xref: /dragonfly/sys/vfs/hammer/hammer_btree.c (revision a563ca70)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_btree.c,v 1.76 2008/08/06 15:38:58 dillon Exp $
35  */
36 
37 /*
38  * HAMMER B-Tree index
39  *
40  * HAMMER implements a modified B+Tree.  In documentation this will
41  * simply be refered to as the HAMMER B-Tree.  Basically a HAMMER B-Tree
42  * looks like a B+Tree (A B-Tree which stores its records only at the leafs
43  * of the tree), but adds two additional boundary elements which describe
44  * the left-most and right-most element a node is able to represent.  In
45  * otherwords, we have boundary elements at the two ends of a B-Tree node
46  * instead of sub-tree pointers.
47  *
48  * A B-Tree internal node looks like this:
49  *
50  *	B N N N N N N B   <-- boundary and internal elements
51  *       S S S S S S S    <-- subtree pointers
52  *
53  * A B-Tree leaf node basically looks like this:
54  *
55  *	L L L L L L L L   <-- leaf elemenets
56  *
57  * The radix for an internal node is 1 less then a leaf but we get a
58  * number of significant benefits for our troubles.
59  *
60  * The big benefit to using a B-Tree containing boundary information
61  * is that it is possible to cache pointers into the middle of the tree
62  * and not have to start searches, insertions, OR deletions at the root
63  * node.   In particular, searches are able to progress in a definitive
64  * direction from any point in the tree without revisting nodes.  This
65  * greatly improves the efficiency of many operations, most especially
66  * record appends.
67  *
68  * B-Trees also make the stacking of trees fairly straightforward.
69  *
70  * INSERTIONS:  A search performed with the intention of doing
71  * an insert will guarantee that the terminal leaf node is not full by
72  * splitting full nodes.  Splits occur top-down during the dive down the
73  * B-Tree.
74  *
75  * DELETIONS: A deletion makes no attempt to proactively balance the
76  * tree and will recursively remove nodes that become empty.  If a
77  * deadlock occurs a deletion may not be able to remove an empty leaf.
78  * Deletions never allow internal nodes to become empty (that would blow
79  * up the boundaries).
80  */
81 #include "hammer.h"
82 #include <sys/buf.h>
83 #include <sys/buf2.h>
84 
85 static int btree_search(hammer_cursor_t cursor, int flags);
86 static int btree_split_internal(hammer_cursor_t cursor);
87 static int btree_split_leaf(hammer_cursor_t cursor);
88 static int btree_remove(hammer_cursor_t cursor);
89 static int btree_node_is_full(hammer_node_ondisk_t node);
90 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor,
91 			hammer_tid_t mirror_tid);
92 static void hammer_make_separator(hammer_base_elm_t key1,
93 			hammer_base_elm_t key2, hammer_base_elm_t dest);
94 static void hammer_cursor_mirror_filter(hammer_cursor_t cursor);
95 
96 /*
97  * Iterate records after a search.  The cursor is iterated forwards past
98  * the current record until a record matching the key-range requirements
99  * is found.  ENOENT is returned if the iteration goes past the ending
100  * key.
101  *
102  * The iteration is inclusive of key_beg and can be inclusive or exclusive
103  * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
104  *
105  * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
106  * may be modified by B-Tree functions.
107  *
108  * cursor->key_beg may or may not be modified by this function during
109  * the iteration.  XXX future - in case of an inverted lock we may have
110  * to reinitiate the lookup and set key_beg to properly pick up where we
111  * left off.
112  *
113  * If HAMMER_CURSOR_ITERATE_CHECK is set it is possible that the cursor
114  * was reverse indexed due to being moved to a parent while unlocked,
115  * and something else might have inserted an element outside the iteration
116  * range.  When this case occurs the iterator just keeps iterating until
117  * it gets back into the iteration range (instead of asserting).
118  *
119  * NOTE!  EDEADLK *CANNOT* be returned by this procedure.
120  */
121 int
122 hammer_btree_iterate(hammer_cursor_t cursor)
123 {
124 	hammer_node_ondisk_t node;
125 	hammer_btree_elm_t elm;
126 	hammer_mount_t hmp;
127 	int error = 0;
128 	int r;
129 	int s;
130 
131 	/*
132 	 * Skip past the current record
133 	 */
134 	hmp = cursor->trans->hmp;
135 	node = cursor->node->ondisk;
136 	if (node == NULL)
137 		return(ENOENT);
138 	if (cursor->index < node->count &&
139 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
140 		++cursor->index;
141 	}
142 
143 	/*
144 	 * HAMMER can wind up being cpu-bound.
145 	 */
146 	if (++hmp->check_yield > hammer_yield_check) {
147 		hmp->check_yield = 0;
148 		lwkt_user_yield();
149 	}
150 
151 
152 	/*
153 	 * Loop until an element is found or we are done.
154 	 */
155 	for (;;) {
156 		/*
157 		 * We iterate up the tree and then index over one element
158 		 * while we are at the last element in the current node.
159 		 *
160 		 * If we are at the root of the filesystem, cursor_up
161 		 * returns ENOENT.
162 		 *
163 		 * XXX this could be optimized by storing the information in
164 		 * the parent reference.
165 		 *
166 		 * XXX we can lose the node lock temporarily, this could mess
167 		 * up our scan.
168 		 */
169 		++hammer_stats_btree_iterations;
170 		hammer_flusher_clean_loose_ios(hmp);
171 
172 		if (cursor->index == node->count) {
173 			if (hammer_debug_btree) {
174 				kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
175 					(long long)cursor->node->node_offset,
176 					cursor->index,
177 					(long long)(cursor->parent ? cursor->parent->node_offset : -1),
178 					cursor->parent_index,
179 					curthread);
180 			}
181 			KKASSERT(cursor->parent == NULL || cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
182 			error = hammer_cursor_up(cursor);
183 			if (error)
184 				break;
185 			/* reload stale pointer */
186 			node = cursor->node->ondisk;
187 			KKASSERT(cursor->index != node->count);
188 
189 			/*
190 			 * If we are reblocking we want to return internal
191 			 * nodes.  Note that the internal node will be
192 			 * returned multiple times, on each upward recursion
193 			 * from its children.  The caller selects which
194 			 * revisit it cares about (usually first or last only).
195 			 */
196 			if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
197 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
198 				return(0);
199 			}
200 			++cursor->index;
201 			continue;
202 		}
203 
204 		/*
205 		 * Check internal or leaf element.  Determine if the record
206 		 * at the cursor has gone beyond the end of our range.
207 		 *
208 		 * We recurse down through internal nodes.
209 		 */
210 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
211 			elm = &node->elms[cursor->index];
212 
213 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
214 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
215 			if (hammer_debug_btree) {
216 				kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d (td=%p)\n",
217 					(long long)cursor->node->node_offset,
218 					cursor->index,
219 					(long long)elm[0].internal.base.obj_id,
220 					elm[0].internal.base.rec_type,
221 					(long long)elm[0].internal.base.key,
222 					elm[0].internal.base.localization,
223 					r,
224 					curthread
225 				);
226 				kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
227 					(long long)cursor->node->node_offset,
228 					cursor->index + 1,
229 					(long long)elm[1].internal.base.obj_id,
230 					elm[1].internal.base.rec_type,
231 					(long long)elm[1].internal.base.key,
232 					elm[1].internal.base.localization,
233 					s
234 				);
235 			}
236 
237 			if (r < 0) {
238 				error = ENOENT;
239 				break;
240 			}
241 			if (r == 0 && (cursor->flags &
242 				       HAMMER_CURSOR_END_INCLUSIVE) == 0) {
243 				error = ENOENT;
244 				break;
245 			}
246 
247 			/*
248 			 * Better not be zero
249 			 */
250 			KKASSERT(elm->internal.subtree_offset != 0);
251 
252 			if (s <= 0) {
253 				/*
254 				 * If running the mirror filter see if we
255 				 * can skip one or more entire sub-trees.
256 				 * If we can we return the internal node
257 				 * and the caller processes the skipped
258 				 * range (see mirror_read).
259 				 */
260 				if (cursor->flags &
261 				    HAMMER_CURSOR_MIRROR_FILTERED) {
262 					if (elm->internal.mirror_tid <
263 					    cursor->cmirror->mirror_tid) {
264 						hammer_cursor_mirror_filter(cursor);
265 						return(0);
266 					}
267 				}
268 			} else {
269 				/*
270 				 * Normally it would be impossible for the
271 				 * cursor to have gotten back-indexed,
272 				 * but it can happen if a node is deleted
273 				 * and the cursor is moved to its parent
274 				 * internal node.  ITERATE_CHECK will be set.
275 				 */
276 				KKASSERT(cursor->flags &
277 					 HAMMER_CURSOR_ITERATE_CHECK);
278 				kprintf("hammer_btree_iterate: "
279 					"DEBUG: Caught parent seek "
280 					"in internal iteration\n");
281 			}
282 
283 			error = hammer_cursor_down(cursor);
284 			if (error)
285 				break;
286 			KKASSERT(cursor->index == 0);
287 			/* reload stale pointer */
288 			node = cursor->node->ondisk;
289 			continue;
290 		} else {
291 			elm = &node->elms[cursor->index];
292 			r = hammer_btree_cmp(&cursor->key_end, &elm->base);
293 			if (hammer_debug_btree) {
294 				kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
295 					(long long)cursor->node->node_offset,
296 					cursor->index,
297 					(elm[0].leaf.base.btype ?
298 					 elm[0].leaf.base.btype : '?'),
299 					(long long)elm[0].leaf.base.obj_id,
300 					elm[0].leaf.base.rec_type,
301 					(long long)elm[0].leaf.base.key,
302 					elm[0].leaf.base.localization,
303 					r
304 				);
305 			}
306 			if (r < 0) {
307 				error = ENOENT;
308 				break;
309 			}
310 
311 			/*
312 			 * We support both end-inclusive and
313 			 * end-exclusive searches.
314 			 */
315 			if (r == 0 &&
316 			   (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
317 				error = ENOENT;
318 				break;
319 			}
320 
321 			/*
322 			 * If ITERATE_CHECK is set an unlocked cursor may
323 			 * have been moved to a parent and the iterate can
324 			 * happen upon elements that are not in the requested
325 			 * range.
326 			 */
327 			if (cursor->flags & HAMMER_CURSOR_ITERATE_CHECK) {
328 				s = hammer_btree_cmp(&cursor->key_beg,
329 						     &elm->base);
330 				if (s > 0) {
331 					kprintf("hammer_btree_iterate: "
332 						"DEBUG: Caught parent seek "
333 						"in leaf iteration\n");
334 					++cursor->index;
335 					continue;
336 				}
337 			}
338 			cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
339 
340 			/*
341 			 * Return the element
342 			 */
343 			switch(elm->leaf.base.btype) {
344 			case HAMMER_BTREE_TYPE_RECORD:
345 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
346 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
347 					++cursor->index;
348 					continue;
349 				}
350 				error = 0;
351 				break;
352 			default:
353 				error = EINVAL;
354 				break;
355 			}
356 			if (error)
357 				break;
358 		}
359 		/*
360 		 * node pointer invalid after loop
361 		 */
362 
363 		/*
364 		 * Return entry
365 		 */
366 		if (hammer_debug_btree) {
367 			int i = cursor->index;
368 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
369 			kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
370 				cursor->node, i,
371 				(long long)elm->internal.base.obj_id,
372 				elm->internal.base.rec_type,
373 				(long long)elm->internal.base.key,
374 				elm->internal.base.localization
375 			);
376 		}
377 		return(0);
378 	}
379 	return(error);
380 }
381 
382 /*
383  * We hit an internal element that we could skip as part of a mirroring
384  * scan.  Calculate the entire range being skipped.
385  *
386  * It is important to include any gaps between the parent's left_bound
387  * and the node's left_bound, and same goes for the right side.
388  */
389 static void
390 hammer_cursor_mirror_filter(hammer_cursor_t cursor)
391 {
392 	struct hammer_cmirror *cmirror;
393 	hammer_node_ondisk_t ondisk;
394 	hammer_btree_elm_t elm;
395 
396 	ondisk = cursor->node->ondisk;
397 	cmirror = cursor->cmirror;
398 
399 	/*
400 	 * Calculate the skipped range
401 	 */
402 	elm = &ondisk->elms[cursor->index];
403 	if (cursor->index == 0)
404 		cmirror->skip_beg = *cursor->left_bound;
405 	else
406 		cmirror->skip_beg = elm->internal.base;
407 	while (cursor->index < ondisk->count) {
408 		if (elm->internal.mirror_tid >= cmirror->mirror_tid)
409 			break;
410 		++cursor->index;
411 		++elm;
412 	}
413 	if (cursor->index == ondisk->count)
414 		cmirror->skip_end = *cursor->right_bound;
415 	else
416 		cmirror->skip_end = elm->internal.base;
417 
418 	/*
419 	 * clip the returned result.
420 	 */
421 	if (hammer_btree_cmp(&cmirror->skip_beg, &cursor->key_beg) < 0)
422 		cmirror->skip_beg = cursor->key_beg;
423 	if (hammer_btree_cmp(&cmirror->skip_end, &cursor->key_end) > 0)
424 		cmirror->skip_end = cursor->key_end;
425 }
426 
427 /*
428  * Iterate in the reverse direction.  This is used by the pruning code to
429  * avoid overlapping records.
430  */
431 int
432 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
433 {
434 	hammer_node_ondisk_t node;
435 	hammer_btree_elm_t elm;
436 	hammer_mount_t hmp;
437 	int error = 0;
438 	int r;
439 	int s;
440 
441 	/* mirror filtering not supported for reverse iteration */
442 	KKASSERT ((cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) == 0);
443 
444 	/*
445 	 * Skip past the current record.  For various reasons the cursor
446 	 * may end up set to -1 or set to point at the end of the current
447 	 * node.  These cases must be addressed.
448 	 */
449 	node = cursor->node->ondisk;
450 	if (node == NULL)
451 		return(ENOENT);
452 	if (cursor->index != -1 &&
453 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
454 		--cursor->index;
455 	}
456 	if (cursor->index == cursor->node->ondisk->count)
457 		--cursor->index;
458 
459 	/*
460 	 * HAMMER can wind up being cpu-bound.
461 	 */
462 	hmp = cursor->trans->hmp;
463 	if (++hmp->check_yield > hammer_yield_check) {
464 		hmp->check_yield = 0;
465 		lwkt_user_yield();
466 	}
467 
468 	/*
469 	 * Loop until an element is found or we are done.
470 	 */
471 	for (;;) {
472 		++hammer_stats_btree_iterations;
473 		hammer_flusher_clean_loose_ios(hmp);
474 
475 		/*
476 		 * We iterate up the tree and then index over one element
477 		 * while we are at the last element in the current node.
478 		 */
479 		if (cursor->index == -1) {
480 			error = hammer_cursor_up(cursor);
481 			if (error) {
482 				cursor->index = 0; /* sanity */
483 				break;
484 			}
485 			/* reload stale pointer */
486 			node = cursor->node->ondisk;
487 			KKASSERT(cursor->index != node->count);
488 			--cursor->index;
489 			continue;
490 		}
491 
492 		/*
493 		 * Check internal or leaf element.  Determine if the record
494 		 * at the cursor has gone beyond the end of our range.
495 		 *
496 		 * We recurse down through internal nodes.
497 		 */
498 		KKASSERT(cursor->index != node->count);
499 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
500 			elm = &node->elms[cursor->index];
501 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
502 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
503 			if (hammer_debug_btree) {
504 				kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
505 					(long long)cursor->node->node_offset,
506 					cursor->index,
507 					(long long)elm[0].internal.base.obj_id,
508 					elm[0].internal.base.rec_type,
509 					(long long)elm[0].internal.base.key,
510 					elm[0].internal.base.localization,
511 					r
512 				);
513 				kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
514 					(long long)cursor->node->node_offset,
515 					cursor->index + 1,
516 					(long long)elm[1].internal.base.obj_id,
517 					elm[1].internal.base.rec_type,
518 					(long long)elm[1].internal.base.key,
519 					elm[1].internal.base.localization,
520 					s
521 				);
522 			}
523 
524 			if (s >= 0) {
525 				error = ENOENT;
526 				break;
527 			}
528 
529 			/*
530 			 * It shouldn't be possible to be seeked past key_end,
531 			 * even if the cursor got moved to a parent.
532 			 */
533 			KKASSERT(r >= 0);
534 
535 			/*
536 			 * Better not be zero
537 			 */
538 			KKASSERT(elm->internal.subtree_offset != 0);
539 
540 			error = hammer_cursor_down(cursor);
541 			if (error)
542 				break;
543 			KKASSERT(cursor->index == 0);
544 			/* reload stale pointer */
545 			node = cursor->node->ondisk;
546 
547 			/* this can assign -1 if the leaf was empty */
548 			cursor->index = node->count - 1;
549 			continue;
550 		} else {
551 			elm = &node->elms[cursor->index];
552 			s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
553 			if (hammer_debug_btree) {
554 				kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
555 					(long long)cursor->node->node_offset,
556 					cursor->index,
557 					(elm[0].leaf.base.btype ?
558 					 elm[0].leaf.base.btype : '?'),
559 					(long long)elm[0].leaf.base.obj_id,
560 					elm[0].leaf.base.rec_type,
561 					(long long)elm[0].leaf.base.key,
562 					elm[0].leaf.base.localization,
563 					s
564 				);
565 			}
566 			if (s > 0) {
567 				error = ENOENT;
568 				break;
569 			}
570 
571 			/*
572 			 * It shouldn't be possible to be seeked past key_end,
573 			 * even if the cursor got moved to a parent.
574 			 */
575 			cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
576 
577 			/*
578 			 * Return the element
579 			 */
580 			switch(elm->leaf.base.btype) {
581 			case HAMMER_BTREE_TYPE_RECORD:
582 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
583 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
584 					--cursor->index;
585 					continue;
586 				}
587 				error = 0;
588 				break;
589 			default:
590 				error = EINVAL;
591 				break;
592 			}
593 			if (error)
594 				break;
595 		}
596 		/*
597 		 * node pointer invalid after loop
598 		 */
599 
600 		/*
601 		 * Return entry
602 		 */
603 		if (hammer_debug_btree) {
604 			int i = cursor->index;
605 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
606 			kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
607 				cursor->node, i,
608 				(long long)elm->internal.base.obj_id,
609 				elm->internal.base.rec_type,
610 				(long long)elm->internal.base.key,
611 				elm->internal.base.localization
612 			);
613 		}
614 		return(0);
615 	}
616 	return(error);
617 }
618 
619 /*
620  * Lookup cursor->key_beg.  0 is returned on success, ENOENT if the entry
621  * could not be found, EDEADLK if inserting and a retry is needed, and a
622  * fatal error otherwise.  When retrying, the caller must terminate the
623  * cursor and reinitialize it.  EDEADLK cannot be returned if not inserting.
624  *
625  * The cursor is suitably positioned for a deletion on success, and suitably
626  * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
627  * specified.
628  *
629  * The cursor may begin anywhere, the search will traverse the tree in
630  * either direction to locate the requested element.
631  *
632  * Most of the logic implementing historical searches is handled here.  We
633  * do an initial lookup with create_tid set to the asof TID.  Due to the
634  * way records are laid out, a backwards iteration may be required if
635  * ENOENT is returned to locate the historical record.  Here's the
636  * problem:
637  *
638  * create_tid:    10      15       20
639  *		     LEAF1   LEAF2
640  * records:         (11)        (18)
641  *
642  * Lets say we want to do a lookup AS-OF timestamp 17.  We will traverse
643  * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
644  * not visible and thus causes ENOENT to be returned.  We really need
645  * to check record 11 in LEAF1.  If it also fails then the search fails
646  * (e.g. it might represent the range 11-16 and thus still not match our
647  * AS-OF timestamp of 17).  Note that LEAF1 could be empty, requiring
648  * further iterations.
649  *
650  * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
651  * and the cursor->create_check TID if an iteration might be needed.
652  * In the above example create_check would be set to 14.
653  */
654 int
655 hammer_btree_lookup(hammer_cursor_t cursor)
656 {
657 	int error;
658 
659 	cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
660 	KKASSERT ((cursor->flags & HAMMER_CURSOR_INSERT) == 0 ||
661 		  cursor->trans->sync_lock_refs > 0);
662 	++hammer_stats_btree_lookups;
663 	if (cursor->flags & HAMMER_CURSOR_ASOF) {
664 		KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
665 		cursor->key_beg.create_tid = cursor->asof;
666 		for (;;) {
667 			cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
668 			error = btree_search(cursor, 0);
669 			if (error != ENOENT ||
670 			    (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
671 				/*
672 				 * Stop if no error.
673 				 * Stop if error other then ENOENT.
674 				 * Stop if ENOENT and not special case.
675 				 */
676 				break;
677 			}
678 			if (hammer_debug_btree) {
679 				kprintf("CREATE_CHECK %016llx\n",
680 					(long long)cursor->create_check);
681 			}
682 			cursor->key_beg.create_tid = cursor->create_check;
683 			/* loop */
684 		}
685 	} else {
686 		error = btree_search(cursor, 0);
687 	}
688 	if (error == 0)
689 		error = hammer_btree_extract(cursor, cursor->flags);
690 	return(error);
691 }
692 
693 /*
694  * Execute the logic required to start an iteration.  The first record
695  * located within the specified range is returned and iteration control
696  * flags are adjusted for successive hammer_btree_iterate() calls.
697  *
698  * Set ATEDISK so a low-level caller can call btree_first/btree_iterate
699  * in a loop without worrying about it.  Higher-level merged searches will
700  * adjust the flag appropriately.
701  */
702 int
703 hammer_btree_first(hammer_cursor_t cursor)
704 {
705 	int error;
706 
707 	error = hammer_btree_lookup(cursor);
708 	if (error == ENOENT) {
709 		cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
710 		error = hammer_btree_iterate(cursor);
711 	}
712 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
713 	return(error);
714 }
715 
716 /*
717  * Similarly but for an iteration in the reverse direction.
718  *
719  * Set ATEDISK when iterating backwards to skip the current entry,
720  * which after an ENOENT lookup will be pointing beyond our end point.
721  *
722  * Set ATEDISK so a low-level caller can call btree_last/btree_iterate_reverse
723  * in a loop without worrying about it.  Higher-level merged searches will
724  * adjust the flag appropriately.
725  */
726 int
727 hammer_btree_last(hammer_cursor_t cursor)
728 {
729 	struct hammer_base_elm save;
730 	int error;
731 
732 	save = cursor->key_beg;
733 	cursor->key_beg = cursor->key_end;
734 	error = hammer_btree_lookup(cursor);
735 	cursor->key_beg = save;
736 	if (error == ENOENT ||
737 	    (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
738 		cursor->flags |= HAMMER_CURSOR_ATEDISK;
739 		error = hammer_btree_iterate_reverse(cursor);
740 	}
741 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
742 	return(error);
743 }
744 
745 /*
746  * Extract the record and/or data associated with the cursor's current
747  * position.  Any prior record or data stored in the cursor is replaced.
748  * The cursor must be positioned at a leaf node.
749  *
750  * NOTE: All extractions occur at the leaf of the B-Tree.
751  */
752 int
753 hammer_btree_extract(hammer_cursor_t cursor, int flags)
754 {
755 	hammer_node_ondisk_t node;
756 	hammer_btree_elm_t elm;
757 	hammer_off_t data_off;
758 	hammer_mount_t hmp;
759 	int32_t data_len;
760 	int error;
761 
762 	/*
763 	 * The case where the data reference resolves to the same buffer
764 	 * as the record reference must be handled.
765 	 */
766 	node = cursor->node->ondisk;
767 	elm = &node->elms[cursor->index];
768 	cursor->data = NULL;
769 	hmp = cursor->node->hmp;
770 
771 	/*
772 	 * There is nothing to extract for an internal element.
773 	 */
774 	if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
775 		return(EINVAL);
776 
777 	/*
778 	 * Only record types have data.
779 	 */
780 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
781 	cursor->leaf = &elm->leaf;
782 
783 	if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
784 		return(0);
785 	if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
786 		return(0);
787 	data_off = elm->leaf.data_offset;
788 	data_len = elm->leaf.data_len;
789 	if (data_off == 0)
790 		return(0);
791 
792 	/*
793 	 * Load the data
794 	 */
795 	KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
796 	cursor->data = hammer_bread_ext(hmp, data_off, data_len,
797 					&error, &cursor->data_buffer);
798 
799 	/*
800 	 * Mark the data buffer as not being meta-data if it isn't
801 	 * meta-data (sometimes bulk data is accessed via a volume
802 	 * block device).
803 	 */
804 	if (error == 0) {
805 		switch(elm->leaf.base.rec_type) {
806 		case HAMMER_RECTYPE_DATA:
807 		case HAMMER_RECTYPE_DB:
808 			if ((data_off & HAMMER_ZONE_LARGE_DATA) == 0)
809 				break;
810 			if (hammer_double_buffer == 0 ||
811 			    (cursor->flags & HAMMER_CURSOR_NOSWAPCACHE)) {
812 				hammer_io_notmeta(cursor->data_buffer);
813 			}
814 			break;
815 		default:
816 			break;
817 		}
818 	}
819 
820 	/*
821 	 * Deal with CRC errors on the extracted data.
822 	 */
823 	if (error == 0 &&
824 	    hammer_crc_test_leaf(cursor->data, &elm->leaf) == 0) {
825 		kprintf("CRC DATA @ %016llx/%d FAILED\n",
826 			(long long)elm->leaf.data_offset, elm->leaf.data_len);
827 		if (hammer_debug_critical)
828 			Debugger("CRC FAILED: DATA");
829 		if (cursor->trans->flags & HAMMER_TRANSF_CRCDOM)
830 			error = EDOM;	/* less critical (mirroring) */
831 		else
832 			error = EIO;	/* critical */
833 	}
834 	return(error);
835 }
836 
837 
838 /*
839  * Insert a leaf element into the B-Tree at the current cursor position.
840  * The cursor is positioned such that the element at and beyond the cursor
841  * are shifted to make room for the new record.
842  *
843  * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
844  * flag set and that call must return ENOENT before this function can be
845  * called.
846  *
847  * The caller may depend on the cursor's exclusive lock after return to
848  * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
849  *
850  * ENOSPC is returned if there is no room to insert a new record.
851  */
852 int
853 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm,
854 		    int *doprop)
855 {
856 	hammer_node_ondisk_t node;
857 	int i;
858 	int error;
859 
860 	*doprop = 0;
861 	if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
862 		return(error);
863 	++hammer_stats_btree_inserts;
864 
865 	/*
866 	 * Insert the element at the leaf node and update the count in the
867 	 * parent.  It is possible for parent to be NULL, indicating that
868 	 * the filesystem's ROOT B-Tree node is a leaf itself, which is
869 	 * possible.  The root inode can never be deleted so the leaf should
870 	 * never be empty.
871 	 *
872 	 * Remember that the right-hand boundary is not included in the
873 	 * count.
874 	 */
875 	hammer_modify_node_all(cursor->trans, cursor->node);
876 	node = cursor->node->ondisk;
877 	i = cursor->index;
878 	KKASSERT(elm->base.btype != 0);
879 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
880 	KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
881 	if (i != node->count) {
882 		bcopy(&node->elms[i], &node->elms[i+1],
883 		      (node->count - i) * sizeof(*elm));
884 	}
885 	node->elms[i].leaf = *elm;
886 	++node->count;
887 	hammer_cursor_inserted_element(cursor->node, i);
888 
889 	/*
890 	 * Update the leaf node's aggregate mirror_tid for mirroring
891 	 * support.
892 	 */
893 	if (node->mirror_tid < elm->base.delete_tid) {
894 		node->mirror_tid = elm->base.delete_tid;
895 		*doprop = 1;
896 	}
897 	if (node->mirror_tid < elm->base.create_tid) {
898 		node->mirror_tid = elm->base.create_tid;
899 		*doprop = 1;
900 	}
901 	hammer_modify_node_done(cursor->node);
902 
903 	/*
904 	 * Debugging sanity checks.
905 	 */
906 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
907 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
908 	if (i) {
909 		KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
910 	}
911 	if (i != node->count - 1)
912 		KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
913 
914 	return(0);
915 }
916 
917 /*
918  * Delete a record from the B-Tree at the current cursor position.
919  * The cursor is positioned such that the current element is the one
920  * to be deleted.
921  *
922  * On return the cursor will be positioned after the deleted element and
923  * MAY point to an internal node.  It will be suitable for the continuation
924  * of an iteration but not for an insertion or deletion.
925  *
926  * Deletions will attempt to partially rebalance the B-Tree in an upward
927  * direction, but will terminate rather then deadlock.  Empty internal nodes
928  * are never allowed by a deletion which deadlocks may end up giving us an
929  * empty leaf.  The pruner will clean up and rebalance the tree.
930  *
931  * This function can return EDEADLK, requiring the caller to retry the
932  * operation after clearing the deadlock.
933  */
934 int
935 hammer_btree_delete(hammer_cursor_t cursor)
936 {
937 	hammer_node_ondisk_t ondisk;
938 	hammer_node_t node;
939 	hammer_node_t parent;
940 	int error;
941 	int i;
942 
943 	KKASSERT (cursor->trans->sync_lock_refs > 0);
944 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
945 		return(error);
946 	++hammer_stats_btree_deletes;
947 
948 	/*
949 	 * Delete the element from the leaf node.
950 	 *
951 	 * Remember that leaf nodes do not have boundaries.
952 	 */
953 	node = cursor->node;
954 	ondisk = node->ondisk;
955 	i = cursor->index;
956 
957 	KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
958 	KKASSERT(i >= 0 && i < ondisk->count);
959 	hammer_modify_node_all(cursor->trans, node);
960 	if (i + 1 != ondisk->count) {
961 		bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
962 		      (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
963 	}
964 	--ondisk->count;
965 	hammer_modify_node_done(node);
966 	hammer_cursor_deleted_element(node, i);
967 
968 	/*
969 	 * Validate local parent
970 	 */
971 	if (ondisk->parent) {
972 		parent = cursor->parent;
973 
974 		KKASSERT(parent != NULL);
975 		KKASSERT(parent->node_offset == ondisk->parent);
976 	}
977 
978 	/*
979 	 * If the leaf becomes empty it must be detached from the parent,
980 	 * potentially recursing through to the filesystem root.
981 	 *
982 	 * This may reposition the cursor at one of the parent's of the
983 	 * current node.
984 	 *
985 	 * Ignore deadlock errors, that simply means that btree_remove
986 	 * was unable to recurse and had to leave us with an empty leaf.
987 	 */
988 	KKASSERT(cursor->index <= ondisk->count);
989 	if (ondisk->count == 0) {
990 		error = btree_remove(cursor);
991 		if (error == EDEADLK)
992 			error = 0;
993 	} else {
994 		error = 0;
995 	}
996 	KKASSERT(cursor->parent == NULL ||
997 		 cursor->parent_index < cursor->parent->ondisk->count);
998 	return(error);
999 }
1000 
1001 /*
1002  * PRIMAY B-TREE SEARCH SUPPORT PROCEDURE
1003  *
1004  * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
1005  *
1006  * The search can begin ANYWHERE in the B-Tree.  As a first step the search
1007  * iterates up the tree as necessary to properly position itself prior to
1008  * actually doing the sarch.
1009  *
1010  * INSERTIONS: The search will split full nodes and leaves on its way down
1011  * and guarentee that the leaf it ends up on is not full.  If we run out
1012  * of space the search continues to the leaf (to position the cursor for
1013  * the spike), but ENOSPC is returned.
1014  *
1015  * The search is only guarenteed to end up on a leaf if an error code of 0
1016  * is returned, or if inserting and an error code of ENOENT is returned.
1017  * Otherwise it can stop at an internal node.  On success a search returns
1018  * a leaf node.
1019  *
1020  * COMPLEXITY WARNING!  This is the core B-Tree search code for the entire
1021  * filesystem, and it is not simple code.  Please note the following facts:
1022  *
1023  * - Internal node recursions have a boundary on the left AND right.  The
1024  *   right boundary is non-inclusive.  The create_tid is a generic part
1025  *   of the key for internal nodes.
1026  *
1027  * - Leaf nodes contain terminal elements only now.
1028  *
1029  * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
1030  *   historical search.  ASOF and INSERT are mutually exclusive.  When
1031  *   doing an as-of lookup btree_search() checks for a right-edge boundary
1032  *   case.  If while recursing down the left-edge differs from the key
1033  *   by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
1034  *   with cursor->create_check.  This is used by btree_lookup() to iterate.
1035  *   The iteration backwards because as-of searches can wind up going
1036  *   down the wrong branch of the B-Tree.
1037  */
1038 static
1039 int
1040 btree_search(hammer_cursor_t cursor, int flags)
1041 {
1042 	hammer_node_ondisk_t node;
1043 	hammer_btree_elm_t elm;
1044 	int error;
1045 	int enospc = 0;
1046 	int i;
1047 	int r;
1048 	int s;
1049 
1050 	flags |= cursor->flags;
1051 	++hammer_stats_btree_searches;
1052 
1053 	if (hammer_debug_btree) {
1054 		kprintf("SEARCH   %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td = %p)\n",
1055 			(long long)cursor->node->node_offset,
1056 			cursor->index,
1057 			(long long)cursor->key_beg.obj_id,
1058 			cursor->key_beg.rec_type,
1059 			(long long)cursor->key_beg.key,
1060 			(long long)cursor->key_beg.create_tid,
1061 			cursor->key_beg.localization,
1062 			curthread
1063 		);
1064 		if (cursor->parent)
1065 		    kprintf("SEARCHP %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
1066 			(long long)cursor->parent->node_offset,
1067 			cursor->parent_index,
1068 			(long long)cursor->left_bound->obj_id,
1069 			(long long)cursor->parent->ondisk->elms[cursor->parent_index].internal.base.obj_id,
1070 			(long long)cursor->right_bound->obj_id,
1071 			(long long)cursor->parent->ondisk->elms[cursor->parent_index+1].internal.base.obj_id,
1072 			cursor->left_bound,
1073 			&cursor->parent->ondisk->elms[cursor->parent_index],
1074 			cursor->right_bound,
1075 			&cursor->parent->ondisk->elms[cursor->parent_index+1]
1076 		    );
1077 	}
1078 
1079 	/*
1080 	 * Move our cursor up the tree until we find a node whos range covers
1081 	 * the key we are trying to locate.
1082 	 *
1083 	 * The left bound is inclusive, the right bound is non-inclusive.
1084 	 * It is ok to cursor up too far.
1085 	 */
1086 	for (;;) {
1087 		r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
1088 		s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
1089 		if (r >= 0 && s < 0)
1090 			break;
1091 		KKASSERT(cursor->parent);
1092 		++hammer_stats_btree_iterations;
1093 		error = hammer_cursor_up(cursor);
1094 		if (error)
1095 			goto done;
1096 	}
1097 
1098 	/*
1099 	 * The delete-checks below are based on node, not parent.  Set the
1100 	 * initial delete-check based on the parent.
1101 	 */
1102 	if (r == 1) {
1103 		KKASSERT(cursor->left_bound->create_tid != 1);
1104 		cursor->create_check = cursor->left_bound->create_tid - 1;
1105 		cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1106 	}
1107 
1108 	/*
1109 	 * We better have ended up with a node somewhere.
1110 	 */
1111 	KKASSERT(cursor->node != NULL);
1112 
1113 	/*
1114 	 * If we are inserting we can't start at a full node if the parent
1115 	 * is also full (because there is no way to split the node),
1116 	 * continue running up the tree until the requirement is satisfied
1117 	 * or we hit the root of the filesystem.
1118 	 *
1119 	 * (If inserting we aren't doing an as-of search so we don't have
1120 	 *  to worry about create_check).
1121 	 */
1122 	while ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1123 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1124 			if (btree_node_is_full(cursor->node->ondisk) == 0)
1125 				break;
1126 		} else {
1127 			if (btree_node_is_full(cursor->node->ondisk) ==0)
1128 				break;
1129 		}
1130 		if (cursor->node->ondisk->parent == 0 ||
1131 		    cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
1132 			break;
1133 		}
1134 		++hammer_stats_btree_iterations;
1135 		error = hammer_cursor_up(cursor);
1136 		/* node may have become stale */
1137 		if (error)
1138 			goto done;
1139 	}
1140 
1141 	/*
1142 	 * Push down through internal nodes to locate the requested key.
1143 	 */
1144 	node = cursor->node->ondisk;
1145 	while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
1146 		/*
1147 		 * Scan the node to find the subtree index to push down into.
1148 		 * We go one-past, then back-up.
1149 		 *
1150 		 * We must proactively remove deleted elements which may
1151 		 * have been left over from a deadlocked btree_remove().
1152 		 *
1153 		 * The left and right boundaries are included in the loop
1154 		 * in order to detect edge cases.
1155 		 *
1156 		 * If the separator only differs by create_tid (r == 1)
1157 		 * and we are doing an as-of search, we may end up going
1158 		 * down a branch to the left of the one containing the
1159 		 * desired key.  This requires numerous special cases.
1160 		 */
1161 		++hammer_stats_btree_iterations;
1162 		if (hammer_debug_btree) {
1163 			kprintf("SEARCH-I %016llx count=%d\n",
1164 				(long long)cursor->node->node_offset,
1165 				node->count);
1166 		}
1167 
1168 		/*
1169 		 * Try to shortcut the search before dropping into the
1170 		 * linear loop.  Locate the first node where r <= 1.
1171 		 */
1172 		i = hammer_btree_search_node(&cursor->key_beg, node);
1173 		while (i <= node->count) {
1174 			++hammer_stats_btree_elements;
1175 			elm = &node->elms[i];
1176 			r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
1177 			if (hammer_debug_btree > 2) {
1178 				kprintf(" IELM %p %d r=%d\n",
1179 					&node->elms[i], i, r);
1180 			}
1181 			if (r < 0)
1182 				break;
1183 			if (r == 1) {
1184 				KKASSERT(elm->base.create_tid != 1);
1185 				cursor->create_check = elm->base.create_tid - 1;
1186 				cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1187 			}
1188 			++i;
1189 		}
1190 		if (hammer_debug_btree) {
1191 			kprintf("SEARCH-I preI=%d/%d r=%d\n",
1192 				i, node->count, r);
1193 		}
1194 
1195 		/*
1196 		 * These cases occur when the parent's idea of the boundary
1197 		 * is wider then the child's idea of the boundary, and
1198 		 * require special handling.  If not inserting we can
1199 		 * terminate the search early for these cases but the
1200 		 * child's boundaries cannot be unconditionally modified.
1201 		 */
1202 		if (i == 0) {
1203 			/*
1204 			 * If i == 0 the search terminated to the LEFT of the
1205 			 * left_boundary but to the RIGHT of the parent's left
1206 			 * boundary.
1207 			 */
1208 			u_int8_t save;
1209 
1210 			elm = &node->elms[0];
1211 
1212 			/*
1213 			 * If we aren't inserting we can stop here.
1214 			 */
1215 			if ((flags & (HAMMER_CURSOR_INSERT |
1216 				      HAMMER_CURSOR_PRUNING)) == 0) {
1217 				cursor->index = 0;
1218 				return(ENOENT);
1219 			}
1220 
1221 			/*
1222 			 * Correct a left-hand boundary mismatch.
1223 			 *
1224 			 * We can only do this if we can upgrade the lock,
1225 			 * and synchronized as a background cursor (i.e.
1226 			 * inserting or pruning).
1227 			 *
1228 			 * WARNING: We can only do this if inserting, i.e.
1229 			 * we are running on the backend.
1230 			 */
1231 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1232 				return(error);
1233 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1234 			hammer_modify_node_field(cursor->trans, cursor->node,
1235 						 elms[0]);
1236 			save = node->elms[0].base.btype;
1237 			node->elms[0].base = *cursor->left_bound;
1238 			node->elms[0].base.btype = save;
1239 			hammer_modify_node_done(cursor->node);
1240 		} else if (i == node->count + 1) {
1241 			/*
1242 			 * If i == node->count + 1 the search terminated to
1243 			 * the RIGHT of the right boundary but to the LEFT
1244 			 * of the parent's right boundary.  If we aren't
1245 			 * inserting we can stop here.
1246 			 *
1247 			 * Note that the last element in this case is
1248 			 * elms[i-2] prior to adjustments to 'i'.
1249 			 */
1250 			--i;
1251 			if ((flags & (HAMMER_CURSOR_INSERT |
1252 				      HAMMER_CURSOR_PRUNING)) == 0) {
1253 				cursor->index = i;
1254 				return (ENOENT);
1255 			}
1256 
1257 			/*
1258 			 * Correct a right-hand boundary mismatch.
1259 			 * (actual push-down record is i-2 prior to
1260 			 * adjustments to i).
1261 			 *
1262 			 * We can only do this if we can upgrade the lock,
1263 			 * and synchronized as a background cursor (i.e.
1264 			 * inserting or pruning).
1265 			 *
1266 			 * WARNING: We can only do this if inserting, i.e.
1267 			 * we are running on the backend.
1268 			 */
1269 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1270 				return(error);
1271 			elm = &node->elms[i];
1272 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1273 			hammer_modify_node(cursor->trans, cursor->node,
1274 					   &elm->base, sizeof(elm->base));
1275 			elm->base = *cursor->right_bound;
1276 			hammer_modify_node_done(cursor->node);
1277 			--i;
1278 		} else {
1279 			/*
1280 			 * The push-down index is now i - 1.  If we had
1281 			 * terminated on the right boundary this will point
1282 			 * us at the last element.
1283 			 */
1284 			--i;
1285 		}
1286 		cursor->index = i;
1287 		elm = &node->elms[i];
1288 
1289 		if (hammer_debug_btree) {
1290 			kprintf("RESULT-I %016llx[%d] %016llx %02x "
1291 				"key=%016llx cre=%016llx lo=%02x\n",
1292 				(long long)cursor->node->node_offset,
1293 				i,
1294 				(long long)elm->internal.base.obj_id,
1295 				elm->internal.base.rec_type,
1296 				(long long)elm->internal.base.key,
1297 				(long long)elm->internal.base.create_tid,
1298 				elm->internal.base.localization
1299 			);
1300 		}
1301 
1302 		/*
1303 		 * We better have a valid subtree offset.
1304 		 */
1305 		KKASSERT(elm->internal.subtree_offset != 0);
1306 
1307 		/*
1308 		 * Handle insertion and deletion requirements.
1309 		 *
1310 		 * If inserting split full nodes.  The split code will
1311 		 * adjust cursor->node and cursor->index if the current
1312 		 * index winds up in the new node.
1313 		 *
1314 		 * If inserting and a left or right edge case was detected,
1315 		 * we cannot correct the left or right boundary and must
1316 		 * prepend and append an empty leaf node in order to make
1317 		 * the boundary correction.
1318 		 *
1319 		 * If we run out of space we set enospc and continue on
1320 		 * to a leaf to provide the spike code with a good point
1321 		 * of entry.
1322 		 */
1323 		if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1324 			if (btree_node_is_full(node)) {
1325 				error = btree_split_internal(cursor);
1326 				if (error) {
1327 					if (error != ENOSPC)
1328 						goto done;
1329 					enospc = 1;
1330 				}
1331 				/*
1332 				 * reload stale pointers
1333 				 */
1334 				i = cursor->index;
1335 				node = cursor->node->ondisk;
1336 			}
1337 		}
1338 
1339 		/*
1340 		 * Push down (push into new node, existing node becomes
1341 		 * the parent) and continue the search.
1342 		 */
1343 		error = hammer_cursor_down(cursor);
1344 		/* node may have become stale */
1345 		if (error)
1346 			goto done;
1347 		node = cursor->node->ondisk;
1348 	}
1349 
1350 	/*
1351 	 * We are at a leaf, do a linear search of the key array.
1352 	 *
1353 	 * On success the index is set to the matching element and 0
1354 	 * is returned.
1355 	 *
1356 	 * On failure the index is set to the insertion point and ENOENT
1357 	 * is returned.
1358 	 *
1359 	 * Boundaries are not stored in leaf nodes, so the index can wind
1360 	 * up to the left of element 0 (index == 0) or past the end of
1361 	 * the array (index == node->count).  It is also possible that the
1362 	 * leaf might be empty.
1363 	 */
1364 	++hammer_stats_btree_iterations;
1365 	KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1366 	KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1367 	if (hammer_debug_btree) {
1368 		kprintf("SEARCH-L %016llx count=%d\n",
1369 			(long long)cursor->node->node_offset,
1370 			node->count);
1371 	}
1372 
1373 	/*
1374 	 * Try to shortcut the search before dropping into the
1375 	 * linear loop.  Locate the first node where r <= 1.
1376 	 */
1377 	i = hammer_btree_search_node(&cursor->key_beg, node);
1378 	while (i < node->count) {
1379 		++hammer_stats_btree_elements;
1380 		elm = &node->elms[i];
1381 
1382 		r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1383 
1384 		if (hammer_debug_btree > 1)
1385 			kprintf("  ELM %p %d r=%d\n", &node->elms[i], i, r);
1386 
1387 		/*
1388 		 * We are at a record element.  Stop if we've flipped past
1389 		 * key_beg, not counting the create_tid test.  Allow the
1390 		 * r == 1 case (key_beg > element but differs only by its
1391 		 * create_tid) to fall through to the AS-OF check.
1392 		 */
1393 		KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1394 
1395 		if (r < 0)
1396 			goto failed;
1397 		if (r > 1) {
1398 			++i;
1399 			continue;
1400 		}
1401 
1402 		/*
1403 		 * Check our as-of timestamp against the element.
1404 		 */
1405 		if (flags & HAMMER_CURSOR_ASOF) {
1406 			if (hammer_btree_chkts(cursor->asof,
1407 					       &node->elms[i].base) != 0) {
1408 				++i;
1409 				continue;
1410 			}
1411 			/* success */
1412 		} else {
1413 			if (r > 0) {	/* can only be +1 */
1414 				++i;
1415 				continue;
1416 			}
1417 			/* success */
1418 		}
1419 		cursor->index = i;
1420 		error = 0;
1421 		if (hammer_debug_btree) {
1422 			kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1423 				(long long)cursor->node->node_offset, i);
1424 		}
1425 		goto done;
1426 	}
1427 
1428 	/*
1429 	 * The search of the leaf node failed.  i is the insertion point.
1430 	 */
1431 failed:
1432 	if (hammer_debug_btree) {
1433 		kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1434 			(long long)cursor->node->node_offset, i);
1435 	}
1436 
1437 	/*
1438 	 * No exact match was found, i is now at the insertion point.
1439 	 *
1440 	 * If inserting split a full leaf before returning.  This
1441 	 * may have the side effect of adjusting cursor->node and
1442 	 * cursor->index.
1443 	 */
1444 	cursor->index = i;
1445 	if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1446 	     btree_node_is_full(node)) {
1447 		error = btree_split_leaf(cursor);
1448 		if (error) {
1449 			if (error != ENOSPC)
1450 				goto done;
1451 			enospc = 1;
1452 		}
1453 		/*
1454 		 * reload stale pointers
1455 		 */
1456 		/* NOT USED
1457 		i = cursor->index;
1458 		node = &cursor->node->internal;
1459 		*/
1460 	}
1461 
1462 	/*
1463 	 * We reached a leaf but did not find the key we were looking for.
1464 	 * If this is an insert we will be properly positioned for an insert
1465 	 * (ENOENT) or spike (ENOSPC) operation.
1466 	 */
1467 	error = enospc ? ENOSPC : ENOENT;
1468 done:
1469 	return(error);
1470 }
1471 
1472 /*
1473  * Heuristical search for the first element whos comparison is <= 1.  May
1474  * return an index whos compare result is > 1 but may only return an index
1475  * whos compare result is <= 1 if it is the first element with that result.
1476  */
1477 int
1478 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
1479 {
1480 	int b;
1481 	int s;
1482 	int i;
1483 	int r;
1484 
1485 	/*
1486 	 * Don't bother if the node does not have very many elements
1487 	 */
1488 	b = 0;
1489 	s = node->count;
1490 	while (s - b > 4) {
1491 		i = b + (s - b) / 2;
1492 		++hammer_stats_btree_elements;
1493 		r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
1494 		if (r <= 1) {
1495 			s = i;
1496 		} else {
1497 			b = i;
1498 		}
1499 	}
1500 	return(b);
1501 }
1502 
1503 
1504 /************************************************************************
1505  *			   SPLITTING AND MERGING 			*
1506  ************************************************************************
1507  *
1508  * These routines do all the dirty work required to split and merge nodes.
1509  */
1510 
1511 /*
1512  * Split an internal node into two nodes and move the separator at the split
1513  * point to the parent.
1514  *
1515  * (cursor->node, cursor->index) indicates the element the caller intends
1516  * to push into.  We will adjust node and index if that element winds
1517  * up in the split node.
1518  *
1519  * If we are at the root of the filesystem a new root must be created with
1520  * two elements, one pointing to the original root and one pointing to the
1521  * newly allocated split node.
1522  */
1523 static
1524 int
1525 btree_split_internal(hammer_cursor_t cursor)
1526 {
1527 	hammer_node_ondisk_t ondisk;
1528 	hammer_node_t node;
1529 	hammer_node_t parent;
1530 	hammer_node_t new_node;
1531 	hammer_btree_elm_t elm;
1532 	hammer_btree_elm_t parent_elm;
1533 	struct hammer_node_lock lockroot;
1534 	hammer_mount_t hmp = cursor->trans->hmp;
1535 	hammer_off_t hint;
1536 	int parent_index;
1537 	int made_root;
1538 	int split;
1539 	int error;
1540 	int i;
1541 	const int esize = sizeof(*elm);
1542 
1543 	hammer_node_lock_init(&lockroot, cursor->node);
1544 	error = hammer_btree_lock_children(cursor, 1, &lockroot, NULL);
1545 	if (error)
1546 		goto done;
1547 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1548 		goto done;
1549 	++hammer_stats_btree_splits;
1550 
1551 	/*
1552 	 * Calculate the split point.  If the insertion point is at the
1553 	 * end of the leaf we adjust the split point significantly to the
1554 	 * right to try to optimize node fill and flag it.  If we hit
1555 	 * that same leaf again our heuristic failed and we don't try
1556 	 * to optimize node fill (it could lead to a degenerate case).
1557 	 */
1558 	node = cursor->node;
1559 	ondisk = node->ondisk;
1560 	KKASSERT(ondisk->count > 4);
1561 	if (cursor->index == ondisk->count &&
1562 	    (node->flags & HAMMER_NODE_NONLINEAR) == 0) {
1563 		split = (ondisk->count + 1) * 3 / 4;
1564 		node->flags |= HAMMER_NODE_NONLINEAR;
1565 	} else {
1566 		/*
1567 		 * We are splitting but elms[split] will be promoted to
1568 		 * the parent, leaving the right hand node with one less
1569 		 * element.  If the insertion point will be on the
1570 		 * left-hand side adjust the split point to give the
1571 		 * right hand side one additional node.
1572 		 */
1573 		split = (ondisk->count + 1) / 2;
1574 		if (cursor->index <= split)
1575 			--split;
1576 	}
1577 
1578 	/*
1579 	 * If we are at the root of the filesystem, create a new root node
1580 	 * with 1 element and split normally.  Avoid making major
1581 	 * modifications until we know the whole operation will work.
1582 	 */
1583 	if (ondisk->parent == 0) {
1584 		parent = hammer_alloc_btree(cursor->trans, 0, &error);
1585 		if (parent == NULL)
1586 			goto done;
1587 		hammer_lock_ex(&parent->lock);
1588 		hammer_modify_node_noundo(cursor->trans, parent);
1589 		ondisk = parent->ondisk;
1590 		ondisk->count = 1;
1591 		ondisk->parent = 0;
1592 		ondisk->mirror_tid = node->ondisk->mirror_tid;
1593 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1594 		ondisk->elms[0].base = hmp->root_btree_beg;
1595 		ondisk->elms[0].base.btype = node->ondisk->type;
1596 		ondisk->elms[0].internal.subtree_offset = node->node_offset;
1597 		ondisk->elms[1].base = hmp->root_btree_end;
1598 		hammer_modify_node_done(parent);
1599 		/* ondisk->elms[1].base.btype - not used */
1600 		made_root = 1;
1601 		parent_index = 0;	/* index of current node in parent */
1602 	} else {
1603 		made_root = 0;
1604 		parent = cursor->parent;
1605 		parent_index = cursor->parent_index;
1606 	}
1607 
1608 	/*
1609 	 * Calculate a hint for the allocation of the new B-Tree node.
1610 	 * The most likely expansion is coming from the insertion point
1611 	 * at cursor->index, so try to localize the allocation of our
1612 	 * new node to accomodate that sub-tree.
1613 	 *
1614 	 * Use the right-most sub-tree when expandinging on the right edge.
1615 	 * This is a very common case when copying a directory tree.
1616 	 */
1617 	if (cursor->index == ondisk->count)
1618 		hint = ondisk->elms[cursor->index - 1].internal.subtree_offset;
1619 	else
1620 		hint = ondisk->elms[cursor->index].internal.subtree_offset;
1621 
1622 	/*
1623 	 * Split node into new_node at the split point.
1624 	 *
1625 	 *  B O O O P N N B	<-- P = node->elms[split] (index 4)
1626 	 *   0 1 2 3 4 5 6	<-- subtree indices
1627 	 *
1628 	 *       x x P x x
1629 	 *        s S S s
1630 	 *         /   \
1631 	 *  B O O O B    B N N B	<--- inner boundary points are 'P'
1632 	 *   0 1 2 3      4 5 6
1633 	 */
1634 	new_node = hammer_alloc_btree(cursor->trans, 0, &error);
1635 	if (new_node == NULL) {
1636 		if (made_root) {
1637 			hammer_unlock(&parent->lock);
1638 			hammer_delete_node(cursor->trans, parent);
1639 			hammer_rel_node(parent);
1640 		}
1641 		goto done;
1642 	}
1643 	hammer_lock_ex(&new_node->lock);
1644 
1645 	/*
1646 	 * Create the new node.  P becomes the left-hand boundary in the
1647 	 * new node.  Copy the right-hand boundary as well.
1648 	 *
1649 	 * elm is the new separator.
1650 	 */
1651 	hammer_modify_node_noundo(cursor->trans, new_node);
1652 	hammer_modify_node_all(cursor->trans, node);
1653 	ondisk = node->ondisk;
1654 	elm = &ondisk->elms[split];
1655 	bcopy(elm, &new_node->ondisk->elms[0],
1656 	      (ondisk->count - split + 1) * esize);
1657 	new_node->ondisk->count = ondisk->count - split;
1658 	new_node->ondisk->parent = parent->node_offset;
1659 	new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1660 	new_node->ondisk->mirror_tid = ondisk->mirror_tid;
1661 	KKASSERT(ondisk->type == new_node->ondisk->type);
1662 	hammer_cursor_split_node(node, new_node, split);
1663 
1664 	/*
1665 	 * Cleanup the original node.  Elm (P) becomes the new boundary,
1666 	 * its subtree_offset was moved to the new node.  If we had created
1667 	 * a new root its parent pointer may have changed.
1668 	 */
1669 	elm->internal.subtree_offset = 0;
1670 	ondisk->count = split;
1671 
1672 	/*
1673 	 * Insert the separator into the parent, fixup the parent's
1674 	 * reference to the original node, and reference the new node.
1675 	 * The separator is P.
1676 	 *
1677 	 * Remember that base.count does not include the right-hand boundary.
1678 	 */
1679 	hammer_modify_node_all(cursor->trans, parent);
1680 	ondisk = parent->ondisk;
1681 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1682 	parent_elm = &ondisk->elms[parent_index+1];
1683 	bcopy(parent_elm, parent_elm + 1,
1684 	      (ondisk->count - parent_index) * esize);
1685 	parent_elm->internal.base = elm->base;	/* separator P */
1686 	parent_elm->internal.base.btype = new_node->ondisk->type;
1687 	parent_elm->internal.subtree_offset = new_node->node_offset;
1688 	parent_elm->internal.mirror_tid = new_node->ondisk->mirror_tid;
1689 	++ondisk->count;
1690 	hammer_modify_node_done(parent);
1691 	hammer_cursor_inserted_element(parent, parent_index + 1);
1692 
1693 	/*
1694 	 * The children of new_node need their parent pointer set to new_node.
1695 	 * The children have already been locked by
1696 	 * hammer_btree_lock_children().
1697 	 */
1698 	for (i = 0; i < new_node->ondisk->count; ++i) {
1699 		elm = &new_node->ondisk->elms[i];
1700 		error = btree_set_parent(cursor->trans, new_node, elm);
1701 		if (error) {
1702 			panic("btree_split_internal: btree-fixup problem");
1703 		}
1704 	}
1705 	hammer_modify_node_done(new_node);
1706 
1707 	/*
1708 	 * The filesystem's root B-Tree pointer may have to be updated.
1709 	 */
1710 	if (made_root) {
1711 		hammer_volume_t volume;
1712 
1713 		volume = hammer_get_root_volume(hmp, &error);
1714 		KKASSERT(error == 0);
1715 
1716 		hammer_modify_volume_field(cursor->trans, volume,
1717 					   vol0_btree_root);
1718 		volume->ondisk->vol0_btree_root = parent->node_offset;
1719 		hammer_modify_volume_done(volume);
1720 		node->ondisk->parent = parent->node_offset;
1721 		if (cursor->parent) {
1722 			hammer_unlock(&cursor->parent->lock);
1723 			hammer_rel_node(cursor->parent);
1724 		}
1725 		cursor->parent = parent;	/* lock'd and ref'd */
1726 		hammer_rel_volume(volume, 0);
1727 	}
1728 	hammer_modify_node_done(node);
1729 
1730 	/*
1731 	 * Ok, now adjust the cursor depending on which element the original
1732 	 * index was pointing at.  If we are >= the split point the push node
1733 	 * is now in the new node.
1734 	 *
1735 	 * NOTE: If we are at the split point itself we cannot stay with the
1736 	 * original node because the push index will point at the right-hand
1737 	 * boundary, which is illegal.
1738 	 *
1739 	 * NOTE: The cursor's parent or parent_index must be adjusted for
1740 	 * the case where a new parent (new root) was created, and the case
1741 	 * where the cursor is now pointing at the split node.
1742 	 */
1743 	if (cursor->index >= split) {
1744 		cursor->parent_index = parent_index + 1;
1745 		cursor->index -= split;
1746 		hammer_unlock(&cursor->node->lock);
1747 		hammer_rel_node(cursor->node);
1748 		cursor->node = new_node;	/* locked and ref'd */
1749 	} else {
1750 		cursor->parent_index = parent_index;
1751 		hammer_unlock(&new_node->lock);
1752 		hammer_rel_node(new_node);
1753 	}
1754 
1755 	/*
1756 	 * Fixup left and right bounds
1757 	 */
1758 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1759 	cursor->left_bound = &parent_elm[0].internal.base;
1760 	cursor->right_bound = &parent_elm[1].internal.base;
1761 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1762 		 &cursor->node->ondisk->elms[0].internal.base) <= 0);
1763 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1764 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1765 
1766 done:
1767 	hammer_btree_unlock_children(cursor->trans->hmp, &lockroot, NULL);
1768 	hammer_cursor_downgrade(cursor);
1769 	return (error);
1770 }
1771 
1772 /*
1773  * Same as the above, but splits a full leaf node.
1774  *
1775  * This function
1776  */
1777 static
1778 int
1779 btree_split_leaf(hammer_cursor_t cursor)
1780 {
1781 	hammer_node_ondisk_t ondisk;
1782 	hammer_node_t parent;
1783 	hammer_node_t leaf;
1784 	hammer_mount_t hmp;
1785 	hammer_node_t new_leaf;
1786 	hammer_btree_elm_t elm;
1787 	hammer_btree_elm_t parent_elm;
1788 	hammer_base_elm_t mid_boundary;
1789 	hammer_off_t hint;
1790 	int parent_index;
1791 	int made_root;
1792 	int split;
1793 	int error;
1794 	const size_t esize = sizeof(*elm);
1795 
1796 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1797 		return(error);
1798 	++hammer_stats_btree_splits;
1799 
1800 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1801 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1802 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1803 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1804 
1805 	/*
1806 	 * Calculate the split point.  If the insertion point is at the
1807 	 * end of the leaf we adjust the split point significantly to the
1808 	 * right to try to optimize node fill and flag it.  If we hit
1809 	 * that same leaf again our heuristic failed and we don't try
1810 	 * to optimize node fill (it could lead to a degenerate case).
1811 	 *
1812 	 * Spikes are made up of two leaf elements which cannot be
1813 	 * safely split.
1814 	 */
1815 	leaf = cursor->node;
1816 	ondisk = leaf->ondisk;
1817 	KKASSERT(ondisk->count > 4);
1818 	if (cursor->index == ondisk->count &&
1819 	    (leaf->flags & HAMMER_NODE_NONLINEAR) == 0) {
1820 		split = (ondisk->count + 1) * 3 / 4;
1821 		leaf->flags |= HAMMER_NODE_NONLINEAR;
1822 	} else {
1823 		split = (ondisk->count + 1) / 2;
1824 	}
1825 
1826 #if 0
1827 	/*
1828 	 * If the insertion point is at the split point shift the
1829 	 * split point left so we don't have to worry about
1830 	 */
1831 	if (cursor->index == split)
1832 		--split;
1833 #endif
1834 	KKASSERT(split > 0 && split < ondisk->count);
1835 
1836 	error = 0;
1837 	hmp = leaf->hmp;
1838 
1839 	elm = &ondisk->elms[split];
1840 
1841 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
1842 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
1843 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
1844 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
1845 
1846 	/*
1847 	 * If we are at the root of the tree, create a new root node with
1848 	 * 1 element and split normally.  Avoid making major modifications
1849 	 * until we know the whole operation will work.
1850 	 */
1851 	if (ondisk->parent == 0) {
1852 		parent = hammer_alloc_btree(cursor->trans, 0, &error);
1853 		if (parent == NULL)
1854 			goto done;
1855 		hammer_lock_ex(&parent->lock);
1856 		hammer_modify_node_noundo(cursor->trans, parent);
1857 		ondisk = parent->ondisk;
1858 		ondisk->count = 1;
1859 		ondisk->parent = 0;
1860 		ondisk->mirror_tid = leaf->ondisk->mirror_tid;
1861 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1862 		ondisk->elms[0].base = hmp->root_btree_beg;
1863 		ondisk->elms[0].base.btype = leaf->ondisk->type;
1864 		ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1865 		ondisk->elms[1].base = hmp->root_btree_end;
1866 		/* ondisk->elms[1].base.btype = not used */
1867 		hammer_modify_node_done(parent);
1868 		made_root = 1;
1869 		parent_index = 0;	/* insertion point in parent */
1870 	} else {
1871 		made_root = 0;
1872 		parent = cursor->parent;
1873 		parent_index = cursor->parent_index;
1874 	}
1875 
1876 	/*
1877 	 * Calculate a hint for the allocation of the new B-Tree leaf node.
1878 	 * For now just try to localize it within the same bigblock as
1879 	 * the current leaf.
1880 	 *
1881 	 * If the insertion point is at the end of the leaf we recognize a
1882 	 * likely append sequence of some sort (data, meta-data, inodes,
1883 	 * whatever).  Set the hint to zero to allocate out of linear space
1884 	 * instead of trying to completely fill previously hinted space.
1885 	 *
1886 	 * This also sets the stage for recursive splits to localize using
1887 	 * the new space.
1888 	 */
1889 	ondisk = leaf->ondisk;
1890 	if (cursor->index == ondisk->count)
1891 		hint = 0;
1892 	else
1893 		hint = leaf->node_offset;
1894 
1895 	/*
1896 	 * Split leaf into new_leaf at the split point.  Select a separator
1897 	 * value in-between the two leafs but with a bent towards the right
1898 	 * leaf since comparisons use an 'elm >= separator' inequality.
1899 	 *
1900 	 *  L L L L L L L L
1901 	 *
1902 	 *       x x P x x
1903 	 *        s S S s
1904 	 *         /   \
1905 	 *  L L L L     L L L L
1906 	 */
1907 	new_leaf = hammer_alloc_btree(cursor->trans, 0, &error);
1908 	if (new_leaf == NULL) {
1909 		if (made_root) {
1910 			hammer_unlock(&parent->lock);
1911 			hammer_delete_node(cursor->trans, parent);
1912 			hammer_rel_node(parent);
1913 		}
1914 		goto done;
1915 	}
1916 	hammer_lock_ex(&new_leaf->lock);
1917 
1918 	/*
1919 	 * Create the new node and copy the leaf elements from the split
1920 	 * point on to the new node.
1921 	 */
1922 	hammer_modify_node_all(cursor->trans, leaf);
1923 	hammer_modify_node_noundo(cursor->trans, new_leaf);
1924 	ondisk = leaf->ondisk;
1925 	elm = &ondisk->elms[split];
1926 	bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1927 	new_leaf->ondisk->count = ondisk->count - split;
1928 	new_leaf->ondisk->parent = parent->node_offset;
1929 	new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1930 	new_leaf->ondisk->mirror_tid = ondisk->mirror_tid;
1931 	KKASSERT(ondisk->type == new_leaf->ondisk->type);
1932 	hammer_modify_node_done(new_leaf);
1933 	hammer_cursor_split_node(leaf, new_leaf, split);
1934 
1935 	/*
1936 	 * Cleanup the original node.  Because this is a leaf node and
1937 	 * leaf nodes do not have a right-hand boundary, there
1938 	 * aren't any special edge cases to clean up.  We just fixup the
1939 	 * count.
1940 	 */
1941 	ondisk->count = split;
1942 
1943 	/*
1944 	 * Insert the separator into the parent, fixup the parent's
1945 	 * reference to the original node, and reference the new node.
1946 	 * The separator is P.
1947 	 *
1948 	 * Remember that base.count does not include the right-hand boundary.
1949 	 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1950 	 */
1951 	hammer_modify_node_all(cursor->trans, parent);
1952 	ondisk = parent->ondisk;
1953 	KKASSERT(split != 0);
1954 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1955 	parent_elm = &ondisk->elms[parent_index+1];
1956 	bcopy(parent_elm, parent_elm + 1,
1957 	      (ondisk->count - parent_index) * esize);
1958 
1959 	hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1960 	parent_elm->internal.base.btype = new_leaf->ondisk->type;
1961 	parent_elm->internal.subtree_offset = new_leaf->node_offset;
1962 	parent_elm->internal.mirror_tid = new_leaf->ondisk->mirror_tid;
1963 	mid_boundary = &parent_elm->base;
1964 	++ondisk->count;
1965 	hammer_modify_node_done(parent);
1966 	hammer_cursor_inserted_element(parent, parent_index + 1);
1967 
1968 	/*
1969 	 * The filesystem's root B-Tree pointer may have to be updated.
1970 	 */
1971 	if (made_root) {
1972 		hammer_volume_t volume;
1973 
1974 		volume = hammer_get_root_volume(hmp, &error);
1975 		KKASSERT(error == 0);
1976 
1977 		hammer_modify_volume_field(cursor->trans, volume,
1978 					   vol0_btree_root);
1979 		volume->ondisk->vol0_btree_root = parent->node_offset;
1980 		hammer_modify_volume_done(volume);
1981 		leaf->ondisk->parent = parent->node_offset;
1982 		if (cursor->parent) {
1983 			hammer_unlock(&cursor->parent->lock);
1984 			hammer_rel_node(cursor->parent);
1985 		}
1986 		cursor->parent = parent;	/* lock'd and ref'd */
1987 		hammer_rel_volume(volume, 0);
1988 	}
1989 	hammer_modify_node_done(leaf);
1990 
1991 	/*
1992 	 * Ok, now adjust the cursor depending on which element the original
1993 	 * index was pointing at.  If we are >= the split point the push node
1994 	 * is now in the new node.
1995 	 *
1996 	 * NOTE: If we are at the split point itself we need to select the
1997 	 * old or new node based on where key_beg's insertion point will be.
1998 	 * If we pick the wrong side the inserted element will wind up in
1999 	 * the wrong leaf node and outside that node's bounds.
2000 	 */
2001 	if (cursor->index > split ||
2002 	    (cursor->index == split &&
2003 	     hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
2004 		cursor->parent_index = parent_index + 1;
2005 		cursor->index -= split;
2006 		hammer_unlock(&cursor->node->lock);
2007 		hammer_rel_node(cursor->node);
2008 		cursor->node = new_leaf;
2009 	} else {
2010 		cursor->parent_index = parent_index;
2011 		hammer_unlock(&new_leaf->lock);
2012 		hammer_rel_node(new_leaf);
2013 	}
2014 
2015 	/*
2016 	 * Fixup left and right bounds
2017 	 */
2018 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
2019 	cursor->left_bound = &parent_elm[0].internal.base;
2020 	cursor->right_bound = &parent_elm[1].internal.base;
2021 
2022 	/*
2023 	 * Assert that the bounds are correct.
2024 	 */
2025 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
2026 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
2027 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
2028 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
2029 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
2030 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
2031 
2032 done:
2033 	hammer_cursor_downgrade(cursor);
2034 	return (error);
2035 }
2036 
2037 #if 0
2038 
2039 /*
2040  * Recursively correct the right-hand boundary's create_tid to (tid) as
2041  * long as the rest of the key matches.  We have to recurse upward in
2042  * the tree as well as down the left side of each parent's right node.
2043  *
2044  * Return EDEADLK if we were only partially successful, forcing the caller
2045  * to try again.  The original cursor is not modified.  This routine can
2046  * also fail with EDEADLK if it is forced to throw away a portion of its
2047  * record history.
2048  *
2049  * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
2050  */
2051 struct hammer_rhb {
2052 	TAILQ_ENTRY(hammer_rhb) entry;
2053 	hammer_node_t	node;
2054 	int		index;
2055 };
2056 
2057 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
2058 
2059 int
2060 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
2061 {
2062 	struct hammer_mount *hmp;
2063 	struct hammer_rhb_list rhb_list;
2064 	hammer_base_elm_t elm;
2065 	hammer_node_t orig_node;
2066 	struct hammer_rhb *rhb;
2067 	int orig_index;
2068 	int error;
2069 
2070 	TAILQ_INIT(&rhb_list);
2071 	hmp = cursor->trans->hmp;
2072 
2073 	/*
2074 	 * Save our position so we can restore it on return.  This also
2075 	 * gives us a stable 'elm'.
2076 	 */
2077 	orig_node = cursor->node;
2078 	hammer_ref_node(orig_node);
2079 	hammer_lock_sh(&orig_node->lock);
2080 	orig_index = cursor->index;
2081 	elm = &orig_node->ondisk->elms[orig_index].base;
2082 
2083 	/*
2084 	 * Now build a list of parents going up, allocating a rhb
2085 	 * structure for each one.
2086 	 */
2087 	while (cursor->parent) {
2088 		/*
2089 		 * Stop if we no longer have any right-bounds to fix up
2090 		 */
2091 		if (elm->obj_id != cursor->right_bound->obj_id ||
2092 		    elm->rec_type != cursor->right_bound->rec_type ||
2093 		    elm->key != cursor->right_bound->key) {
2094 			break;
2095 		}
2096 
2097 		/*
2098 		 * Stop if the right-hand bound's create_tid does not
2099 		 * need to be corrected.
2100 		 */
2101 		if (cursor->right_bound->create_tid >= tid)
2102 			break;
2103 
2104 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2105 		rhb->node = cursor->parent;
2106 		rhb->index = cursor->parent_index;
2107 		hammer_ref_node(rhb->node);
2108 		hammer_lock_sh(&rhb->node->lock);
2109 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2110 
2111 		hammer_cursor_up(cursor);
2112 	}
2113 
2114 	/*
2115 	 * now safely adjust the right hand bound for each rhb.  This may
2116 	 * also require taking the right side of the tree and iterating down
2117 	 * ITS left side.
2118 	 */
2119 	error = 0;
2120 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2121 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2122 		if (error)
2123 			break;
2124 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2125 		hammer_unlock(&rhb->node->lock);
2126 		hammer_rel_node(rhb->node);
2127 		kfree(rhb, hmp->m_misc);
2128 
2129 		switch (cursor->node->ondisk->type) {
2130 		case HAMMER_BTREE_TYPE_INTERNAL:
2131 			/*
2132 			 * Right-boundary for parent at internal node
2133 			 * is one element to the right of the element whos
2134 			 * right boundary needs adjusting.  We must then
2135 			 * traverse down the left side correcting any left
2136 			 * bounds (which may now be too far to the left).
2137 			 */
2138 			++cursor->index;
2139 			error = hammer_btree_correct_lhb(cursor, tid);
2140 			break;
2141 		default:
2142 			panic("hammer_btree_correct_rhb(): Bad node type");
2143 			error = EINVAL;
2144 			break;
2145 		}
2146 	}
2147 
2148 	/*
2149 	 * Cleanup
2150 	 */
2151 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2152 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2153 		hammer_unlock(&rhb->node->lock);
2154 		hammer_rel_node(rhb->node);
2155 		kfree(rhb, hmp->m_misc);
2156 	}
2157 	error = hammer_cursor_seek(cursor, orig_node, orig_index);
2158 	hammer_unlock(&orig_node->lock);
2159 	hammer_rel_node(orig_node);
2160 	return (error);
2161 }
2162 
2163 /*
2164  * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
2165  * bound going downward starting at the current cursor position.
2166  *
2167  * This function does not restore the cursor after use.
2168  */
2169 int
2170 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
2171 {
2172 	struct hammer_rhb_list rhb_list;
2173 	hammer_base_elm_t elm;
2174 	hammer_base_elm_t cmp;
2175 	struct hammer_rhb *rhb;
2176 	struct hammer_mount *hmp;
2177 	int error;
2178 
2179 	TAILQ_INIT(&rhb_list);
2180 	hmp = cursor->trans->hmp;
2181 
2182 	cmp = &cursor->node->ondisk->elms[cursor->index].base;
2183 
2184 	/*
2185 	 * Record the node and traverse down the left-hand side for all
2186 	 * matching records needing a boundary correction.
2187 	 */
2188 	error = 0;
2189 	for (;;) {
2190 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2191 		rhb->node = cursor->node;
2192 		rhb->index = cursor->index;
2193 		hammer_ref_node(rhb->node);
2194 		hammer_lock_sh(&rhb->node->lock);
2195 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2196 
2197 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2198 			/*
2199 			 * Nothing to traverse down if we are at the right
2200 			 * boundary of an internal node.
2201 			 */
2202 			if (cursor->index == cursor->node->ondisk->count)
2203 				break;
2204 		} else {
2205 			elm = &cursor->node->ondisk->elms[cursor->index].base;
2206 			if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
2207 				break;
2208 			panic("Illegal leaf record type %02x", elm->btype);
2209 		}
2210 		error = hammer_cursor_down(cursor);
2211 		if (error)
2212 			break;
2213 
2214 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2215 		if (elm->obj_id != cmp->obj_id ||
2216 		    elm->rec_type != cmp->rec_type ||
2217 		    elm->key != cmp->key) {
2218 			break;
2219 		}
2220 		if (elm->create_tid >= tid)
2221 			break;
2222 
2223 	}
2224 
2225 	/*
2226 	 * Now we can safely adjust the left-hand boundary from the bottom-up.
2227 	 * The last element we remove from the list is the caller's right hand
2228 	 * boundary, which must also be adjusted.
2229 	 */
2230 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2231 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2232 		if (error)
2233 			break;
2234 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2235 		hammer_unlock(&rhb->node->lock);
2236 		hammer_rel_node(rhb->node);
2237 		kfree(rhb, hmp->m_misc);
2238 
2239 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2240 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2241 			hammer_modify_node(cursor->trans, cursor->node,
2242 					   &elm->create_tid,
2243 					   sizeof(elm->create_tid));
2244 			elm->create_tid = tid;
2245 			hammer_modify_node_done(cursor->node);
2246 		} else {
2247 			panic("hammer_btree_correct_lhb(): Bad element type");
2248 		}
2249 	}
2250 
2251 	/*
2252 	 * Cleanup
2253 	 */
2254 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2255 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2256 		hammer_unlock(&rhb->node->lock);
2257 		hammer_rel_node(rhb->node);
2258 		kfree(rhb, hmp->m_misc);
2259 	}
2260 	return (error);
2261 }
2262 
2263 #endif
2264 
2265 /*
2266  * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
2267  * (cursor->node).  Returns 0 on success, EDEADLK if we could not complete
2268  * the operation due to a deadlock, or some other error.
2269  *
2270  * This routine is initially called with an empty leaf and may be
2271  * recursively called with single-element internal nodes.
2272  *
2273  * It should also be noted that when removing empty leaves we must be sure
2274  * to test and update mirror_tid because another thread may have deadlocked
2275  * against us (or someone) trying to propagate it up and cannot retry once
2276  * the node has been deleted.
2277  *
2278  * On return the cursor may end up pointing to an internal node, suitable
2279  * for further iteration but not for an immediate insertion or deletion.
2280  */
2281 static int
2282 btree_remove(hammer_cursor_t cursor)
2283 {
2284 	hammer_node_ondisk_t ondisk;
2285 	hammer_btree_elm_t elm;
2286 	hammer_node_t node;
2287 	hammer_node_t parent;
2288 	const int esize = sizeof(*elm);
2289 	int error;
2290 
2291 	node = cursor->node;
2292 
2293 	/*
2294 	 * When deleting the root of the filesystem convert it to
2295 	 * an empty leaf node.  Internal nodes cannot be empty.
2296 	 */
2297 	ondisk = node->ondisk;
2298 	if (ondisk->parent == 0) {
2299 		KKASSERT(cursor->parent == NULL);
2300 		hammer_modify_node_all(cursor->trans, node);
2301 		KKASSERT(ondisk == node->ondisk);
2302 		ondisk->type = HAMMER_BTREE_TYPE_LEAF;
2303 		ondisk->count = 0;
2304 		hammer_modify_node_done(node);
2305 		cursor->index = 0;
2306 		return(0);
2307 	}
2308 
2309 	parent = cursor->parent;
2310 
2311 	/*
2312 	 * Attempt to remove the parent's reference to the child.  If the
2313 	 * parent would become empty we have to recurse.  If we fail we
2314 	 * leave the parent pointing to an empty leaf node.
2315 	 *
2316 	 * We have to recurse successfully before we can delete the internal
2317 	 * node as it is illegal to have empty internal nodes.  Even though
2318 	 * the operation may be aborted we must still fixup any unlocked
2319 	 * cursors as if we had deleted the element prior to recursing
2320 	 * (by calling hammer_cursor_deleted_element()) so those cursors
2321 	 * are properly forced up the chain by the recursion.
2322 	 */
2323 	if (parent->ondisk->count == 1) {
2324 		/*
2325 		 * This special cursor_up_locked() call leaves the original
2326 		 * node exclusively locked and referenced, leaves the
2327 		 * original parent locked (as the new node), and locks the
2328 		 * new parent.  It can return EDEADLK.
2329 		 *
2330 		 * We cannot call hammer_cursor_removed_node() until we are
2331 		 * actually able to remove the node.  If we did then tracked
2332 		 * cursors in the middle of iterations could be repointed
2333 		 * to a parent node.  If this occurs they could end up
2334 		 * scanning newly inserted records into the node (that could
2335 		 * not be deleted) when they push down again.
2336 		 *
2337 		 * Due to the way the recursion works the final parent is left
2338 		 * in cursor->parent after the recursion returns.  Each
2339 		 * layer on the way back up is thus able to call
2340 		 * hammer_cursor_removed_node() and 'jump' the node up to
2341 		 * the (same) final parent.
2342 		 *
2343 		 * NOTE!  The local variable 'parent' is invalid after we
2344 		 *	  call hammer_cursor_up_locked().
2345 		 */
2346 		error = hammer_cursor_up_locked(cursor);
2347 		parent = NULL;
2348 
2349 		if (error == 0) {
2350 			hammer_cursor_deleted_element(cursor->node, 0);
2351 			error = btree_remove(cursor);
2352 			if (error == 0) {
2353 				KKASSERT(node != cursor->node);
2354 				hammer_cursor_removed_node(
2355 					node, cursor->node,
2356 					cursor->index);
2357 				hammer_modify_node_all(cursor->trans, node);
2358 				ondisk = node->ondisk;
2359 				ondisk->type = HAMMER_BTREE_TYPE_DELETED;
2360 				ondisk->count = 0;
2361 				hammer_modify_node_done(node);
2362 				hammer_flush_node(node, 0);
2363 				hammer_delete_node(cursor->trans, node);
2364 			} else {
2365 				/*
2366 				 * Defer parent removal because we could not
2367 				 * get the lock, just let the leaf remain
2368 				 * empty.
2369 				 */
2370 				/**/
2371 			}
2372 			hammer_unlock(&node->lock);
2373 			hammer_rel_node(node);
2374 		} else {
2375 			/*
2376 			 * Defer parent removal because we could not
2377 			 * get the lock, just let the leaf remain
2378 			 * empty.
2379 			 */
2380 			/**/
2381 		}
2382 	} else {
2383 		KKASSERT(parent->ondisk->count > 1);
2384 
2385 		hammer_modify_node_all(cursor->trans, parent);
2386 		ondisk = parent->ondisk;
2387 		KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2388 
2389 		elm = &ondisk->elms[cursor->parent_index];
2390 		KKASSERT(elm->internal.subtree_offset == node->node_offset);
2391 		KKASSERT(ondisk->count > 0);
2392 
2393 		/*
2394 		 * We must retain the highest mirror_tid.  The deleted
2395 		 * range is now encompassed by the element to the left.
2396 		 * If we are already at the left edge the new left edge
2397 		 * inherits mirror_tid.
2398 		 *
2399 		 * Note that bounds of the parent to our parent may create
2400 		 * a gap to the left of our left-most node or to the right
2401 		 * of our right-most node.  The gap is silently included
2402 		 * in the mirror_tid's area of effect from the point of view
2403 		 * of the scan.
2404 		 */
2405 		if (cursor->parent_index) {
2406 			if (elm[-1].internal.mirror_tid <
2407 			    elm[0].internal.mirror_tid) {
2408 				elm[-1].internal.mirror_tid =
2409 				    elm[0].internal.mirror_tid;
2410 			}
2411 		} else {
2412 			if (elm[1].internal.mirror_tid <
2413 			    elm[0].internal.mirror_tid) {
2414 				elm[1].internal.mirror_tid =
2415 				    elm[0].internal.mirror_tid;
2416 			}
2417 		}
2418 
2419 		/*
2420 		 * Delete the subtree reference in the parent.  Include
2421 		 * boundary element at end.
2422 		 */
2423 		bcopy(&elm[1], &elm[0],
2424 		      (ondisk->count - cursor->parent_index) * esize);
2425 		--ondisk->count;
2426 		hammer_modify_node_done(parent);
2427 		hammer_cursor_removed_node(node, parent, cursor->parent_index);
2428 		hammer_cursor_deleted_element(parent, cursor->parent_index);
2429 		hammer_flush_node(node, 0);
2430 		hammer_delete_node(cursor->trans, node);
2431 
2432 		/*
2433 		 * cursor->node is invalid, cursor up to make the cursor
2434 		 * valid again.  We have to flag the condition in case
2435 		 * another thread wiggles an insertion in during an
2436 		 * iteration.
2437 		 */
2438 		cursor->flags |= HAMMER_CURSOR_ITERATE_CHECK;
2439 		error = hammer_cursor_up(cursor);
2440 	}
2441 	return (error);
2442 }
2443 
2444 /*
2445  * Propagate cursor->trans->tid up the B-Tree starting at the current
2446  * cursor position using pseudofs info gleaned from the passed inode.
2447  *
2448  * The passed inode has no relationship to the cursor position other
2449  * then being in the same pseudofs as the insertion or deletion we
2450  * are propagating the mirror_tid for.
2451  *
2452  * WARNING!  Because we push and pop the passed cursor, it may be
2453  *	     modified by other B-Tree operations while it is unlocked
2454  *	     and things like the node & leaf pointers, and indexes might
2455  *	     change.
2456  */
2457 void
2458 hammer_btree_do_propagation(hammer_cursor_t cursor,
2459 			    hammer_pseudofs_inmem_t pfsm,
2460 			    hammer_btree_leaf_elm_t leaf)
2461 {
2462 	hammer_cursor_t ncursor;
2463 	hammer_tid_t mirror_tid;
2464 	int error;
2465 
2466 	/*
2467 	 * We do not propagate a mirror_tid if the filesystem was mounted
2468 	 * in no-mirror mode.
2469 	 */
2470 	if (cursor->trans->hmp->master_id < 0)
2471 		return;
2472 
2473 	/*
2474 	 * This is a bit of a hack because we cannot deadlock or return
2475 	 * EDEADLK here.  The related operation has already completed and
2476 	 * we must propagate the mirror_tid now regardless.
2477 	 *
2478 	 * Generate a new cursor which inherits the original's locks and
2479 	 * unlock the original.  Use the new cursor to propagate the
2480 	 * mirror_tid.  Then clean up the new cursor and reacquire locks
2481 	 * on the original.
2482 	 *
2483 	 * hammer_dup_cursor() cannot dup locks.  The dup inherits the
2484 	 * original's locks and the original is tracked and must be
2485 	 * re-locked.
2486 	 */
2487 	mirror_tid = cursor->node->ondisk->mirror_tid;
2488 	KKASSERT(mirror_tid != 0);
2489 	ncursor = hammer_push_cursor(cursor);
2490 	error = hammer_btree_mirror_propagate(ncursor, mirror_tid);
2491 	KKASSERT(error == 0);
2492 	hammer_pop_cursor(cursor, ncursor);
2493 	/* WARNING: cursor's leaf pointer may change after pop */
2494 }
2495 
2496 
2497 /*
2498  * Propagate a mirror TID update upwards through the B-Tree to the root.
2499  *
2500  * A locked internal node must be passed in.  The node will remain locked
2501  * on return.
2502  *
2503  * This function syncs mirror_tid at the specified internal node's element,
2504  * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2505  */
2506 static int
2507 hammer_btree_mirror_propagate(hammer_cursor_t cursor, hammer_tid_t mirror_tid)
2508 {
2509 	hammer_btree_internal_elm_t elm;
2510 	hammer_node_t node;
2511 	int error;
2512 
2513 	for (;;) {
2514 		error = hammer_cursor_up(cursor);
2515 		if (error == 0)
2516 			error = hammer_cursor_upgrade(cursor);
2517 
2518 		/*
2519 		 * We can ignore HAMMER_CURSOR_ITERATE_CHECK, the
2520 		 * cursor will still be properly positioned for
2521 		 * mirror propagation, just not for iterations.
2522 		 */
2523 		while (error == EDEADLK) {
2524 			hammer_recover_cursor(cursor);
2525 			error = hammer_cursor_upgrade(cursor);
2526 		}
2527 		if (error)
2528 			break;
2529 
2530 		/*
2531 		 * If the cursor deadlocked it could end up at a leaf
2532 		 * after we lost the lock.
2533 		 */
2534 		node = cursor->node;
2535 		if (node->ondisk->type != HAMMER_BTREE_TYPE_INTERNAL)
2536 			continue;
2537 
2538 		/*
2539 		 * Adjust the node's element
2540 		 */
2541 		elm = &node->ondisk->elms[cursor->index].internal;
2542 		if (elm->mirror_tid >= mirror_tid)
2543 			break;
2544 		hammer_modify_node(cursor->trans, node, &elm->mirror_tid,
2545 				   sizeof(elm->mirror_tid));
2546 		elm->mirror_tid = mirror_tid;
2547 		hammer_modify_node_done(node);
2548 		if (hammer_debug_general & 0x0002) {
2549 			kprintf("mirror_propagate: propagate "
2550 				"%016llx @%016llx:%d\n",
2551 				(long long)mirror_tid,
2552 				(long long)node->node_offset,
2553 				cursor->index);
2554 		}
2555 
2556 
2557 		/*
2558 		 * Adjust the node's mirror_tid aggregator
2559 		 */
2560 		if (node->ondisk->mirror_tid >= mirror_tid)
2561 			return(0);
2562 		hammer_modify_node_field(cursor->trans, node, mirror_tid);
2563 		node->ondisk->mirror_tid = mirror_tid;
2564 		hammer_modify_node_done(node);
2565 		if (hammer_debug_general & 0x0002) {
2566 			kprintf("mirror_propagate: propagate "
2567 				"%016llx @%016llx\n",
2568 				(long long)mirror_tid,
2569 				(long long)node->node_offset);
2570 		}
2571 	}
2572 	if (error == ENOENT)
2573 		error = 0;
2574 	return(error);
2575 }
2576 
2577 hammer_node_t
2578 hammer_btree_get_parent(hammer_transaction_t trans, hammer_node_t node,
2579 			int *parent_indexp, int *errorp, int try_exclusive)
2580 {
2581 	hammer_node_t parent;
2582 	hammer_btree_elm_t elm;
2583 	int i;
2584 
2585 	/*
2586 	 * Get the node
2587 	 */
2588 	parent = hammer_get_node(trans, node->ondisk->parent, 0, errorp);
2589 	if (*errorp) {
2590 		KKASSERT(parent == NULL);
2591 		return(NULL);
2592 	}
2593 	KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
2594 
2595 	/*
2596 	 * Lock the node
2597 	 */
2598 	if (try_exclusive) {
2599 		if (hammer_lock_ex_try(&parent->lock)) {
2600 			hammer_rel_node(parent);
2601 			*errorp = EDEADLK;
2602 			return(NULL);
2603 		}
2604 	} else {
2605 		hammer_lock_sh(&parent->lock);
2606 	}
2607 
2608 	/*
2609 	 * Figure out which element in the parent is pointing to the
2610 	 * child.
2611 	 */
2612 	if (node->ondisk->count) {
2613 		i = hammer_btree_search_node(&node->ondisk->elms[0].base,
2614 					     parent->ondisk);
2615 	} else {
2616 		i = 0;
2617 	}
2618 	while (i < parent->ondisk->count) {
2619 		elm = &parent->ondisk->elms[i];
2620 		if (elm->internal.subtree_offset == node->node_offset)
2621 			break;
2622 		++i;
2623 	}
2624 	if (i == parent->ondisk->count) {
2625 		hammer_unlock(&parent->lock);
2626 		panic("Bad B-Tree link: parent %p node %p\n", parent, node);
2627 	}
2628 	*parent_indexp = i;
2629 	KKASSERT(*errorp == 0);
2630 	return(parent);
2631 }
2632 
2633 /*
2634  * The element (elm) has been moved to a new internal node (node).
2635  *
2636  * If the element represents a pointer to an internal node that node's
2637  * parent must be adjusted to the element's new location.
2638  *
2639  * XXX deadlock potential here with our exclusive locks
2640  */
2641 int
2642 btree_set_parent(hammer_transaction_t trans, hammer_node_t node,
2643 		 hammer_btree_elm_t elm)
2644 {
2645 	hammer_node_t child;
2646 	int error;
2647 
2648 	error = 0;
2649 
2650 	switch(elm->base.btype) {
2651 	case HAMMER_BTREE_TYPE_INTERNAL:
2652 	case HAMMER_BTREE_TYPE_LEAF:
2653 		child = hammer_get_node(trans, elm->internal.subtree_offset,
2654 					0, &error);
2655 		if (error == 0) {
2656 			hammer_modify_node_field(trans, child, parent);
2657 			child->ondisk->parent = node->node_offset;
2658 			hammer_modify_node_done(child);
2659 			hammer_rel_node(child);
2660 		}
2661 		break;
2662 	default:
2663 		break;
2664 	}
2665 	return(error);
2666 }
2667 
2668 /*
2669  * Initialize the root of a recursive B-Tree node lock list structure.
2670  */
2671 void
2672 hammer_node_lock_init(hammer_node_lock_t parent, hammer_node_t node)
2673 {
2674 	TAILQ_INIT(&parent->list);
2675 	parent->parent = NULL;
2676 	parent->node = node;
2677 	parent->index = -1;
2678 	parent->count = node->ondisk->count;
2679 	parent->copy = NULL;
2680 	parent->flags = 0;
2681 }
2682 
2683 /*
2684  * Initialize a cache of hammer_node_lock's including space allocated
2685  * for node copies.
2686  *
2687  * This is used by the rebalancing code to preallocate the copy space
2688  * for ~4096 B-Tree nodes (16MB of data) prior to acquiring any HAMMER
2689  * locks, otherwise we can blow out the pageout daemon's emergency
2690  * reserve and deadlock it.
2691  *
2692  * NOTE: HAMMER_NODE_LOCK_LCACHE is not set on items cached in the lcache.
2693  *	 The flag is set when the item is pulled off the cache for use.
2694  */
2695 void
2696 hammer_btree_lcache_init(hammer_mount_t hmp, hammer_node_lock_t lcache,
2697 			 int depth)
2698 {
2699 	hammer_node_lock_t item;
2700 	int count;
2701 
2702 	for (count = 1; depth; --depth)
2703 		count *= HAMMER_BTREE_LEAF_ELMS;
2704 	bzero(lcache, sizeof(*lcache));
2705 	TAILQ_INIT(&lcache->list);
2706 	while (count) {
2707 		item = kmalloc(sizeof(*item), hmp->m_misc, M_WAITOK|M_ZERO);
2708 		item->copy = kmalloc(sizeof(*item->copy),
2709 				     hmp->m_misc, M_WAITOK);
2710 		TAILQ_INIT(&item->list);
2711 		TAILQ_INSERT_TAIL(&lcache->list, item, entry);
2712 		--count;
2713 	}
2714 }
2715 
2716 void
2717 hammer_btree_lcache_free(hammer_mount_t hmp, hammer_node_lock_t lcache)
2718 {
2719 	hammer_node_lock_t item;
2720 
2721 	while ((item = TAILQ_FIRST(&lcache->list)) != NULL) {
2722 		TAILQ_REMOVE(&lcache->list, item, entry);
2723 		KKASSERT(item->copy);
2724 		KKASSERT(TAILQ_EMPTY(&item->list));
2725 		kfree(item->copy, hmp->m_misc);
2726 		kfree(item, hmp->m_misc);
2727 	}
2728 	KKASSERT(lcache->copy == NULL);
2729 }
2730 
2731 /*
2732  * Exclusively lock all the children of node.  This is used by the split
2733  * code to prevent anyone from accessing the children of a cursor node
2734  * while we fix-up its parent offset.
2735  *
2736  * If we don't lock the children we can really mess up cursors which block
2737  * trying to cursor-up into our node.
2738  *
2739  * On failure EDEADLK (or some other error) is returned.  If a deadlock
2740  * error is returned the cursor is adjusted to block on termination.
2741  *
2742  * The caller is responsible for managing parent->node, the root's node
2743  * is usually aliased from a cursor.
2744  */
2745 int
2746 hammer_btree_lock_children(hammer_cursor_t cursor, int depth,
2747 			   hammer_node_lock_t parent,
2748 			   hammer_node_lock_t lcache)
2749 {
2750 	hammer_node_t node;
2751 	hammer_node_lock_t item;
2752 	hammer_node_ondisk_t ondisk;
2753 	hammer_btree_elm_t elm;
2754 	hammer_node_t child;
2755 	struct hammer_mount *hmp;
2756 	int error;
2757 	int i;
2758 
2759 	node = parent->node;
2760 	ondisk = node->ondisk;
2761 	error = 0;
2762 	hmp = cursor->trans->hmp;
2763 
2764 	/*
2765 	 * We really do not want to block on I/O with exclusive locks held,
2766 	 * pre-get the children before trying to lock the mess.  This is
2767 	 * only done one-level deep for now.
2768 	 */
2769 	for (i = 0; i < ondisk->count; ++i) {
2770 		++hammer_stats_btree_elements;
2771 		elm = &ondisk->elms[i];
2772 		if (elm->base.btype != HAMMER_BTREE_TYPE_LEAF &&
2773 		    elm->base.btype != HAMMER_BTREE_TYPE_INTERNAL) {
2774 			continue;
2775 		}
2776 		child = hammer_get_node(cursor->trans,
2777 					elm->internal.subtree_offset,
2778 					0, &error);
2779 		if (child)
2780 			hammer_rel_node(child);
2781 	}
2782 
2783 	/*
2784 	 * Do it for real
2785 	 */
2786 	for (i = 0; error == 0 && i < ondisk->count; ++i) {
2787 		++hammer_stats_btree_elements;
2788 		elm = &ondisk->elms[i];
2789 
2790 		switch(elm->base.btype) {
2791 		case HAMMER_BTREE_TYPE_INTERNAL:
2792 		case HAMMER_BTREE_TYPE_LEAF:
2793 			KKASSERT(elm->internal.subtree_offset != 0);
2794 			child = hammer_get_node(cursor->trans,
2795 						elm->internal.subtree_offset,
2796 						0, &error);
2797 			break;
2798 		default:
2799 			child = NULL;
2800 			break;
2801 		}
2802 		if (child) {
2803 			if (hammer_lock_ex_try(&child->lock) != 0) {
2804 				if (cursor->deadlk_node == NULL) {
2805 					cursor->deadlk_node = child;
2806 					hammer_ref_node(cursor->deadlk_node);
2807 				}
2808 				error = EDEADLK;
2809 				hammer_rel_node(child);
2810 			} else {
2811 				if (lcache) {
2812 					item = TAILQ_FIRST(&lcache->list);
2813 					KKASSERT(item != NULL);
2814 					item->flags |= HAMMER_NODE_LOCK_LCACHE;
2815 					TAILQ_REMOVE(&lcache->list,
2816 						     item, entry);
2817 				} else {
2818 					item = kmalloc(sizeof(*item),
2819 						       hmp->m_misc,
2820 						       M_WAITOK|M_ZERO);
2821 					TAILQ_INIT(&item->list);
2822 				}
2823 
2824 				TAILQ_INSERT_TAIL(&parent->list, item, entry);
2825 				item->parent = parent;
2826 				item->node = child;
2827 				item->index = i;
2828 				item->count = child->ondisk->count;
2829 
2830 				/*
2831 				 * Recurse (used by the rebalancing code)
2832 				 */
2833 				if (depth > 1 && elm->base.btype == HAMMER_BTREE_TYPE_INTERNAL) {
2834 					error = hammer_btree_lock_children(
2835 							cursor,
2836 							depth - 1,
2837 							item,
2838 							lcache);
2839 				}
2840 			}
2841 		}
2842 	}
2843 	if (error)
2844 		hammer_btree_unlock_children(hmp, parent, lcache);
2845 	return(error);
2846 }
2847 
2848 /*
2849  * Create an in-memory copy of all B-Tree nodes listed, recursively,
2850  * including the parent.
2851  */
2852 void
2853 hammer_btree_lock_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2854 {
2855 	hammer_mount_t hmp = cursor->trans->hmp;
2856 	hammer_node_lock_t item;
2857 
2858 	if (parent->copy == NULL) {
2859 		KKASSERT((parent->flags & HAMMER_NODE_LOCK_LCACHE) == 0);
2860 		parent->copy = kmalloc(sizeof(*parent->copy),
2861 				       hmp->m_misc, M_WAITOK);
2862 	}
2863 	KKASSERT((parent->flags & HAMMER_NODE_LOCK_UPDATED) == 0);
2864 	*parent->copy = *parent->node->ondisk;
2865 	TAILQ_FOREACH(item, &parent->list, entry) {
2866 		hammer_btree_lock_copy(cursor, item);
2867 	}
2868 }
2869 
2870 /*
2871  * Recursively sync modified copies to the media.
2872  */
2873 int
2874 hammer_btree_sync_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2875 {
2876 	hammer_node_lock_t item;
2877 	int count = 0;
2878 
2879 	if (parent->flags & HAMMER_NODE_LOCK_UPDATED) {
2880 		++count;
2881 		hammer_modify_node_all(cursor->trans, parent->node);
2882 		*parent->node->ondisk = *parent->copy;
2883                 hammer_modify_node_done(parent->node);
2884 		if (parent->copy->type == HAMMER_BTREE_TYPE_DELETED) {
2885 			hammer_flush_node(parent->node, 0);
2886 			hammer_delete_node(cursor->trans, parent->node);
2887 		}
2888 	}
2889 	TAILQ_FOREACH(item, &parent->list, entry) {
2890 		count += hammer_btree_sync_copy(cursor, item);
2891 	}
2892 	return(count);
2893 }
2894 
2895 /*
2896  * Release previously obtained node locks.  The caller is responsible for
2897  * cleaning up parent->node itself (its usually just aliased from a cursor),
2898  * but this function will take care of the copies.
2899  *
2900  * NOTE: The root node is not placed in the lcache and node->copy is not
2901  *	 deallocated when lcache != NULL.
2902  */
2903 void
2904 hammer_btree_unlock_children(hammer_mount_t hmp, hammer_node_lock_t parent,
2905 			     hammer_node_lock_t lcache)
2906 {
2907 	hammer_node_lock_t item;
2908 	hammer_node_ondisk_t copy;
2909 
2910 	while ((item = TAILQ_FIRST(&parent->list)) != NULL) {
2911 		TAILQ_REMOVE(&parent->list, item, entry);
2912 		hammer_btree_unlock_children(hmp, item, lcache);
2913 		hammer_unlock(&item->node->lock);
2914 		hammer_rel_node(item->node);
2915 		if (lcache) {
2916 			/*
2917 			 * NOTE: When placing the item back in the lcache
2918 			 *	 the flag is cleared by the bzero().
2919 			 *	 Remaining fields are cleared as a safety
2920 			 *	 measure.
2921 			 */
2922 			KKASSERT(item->flags & HAMMER_NODE_LOCK_LCACHE);
2923 			KKASSERT(TAILQ_EMPTY(&item->list));
2924 			copy = item->copy;
2925 			bzero(item, sizeof(*item));
2926 			TAILQ_INIT(&item->list);
2927 			item->copy = copy;
2928 			if (copy)
2929 				bzero(copy, sizeof(*copy));
2930 			TAILQ_INSERT_TAIL(&lcache->list, item, entry);
2931 		} else {
2932 			kfree(item, hmp->m_misc);
2933 		}
2934 	}
2935 	if (parent->copy && (parent->flags & HAMMER_NODE_LOCK_LCACHE) == 0) {
2936 		kfree(parent->copy, hmp->m_misc);
2937 		parent->copy = NULL;	/* safety */
2938 	}
2939 }
2940 
2941 /************************************************************************
2942  *			   MISCELLANIOUS SUPPORT 			*
2943  ************************************************************************/
2944 
2945 /*
2946  * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2947  *
2948  * Note that for this particular function a return value of -1, 0, or +1
2949  * can denote a match if create_tid is otherwise discounted.  A create_tid
2950  * of zero is considered to be 'infinity' in comparisons.
2951  *
2952  * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2953  */
2954 int
2955 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2956 {
2957 	if (key1->localization < key2->localization)
2958 		return(-5);
2959 	if (key1->localization > key2->localization)
2960 		return(5);
2961 
2962 	if (key1->obj_id < key2->obj_id)
2963 		return(-4);
2964 	if (key1->obj_id > key2->obj_id)
2965 		return(4);
2966 
2967 	if (key1->rec_type < key2->rec_type)
2968 		return(-3);
2969 	if (key1->rec_type > key2->rec_type)
2970 		return(3);
2971 
2972 	if (key1->key < key2->key)
2973 		return(-2);
2974 	if (key1->key > key2->key)
2975 		return(2);
2976 
2977 	/*
2978 	 * A create_tid of zero indicates a record which is undeletable
2979 	 * and must be considered to have a value of positive infinity.
2980 	 */
2981 	if (key1->create_tid == 0) {
2982 		if (key2->create_tid == 0)
2983 			return(0);
2984 		return(1);
2985 	}
2986 	if (key2->create_tid == 0)
2987 		return(-1);
2988 	if (key1->create_tid < key2->create_tid)
2989 		return(-1);
2990 	if (key1->create_tid > key2->create_tid)
2991 		return(1);
2992 	return(0);
2993 }
2994 
2995 /*
2996  * Test a timestamp against an element to determine whether the
2997  * element is visible.  A timestamp of 0 means 'infinity'.
2998  */
2999 int
3000 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
3001 {
3002 	if (asof == 0) {
3003 		if (base->delete_tid)
3004 			return(1);
3005 		return(0);
3006 	}
3007 	if (asof < base->create_tid)
3008 		return(-1);
3009 	if (base->delete_tid && asof >= base->delete_tid)
3010 		return(1);
3011 	return(0);
3012 }
3013 
3014 /*
3015  * Create a separator half way inbetween key1 and key2.  For fields just
3016  * one unit apart, the separator will match key2.  key1 is on the left-hand
3017  * side and key2 is on the right-hand side.
3018  *
3019  * key2 must be >= the separator.  It is ok for the separator to match key2.
3020  *
3021  * NOTE: Even if key1 does not match key2, the separator may wind up matching
3022  * key2.
3023  *
3024  * NOTE: It might be beneficial to just scrap this whole mess and just
3025  * set the separator to key2.
3026  */
3027 #define MAKE_SEPARATOR(key1, key2, dest, field)	\
3028 	dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
3029 
3030 static void
3031 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
3032 		      hammer_base_elm_t dest)
3033 {
3034 	bzero(dest, sizeof(*dest));
3035 
3036 	dest->rec_type = key2->rec_type;
3037 	dest->key = key2->key;
3038 	dest->obj_id = key2->obj_id;
3039 	dest->create_tid = key2->create_tid;
3040 
3041 	MAKE_SEPARATOR(key1, key2, dest, localization);
3042 	if (key1->localization == key2->localization) {
3043 		MAKE_SEPARATOR(key1, key2, dest, obj_id);
3044 		if (key1->obj_id == key2->obj_id) {
3045 			MAKE_SEPARATOR(key1, key2, dest, rec_type);
3046 			if (key1->rec_type == key2->rec_type) {
3047 				MAKE_SEPARATOR(key1, key2, dest, key);
3048 				/*
3049 				 * Don't bother creating a separator for
3050 				 * create_tid, which also conveniently avoids
3051 				 * having to handle the create_tid == 0
3052 				 * (infinity) case.  Just leave create_tid
3053 				 * set to key2.
3054 				 *
3055 				 * Worst case, dest matches key2 exactly,
3056 				 * which is acceptable.
3057 				 */
3058 			}
3059 		}
3060 	}
3061 }
3062 
3063 #undef MAKE_SEPARATOR
3064 
3065 /*
3066  * Return whether a generic internal or leaf node is full
3067  */
3068 static int
3069 btree_node_is_full(hammer_node_ondisk_t node)
3070 {
3071 	switch(node->type) {
3072 	case HAMMER_BTREE_TYPE_INTERNAL:
3073 		if (node->count == HAMMER_BTREE_INT_ELMS)
3074 			return(1);
3075 		break;
3076 	case HAMMER_BTREE_TYPE_LEAF:
3077 		if (node->count == HAMMER_BTREE_LEAF_ELMS)
3078 			return(1);
3079 		break;
3080 	default:
3081 		panic("illegal btree subtype");
3082 	}
3083 	return(0);
3084 }
3085 
3086 #if 0
3087 static int
3088 btree_max_elements(u_int8_t type)
3089 {
3090 	if (type == HAMMER_BTREE_TYPE_LEAF)
3091 		return(HAMMER_BTREE_LEAF_ELMS);
3092 	if (type == HAMMER_BTREE_TYPE_INTERNAL)
3093 		return(HAMMER_BTREE_INT_ELMS);
3094 	panic("btree_max_elements: bad type %d\n", type);
3095 }
3096 #endif
3097 
3098 void
3099 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
3100 {
3101 	hammer_btree_elm_t elm;
3102 	int i;
3103 
3104 	kprintf("node %p count=%d parent=%016llx type=%c\n",
3105 		ondisk, ondisk->count,
3106 		(long long)ondisk->parent, ondisk->type);
3107 
3108 	/*
3109 	 * Dump both boundary elements if an internal node
3110 	 */
3111 	if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
3112 		for (i = 0; i <= ondisk->count; ++i) {
3113 			elm = &ondisk->elms[i];
3114 			hammer_print_btree_elm(elm, ondisk->type, i);
3115 		}
3116 	} else {
3117 		for (i = 0; i < ondisk->count; ++i) {
3118 			elm = &ondisk->elms[i];
3119 			hammer_print_btree_elm(elm, ondisk->type, i);
3120 		}
3121 	}
3122 }
3123 
3124 void
3125 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
3126 {
3127 	kprintf("  %2d", i);
3128 	kprintf("\tobj_id       = %016llx\n", (long long)elm->base.obj_id);
3129 	kprintf("\tkey          = %016llx\n", (long long)elm->base.key);
3130 	kprintf("\tcreate_tid   = %016llx\n", (long long)elm->base.create_tid);
3131 	kprintf("\tdelete_tid   = %016llx\n", (long long)elm->base.delete_tid);
3132 	kprintf("\trec_type     = %04x\n", elm->base.rec_type);
3133 	kprintf("\tobj_type     = %02x\n", elm->base.obj_type);
3134 	kprintf("\tbtype 	= %02x (%c)\n",
3135 		elm->base.btype,
3136 		(elm->base.btype ? elm->base.btype : '?'));
3137 	kprintf("\tlocalization	= %02x\n", elm->base.localization);
3138 
3139 	switch(type) {
3140 	case HAMMER_BTREE_TYPE_INTERNAL:
3141 		kprintf("\tsubtree_off  = %016llx\n",
3142 			(long long)elm->internal.subtree_offset);
3143 		break;
3144 	case HAMMER_BTREE_TYPE_RECORD:
3145 		kprintf("\tdata_offset  = %016llx\n",
3146 			(long long)elm->leaf.data_offset);
3147 		kprintf("\tdata_len     = %08x\n", elm->leaf.data_len);
3148 		kprintf("\tdata_crc     = %08x\n", elm->leaf.data_crc);
3149 		break;
3150 	}
3151 }
3152