xref: /dragonfly/sys/vfs/hammer/hammer_inode.c (revision 60233e58)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.114 2008/09/24 00:53:51 dillon Exp $
35  */
36 
37 #include "hammer.h"
38 #include <vm/vm_extern.h>
39 #include <sys/buf.h>
40 #include <sys/buf2.h>
41 
42 static int	hammer_unload_inode(struct hammer_inode *ip);
43 static void	hammer_free_inode(hammer_inode_t ip);
44 static void	hammer_flush_inode_core(hammer_inode_t ip,
45 					hammer_flush_group_t flg, int flags);
46 static int	hammer_setup_child_callback(hammer_record_t rec, void *data);
47 #if 0
48 static int	hammer_syncgrp_child_callback(hammer_record_t rec, void *data);
49 #endif
50 static int	hammer_setup_parent_inodes(hammer_inode_t ip,
51 					hammer_flush_group_t flg);
52 static int	hammer_setup_parent_inodes_helper(hammer_record_t record,
53 					hammer_flush_group_t flg);
54 static void	hammer_inode_wakereclaims(hammer_inode_t ip, int dowake);
55 
56 #ifdef DEBUG_TRUNCATE
57 extern struct hammer_inode *HammerTruncIp;
58 #endif
59 
60 /*
61  * RB-Tree support for inode structures
62  */
63 int
64 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
65 {
66 	if (ip1->obj_localization < ip2->obj_localization)
67 		return(-1);
68 	if (ip1->obj_localization > ip2->obj_localization)
69 		return(1);
70 	if (ip1->obj_id < ip2->obj_id)
71 		return(-1);
72 	if (ip1->obj_id > ip2->obj_id)
73 		return(1);
74 	if (ip1->obj_asof < ip2->obj_asof)
75 		return(-1);
76 	if (ip1->obj_asof > ip2->obj_asof)
77 		return(1);
78 	return(0);
79 }
80 
81 /*
82  * RB-Tree support for inode structures / special LOOKUP_INFO
83  */
84 static int
85 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
86 {
87 	if (info->obj_localization < ip->obj_localization)
88 		return(-1);
89 	if (info->obj_localization > ip->obj_localization)
90 		return(1);
91 	if (info->obj_id < ip->obj_id)
92 		return(-1);
93 	if (info->obj_id > ip->obj_id)
94 		return(1);
95 	if (info->obj_asof < ip->obj_asof)
96 		return(-1);
97 	if (info->obj_asof > ip->obj_asof)
98 		return(1);
99 	return(0);
100 }
101 
102 /*
103  * Used by hammer_scan_inode_snapshots() to locate all of an object's
104  * snapshots.  Note that the asof field is not tested, which we can get
105  * away with because it is the lowest-priority field.
106  */
107 static int
108 hammer_inode_info_cmp_all_history(hammer_inode_t ip, void *data)
109 {
110 	hammer_inode_info_t info = data;
111 
112 	if (ip->obj_localization > info->obj_localization)
113 		return(1);
114 	if (ip->obj_localization < info->obj_localization)
115 		return(-1);
116 	if (ip->obj_id > info->obj_id)
117 		return(1);
118 	if (ip->obj_id < info->obj_id)
119 		return(-1);
120 	return(0);
121 }
122 
123 /*
124  * Used by hammer_unload_pseudofs() to locate all inodes associated with
125  * a particular PFS.
126  */
127 static int
128 hammer_inode_pfs_cmp(hammer_inode_t ip, void *data)
129 {
130 	u_int32_t localization = *(u_int32_t *)data;
131 	if (ip->obj_localization > localization)
132 		return(1);
133 	if (ip->obj_localization < localization)
134 		return(-1);
135 	return(0);
136 }
137 
138 /*
139  * RB-Tree support for pseudofs structures
140  */
141 static int
142 hammer_pfs_rb_compare(hammer_pseudofs_inmem_t p1, hammer_pseudofs_inmem_t p2)
143 {
144 	if (p1->localization < p2->localization)
145 		return(-1);
146 	if (p1->localization > p2->localization)
147 		return(1);
148 	return(0);
149 }
150 
151 
152 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
153 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
154 		hammer_inode_info_cmp, hammer_inode_info_t);
155 RB_GENERATE2(hammer_pfs_rb_tree, hammer_pseudofs_inmem, rb_node,
156              hammer_pfs_rb_compare, u_int32_t, localization);
157 
158 /*
159  * The kernel is not actively referencing this vnode but is still holding
160  * it cached.
161  *
162  * This is called from the frontend.
163  */
164 int
165 hammer_vop_inactive(struct vop_inactive_args *ap)
166 {
167 	struct hammer_inode *ip = VTOI(ap->a_vp);
168 
169 	/*
170 	 * Degenerate case
171 	 */
172 	if (ip == NULL) {
173 		vrecycle(ap->a_vp);
174 		return(0);
175 	}
176 
177 	/*
178 	 * If the inode no longer has visibility in the filesystem try to
179 	 * recycle it immediately, even if the inode is dirty.  Recycling
180 	 * it quickly allows the system to reclaim buffer cache and VM
181 	 * resources which can matter a lot in a heavily loaded system.
182 	 *
183 	 * This can deadlock in vfsync() if we aren't careful.
184 	 *
185 	 * Do not queue the inode to the flusher if we still have visibility,
186 	 * otherwise namespace calls such as chmod will unnecessarily generate
187 	 * multiple inode updates.
188 	 */
189 	hammer_inode_unloadable_check(ip, 0);
190 	if (ip->ino_data.nlinks == 0) {
191 		if (ip->flags & HAMMER_INODE_MODMASK)
192 			hammer_flush_inode(ip, 0);
193 		vrecycle(ap->a_vp);
194 	}
195 	return(0);
196 }
197 
198 /*
199  * Release the vnode association.  This is typically (but not always)
200  * the last reference on the inode.
201  *
202  * Once the association is lost we are on our own with regards to
203  * flushing the inode.
204  */
205 int
206 hammer_vop_reclaim(struct vop_reclaim_args *ap)
207 {
208 	struct hammer_inode *ip;
209 	hammer_mount_t hmp;
210 	struct vnode *vp;
211 
212 	vp = ap->a_vp;
213 
214 	if ((ip = vp->v_data) != NULL) {
215 		hmp = ip->hmp;
216 		vp->v_data = NULL;
217 		ip->vp = NULL;
218 
219 		if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
220 			++hammer_count_reclaiming;
221 			++hmp->inode_reclaims;
222 			ip->flags |= HAMMER_INODE_RECLAIM;
223 		}
224 		hammer_rel_inode(ip, 1);
225 	}
226 	return(0);
227 }
228 
229 /*
230  * Return a locked vnode for the specified inode.  The inode must be
231  * referenced but NOT LOCKED on entry and will remain referenced on
232  * return.
233  *
234  * Called from the frontend.
235  */
236 int
237 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
238 {
239 	hammer_mount_t hmp;
240 	struct vnode *vp;
241 	int error = 0;
242 	u_int8_t obj_type;
243 
244 	hmp = ip->hmp;
245 
246 	for (;;) {
247 		if ((vp = ip->vp) == NULL) {
248 			error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
249 			if (error)
250 				break;
251 			hammer_lock_ex(&ip->lock);
252 			if (ip->vp != NULL) {
253 				hammer_unlock(&ip->lock);
254 				vp->v_type = VBAD;
255 				vx_put(vp);
256 				continue;
257 			}
258 			hammer_ref(&ip->lock);
259 			vp = *vpp;
260 			ip->vp = vp;
261 
262 			obj_type = ip->ino_data.obj_type;
263 			vp->v_type = hammer_get_vnode_type(obj_type);
264 
265 			hammer_inode_wakereclaims(ip, 0);
266 
267 			switch(ip->ino_data.obj_type) {
268 			case HAMMER_OBJTYPE_CDEV:
269 			case HAMMER_OBJTYPE_BDEV:
270 				vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
271 				addaliasu(vp, ip->ino_data.rmajor,
272 					  ip->ino_data.rminor);
273 				break;
274 			case HAMMER_OBJTYPE_FIFO:
275 				vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
276 				break;
277 			default:
278 				break;
279 			}
280 
281 			/*
282 			 * Only mark as the root vnode if the ip is not
283 			 * historical, otherwise the VFS cache will get
284 			 * confused.  The other half of the special handling
285 			 * is in hammer_vop_nlookupdotdot().
286 			 *
287 			 * Pseudo-filesystem roots can be accessed via
288 			 * non-root filesystem paths and setting VROOT may
289 			 * confuse the namecache.  Set VPFSROOT instead.
290 			 */
291 			if (ip->obj_id == HAMMER_OBJID_ROOT &&
292 			    ip->obj_asof == hmp->asof) {
293 				if (ip->obj_localization == 0)
294 					vp->v_flag |= VROOT;
295 				else
296 					vp->v_flag |= VPFSROOT;
297 			}
298 
299 			vp->v_data = (void *)ip;
300 			/* vnode locked by getnewvnode() */
301 			/* make related vnode dirty if inode dirty? */
302 			hammer_unlock(&ip->lock);
303 			if (vp->v_type == VREG)
304 				vinitvmio(vp, ip->ino_data.size);
305 			break;
306 		}
307 
308 		/*
309 		 * loop if the vget fails (aka races), or if the vp
310 		 * no longer matches ip->vp.
311 		 */
312 		if (vget(vp, LK_EXCLUSIVE) == 0) {
313 			if (vp == ip->vp)
314 				break;
315 			vput(vp);
316 		}
317 	}
318 	*vpp = vp;
319 	return(error);
320 }
321 
322 /*
323  * Locate all copies of the inode for obj_id compatible with the specified
324  * asof, reference, and issue the related call-back.  This routine is used
325  * for direct-io invalidation and does not create any new inodes.
326  */
327 void
328 hammer_scan_inode_snapshots(hammer_mount_t hmp, hammer_inode_info_t iinfo,
329 		            int (*callback)(hammer_inode_t ip, void *data),
330 			    void *data)
331 {
332 	hammer_ino_rb_tree_RB_SCAN(&hmp->rb_inos_root,
333 				   hammer_inode_info_cmp_all_history,
334 				   callback, iinfo);
335 }
336 
337 /*
338  * Acquire a HAMMER inode.  The returned inode is not locked.  These functions
339  * do not attach or detach the related vnode (use hammer_get_vnode() for
340  * that).
341  *
342  * The flags argument is only applied for newly created inodes, and only
343  * certain flags are inherited.
344  *
345  * Called from the frontend.
346  */
347 struct hammer_inode *
348 hammer_get_inode(hammer_transaction_t trans, hammer_inode_t dip,
349 		 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
350 		 int flags, int *errorp)
351 {
352 	hammer_mount_t hmp = trans->hmp;
353 	struct hammer_inode_info iinfo;
354 	struct hammer_cursor cursor;
355 	struct hammer_inode *ip;
356 
357 
358 	/*
359 	 * Determine if we already have an inode cached.  If we do then
360 	 * we are golden.
361 	 *
362 	 * If we find an inode with no vnode we have to mark the
363 	 * transaction such that hammer_inode_waitreclaims() is
364 	 * called later on to avoid building up an infinite number
365 	 * of inodes.  Otherwise we can continue to * add new inodes
366 	 * faster then they can be disposed of, even with the tsleep
367 	 * delay.
368 	 */
369 	iinfo.obj_id = obj_id;
370 	iinfo.obj_asof = asof;
371 	iinfo.obj_localization = localization;
372 loop:
373 	ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
374 	if (ip) {
375 #if 0
376 		if (ip->vp == NULL)
377 			trans->flags |= HAMMER_TRANSF_NEWINODE;
378 #endif
379 		hammer_ref(&ip->lock);
380 		*errorp = 0;
381 		return(ip);
382 	}
383 
384 	/*
385 	 * Allocate a new inode structure and deal with races later.
386 	 */
387 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
388 	++hammer_count_inodes;
389 	++hmp->count_inodes;
390 	ip->obj_id = obj_id;
391 	ip->obj_asof = iinfo.obj_asof;
392 	ip->obj_localization = localization;
393 	ip->hmp = hmp;
394 	ip->flags = flags & HAMMER_INODE_RO;
395 	ip->cache[0].ip = ip;
396 	ip->cache[1].ip = ip;
397 	if (hmp->ronly)
398 		ip->flags |= HAMMER_INODE_RO;
399 	ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
400 		0x7FFFFFFFFFFFFFFFLL;
401 	RB_INIT(&ip->rec_tree);
402 	TAILQ_INIT(&ip->target_list);
403 	hammer_ref(&ip->lock);
404 
405 	/*
406 	 * Locate the on-disk inode.  If this is a PFS root we always
407 	 * access the current version of the root inode and (if it is not
408 	 * a master) always access information under it with a snapshot
409 	 * TID.
410 	 */
411 retry:
412 	hammer_init_cursor(trans, &cursor, (dip ? &dip->cache[0] : NULL), NULL);
413 	cursor.key_beg.localization = localization + HAMMER_LOCALIZE_INODE;
414 	cursor.key_beg.obj_id = ip->obj_id;
415 	cursor.key_beg.key = 0;
416 	cursor.key_beg.create_tid = 0;
417 	cursor.key_beg.delete_tid = 0;
418 	cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
419 	cursor.key_beg.obj_type = 0;
420 
421 	cursor.asof = iinfo.obj_asof;
422 	cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
423 		       HAMMER_CURSOR_ASOF;
424 
425 	*errorp = hammer_btree_lookup(&cursor);
426 	if (*errorp == EDEADLK) {
427 		hammer_done_cursor(&cursor);
428 		goto retry;
429 	}
430 
431 	/*
432 	 * On success the B-Tree lookup will hold the appropriate
433 	 * buffer cache buffers and provide a pointer to the requested
434 	 * information.  Copy the information to the in-memory inode
435 	 * and cache the B-Tree node to improve future operations.
436 	 */
437 	if (*errorp == 0) {
438 		ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
439 		ip->ino_data = cursor.data->inode;
440 
441 		/*
442 		 * cache[0] tries to cache the location of the object inode.
443 		 * The assumption is that it is near the directory inode.
444 		 *
445 		 * cache[1] tries to cache the location of the object data.
446 		 * The assumption is that it is near the directory data.
447 		 */
448 		hammer_cache_node(&ip->cache[0], cursor.node);
449 		if (dip && dip->cache[1].node)
450 			hammer_cache_node(&ip->cache[1], dip->cache[1].node);
451 
452 		/*
453 		 * The file should not contain any data past the file size
454 		 * stored in the inode.  Setting save_trunc_off to the
455 		 * file size instead of max reduces B-Tree lookup overheads
456 		 * on append by allowing the flusher to avoid checking for
457 		 * record overwrites.
458 		 */
459 		ip->save_trunc_off = ip->ino_data.size;
460 
461 		/*
462 		 * Locate and assign the pseudofs management structure to
463 		 * the inode.
464 		 */
465 		if (dip && dip->obj_localization == ip->obj_localization) {
466 			ip->pfsm = dip->pfsm;
467 			hammer_ref(&ip->pfsm->lock);
468 		} else {
469 			ip->pfsm = hammer_load_pseudofs(trans,
470 							ip->obj_localization,
471 							errorp);
472 			*errorp = 0;	/* ignore ENOENT */
473 		}
474 	}
475 
476 	/*
477 	 * The inode is placed on the red-black tree and will be synced to
478 	 * the media when flushed or by the filesystem sync.  If this races
479 	 * another instantiation/lookup the insertion will fail.
480 	 */
481 	if (*errorp == 0) {
482 		if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
483 			hammer_free_inode(ip);
484 			hammer_done_cursor(&cursor);
485 			goto loop;
486 		}
487 		ip->flags |= HAMMER_INODE_ONDISK;
488 	} else {
489 		if (ip->flags & HAMMER_INODE_RSV_INODES) {
490 			ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
491 			--hmp->rsv_inodes;
492 		}
493 
494 		hammer_free_inode(ip);
495 		ip = NULL;
496 	}
497 	hammer_done_cursor(&cursor);
498 	trans->flags |= HAMMER_TRANSF_NEWINODE;
499 	return (ip);
500 }
501 
502 /*
503  * Create a new filesystem object, returning the inode in *ipp.  The
504  * returned inode will be referenced.  The inode is created in-memory.
505  *
506  * If pfsm is non-NULL the caller wishes to create the root inode for
507  * a master PFS.
508  */
509 int
510 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
511 		    struct ucred *cred, hammer_inode_t dip,
512 		    hammer_pseudofs_inmem_t pfsm, struct hammer_inode **ipp)
513 {
514 	hammer_mount_t hmp;
515 	hammer_inode_t ip;
516 	uid_t xuid;
517 	int error;
518 
519 	hmp = trans->hmp;
520 
521 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
522 	++hammer_count_inodes;
523 	++hmp->count_inodes;
524 	trans->flags |= HAMMER_TRANSF_NEWINODE;
525 
526 	if (pfsm) {
527 		KKASSERT(pfsm->localization != 0);
528 		ip->obj_id = HAMMER_OBJID_ROOT;
529 		ip->obj_localization = pfsm->localization;
530 	} else {
531 		KKASSERT(dip != NULL);
532 		ip->obj_id = hammer_alloc_objid(hmp, dip);
533 		ip->obj_localization = dip->obj_localization;
534 	}
535 
536 	KKASSERT(ip->obj_id != 0);
537 	ip->obj_asof = hmp->asof;
538 	ip->hmp = hmp;
539 	ip->flush_state = HAMMER_FST_IDLE;
540 	ip->flags = HAMMER_INODE_DDIRTY |
541 		    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME;
542 	ip->cache[0].ip = ip;
543 	ip->cache[1].ip = ip;
544 
545 	ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
546 	/* ip->save_trunc_off = 0; (already zero) */
547 	RB_INIT(&ip->rec_tree);
548 	TAILQ_INIT(&ip->target_list);
549 
550 	ip->ino_data.atime = trans->time;
551 	ip->ino_data.mtime = trans->time;
552 	ip->ino_data.size = 0;
553 	ip->ino_data.nlinks = 0;
554 
555 	/*
556 	 * A nohistory designator on the parent directory is inherited by
557 	 * the child.  We will do this even for pseudo-fs creation... the
558 	 * sysad can turn it off.
559 	 */
560 	if (dip) {
561 		ip->ino_data.uflags = dip->ino_data.uflags &
562 				      (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
563 	}
564 
565 	ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
566 	ip->ino_leaf.base.localization = ip->obj_localization +
567 					 HAMMER_LOCALIZE_INODE;
568 	ip->ino_leaf.base.obj_id = ip->obj_id;
569 	ip->ino_leaf.base.key = 0;
570 	ip->ino_leaf.base.create_tid = 0;
571 	ip->ino_leaf.base.delete_tid = 0;
572 	ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
573 	ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
574 
575 	ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
576 	ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
577 	ip->ino_data.mode = vap->va_mode;
578 	ip->ino_data.ctime = trans->time;
579 
580 	/*
581 	 * If we are running version 2 or greater we use dirhash algorithm #1
582 	 * which is semi-sorted.  Algorithm #0 was just a pure crc.
583 	 */
584 	if (trans->hmp->version >= HAMMER_VOL_VERSION_TWO) {
585 		if (ip->ino_leaf.base.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
586 			ip->ino_data.cap_flags |= HAMMER_INODE_CAP_DIRHASH_ALG1;
587 		}
588 	}
589 
590 	/*
591 	 * Setup the ".." pointer.  This only needs to be done for directories
592 	 * but we do it for all objects as a recovery aid.
593 	 */
594 	if (dip)
595 		ip->ino_data.parent_obj_id = dip->ino_leaf.base.obj_id;
596 #if 0
597 	/*
598 	 * The parent_obj_localization field only applies to pseudo-fs roots.
599 	 * XXX this is no longer applicable, PFSs are no longer directly
600 	 * tied into the parent's directory structure.
601 	 */
602 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY &&
603 	    ip->obj_id == HAMMER_OBJID_ROOT) {
604 		ip->ino_data.ext.obj.parent_obj_localization =
605 						dip->obj_localization;
606 	}
607 #endif
608 
609 	switch(ip->ino_leaf.base.obj_type) {
610 	case HAMMER_OBJTYPE_CDEV:
611 	case HAMMER_OBJTYPE_BDEV:
612 		ip->ino_data.rmajor = vap->va_rmajor;
613 		ip->ino_data.rminor = vap->va_rminor;
614 		break;
615 	default:
616 		break;
617 	}
618 
619 	/*
620 	 * Calculate default uid/gid and overwrite with information from
621 	 * the vap.
622 	 */
623 	if (dip) {
624 		xuid = hammer_to_unix_xid(&dip->ino_data.uid);
625 		xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode,
626 					     xuid, cred, &vap->va_mode);
627 	} else {
628 		xuid = 0;
629 	}
630 	ip->ino_data.mode = vap->va_mode;
631 
632 	if (vap->va_vaflags & VA_UID_UUID_VALID)
633 		ip->ino_data.uid = vap->va_uid_uuid;
634 	else if (vap->va_uid != (uid_t)VNOVAL)
635 		hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
636 	else
637 		hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
638 
639 	if (vap->va_vaflags & VA_GID_UUID_VALID)
640 		ip->ino_data.gid = vap->va_gid_uuid;
641 	else if (vap->va_gid != (gid_t)VNOVAL)
642 		hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
643 	else if (dip)
644 		ip->ino_data.gid = dip->ino_data.gid;
645 
646 	hammer_ref(&ip->lock);
647 
648 	if (pfsm) {
649 		ip->pfsm = pfsm;
650 		hammer_ref(&pfsm->lock);
651 		error = 0;
652 	} else if (dip->obj_localization == ip->obj_localization) {
653 		ip->pfsm = dip->pfsm;
654 		hammer_ref(&ip->pfsm->lock);
655 		error = 0;
656 	} else {
657 		ip->pfsm = hammer_load_pseudofs(trans,
658 						ip->obj_localization,
659 						&error);
660 		error = 0;	/* ignore ENOENT */
661 	}
662 
663 	if (error) {
664 		hammer_free_inode(ip);
665 		ip = NULL;
666 	} else if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
667 		panic("hammer_create_inode: duplicate obj_id %llx", ip->obj_id);
668 		/* not reached */
669 		hammer_free_inode(ip);
670 	}
671 	*ipp = ip;
672 	return(error);
673 }
674 
675 /*
676  * Final cleanup / freeing of an inode structure
677  */
678 static void
679 hammer_free_inode(hammer_inode_t ip)
680 {
681 	struct hammer_mount *hmp;
682 
683 	hmp = ip->hmp;
684 	KKASSERT(ip->lock.refs == 1);
685 	hammer_uncache_node(&ip->cache[0]);
686 	hammer_uncache_node(&ip->cache[1]);
687 	hammer_inode_wakereclaims(ip, 1);
688 	if (ip->objid_cache)
689 		hammer_clear_objid(ip);
690 	--hammer_count_inodes;
691 	--hmp->count_inodes;
692 	if (ip->pfsm) {
693 		hammer_rel_pseudofs(hmp, ip->pfsm);
694 		ip->pfsm = NULL;
695 	}
696 	kfree(ip, hmp->m_inodes);
697 	ip = NULL;
698 }
699 
700 /*
701  * Retrieve pseudo-fs data.  NULL will never be returned.
702  *
703  * If an error occurs *errorp will be set and a default template is returned,
704  * otherwise *errorp is set to 0.  Typically when an error occurs it will
705  * be ENOENT.
706  */
707 hammer_pseudofs_inmem_t
708 hammer_load_pseudofs(hammer_transaction_t trans,
709 		     u_int32_t localization, int *errorp)
710 {
711 	hammer_mount_t hmp = trans->hmp;
712 	hammer_inode_t ip;
713 	hammer_pseudofs_inmem_t pfsm;
714 	struct hammer_cursor cursor;
715 	int bytes;
716 
717 retry:
718 	pfsm = RB_LOOKUP(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, localization);
719 	if (pfsm) {
720 		hammer_ref(&pfsm->lock);
721 		*errorp = 0;
722 		return(pfsm);
723 	}
724 
725 	/*
726 	 * PFS records are stored in the root inode (not the PFS root inode,
727 	 * but the real root).  Avoid an infinite recursion if loading
728 	 * the PFS for the real root.
729 	 */
730 	if (localization) {
731 		ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT,
732 				      HAMMER_MAX_TID,
733 				      HAMMER_DEF_LOCALIZATION, 0, errorp);
734 	} else {
735 		ip = NULL;
736 	}
737 
738 	pfsm = kmalloc(sizeof(*pfsm), hmp->m_misc, M_WAITOK | M_ZERO);
739 	pfsm->localization = localization;
740 	pfsm->pfsd.unique_uuid = trans->rootvol->ondisk->vol_fsid;
741 	pfsm->pfsd.shared_uuid = pfsm->pfsd.unique_uuid;
742 
743 	hammer_init_cursor(trans, &cursor, (ip ? &ip->cache[1] : NULL), ip);
744 	cursor.key_beg.localization = HAMMER_DEF_LOCALIZATION +
745 				      HAMMER_LOCALIZE_MISC;
746 	cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
747 	cursor.key_beg.create_tid = 0;
748 	cursor.key_beg.delete_tid = 0;
749 	cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
750 	cursor.key_beg.obj_type = 0;
751 	cursor.key_beg.key = localization;
752 	cursor.asof = HAMMER_MAX_TID;
753 	cursor.flags |= HAMMER_CURSOR_ASOF;
754 
755 	if (ip)
756 		*errorp = hammer_ip_lookup(&cursor);
757 	else
758 		*errorp = hammer_btree_lookup(&cursor);
759 	if (*errorp == 0) {
760 		*errorp = hammer_ip_resolve_data(&cursor);
761 		if (*errorp == 0) {
762 			if (cursor.data->pfsd.mirror_flags &
763 			    HAMMER_PFSD_DELETED) {
764 				*errorp = ENOENT;
765 			} else {
766 				bytes = cursor.leaf->data_len;
767 				if (bytes > sizeof(pfsm->pfsd))
768 					bytes = sizeof(pfsm->pfsd);
769 				bcopy(cursor.data, &pfsm->pfsd, bytes);
770 			}
771 		}
772 	}
773 	hammer_done_cursor(&cursor);
774 
775 	pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
776 	hammer_ref(&pfsm->lock);
777 	if (ip)
778 		hammer_rel_inode(ip, 0);
779 	if (RB_INSERT(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm)) {
780 		kfree(pfsm, hmp->m_misc);
781 		goto retry;
782 	}
783 	return(pfsm);
784 }
785 
786 /*
787  * Store pseudo-fs data.  The backend will automatically delete any prior
788  * on-disk pseudo-fs data but we have to delete in-memory versions.
789  */
790 int
791 hammer_save_pseudofs(hammer_transaction_t trans, hammer_pseudofs_inmem_t pfsm)
792 {
793 	struct hammer_cursor cursor;
794 	hammer_record_t record;
795 	hammer_inode_t ip;
796 	int error;
797 
798 	ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
799 			      HAMMER_DEF_LOCALIZATION, 0, &error);
800 retry:
801 	pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
802 	hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
803 	cursor.key_beg.localization = ip->obj_localization +
804 				      HAMMER_LOCALIZE_MISC;
805 	cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
806 	cursor.key_beg.create_tid = 0;
807 	cursor.key_beg.delete_tid = 0;
808 	cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
809 	cursor.key_beg.obj_type = 0;
810 	cursor.key_beg.key = pfsm->localization;
811 	cursor.asof = HAMMER_MAX_TID;
812 	cursor.flags |= HAMMER_CURSOR_ASOF;
813 
814 	error = hammer_ip_lookup(&cursor);
815 	if (error == 0 && hammer_cursor_inmem(&cursor)) {
816 		record = cursor.iprec;
817 		if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
818 			KKASSERT(cursor.deadlk_rec == NULL);
819 			hammer_ref(&record->lock);
820 			cursor.deadlk_rec = record;
821 			error = EDEADLK;
822 		} else {
823 			record->flags |= HAMMER_RECF_DELETED_FE;
824 			error = 0;
825 		}
826 	}
827 	if (error == 0 || error == ENOENT) {
828 		record = hammer_alloc_mem_record(ip, sizeof(pfsm->pfsd));
829 		record->type = HAMMER_MEM_RECORD_GENERAL;
830 
831 		record->leaf.base.localization = ip->obj_localization +
832 						 HAMMER_LOCALIZE_MISC;
833 		record->leaf.base.rec_type = HAMMER_RECTYPE_PFS;
834 		record->leaf.base.key = pfsm->localization;
835 		record->leaf.data_len = sizeof(pfsm->pfsd);
836 		bcopy(&pfsm->pfsd, record->data, sizeof(pfsm->pfsd));
837 		error = hammer_ip_add_record(trans, record);
838 	}
839 	hammer_done_cursor(&cursor);
840 	if (error == EDEADLK)
841 		goto retry;
842 	hammer_rel_inode(ip, 0);
843 	return(error);
844 }
845 
846 /*
847  * Create a root directory for a PFS if one does not alredy exist.
848  *
849  * The PFS root stands alone so we must also bump the nlinks count
850  * to prevent it from being destroyed on release.
851  */
852 int
853 hammer_mkroot_pseudofs(hammer_transaction_t trans, struct ucred *cred,
854 		       hammer_pseudofs_inmem_t pfsm)
855 {
856 	hammer_inode_t ip;
857 	struct vattr vap;
858 	int error;
859 
860 	ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
861 			      pfsm->localization, 0, &error);
862 	if (ip == NULL) {
863 		vattr_null(&vap);
864 		vap.va_mode = 0755;
865 		vap.va_type = VDIR;
866 		error = hammer_create_inode(trans, &vap, cred, NULL, pfsm, &ip);
867 		if (error == 0) {
868 			++ip->ino_data.nlinks;
869 			hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
870 		}
871 	}
872 	if (ip)
873 		hammer_rel_inode(ip, 0);
874 	return(error);
875 }
876 
877 /*
878  * Unload any vnodes & inodes associated with a PFS, return ENOTEMPTY
879  * if we are unable to disassociate all the inodes.
880  */
881 static
882 int
883 hammer_unload_pseudofs_callback(hammer_inode_t ip, void *data)
884 {
885 	int res;
886 
887 	hammer_ref(&ip->lock);
888 	if (ip->lock.refs == 2 && ip->vp)
889 		vclean_unlocked(ip->vp);
890 	if (ip->lock.refs == 1 && ip->vp == NULL)
891 		res = 0;
892 	else
893 		res = -1;	/* stop, someone is using the inode */
894 	hammer_rel_inode(ip, 0);
895 	return(res);
896 }
897 
898 int
899 hammer_unload_pseudofs(hammer_transaction_t trans, u_int32_t localization)
900 {
901 	int res;
902 	int try;
903 
904 	for (try = res = 0; try < 4; ++try) {
905 		res = hammer_ino_rb_tree_RB_SCAN(&trans->hmp->rb_inos_root,
906 					   hammer_inode_pfs_cmp,
907 					   hammer_unload_pseudofs_callback,
908 					   &localization);
909 		if (res == 0 && try > 1)
910 			break;
911 		hammer_flusher_sync(trans->hmp);
912 	}
913 	if (res != 0)
914 		res = ENOTEMPTY;
915 	return(res);
916 }
917 
918 
919 /*
920  * Release a reference on a PFS
921  */
922 void
923 hammer_rel_pseudofs(hammer_mount_t hmp, hammer_pseudofs_inmem_t pfsm)
924 {
925 	hammer_unref(&pfsm->lock);
926 	if (pfsm->lock.refs == 0) {
927 		RB_REMOVE(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm);
928 		kfree(pfsm, hmp->m_misc);
929 	}
930 }
931 
932 /*
933  * Called by hammer_sync_inode().
934  */
935 static int
936 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
937 {
938 	hammer_transaction_t trans = cursor->trans;
939 	hammer_record_t record;
940 	int error;
941 	int redirty;
942 
943 retry:
944 	error = 0;
945 
946 	/*
947 	 * If the inode has a presence on-disk then locate it and mark
948 	 * it deleted, setting DELONDISK.
949 	 *
950 	 * The record may or may not be physically deleted, depending on
951 	 * the retention policy.
952 	 */
953 	if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
954 	    HAMMER_INODE_ONDISK) {
955 		hammer_normalize_cursor(cursor);
956 		cursor->key_beg.localization = ip->obj_localization +
957 					       HAMMER_LOCALIZE_INODE;
958 		cursor->key_beg.obj_id = ip->obj_id;
959 		cursor->key_beg.key = 0;
960 		cursor->key_beg.create_tid = 0;
961 		cursor->key_beg.delete_tid = 0;
962 		cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
963 		cursor->key_beg.obj_type = 0;
964 		cursor->asof = ip->obj_asof;
965 		cursor->flags &= ~HAMMER_CURSOR_INITMASK;
966 		cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
967 		cursor->flags |= HAMMER_CURSOR_BACKEND;
968 
969 		error = hammer_btree_lookup(cursor);
970 		if (hammer_debug_inode)
971 			kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
972 
973 		if (error == 0) {
974 			error = hammer_ip_delete_record(cursor, ip, trans->tid);
975 			if (hammer_debug_inode)
976 				kprintf(" error %d\n", error);
977 			if (error == 0) {
978 				ip->flags |= HAMMER_INODE_DELONDISK;
979 			}
980 			if (cursor->node)
981 				hammer_cache_node(&ip->cache[0], cursor->node);
982 		}
983 		if (error == EDEADLK) {
984 			hammer_done_cursor(cursor);
985 			error = hammer_init_cursor(trans, cursor,
986 						   &ip->cache[0], ip);
987 			if (hammer_debug_inode)
988 				kprintf("IPDED %p %d\n", ip, error);
989 			if (error == 0)
990 				goto retry;
991 		}
992 	}
993 
994 	/*
995 	 * Ok, write out the initial record or a new record (after deleting
996 	 * the old one), unless the DELETED flag is set.  This routine will
997 	 * clear DELONDISK if it writes out a record.
998 	 *
999 	 * Update our inode statistics if this is the first application of
1000 	 * the inode on-disk.
1001 	 */
1002 	if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
1003 		/*
1004 		 * Generate a record and write it to the media.  We clean-up
1005 		 * the state before releasing so we do not have to set-up
1006 		 * a flush_group.
1007 		 */
1008 		record = hammer_alloc_mem_record(ip, 0);
1009 		record->type = HAMMER_MEM_RECORD_INODE;
1010 		record->flush_state = HAMMER_FST_FLUSH;
1011 		record->leaf = ip->sync_ino_leaf;
1012 		record->leaf.base.create_tid = trans->tid;
1013 		record->leaf.data_len = sizeof(ip->sync_ino_data);
1014 		record->leaf.create_ts = trans->time32;
1015 		record->data = (void *)&ip->sync_ino_data;
1016 		record->flags |= HAMMER_RECF_INTERLOCK_BE;
1017 
1018 		/*
1019 		 * If this flag is set we cannot sync the new file size
1020 		 * because we haven't finished related truncations.  The
1021 		 * inode will be flushed in another flush group to finish
1022 		 * the job.
1023 		 */
1024 		if ((ip->flags & HAMMER_INODE_WOULDBLOCK) &&
1025 		    ip->sync_ino_data.size != ip->ino_data.size) {
1026 			redirty = 1;
1027 			ip->sync_ino_data.size = ip->ino_data.size;
1028 		} else {
1029 			redirty = 0;
1030 		}
1031 
1032 		for (;;) {
1033 			error = hammer_ip_sync_record_cursor(cursor, record);
1034 			if (hammer_debug_inode)
1035 				kprintf("GENREC %p rec %08x %d\n",
1036 					ip, record->flags, error);
1037 			if (error != EDEADLK)
1038 				break;
1039 			hammer_done_cursor(cursor);
1040 			error = hammer_init_cursor(trans, cursor,
1041 						   &ip->cache[0], ip);
1042 			if (hammer_debug_inode)
1043 				kprintf("GENREC reinit %d\n", error);
1044 			if (error)
1045 				break;
1046 		}
1047 
1048 		/*
1049 		 * The record isn't managed by the inode's record tree,
1050 		 * destroy it whether we succeed or fail.
1051 		 */
1052 		record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
1053 		record->flags |= HAMMER_RECF_DELETED_FE | HAMMER_RECF_COMMITTED;
1054 		record->flush_state = HAMMER_FST_IDLE;
1055 		hammer_rel_mem_record(record);
1056 
1057 		/*
1058 		 * Finish up.
1059 		 */
1060 		if (error == 0) {
1061 			if (hammer_debug_inode)
1062 				kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
1063 			ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1064 					    HAMMER_INODE_ATIME |
1065 					    HAMMER_INODE_MTIME);
1066 			ip->flags &= ~HAMMER_INODE_DELONDISK;
1067 			if (redirty)
1068 				ip->sync_flags |= HAMMER_INODE_DDIRTY;
1069 
1070 			/*
1071 			 * Root volume count of inodes
1072 			 */
1073 			hammer_sync_lock_sh(trans);
1074 			if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
1075 				hammer_modify_volume_field(trans,
1076 							   trans->rootvol,
1077 							   vol0_stat_inodes);
1078 				++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1079 				hammer_modify_volume_done(trans->rootvol);
1080 				ip->flags |= HAMMER_INODE_ONDISK;
1081 				if (hammer_debug_inode)
1082 					kprintf("NOWONDISK %p\n", ip);
1083 			}
1084 			hammer_sync_unlock(trans);
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * If the inode has been destroyed, clean out any left-over flags
1090 	 * that may have been set by the frontend.
1091 	 */
1092 	if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
1093 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1094 				    HAMMER_INODE_ATIME |
1095 				    HAMMER_INODE_MTIME);
1096 	}
1097 	return(error);
1098 }
1099 
1100 /*
1101  * Update only the itimes fields.
1102  *
1103  * ATIME can be updated without generating any UNDO.  MTIME is updated
1104  * with UNDO so it is guaranteed to be synchronized properly in case of
1105  * a crash.
1106  *
1107  * Neither field is included in the B-Tree leaf element's CRC, which is how
1108  * we can get away with updating ATIME the way we do.
1109  */
1110 static int
1111 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
1112 {
1113 	hammer_transaction_t trans = cursor->trans;
1114 	int error;
1115 
1116 retry:
1117 	if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) !=
1118 	    HAMMER_INODE_ONDISK) {
1119 		return(0);
1120 	}
1121 
1122 	hammer_normalize_cursor(cursor);
1123 	cursor->key_beg.localization = ip->obj_localization +
1124 				       HAMMER_LOCALIZE_INODE;
1125 	cursor->key_beg.obj_id = ip->obj_id;
1126 	cursor->key_beg.key = 0;
1127 	cursor->key_beg.create_tid = 0;
1128 	cursor->key_beg.delete_tid = 0;
1129 	cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1130 	cursor->key_beg.obj_type = 0;
1131 	cursor->asof = ip->obj_asof;
1132 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1133 	cursor->flags |= HAMMER_CURSOR_ASOF;
1134 	cursor->flags |= HAMMER_CURSOR_GET_LEAF;
1135 	cursor->flags |= HAMMER_CURSOR_GET_DATA;
1136 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1137 
1138 	error = hammer_btree_lookup(cursor);
1139 	if (error == 0) {
1140 		hammer_cache_node(&ip->cache[0], cursor->node);
1141 		if (ip->sync_flags & HAMMER_INODE_MTIME) {
1142 			/*
1143 			 * Updating MTIME requires an UNDO.  Just cover
1144 			 * both atime and mtime.
1145 			 */
1146 			hammer_sync_lock_sh(trans);
1147 			hammer_modify_buffer(trans, cursor->data_buffer,
1148 				     HAMMER_ITIMES_BASE(&cursor->data->inode),
1149 				     HAMMER_ITIMES_BYTES);
1150 			cursor->data->inode.atime = ip->sync_ino_data.atime;
1151 			cursor->data->inode.mtime = ip->sync_ino_data.mtime;
1152 			hammer_modify_buffer_done(cursor->data_buffer);
1153 			hammer_sync_unlock(trans);
1154 		} else if (ip->sync_flags & HAMMER_INODE_ATIME) {
1155 			/*
1156 			 * Updating atime only can be done in-place with
1157 			 * no UNDO.
1158 			 */
1159 			hammer_sync_lock_sh(trans);
1160 			hammer_modify_buffer(trans, cursor->data_buffer,
1161 					     NULL, 0);
1162 			cursor->data->inode.atime = ip->sync_ino_data.atime;
1163 			hammer_modify_buffer_done(cursor->data_buffer);
1164 			hammer_sync_unlock(trans);
1165 		}
1166 		ip->sync_flags &= ~(HAMMER_INODE_ATIME | HAMMER_INODE_MTIME);
1167 	}
1168 	if (error == EDEADLK) {
1169 		hammer_done_cursor(cursor);
1170 		error = hammer_init_cursor(trans, cursor,
1171 					   &ip->cache[0], ip);
1172 		if (error == 0)
1173 			goto retry;
1174 	}
1175 	return(error);
1176 }
1177 
1178 /*
1179  * Release a reference on an inode, flush as requested.
1180  *
1181  * On the last reference we queue the inode to the flusher for its final
1182  * disposition.
1183  */
1184 void
1185 hammer_rel_inode(struct hammer_inode *ip, int flush)
1186 {
1187 	/*hammer_mount_t hmp = ip->hmp;*/
1188 
1189 	/*
1190 	 * Handle disposition when dropping the last ref.
1191 	 */
1192 	for (;;) {
1193 		if (ip->lock.refs == 1) {
1194 			/*
1195 			 * Determine whether on-disk action is needed for
1196 			 * the inode's final disposition.
1197 			 */
1198 			KKASSERT(ip->vp == NULL);
1199 			hammer_inode_unloadable_check(ip, 0);
1200 			if (ip->flags & HAMMER_INODE_MODMASK) {
1201 				hammer_flush_inode(ip, 0);
1202 			} else if (ip->lock.refs == 1) {
1203 				hammer_unload_inode(ip);
1204 				break;
1205 			}
1206 		} else {
1207 			if (flush)
1208 				hammer_flush_inode(ip, 0);
1209 
1210 			/*
1211 			 * The inode still has multiple refs, try to drop
1212 			 * one ref.
1213 			 */
1214 			KKASSERT(ip->lock.refs >= 1);
1215 			if (ip->lock.refs > 1) {
1216 				hammer_unref(&ip->lock);
1217 				break;
1218 			}
1219 		}
1220 	}
1221 }
1222 
1223 /*
1224  * Unload and destroy the specified inode.  Must be called with one remaining
1225  * reference.  The reference is disposed of.
1226  *
1227  * The inode must be completely clean.
1228  */
1229 static int
1230 hammer_unload_inode(struct hammer_inode *ip)
1231 {
1232 	hammer_mount_t hmp = ip->hmp;
1233 
1234 	KASSERT(ip->lock.refs == 1,
1235 		("hammer_unload_inode: %d refs\n", ip->lock.refs));
1236 	KKASSERT(ip->vp == NULL);
1237 	KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
1238 	KKASSERT(ip->cursor_ip_refs == 0);
1239 	KKASSERT(ip->lock.lockcount == 0);
1240 	KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
1241 
1242 	KKASSERT(RB_EMPTY(&ip->rec_tree));
1243 	KKASSERT(TAILQ_EMPTY(&ip->target_list));
1244 
1245 	RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
1246 
1247 	hammer_free_inode(ip);
1248 	return(0);
1249 }
1250 
1251 /*
1252  * Called during unmounting if a critical error occured.  The in-memory
1253  * inode and all related structures are destroyed.
1254  *
1255  * If a critical error did not occur the unmount code calls the standard
1256  * release and asserts that the inode is gone.
1257  */
1258 int
1259 hammer_destroy_inode_callback(struct hammer_inode *ip, void *data __unused)
1260 {
1261 	hammer_record_t rec;
1262 
1263 	/*
1264 	 * Get rid of the inodes in-memory records, regardless of their
1265 	 * state, and clear the mod-mask.
1266 	 */
1267 	while ((rec = TAILQ_FIRST(&ip->target_list)) != NULL) {
1268 		TAILQ_REMOVE(&ip->target_list, rec, target_entry);
1269 		rec->target_ip = NULL;
1270 		if (rec->flush_state == HAMMER_FST_SETUP)
1271 			rec->flush_state = HAMMER_FST_IDLE;
1272 	}
1273 	while ((rec = RB_ROOT(&ip->rec_tree)) != NULL) {
1274 		if (rec->flush_state == HAMMER_FST_FLUSH)
1275 			--rec->flush_group->refs;
1276 		else
1277 			hammer_ref(&rec->lock);
1278 		KKASSERT(rec->lock.refs == 1);
1279 		rec->flush_state = HAMMER_FST_IDLE;
1280 		rec->flush_group = NULL;
1281 		rec->flags |= HAMMER_RECF_DELETED_FE;
1282 		rec->flags |= HAMMER_RECF_DELETED_BE;
1283 		hammer_rel_mem_record(rec);
1284 	}
1285 	ip->flags &= ~HAMMER_INODE_MODMASK;
1286 	ip->sync_flags &= ~HAMMER_INODE_MODMASK;
1287 	KKASSERT(ip->vp == NULL);
1288 
1289 	/*
1290 	 * Remove the inode from any flush group, force it idle.  FLUSH
1291 	 * and SETUP states have an inode ref.
1292 	 */
1293 	switch(ip->flush_state) {
1294 	case HAMMER_FST_FLUSH:
1295 		TAILQ_REMOVE(&ip->flush_group->flush_list, ip, flush_entry);
1296 		--ip->flush_group->refs;
1297 		ip->flush_group = NULL;
1298 		/* fall through */
1299 	case HAMMER_FST_SETUP:
1300 		hammer_unref(&ip->lock);
1301 		ip->flush_state = HAMMER_FST_IDLE;
1302 		/* fall through */
1303 	case HAMMER_FST_IDLE:
1304 		break;
1305 	}
1306 
1307 	/*
1308 	 * There shouldn't be any associated vnode.  The unload needs at
1309 	 * least one ref, if we do have a vp steal its ip ref.
1310 	 */
1311 	if (ip->vp) {
1312 		kprintf("hammer_destroy_inode_callback: Unexpected "
1313 			"vnode association ip %p vp %p\n", ip, ip->vp);
1314 		ip->vp->v_data = NULL;
1315 		ip->vp = NULL;
1316 	} else {
1317 		hammer_ref(&ip->lock);
1318 	}
1319 	hammer_unload_inode(ip);
1320 	return(0);
1321 }
1322 
1323 /*
1324  * Called on mount -u when switching from RW to RO or vise-versa.  Adjust
1325  * the read-only flag for cached inodes.
1326  *
1327  * This routine is called from a RB_SCAN().
1328  */
1329 int
1330 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
1331 {
1332 	hammer_mount_t hmp = ip->hmp;
1333 
1334 	if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
1335 		ip->flags |= HAMMER_INODE_RO;
1336 	else
1337 		ip->flags &= ~HAMMER_INODE_RO;
1338 	return(0);
1339 }
1340 
1341 /*
1342  * A transaction has modified an inode, requiring updates as specified by
1343  * the passed flags.
1344  *
1345  * HAMMER_INODE_DDIRTY: Inode data has been updated
1346  * HAMMER_INODE_XDIRTY: Dirty in-memory records
1347  * HAMMER_INODE_BUFS:   Dirty buffer cache buffers
1348  * HAMMER_INODE_DELETED: Inode record/data must be deleted
1349  * HAMMER_INODE_ATIME/MTIME: mtime/atime has been updated
1350  */
1351 void
1352 hammer_modify_inode(hammer_inode_t ip, int flags)
1353 {
1354 	/*
1355 	 * ronly of 0 or 2 does not trigger assertion.
1356 	 * 2 is a special error state
1357 	 */
1358 	KKASSERT(ip->hmp->ronly != 1 ||
1359 		  (flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
1360 			    HAMMER_INODE_BUFS | HAMMER_INODE_DELETED |
1361 			    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) == 0);
1362 	if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
1363 		ip->flags |= HAMMER_INODE_RSV_INODES;
1364 		++ip->hmp->rsv_inodes;
1365 	}
1366 
1367 	ip->flags |= flags;
1368 }
1369 
1370 /*
1371  * Request that an inode be flushed.  This whole mess cannot block and may
1372  * recurse (if not synchronous).  Once requested HAMMER will attempt to
1373  * actively flush the inode until the flush can be done.
1374  *
1375  * The inode may already be flushing, or may be in a setup state.  We can
1376  * place the inode in a flushing state if it is currently idle and flag it
1377  * to reflush if it is currently flushing.
1378  *
1379  * Upon return if the inode could not be flushed due to a setup
1380  * dependancy, then it will be automatically flushed when the dependancy
1381  * is satisfied.
1382  */
1383 void
1384 hammer_flush_inode(hammer_inode_t ip, int flags)
1385 {
1386 	hammer_mount_t hmp;
1387 	hammer_flush_group_t flg;
1388 	int good;
1389 
1390 	/*
1391 	 * next_flush_group is the first flush group we can place the inode
1392 	 * in.  It may be NULL.  If it becomes full we append a new flush
1393 	 * group and make that the next_flush_group.
1394 	 */
1395 	hmp = ip->hmp;
1396 	while ((flg = hmp->next_flush_group) != NULL) {
1397 		KKASSERT(flg->running == 0);
1398 		if (flg->total_count + flg->refs <= ip->hmp->undo_rec_limit)
1399 			break;
1400 		hmp->next_flush_group = TAILQ_NEXT(flg, flush_entry);
1401 		hammer_flusher_async(ip->hmp, flg);
1402 	}
1403 	if (flg == NULL) {
1404 		flg = kmalloc(sizeof(*flg), hmp->m_misc, M_WAITOK|M_ZERO);
1405 		hmp->next_flush_group = flg;
1406 		TAILQ_INIT(&flg->flush_list);
1407 		TAILQ_INSERT_TAIL(&hmp->flush_group_list, flg, flush_entry);
1408 	}
1409 
1410 	/*
1411 	 * Trivial 'nothing to flush' case.  If the inode is in a SETUP
1412 	 * state we have to put it back into an IDLE state so we can
1413 	 * drop the extra ref.
1414 	 *
1415 	 * If we have a parent dependancy we must still fall through
1416 	 * so we can run it.
1417 	 */
1418 	if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
1419 		if (ip->flush_state == HAMMER_FST_SETUP &&
1420 		    TAILQ_EMPTY(&ip->target_list)) {
1421 			ip->flush_state = HAMMER_FST_IDLE;
1422 			hammer_rel_inode(ip, 0);
1423 		}
1424 		if (ip->flush_state == HAMMER_FST_IDLE)
1425 			return;
1426 	}
1427 
1428 	/*
1429 	 * Our flush action will depend on the current state.
1430 	 */
1431 	switch(ip->flush_state) {
1432 	case HAMMER_FST_IDLE:
1433 		/*
1434 		 * We have no dependancies and can flush immediately.  Some
1435 		 * our children may not be flushable so we have to re-test
1436 		 * with that additional knowledge.
1437 		 */
1438 		hammer_flush_inode_core(ip, flg, flags);
1439 		break;
1440 	case HAMMER_FST_SETUP:
1441 		/*
1442 		 * Recurse upwards through dependancies via target_list
1443 		 * and start their flusher actions going if possible.
1444 		 *
1445 		 * 'good' is our connectivity.  -1 means we have none and
1446 		 * can't flush, 0 means there weren't any dependancies, and
1447 		 * 1 means we have good connectivity.
1448 		 */
1449 		good = hammer_setup_parent_inodes(ip, flg);
1450 
1451 		if (good >= 0) {
1452 			/*
1453 			 * We can continue if good >= 0.  Determine how
1454 			 * many records under our inode can be flushed (and
1455 			 * mark them).
1456 			 */
1457 			hammer_flush_inode_core(ip, flg, flags);
1458 		} else {
1459 			/*
1460 			 * Parent has no connectivity, tell it to flush
1461 			 * us as soon as it does.
1462 			 *
1463 			 * The REFLUSH flag is also needed to trigger
1464 			 * dependancy wakeups.
1465 			 */
1466 			ip->flags |= HAMMER_INODE_CONN_DOWN |
1467 				     HAMMER_INODE_REFLUSH;
1468 			if (flags & HAMMER_FLUSH_SIGNAL) {
1469 				ip->flags |= HAMMER_INODE_RESIGNAL;
1470 				hammer_flusher_async(ip->hmp, flg);
1471 			}
1472 		}
1473 		break;
1474 	case HAMMER_FST_FLUSH:
1475 		/*
1476 		 * We are already flushing, flag the inode to reflush
1477 		 * if needed after it completes its current flush.
1478 		 *
1479 		 * The REFLUSH flag is also needed to trigger
1480 		 * dependancy wakeups.
1481 		 */
1482 		if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
1483 			ip->flags |= HAMMER_INODE_REFLUSH;
1484 		if (flags & HAMMER_FLUSH_SIGNAL) {
1485 			ip->flags |= HAMMER_INODE_RESIGNAL;
1486 			hammer_flusher_async(ip->hmp, flg);
1487 		}
1488 		break;
1489 	}
1490 }
1491 
1492 /*
1493  * Scan ip->target_list, which is a list of records owned by PARENTS to our
1494  * ip which reference our ip.
1495  *
1496  * XXX This is a huge mess of recursive code, but not one bit of it blocks
1497  *     so for now do not ref/deref the structures.  Note that if we use the
1498  *     ref/rel code later, the rel CAN block.
1499  */
1500 static int
1501 hammer_setup_parent_inodes(hammer_inode_t ip, hammer_flush_group_t flg)
1502 {
1503 	hammer_record_t depend;
1504 	int good;
1505 	int r;
1506 
1507 	good = 0;
1508 	TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
1509 		r = hammer_setup_parent_inodes_helper(depend, flg);
1510 		KKASSERT(depend->target_ip == ip);
1511 		if (r < 0 && good == 0)
1512 			good = -1;
1513 		if (r > 0)
1514 			good = 1;
1515 	}
1516 	return(good);
1517 }
1518 
1519 /*
1520  * This helper function takes a record representing the dependancy between
1521  * the parent inode and child inode.
1522  *
1523  * record->ip		= parent inode
1524  * record->target_ip	= child inode
1525  *
1526  * We are asked to recurse upwards and convert the record from SETUP
1527  * to FLUSH if possible.
1528  *
1529  * Return 1 if the record gives us connectivity
1530  *
1531  * Return 0 if the record is not relevant
1532  *
1533  * Return -1 if we can't resolve the dependancy and there is no connectivity.
1534  */
1535 static int
1536 hammer_setup_parent_inodes_helper(hammer_record_t record,
1537 				  hammer_flush_group_t flg)
1538 {
1539 	hammer_mount_t hmp;
1540 	hammer_inode_t pip;
1541 	int good;
1542 
1543 	KKASSERT(record->flush_state != HAMMER_FST_IDLE);
1544 	pip = record->ip;
1545 	hmp = pip->hmp;
1546 
1547 	/*
1548 	 * If the record is already flushing, is it in our flush group?
1549 	 *
1550 	 * If it is in our flush group but it is a general record or a
1551 	 * delete-on-disk, it does not improve our connectivity (return 0),
1552 	 * and if the target inode is not trying to destroy itself we can't
1553 	 * allow the operation yet anyway (the second return -1).
1554 	 */
1555 	if (record->flush_state == HAMMER_FST_FLUSH) {
1556 		/*
1557 		 * If not in our flush group ask the parent to reflush
1558 		 * us as soon as possible.
1559 		 */
1560 		if (record->flush_group != flg) {
1561 			pip->flags |= HAMMER_INODE_REFLUSH;
1562 			record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1563 			return(-1);
1564 		}
1565 
1566 		/*
1567 		 * If in our flush group everything is already set up,
1568 		 * just return whether the record will improve our
1569 		 * visibility or not.
1570 		 */
1571 		if (record->type == HAMMER_MEM_RECORD_ADD)
1572 			return(1);
1573 		return(0);
1574 	}
1575 
1576 	/*
1577 	 * It must be a setup record.  Try to resolve the setup dependancies
1578 	 * by recursing upwards so we can place ip on the flush list.
1579 	 */
1580 	KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1581 
1582 	good = hammer_setup_parent_inodes(pip, flg);
1583 
1584 	/*
1585 	 * If good < 0 the parent has no connectivity and we cannot safely
1586 	 * flush the directory entry, which also means we can't flush our
1587 	 * ip.  Flag the parent and us for downward recursion once the
1588 	 * parent's connectivity is resolved.
1589 	 */
1590 	if (good < 0) {
1591 		/* pip->flags |= HAMMER_INODE_CONN_DOWN; set by recursion */
1592 		record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1593 		return(good);
1594 	}
1595 
1596 	/*
1597 	 * We are go, place the parent inode in a flushing state so we can
1598 	 * place its record in a flushing state.  Note that the parent
1599 	 * may already be flushing.  The record must be in the same flush
1600 	 * group as the parent.
1601 	 */
1602 	if (pip->flush_state != HAMMER_FST_FLUSH)
1603 		hammer_flush_inode_core(pip, flg, HAMMER_FLUSH_RECURSION);
1604 	KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
1605 	KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1606 
1607 #if 0
1608 	if (record->type == HAMMER_MEM_RECORD_DEL &&
1609 	    (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
1610 		/*
1611 		 * Regardless of flushing state we cannot sync this path if the
1612 		 * record represents a delete-on-disk but the target inode
1613 		 * is not ready to sync its own deletion.
1614 		 *
1615 		 * XXX need to count effective nlinks to determine whether
1616 		 * the flush is ok, otherwise removing a hardlink will
1617 		 * just leave the DEL record to rot.
1618 		 */
1619 		record->target_ip->flags |= HAMMER_INODE_REFLUSH;
1620 		return(-1);
1621 	} else
1622 #endif
1623 	if (pip->flush_group == flg) {
1624 		/*
1625 		 * Because we have not calculated nlinks yet we can just
1626 		 * set records to the flush state if the parent is in
1627 		 * the same flush group as we are.
1628 		 */
1629 		record->flush_state = HAMMER_FST_FLUSH;
1630 		record->flush_group = flg;
1631 		++record->flush_group->refs;
1632 		hammer_ref(&record->lock);
1633 
1634 		/*
1635 		 * A general directory-add contributes to our visibility.
1636 		 *
1637 		 * Otherwise it is probably a directory-delete or
1638 		 * delete-on-disk record and does not contribute to our
1639 		 * visbility (but we can still flush it).
1640 		 */
1641 		if (record->type == HAMMER_MEM_RECORD_ADD)
1642 			return(1);
1643 		return(0);
1644 	} else {
1645 		/*
1646 		 * If the parent is not in our flush group we cannot
1647 		 * flush this record yet, there is no visibility.
1648 		 * We tell the parent to reflush and mark ourselves
1649 		 * so the parent knows it should flush us too.
1650 		 */
1651 		pip->flags |= HAMMER_INODE_REFLUSH;
1652 		record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1653 		return(-1);
1654 	}
1655 }
1656 
1657 /*
1658  * This is the core routine placing an inode into the FST_FLUSH state.
1659  */
1660 static void
1661 hammer_flush_inode_core(hammer_inode_t ip, hammer_flush_group_t flg, int flags)
1662 {
1663 	int go_count;
1664 
1665 	/*
1666 	 * Set flush state and prevent the flusher from cycling into
1667 	 * the next flush group.  Do not place the ip on the list yet.
1668 	 * Inodes not in the idle state get an extra reference.
1669 	 */
1670 	KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
1671 	if (ip->flush_state == HAMMER_FST_IDLE)
1672 		hammer_ref(&ip->lock);
1673 	ip->flush_state = HAMMER_FST_FLUSH;
1674 	ip->flush_group = flg;
1675 	++ip->hmp->flusher.group_lock;
1676 	++ip->hmp->count_iqueued;
1677 	++hammer_count_iqueued;
1678 	++flg->total_count;
1679 
1680 	/*
1681 	 * If the flush group reaches the autoflush limit we want to signal
1682 	 * the flusher.  This is particularly important for remove()s.
1683 	 */
1684 	if (flg->total_count == hammer_autoflush)
1685 		flags |= HAMMER_FLUSH_SIGNAL;
1686 
1687 	/*
1688 	 * We need to be able to vfsync/truncate from the backend.
1689 	 */
1690 	KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
1691 	if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
1692 		ip->flags |= HAMMER_INODE_VHELD;
1693 		vref(ip->vp);
1694 	}
1695 
1696 	/*
1697 	 * Figure out how many in-memory records we can actually flush
1698 	 * (not including inode meta-data, buffers, etc).
1699 	 */
1700 	KKASSERT((ip->flags & HAMMER_INODE_WOULDBLOCK) == 0);
1701 	if (flags & HAMMER_FLUSH_RECURSION) {
1702 		/*
1703 		 * If this is a upwards recursion we do not want to
1704 		 * recurse down again!
1705 		 */
1706 		go_count = 1;
1707 #if 0
1708 	} else if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1709 		/*
1710 		 * No new records are added if we must complete a flush
1711 		 * from a previous cycle, but we do have to move the records
1712 		 * from the previous cycle to the current one.
1713 		 */
1714 #if 0
1715 		go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1716 				   hammer_syncgrp_child_callback, NULL);
1717 #endif
1718 		go_count = 1;
1719 #endif
1720 	} else {
1721 		/*
1722 		 * Normal flush, scan records and bring them into the flush.
1723 		 * Directory adds and deletes are usually skipped (they are
1724 		 * grouped with the related inode rather then with the
1725 		 * directory).
1726 		 *
1727 		 * go_count can be negative, which means the scan aborted
1728 		 * due to the flush group being over-full and we should
1729 		 * flush what we have.
1730 		 */
1731 		go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1732 				   hammer_setup_child_callback, NULL);
1733 	}
1734 
1735 	/*
1736 	 * This is a more involved test that includes go_count.  If we
1737 	 * can't flush, flag the inode and return.  If go_count is 0 we
1738 	 * were are unable to flush any records in our rec_tree and
1739 	 * must ignore the XDIRTY flag.
1740 	 */
1741 	if (go_count == 0) {
1742 		if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
1743 			--ip->hmp->count_iqueued;
1744 			--hammer_count_iqueued;
1745 
1746 			--flg->total_count;
1747 			ip->flush_state = HAMMER_FST_SETUP;
1748 			ip->flush_group = NULL;
1749 			if (ip->flags & HAMMER_INODE_VHELD) {
1750 				ip->flags &= ~HAMMER_INODE_VHELD;
1751 				vrele(ip->vp);
1752 			}
1753 
1754 			/*
1755 			 * REFLUSH is needed to trigger dependancy wakeups
1756 			 * when an inode is in SETUP.
1757 			 */
1758 			ip->flags |= HAMMER_INODE_REFLUSH;
1759 			if (flags & HAMMER_FLUSH_SIGNAL) {
1760 				ip->flags |= HAMMER_INODE_RESIGNAL;
1761 				hammer_flusher_async(ip->hmp, flg);
1762 			}
1763 			if (--ip->hmp->flusher.group_lock == 0)
1764 				wakeup(&ip->hmp->flusher.group_lock);
1765 			return;
1766 		}
1767 	}
1768 
1769 	/*
1770 	 * Snapshot the state of the inode for the backend flusher.
1771 	 *
1772 	 * We continue to retain save_trunc_off even when all truncations
1773 	 * have been resolved as an optimization to determine if we can
1774 	 * skip the B-Tree lookup for overwrite deletions.
1775 	 *
1776 	 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
1777 	 * and stays in ip->flags.  Once set, it stays set until the
1778 	 * inode is destroyed.
1779 	 */
1780 	if (ip->flags & HAMMER_INODE_TRUNCATED) {
1781 		KKASSERT((ip->sync_flags & HAMMER_INODE_TRUNCATED) == 0);
1782 		ip->sync_trunc_off = ip->trunc_off;
1783 		ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
1784 		ip->flags &= ~HAMMER_INODE_TRUNCATED;
1785 		ip->sync_flags |= HAMMER_INODE_TRUNCATED;
1786 
1787 		/*
1788 		 * The save_trunc_off used to cache whether the B-Tree
1789 		 * holds any records past that point is not used until
1790 		 * after the truncation has succeeded, so we can safely
1791 		 * set it now.
1792 		 */
1793 		if (ip->save_trunc_off > ip->sync_trunc_off)
1794 			ip->save_trunc_off = ip->sync_trunc_off;
1795 	}
1796 	ip->sync_flags |= (ip->flags & HAMMER_INODE_MODMASK &
1797 			   ~HAMMER_INODE_TRUNCATED);
1798 	ip->sync_ino_leaf = ip->ino_leaf;
1799 	ip->sync_ino_data = ip->ino_data;
1800 	ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
1801 #ifdef DEBUG_TRUNCATE
1802 	if ((ip->sync_flags & HAMMER_INODE_TRUNCATED) && ip == HammerTruncIp)
1803 		kprintf("truncateS %016llx\n", ip->sync_trunc_off);
1804 #endif
1805 
1806 	/*
1807 	 * The flusher list inherits our inode and reference.
1808 	 */
1809 	KKASSERT(flg->running == 0);
1810 	TAILQ_INSERT_TAIL(&flg->flush_list, ip, flush_entry);
1811 	if (--ip->hmp->flusher.group_lock == 0)
1812 		wakeup(&ip->hmp->flusher.group_lock);
1813 
1814 	if (flags & HAMMER_FLUSH_SIGNAL) {
1815 		hammer_flusher_async(ip->hmp, flg);
1816 	}
1817 }
1818 
1819 /*
1820  * Callback for scan of ip->rec_tree.  Try to include each record in our
1821  * flush.  ip->flush_group has been set but the inode has not yet been
1822  * moved into a flushing state.
1823  *
1824  * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
1825  * both inodes.
1826  *
1827  * We return 1 for any record placed or found in FST_FLUSH, which prevents
1828  * the caller from shortcutting the flush.
1829  */
1830 static int
1831 hammer_setup_child_callback(hammer_record_t rec, void *data)
1832 {
1833 	hammer_flush_group_t flg;
1834 	hammer_inode_t target_ip;
1835 	hammer_inode_t ip;
1836 	int r;
1837 
1838 	/*
1839 	 * Deleted records are ignored.  Note that the flush detects deleted
1840 	 * front-end records at multiple points to deal with races.  This is
1841 	 * just the first line of defense.  The only time DELETED_FE cannot
1842 	 * be set is when HAMMER_RECF_INTERLOCK_BE is set.
1843 	 *
1844 	 * Don't get confused between record deletion and, say, directory
1845 	 * entry deletion.  The deletion of a directory entry that is on
1846 	 * the media has nothing to do with the record deletion flags.
1847 	 */
1848 	if (rec->flags & (HAMMER_RECF_DELETED_FE|HAMMER_RECF_DELETED_BE)) {
1849 		if (rec->flush_state == HAMMER_FST_FLUSH) {
1850 			KKASSERT(rec->flush_group == rec->ip->flush_group);
1851 			r = 1;
1852 		} else {
1853 			r = 0;
1854 		}
1855 		return(r);
1856 	}
1857 
1858 	/*
1859 	 * If the record is in an idle state it has no dependancies and
1860 	 * can be flushed.
1861 	 */
1862 	ip = rec->ip;
1863 	flg = ip->flush_group;
1864 	r = 0;
1865 
1866 	switch(rec->flush_state) {
1867 	case HAMMER_FST_IDLE:
1868 		/*
1869 		 * The record has no setup dependancy, we can flush it.
1870 		 */
1871 		KKASSERT(rec->target_ip == NULL);
1872 		rec->flush_state = HAMMER_FST_FLUSH;
1873 		rec->flush_group = flg;
1874 		++flg->refs;
1875 		hammer_ref(&rec->lock);
1876 		r = 1;
1877 		break;
1878 	case HAMMER_FST_SETUP:
1879 		/*
1880 		 * The record has a setup dependancy.  These are typically
1881 		 * directory entry adds and deletes.  Such entries will be
1882 		 * flushed when their inodes are flushed so we do not
1883 		 * usually have to add them to the flush here.  However,
1884 		 * if the target_ip has set HAMMER_INODE_CONN_DOWN then
1885 		 * it is asking us to flush this record (and it).
1886 		 */
1887 		target_ip = rec->target_ip;
1888 		KKASSERT(target_ip != NULL);
1889 		KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
1890 
1891 		/*
1892 		 * If the target IP is already flushing in our group
1893 		 * we could associate the record, but target_ip has
1894 		 * already synced ino_data to sync_ino_data and we
1895 		 * would also have to adjust nlinks.   Plus there are
1896 		 * ordering issues for adds and deletes.
1897 		 *
1898 		 * Reflush downward if this is an ADD, and upward if
1899 		 * this is a DEL.
1900 		 */
1901 		if (target_ip->flush_state == HAMMER_FST_FLUSH) {
1902 			if (rec->flush_state == HAMMER_MEM_RECORD_ADD)
1903 				ip->flags |= HAMMER_INODE_REFLUSH;
1904 			else
1905 				target_ip->flags |= HAMMER_INODE_REFLUSH;
1906 			break;
1907 		}
1908 
1909 		/*
1910 		 * Target IP is not yet flushing.  This can get complex
1911 		 * because we have to be careful about the recursion.
1912 		 *
1913 		 * Directories create an issue for us in that if a flush
1914 		 * of a directory is requested the expectation is to flush
1915 		 * any pending directory entries, but this will cause the
1916 		 * related inodes to recursively flush as well.  We can't
1917 		 * really defer the operation so just get as many as we
1918 		 * can and
1919 		 */
1920 #if 0
1921 		if ((target_ip->flags & HAMMER_INODE_RECLAIM) == 0 &&
1922 		    (target_ip->flags & HAMMER_INODE_CONN_DOWN) == 0) {
1923 			/*
1924 			 * We aren't reclaiming and the target ip was not
1925 			 * previously prevented from flushing due to this
1926 			 * record dependancy.  Do not flush this record.
1927 			 */
1928 			/*r = 0;*/
1929 		} else
1930 #endif
1931 		if (flg->total_count + flg->refs >
1932 			   ip->hmp->undo_rec_limit) {
1933 			/*
1934 			 * Our flush group is over-full and we risk blowing
1935 			 * out the UNDO FIFO.  Stop the scan, flush what we
1936 			 * have, then reflush the directory.
1937 			 *
1938 			 * The directory may be forced through multiple
1939 			 * flush groups before it can be completely
1940 			 * flushed.
1941 			 */
1942 			ip->flags |= HAMMER_INODE_RESIGNAL |
1943 				     HAMMER_INODE_REFLUSH;
1944 			r = -1;
1945 		} else if (rec->type == HAMMER_MEM_RECORD_ADD) {
1946 			/*
1947 			 * If the target IP is not flushing we can force
1948 			 * it to flush, even if it is unable to write out
1949 			 * any of its own records we have at least one in
1950 			 * hand that we CAN deal with.
1951 			 */
1952 			rec->flush_state = HAMMER_FST_FLUSH;
1953 			rec->flush_group = flg;
1954 			++flg->refs;
1955 			hammer_ref(&rec->lock);
1956 			hammer_flush_inode_core(target_ip, flg,
1957 						HAMMER_FLUSH_RECURSION);
1958 			r = 1;
1959 		} else {
1960 			/*
1961 			 * General or delete-on-disk record.
1962 			 *
1963 			 * XXX this needs help.  If a delete-on-disk we could
1964 			 * disconnect the target.  If the target has its own
1965 			 * dependancies they really need to be flushed.
1966 			 *
1967 			 * XXX
1968 			 */
1969 			rec->flush_state = HAMMER_FST_FLUSH;
1970 			rec->flush_group = flg;
1971 			++flg->refs;
1972 			hammer_ref(&rec->lock);
1973 			hammer_flush_inode_core(target_ip, flg,
1974 						HAMMER_FLUSH_RECURSION);
1975 			r = 1;
1976 		}
1977 		break;
1978 	case HAMMER_FST_FLUSH:
1979 		/*
1980 		 * The flush_group should already match.
1981 		 */
1982 		KKASSERT(rec->flush_group == flg);
1983 		r = 1;
1984 		break;
1985 	}
1986 	return(r);
1987 }
1988 
1989 #if 0
1990 /*
1991  * This version just moves records already in a flush state to the new
1992  * flush group and that is it.
1993  */
1994 static int
1995 hammer_syncgrp_child_callback(hammer_record_t rec, void *data)
1996 {
1997 	hammer_inode_t ip = rec->ip;
1998 
1999 	switch(rec->flush_state) {
2000 	case HAMMER_FST_FLUSH:
2001 		KKASSERT(rec->flush_group == ip->flush_group);
2002 		break;
2003 	default:
2004 		break;
2005 	}
2006 	return(0);
2007 }
2008 #endif
2009 
2010 /*
2011  * Wait for a previously queued flush to complete.
2012  *
2013  * If a critical error occured we don't try to wait.
2014  */
2015 void
2016 hammer_wait_inode(hammer_inode_t ip)
2017 {
2018 	hammer_flush_group_t flg;
2019 
2020 	flg = NULL;
2021 	if ((ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) == 0) {
2022 		while (ip->flush_state != HAMMER_FST_IDLE &&
2023 		       (ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) == 0) {
2024 			if (ip->flush_state == HAMMER_FST_SETUP)
2025 				hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2026 			if (ip->flush_state != HAMMER_FST_IDLE) {
2027 				ip->flags |= HAMMER_INODE_FLUSHW;
2028 				tsleep(&ip->flags, 0, "hmrwin", 0);
2029 			}
2030 		}
2031 	}
2032 }
2033 
2034 /*
2035  * Called by the backend code when a flush has been completed.
2036  * The inode has already been removed from the flush list.
2037  *
2038  * A pipelined flush can occur, in which case we must re-enter the
2039  * inode on the list and re-copy its fields.
2040  */
2041 void
2042 hammer_flush_inode_done(hammer_inode_t ip, int error)
2043 {
2044 	hammer_mount_t hmp;
2045 	int dorel;
2046 
2047 	KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
2048 
2049 	hmp = ip->hmp;
2050 
2051 	/*
2052 	 * Auto-reflush if the backend could not completely flush
2053 	 * the inode.  This fixes a case where a deferred buffer flush
2054 	 * could cause fsync to return early.
2055 	 */
2056 	if (ip->sync_flags & HAMMER_INODE_MODMASK)
2057 		ip->flags |= HAMMER_INODE_REFLUSH;
2058 
2059 	/*
2060 	 * Merge left-over flags back into the frontend and fix the state.
2061 	 * Incomplete truncations are retained by the backend.
2062 	 */
2063 	ip->error = error;
2064 	ip->flags |= ip->sync_flags & ~HAMMER_INODE_TRUNCATED;
2065 	ip->sync_flags &= HAMMER_INODE_TRUNCATED;
2066 
2067 	/*
2068 	 * The backend may have adjusted nlinks, so if the adjusted nlinks
2069 	 * does not match the fronttend set the frontend's RDIRTY flag again.
2070 	 */
2071 	if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
2072 		ip->flags |= HAMMER_INODE_DDIRTY;
2073 
2074 	/*
2075 	 * Fix up the dirty buffer status.
2076 	 */
2077 	if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
2078 		ip->flags |= HAMMER_INODE_BUFS;
2079 	}
2080 
2081 	/*
2082 	 * Re-set the XDIRTY flag if some of the inode's in-memory records
2083 	 * could not be flushed.
2084 	 */
2085 	KKASSERT((RB_EMPTY(&ip->rec_tree) &&
2086 		  (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
2087 		 (!RB_EMPTY(&ip->rec_tree) &&
2088 		  (ip->flags & HAMMER_INODE_XDIRTY) != 0));
2089 
2090 	/*
2091 	 * Do not lose track of inodes which no longer have vnode
2092 	 * assocations, otherwise they may never get flushed again.
2093 	 *
2094 	 * The reflush flag can be set superfluously, causing extra pain
2095 	 * for no reason.  If the inode is no longer modified it no longer
2096 	 * needs to be flushed.
2097 	 */
2098 	if (ip->flags & HAMMER_INODE_MODMASK) {
2099 		if (ip->vp == NULL)
2100 			ip->flags |= HAMMER_INODE_REFLUSH;
2101 	} else {
2102 		ip->flags &= ~HAMMER_INODE_REFLUSH;
2103 	}
2104 
2105 	/*
2106 	 * Adjust the flush state.
2107 	 */
2108 	if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2109 		/*
2110 		 * We were unable to flush out all our records, leave the
2111 		 * inode in a flush state and in the current flush group.
2112 		 * The flush group will be re-run.
2113 		 *
2114 		 * This occurs if the UNDO block gets too full or there is
2115 		 * too much dirty meta-data and allows the flusher to
2116 		 * finalize the UNDO block and then re-flush.
2117 		 */
2118 		ip->flags &= ~HAMMER_INODE_WOULDBLOCK;
2119 		dorel = 0;
2120 	} else {
2121 		/*
2122 		 * Remove from the flush_group
2123 		 */
2124 		TAILQ_REMOVE(&ip->flush_group->flush_list, ip, flush_entry);
2125 		ip->flush_group = NULL;
2126 
2127 		/*
2128 		 * Clean up the vnode ref and tracking counts.
2129 		 */
2130 		if (ip->flags & HAMMER_INODE_VHELD) {
2131 			ip->flags &= ~HAMMER_INODE_VHELD;
2132 			vrele(ip->vp);
2133 		}
2134 		--hmp->count_iqueued;
2135 		--hammer_count_iqueued;
2136 
2137 		/*
2138 		 * And adjust the state.
2139 		 */
2140 		if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
2141 			ip->flush_state = HAMMER_FST_IDLE;
2142 			dorel = 1;
2143 		} else {
2144 			ip->flush_state = HAMMER_FST_SETUP;
2145 			dorel = 0;
2146 		}
2147 
2148 		/*
2149 		 * If the frontend is waiting for a flush to complete,
2150 		 * wake it up.
2151 		 */
2152 		if (ip->flags & HAMMER_INODE_FLUSHW) {
2153 			ip->flags &= ~HAMMER_INODE_FLUSHW;
2154 			wakeup(&ip->flags);
2155 		}
2156 
2157 		/*
2158 		 * If the frontend made more changes and requested another
2159 		 * flush, then try to get it running.
2160 		 *
2161 		 * Reflushes are aborted when the inode is errored out.
2162 		 */
2163 		if (ip->flags & HAMMER_INODE_REFLUSH) {
2164 			ip->flags &= ~HAMMER_INODE_REFLUSH;
2165 			if (ip->flags & HAMMER_INODE_RESIGNAL) {
2166 				ip->flags &= ~HAMMER_INODE_RESIGNAL;
2167 				hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2168 			} else {
2169 				hammer_flush_inode(ip, 0);
2170 			}
2171 		}
2172 	}
2173 
2174 	/*
2175 	 * If we have no parent dependancies we can clear CONN_DOWN
2176 	 */
2177 	if (TAILQ_EMPTY(&ip->target_list))
2178 		ip->flags &= ~HAMMER_INODE_CONN_DOWN;
2179 
2180 	/*
2181 	 * If the inode is now clean drop the space reservation.
2182 	 */
2183 	if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
2184 	    (ip->flags & HAMMER_INODE_RSV_INODES)) {
2185 		ip->flags &= ~HAMMER_INODE_RSV_INODES;
2186 		--hmp->rsv_inodes;
2187 	}
2188 
2189 	if (dorel)
2190 		hammer_rel_inode(ip, 0);
2191 }
2192 
2193 /*
2194  * Called from hammer_sync_inode() to synchronize in-memory records
2195  * to the media.
2196  */
2197 static int
2198 hammer_sync_record_callback(hammer_record_t record, void *data)
2199 {
2200 	hammer_cursor_t cursor = data;
2201 	hammer_transaction_t trans = cursor->trans;
2202 	hammer_mount_t hmp = trans->hmp;
2203 	int error;
2204 
2205 	/*
2206 	 * Skip records that do not belong to the current flush.
2207 	 */
2208 	++hammer_stats_record_iterations;
2209 	if (record->flush_state != HAMMER_FST_FLUSH)
2210 		return(0);
2211 
2212 #if 1
2213 	if (record->flush_group != record->ip->flush_group) {
2214 		kprintf("sync_record %p ip %p bad flush group %p %p\n", record, record->ip, record->flush_group ,record->ip->flush_group);
2215 		Debugger("blah2");
2216 		return(0);
2217 	}
2218 #endif
2219 	KKASSERT(record->flush_group == record->ip->flush_group);
2220 
2221 	/*
2222 	 * Interlock the record using the BE flag.  Once BE is set the
2223 	 * frontend cannot change the state of FE.
2224 	 *
2225 	 * NOTE: If FE is set prior to us setting BE we still sync the
2226 	 * record out, but the flush completion code converts it to
2227 	 * a delete-on-disk record instead of destroying it.
2228 	 */
2229 	KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
2230 	record->flags |= HAMMER_RECF_INTERLOCK_BE;
2231 
2232 	/*
2233 	 * The backend may have already disposed of the record.
2234 	 */
2235 	if (record->flags & HAMMER_RECF_DELETED_BE) {
2236 		error = 0;
2237 		goto done;
2238 	}
2239 
2240 	/*
2241 	 * If the whole inode is being deleting all on-disk records will
2242 	 * be deleted very soon, we can't sync any new records to disk
2243 	 * because they will be deleted in the same transaction they were
2244 	 * created in (delete_tid == create_tid), which will assert.
2245 	 *
2246 	 * XXX There may be a case with RECORD_ADD with DELETED_FE set
2247 	 * that we currently panic on.
2248 	 */
2249 	if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
2250 		switch(record->type) {
2251 		case HAMMER_MEM_RECORD_DATA:
2252 			/*
2253 			 * We don't have to do anything, if the record was
2254 			 * committed the space will have been accounted for
2255 			 * in the blockmap.
2256 			 */
2257 			/* fall through */
2258 		case HAMMER_MEM_RECORD_GENERAL:
2259 			record->flags |= HAMMER_RECF_DELETED_FE;
2260 			record->flags |= HAMMER_RECF_DELETED_BE;
2261 			error = 0;
2262 			goto done;
2263 		case HAMMER_MEM_RECORD_ADD:
2264 			panic("hammer_sync_record_callback: illegal add "
2265 			      "during inode deletion record %p", record);
2266 			break; /* NOT REACHED */
2267 		case HAMMER_MEM_RECORD_INODE:
2268 			panic("hammer_sync_record_callback: attempt to "
2269 			      "sync inode record %p?", record);
2270 			break; /* NOT REACHED */
2271 		case HAMMER_MEM_RECORD_DEL:
2272 			/*
2273 			 * Follow through and issue the on-disk deletion
2274 			 */
2275 			break;
2276 		}
2277 	}
2278 
2279 	/*
2280 	 * If DELETED_FE is set special handling is needed for directory
2281 	 * entries.  Dependant pieces related to the directory entry may
2282 	 * have already been synced to disk.  If this occurs we have to
2283 	 * sync the directory entry and then change the in-memory record
2284 	 * from an ADD to a DELETE to cover the fact that it's been
2285 	 * deleted by the frontend.
2286 	 *
2287 	 * A directory delete covering record (MEM_RECORD_DEL) can never
2288 	 * be deleted by the frontend.
2289 	 *
2290 	 * Any other record type (aka DATA) can be deleted by the frontend.
2291 	 * XXX At the moment the flusher must skip it because there may
2292 	 * be another data record in the flush group for the same block,
2293 	 * meaning that some frontend data changes can leak into the backend's
2294 	 * synchronization point.
2295 	 */
2296 	if (record->flags & HAMMER_RECF_DELETED_FE) {
2297 		if (record->type == HAMMER_MEM_RECORD_ADD) {
2298 			record->flags |= HAMMER_RECF_CONVERT_DELETE;
2299 		} else {
2300 			KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
2301 			record->flags |= HAMMER_RECF_DELETED_BE;
2302 			error = 0;
2303 			goto done;
2304 		}
2305 	}
2306 
2307 	/*
2308 	 * Assign the create_tid for new records.  Deletions already
2309 	 * have the record's entire key properly set up.
2310 	 */
2311 	if (record->type != HAMMER_MEM_RECORD_DEL)
2312 		record->leaf.base.create_tid = trans->tid;
2313 		record->leaf.create_ts = trans->time32;
2314 	for (;;) {
2315 		error = hammer_ip_sync_record_cursor(cursor, record);
2316 		if (error != EDEADLK)
2317 			break;
2318 		hammer_done_cursor(cursor);
2319 		error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
2320 					   record->ip);
2321 		if (error)
2322 			break;
2323 	}
2324 	record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
2325 
2326 	if (error)
2327 		error = -error;
2328 done:
2329 	hammer_flush_record_done(record, error);
2330 
2331 	/*
2332 	 * Do partial finalization if we have built up too many dirty
2333 	 * buffers.  Otherwise a buffer cache deadlock can occur when
2334 	 * doing things like creating tens of thousands of tiny files.
2335 	 *
2336 	 * We must release our cursor lock to avoid a 3-way deadlock
2337 	 * due to the exclusive sync lock the finalizer must get.
2338 	 */
2339         if (hammer_flusher_meta_limit(hmp)) {
2340 		hammer_unlock_cursor(cursor);
2341                 hammer_flusher_finalize(trans, 0);
2342 		hammer_lock_cursor(cursor);
2343 	}
2344 
2345 	return(error);
2346 }
2347 
2348 /*
2349  * Backend function called by the flusher to sync an inode to media.
2350  */
2351 int
2352 hammer_sync_inode(hammer_transaction_t trans, hammer_inode_t ip)
2353 {
2354 	struct hammer_cursor cursor;
2355 	hammer_node_t tmp_node;
2356 	hammer_record_t depend;
2357 	hammer_record_t next;
2358 	int error, tmp_error;
2359 	u_int64_t nlinks;
2360 
2361 	if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
2362 		return(0);
2363 
2364 	error = hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2365 	if (error)
2366 		goto done;
2367 
2368 	/*
2369 	 * Any directory records referencing this inode which are not in
2370 	 * our current flush group must adjust our nlink count for the
2371 	 * purposes of synchronization to disk.
2372 	 *
2373 	 * Records which are in our flush group can be unlinked from our
2374 	 * inode now, potentially allowing the inode to be physically
2375 	 * deleted.
2376 	 *
2377 	 * This cannot block.
2378 	 */
2379 	nlinks = ip->ino_data.nlinks;
2380 	next = TAILQ_FIRST(&ip->target_list);
2381 	while ((depend = next) != NULL) {
2382 		next = TAILQ_NEXT(depend, target_entry);
2383 		if (depend->flush_state == HAMMER_FST_FLUSH &&
2384 		    depend->flush_group == ip->flush_group) {
2385 			/*
2386 			 * If this is an ADD that was deleted by the frontend
2387 			 * the frontend nlinks count will have already been
2388 			 * decremented, but the backend is going to sync its
2389 			 * directory entry and must account for it.  The
2390 			 * record will be converted to a delete-on-disk when
2391 			 * it gets synced.
2392 			 *
2393 			 * If the ADD was not deleted by the frontend we
2394 			 * can remove the dependancy from our target_list.
2395 			 */
2396 			if (depend->flags & HAMMER_RECF_DELETED_FE) {
2397 				++nlinks;
2398 			} else {
2399 				TAILQ_REMOVE(&ip->target_list, depend,
2400 					     target_entry);
2401 				depend->target_ip = NULL;
2402 			}
2403 		} else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
2404 			/*
2405 			 * Not part of our flush group
2406 			 */
2407 			KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
2408 			switch(depend->type) {
2409 			case HAMMER_MEM_RECORD_ADD:
2410 				--nlinks;
2411 				break;
2412 			case HAMMER_MEM_RECORD_DEL:
2413 				++nlinks;
2414 				break;
2415 			default:
2416 				break;
2417 			}
2418 		}
2419 	}
2420 
2421 	/*
2422 	 * Set dirty if we had to modify the link count.
2423 	 */
2424 	if (ip->sync_ino_data.nlinks != nlinks) {
2425 		KKASSERT((int64_t)nlinks >= 0);
2426 		ip->sync_ino_data.nlinks = nlinks;
2427 		ip->sync_flags |= HAMMER_INODE_DDIRTY;
2428 	}
2429 
2430 	/*
2431 	 * If there is a trunction queued destroy any data past the (aligned)
2432 	 * truncation point.  Userland will have dealt with the buffer
2433 	 * containing the truncation point for us.
2434 	 *
2435 	 * We don't flush pending frontend data buffers until after we've
2436 	 * dealt with the truncation.
2437 	 */
2438 	if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2439 		/*
2440 		 * Interlock trunc_off.  The VOP front-end may continue to
2441 		 * make adjustments to it while we are blocked.
2442 		 */
2443 		off_t trunc_off;
2444 		off_t aligned_trunc_off;
2445 		int blkmask;
2446 
2447 		trunc_off = ip->sync_trunc_off;
2448 		blkmask = hammer_blocksize(trunc_off) - 1;
2449 		aligned_trunc_off = (trunc_off + blkmask) & ~(int64_t)blkmask;
2450 
2451 		/*
2452 		 * Delete any whole blocks on-media.  The front-end has
2453 		 * already cleaned out any partial block and made it
2454 		 * pending.  The front-end may have updated trunc_off
2455 		 * while we were blocked so we only use sync_trunc_off.
2456 		 *
2457 		 * This operation can blow out the buffer cache, EWOULDBLOCK
2458 		 * means we were unable to complete the deletion.  The
2459 		 * deletion will update sync_trunc_off in that case.
2460 		 */
2461 		error = hammer_ip_delete_range(&cursor, ip,
2462 						aligned_trunc_off,
2463 						0x7FFFFFFFFFFFFFFFLL, 2);
2464 		if (error == EWOULDBLOCK) {
2465 			ip->flags |= HAMMER_INODE_WOULDBLOCK;
2466 			error = 0;
2467 			goto defer_buffer_flush;
2468 		}
2469 
2470 		if (error)
2471 			goto done;
2472 
2473 		/*
2474 		 * Clear the truncation flag on the backend after we have
2475 		 * complete the deletions.  Backend data is now good again
2476 		 * (including new records we are about to sync, below).
2477 		 *
2478 		 * Leave sync_trunc_off intact.  As we write additional
2479 		 * records the backend will update sync_trunc_off.  This
2480 		 * tells the backend whether it can skip the overwrite
2481 		 * test.  This should work properly even when the backend
2482 		 * writes full blocks where the truncation point straddles
2483 		 * the block because the comparison is against the base
2484 		 * offset of the record.
2485 		 */
2486 		ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2487 		/* ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL; */
2488 	} else {
2489 		error = 0;
2490 	}
2491 
2492 	/*
2493 	 * Now sync related records.  These will typically be directory
2494 	 * entries, records tracking direct-writes, or delete-on-disk records.
2495 	 */
2496 	if (error == 0) {
2497 		tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2498 				    hammer_sync_record_callback, &cursor);
2499 		if (tmp_error < 0)
2500 			tmp_error = -error;
2501 		if (tmp_error)
2502 			error = tmp_error;
2503 	}
2504 	hammer_cache_node(&ip->cache[1], cursor.node);
2505 
2506 	/*
2507 	 * Re-seek for inode update, assuming our cache hasn't been ripped
2508 	 * out from under us.
2509 	 */
2510 	if (error == 0) {
2511 		tmp_node = hammer_ref_node_safe(ip->hmp, &ip->cache[0], &error);
2512 		if (tmp_node) {
2513 			hammer_cursor_downgrade(&cursor);
2514 			hammer_lock_sh(&tmp_node->lock);
2515 			if ((tmp_node->flags & HAMMER_NODE_DELETED) == 0)
2516 				hammer_cursor_seek(&cursor, tmp_node, 0);
2517 			hammer_unlock(&tmp_node->lock);
2518 			hammer_rel_node(tmp_node);
2519 		}
2520 		error = 0;
2521 	}
2522 
2523 	/*
2524 	 * If we are deleting the inode the frontend had better not have
2525 	 * any active references on elements making up the inode.
2526 	 *
2527 	 * The call to hammer_ip_delete_clean() cleans up auxillary records
2528 	 * but not DB or DATA records.  Those must have already been deleted
2529 	 * by the normal truncation mechanic.
2530 	 */
2531 	if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
2532 		RB_EMPTY(&ip->rec_tree)  &&
2533 	    (ip->sync_flags & HAMMER_INODE_DELETING) &&
2534 	    (ip->flags & HAMMER_INODE_DELETED) == 0) {
2535 		int count1 = 0;
2536 
2537 		error = hammer_ip_delete_clean(&cursor, ip, &count1);
2538 		if (error == 0) {
2539 			ip->flags |= HAMMER_INODE_DELETED;
2540 			ip->sync_flags &= ~HAMMER_INODE_DELETING;
2541 			ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2542 			KKASSERT(RB_EMPTY(&ip->rec_tree));
2543 
2544 			/*
2545 			 * Set delete_tid in both the frontend and backend
2546 			 * copy of the inode record.  The DELETED flag handles
2547 			 * this, do not set RDIRTY.
2548 			 */
2549 			ip->ino_leaf.base.delete_tid = trans->tid;
2550 			ip->sync_ino_leaf.base.delete_tid = trans->tid;
2551 			ip->ino_leaf.delete_ts = trans->time32;
2552 			ip->sync_ino_leaf.delete_ts = trans->time32;
2553 
2554 
2555 			/*
2556 			 * Adjust the inode count in the volume header
2557 			 */
2558 			hammer_sync_lock_sh(trans);
2559 			if (ip->flags & HAMMER_INODE_ONDISK) {
2560 				hammer_modify_volume_field(trans,
2561 							   trans->rootvol,
2562 							   vol0_stat_inodes);
2563 				--ip->hmp->rootvol->ondisk->vol0_stat_inodes;
2564 				hammer_modify_volume_done(trans->rootvol);
2565 			}
2566 			hammer_sync_unlock(trans);
2567 		}
2568 	}
2569 
2570 	if (error)
2571 		goto done;
2572 	ip->sync_flags &= ~HAMMER_INODE_BUFS;
2573 
2574 defer_buffer_flush:
2575 	/*
2576 	 * Now update the inode's on-disk inode-data and/or on-disk record.
2577 	 * DELETED and ONDISK are managed only in ip->flags.
2578 	 *
2579 	 * In the case of a defered buffer flush we still update the on-disk
2580 	 * inode to satisfy visibility requirements if there happen to be
2581 	 * directory dependancies.
2582 	 */
2583 	switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
2584 	case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
2585 		/*
2586 		 * If deleted and on-disk, don't set any additional flags.
2587 		 * the delete flag takes care of things.
2588 		 *
2589 		 * Clear flags which may have been set by the frontend.
2590 		 */
2591 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2592 				    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2593 				    HAMMER_INODE_DELETING);
2594 		break;
2595 	case HAMMER_INODE_DELETED:
2596 		/*
2597 		 * Take care of the case where a deleted inode was never
2598 		 * flushed to the disk in the first place.
2599 		 *
2600 		 * Clear flags which may have been set by the frontend.
2601 		 */
2602 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2603 				    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2604 				    HAMMER_INODE_DELETING);
2605 		while (RB_ROOT(&ip->rec_tree)) {
2606 			hammer_record_t record = RB_ROOT(&ip->rec_tree);
2607 			hammer_ref(&record->lock);
2608 			KKASSERT(record->lock.refs == 1);
2609 			record->flags |= HAMMER_RECF_DELETED_FE;
2610 			record->flags |= HAMMER_RECF_DELETED_BE;
2611 			hammer_rel_mem_record(record);
2612 		}
2613 		break;
2614 	case HAMMER_INODE_ONDISK:
2615 		/*
2616 		 * If already on-disk, do not set any additional flags.
2617 		 */
2618 		break;
2619 	default:
2620 		/*
2621 		 * If not on-disk and not deleted, set DDIRTY to force
2622 		 * an initial record to be written.
2623 		 *
2624 		 * Also set the create_tid in both the frontend and backend
2625 		 * copy of the inode record.
2626 		 */
2627 		ip->ino_leaf.base.create_tid = trans->tid;
2628 		ip->ino_leaf.create_ts = trans->time32;
2629 		ip->sync_ino_leaf.base.create_tid = trans->tid;
2630 		ip->sync_ino_leaf.create_ts = trans->time32;
2631 		ip->sync_flags |= HAMMER_INODE_DDIRTY;
2632 		break;
2633 	}
2634 
2635 	/*
2636 	 * If RDIRTY or DDIRTY is set, write out a new record.  If the inode
2637 	 * is already on-disk the old record is marked as deleted.
2638 	 *
2639 	 * If DELETED is set hammer_update_inode() will delete the existing
2640 	 * record without writing out a new one.
2641 	 *
2642 	 * If *ONLY* the ITIMES flag is set we can update the record in-place.
2643 	 */
2644 	if (ip->flags & HAMMER_INODE_DELETED) {
2645 		error = hammer_update_inode(&cursor, ip);
2646 	} else
2647 	if ((ip->sync_flags & HAMMER_INODE_DDIRTY) == 0 &&
2648 	    (ip->sync_flags & (HAMMER_INODE_ATIME | HAMMER_INODE_MTIME))) {
2649 		error = hammer_update_itimes(&cursor, ip);
2650 	} else
2651 	if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) {
2652 		error = hammer_update_inode(&cursor, ip);
2653 	}
2654 done:
2655 	if (error) {
2656 		hammer_critical_error(ip->hmp, ip, error,
2657 				      "while syncing inode");
2658 	}
2659 	hammer_done_cursor(&cursor);
2660 	return(error);
2661 }
2662 
2663 /*
2664  * This routine is called when the OS is no longer actively referencing
2665  * the inode (but might still be keeping it cached), or when releasing
2666  * the last reference to an inode.
2667  *
2668  * At this point if the inode's nlinks count is zero we want to destroy
2669  * it, which may mean destroying it on-media too.
2670  */
2671 void
2672 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
2673 {
2674 	struct vnode *vp;
2675 
2676 	/*
2677 	 * Set the DELETING flag when the link count drops to 0 and the
2678 	 * OS no longer has any opens on the inode.
2679 	 *
2680 	 * The backend will clear DELETING (a mod flag) and set DELETED
2681 	 * (a state flag) when it is actually able to perform the
2682 	 * operation.
2683 	 *
2684 	 * Don't reflag the deletion if the flusher is currently syncing
2685 	 * one that was already flagged.  A previously set DELETING flag
2686 	 * may bounce around flags and sync_flags until the operation is
2687 	 * completely done.
2688 	 */
2689 	if (ip->ino_data.nlinks == 0 &&
2690 	    ((ip->flags | ip->sync_flags) & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
2691 		ip->flags |= HAMMER_INODE_DELETING;
2692 		ip->flags |= HAMMER_INODE_TRUNCATED;
2693 		ip->trunc_off = 0;
2694 		vp = NULL;
2695 		if (getvp) {
2696 			if (hammer_get_vnode(ip, &vp) != 0)
2697 				return;
2698 		}
2699 
2700 		/*
2701 		 * Final cleanup
2702 		 */
2703 		if (ip->vp) {
2704 			vtruncbuf(ip->vp, 0, HAMMER_BUFSIZE);
2705 			vnode_pager_setsize(ip->vp, 0);
2706 		}
2707 		if (getvp) {
2708 			vput(vp);
2709 		}
2710 	}
2711 }
2712 
2713 /*
2714  * After potentially resolving a dependancy the inode is tested
2715  * to determine whether it needs to be reflushed.
2716  */
2717 void
2718 hammer_test_inode(hammer_inode_t ip)
2719 {
2720 	if (ip->flags & HAMMER_INODE_REFLUSH) {
2721 		ip->flags &= ~HAMMER_INODE_REFLUSH;
2722 		hammer_ref(&ip->lock);
2723 		if (ip->flags & HAMMER_INODE_RESIGNAL) {
2724 			ip->flags &= ~HAMMER_INODE_RESIGNAL;
2725 			hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2726 		} else {
2727 			hammer_flush_inode(ip, 0);
2728 		}
2729 		hammer_rel_inode(ip, 0);
2730 	}
2731 }
2732 
2733 /*
2734  * Clear the RECLAIM flag on an inode.  This occurs when the inode is
2735  * reassociated with a vp or just before it gets freed.
2736  *
2737  * Pipeline wakeups to threads blocked due to an excessive number of
2738  * detached inodes.  The reclaim count generates a bit of negative
2739  * feedback.
2740  */
2741 static void
2742 hammer_inode_wakereclaims(hammer_inode_t ip, int dowake)
2743 {
2744 	struct hammer_reclaim *reclaim;
2745 	hammer_mount_t hmp = ip->hmp;
2746 
2747 	if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
2748 		return;
2749 
2750 	--hammer_count_reclaiming;
2751 	--hmp->inode_reclaims;
2752 	ip->flags &= ~HAMMER_INODE_RECLAIM;
2753 
2754 	if (hmp->inode_reclaims < HAMMER_RECLAIM_WAIT || dowake) {
2755 		reclaim = TAILQ_FIRST(&hmp->reclaim_list);
2756 		if (reclaim && reclaim->count > 0 && --reclaim->count == 0) {
2757 			TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
2758 			wakeup(reclaim);
2759 		}
2760 	}
2761 }
2762 
2763 /*
2764  * Setup our reclaim pipeline.  We only let so many detached (and dirty)
2765  * inodes build up before we start blocking.
2766  *
2767  * When we block we don't care *which* inode has finished reclaiming,
2768  * as lone as one does.  This is somewhat heuristical... we also put a
2769  * cap on how long we are willing to wait.
2770  */
2771 void
2772 hammer_inode_waitreclaims(hammer_mount_t hmp)
2773 {
2774 	struct hammer_reclaim reclaim;
2775 	int delay;
2776 
2777 	if (hmp->inode_reclaims < HAMMER_RECLAIM_WAIT)
2778 		return;
2779 	delay = (hmp->inode_reclaims - HAMMER_RECLAIM_WAIT) * hz /
2780 		(HAMMER_RECLAIM_WAIT * 3) + 1;
2781 	if (delay > 0) {
2782 		reclaim.count = 2;
2783 		TAILQ_INSERT_TAIL(&hmp->reclaim_list, &reclaim, entry);
2784 		tsleep(&reclaim, 0, "hmrrcm", delay);
2785 		if (reclaim.count > 0)
2786 			TAILQ_REMOVE(&hmp->reclaim_list, &reclaim, entry);
2787 	}
2788 }
2789 
2790 /*
2791  * A larger then normal backlog of inodes is sitting in the flusher,
2792  * enforce a general slowdown to let it catch up.  This routine is only
2793  * called on completion of a non-flusher-related transaction which
2794  * performed B-Tree node I/O.
2795  *
2796  * It is possible for the flusher to stall in a continuous load.
2797  * blogbench -i1000 -o seems to do a good job generating this sort of load.
2798  * If the flusher is unable to catch up the inode count can bloat until
2799  * we run out of kvm.
2800  *
2801  * This is a bit of a hack.
2802  */
2803 void
2804 hammer_inode_waithard(hammer_mount_t hmp)
2805 {
2806 	/*
2807 	 * Hysteresis.
2808 	 */
2809 	if (hmp->flags & HAMMER_MOUNT_FLUSH_RECOVERY) {
2810 		if (hmp->inode_reclaims < HAMMER_RECLAIM_WAIT / 2 &&
2811 		    hmp->count_iqueued < hmp->count_inodes / 20) {
2812 			hmp->flags &= ~HAMMER_MOUNT_FLUSH_RECOVERY;
2813 			return;
2814 		}
2815 	} else {
2816 		if (hmp->inode_reclaims < HAMMER_RECLAIM_WAIT ||
2817 		    hmp->count_iqueued < hmp->count_inodes / 10) {
2818 			return;
2819 		}
2820 		hmp->flags |= HAMMER_MOUNT_FLUSH_RECOVERY;
2821 	}
2822 
2823 	/*
2824 	 * Block for one flush cycle.
2825 	 */
2826 	hammer_flusher_wait_next(hmp);
2827 }
2828 
2829