xref: /dragonfly/sys/vfs/hammer/hammer_disk.h (revision 7bc7e232)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_disk.h,v 1.8 2007/11/20 22:55:40 dillon Exp $
35  */
36 
37 #ifndef _SYS_UUID_H_
38 #include <sys/uuid.h>
39 #endif
40 
41 /*
42  * The structures below represent the on-disk format for a HAMMER
43  * filesystem.  Note that all fields for on-disk structures are naturally
44  * aligned.  The host endian format is used - compatibility is possible
45  * if the implementation detects reversed endian and adjusts data accordingly.
46  *
47  * Most of HAMMER revolves around the concept of an object identifier.  An
48  * obj_id is a 64 bit quantity which uniquely identifies a filesystem object
49  * FOR THE ENTIRE LIFE OF THE FILESYSTEM.  This uniqueness allows backups
50  * and mirrors to retain varying amounts of filesystem history by removing
51  * any possibility of conflict through identifier reuse.
52  *
53  * A HAMMER filesystem may spam multiple volumes.
54  *
55  * A HAMMER filesystem uses a 16K filesystem buffer size.  All filesystem
56  * I/O is done in multiples of 16K.  Most buffer-sized headers such as those
57  * used by volumes, super-clusters, clusters, and basic filesystem buffers
58  * use fixed-sized A-lists which are heavily dependant on HAMMER_BUFSIZE.
59  */
60 #define HAMMER_BUFSIZE	16384
61 #define HAMMER_BUFMASK	(HAMMER_BUFSIZE - 1)
62 
63 /*
64  * Hammer transction ids are 64 bit unsigned integers and are usually
65  * synchronized with the time of day in nanoseconds.
66  */
67 typedef u_int64_t hammer_tid_t;
68 
69 #define HAMMER_MAX_TID	0xFFFFFFFFFFFFFFFFULL
70 #define HAMMER_MIN_KEY	-0x8000000000000000LL
71 #define HAMMER_MAX_KEY	0x7FFFFFFFFFFFFFFFLL
72 
73 /*
74  * Most HAMMER data structures are embedded in 16K filesystem buffers.
75  * All filesystem buffers except those designated as pure-data buffers
76  * contain this 128-byte header.
77  *
78  * This structure contains an embedded A-List used to manage space within
79  * the filesystem buffer.  It is not used by volume or cluster header
80  * buffers, or by pure-data buffers.  The granularity is variable and
81  * depends on the type of filesystem buffer.  BLKSIZE is just a minimum.
82  */
83 
84 #define HAMMER_FSBUF_HEAD_SIZE	128
85 #define HAMMER_FSBUF_MAXBLKS	256
86 #define HAMMER_FSBUF_BLKMASK	(HAMMER_FSBUF_MAXBLKS - 1)
87 #define HAMMER_FSBUF_METAELMS	HAMMER_ALIST_METAELMS_256_1LYR	/* 11 */
88 
89 struct hammer_fsbuf_head {
90 	u_int64_t buf_type;
91 	u_int32_t buf_crc;
92 	u_int32_t buf_reserved07;
93 	u_int32_t reserved[6];
94 	struct hammer_almeta buf_almeta[HAMMER_FSBUF_METAELMS];
95 };
96 
97 typedef struct hammer_fsbuf_head *hammer_fsbuf_head_t;
98 
99 /*
100  * Note: Pure-data buffers contain pure-data and have no buf_type.
101  * Piecemeal data buffers do have a header and use HAMMER_FSBUF_DATA.
102  */
103 #define HAMMER_FSBUF_VOLUME	0xC8414D4DC5523031ULL	/* HAMMER01 */
104 #define HAMMER_FSBUF_SUPERCL	0xC8414D52C3555052ULL	/* HAMRSUPR */
105 #define HAMMER_FSBUF_CLUSTER	0xC8414D52C34C5553ULL	/* HAMRCLUS */
106 #define HAMMER_FSBUF_RECORDS	0xC8414D52D2454353ULL	/* HAMRRECS */
107 #define HAMMER_FSBUF_BTREE	0xC8414D52C2545245ULL	/* HAMRBTRE */
108 #define HAMMER_FSBUF_DATA	0xC8414D52C4415441ULL	/* HAMRDATA */
109 
110 #define HAMMER_FSBUF_VOLUME_REV	0x313052C54D4D41C8ULL	/* (reverse endian) */
111 
112 /*
113  * The B-Tree structures need hammer_fsbuf_head.
114  */
115 #include "hammer_btree.h"
116 
117 /*
118  * HAMMER Volume header
119  *
120  * A HAMMER filesystem is built from any number of block devices,  Each block
121  * device contains a volume header followed by however many super-clusters
122  * and clusters fit into the volume.  Clusters cannot be migrated but the
123  * data they contain can, so HAMMER can use a truncated cluster for any
124  * extra space at the end of the volume.
125  *
126  * The volume containing the root cluster is designated as the master volume.
127  * The root cluster designation can be moved to any volume.
128  *
129  * The volume header takes up an entire 16K filesystem buffer and includes
130  * a one or two-layered A-list to manage the clusters making up the volume.
131  * A volume containing up to 32768 clusters (2TB) can be managed with a
132  * single-layered A-list.  A two-layer A-list is capable of managing up
133  * to 16384 super-clusters with each super-cluster containing 32768 clusters
134  * (32768 TB per volume total).  The number of volumes is limited to 32768
135  * but it only takes 512 to fill out a 64 bit address space so for all
136  * intents and purposes the filesystem has no limits.
137  *
138  * cluster addressing within a volume depends on whether a single or
139  * duel-layer A-list is used.  If a duel-layer A-list is used a 16K
140  * super-cluster buffer is needed for every 16384 clusters in the volume.
141  * However, because the A-list's hinting is grouped in multiples of 16
142  * we group 16 super-cluster buffers together (starting just after the
143  * volume header), followed by 16384x16 clusters, and repeat.
144  *
145  * NOTE: A 32768-element single-layer and 16384-element duel-layer A-list
146  * is the same size.
147  *
148  * Special field notes:
149  *
150  *	vol_bot_beg - offset of boot area (mem_beg - bot_beg bytes)
151  *	vol_mem_beg - offset of memory log (clu_beg - mem_beg bytes)
152  *	vol_clo_beg - offset of cluster #0 in volume
153  *
154  *	The memory log area allows a kernel to cache new records and data
155  *	in memory without allocating space in the actual filesystem to hold
156  *	the records and data.  In the event that a filesystem becomes full,
157  *	any records remaining in memory can be flushed to the memory log
158  *	area.  This allows the kernel to immediately return success.
159  */
160 #define HAMMER_VOL_MAXCLUSTERS		32768	/* 1-layer */
161 #define HAMMER_VOL_MAXSUPERCLUSTERS	16384	/* 2-layer */
162 #define HAMMER_VOL_SUPERCLUSTER_GROUP	16
163 #define HAMMER_VOL_METAELMS_1LYR	HAMMER_ALIST_METAELMS_32K_1LYR
164 #define HAMMER_VOL_METAELMS_2LYR	HAMMER_ALIST_METAELMS_16K_2LYR
165 
166 #define HAMMER_BOOT_MINBYTES		(32*1024)
167 #define HAMMER_BOOT_NOMBYTES		(64LL*1024*1024)
168 #define HAMMER_BOOT_MAXBYTES		(256LL*1024*1024)
169 
170 #define HAMMER_MEM_MINBYTES		(256*1024)
171 #define HAMMER_MEM_NOMBYTES		(1LL*1024*1024*1024)
172 #define HAMMER_MEM_MAXBYTES		(64LL*1024*1024*1024)
173 
174 struct hammer_volume_ondisk {
175 	struct hammer_fsbuf_head head;
176 	int64_t vol_bot_beg;	/* byte offset of boot area or 0 */
177 	int64_t vol_mem_beg;	/* byte offset of memory log or 0 */
178 	int64_t vol_clo_beg;	/* byte offset of first cl/supercl in volume */
179 	int64_t vol_clo_end;	/* byte offset of volume EOF */
180 	int64_t vol_locked;	/* reserved clusters are >= this offset */
181 
182 	uuid_t    vol_fsid;	/* identify filesystem */
183 	uuid_t    vol_fstype;	/* identify filesystem type */
184 	char	  vol_name[64];	/* Name of volume */
185 
186 	int32_t vol_no;		/* volume number within filesystem */
187 	int32_t vol_count;	/* number of volumes making up FS */
188 
189 	u_int32_t vol_version;	/* version control information */
190 	u_int32_t vol_reserved01;
191 	u_int32_t vol_flags;	/* volume flags */
192 	u_int32_t vol_rootvol;	/* which volume is the root volume? */
193 
194 	int32_t vol_clsize;	/* cluster size (same for all volumes) */
195 	int32_t vol_nclusters;
196 	u_int32_t vol_reserved06;
197 	u_int32_t vol_reserved07;
198 
199 	int32_t vol_stat_blocksize;	/* for statfs only */
200 	int64_t	vol_stat_bytes;		/* for statfs only */
201 	int64_t vol_stat_inodes;	/* for statfs only */
202 
203 	/*
204 	 * These fields are initialized and space is reserved in every
205 	 * volume making up a HAMMER filesytem, but only the master volume
206 	 * contains valid data.
207 	 */
208 	int32_t vol0_root_clu_no;	/* root cluster no (index) in rootvol */
209 	hammer_tid_t vol0_root_clu_id;	/* root cluster id */
210 	hammer_tid_t vol0_nexttid;	/* next TID */
211 	u_int64_t vol0_recid;		/* fs-wide record id allocator */
212 	u_int64_t vol0_synchronized_rec_id; /* XXX */
213 
214 	char	reserved[1024];
215 
216 	/*
217 	 * Meta elements for the volume header's A-list, which is either a
218 	 * 1-layer A-list capable of managing 32768 clusters, or a 2-layer
219 	 * A-list capable of managing 16384 super-clusters (each of which
220 	 * can handle 32768 clusters).
221 	 */
222 	union {
223 		struct hammer_almeta	super[HAMMER_VOL_METAELMS_2LYR];
224 		struct hammer_almeta	normal[HAMMER_VOL_METAELMS_1LYR];
225 	} vol_almeta;
226 	u_int32_t	vol0_bitmap[1024];
227 };
228 
229 typedef struct hammer_volume_ondisk *hammer_volume_ondisk_t;
230 
231 #define HAMMER_VOLF_VALID		0x0001	/* valid entry */
232 #define HAMMER_VOLF_OPEN		0x0002	/* volume is open */
233 #define HAMMER_VOLF_USINGSUPERCL	0x0004	/* using superclusters */
234 
235 /*
236  * HAMMER Super-cluster header
237  *
238  * A super-cluster is used to increase the maximum size of a volume.
239  * HAMMER's volume header can manage up to 32768 direct clusters or
240  * 16384 super-clusters.  Each super-cluster (which is basically just
241  * a 16K filesystem buffer) can manage up to 32768 clusters.  So adding
242  * a super-cluster layer allows a HAMMER volume to be sized upwards of
243  * around 32768TB instead of 2TB.
244  *
245  * Any volume initially formatted to be over 32G reserves space for the layer
246  * but the layer is only enabled if the volume exceeds 2TB.
247  */
248 #define HAMMER_SUPERCL_METAELMS		HAMMER_ALIST_METAELMS_32K_1LYR
249 #define HAMMER_SCL_MAXCLUSTERS		HAMMER_VOL_MAXCLUSTERS
250 
251 struct hammer_supercl_ondisk {
252 	struct hammer_fsbuf_head head;
253 	uuid_t	vol_fsid;	/* identify filesystem - sanity check */
254 	uuid_t	vol_fstype;	/* identify filesystem type - sanity check */
255 	int32_t reserved[1024];
256 
257 	struct hammer_almeta	scl_meta[HAMMER_SUPERCL_METAELMS];
258 };
259 
260 typedef struct hammer_supercl_ondisk *hammer_supercl_ondisk_t;
261 
262 /*
263  * HAMMER Cluster header
264  *
265  * A cluster is limited to 64MB and is made up of 4096 16K filesystem
266  * buffers.  The cluster header contains four A-lists to manage these
267  * buffers.
268  *
269  * master_alist - This is a non-layered A-list which manages pure-data
270  *		  allocations and allocations on behalf of other A-lists.
271  *
272  * btree_alist  - This is a layered A-list which manages filesystem buffers
273  *		  containing B-Tree nodes.
274  *
275  * record_alist - This is a layered A-list which manages filesystem buffers
276  *		  containing records.
277  *
278  * mdata_alist  - This is a layered A-list which manages filesystem buffers
279  *		  containing piecemeal record data.
280  *
281  * General storage management works like this:  All the A-lists except the
282  * master start in an all-allocated state.  Now lets say you wish to allocate
283  * a B-Tree node out the btree_alist.  If the allocation fails you allocate
284  * a pure data block out of master_alist and then free that  block in
285  * btree_alist, thereby assigning more space to the btree_alist, and then
286  * retry your allocation out of the btree_alist.  In the reverse direction,
287  * filesystem buffers can be garbage collected back to master_alist simply
288  * by doing whole-buffer allocations in btree_alist and then freeing the
289  * space in master_alist.  The whole-buffer-allocation approach to garbage
290  * collection works because A-list allocations are always power-of-2 sized
291  * and aligned.
292  */
293 #define HAMMER_CLU_MAXBUFFERS		4096
294 #define HAMMER_CLU_MASTER_METAELMS	HAMMER_ALIST_METAELMS_4K_1LYR
295 #define HAMMER_CLU_SLAVE_METAELMS	HAMMER_ALIST_METAELMS_4K_2LYR
296 #define HAMMER_CLU_MAXBYTES		(HAMMER_CLU_MAXBUFFERS * HAMMER_BUFSIZE)
297 
298 struct hammer_cluster_ondisk {
299 	struct hammer_fsbuf_head head;
300 	uuid_t	vol_fsid;	/* identify filesystem - sanity check */
301 	uuid_t	vol_fstype;	/* identify filesystem type - sanity check */
302 
303 	hammer_tid_t clu_id;	/* unique cluster self identification */
304 	hammer_tid_t clu_gen;	/* generation number */
305 	int32_t vol_no;		/* cluster contained in volume (sanity) */
306 	u_int32_t clu_flags;	/* cluster flags */
307 
308 	int32_t clu_start;	/* start of data (byte offset) */
309 	int32_t clu_limit;	/* end of data (byte offset) */
310 	int32_t clu_no;		/* cluster index in volume (sanity) */
311 	u_int32_t clu_reserved03;
312 
313 	u_int32_t clu_reserved04;
314 	u_int32_t clu_reserved05;
315 	u_int32_t clu_reserved06;
316 	u_int32_t clu_reserved07;
317 
318 	int32_t idx_data;	/* data append point (element no) */
319 	int32_t idx_index;	/* index append point (element no) */
320 	int32_t idx_record;	/* record prepend point (element no) */
321 	u_int32_t idx_reserved03;
322 
323 	/*
324 	 * Specify the range of information stored in this cluster as two
325 	 * btree elements.   These elements match the left and right
326 	 * boundary elements in the internal B-Tree node of the parent
327 	 * cluster that points to the root of our cluster.  Because these
328 	 * are boundary elements, the right boundary is range-NONinclusive.
329 	 */
330 	struct hammer_base_elm clu_btree_beg;
331 	struct hammer_base_elm clu_btree_end;
332 
333 	/*
334 	 * The cluster's B-Tree root can change as a side effect of insertion
335 	 * and deletion operations so store an offset instead of embedding
336 	 * the root node.  The parent_offset is stale if the generation number
337 	 * does not match.
338 	 *
339 	 * Parent linkages are explicit.
340 	 */
341 	int32_t		clu_btree_root;
342 	int32_t		clu_btree_parent_vol_no;
343 	int32_t		clu_btree_parent_clu_no;
344 	int32_t		clu_btree_parent_offset;
345 	hammer_tid_t	clu_btree_parent_clu_gen;
346 
347 	u_int64_t synchronized_rec_id;
348 
349 	struct hammer_almeta	clu_master_meta[HAMMER_CLU_MASTER_METAELMS];
350 	struct hammer_almeta	clu_btree_meta[HAMMER_CLU_SLAVE_METAELMS];
351 	struct hammer_almeta	clu_record_meta[HAMMER_CLU_SLAVE_METAELMS];
352 	struct hammer_almeta	clu_mdata_meta[HAMMER_CLU_SLAVE_METAELMS];
353 };
354 
355 typedef struct hammer_cluster_ondisk *hammer_cluster_ondisk_t;
356 
357 /*
358  * HAMMER records are 96 byte entities encoded into 16K filesystem buffers.
359  * Each record has a 64 byte header and a 32 byte extension.  170 records
360  * fit into each buffer.  Storage is managed by the buffer's A-List.
361  *
362  * Each record may have an explicit data reference to a block of data up
363  * to 2^31-1 bytes in size within the current cluster.  Note that multiple
364  * records may share the same or overlapping data references.
365  */
366 
367 /*
368  * All HAMMER records have a common 64-byte base and a 32-byte extension.
369  *
370  * Many HAMMER record types reference out-of-band data within the cluster.
371  * This data can also be stored in-band in the record itself if it is small
372  * enough.  Either way, (data_offset, data_len) points to it.
373  *
374  * Key comparison order:  obj_id, rec_type, key, create_tid
375  */
376 struct hammer_base_record {
377 	/*
378 	 * 40 byte base element info - same base as used in B-Tree internal
379 	 * and leaf node element arrays.
380 	 *
381 	 * Fields: obj_id, key, create_tid, delete_tid, rec_type, obj_type,
382 	 *	   reserved07.
383 	 */
384 	struct hammer_base_elm base; /* 00 base element info */
385 
386 	int32_t data_len;	/* 28 size of data (remainder zero-fill) */
387 	u_int32_t data_crc;	/* 2C data sanity check */
388 	u_int64_t rec_id;	/* 30 record id (iterator for recovery) */
389 	int32_t	  data_offset;	/* 38 cluster-relative data reference or 0 */
390 	u_int32_t reserved07;	/* 3C */
391 				/* 40 */
392 };
393 
394 /*
395  * Record types are fairly straightforward.  The B-Tree includes the record
396  * type in its index sort.
397  *
398  * In particular please note that it is possible to create a pseudo-
399  * filesystem within a HAMMER filesystem by creating a special object
400  * type within a directory.  Pseudo-filesystems are used as replication
401  * targets and even though they are built within a HAMMER filesystem they
402  * get their own obj_id space (and thus can serve as a replication target)
403  * and look like a mount point to the system.
404  *
405  * Inter-cluster records are special-cased in the B-Tree.  These records
406  * are referenced from a B-Tree INTERNAL node, NOT A LEAF.  This means
407  * that the element in the B-Tree node is actually a boundary element whos
408  * base element fields, including rec_type, reflect the boundary, NOT
409  * the inter-cluster record type.
410  *
411  * HAMMER_RECTYPE_CLUSTER - only set in the actual inter-cluster record,
412  * not set in the left or right boundary elements around the inter-cluster
413  * reference of an internal node in the B-Tree (because doing so would
414  * interfere with the boundary tests).
415  */
416 #define HAMMER_RECTYPE_UNKNOWN		0
417 #define HAMMER_RECTYPE_LOWEST		1	/* lowest record type avail */
418 #define HAMMER_RECTYPE_INODE		1	/* inode in obj_id space */
419 #define HAMMER_RECTYPE_PSEUDO_INODE	2	/* pseudo filesysem */
420 #define HAMMER_RECTYPE_CLUSTER		3	/* inter-cluster reference */
421 #define HAMMER_RECTYPE_DATA		0x10
422 #define HAMMER_RECTYPE_DIRENTRY		0x11
423 #define HAMMER_RECTYPE_DB		0x12
424 #define HAMMER_RECTYPE_EXT		0x13	/* ext attributes */
425 
426 #define HAMMER_OBJTYPE_UNKNOWN		0	/* (never exists on-disk) */
427 #define HAMMER_OBJTYPE_DIRECTORY	1
428 #define HAMMER_OBJTYPE_REGFILE		2
429 #define HAMMER_OBJTYPE_DBFILE		3
430 #define HAMMER_OBJTYPE_FIFO		4
431 #define HAMMER_OBJTYPE_CDEV		5
432 #define HAMMER_OBJTYPE_BDEV		6
433 #define HAMMER_OBJTYPE_SOFTLINK		7
434 #define HAMMER_OBJTYPE_PSEUDOFS		8	/* pseudo filesystem obj */
435 
436 /*
437  * Generic full-sized record
438  */
439 struct hammer_generic_record {
440 	struct hammer_base_record base;
441 	char filler[32];
442 };
443 
444 /*
445  * A HAMMER inode record.
446  *
447  * This forms the basis for a filesystem object.  obj_id is the inode number,
448  * key1 represents the pseudo filesystem id for security partitioning
449  * (preventing cross-links and/or restricting a NFS export and specifying the
450  * security policy), and key2 represents the data retention policy id.
451  *
452  * Inode numbers are 64 bit quantities which uniquely identify a filesystem
453  * object for the ENTIRE life of the filesystem, even after the object has
454  * been deleted.  For all intents and purposes inode numbers are simply
455  * allocated by incrementing a sequence space.
456  *
457  * There is an important distinction between the data stored in the inode
458  * record and the record's data reference.  The record references a
459  * hammer_inode_data structure but the filesystem object size and hard link
460  * count is stored in the inode record itself.  This allows multiple inodes
461  * to share the same hammer_inode_data structure.  This is possible because
462  * any modifications will lay out new data.  The HAMMER implementation need
463  * not use the data-sharing ability when laying down new records.
464  *
465  * A HAMMER inode is subject to the same historical storage requirements
466  * as any other record.  In particular any change in filesystem or hard link
467  * count will lay down a new inode record when the filesystem is synced to
468  * disk.  This can lead to a lot of junk records which get cleaned up by
469  * the data retention policy.
470  *
471  * The ino_atime and ino_mtime fields are a special case.  Modifications to
472  * these fields do NOT lay down a new record by default, though the values
473  * are effectively frozen for snapshots which access historical versions
474  * of the inode record due to other operations.  This means that atime will
475  * not necessarily be accurate in snapshots, backups, or mirrors.  mtime
476  * will be accurate in backups and mirrors since it can be regenerated from
477  * the mirroring stream.
478  *
479  * Because nlinks is historically retained the hardlink count will be
480  * accurate when accessing a HAMMER filesystem snapshot.
481  */
482 struct hammer_inode_record {
483 	struct hammer_base_record base;
484 	u_int64_t ino_atime;	/* last access time (not historical) */
485 	u_int64_t ino_mtime;	/* last modified time (not historical) */
486 	u_int64_t ino_size;	/* filesystem object size */
487 	u_int64_t ino_nlinks;	/* hard links */
488 };
489 
490 /*
491  * Data records specify the entire contents of a regular file object,
492  * including attributes.  Small amounts of data can theoretically be
493  * embedded in the record itself but the use of this ability verses using
494  * an out-of-band data reference depends on the implementation.
495  */
496 struct hammer_data_record {
497 	struct hammer_base_record base;
498 	char filler[32];
499 };
500 
501 /*
502  * A directory entry specifies the HAMMER filesystem object id, a copy of
503  * the file type, and file name (either embedded or as out-of-band data).
504  * If the file name is short enough to fit into den_name[] (including a
505  * terminating nul) then it will be embedded in the record, otherwise it
506  * is stored out-of-band.  The base record's data reference always points
507  * to the nul-terminated filename regardless.
508  *
509  * Directory entries are indexed with a 128 bit namekey rather then an
510  * offset.  A portion of the namekey is an iterator or randomizer to deal
511  * with collisions.
512  *
513  * NOTE: base.base.obj_type holds the filesystem object type of obj_id,
514  *	 e.g. a den_type equivalent.
515  *
516  * NOTE: den_name / the filename data reference is NOT terminated with \0.
517  *
518  */
519 struct hammer_entry_record {
520 	struct hammer_base_record base;
521 	u_int64_t obj_id;		/* object being referenced */
522 	u_int64_t reserved01;
523 	char	  den_name[16];		/* short file names fit in record */
524 };
525 
526 /*
527  * Hammer rollup record
528  */
529 union hammer_record_ondisk {
530 	struct hammer_base_record	base;
531 	struct hammer_generic_record	generic;
532 	struct hammer_inode_record	inode;
533 	struct hammer_data_record	data;
534 	struct hammer_entry_record	entry;
535 };
536 
537 typedef union hammer_record_ondisk *hammer_record_ondisk_t;
538 
539 /*
540  * Filesystem buffer for records
541  */
542 #define HAMMER_RECORD_NODES	\
543 	((HAMMER_BUFSIZE - sizeof(struct hammer_fsbuf_head)) / \
544 	sizeof(union hammer_record_ondisk))
545 
546 struct hammer_fsbuf_recs {
547 	struct hammer_fsbuf_head	head;
548 	char				unused[32];
549 	union hammer_record_ondisk	recs[HAMMER_RECORD_NODES];
550 };
551 
552 /*
553  * Filesystem buffer for piecemeal data.  Note that this does not apply
554  * to dedicated pure-data buffers as such buffers do not have a header.
555  */
556 
557 #define HAMMER_DATA_SIZE	(HAMMER_BUFSIZE - sizeof(struct hammer_fsbuf_head))
558 #define HAMMER_DATA_BLKSIZE	64
559 #define HAMMER_DATA_BLKMASK	(HAMMER_DATA_BLKSIZE-1)
560 #define HAMMER_DATA_NODES	(HAMMER_DATA_SIZE / HAMMER_DATA_BLKSIZE)
561 
562 struct hammer_fsbuf_data {
563 	struct hammer_fsbuf_head head;
564 	u_int8_t		data[HAMMER_DATA_NODES][HAMMER_DATA_BLKSIZE];
565 };
566 
567 /*
568  * Filesystem buffer rollup
569  */
570 union hammer_fsbuf_ondisk {
571 	struct hammer_fsbuf_head	head;
572 	struct hammer_fsbuf_btree	btree;
573 	struct hammer_fsbuf_recs	record;
574 	struct hammer_fsbuf_data	data;
575 };
576 
577 typedef union hammer_fsbuf_ondisk *hammer_fsbuf_ondisk_t;
578 
579 /*
580  * HAMMER UNIX Attribute data
581  *
582  * The data reference in a HAMMER inode record points to this structure.  Any
583  * modifications to the contents of this structure will result in a record
584  * replacement operation.
585  *
586  * state_sum allows a filesystem object to be validated to a degree by
587  * generating a checksum of all of its pieces (in no particular order) and
588  * checking it against this field.
589  *
590  * short_data_off allows a small amount of data to be embedded in the
591  * hammer_inode_data structure.  HAMMER typically uses this to represent
592  * up to 64 bytes of data, or to hold symlinks.  Remember that allocations
593  * are in powers of 2 so 64, 192, 448, or 960 bytes of embedded data is
594  * support (64+64, 64+192, 64+448 64+960).
595  *
596  * parent_obj_id is only valid for directories (which cannot be hard-linked),
597  * and specifies the parent directory obj_id.  This field will also be set
598  * for non-directory inodes as a recovery aid, but can wind up specifying
599  * stale information.  However, since object id's are not reused, the worse
600  * that happens is that the recovery code is unable to use it.
601  */
602 struct hammer_inode_data {
603 	u_int16_t version;	/* inode data version */
604 	u_int16_t mode;		/* basic unix permissions */
605 	u_int32_t uflags;	/* chflags */
606 	u_int16_t short_data_off; /* degenerate data case */
607 	u_int16_t short_data_len;
608 	u_int32_t state_sum;
609 	u_int64_t ctime;
610 	u_int64_t parent_obj_id;/* parent directory obj_id */
611 	uuid_t	uid;
612 	uuid_t	gid;
613 	/* XXX device, softlink extension */
614 };
615 
616 #define HAMMER_INODE_DATA_VERSION	1
617 
618 /*
619  * Rollup various structures embedded as record data
620  */
621 union hammer_data_ondisk {
622 	struct hammer_inode_data inode;
623 };
624 
625