xref: /dragonfly/sys/vfs/hammer/hammer_flusher.c (revision 10cbe914)
1 /*
2  * Copyright (c) 2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_flusher.c,v 1.45 2008/07/31 04:42:04 dillon Exp $
35  */
36 /*
37  * HAMMER dependancy flusher thread
38  *
39  * Meta data updates create buffer dependancies which are arranged as a
40  * hierarchy of lists.
41  */
42 
43 #include "hammer.h"
44 
45 static void hammer_flusher_master_thread(void *arg);
46 static void hammer_flusher_slave_thread(void *arg);
47 static void hammer_flusher_flush(hammer_mount_t hmp);
48 static void hammer_flusher_flush_inode(hammer_inode_t ip,
49 					hammer_transaction_t trans);
50 
51 RB_GENERATE(hammer_fls_rb_tree, hammer_inode, rb_flsnode,
52               hammer_ino_rb_compare);
53 
54 /*
55  * Inodes are sorted and assigned to slave threads in groups of 128.
56  * We want a flush group size large enough such that the slave threads
57  * are not likely to interfere with each other when accessing the B-Tree,
58  * but not so large that we lose concurrency.
59  */
60 #define HAMMER_FLUSH_GROUP_SIZE 128
61 
62 /*
63  * Support structures for the flusher threads.
64  */
65 struct hammer_flusher_info {
66 	TAILQ_ENTRY(hammer_flusher_info) entry;
67 	struct hammer_mount *hmp;
68 	thread_t	td;
69 	int		runstate;
70 	int		count;
71 	hammer_flush_group_t flg;
72 	hammer_inode_t	work_array[HAMMER_FLUSH_GROUP_SIZE];
73 };
74 
75 typedef struct hammer_flusher_info *hammer_flusher_info_t;
76 
77 /*
78  * Sync all inodes pending on the flusher.
79  *
80  * All flush groups will be flushed.  This does not queue dirty inodes
81  * to the flush groups, it just flushes out what has already been queued!
82  */
83 void
84 hammer_flusher_sync(hammer_mount_t hmp)
85 {
86 	int seq;
87 
88 	seq = hammer_flusher_async(hmp, NULL);
89 	hammer_flusher_wait(hmp, seq);
90 }
91 
92 /*
93  * Sync all inodes pending on the flusher - return immediately.
94  *
95  * All flush groups will be flushed.
96  */
97 int
98 hammer_flusher_async(hammer_mount_t hmp, hammer_flush_group_t close_flg)
99 {
100 	hammer_flush_group_t flg;
101 	int seq = hmp->flusher.next;
102 
103 	TAILQ_FOREACH(flg, &hmp->flush_group_list, flush_entry) {
104 		if (flg->running == 0)
105 			++seq;
106 		flg->closed = 1;
107 		if (flg == close_flg)
108 			break;
109 	}
110 	if (hmp->flusher.td) {
111 		if (hmp->flusher.signal++ == 0)
112 			wakeup(&hmp->flusher.signal);
113 	} else {
114 		seq = hmp->flusher.done;
115 	}
116 	return(seq);
117 }
118 
119 int
120 hammer_flusher_async_one(hammer_mount_t hmp)
121 {
122 	int seq;
123 
124 	if (hmp->flusher.td) {
125 		seq = hmp->flusher.next;
126 		if (hmp->flusher.signal++ == 0)
127 			wakeup(&hmp->flusher.signal);
128 	} else {
129 		seq = hmp->flusher.done;
130 	}
131 	return(seq);
132 }
133 
134 /*
135  * Wait for the flusher to get to the specified sequence number.
136  * Signal the flusher as often as necessary to keep it going.
137  */
138 void
139 hammer_flusher_wait(hammer_mount_t hmp, int seq)
140 {
141 	while ((int)(seq - hmp->flusher.done) > 0) {
142 		if (hmp->flusher.act != seq) {
143 			if (hmp->flusher.signal++ == 0)
144 				wakeup(&hmp->flusher.signal);
145 		}
146 		tsleep(&hmp->flusher.done, 0, "hmrfls", 0);
147 	}
148 }
149 
150 void
151 hammer_flusher_wait_next(hammer_mount_t hmp)
152 {
153 	int seq;
154 
155 	seq = hammer_flusher_async_one(hmp);
156 	hammer_flusher_wait(hmp, seq);
157 }
158 
159 void
160 hammer_flusher_create(hammer_mount_t hmp)
161 {
162 	hammer_flusher_info_t info;
163 	int i;
164 
165 	hmp->flusher.signal = 0;
166 	hmp->flusher.act = 0;
167 	hmp->flusher.done = 0;
168 	hmp->flusher.next = 1;
169 	hammer_ref(&hmp->flusher.finalize_lock);
170 	TAILQ_INIT(&hmp->flusher.run_list);
171 	TAILQ_INIT(&hmp->flusher.ready_list);
172 
173 	lwkt_create(hammer_flusher_master_thread, hmp,
174 		    &hmp->flusher.td, NULL, 0, -1, "hammer-M");
175 	for (i = 0; i < HAMMER_MAX_FLUSHERS; ++i) {
176 		info = kmalloc(sizeof(*info), hmp->m_misc, M_WAITOK|M_ZERO);
177 		info->hmp = hmp;
178 		TAILQ_INSERT_TAIL(&hmp->flusher.ready_list, info, entry);
179 		lwkt_create(hammer_flusher_slave_thread, info,
180 			    &info->td, NULL, 0, -1, "hammer-S%d", i);
181 	}
182 }
183 
184 void
185 hammer_flusher_destroy(hammer_mount_t hmp)
186 {
187 	hammer_flusher_info_t info;
188 
189 	/*
190 	 * Kill the master
191 	 */
192 	hmp->flusher.exiting = 1;
193 	while (hmp->flusher.td) {
194 		++hmp->flusher.signal;
195 		wakeup(&hmp->flusher.signal);
196 		tsleep(&hmp->flusher.exiting, 0, "hmrwex", hz);
197 	}
198 
199 	/*
200 	 * Kill the slaves
201 	 */
202 	while ((info = TAILQ_FIRST(&hmp->flusher.ready_list)) != NULL) {
203 		KKASSERT(info->runstate == 0);
204 		TAILQ_REMOVE(&hmp->flusher.ready_list, info, entry);
205 		info->runstate = -1;
206 		wakeup(&info->runstate);
207 		while (info->td)
208 			tsleep(&info->td, 0, "hmrwwc", 0);
209 		kfree(info, hmp->m_misc);
210 	}
211 }
212 
213 /*
214  * The master flusher thread manages the flusher sequence id and
215  * synchronization with the slave work threads.
216  */
217 static void
218 hammer_flusher_master_thread(void *arg)
219 {
220 	hammer_flush_group_t flg;
221 	hammer_mount_t hmp;
222 
223 	hmp = arg;
224 
225 	lwkt_gettoken(&hmp->fs_token);
226 
227 	for (;;) {
228 		/*
229 		 * Do at least one flush cycle.  We may have to update the
230 		 * UNDO FIFO even if no inodes are queued.
231 		 */
232 		for (;;) {
233 			while (hmp->flusher.group_lock)
234 				tsleep(&hmp->flusher.group_lock, 0, "hmrhld", 0);
235 			hmp->flusher.act = hmp->flusher.next;
236 			++hmp->flusher.next;
237 			hammer_flusher_clean_loose_ios(hmp);
238 			hammer_flusher_flush(hmp);
239 			hmp->flusher.done = hmp->flusher.act;
240 			wakeup(&hmp->flusher.done);
241 			flg = TAILQ_FIRST(&hmp->flush_group_list);
242 			if (flg == NULL || flg->closed == 0)
243 				break;
244 			if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
245 				break;
246 		}
247 
248 		/*
249 		 * Wait for activity.
250 		 */
251 		if (hmp->flusher.exiting && TAILQ_EMPTY(&hmp->flush_group_list))
252 			break;
253 		while (hmp->flusher.signal == 0)
254 			tsleep(&hmp->flusher.signal, 0, "hmrwwa", 0);
255 
256 		/*
257 		 * Flush for each count on signal but only allow one extra
258 		 * flush request to build up.
259 		 */
260 		if (--hmp->flusher.signal != 0)
261 			hmp->flusher.signal = 1;
262 	}
263 
264 	/*
265 	 * And we are done.
266 	 */
267 	hmp->flusher.td = NULL;
268 	wakeup(&hmp->flusher.exiting);
269 	lwkt_reltoken(&hmp->fs_token);
270 	lwkt_exit();
271 }
272 
273 /*
274  * Flush all inodes in the current flush group.
275  */
276 static void
277 hammer_flusher_flush(hammer_mount_t hmp)
278 {
279 	hammer_flusher_info_t info;
280 	hammer_flush_group_t flg;
281 	hammer_reserve_t resv;
282 	hammer_inode_t ip;
283 	hammer_inode_t next_ip;
284 	int slave_index;
285 	int count;
286 
287 	/*
288 	 * Just in-case there's a flush race on mount
289 	 */
290 	if (TAILQ_FIRST(&hmp->flusher.ready_list) == NULL)
291 		return;
292 
293 	/*
294 	 * We only do one flg but we may have to loop/retry.
295 	 */
296 	count = 0;
297 	while ((flg = TAILQ_FIRST(&hmp->flush_group_list)) != NULL) {
298 		++count;
299 		if (hammer_debug_general & 0x0001) {
300 			kprintf("hammer_flush %d ttl=%d recs=%d\n",
301 				hmp->flusher.act,
302 				flg->total_count, flg->refs);
303 		}
304 		if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
305 			break;
306 		hammer_start_transaction_fls(&hmp->flusher.trans, hmp);
307 
308 		/*
309 		 * If the previous flush cycle just about exhausted our
310 		 * UNDO space we may have to do a dummy cycle to move the
311 		 * first_offset up before actually digging into a new cycle,
312 		 * or the new cycle will not have sufficient undo space.
313 		 */
314 		if (hammer_flusher_undo_exhausted(&hmp->flusher.trans, 3))
315 			hammer_flusher_finalize(&hmp->flusher.trans, 0);
316 
317 		/*
318 		 * Ok, we are running this flush group now (this prevents new
319 		 * additions to it).
320 		 */
321 		flg->running = 1;
322 		if (hmp->next_flush_group == flg)
323 			hmp->next_flush_group = TAILQ_NEXT(flg, flush_entry);
324 
325 		/*
326 		 * Iterate the inodes in the flg's flush_tree and assign
327 		 * them to slaves.
328 		 */
329 		slave_index = 0;
330 		info = TAILQ_FIRST(&hmp->flusher.ready_list);
331 		next_ip = RB_FIRST(hammer_fls_rb_tree, &flg->flush_tree);
332 
333 		while ((ip = next_ip) != NULL) {
334 			next_ip = RB_NEXT(hammer_fls_rb_tree,
335 					  &flg->flush_tree, ip);
336 
337 			if (++hmp->check_yield > hammer_yield_check) {
338 				hmp->check_yield = 0;
339 				lwkt_yield();
340 			}
341 
342 			/*
343 			 * Add ip to the slave's work array.  The slave is
344 			 * not currently running.
345 			 */
346 			info->work_array[info->count++] = ip;
347 			if (info->count != HAMMER_FLUSH_GROUP_SIZE)
348 				continue;
349 
350 			/*
351 			 * Get the slave running
352 			 */
353 			TAILQ_REMOVE(&hmp->flusher.ready_list, info, entry);
354 			TAILQ_INSERT_TAIL(&hmp->flusher.run_list, info, entry);
355 			info->flg = flg;
356 			info->runstate = 1;
357 			wakeup(&info->runstate);
358 
359 			/*
360 			 * Get a new slave.  We may have to wait for one to
361 			 * finish running.
362 			 */
363 			while ((info = TAILQ_FIRST(&hmp->flusher.ready_list)) == NULL) {
364 				tsleep(&hmp->flusher.ready_list, 0, "hmrfcc", 0);
365 			}
366 		}
367 
368 		/*
369 		 * Run the current slave if necessary
370 		 */
371 		if (info->count) {
372 			TAILQ_REMOVE(&hmp->flusher.ready_list, info, entry);
373 			TAILQ_INSERT_TAIL(&hmp->flusher.run_list, info, entry);
374 			info->flg = flg;
375 			info->runstate = 1;
376 			wakeup(&info->runstate);
377 		}
378 
379 		/*
380 		 * Wait for all slaves to finish running
381 		 */
382 		while (TAILQ_FIRST(&hmp->flusher.run_list) != NULL)
383 			tsleep(&hmp->flusher.ready_list, 0, "hmrfcc", 0);
384 
385 		/*
386 		 * Do the final finalization, clean up
387 		 */
388 		hammer_flusher_finalize(&hmp->flusher.trans, 1);
389 		hmp->flusher.tid = hmp->flusher.trans.tid;
390 
391 		hammer_done_transaction(&hmp->flusher.trans);
392 
393 		/*
394 		 * Loop up on the same flg.  If the flg is done clean it up
395 		 * and break out.  We only flush one flg.
396 		 */
397 		if (RB_EMPTY(&flg->flush_tree)) {
398 			KKASSERT(flg->refs == 0);
399 			TAILQ_REMOVE(&hmp->flush_group_list, flg, flush_entry);
400 			kfree(flg, hmp->m_misc);
401 			break;
402 		}
403 	}
404 
405 	/*
406 	 * We may have pure meta-data to flush, or we may have to finish
407 	 * cycling the UNDO FIFO, even if there were no flush groups.
408 	 */
409 	if (count == 0 && hammer_flusher_haswork(hmp)) {
410 		hammer_start_transaction_fls(&hmp->flusher.trans, hmp);
411 		hammer_flusher_finalize(&hmp->flusher.trans, 1);
412 		hammer_done_transaction(&hmp->flusher.trans);
413 	}
414 
415 	/*
416 	 * Clean up any freed big-blocks (typically zone-2).
417 	 * resv->flush_group is typically set several flush groups ahead
418 	 * of the free to ensure that the freed block is not reused until
419 	 * it can no longer be reused.
420 	 */
421 	while ((resv = TAILQ_FIRST(&hmp->delay_list)) != NULL) {
422 		if (resv->flush_group != hmp->flusher.act)
423 			break;
424 		hammer_reserve_clrdelay(hmp, resv);
425 	}
426 }
427 
428 
429 /*
430  * The slave flusher thread pulls work off the master flush list until no
431  * work is left.
432  */
433 static void
434 hammer_flusher_slave_thread(void *arg)
435 {
436 	hammer_flush_group_t flg;
437 	hammer_flusher_info_t info;
438 	hammer_mount_t hmp;
439 	hammer_inode_t ip;
440 	int i;
441 
442 	info = arg;
443 	hmp = info->hmp;
444 	lwkt_gettoken(&hmp->fs_token);
445 
446 	for (;;) {
447 		while (info->runstate == 0)
448 			tsleep(&info->runstate, 0, "hmrssw", 0);
449 		if (info->runstate < 0)
450 			break;
451 		flg = info->flg;
452 
453 		for (i = 0; i < info->count; ++i) {
454 			ip = info->work_array[i];
455 			hammer_flusher_flush_inode(ip, &hmp->flusher.trans);
456 			++hammer_stats_inode_flushes;
457 		}
458 		info->count = 0;
459 		info->runstate = 0;
460 		TAILQ_REMOVE(&hmp->flusher.run_list, info, entry);
461 		TAILQ_INSERT_TAIL(&hmp->flusher.ready_list, info, entry);
462 		wakeup(&hmp->flusher.ready_list);
463 	}
464 	info->td = NULL;
465 	wakeup(&info->td);
466 	lwkt_reltoken(&hmp->fs_token);
467 	lwkt_exit();
468 }
469 
470 void
471 hammer_flusher_clean_loose_ios(hammer_mount_t hmp)
472 {
473 	hammer_buffer_t buffer;
474 	hammer_io_t io;
475 
476 	/*
477 	 * loose ends - buffers without bp's aren't tracked by the kernel
478 	 * and can build up, so clean them out.  This can occur when an
479 	 * IO completes on a buffer with no references left.
480 	 *
481 	 * The io_token is needed to protect the list.
482 	 */
483 	if ((io = TAILQ_FIRST(&hmp->lose_list)) != NULL) {
484 		lwkt_gettoken(&hmp->io_token);
485 		while ((io = TAILQ_FIRST(&hmp->lose_list)) != NULL) {
486 			KKASSERT(io->mod_list == &hmp->lose_list);
487 			TAILQ_REMOVE(&hmp->lose_list, io, mod_entry);
488 			io->mod_list = NULL;
489 			hammer_ref(&io->lock);
490 			buffer = (void *)io;
491 			hammer_rel_buffer(buffer, 0);
492 		}
493 		lwkt_reltoken(&hmp->io_token);
494 	}
495 }
496 
497 /*
498  * Flush a single inode that is part of a flush group.
499  *
500  * Flusher errors are extremely serious, even ENOSPC shouldn't occur because
501  * the front-end should have reserved sufficient space on the media.  Any
502  * error other then EWOULDBLOCK will force the mount to be read-only.
503  */
504 static
505 void
506 hammer_flusher_flush_inode(hammer_inode_t ip, hammer_transaction_t trans)
507 {
508 	hammer_mount_t hmp = ip->hmp;
509 	int error;
510 
511 	hammer_flusher_clean_loose_ios(hmp);
512 	error = hammer_sync_inode(trans, ip);
513 
514 	/*
515 	 * EWOULDBLOCK can happen under normal operation, all other errors
516 	 * are considered extremely serious.  We must set WOULDBLOCK
517 	 * mechanics to deal with the mess left over from the abort of the
518 	 * previous flush.
519 	 */
520 	if (error) {
521 		ip->flags |= HAMMER_INODE_WOULDBLOCK;
522 		if (error == EWOULDBLOCK)
523 			error = 0;
524 	}
525 	hammer_flush_inode_done(ip, error);
526 	while (hmp->flusher.finalize_want)
527 		tsleep(&hmp->flusher.finalize_want, 0, "hmrsxx", 0);
528 	if (hammer_flusher_undo_exhausted(trans, 1)) {
529 		kprintf("HAMMER: Warning: UNDO area too small!\n");
530 		hammer_flusher_finalize(trans, 1);
531 	} else if (hammer_flusher_meta_limit(trans->hmp)) {
532 		hammer_flusher_finalize(trans, 0);
533 	}
534 }
535 
536 /*
537  * Return non-zero if the UNDO area has less then (QUARTER / 4) of its
538  * space left.
539  *
540  * 1/4 - Emergency free undo space level.  Below this point the flusher
541  *	 will finalize even if directory dependancies have not been resolved.
542  *
543  * 2/4 - Used by the pruning and reblocking code.  These functions may be
544  *	 running in parallel with a flush and cannot be allowed to drop
545  *	 available undo space to emergency levels.
546  *
547  * 3/4 - Used at the beginning of a flush to force-sync the volume header
548  *	 to give the flush plenty of runway to work in.
549  */
550 int
551 hammer_flusher_undo_exhausted(hammer_transaction_t trans, int quarter)
552 {
553 	if (hammer_undo_space(trans) <
554 	    hammer_undo_max(trans->hmp) * quarter / 4) {
555 		return(1);
556 	} else {
557 		return(0);
558 	}
559 }
560 
561 /*
562  * Flush all pending UNDOs, wait for write completion, update the volume
563  * header with the new UNDO end position, and flush it.  Then
564  * asynchronously flush the meta-data.
565  *
566  * If this is the last finalization in a flush group we also synchronize
567  * our cached blockmap and set hmp->flusher_undo_start and our cached undo
568  * fifo first_offset so the next flush resets the FIFO pointers.
569  *
570  * If this is not final it is being called because too many dirty meta-data
571  * buffers have built up and must be flushed with UNDO synchronization to
572  * avoid a buffer cache deadlock.
573  */
574 void
575 hammer_flusher_finalize(hammer_transaction_t trans, int final)
576 {
577 	hammer_volume_t root_volume;
578 	hammer_blockmap_t cundomap, dundomap;
579 	hammer_mount_t hmp;
580 	hammer_io_t io;
581 	hammer_off_t save_undo_next_offset;
582 	int count;
583 	int i;
584 
585 	hmp = trans->hmp;
586 	root_volume = trans->rootvol;
587 
588 	/*
589 	 * Exclusively lock the flusher.  This guarantees that all dirty
590 	 * buffers will be idled (have a mod-count of 0).
591 	 */
592 	++hmp->flusher.finalize_want;
593 	hammer_lock_ex(&hmp->flusher.finalize_lock);
594 
595 	/*
596 	 * If this isn't the final sync several threads may have hit the
597 	 * meta-limit at the same time and raced.  Only sync if we really
598 	 * have to, after acquiring the lock.
599 	 */
600 	if (final == 0 && !hammer_flusher_meta_limit(hmp))
601 		goto done;
602 
603 	if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
604 		goto done;
605 
606 	/*
607 	 * Flush data buffers.  This can occur asynchronously and at any
608 	 * time.  We must interlock against the frontend direct-data write
609 	 * but do not have to acquire the sync-lock yet.
610 	 *
611 	 * These data buffers have already been collected prior to the
612 	 * related inode(s) getting queued to the flush group.
613 	 */
614 	count = 0;
615 	while ((io = TAILQ_FIRST(&hmp->data_list)) != NULL) {
616 		if (io->ioerror)
617 			break;
618 		hammer_ref(&io->lock);
619 		hammer_io_write_interlock(io);
620 		KKASSERT(io->type != HAMMER_STRUCTURE_VOLUME);
621 		hammer_io_flush(io, 0);
622 		hammer_io_done_interlock(io);
623 		hammer_rel_buffer((hammer_buffer_t)io, 0);
624 		hammer_io_limit_backlog(hmp);
625 		++count;
626 	}
627 
628 	/*
629 	 * The sync-lock is required for the remaining sequence.  This lock
630 	 * prevents meta-data from being modified.
631 	 */
632 	hammer_sync_lock_ex(trans);
633 
634 	/*
635 	 * If we have been asked to finalize the volume header sync the
636 	 * cached blockmap to the on-disk blockmap.  Generate an UNDO
637 	 * record for the update.
638 	 */
639 	if (final) {
640 		cundomap = &hmp->blockmap[0];
641 		dundomap = &root_volume->ondisk->vol0_blockmap[0];
642 		if (root_volume->io.modified) {
643 			hammer_modify_volume(trans, root_volume,
644 					     dundomap, sizeof(hmp->blockmap));
645 			for (i = 0; i < HAMMER_MAX_ZONES; ++i)
646 				hammer_crc_set_blockmap(&cundomap[i]);
647 			bcopy(cundomap, dundomap, sizeof(hmp->blockmap));
648 			hammer_modify_volume_done(root_volume);
649 		}
650 	}
651 
652 	/*
653 	 * Flush UNDOs.  This can occur concurrently with the data flush
654 	 * because data writes never overwrite.
655 	 *
656 	 * This also waits for I/Os to complete and flushes the cache on
657 	 * the target disk.
658 	 *
659 	 * Record the UNDO append point as this can continue to change
660 	 * after we have flushed the UNDOs.
661 	 */
662 	cundomap = &hmp->blockmap[HAMMER_ZONE_UNDO_INDEX];
663 	hammer_lock_ex(&hmp->undo_lock);
664 	save_undo_next_offset = cundomap->next_offset;
665 	hammer_unlock(&hmp->undo_lock);
666 	hammer_flusher_flush_undos(hmp, HAMMER_FLUSH_UNDOS_FORCED);
667 
668 	if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
669 		goto failed;
670 
671 	/*
672 	 * HAMMER VERSION < 4:
673 	 *	Update the on-disk volume header with new UNDO FIFO end
674 	 *	position (do not generate new UNDO records for this change).
675 	 *	We have to do this for the UNDO FIFO whether (final) is
676 	 *	set or not in order for the UNDOs to be recognized on
677 	 *	recovery.
678 	 *
679 	 * HAMMER VERSION >= 4:
680 	 *	The UNDO FIFO data written above will be recognized on
681 	 *	recovery without us having to sync the volume header.
682 	 *
683 	 * Also update the on-disk next_tid field.  This does not require
684 	 * an UNDO.  However, because our TID is generated before we get
685 	 * the sync lock another sync may have beat us to the punch.
686 	 *
687 	 * This also has the side effect of updating first_offset based on
688 	 * a prior finalization when the first finalization of the next flush
689 	 * cycle occurs, removing any undo info from the prior finalization
690 	 * from consideration.
691 	 *
692 	 * The volume header will be flushed out synchronously.
693 	 */
694 	dundomap = &root_volume->ondisk->vol0_blockmap[HAMMER_ZONE_UNDO_INDEX];
695 	cundomap = &hmp->blockmap[HAMMER_ZONE_UNDO_INDEX];
696 
697 	if (dundomap->first_offset != cundomap->first_offset ||
698 		   dundomap->next_offset != save_undo_next_offset) {
699 		hammer_modify_volume(NULL, root_volume, NULL, 0);
700 		dundomap->first_offset = cundomap->first_offset;
701 		dundomap->next_offset = save_undo_next_offset;
702 		hammer_crc_set_blockmap(dundomap);
703 		hammer_modify_volume_done(root_volume);
704 	}
705 
706 	/*
707 	 * vol0_next_tid is used for TID selection and is updated without
708 	 * an UNDO so we do not reuse a TID that may have been rolled-back.
709 	 *
710 	 * vol0_last_tid is the highest fully-synchronized TID.  It is
711 	 * set-up when the UNDO fifo is fully synced, later on (not here).
712 	 *
713 	 * The root volume can be open for modification by other threads
714 	 * generating UNDO or REDO records.  For example, reblocking,
715 	 * pruning, REDO mode fast-fsyncs, so the write interlock is
716 	 * mandatory.
717 	 */
718 	if (root_volume->io.modified) {
719 		hammer_modify_volume(NULL, root_volume, NULL, 0);
720 		if (root_volume->ondisk->vol0_next_tid < trans->tid)
721 			root_volume->ondisk->vol0_next_tid = trans->tid;
722 		hammer_crc_set_volume(root_volume->ondisk);
723 		hammer_modify_volume_done(root_volume);
724 		hammer_io_write_interlock(&root_volume->io);
725 		hammer_io_flush(&root_volume->io, 0);
726 		hammer_io_done_interlock(&root_volume->io);
727 	}
728 
729 	/*
730 	 * Wait for I/Os to complete.
731 	 *
732 	 * For HAMMER VERSION 4+ filesystems we do not have to wait for
733 	 * the I/O to complete as the new UNDO FIFO entries are recognized
734 	 * even without the volume header update.  This allows the volume
735 	 * header to flushed along with meta-data, significantly reducing
736 	 * flush overheads.
737 	 */
738 	hammer_flusher_clean_loose_ios(hmp);
739 	if (hmp->version < HAMMER_VOL_VERSION_FOUR)
740 		hammer_io_wait_all(hmp, "hmrfl3", 1);
741 
742 	if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
743 		goto failed;
744 
745 	/*
746 	 * Flush meta-data.  The meta-data will be undone if we crash
747 	 * so we can safely flush it asynchronously.  There is no need
748 	 * to wait for I/O to complete (or issue a synchronous disk flush).
749 	 *
750 	 * In fact, even if we did wait the meta-data will still be undone
751 	 * by a crash up until the next flush cycle due to the first_offset
752 	 * in the volume header for the UNDO FIFO not being adjusted until
753 	 * the following flush cycle.
754 	 *
755 	 * No io interlock is needed, bioops callbacks will not mess with
756 	 * meta data buffers.
757 	 */
758 	count = 0;
759 	while ((io = TAILQ_FIRST(&hmp->meta_list)) != NULL) {
760 		if (io->ioerror)
761 			break;
762 		KKASSERT(io->modify_refs == 0);
763 		hammer_ref(&io->lock);
764 		KKASSERT(io->type != HAMMER_STRUCTURE_VOLUME);
765 		hammer_io_flush(io, 0);
766 		hammer_rel_buffer((hammer_buffer_t)io, 0);
767 		hammer_io_limit_backlog(hmp);
768 		++count;
769 	}
770 
771 	/*
772 	 * If this is the final finalization for the flush group set
773 	 * up for the next sequence by setting a new first_offset in
774 	 * our cached blockmap and clearing the undo history.
775 	 *
776 	 * Even though we have updated our cached first_offset, the on-disk
777 	 * first_offset still governs available-undo-space calculations.
778 	 *
779 	 * We synchronize to save_undo_next_offset rather than
780 	 * cundomap->next_offset because that is what we flushed out
781 	 * above.
782 	 *
783 	 * NOTE! UNDOs can only be added with the sync_lock held
784 	 *	 so we can clear the undo history without racing.
785 	 *	 REDOs can be added at any time which is why we
786 	 *	 have to be careful and use save_undo_next_offset
787 	 *	 when setting the new first_offset.
788 	 */
789 	if (final) {
790 		cundomap = &hmp->blockmap[HAMMER_ZONE_UNDO_INDEX];
791 		if (cundomap->first_offset != save_undo_next_offset) {
792 			cundomap->first_offset = save_undo_next_offset;
793 			hmp->hflags |= HMNT_UNDO_DIRTY;
794 		} else if (cundomap->first_offset != cundomap->next_offset) {
795 			hmp->hflags |= HMNT_UNDO_DIRTY;
796 		} else {
797 			hmp->hflags &= ~HMNT_UNDO_DIRTY;
798 		}
799 		hammer_clear_undo_history(hmp);
800 
801 		/*
802 		 * Flush tid sequencing.  flush_tid1 is fully synchronized,
803 		 * meaning a crash will not roll it back.  flush_tid2 has
804 		 * been written out asynchronously and a crash will roll
805 		 * it back.  flush_tid1 is used for all mirroring masters.
806 		 */
807 		if (hmp->flush_tid1 != hmp->flush_tid2) {
808 			hmp->flush_tid1 = hmp->flush_tid2;
809 			wakeup(&hmp->flush_tid1);
810 		}
811 		hmp->flush_tid2 = trans->tid;
812 
813 		/*
814 		 * Clear the REDO SYNC flag.  This flag is used to ensure
815 		 * that the recovery span in the UNDO/REDO FIFO contains
816 		 * at least one REDO SYNC record.
817 		 */
818 		hmp->flags &= ~HAMMER_MOUNT_REDO_SYNC;
819 	}
820 
821 	/*
822 	 * Cleanup.  Report any critical errors.
823 	 */
824 failed:
825 	hammer_sync_unlock(trans);
826 
827 	if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) {
828 		kprintf("HAMMER(%s): Critical write error during flush, "
829 			"refusing to sync UNDO FIFO\n",
830 			root_volume->ondisk->vol_name);
831 	}
832 
833 done:
834 	hammer_unlock(&hmp->flusher.finalize_lock);
835 
836 	if (--hmp->flusher.finalize_want == 0)
837 		wakeup(&hmp->flusher.finalize_want);
838 	hammer_stats_commits += final;
839 }
840 
841 /*
842  * Flush UNDOs.
843  */
844 void
845 hammer_flusher_flush_undos(hammer_mount_t hmp, int mode)
846 {
847 	hammer_io_t io;
848 	int count;
849 
850 	count = 0;
851 	while ((io = TAILQ_FIRST(&hmp->undo_list)) != NULL) {
852 		if (io->ioerror)
853 			break;
854 		hammer_ref(&io->lock);
855 		KKASSERT(io->type != HAMMER_STRUCTURE_VOLUME);
856 		hammer_io_write_interlock(io);
857 		hammer_io_flush(io, hammer_undo_reclaim(io));
858 		hammer_io_done_interlock(io);
859 		hammer_rel_buffer((hammer_buffer_t)io, 0);
860 		hammer_io_limit_backlog(hmp);
861 		++count;
862 	}
863 	hammer_flusher_clean_loose_ios(hmp);
864 	if (mode == HAMMER_FLUSH_UNDOS_FORCED ||
865 	    (mode == HAMMER_FLUSH_UNDOS_AUTO && count)) {
866 		hammer_io_wait_all(hmp, "hmrfl1", 1);
867 	} else {
868 		hammer_io_wait_all(hmp, "hmrfl2", 0);
869 	}
870 }
871 
872 /*
873  * Return non-zero if too many dirty meta-data buffers have built up.
874  *
875  * Since we cannot allow such buffers to flush until we have dealt with
876  * the UNDOs, we risk deadlocking the kernel's buffer cache.
877  */
878 int
879 hammer_flusher_meta_limit(hammer_mount_t hmp)
880 {
881 	if (hmp->locked_dirty_space + hmp->io_running_space >
882 	    hammer_limit_dirtybufspace) {
883 		return(1);
884 	}
885 	return(0);
886 }
887 
888 /*
889  * Return non-zero if too many dirty meta-data buffers have built up.
890  *
891  * This version is used by background operations (mirror, prune, reblock)
892  * to leave room for foreground operations.
893  */
894 int
895 hammer_flusher_meta_halflimit(hammer_mount_t hmp)
896 {
897 	if (hmp->locked_dirty_space + hmp->io_running_space >
898 	    hammer_limit_dirtybufspace / 2) {
899 		return(1);
900 	}
901 	return(0);
902 }
903 
904 /*
905  * Return non-zero if the flusher still has something to flush.
906  */
907 int
908 hammer_flusher_haswork(hammer_mount_t hmp)
909 {
910 	if (hmp->ronly)
911 		return(0);
912 	if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
913 		return(0);
914 	if (TAILQ_FIRST(&hmp->flush_group_list) ||	/* dirty inodes */
915 	    TAILQ_FIRST(&hmp->volu_list) ||		/* dirty buffers */
916 	    TAILQ_FIRST(&hmp->undo_list) ||
917 	    TAILQ_FIRST(&hmp->data_list) ||
918 	    TAILQ_FIRST(&hmp->meta_list) ||
919 	    (hmp->hflags & HMNT_UNDO_DIRTY)		/* UNDO FIFO sync */
920 	) {
921 		return(1);
922 	}
923 	return(0);
924 }
925 
926