}
1861 		cursor->parent = parent;	/* lock'd and ref'd */
1862 		hammer_rel_volume(volume, 0);
1863 	}
1864 	hammer_modify_node_done(leaf);
1865 
1866 	/*
1867 	 * Ok, now adjust the cursor depending on which element the original
1868 	 * index was pointing at.  If we are >= the split point the push node
1869 	 * is now in the new node.
1870 	 *
1871 	 * NOTE: If we are at the split point itself we need to select the
1872 	 * old or new node based on where key_beg's insertion point will be.
1873 	 * If we pick the wrong side the inserted element will wind up in
1874 	 * the wrong leaf node and outside that node's bounds.
1875 	 */
1876 	if (cursor->index > split ||
1877 	    (cursor->index == split &&
1878 	     hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
1879 		cursor->parent_index = parent_index + 1;
1880 		cursor->index -= split;
1881 		hammer_unlock(&cursor->node->lock);
1882 		hammer_rel_node(cursor->node);
1883 		cursor->node = new_leaf;
1884 	} else {
1885 		cursor->parent_index = parent_index;
1886 		hammer_unlock(&new_leaf->lock);
1887 		hammer_rel_node(new_leaf);
1888 	}
1889 
1890 	/*
1891 	 * Fixup left and right bounds
1892 	 */
1893 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1894 	cursor->left_bound = &parent_elm[0].internal.base;
1895 	cursor->right_bound = &parent_elm[1].internal.base;
1896 
1897 	/*
1898 	 * Assert that the bounds are correct.
1899 	 */
1900 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1901 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1902 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1903 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1904 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
1905 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
1906 
1907 done:
1908 	hammer_cursor_downgrade(cursor);
1909 	return (error);
1910 }
1911 
1912 #if 0
1913 
1914 /*
1915  * Recursively correct the right-hand boundary's create_tid to (tid) as
1916  * long as the rest of the key matches.  We have to recurse upward in
1917  * the tree as well as down the left side of each parent's right node.
1918  *
1919  * Return EDEADLK if we were only partially successful, forcing the caller
1920  * to try again.  The original cursor is not modified.  This routine can
1921  * also fail with EDEADLK if it is forced to throw away a portion of its
1922  * record history.
1923  *
1924  * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
1925  */
1926 struct hammer_rhb {
1927 	TAILQ_ENTRY(hammer_rhb) entry;
1928 	hammer_node_t	node;
1929 	int		index;
1930 };
1931 
1932 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
1933 
1934 int
1935 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
1936 {
1937 	struct hammer_mount *hmp;
1938 	struct hammer_rhb_list rhb_list;
1939 	hammer_base_elm_t elm;
1940 	hammer_node_t orig_node;
1941 	struct hammer_rhb *rhb;
1942 	int orig_index;
1943 	int error;
1944 
1945 	TAILQ_INIT(&rhb_list);
1946 	hmp = cursor->trans->hmp;
1947 
1948 	/*
1949 	 * Save our position so we can restore it on return.  This also
1950 	 * gives us a stable 'elm'.
1951 	 */
1952 	orig_node = cursor->node;
1953 	hammer_ref_node(orig_node);
1954 	hammer_lock_sh(&orig_node->lock);
1955 	orig_index = cursor->index;
1956 	elm = &orig_node->ondisk->elms[orig_index].base;
1957 
1958 	/*
1959 	 * Now build a list of parents going up, allocating a rhb
1960 	 * structure for each one.
1961 	 */
1962 	while (cursor->parent) {
1963 		/*
1964 		 * Stop if we no longer have any right-bounds to fix up
1965 		 */
1966 		if (elm->obj_id != cursor->right_bound->obj_id ||
1967 		    elm->rec_type != cursor->right_bound->rec_type ||
1968 		    elm->key != cursor->right_bound->key) {
1969 			break;
1970 		}
1971 
1972 		/*
1973 		 * Stop if the right-hand bound's create_tid does not
1974 		 * need to be corrected.
1975 		 */
1976 		if (cursor->right_bound->create_tid >= tid)
1977 			break;
1978 
1979 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
1980 		rhb->node = cursor->parent;
1981 		rhb->index = cursor->parent_index;
1982 		hammer_ref_node(rhb->node);
1983 		hammer_lock_sh(&rhb->node->lock);
1984 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
1985 
1986 		hammer_cursor_up(cursor);
1987 	}
1988 
1989 	/*
1990 	 * now safely adjust the right hand bound for each rhb.  This may
1991 	 * also require taking the right side of the tree and iterating down
1992 	 * ITS left side.
1993 	 */
1994 	error = 0;
1995 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1996 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
1997 		if (error)
1998 			break;
1999 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2000 		hammer_unlock(&rhb->node->lock);
2001 		hammer_rel_node(rhb->node);
2002 		kfree(rhb, hmp->m_misc);
2003 
2004 		switch (cursor->node->ondisk->type) {
2005 		case HAMMER_BTREE_TYPE_INTERNAL:
2006 			/*
2007 			 * Right-boundary for parent at internal node
2008 			 * is one element to the right of the element whos
2009 			 * right boundary needs adjusting.  We must then
2010 			 * traverse down the left side correcting any left
2011 			 * bounds (which may now be too far to the left).
2012 			 */
2013 			++cursor->index;
2014 			error = hammer_btree_correct_lhb(cursor, tid);
2015 			break;
2016 		default:
2017 			panic("hammer_btree_correct_rhb(): Bad node type");
2018 			error = EINVAL;
2019 			break;
2020 		}
2021 	}
2022 
2023 	/*
2024 	 * Cleanup
2025 	 */
2026 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2027 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2028 		hammer_unlock(&rhb->node->lock);
2029 		hammer_rel_node(rhb->node);
2030 		kfree(rhb, hmp->m_misc);
2031 	}
2032 	error = hammer_cursor_seek(cursor, orig_node, orig_index);
2033 	hammer_unlock(&orig_node->lock);
2034 	hammer_rel_node(orig_node);
2035 	return (error);
2036 }
2037 
2038 /*
2039  * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
2040  * bound going downward starting at the current cursor position.
2041  *
2042  * This function does not restore the cursor after use.
2043  */
2044 int
2045 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
2046 {
2047 	struct hammer_rhb_list rhb_list;
2048 	hammer_base_elm_t elm;
2049 	hammer_base_elm_t cmp;
2050 	struct hammer_rhb *rhb;
2051 	struct hammer_mount *hmp;
2052 	int error;
2053 
2054 	TAILQ_INIT(&rhb_list);
2055 	hmp = cursor->trans->hmp;
2056 
2057 	cmp = &cursor->node->ondisk->elms[cursor->index].base;
2058 
2059 	/*
2060 	 * Record the node and traverse down the left-hand side for all
2061 	 * matching records needing a boundary correction.
2062 	 */
2063 	error = 0;
2064 	for (;;) {
2065 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2066 		rhb->node = cursor->node;
2067 		rhb->index = cursor->index;
2068 		hammer_ref_node(rhb->node);
2069 		hammer_lock_sh(&rhb->node->lock);
2070 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2071 
2072 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2073 			/*
2074 			 * Nothing to traverse down if we are at the right
2075 			 * boundary of an internal node.
2076 			 */
2077 			if (cursor->index == cursor->node->ondisk->count)
2078 				break;
2079 		} else {
2080 			elm = &cursor->node->ondisk->elms[cursor->index].base;
2081 			if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
2082 				break;
2083 			panic("Illegal leaf record type %02x", elm->btype);
2084 		}
2085 		error = hammer_cursor_down(cursor);
2086 		if (error)
2087 			break;
2088 
2089 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2090 		if (elm->obj_id != cmp->obj_id ||
2091 		    elm->rec_type != cmp->rec_type ||
2092 		    elm->key != cmp->key) {
2093 			break;
2094 		}
2095 		if (elm->create_tid >= tid)
2096 			break;
2097 
2098 	}
2099 
2100 	/*
2101 	 * Now we can safely adjust the left-hand boundary from the bottom-up.
2102 	 * The last element we remove from the list is the caller's right hand
2103 	 * boundary, which must also be adjusted.
2104 	 */
2105 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2106 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2107 		if (error)
2108 			break;
2109 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2110 		hammer_unlock(&rhb->node->lock);
2111 		hammer_rel_node(rhb->node);
2112 		kfree(rhb, hmp->m_misc);
2113 
2114 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2115 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2116 			hammer_modify_node(cursor->trans, cursor->node,
2117 					   &elm->create_tid,
2118 					   sizeof(elm->create_tid));
2119 			elm->create_tid = tid;
2120 			hammer_modify_node_done(cursor->node);
2121 		} else {
2122 			panic("hammer_btree_correct_lhb(): Bad element type");
2123 		}
2124 	}
2125 
2126 	/*
2127 	 * Cleanup
2128 	 */
2129 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2130 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2131 		hammer_unlock(&rhb->node->lock);
2132 		hammer_rel_node(rhb->node);
2133 		kfree(rhb, hmp->m_misc);
2134 	}
2135 	return (error);
2136 }
2137 
2138 #endif
2139 
2140 /*
2141  * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
2142  * (cursor->node).  Returns 0 on success, EDEADLK if we could not complete
2143  * the operation due to a deadlock, or some other error.
2144  *
2145  * This routine is initially called with an empty leaf and may be
2146  * recursively called with single-element internal nodes.
2147  *
2148  * It should also be noted that when removing empty leaves we must be sure
2149  * to test and update mirror_tid because another thread may have deadlocked
2150  * against us (or someone) trying to propagate it up and cannot retry once
2151  * the node has been deleted.
2152  *
2153  * On return the cursor may end up pointing to an internal node, suitable
2154  * for further iteration but not for an immediate insertion or deletion.
2155  */
2156 static int
2157 btree_remove(hammer_cursor_t cursor)
2158 {
2159 	hammer_node_ondisk_t ondisk;
2160 	hammer_btree_elm_t elm;
2161 	hammer_node_t node;
2162 	hammer_node_t parent;
2163 	const int esize = sizeof(*elm);
2164 	int error;
2165 
2166 	node = cursor->node;
2167 
2168 	/*
2169 	 * When deleting the root of the filesystem convert it to
2170 	 * an empty leaf node.  Internal nodes cannot be empty.
2171 	 */
2172 	ondisk = node->ondisk;
2173 	if (ondisk->parent == 0) {
2174 		KKASSERT(cursor->parent == NULL);
2175 		hammer_modify_node_all(cursor->trans, node);
2176 		KKASSERT(ondisk == node->ondisk);
2177 		ondisk->type = HAMMER_BTREE_TYPE_LEAF;
2178 		ondisk->count = 0;
2179 		hammer_modify_node_done(node);
2180 		cursor->index = 0;
2181 		return(0);
2182 	}
2183 
2184 	parent = cursor->parent;
2185 	hammer_cursor_removed_node(node, parent, cursor->parent_index);
2186 
2187 	/*
2188 	 * Attempt to remove the parent's reference to the child.  If the
2189 	 * parent would become empty we have to recurse.  If we fail we
2190 	 * leave the parent pointing to an empty leaf node.
2191 	 *
2192 	 * We have to recurse successfully before we can delete the internal
2193 	 * node as it is illegal to have empty internal nodes.  Even though
2194 	 * the operation may be aborted we must still fixup any unlocked
2195 	 * cursors as if we had deleted the element prior to recursing
2196 	 * (by calling hammer_cursor_deleted_element()) so those cursors
2197 	 * are properly forced up the chain by the recursion.
2198 	 */
2199 	if (parent->ondisk->count == 1) {
2200 		/*
2201 		 * This special cursor_up_locked() call leaves the original
2202 		 * node exclusively locked and referenced, leaves the
2203 		 * original parent locked (as the new node), and locks the
2204 		 * new parent.  It can return EDEADLK.
2205 		 */
2206 		error = hammer_cursor_up_locked(cursor);
2207 		if (error == 0) {
2208 			hammer_cursor_deleted_element(cursor->node, 0);
2209 			error = btree_remove(cursor);
2210 			if (error == 0) {
2211 				hammer_modify_node_all(cursor->trans, node);
2212 				ondisk = node->ondisk;
2213 				ondisk->type = HAMMER_BTREE_TYPE_DELETED;
2214 				ondisk->count = 0;
2215 				hammer_modify_node_done(node);
2216 				hammer_flush_node(node);
2217 				hammer_delete_node(cursor->trans, node);
2218 			} else {
2219 				/*
2220 				 * Defer parent removal because we could not
2221 				 * get the lock, just let the leaf remain
2222 				 * empty.
2223 				 */
2224 				/**/
2225 			}
2226 			hammer_unlock(&node->lock);
2227 			hammer_rel_node(node);
2228 		} else {
2229 			/*
2230 			 * Defer parent removal because we could not
2231 			 * get the lock, just let the leaf remain
2232 			 * empty.
2233 			 */
2234 			/**/
2235 		}
2236 	} else {
2237 		KKASSERT(parent->ondisk->count > 1);
2238 
2239 		hammer_modify_node_all(cursor->trans, parent);
2240 		ondisk = parent->ondisk;
2241 		KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2242 
2243 		elm = &ondisk->elms[cursor->parent_index];
2244 		KKASSERT(elm->internal.subtree_offset == node->node_offset);
2245 		KKASSERT(ondisk->count > 0);
2246 
2247 		/*
2248 		 * We must retain the highest mirror_tid.  The deleted
2249 		 * range is now encompassed by the element to the left.
2250 		 * If we are already at the left edge the new left edge
2251 		 * inherits mirror_tid.
2252 		 *
2253 		 * Note that bounds of the parent to our parent may create
2254 		 * a gap to the left of our left-most node or to the right
2255 		 * of our right-most node.  The gap is silently included
2256 		 * in the mirror_tid's area of effect from the point of view
2257 		 * of the scan.
2258 		 */
2259 		if (cursor->parent_index) {
2260 			if (elm[-1].internal.mirror_tid <
2261 			    elm[0].internal.mirror_tid) {
2262 				elm[-1].internal.mirror_tid =
2263 				    elm[0].internal.mirror_tid;
2264 			}
2265 		} else {
2266 			if (elm[1].internal.mirror_tid <
2267 			    elm[0].internal.mirror_tid) {
2268 				elm[1].internal.mirror_tid =
2269 				    elm[0].internal.mirror_tid;
2270 			}
2271 		}
2272 
2273 		/*
2274 		 * Delete the subtree reference in the parent
2275 		 */
2276 		bcopy(&elm[1], &elm[0],
2277 		      (ondisk->count - cursor->parent_index) * esize);
2278 		--ondisk->count;
2279 		hammer_modify_node_done(parent);
2280 		hammer_cursor_deleted_element(parent, cursor->parent_index);
2281 		hammer_flush_node(node);
2282 		hammer_delete_node(cursor->trans, node);
2283 
2284 		/*
2285 		 * cursor->node is invalid, cursor up to make the cursor
2286 		 * valid again.
2287 		 */
2288 		error = hammer_cursor_up(cursor);
2289 	}
2290 	return (error);
2291 }
2292 
2293 /*
2294  * Propagate cursor->trans->tid up the B-Tree starting at the current
2295  * cursor position using pseudofs info gleaned from the passed inode.
2296  *
2297  * The passed inode has no relationship to the cursor position other
2298  * then being in the same pseudofs as the insertion or deletion we
2299  * are propagating the mirror_tid for.
2300  *
2301  * WARNING!  Because we push and pop the passed cursor, it may be
2302  *	     modified by other B-Tree operations while it is unlocked
2303  *	     and things like the node & leaf pointers, and indexes might
2304  *	     change.
2305  */
2306 void
2307 hammer_btree_do_propagation(hammer_cursor_t cursor,
2308 			    hammer_pseudofs_inmem_t pfsm,
2309 			    hammer_btree_leaf_elm_t leaf)
2310 {
2311 	hammer_cursor_t ncursor;
2312 	hammer_tid_t mirror_tid;
2313 	int error;
2314 
2315 	/*
2316 	 * We do not propagate a mirror_tid if the filesystem was mounted
2317 	 * in no-mirror mode.
2318 	 */
2319 	if (cursor->trans->hmp->master_id < 0)
2320 		return;
2321 
2322 	/*
2323 	 * This is a bit of a hack because we cannot deadlock or return
2324 	 * EDEADLK here.  The related operation has already completed and
2325 	 * we must propagate the mirror_tid now regardless.
2326 	 *
2327 	 * Generate a new cursor which inherits the original's locks and
2328 	 * unlock the original.  Use the new cursor to propagate the
2329 	 * mirror_tid.  Then clean up the new cursor and reacquire locks
2330 	 * on the original.
2331 	 *
2332 	 * hammer_dup_cursor() cannot dup locks.  The dup inherits the
2333 	 * original's locks and the original is tracked and must be
2334 	 * re-locked.
2335 	 */
2336 	mirror_tid = cursor->node->ondisk->mirror_tid;
2337 	KKASSERT(mirror_tid != 0);
2338 	ncursor = hammer_push_cursor(cursor);
2339 	error = hammer_btree_mirror_propagate(ncursor, mirror_tid);
2340 	KKASSERT(error == 0);
2341 	hammer_pop_cursor(cursor, ncursor);
2342 	/* WARNING: cursor's leaf pointer may change after pop */
2343 }
2344 
2345 
2346 /*
2347  * Propagate a mirror TID update upwards through the B-Tree to the root.
2348  *
2349  * A locked internal node must be passed in.  The node will remain locked
2350  * on return.
2351  *
2352  * This function syncs mirror_tid at the specified internal node's element,
2353  * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2354  */
2355 static int
2356 hammer_btree_mirror_propagate(hammer_cursor_t cursor, hammer_tid_t mirror_tid)
2357 {
2358 	hammer_btree_internal_elm_t elm;
2359 	hammer_node_t node;
2360 	int error;
2361 
2362 	for (;;) {
2363 		error = hammer_cursor_up(cursor);
2364 		if (error == 0)
2365 			error = hammer_cursor_upgrade(cursor);
2366 		while (error == EDEADLK) {
2367 			hammer_recover_cursor(cursor);
2368 			error = hammer_cursor_upgrade(cursor);
2369 		}
2370 		if (error)
2371 			break;
2372 		node = cursor->node;
2373 		KKASSERT (node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2374 
2375 		/*
2376 		 * Adjust the node's element
2377 		 */
2378 		elm = &node->ondisk->elms[cursor->index].internal;
2379 		if (elm->mirror_tid >= mirror_tid)
2380 			break;
2381 		hammer_modify_node(cursor->trans, node, &elm->mirror_tid,
2382 				   sizeof(elm->mirror_tid));
2383 		elm->mirror_tid = mirror_tid;
2384 		hammer_modify_node_done(node);
2385 		if (hammer_debug_general & 0x0002) {
2386 			kprintf("mirror_propagate: propagate "
2387 				"%016llx @%016llx:%d\n",
2388 				(long long)mirror_tid,
2389 				(long long)node->node_offset,
2390 				cursor->index);
2391 		}
2392 
2393 
2394 		/*
2395 		 * Adjust the node's mirror_tid aggregator
2396 		 */
2397 		if (node->ondisk->mirror_tid >= mirror_tid)
2398 			return(0);
2399 		hammer_modify_node_field(cursor->trans, node, mirror_tid);
2400 		node->ondisk->mirror_tid = mirror_tid;
2401 		hammer_modify_node_done(node);
2402 		if (hammer_debug_general & 0x0002) {
2403 			kprintf("mirror_propagate: propagate "
2404 				"%016llx @%016llx\n",
2405 				(long long)mirror_tid,
2406 				(long long)node->node_offset);
2407 		}
2408 	}
2409 	if (error == ENOENT)
2410 		error = 0;
2411 	return(error);
2412 }
2413 
2414 hammer_node_t
2415 hammer_btree_get_parent(hammer_transaction_t trans, hammer_node_t node,
2416 			int *parent_indexp, int *errorp, int try_exclusive)
2417 {
2418 	hammer_node_t parent;
2419 	hammer_btree_elm_t elm;
2420 	int i;
2421 
2422 	/*
2423 	 * Get the node
2424 	 */
2425 	parent = hammer_get_node(trans, node->ondisk->parent, 0, errorp);
2426 	if (*errorp) {
2427 		KKASSERT(parent == NULL);
2428 		return(NULL);
2429 	}
2430 	KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
2431 
2432 	/*
2433 	 * Lock the node
2434 	 */
2435 	if (try_exclusive) {
2436 		if (hammer_lock_ex_try(&parent->lock)) {
2437 			hammer_rel_node(parent);
2438 			*errorp = EDEADLK;
2439 			return(NULL);
2440 		}
2441 	} else {
2442 		hammer_lock_sh(&parent->lock);
2443 	}
2444 
2445 	/*
2446 	 * Figure out which element in the parent is pointing to the
2447 	 * child.
2448 	 */
2449 	if (node->ondisk->count) {
2450 		i = hammer_btree_search_node(&node->ondisk->elms[0].base,
2451 					     parent->ondisk);
2452 	} else {
2453 		i = 0;
2454 	}
2455 	while (i < parent->ondisk->count) {
2456 		elm = &parent->ondisk->elms[i];
2457 		if (elm->internal.subtree_offset == node->node_offset)
2458 			break;
2459 		++i;
2460 	}
2461 	if (i == parent->ondisk->count) {
2462 		hammer_unlock(&parent->lock);
2463 		panic("Bad B-Tree link: parent %p node %p\n", parent, node);
2464 	}
2465 	*parent_indexp = i;
2466 	KKASSERT(*errorp == 0);
2467 	return(parent);
2468 }
2469 
2470 /*
2471  * The element (elm) has been moved to a new internal node (node).
2472  *
2473  * If the element represents a pointer to an internal node that node's
2474  * parent must be adjusted to the element's new location.
2475  *
2476  * XXX deadlock potential here with our exclusive locks
2477  */
2478 int
2479 btree_set_parent(hammer_transaction_t trans, hammer_node_t node,
2480 		 hammer_btree_elm_t elm)
2481 {
2482 	hammer_node_t child;
2483 	int error;
2484 
2485 	error = 0;
2486 
2487 	switch(elm->base.btype) {
2488 	case HAMMER_BTREE_TYPE_INTERNAL:
2489 	case HAMMER_BTREE_TYPE_LEAF:
2490 		child = hammer_get_node(trans, elm->internal.subtree_offset,
2491 					0, &error);
2492 		if (error == 0) {
2493 			hammer_modify_node_field(trans, child, parent);
2494 			child->ondisk->parent = node->node_offset;
2495 			hammer_modify_node_done(child);
2496 			hammer_rel_node(child);
2497 		}
2498 		break;
2499 	default:
2500 		break;
2501 	}
2502 	return(error);
2503 }
2504 
2505 /*
2506  * Initialize the root of a recursive B-Tree node lock list structure.
2507  */
2508 void
2509 hammer_node_lock_init(hammer_node_lock_t parent, hammer_node_t node)
2510 {
2511 	TAILQ_INIT(&parent->list);
2512 	parent->parent = NULL;
2513 	parent->node = node;
2514 	parent->index = -1;
2515 	parent->count = node->ondisk->count;
2516 	parent->copy = NULL;
2517 	parent->flags = 0;
2518 }
2519 
2520 /*
2521  * Exclusively lock all the children of node.  This is used by the split
2522  * code to prevent anyone from accessing the children of a cursor node
2523  * while we fix-up its parent offset.
2524  *
2525  * If we don't lock the children we can really mess up cursors which block
2526  * trying to cursor-up into our node.
2527  *
2528  * On failure EDEADLK (or some other error) is returned.  If a deadlock
2529  * error is returned the cursor is adjusted to block on termination.
2530  *
2531  * The caller is responsible for managing parent->node, the root's node
2532  * is usually aliased from a cursor.
2533  */
2534 int
2535 hammer_btree_lock_children(hammer_cursor_t cursor, int depth,
2536 			   hammer_node_lock_t parent)
2537 {
2538 	hammer_node_t node;
2539 	hammer_node_lock_t item;
2540 	hammer_node_ondisk_t ondisk;
2541 	hammer_btree_elm_t elm;
2542 	hammer_node_t child;
2543 	struct hammer_mount *hmp;
2544 	int error;
2545 	int i;
2546 
2547 	node = parent->node;
2548 	ondisk = node->ondisk;
2549 	error = 0;
2550 	hmp = cursor->trans->hmp;
2551 
2552 	/*
2553 	 * We really do not want to block on I/O with exclusive locks held,
2554 	 * pre-get the children before trying to lock the mess.  This is
2555 	 * only done one-level deep for now.
2556 	 */
2557 	for (i = 0; i < ondisk->count; ++i) {
2558 		++hammer_stats_btree_elements;
2559 		elm = &ondisk->elms[i];
2560 		if (elm->base.btype != HAMMER_BTREE_TYPE_LEAF &&
2561 		    elm->base.btype != HAMMER_BTREE_TYPE_INTERNAL) {
2562 			continue;
2563 		}
2564 		child = hammer_get_node(cursor->trans,
2565 					elm->internal.subtree_offset,
2566 					0, &error);
2567 		if (child)
2568 			hammer_rel_node(child);
2569 	}
2570 
2571 	/*
2572 	 * Do it for real
2573 	 */
2574 	for (i = 0; error == 0 && i < ondisk->count; ++i) {
2575 		++hammer_stats_btree_elements;
2576 		elm = &ondisk->elms[i];
2577 
2578 		switch(elm->base.btype) {
2579 		case HAMMER_BTREE_TYPE_INTERNAL:
2580 		case HAMMER_BTREE_TYPE_LEAF:
2581 			KKASSERT(elm->internal.subtree_offset != 0);
2582 			child = hammer_get_node(cursor->trans,
2583 						elm->internal.subtree_offset,
2584 						0, &error);
2585 			break;
2586 		default:
2587 			child = NULL;
2588 			break;
2589 		}
2590 		if (child) {
2591 			if (hammer_lock_ex_try(&child->lock) != 0) {
2592 				if (cursor->deadlk_node == NULL) {
2593 					cursor->deadlk_node = child;
2594 					hammer_ref_node(cursor->deadlk_node);
2595 				}
2596 				error = EDEADLK;
2597 				hammer_rel_node(child);
2598 			} else {
2599 				item = kmalloc(sizeof(*item), hmp->m_misc,
2600 					       M_WAITOK|M_ZERO);
2601 				TAILQ_INSERT_TAIL(&parent->list, item, entry);
2602 				TAILQ_INIT(&item->list);
2603 				item->parent = parent;
2604 				item->node = child;
2605 				item->index = i;
2606 				item->count = child->ondisk->count;
2607 
2608 				/*
2609 				 * Recurse (used by the rebalancing code)
2610 				 */
2611 				if (depth > 1 && elm->base.btype == HAMMER_BTREE_TYPE_INTERNAL) {
2612 					error = hammer_btree_lock_children(
2613 							cursor,
2614 							depth - 1,
2615 							item);
2616 				}
2617 			}
2618 		}
2619 	}
2620 	if (error)
2621 		hammer_btree_unlock_children(cursor, parent);
2622 	return(error);
2623 }
2624 
2625 /*
2626  * Create an in-memory copy of all B-Tree nodes listed, recursively,
2627  * including the parent.
2628  */
2629 void
2630 hammer_btree_lock_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2631 {
2632 	hammer_mount_t hmp = cursor->trans->hmp;
2633 	hammer_node_lock_t item;
2634 
2635 	if (parent->copy == NULL) {
2636 		parent->copy = kmalloc(sizeof(*parent->copy), hmp->m_misc,
2637 				       M_WAITOK);
2638 		*parent->copy = *parent->node->ondisk;
2639 	}
2640 	TAILQ_FOREACH(item, &parent->list, entry) {
2641 		hammer_btree_lock_copy(cursor, item);
2642 	}
2643 }
2644 
2645 /*
2646  * Recursively sync modified copies to the media.
2647  */
2648 int
2649 hammer_btree_sync_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2650 {
2651 	hammer_node_lock_t item;
2652 	int count = 0;
2653 
2654 	if (parent->flags & HAMMER_NODE_LOCK_UPDATED) {
2655 		++count;
2656 		hammer_modify_node_all(cursor->trans, parent->node);
2657 		*parent->node->ondisk = *parent->copy;
2658                 hammer_modify_node_done(parent->node);
2659 		if (parent->copy->type == HAMMER_BTREE_TYPE_DELETED) {
2660 			hammer_flush_node(parent->node);
2661 			hammer_delete_node(cursor->trans, parent->node);
2662 		}
2663 	}
2664 	TAILQ_FOREACH(item, &parent->list, entry) {
2665 		count += hammer_btree_sync_copy(cursor, item);
2666 	}
2667 	return(count);
2668 }
2669 
2670 /*
2671  * Release previously obtained node locks.  The caller is responsible for
2672  * cleaning up parent->node itself (its usually just aliased from a cursor),
2673  * but this function will take care of the copies.
2674  */
2675 void
2676 hammer_btree_unlock_children(hammer_cursor_t cursor, hammer_node_lock_t parent)
2677 {
2678 	hammer_node_lock_t item;
2679 
2680 	if (parent->copy) {
2681 		kfree(parent->copy, cursor->trans->hmp->m_misc);
2682 		parent->copy = NULL;	/* safety */
2683 	}
2684 	while ((item = TAILQ_FIRST(&parent->list)) != NULL) {
2685 		TAILQ_REMOVE(&parent->list, item, entry);
2686 		hammer_btree_unlock_children(cursor, item);
2687 		hammer_unlock(&item->node->lock);
2688 		hammer_rel_node(item->node);
2689 		kfree(item, cursor->trans->hmp->m_misc);
2690 	}
2691 }
2692 
2693 /************************************************************************
2694  *			   MISCELLANIOUS SUPPORT 			*
2695  ************************************************************************/
2696 
2697 /*
2698  * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2699  *
2700  * Note that for this particular function a return value of -1, 0, or +1
2701  * can denote a match if create_tid is otherwise discounted.  A create_tid
2702  * of zero is considered to be 'infinity' in comparisons.
2703  *
2704  * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2705  */
2706 int
2707 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2708 {
2709 	if (key1->localization < key2->localization)
2710 		return(-5);
2711 	if (key1->localization > key2->localization)
2712 		return(5);
2713 
2714 	if (key1->obj_id < key2->obj_id)
2715 		return(-4);
2716 	if (key1->obj_id > key2->obj_id)
2717 		return(4);
2718 
2719 	if (key1->rec_type < key2->rec_type)
2720 		return(-3);
2721 	if (key1->rec_type > key2->rec_type)
2722 		return(3);
2723 
2724 	if (key1->key < key2->key)
2725 		return(-2);
2726 	if (key1->key > key2->key)
2727 		return(2);
2728 
2729 	/*
2730 	 * A create_tid of zero indicates a record which is undeletable
2731 	 * and must be considered to have a value of positive infinity.
2732 	 */
2733 	if (key1->create_tid == 0) {
2734 		if (key2->create_tid == 0)
2735 			return(0);
2736 		return(1);
2737 	}
2738 	if (key2->create_tid == 0)
2739 		return(-1);
2740 	if (key1->create_tid < key2->create_tid)
2741 		return(-1);
2742 	if (key1->create_tid > key2->create_tid)
2743 		return(1);
2744 	return(0);
2745 }
2746 
2747 /*
2748  * Test a timestamp against an element to determine whether the
2749  * element is visible.  A timestamp of 0 means 'infinity'.
2750  */
2751 int
2752 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
2753 {
2754 	if (asof == 0) {
2755 		if (base->delete_tid)
2756 			return(1);
2757 		return(0);
2758 	}
2759 	if (asof < base->create_tid)
2760 		return(-1);
2761 	if (base->delete_tid && asof >= base->delete_tid)
2762 		return(1);
2763 	return(0);
2764 }
2765 
2766 /*
2767  * Create a separator half way inbetween key1 and key2.  For fields just
2768  * one unit apart, the separator will match key2.  key1 is on the left-hand
2769  * side and key2 is on the right-hand side.
2770  *
2771  * key2 must be >= the separator.  It is ok for the separator to match key2.
2772  *
2773  * NOTE: Even if key1 does not match key2, the separator may wind up matching
2774  * key2.
2775  *
2776  * NOTE: It might be beneficial to just scrap this whole mess and just
2777  * set the separator to key2.
2778  */
2779 #define MAKE_SEPARATOR(key1, key2, dest, field)	\
2780 	dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
2781 
2782 static void
2783 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
2784 		      hammer_base_elm_t dest)
2785 {
2786 	bzero(dest, sizeof(*dest));
2787 
2788 	dest->rec_type = key2->rec_type;
2789 	dest->key = key2->key;
2790 	dest->obj_id = key2->obj_id;
2791 	dest->create_tid = key2->create_tid;
2792 
2793 	MAKE_SEPARATOR(key1, key2, dest, localization);
2794 	if (key1->localization == key2->localization) {
2795 		MAKE_SEPARATOR(key1, key2, dest, obj_id);
2796 		if (key1->obj_id == key2->obj_id) {
2797 			MAKE_SEPARATOR(key1, key2, dest, rec_type);
2798 			if (key1->rec_type == key2->rec_type) {
2799 				MAKE_SEPARATOR(key1, key2, dest, key);
2800 				/*
2801 				 * Don't bother creating a separator for
2802 				 * create_tid, which also conveniently avoids
2803 				 * having to handle the create_tid == 0
2804 				 * (infinity) case.  Just leave create_tid
2805 				 * set to key2.
2806 				 *
2807 				 * Worst case, dest matches key2 exactly,
2808 				 * which is acceptable.
2809 				 */
2810 			}
2811 		}
2812 	}
2813 }
2814 
2815 #undef MAKE_SEPARATOR
2816 
2817 /*
2818  * Return whether a generic internal or leaf node is full
2819  */
2820 static int
2821 btree_node_is_full(hammer_node_ondisk_t node)
2822 {
2823 	switch(node->type) {
2824 	case HAMMER_BTREE_TYPE_INTERNAL:
2825 		if (node->count == HAMMER_BTREE_INT_ELMS)
2826 			return(1);
2827 		break;
2828 	case HAMMER_BTREE_TYPE_LEAF:
2829 		if (node->count == HAMMER_BTREE_LEAF_ELMS)
2830 			return(1);
2831 		break;
2832 	default:
2833 		panic("illegal btree subtype");
2834 	}
2835 	return(0);
2836 }
2837 
2838 #if 0
2839 static int
2840 btree_max_elements(u_int8_t type)
2841 {
2842 	if (type == HAMMER_BTREE_TYPE_LEAF)
2843 		return(HAMMER_BTREE_LEAF_ELMS);
2844 	if (type == HAMMER_BTREE_TYPE_INTERNAL)
2845 		return(HAMMER_BTREE_INT_ELMS);
2846 	panic("btree_max_elements: bad type %d\n", type);
2847 }
2848 #endif
2849 
2850 void
2851 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
2852 {
2853 	hammer_btree_elm_t elm;
2854 	int i;
2855 
2856 	kprintf("node %p count=%d parent=%016llx type=%c\n",
2857 		ondisk, ondisk->count,
2858 		(long long)ondisk->parent, ondisk->type);
2859 
2860 	/*
2861 	 * Dump both boundary elements if an internal node
2862 	 */
2863 	if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2864 		for (i = 0; i <= ondisk->count; ++i) {
2865 			elm = &ondisk->elms[i];
2866 			hammer_print_btree_elm(elm, ondisk->type, i);
2867 		}
2868 	} else {
2869 		for (i = 0; i < ondisk->count; ++i) {
2870 			elm = &ondisk->elms[i];
2871 			hammer_print_btree_elm(elm, ondisk->type, i);
2872 		}
2873 	}
2874 }
2875 
2876 void
2877 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
2878 {
2879 	kprintf("  %2d", i);
2880 	kprintf("\tobj_id       = %016llx\n", (long long)elm->base.obj_id);
2881 	kprintf("\tkey          = %016llx\n", (long long)elm->base.key);
2882 	kprintf("\tcreate_tid   = %016llx\n", (long long)elm->base.create_tid);
2883 	kprintf("\tdelete_tid   = %016llx\n", (long long)elm->base.delete_tid);
2884 	kprintf("\trec_type     = %04x\n", elm->base.rec_type);
2885 	kprintf("\tobj_type     = %02x\n", elm->base.obj_type);
2886 	kprintf("\tbtype 	= %02x (%c)\n",
2887 		elm->base.btype,
2888 		(elm->base.btype ? elm->base.btype : '?'));
2889 	kprintf("\tlocalization	= %02x\n", elm->base.localization);
2890 
2891 	switch(type) {
2892 	case HAMMER_BTREE_TYPE_INTERNAL:
2893 		kprintf("\tsubtree_off  = %016llx\n",
2894 			(long long)elm->internal.subtree_offset);
2895 		break;
2896 	case HAMMER_BTREE_TYPE_RECORD:
2897 		kprintf("\tdata_offset  = %016llx\n",
2898 			(long long)elm->leaf.data_offset);
2899 		kprintf("\tdata_len     = %08x\n", elm->leaf.data_len);
2900 		kprintf("\tdata_crc     = %08x\n", elm->leaf.data_crc);
2901 		break;
2902 	}
2903 }
2904