xref: /dragonfly/sys/vfs/hammer/hammer_disk.h (revision dc861544)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_disk.h,v 1.27 2008/03/19 20:18:17 dillon Exp $
35  */
36 
37 #ifndef VFS_HAMMER_DISK_H_
38 #define VFS_HAMMER_DISK_H_
39 
40 #ifndef _SYS_UUID_H_
41 #include <sys/uuid.h>
42 #endif
43 
44 /*
45  * The structures below represent the on-disk format for a HAMMER
46  * filesystem.  Note that all fields for on-disk structures are naturally
47  * aligned.  The host endian format is used - compatibility is possible
48  * if the implementation detects reversed endian and adjusts data accordingly.
49  *
50  * Most of HAMMER revolves around the concept of an object identifier.  An
51  * obj_id is a 64 bit quantity which uniquely identifies a filesystem object
52  * FOR THE ENTIRE LIFE OF THE FILESYSTEM.  This uniqueness allows backups
53  * and mirrors to retain varying amounts of filesystem history by removing
54  * any possibility of conflict through identifier reuse.
55  *
56  * A HAMMER filesystem may spam multiple volumes.
57  *
58  * A HAMMER filesystem uses a 16K filesystem buffer size.  All filesystem
59  * I/O is done in multiples of 16K.  Most buffer-sized headers such as those
60  * used by volumes, super-clusters, clusters, and basic filesystem buffers
61  * use fixed-sized A-lists which are heavily dependant on HAMMER_BUFSIZE.
62  *
63  * Per-volume storage limit: 52 bits		4096 TB
64  * Per-Zone storage limit: 59 bits		512 KTB (due to blockmap)
65  * Per-filesystem storage limit: 60 bits	1 MTB
66  */
67 #define HAMMER_BUFSIZE		16384
68 #define HAMMER_BUFMASK		(HAMMER_BUFSIZE - 1)
69 #define HAMMER_MAXDATA		(256*1024)
70 #define HAMMER_BUFFER_BITS	14
71 
72 #if (1 << HAMMER_BUFFER_BITS) != HAMMER_BUFSIZE
73 #error "HAMMER_BUFFER_BITS BROKEN"
74 #endif
75 
76 #define HAMMER_BUFSIZE64	((u_int64_t)HAMMER_BUFSIZE)
77 #define HAMMER_BUFMASK64	((u_int64_t)HAMMER_BUFMASK)
78 
79 #define HAMMER_OFF_ZONE_MASK	0xF000000000000000ULL /* zone portion */
80 #define HAMMER_OFF_VOL_MASK	0x0FF0000000000000ULL /* volume portion */
81 #define HAMMER_OFF_SHORT_MASK	0x000FFFFFFFFFFFFFULL /* offset portion */
82 #define HAMMER_OFF_LONG_MASK	0x0FFFFFFFFFFFFFFFULL /* offset portion */
83 #define HAMMER_OFF_SHORT_REC_MASK 0x000FFFFFFF000000ULL /* recovery boundary */
84 #define HAMMER_OFF_LONG_REC_MASK 0x0FFFFFFFFF000000ULL /* recovery boundary */
85 #define HAMMER_RECOVERY_BND	0x0000000001000000ULL
86 
87 /*
88  * Hammer transction ids are 64 bit unsigned integers and are usually
89  * synchronized with the time of day in nanoseconds.
90  *
91  * Hammer offsets are used for FIFO indexing and embed a cycle counter
92  * and volume number in addition to the offset.  Most offsets are required
93  * to be 64-byte aligned.
94  */
95 typedef u_int64_t hammer_tid_t;
96 typedef u_int64_t hammer_off_t;
97 
98 #define HAMMER_MIN_TID		0ULL			/* unsigned */
99 #define HAMMER_MAX_TID		0xFFFFFFFFFFFFFFFFULL	/* unsigned */
100 #define HAMMER_MIN_KEY		-0x8000000000000000LL	/* signed */
101 #define HAMMER_MAX_KEY		0x7FFFFFFFFFFFFFFFLL	/* signed */
102 #define HAMMER_MIN_OBJID	HAMMER_MIN_KEY		/* signed */
103 #define HAMMER_MAX_OBJID	HAMMER_MAX_KEY		/* signed */
104 #define HAMMER_MIN_RECTYPE	0x0U			/* unsigned */
105 #define HAMMER_MAX_RECTYPE	0xFFFFU			/* unsigned */
106 #define HAMMER_MIN_OFFSET	0ULL			/* unsigned */
107 #define HAMMER_MAX_OFFSET	0xFFFFFFFFFFFFFFFFULL	/* unsigned */
108 
109 /*
110  * hammer_off_t has several different encodings.  Note that not all zones
111  * encode a vol_no.
112  *
113  * zone 0 (z,v,o):	reserved (for sanity)
114  * zone 1 (z,v,o):	raw volume relative (offset 0 is the volume header)
115  * zone 2 (z,v,o):	raw buffer relative (offset 0 is the first buffer)
116  * zone 3 (z,o):	undo fifo	- fixed layer2 array in root vol hdr
117  * zone 4 (z,v,o):	freemap		- freemap-backed self-mapping special
118  *					  cased layering.
119  *
120  * zone 8 (z,o):	B-Tree		- blkmap-backed
121  * zone 9 (z,o):	Record		- blkmap-backed
122  * zone 10 (z,o):	Large-data	- blkmap-backed
123  */
124 
125 #define HAMMER_ZONE_RAW_VOLUME		0x1000000000000000ULL
126 #define HAMMER_ZONE_RAW_BUFFER		0x2000000000000000ULL
127 #define HAMMER_ZONE_UNDO		0x3000000000000000ULL
128 #define HAMMER_ZONE_FREEMAP		0x4000000000000000ULL
129 #define HAMMER_ZONE_RESERVED05		0x5000000000000000ULL
130 #define HAMMER_ZONE_RESERVED06		0x6000000000000000ULL
131 #define HAMMER_ZONE_RESERVED07		0x7000000000000000ULL
132 #define HAMMER_ZONE_BTREE		0x8000000000000000ULL
133 #define HAMMER_ZONE_RECORD		0x9000000000000000ULL
134 #define HAMMER_ZONE_LARGE_DATA		0xA000000000000000ULL
135 #define HAMMER_ZONE_SMALL_DATA		0xB000000000000000ULL
136 #define HAMMER_ZONE_RESERVED0C		0xC000000000000000ULL
137 #define HAMMER_ZONE_RESERVED0D		0xD000000000000000ULL
138 #define HAMMER_ZONE_RESERVED0E		0xE000000000000000ULL
139 #define HAMMER_ZONE_RESERVED0F		0xF000000000000000ULL
140 
141 #define HAMMER_ZONE_RAW_VOLUME_INDEX	1
142 #define HAMMER_ZONE_RAW_BUFFER_INDEX	2
143 #define HAMMER_ZONE_UNDO_INDEX		3
144 #define HAMMER_ZONE_FREEMAP_INDEX	4
145 #define HAMMER_ZONE_BTREE_INDEX		8
146 #define HAMMER_ZONE_RECORD_INDEX	9
147 #define HAMMER_ZONE_LARGE_DATA_INDEX	10
148 #define HAMMER_ZONE_SMALL_DATA_INDEX	11
149 
150 /*
151  * Per-zone size limitation.  This just makes the iterator easier
152  * to deal with by preventing an iterator overflow.
153  */
154 #define HAMMER_ZONE_LIMIT		\
155 	(0x1000000000000000ULL - HAMMER_BLOCKMAP_LAYER2)
156 
157 #define HAMMER_MAX_ZONES		16
158 
159 #define HAMMER_VOL_ENCODE(vol_no)			\
160 	((hammer_off_t)((vol_no) & 255) << 52)
161 #define HAMMER_VOL_DECODE(ham_off)			\
162 	(int32_t)(((hammer_off_t)(ham_off) >> 52) & 255)
163 #define HAMMER_ZONE_DECODE(ham_off)			\
164 	(int32_t)(((hammer_off_t)(ham_off) >> 60))
165 #define HAMMER_ZONE_ENCODE(zone, ham_off)		\
166 	(((hammer_off_t)(zone) << 60) | (ham_off))
167 #define HAMMER_SHORT_OFF_ENCODE(offset)			\
168 	((hammer_off_t)(offset) & HAMMER_OFF_SHORT_MASK)
169 #define HAMMER_LONG_OFF_ENCODE(offset)			\
170 	((hammer_off_t)(offset) & HAMMER_OFF_LONG_MASK)
171 
172 #define HAMMER_ENCODE_RAW_VOLUME(vol_no, offset)	\
173 	(HAMMER_ZONE_RAW_VOLUME |			\
174 	HAMMER_VOL_ENCODE(vol_no) |			\
175 	HAMMER_SHORT_OFF_ENCODE(offset))
176 
177 #define HAMMER_ENCODE_RAW_BUFFER(vol_no, offset)	\
178 	(HAMMER_ZONE_RAW_BUFFER |			\
179 	HAMMER_VOL_ENCODE(vol_no) |			\
180 	HAMMER_SHORT_OFF_ENCODE(offset))
181 
182 #define HAMMER_ENCODE_FREEMAP(vol_no, offset)		\
183 	(HAMMER_ZONE_FREEMAP |				\
184 	HAMMER_VOL_ENCODE(vol_no) |			\
185 	HAMMER_SHORT_OFF_ENCODE(offset))
186 
187 /*
188  * Large-Block backing store
189  *
190  * A blockmap is a two-level map which translates a blockmap-backed zone
191  * offset into a raw zone 2 offset.  Each layer handles 18 bits.  The 8M
192  * large-block size is 23 bits so two layers gives us 23+18+18 = 59 bits
193  * of address space.
194  */
195 #define HAMMER_LARGEBLOCK_SIZE		(8192 * 1024)
196 #define HAMMER_LARGEBLOCK_SIZE64	((u_int64_t)HAMMER_LARGEBLOCK_SIZE)
197 #define HAMMER_LARGEBLOCK_MASK		(HAMMER_LARGEBLOCK_SIZE - 1)
198 #define HAMMER_LARGEBLOCK_MASK64	((u_int64_t)HAMMER_LARGEBLOCK_SIZE - 1)
199 #define HAMMER_LARGEBLOCK_BITS		23
200 #if (1 << HAMMER_LARGEBLOCK_BITS) != HAMMER_LARGEBLOCK_SIZE
201 #error "HAMMER_LARGEBLOCK_BITS BROKEN"
202 #endif
203 
204 #define HAMMER_BUFFERS_PER_LARGEBLOCK			\
205 	(HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE)
206 #define HAMMER_BUFFERS_PER_LARGEBLOCK_MASK		\
207 	(HAMMER_BUFFERS_PER_LARGEBLOCK - 1)
208 #define HAMMER_BUFFERS_PER_LARGEBLOCK_MASK64		\
209 	((hammer_off_t)HAMMER_BUFFERS_PER_LARGEBLOCK_MASK)
210 
211 /*
212  * Every blockmap has this root structure in the root volume header.
213  *
214  * NOTE: zone 3 (the undo FIFO) does not use phys_offset.  first and next
215  * offsets represent the FIFO.
216  */
217 struct hammer_blockmap {
218 	hammer_off_t	phys_offset;    /* zone-2 physical offset */
219 	hammer_off_t	first_offset;	/* zone-X logical offset (zone 3) */
220 	hammer_off_t	next_offset;	/* zone-X logical offset */
221 	hammer_off_t	alloc_offset;	/* zone-X logical offset */
222 	u_int32_t	entry_crc;
223 	u_int32_t	reserved01;
224 };
225 
226 typedef struct hammer_blockmap *hammer_blockmap_t;
227 
228 /*
229  * The blockmap is a 2-layer entity made up of big-blocks.  The first layer
230  * contains 262144 32-byte entries (18 bits), the second layer contains
231  * 524288 16-byte entries (19 bits), representing 8MB (23 bit) blockmaps.
232  * 18+19+23 = 60 bits.  The top four bits are the zone id.
233  *
234  * Layer 2 encodes the physical bigblock mapping for a blockmap.  The freemap
235  * uses this field to encode the virtual blockmap offset that allocated the
236  * physical block.
237  *
238  * NOTE:  The freemap maps the vol_no in the upper 8 bits of layer1.
239  *
240  * zone-4 blockmap offset: [z:4][layer1:18][layer2:19][bigblock:23]
241  */
242 struct hammer_blockmap_layer1 {
243 	hammer_off_t	blocks_free;	/* big-blocks free */
244 	hammer_off_t	phys_offset;	/* UNAVAIL or zone-2 */
245 	u_int32_t	layer1_crc;	/* crc of this entry */
246 	u_int32_t	layer2_crc;	/* xor'd crc's of HAMMER_BLOCKSIZE */
247 	hammer_off_t	reserved01;
248 };
249 
250 struct hammer_blockmap_layer2 {
251 	u_int32_t	entry_crc;
252 	u_int32_t	bytes_free;	/* bytes free within this bigblock */
253 	union {
254 		hammer_off_t	owner;		/* used by freemap */
255 		hammer_off_t	phys_offset;	/* used by blockmap */
256 	} u;
257 };
258 
259 #define HAMMER_BLOCKMAP_FREE	0ULL
260 #define HAMMER_BLOCKMAP_UNAVAIL	((hammer_off_t)-1LL)
261 
262 #define HAMMER_BLOCKMAP_RADIX1	/* 262144 (18) */	\
263 	(HAMMER_LARGEBLOCK_SIZE / sizeof(struct hammer_blockmap_layer1))
264 #define HAMMER_BLOCKMAP_RADIX2	/* 524288 (19) */	\
265 	(HAMMER_LARGEBLOCK_SIZE / sizeof(struct hammer_blockmap_layer2))
266 
267 #define HAMMER_BLOCKMAP_RADIX1_PERBUFFER	\
268 	(HAMMER_BLOCKMAP_RADIX1 / (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE))
269 #define HAMMER_BLOCKMAP_RADIX2_PERBUFFER	\
270 	(HAMMER_BLOCKMAP_RADIX2 / (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE))
271 
272 #define HAMMER_BLOCKMAP_LAYER1	/* 18+19+23 */		\
273 	(HAMMER_BLOCKMAP_RADIX1 * HAMMER_BLOCKMAP_LAYER2)
274 #define HAMMER_BLOCKMAP_LAYER2	/* 19+23 */		\
275 	(HAMMER_BLOCKMAP_RADIX2 * HAMMER_LARGEBLOCK_SIZE64)
276 
277 #define HAMMER_BLOCKMAP_LAYER1_MASK	(HAMMER_BLOCKMAP_LAYER1 - 1)
278 #define HAMMER_BLOCKMAP_LAYER2_MASK	(HAMMER_BLOCKMAP_LAYER2 - 1)
279 
280 /*
281  * byte offset within layer1 or layer2 big-block for the entry representing
282  * a zone-2 physical offset.
283  */
284 #define HAMMER_BLOCKMAP_LAYER1_OFFSET(zone2_offset)	\
285 	(((zone2_offset) & HAMMER_BLOCKMAP_LAYER1_MASK) / 	\
286 	 HAMMER_BLOCKMAP_LAYER2 * sizeof(struct hammer_blockmap_layer1))
287 
288 #define HAMMER_BLOCKMAP_LAYER2_OFFSET(zone2_offset)	\
289 	(((zone2_offset) & HAMMER_BLOCKMAP_LAYER2_MASK) /	\
290 	HAMMER_LARGEBLOCK_SIZE64 * sizeof(struct hammer_blockmap_layer2))
291 
292 /*
293  * HAMMER UNDO parameters.  The UNDO fifo is mapped directly in the volume
294  * header with an array of layer2 structures.  A maximum of (64x8MB) = 512MB
295  * may be reserved.  The size of the undo fifo is usually set a newfs time
296  * but can be adjusted if the filesystem is taken offline.
297  */
298 
299 #define HAMMER_UNDO_LAYER2	64	/* max layer2 undo mapping entries */
300 
301 /*
302  * All on-disk HAMMER structures which make up elements of the UNDO FIFO
303  * contain a hammer_fifo_head and hammer_fifo_tail structure.  This structure
304  * contains all the information required to validate the fifo element
305  * and to scan the fifo in either direction.  The head is typically embedded
306  * in higher level hammer on-disk structures while the tail is typically
307  * out-of-band.  hdr_size is the size of the whole mess, including the tail.
308  *
309  * All undo structures are guaranteed to not cross a 16K filesystem
310  * buffer boundary.  Most undo structures are fairly small.  Data spaces
311  * are not immediately reused by HAMMER so file data is not usually recorded
312  * as part of an UNDO.
313  *
314  * PAD elements are allowed to take up only 8 bytes of space as a special
315  * case, containing only hdr_signature, hdr_type, and hdr_size fields,
316  * and with the tail overloaded onto the head structure for 8 bytes total.
317  *
318  * Every undo record has a sequence number.  This number is unrelated to
319  * transaction ids and instead collects the undo transactions associated
320  * with a single atomic operation.  A larger transactional operation, such
321  * as a remove(), may consist of several smaller atomic operations
322  * representing raw meta-data operations.
323  */
324 #define HAMMER_HEAD_ONDISK_SIZE		32
325 #define HAMMER_HEAD_ALIGN		8
326 #define HAMMER_HEAD_ALIGN_MASK		(HAMMER_HEAD_ALIGN - 1)
327 #define HAMMER_TAIL_ONDISK_SIZE		8
328 
329 struct hammer_fifo_head {
330 	u_int16_t hdr_signature;
331 	u_int16_t hdr_type;
332 	u_int32_t hdr_size;	/* aligned size of the whole mess */
333 	u_int32_t hdr_crc;
334 	u_int32_t hdr_seq;
335 	u_int64_t hdr_tid;	/* related TID */
336 };
337 
338 struct hammer_fifo_tail {
339 	u_int16_t tail_signature;
340 	u_int16_t tail_type;
341 	u_int32_t tail_size;	/* aligned size of the whole mess */
342 };
343 
344 typedef struct hammer_fifo_head *hammer_fifo_head_t;
345 typedef struct hammer_fifo_tail *hammer_fifo_tail_t;
346 
347 /*
348  * Fifo header types.
349  */
350 #define HAMMER_HEAD_TYPE_PAD	(0x0040U|HAMMER_HEAD_FLAG_FREE)
351 #define HAMMER_HEAD_TYPE_VOL	0x0041U		/* Volume (dummy header) */
352 #define HAMMER_HEAD_TYPE_BTREE	0x0042U		/* B-Tree node */
353 #define HAMMER_HEAD_TYPE_UNDO	0x0043U		/* random UNDO information */
354 #define HAMMER_HEAD_TYPE_DELETE	0x0044U		/* record deletion */
355 #define HAMMER_HEAD_TYPE_RECORD	0x0045U		/* Filesystem record */
356 
357 #define HAMMER_HEAD_FLAG_FREE	0x8000U		/* Indicates object freed */
358 
359 #define HAMMER_HEAD_SIGNATURE	0xC84EU
360 #define HAMMER_TAIL_SIGNATURE	0xC74FU
361 
362 #define HAMMER_HEAD_SEQ_BEG	0x80000000U
363 #define HAMMER_HEAD_SEQ_END	0x40000000U
364 #define HAMMER_HEAD_SEQ_MASK	0x3FFFFFFFU
365 
366 /*
367  * Misc FIFO structures.
368  */
369 struct hammer_fifo_undo {
370 	struct hammer_fifo_head	head;
371 	hammer_off_t		undo_offset;	/* zone-1 offset */
372 	int32_t			undo_data_bytes;
373 	int32_t			undo_reserved01;
374 	/* followed by data */
375 };
376 
377 typedef struct hammer_fifo_undo *hammer_fifo_undo_t;
378 
379 struct hammer_fifo_buf_commit {
380 	hammer_off_t		undo_offset;
381 };
382 
383 /*
384  * Volume header types
385  */
386 #define HAMMER_FSBUF_VOLUME	0xC8414D4DC5523031ULL	/* HAMMER01 */
387 #define HAMMER_FSBUF_VOLUME_REV	0x313052C54D4D41C8ULL	/* (reverse endian) */
388 
389 /*
390  * The B-Tree structures need hammer_fsbuf_head.
391  */
392 #include "hammer_btree.h"
393 
394 /*
395  * HAMMER Volume header
396  *
397  * A HAMMER filesystem is built from any number of block devices,  Each block
398  * device contains a volume header followed by however many buffers fit
399  * into the volume.
400  *
401  * One of the volumes making up a HAMMER filesystem is the master, the
402  * rest are slaves.  It does not have to be volume #0.
403  *
404  * The volume header takes up an entire 16K filesystem buffer and may
405  * represent up to 64KTB (65536 TB) of space.
406  *
407  * Special field notes:
408  *
409  *	vol_bot_beg - offset of boot area (mem_beg - bot_beg bytes)
410  *	vol_mem_beg - offset of memory log (clu_beg - mem_beg bytes)
411  *	vol_buf_beg - offset of the first buffer.
412  *
413  *	The memory log area allows a kernel to cache new records and data
414  *	in memory without allocating space in the actual filesystem to hold
415  *	the records and data.  In the event that a filesystem becomes full,
416  *	any records remaining in memory can be flushed to the memory log
417  *	area.  This allows the kernel to immediately return success.
418  */
419 
420 #define HAMMER_BOOT_MINBYTES		(32*1024)
421 #define HAMMER_BOOT_NOMBYTES		(64LL*1024*1024)
422 #define HAMMER_BOOT_MAXBYTES		(256LL*1024*1024)
423 
424 #define HAMMER_MEM_MINBYTES		(256*1024)
425 #define HAMMER_MEM_NOMBYTES		(1LL*1024*1024*1024)
426 #define HAMMER_MEM_MAXBYTES		(64LL*1024*1024*1024)
427 
428 struct hammer_volume_ondisk {
429 	u_int64_t vol_signature;/* Signature */
430 
431 	int64_t vol_bot_beg;	/* byte offset of boot area or 0 */
432 	int64_t vol_mem_beg;	/* byte offset of memory log or 0 */
433 	int64_t vol_buf_beg;	/* byte offset of first buffer in volume */
434 	int64_t vol_buf_end;	/* byte offset of volume EOF (on buf bndry) */
435 	int64_t vol_locked;	/* reserved clusters are >= this offset */
436 
437 	uuid_t    vol_fsid;	/* identify filesystem */
438 	uuid_t    vol_fstype;	/* identify filesystem type */
439 	char	  vol_name[64];	/* Name of volume */
440 
441 	int32_t vol_no;		/* volume number within filesystem */
442 	int32_t vol_count;	/* number of volumes making up FS */
443 
444 	u_int32_t vol_version;	/* version control information */
445 	u_int32_t vol_reserved01;
446 	u_int32_t vol_flags;	/* volume flags */
447 	u_int32_t vol_rootvol;	/* which volume is the root volume? */
448 
449 	int32_t vol_reserved04;
450 	int32_t vol_reserved05;
451 	u_int32_t vol_reserved06;
452 	u_int32_t vol_reserved07;
453 
454 	int32_t vol_blocksize;		/* for statfs only */
455 	int32_t vol_reserved08;
456 	int64_t vol_nblocks;		/* total allocatable hammer bufs */
457 
458 	/*
459 	 * These fields are initialized and space is reserved in every
460 	 * volume making up a HAMMER filesytem, but only the master volume
461 	 * contains valid data.
462 	 */
463 	int64_t vol0_stat_bigblocks;	/* total bigblocks when fs is empty */
464 	int64_t vol0_stat_freebigblocks;/* number of free bigblocks */
465 	int64_t	vol0_stat_bytes;	/* for statfs only */
466 	int64_t vol0_stat_inodes;	/* for statfs only */
467 	int64_t vol0_stat_records;	/* total records in filesystem */
468 	hammer_off_t vol0_btree_root;	/* B-Tree root */
469 	hammer_tid_t vol0_next_tid;	/* highest synchronized TID */
470 	u_int32_t vol0_reserved00;
471 	u_int32_t vol0_reserved01;
472 
473 	/*
474 	 * Blockmaps for zones.  Not all zones use a blockmap.
475 	 */
476 	struct hammer_blockmap	vol0_blockmap[HAMMER_MAX_ZONES];
477 
478 	/*
479 	 * Layer-2 array for undo fifo
480 	 */
481 	struct hammer_blockmap_layer2 vol0_undo_array[HAMMER_UNDO_LAYER2];
482 
483 };
484 
485 typedef struct hammer_volume_ondisk *hammer_volume_ondisk_t;
486 
487 #define HAMMER_VOLF_VALID		0x0001	/* valid entry */
488 #define HAMMER_VOLF_OPEN		0x0002	/* volume is open */
489 
490 /*
491  * All HAMMER records have a common 64-byte base and a 32 byte extension,
492  * plus a possible data reference.  The data reference can be in-band or
493  * out-of-band.
494  */
495 
496 #define HAMMER_RECORD_SIZE		(64+32)
497 
498 struct hammer_base_record {
499 	u_int32_t	signature;	/* record signature */
500 	u_int32_t	data_crc;	/* data crc */
501 	struct hammer_base_elm base;	/* 40 byte base element */
502 	hammer_off_t	data_off;	/* in-band or out-of-band */
503 	int32_t		data_len;	/* size of data in bytes */
504 	u_int32_t	reserved02;
505 };
506 
507 /*
508  * Record types are fairly straightforward.  The B-Tree includes the record
509  * type in its index sort.
510  *
511  * In particular please note that it is possible to create a pseudo-
512  * filesystem within a HAMMER filesystem by creating a special object
513  * type within a directory.  Pseudo-filesystems are used as replication
514  * targets and even though they are built within a HAMMER filesystem they
515  * get their own obj_id space (and thus can serve as a replication target)
516  * and look like a mount point to the system.
517  *
518  * Inter-cluster records are special-cased in the B-Tree.  These records
519  * are referenced from a B-Tree INTERNAL node, NOT A LEAF.  This means
520  * that the element in the B-Tree node is actually a boundary element whos
521  * base element fields, including rec_type, reflect the boundary, NOT
522  * the inter-cluster record type.
523  *
524  * HAMMER_RECTYPE_CLUSTER - only set in the actual inter-cluster record,
525  * not set in the left or right boundary elements around the inter-cluster
526  * reference of an internal node in the B-Tree (because doing so would
527  * interfere with the boundary tests).
528  *
529  * NOTE: hammer_ip_delete_range_all() deletes all record types greater
530  * then HAMMER_RECTYPE_INODE.
531  */
532 #define HAMMER_RECTYPE_UNKNOWN		0
533 #define HAMMER_RECTYPE_LOWEST		1	/* lowest record type avail */
534 #define HAMMER_RECTYPE_INODE		1	/* inode in obj_id space */
535 #define HAMMER_RECTYPE_PSEUDO_INODE	2	/* pseudo filesysem */
536 #define HAMMER_RECTYPE_CLUSTER		3	/* inter-cluster reference */
537 #define HAMMER_RECTYPE_DATA		0x0010
538 #define HAMMER_RECTYPE_DIRENTRY		0x0011
539 #define HAMMER_RECTYPE_DB		0x0012
540 #define HAMMER_RECTYPE_EXT		0x0013	/* ext attributes */
541 #define HAMMER_RECTYPE_FIX		0x0014	/* fixed attribute */
542 #define HAMMER_RECTYPE_MOVED		0x8000	/* special recovery flag */
543 
544 #define HAMMER_FIXKEY_SYMLINK		1
545 
546 #define HAMMER_OBJTYPE_UNKNOWN		0	/* (never exists on-disk) */
547 #define HAMMER_OBJTYPE_DIRECTORY	1
548 #define HAMMER_OBJTYPE_REGFILE		2
549 #define HAMMER_OBJTYPE_DBFILE		3
550 #define HAMMER_OBJTYPE_FIFO		4
551 #define HAMMER_OBJTYPE_CDEV		5
552 #define HAMMER_OBJTYPE_BDEV		6
553 #define HAMMER_OBJTYPE_SOFTLINK		7
554 #define HAMMER_OBJTYPE_PSEUDOFS		8	/* pseudo filesystem obj */
555 
556 /*
557  * A HAMMER inode record.
558  *
559  * This forms the basis for a filesystem object.  obj_id is the inode number,
560  * key1 represents the pseudo filesystem id for security partitioning
561  * (preventing cross-links and/or restricting a NFS export and specifying the
562  * security policy), and key2 represents the data retention policy id.
563  *
564  * Inode numbers are 64 bit quantities which uniquely identify a filesystem
565  * object for the ENTIRE life of the filesystem, even after the object has
566  * been deleted.  For all intents and purposes inode numbers are simply
567  * allocated by incrementing a sequence space.
568  *
569  * There is an important distinction between the data stored in the inode
570  * record and the record's data reference.  The record references a
571  * hammer_inode_data structure but the filesystem object size and hard link
572  * count is stored in the inode record itself.  This allows multiple inodes
573  * to share the same hammer_inode_data structure.  This is possible because
574  * any modifications will lay out new data.  The HAMMER implementation need
575  * not use the data-sharing ability when laying down new records.
576  *
577  * A HAMMER inode is subject to the same historical storage requirements
578  * as any other record.  In particular any change in filesystem or hard link
579  * count will lay down a new inode record when the filesystem is synced to
580  * disk.  This can lead to a lot of junk records which get cleaned up by
581  * the data retention policy.
582  *
583  * The ino_atime and ino_mtime fields are a special case.  Modifications to
584  * these fields do NOT lay down a new record by default, though the values
585  * are effectively frozen for snapshots which access historical versions
586  * of the inode record due to other operations.  This means that atime will
587  * not necessarily be accurate in snapshots, backups, or mirrors.  mtime
588  * will be accurate in backups and mirrors since it can be regenerated from
589  * the mirroring stream.
590  *
591  * Because nlinks is historically retained the hardlink count will be
592  * accurate when accessing a HAMMER filesystem snapshot.
593  */
594 struct hammer_inode_record {
595 	struct hammer_base_record base;
596 	u_int64_t ino_atime;	/* last access time (not historical) */
597 	u_int64_t ino_mtime;	/* last modified time (not historical) */
598 	u_int64_t ino_size;	/* filesystem object size */
599 	u_int64_t ino_nlinks;	/* hard links */
600 };
601 
602 /*
603  * Data records specify the entire contents of a regular file object,
604  * including attributes.  Small amounts of data can theoretically be
605  * embedded in the record itself but the use of this ability verses using
606  * an out-of-band data reference depends on the implementation.
607  */
608 struct hammer_data_record {
609 	struct hammer_base_record base;
610 	char	data[32];
611 };
612 
613 /*
614  * A directory entry specifies the HAMMER filesystem object id, a copy of
615  * the file type, and file name (either embedded or as out-of-band data).
616  * If the file name is short enough to fit into den_name[] (including a
617  * terminating nul) then it will be embedded in the record, otherwise it
618  * is stored out-of-band.  The base record's data reference always points
619  * to the nul-terminated filename regardless.
620  *
621  * Directory entries are indexed with a 128 bit namekey rather then an
622  * offset.  A portion of the namekey is an iterator or randomizer to deal
623  * with collisions.
624  *
625  * NOTE: base.base.obj_type holds the filesystem object type of obj_id,
626  *	 e.g. a den_type equivalent.
627  *
628  * NOTE: den_name / the filename data reference is NOT terminated with \0.
629  *
630  */
631 struct hammer_entry_record {
632 	struct hammer_base_record base;
633 	u_int64_t obj_id;		/* object being referenced */
634 	u_int64_t reserved01;
635 	char	name[16];
636 };
637 
638 /*
639  * Hammer rollup record
640  */
641 union hammer_record_ondisk {
642 	struct hammer_base_record	base;
643 	struct hammer_inode_record	inode;
644 	struct hammer_data_record	data;
645 	struct hammer_entry_record	entry;
646 };
647 
648 typedef union hammer_record_ondisk *hammer_record_ondisk_t;
649 
650 /*
651  * HAMMER UNIX Attribute data
652  *
653  * The data reference in a HAMMER inode record points to this structure.  Any
654  * modifications to the contents of this structure will result in a record
655  * replacement operation.
656  *
657  * short_data_off allows a small amount of data to be embedded in the
658  * hammer_inode_data structure.  HAMMER typically uses this to represent
659  * up to 64 bytes of data, or to hold symlinks.  Remember that allocations
660  * are in powers of 2 so 64, 192, 448, or 960 bytes of embedded data is
661  * support (64+64, 64+192, 64+448 64+960).
662  *
663  * parent_obj_id is only valid for directories (which cannot be hard-linked),
664  * and specifies the parent directory obj_id.  This field will also be set
665  * for non-directory inodes as a recovery aid, but can wind up specifying
666  * stale information.  However, since object id's are not reused, the worse
667  * that happens is that the recovery code is unable to use it.
668  */
669 struct hammer_inode_data {
670 	u_int16_t version;	/* inode data version */
671 	u_int16_t mode;		/* basic unix permissions */
672 	u_int32_t uflags;	/* chflags */
673 	u_int32_t rmajor;	/* used by device nodes */
674 	u_int32_t rminor;	/* used by device nodes */
675 	u_int64_t ctime;
676 	u_int64_t parent_obj_id;/* parent directory obj_id */
677 	uuid_t	uid;
678 	uuid_t	gid;
679 	/* XXX device, softlink extension */
680 };
681 
682 #define HAMMER_INODE_DATA_VERSION	1
683 
684 #define HAMMER_OBJID_ROOT		1
685 
686 /*
687  * Rollup various structures embedded as record data
688  */
689 union hammer_data_ondisk {
690 	struct hammer_inode_data inode;
691 };
692 
693 #endif
694