xref: /dragonfly/sys/vfs/hammer/hammer_flusher.c (revision a615f06f)
1 /*
2  * Copyright (c) 2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_flusher.c,v 1.45 2008/07/31 04:42:04 dillon Exp $
35  */
36 /*
37  * HAMMER dependancy flusher thread
38  *
39  * Meta data updates create buffer dependancies which are arranged as a
40  * hierarchy of lists.
41  */
42 
43 #include "hammer.h"
44 
45 static void hammer_flusher_master_thread(void *arg);
46 static void hammer_flusher_slave_thread(void *arg);
47 static void hammer_flusher_flush(hammer_mount_t hmp);
48 static void hammer_flusher_flush_inode(hammer_inode_t ip,
49 					hammer_transaction_t trans);
50 
51 /*
52  * Support structures for the flusher threads.
53  */
54 struct hammer_flusher_info {
55 	TAILQ_ENTRY(hammer_flusher_info) entry;
56 	struct hammer_mount *hmp;
57 	thread_t	td;
58 	int		runstate;
59 	int		count;
60 	hammer_flush_group_t flg;
61 	hammer_inode_t	work_array[HAMMER_FLUSH_GROUP_SIZE];
62 };
63 
64 typedef struct hammer_flusher_info *hammer_flusher_info_t;
65 
66 /*
67  * Sync all inodes pending on the flusher.
68  *
69  * All flush groups will be flushed.  This does not queue dirty inodes
70  * to the flush groups, it just flushes out what has already been queued!
71  */
72 void
73 hammer_flusher_sync(hammer_mount_t hmp)
74 {
75 	int seq;
76 
77 	seq = hammer_flusher_async(hmp, NULL);
78 	hammer_flusher_wait(hmp, seq);
79 }
80 
81 /*
82  * Sync all inodes pending on the flusher - return immediately.
83  *
84  * All flush groups will be flushed.
85  */
86 int
87 hammer_flusher_async(hammer_mount_t hmp, hammer_flush_group_t close_flg)
88 {
89 	hammer_flush_group_t flg;
90 	int seq = hmp->flusher.next;
91 
92 	TAILQ_FOREACH(flg, &hmp->flush_group_list, flush_entry) {
93 		if (flg->running == 0)
94 			++seq;
95 		flg->closed = 1;
96 		if (flg == close_flg)
97 			break;
98 	}
99 	if (hmp->flusher.td) {
100 		if (hmp->flusher.signal++ == 0)
101 			wakeup(&hmp->flusher.signal);
102 	} else {
103 		seq = hmp->flusher.done;
104 	}
105 	return(seq);
106 }
107 
108 int
109 hammer_flusher_async_one(hammer_mount_t hmp)
110 {
111 	int seq;
112 
113 	if (hmp->flusher.td) {
114 		seq = hmp->flusher.next;
115 		if (hmp->flusher.signal++ == 0)
116 			wakeup(&hmp->flusher.signal);
117 	} else {
118 		seq = hmp->flusher.done;
119 	}
120 	return(seq);
121 }
122 
123 /*
124  * Wait for the flusher to get to the specified sequence number.
125  * Signal the flusher as often as necessary to keep it going.
126  */
127 void
128 hammer_flusher_wait(hammer_mount_t hmp, int seq)
129 {
130 	while ((int)(seq - hmp->flusher.done) > 0) {
131 		if (hmp->flusher.act != seq) {
132 			if (hmp->flusher.signal++ == 0)
133 				wakeup(&hmp->flusher.signal);
134 		}
135 		tsleep(&hmp->flusher.done, 0, "hmrfls", 0);
136 	}
137 }
138 
139 void
140 hammer_flusher_create(hammer_mount_t hmp)
141 {
142 	hammer_flusher_info_t info;
143 	int i;
144 
145 	hmp->flusher.signal = 0;
146 	hmp->flusher.act = 0;
147 	hmp->flusher.done = 0;
148 	hmp->flusher.next = 1;
149 	hammer_ref(&hmp->flusher.finalize_lock);
150 	TAILQ_INIT(&hmp->flusher.run_list);
151 	TAILQ_INIT(&hmp->flusher.ready_list);
152 
153 	lwkt_create(hammer_flusher_master_thread, hmp,
154 		    &hmp->flusher.td, NULL, 0, -1, "hammer-M");
155 	for (i = 0; i < HAMMER_MAX_FLUSHERS; ++i) {
156 		info = kmalloc(sizeof(*info), hmp->m_misc, M_WAITOK|M_ZERO);
157 		info->hmp = hmp;
158 		TAILQ_INSERT_TAIL(&hmp->flusher.ready_list, info, entry);
159 		lwkt_create(hammer_flusher_slave_thread, info,
160 			    &info->td, NULL, 0, -1, "hammer-S%d", i);
161 	}
162 }
163 
164 void
165 hammer_flusher_destroy(hammer_mount_t hmp)
166 {
167 	hammer_flusher_info_t info;
168 
169 	/*
170 	 * Kill the master
171 	 */
172 	hmp->flusher.exiting = 1;
173 	while (hmp->flusher.td) {
174 		++hmp->flusher.signal;
175 		wakeup(&hmp->flusher.signal);
176 		tsleep(&hmp->flusher.exiting, 0, "hmrwex", hz);
177 	}
178 
179 	/*
180 	 * Kill the slaves
181 	 */
182 	while ((info = TAILQ_FIRST(&hmp->flusher.ready_list)) != NULL) {
183 		KKASSERT(info->runstate == 0);
184 		TAILQ_REMOVE(&hmp->flusher.ready_list, info, entry);
185 		info->runstate = -1;
186 		wakeup(&info->runstate);
187 		while (info->td)
188 			tsleep(&info->td, 0, "hmrwwc", 0);
189 		TAILQ_REMOVE(&hmp->flusher.ready_list, info, entry);
190 		kfree(info, hmp->m_misc);
191 	}
192 }
193 
194 /*
195  * The master flusher thread manages the flusher sequence id and
196  * synchronization with the slave work threads.
197  */
198 static void
199 hammer_flusher_master_thread(void *arg)
200 {
201 	hammer_flush_group_t flg;
202 	hammer_mount_t hmp;
203 
204 	hmp = arg;
205 
206 	for (;;) {
207 		/*
208 		 * Do at least one flush cycle.  We may have to update the
209 		 * UNDO FIFO even if no inodes are queued.
210 		 */
211 		for (;;) {
212 			while (hmp->flusher.group_lock)
213 				tsleep(&hmp->flusher.group_lock, 0, "hmrhld", 0);
214 			hmp->flusher.act = hmp->flusher.next;
215 			++hmp->flusher.next;
216 			hammer_flusher_clean_loose_ios(hmp);
217 			hammer_flusher_flush(hmp);
218 			hmp->flusher.done = hmp->flusher.act;
219 			wakeup(&hmp->flusher.done);
220 			flg = TAILQ_FIRST(&hmp->flush_group_list);
221 			if (flg == NULL || flg->closed == 0)
222 				break;
223 			if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
224 				break;
225 		}
226 
227 		/*
228 		 * Wait for activity.
229 		 */
230 		if (hmp->flusher.exiting && TAILQ_EMPTY(&hmp->flush_group_list))
231 			break;
232 		while (hmp->flusher.signal == 0)
233 			tsleep(&hmp->flusher.signal, 0, "hmrwwa", 0);
234 
235 		/*
236 		 * Flush for each count on signal but only allow one extra
237 		 * flush request to build up.
238 		 */
239 		if (--hmp->flusher.signal != 0)
240 			hmp->flusher.signal = 1;
241 	}
242 
243 	/*
244 	 * And we are done.
245 	 */
246 	hmp->flusher.td = NULL;
247 	wakeup(&hmp->flusher.exiting);
248 	lwkt_exit();
249 }
250 
251 /*
252  * Flush all inodes in the current flush group.
253  */
254 static void
255 hammer_flusher_flush(hammer_mount_t hmp)
256 {
257 	hammer_flusher_info_t info;
258 	hammer_flush_group_t flg;
259 	hammer_reserve_t resv;
260 	hammer_inode_t ip;
261 	hammer_inode_t next_ip;
262 	int slave_index;
263 	int count;
264 
265 	/*
266 	 * Just in-case there's a flush race on mount
267 	 */
268 	if (TAILQ_FIRST(&hmp->flusher.ready_list) == NULL)
269 		return;
270 
271 	/*
272 	 * We only do one flg but we may have to loop/retry.
273 	 */
274 	count = 0;
275 	while ((flg = TAILQ_FIRST(&hmp->flush_group_list)) != NULL) {
276 		++count;
277 		if (hammer_debug_general & 0x0001) {
278 			kprintf("hammer_flush %d ttl=%d recs=%d\n",
279 				hmp->flusher.act,
280 				flg->total_count, flg->refs);
281 		}
282 		if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
283 			break;
284 		hammer_start_transaction_fls(&hmp->flusher.trans, hmp);
285 
286 		/*
287 		 * If the previous flush cycle just about exhausted our
288 		 * UNDO space we may have to do a dummy cycle to move the
289 		 * first_offset up before actually digging into a new cycle,
290 		 * or the new cycle will not have sufficient undo space.
291 		 */
292 		if (hammer_flusher_undo_exhausted(&hmp->flusher.trans, 3))
293 			hammer_flusher_finalize(&hmp->flusher.trans, 0);
294 
295 		/*
296 		 * Ok, we are running this flush group now (this prevents new
297 		 * additions to it).
298 		 */
299 		flg->running = 1;
300 		if (hmp->next_flush_group == flg)
301 			hmp->next_flush_group = TAILQ_NEXT(flg, flush_entry);
302 
303 		/*
304 		 * Iterate the inodes in the flg's flush_list and assign
305 		 * them to slaves.
306 		 */
307 		slave_index = 0;
308 		info = TAILQ_FIRST(&hmp->flusher.ready_list);
309 		next_ip = TAILQ_FIRST(&flg->flush_list);
310 
311 		while ((ip = next_ip) != NULL) {
312 			next_ip = TAILQ_NEXT(ip, flush_entry);
313 
314 			/*
315 			 * Add ip to the slave's work array.  The slave is
316 			 * not currently running.
317 			 */
318 			info->work_array[info->count++] = ip;
319 			if (info->count != HAMMER_FLUSH_GROUP_SIZE)
320 				continue;
321 
322 			/*
323 			 * Get the slave running
324 			 */
325 			TAILQ_REMOVE(&hmp->flusher.ready_list, info, entry);
326 			TAILQ_INSERT_TAIL(&hmp->flusher.run_list, info, entry);
327 			info->flg = flg;
328 			info->runstate = 1;
329 			wakeup(&info->runstate);
330 
331 			/*
332 			 * Get a new slave.  We may have to wait for one to
333 			 * finish running.
334 			 */
335 			while ((info = TAILQ_FIRST(&hmp->flusher.ready_list)) == NULL) {
336 				tsleep(&hmp->flusher.ready_list, 0, "hmrfcc", 0);
337 			}
338 		}
339 
340 		/*
341 		 * Run the current slave if necessary
342 		 */
343 		if (info->count) {
344 			TAILQ_REMOVE(&hmp->flusher.ready_list, info, entry);
345 			TAILQ_INSERT_TAIL(&hmp->flusher.run_list, info, entry);
346 			info->flg = flg;
347 			info->runstate = 1;
348 			wakeup(&info->runstate);
349 		}
350 
351 		/*
352 		 * Wait for all slaves to finish running
353 		 */
354 		while (TAILQ_FIRST(&hmp->flusher.run_list) != NULL)
355 			tsleep(&hmp->flusher.ready_list, 0, "hmrfcc", 0);
356 
357 		/*
358 		 * Do the final finalization, clean up
359 		 */
360 		hammer_flusher_finalize(&hmp->flusher.trans, 1);
361 		hmp->flusher.tid = hmp->flusher.trans.tid;
362 
363 		hammer_done_transaction(&hmp->flusher.trans);
364 
365 		/*
366 		 * Loop up on the same flg.  If the flg is done clean it up
367 		 * and break out.  We only flush one flg.
368 		 */
369 		if (TAILQ_FIRST(&flg->flush_list) == NULL) {
370 			KKASSERT(TAILQ_EMPTY(&flg->flush_list));
371 			KKASSERT(flg->refs == 0);
372 			TAILQ_REMOVE(&hmp->flush_group_list, flg, flush_entry);
373 			kfree(flg, hmp->m_misc);
374 			break;
375 		}
376 	}
377 
378 	/*
379 	 * We may have pure meta-data to flush, or we may have to finish
380 	 * cycling the UNDO FIFO, even if there were no flush groups.
381 	 */
382 	if (count == 0 && hammer_flusher_haswork(hmp)) {
383 		hammer_start_transaction_fls(&hmp->flusher.trans, hmp);
384 		hammer_flusher_finalize(&hmp->flusher.trans, 1);
385 		hammer_done_transaction(&hmp->flusher.trans);
386 	}
387 
388 	/*
389 	 * Clean up any freed big-blocks (typically zone-2).
390 	 * resv->flush_group is typically set several flush groups ahead
391 	 * of the free to ensure that the freed block is not reused until
392 	 * it can no longer be reused.
393 	 */
394 	while ((resv = TAILQ_FIRST(&hmp->delay_list)) != NULL) {
395 		if (resv->flush_group != hmp->flusher.act)
396 			break;
397 		hammer_reserve_clrdelay(hmp, resv);
398 	}
399 }
400 
401 
402 /*
403  * The slave flusher thread pulls work off the master flush_list until no
404  * work is left.
405  */
406 static void
407 hammer_flusher_slave_thread(void *arg)
408 {
409 	hammer_flush_group_t flg;
410 	hammer_flusher_info_t info;
411 	hammer_mount_t hmp;
412 	hammer_inode_t ip;
413 	int i;
414 
415 	info = arg;
416 	hmp = info->hmp;
417 
418 	for (;;) {
419 		while (info->runstate == 0)
420 			tsleep(&info->runstate, 0, "hmrssw", 0);
421 		if (info->runstate < 0)
422 			break;
423 		flg = info->flg;
424 
425 		for (i = 0; i < info->count; ++i) {
426 			ip = info->work_array[i];
427 			hammer_flusher_flush_inode(ip, &hmp->flusher.trans);
428 			++hammer_stats_inode_flushes;
429 		}
430 		info->count = 0;
431 		info->runstate = 0;
432 		TAILQ_REMOVE(&hmp->flusher.run_list, info, entry);
433 		TAILQ_INSERT_TAIL(&hmp->flusher.ready_list, info, entry);
434 		wakeup(&hmp->flusher.ready_list);
435 	}
436 	info->td = NULL;
437 	wakeup(&info->td);
438 	lwkt_exit();
439 }
440 
441 void
442 hammer_flusher_clean_loose_ios(hammer_mount_t hmp)
443 {
444 	hammer_buffer_t buffer;
445 	hammer_io_t io;
446 
447 	/*
448 	 * loose ends - buffers without bp's aren't tracked by the kernel
449 	 * and can build up, so clean them out.  This can occur when an
450 	 * IO completes on a buffer with no references left.
451 	 */
452 	if ((io = TAILQ_FIRST(&hmp->lose_list)) != NULL) {
453 		crit_enter();	/* biodone() race */
454 		while ((io = TAILQ_FIRST(&hmp->lose_list)) != NULL) {
455 			KKASSERT(io->mod_list == &hmp->lose_list);
456 			TAILQ_REMOVE(&hmp->lose_list, io, mod_entry);
457 			io->mod_list = NULL;
458 			if (io->lock.refs == 0)
459 				++hammer_count_refedbufs;
460 			hammer_ref(&io->lock);
461 			buffer = (void *)io;
462 			hammer_rel_buffer(buffer, 0);
463 		}
464 		crit_exit();
465 	}
466 }
467 
468 /*
469  * Flush a single inode that is part of a flush group.
470  *
471  * Flusher errors are extremely serious, even ENOSPC shouldn't occur because
472  * the front-end should have reserved sufficient space on the media.  Any
473  * error other then EWOULDBLOCK will force the mount to be read-only.
474  */
475 static
476 void
477 hammer_flusher_flush_inode(hammer_inode_t ip, hammer_transaction_t trans)
478 {
479 	hammer_mount_t hmp = ip->hmp;
480 	int error;
481 
482 	hammer_flusher_clean_loose_ios(hmp);
483 	error = hammer_sync_inode(trans, ip);
484 
485 	/*
486 	 * EWOULDBLOCK can happen under normal operation, all other errors
487 	 * are considered extremely serious.  We must set WOULDBLOCK
488 	 * mechanics to deal with the mess left over from the abort of the
489 	 * previous flush.
490 	 */
491 	if (error) {
492 		ip->flags |= HAMMER_INODE_WOULDBLOCK;
493 		if (error == EWOULDBLOCK)
494 			error = 0;
495 	}
496 	hammer_flush_inode_done(ip, error);
497 	while (hmp->flusher.finalize_want)
498 		tsleep(&hmp->flusher.finalize_want, 0, "hmrsxx", 0);
499 	if (hammer_flusher_undo_exhausted(trans, 1)) {
500 		kprintf("HAMMER: Warning: UNDO area too small!\n");
501 		hammer_flusher_finalize(trans, 1);
502 	} else if (hammer_flusher_meta_limit(trans->hmp)) {
503 		hammer_flusher_finalize(trans, 0);
504 	}
505 }
506 
507 /*
508  * Return non-zero if the UNDO area has less then (QUARTER / 4) of its
509  * space left.
510  *
511  * 1/4 - Emergency free undo space level.  Below this point the flusher
512  *	 will finalize even if directory dependancies have not been resolved.
513  *
514  * 2/4 - Used by the pruning and reblocking code.  These functions may be
515  *	 running in parallel with a flush and cannot be allowed to drop
516  *	 available undo space to emergency levels.
517  *
518  * 3/4 - Used at the beginning of a flush to force-sync the volume header
519  *	 to give the flush plenty of runway to work in.
520  */
521 int
522 hammer_flusher_undo_exhausted(hammer_transaction_t trans, int quarter)
523 {
524 	if (hammer_undo_space(trans) <
525 	    hammer_undo_max(trans->hmp) * quarter / 4) {
526 		return(1);
527 	} else {
528 		return(0);
529 	}
530 }
531 
532 /*
533  * Flush all pending UNDOs, wait for write completion, update the volume
534  * header with the new UNDO end position, and flush it.  Then
535  * asynchronously flush the meta-data.
536  *
537  * If this is the last finalization in a flush group we also synchronize
538  * our cached blockmap and set hmp->flusher_undo_start and our cached undo
539  * fifo first_offset so the next flush resets the FIFO pointers.
540  *
541  * If this is not final it is being called because too many dirty meta-data
542  * buffers have built up and must be flushed with UNDO synchronization to
543  * avoid a buffer cache deadlock.
544  */
545 void
546 hammer_flusher_finalize(hammer_transaction_t trans, int final)
547 {
548 	hammer_volume_t root_volume;
549 	hammer_blockmap_t cundomap, dundomap;
550 	hammer_mount_t hmp;
551 	hammer_io_t io;
552 	int count;
553 	int i;
554 
555 	hmp = trans->hmp;
556 	root_volume = trans->rootvol;
557 
558 	/*
559 	 * Exclusively lock the flusher.  This guarantees that all dirty
560 	 * buffers will be idled (have a mod-count of 0).
561 	 */
562 	++hmp->flusher.finalize_want;
563 	hammer_lock_ex(&hmp->flusher.finalize_lock);
564 
565 	/*
566 	 * If this isn't the final sync several threads may have hit the
567 	 * meta-limit at the same time and raced.  Only sync if we really
568 	 * have to, after acquiring the lock.
569 	 */
570 	if (final == 0 && !hammer_flusher_meta_limit(hmp))
571 		goto done;
572 
573 	if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
574 		goto done;
575 
576 	/*
577 	 * Flush data buffers.  This can occur asynchronously and at any
578 	 * time.  We must interlock against the frontend direct-data write
579 	 * but do not have to acquire the sync-lock yet.
580 	 */
581 	count = 0;
582 	while ((io = TAILQ_FIRST(&hmp->data_list)) != NULL) {
583 		if (io->ioerror)
584 			break;
585 		if (io->lock.refs == 0)
586 			++hammer_count_refedbufs;
587 		hammer_ref(&io->lock);
588 		hammer_io_write_interlock(io);
589 		KKASSERT(io->type != HAMMER_STRUCTURE_VOLUME);
590 		hammer_io_flush(io);
591 		hammer_io_done_interlock(io);
592 		hammer_rel_buffer((hammer_buffer_t)io, 0);
593 		++count;
594 	}
595 
596 	/*
597 	 * The sync-lock is required for the remaining sequence.  This lock
598 	 * prevents meta-data from being modified.
599 	 */
600 	hammer_sync_lock_ex(trans);
601 
602 	/*
603 	 * If we have been asked to finalize the volume header sync the
604 	 * cached blockmap to the on-disk blockmap.  Generate an UNDO
605 	 * record for the update.
606 	 */
607 	if (final) {
608 		cundomap = &hmp->blockmap[0];
609 		dundomap = &root_volume->ondisk->vol0_blockmap[0];
610 		if (root_volume->io.modified) {
611 			hammer_modify_volume(trans, root_volume,
612 					     dundomap, sizeof(hmp->blockmap));
613 			for (i = 0; i < HAMMER_MAX_ZONES; ++i)
614 				hammer_crc_set_blockmap(&cundomap[i]);
615 			bcopy(cundomap, dundomap, sizeof(hmp->blockmap));
616 			hammer_modify_volume_done(root_volume);
617 		}
618 	}
619 
620 	/*
621 	 * Flush UNDOs
622 	 */
623 	count = 0;
624 	while ((io = TAILQ_FIRST(&hmp->undo_list)) != NULL) {
625 		if (io->ioerror)
626 			break;
627 		KKASSERT(io->modify_refs == 0);
628 		if (io->lock.refs == 0)
629 			++hammer_count_refedbufs;
630 		hammer_ref(&io->lock);
631 		KKASSERT(io->type != HAMMER_STRUCTURE_VOLUME);
632 		hammer_io_flush(io);
633 		hammer_rel_buffer((hammer_buffer_t)io, 0);
634 		++count;
635 	}
636 
637 	/*
638 	 * Wait for I/Os to complete
639 	 */
640 	hammer_flusher_clean_loose_ios(hmp);
641 	hammer_io_wait_all(hmp, "hmrfl1");
642 
643 	if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
644 		goto failed;
645 
646 	/*
647 	 * Update the on-disk volume header with new UNDO FIFO end position
648 	 * (do not generate new UNDO records for this change).  We have to
649 	 * do this for the UNDO FIFO whether (final) is set or not.
650 	 *
651 	 * Also update the on-disk next_tid field.  This does not require
652 	 * an UNDO.  However, because our TID is generated before we get
653 	 * the sync lock another sync may have beat us to the punch.
654 	 *
655 	 * This also has the side effect of updating first_offset based on
656 	 * a prior finalization when the first finalization of the next flush
657 	 * cycle occurs, removing any undo info from the prior finalization
658 	 * from consideration.
659 	 *
660 	 * The volume header will be flushed out synchronously.
661 	 */
662 	dundomap = &root_volume->ondisk->vol0_blockmap[HAMMER_ZONE_UNDO_INDEX];
663 	cundomap = &hmp->blockmap[HAMMER_ZONE_UNDO_INDEX];
664 
665 	if (dundomap->first_offset != cundomap->first_offset ||
666 		   dundomap->next_offset != cundomap->next_offset) {
667 		hammer_modify_volume(NULL, root_volume, NULL, 0);
668 		dundomap->first_offset = cundomap->first_offset;
669 		dundomap->next_offset = cundomap->next_offset;
670 		hammer_crc_set_blockmap(dundomap);
671 		hammer_modify_volume_done(root_volume);
672 	}
673 
674 	/*
675 	 * vol0_next_tid is used for TID selection and is updated without
676 	 * an UNDO so we do not reuse a TID that may have been rolled-back.
677 	 *
678 	 * vol0_last_tid is the highest fully-synchronized TID.  It is
679 	 * set-up when the UNDO fifo is fully synced, later on (not here).
680 	 */
681 	if (root_volume->io.modified) {
682 		hammer_modify_volume(NULL, root_volume, NULL, 0);
683 		if (root_volume->ondisk->vol0_next_tid < trans->tid)
684 			root_volume->ondisk->vol0_next_tid = trans->tid;
685 		hammer_crc_set_volume(root_volume->ondisk);
686 		hammer_modify_volume_done(root_volume);
687 		hammer_io_flush(&root_volume->io);
688 	}
689 
690 	/*
691 	 * Wait for I/Os to complete
692 	 */
693 	hammer_flusher_clean_loose_ios(hmp);
694 	hammer_io_wait_all(hmp, "hmrfl2");
695 
696 	if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
697 		goto failed;
698 
699 	/*
700 	 * Flush meta-data.  The meta-data will be undone if we crash
701 	 * so we can safely flush it asynchronously.
702 	 *
703 	 * Repeated catchups will wind up flushing this update's meta-data
704 	 * and the UNDO buffers for the next update simultaniously.  This
705 	 * is ok.
706 	 */
707 	count = 0;
708 	while ((io = TAILQ_FIRST(&hmp->meta_list)) != NULL) {
709 		if (io->ioerror)
710 			break;
711 		KKASSERT(io->modify_refs == 0);
712 		if (io->lock.refs == 0)
713 			++hammer_count_refedbufs;
714 		hammer_ref(&io->lock);
715 		KKASSERT(io->type != HAMMER_STRUCTURE_VOLUME);
716 		hammer_io_flush(io);
717 		hammer_rel_buffer((hammer_buffer_t)io, 0);
718 		++count;
719 	}
720 
721 	/*
722 	 * If this is the final finalization for the flush group set
723 	 * up for the next sequence by setting a new first_offset in
724 	 * our cached blockmap and clearing the undo history.
725 	 *
726 	 * Even though we have updated our cached first_offset, the on-disk
727 	 * first_offset still governs available-undo-space calculations.
728 	 */
729 	if (final) {
730 		cundomap = &hmp->blockmap[HAMMER_ZONE_UNDO_INDEX];
731 		if (cundomap->first_offset == cundomap->next_offset) {
732 			hmp->hflags &= ~HMNT_UNDO_DIRTY;
733 		} else {
734 			cundomap->first_offset = cundomap->next_offset;
735 			hmp->hflags |= HMNT_UNDO_DIRTY;
736 		}
737 		hammer_clear_undo_history(hmp);
738 
739 		/*
740 		 * Flush tid sequencing.  flush_tid1 is fully synchronized,
741 		 * meaning a crash will not roll it back.  flush_tid2 has
742 		 * been written out asynchronously and a crash will roll
743 		 * it back.  flush_tid1 is used for all mirroring masters.
744 		 */
745 		if (hmp->flush_tid1 != hmp->flush_tid2) {
746 			hmp->flush_tid1 = hmp->flush_tid2;
747 			wakeup(&hmp->flush_tid1);
748 		}
749 		hmp->flush_tid2 = trans->tid;
750 	}
751 
752 	/*
753 	 * Cleanup.  Report any critical errors.
754 	 */
755 failed:
756 	hammer_sync_unlock(trans);
757 
758 	if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) {
759 		kprintf("HAMMER(%s): Critical write error during flush, "
760 			"refusing to sync UNDO FIFO\n",
761 			root_volume->ondisk->vol_name);
762 	}
763 
764 done:
765 	hammer_unlock(&hmp->flusher.finalize_lock);
766 
767 	if (--hmp->flusher.finalize_want == 0)
768 		wakeup(&hmp->flusher.finalize_want);
769 	hammer_stats_commits += final;
770 }
771 
772 /*
773  * Return non-zero if too many dirty meta-data buffers have built up.
774  *
775  * Since we cannot allow such buffers to flush until we have dealt with
776  * the UNDOs, we risk deadlocking the kernel's buffer cache.
777  */
778 int
779 hammer_flusher_meta_limit(hammer_mount_t hmp)
780 {
781 	if (hmp->locked_dirty_space + hmp->io_running_space >
782 	    hammer_limit_dirtybufspace) {
783 		return(1);
784 	}
785 	return(0);
786 }
787 
788 /*
789  * Return non-zero if too many dirty meta-data buffers have built up.
790  *
791  * This version is used by background operations (mirror, prune, reblock)
792  * to leave room for foreground operations.
793  */
794 int
795 hammer_flusher_meta_halflimit(hammer_mount_t hmp)
796 {
797 	if (hmp->locked_dirty_space + hmp->io_running_space >
798 	    hammer_limit_dirtybufspace / 2) {
799 		return(1);
800 	}
801 	return(0);
802 }
803 
804 /*
805  * Return non-zero if the flusher still has something to flush.
806  */
807 int
808 hammer_flusher_haswork(hammer_mount_t hmp)
809 {
810 	if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
811 		return(0);
812 	if (TAILQ_FIRST(&hmp->flush_group_list) ||	/* dirty inodes */
813 	    TAILQ_FIRST(&hmp->volu_list) ||		/* dirty bufffers */
814 	    TAILQ_FIRST(&hmp->undo_list) ||
815 	    TAILQ_FIRST(&hmp->data_list) ||
816 	    TAILQ_FIRST(&hmp->meta_list) ||
817 	    (hmp->hflags & HMNT_UNDO_DIRTY)		/* UNDO FIFO sync */
818 	) {
819 		return(1);
820 	}
821 	return(0);
822 }
823 
824