xref: /dragonfly/sys/vfs/hammer/hammer_inode.c (revision cfd1aba3)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include "hammer.h"
36 #include <vm/vm_extern.h>
37 
38 static int	hammer_unload_inode(struct hammer_inode *ip);
39 static void	hammer_free_inode(hammer_inode_t ip);
40 static void	hammer_flush_inode_core(hammer_inode_t ip,
41 					hammer_flush_group_t flg, int flags);
42 static int	hammer_setup_child_callback(hammer_record_t rec, void *data);
43 #if 0
44 static int	hammer_syncgrp_child_callback(hammer_record_t rec, void *data);
45 #endif
46 static int	hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
47 					hammer_flush_group_t flg);
48 static int	hammer_setup_parent_inodes_helper(hammer_record_t record,
49 					int depth, hammer_flush_group_t flg);
50 static void	hammer_inode_wakereclaims(hammer_inode_t ip);
51 static struct hammer_inostats *hammer_inode_inostats(hammer_mount_t hmp,
52 					pid_t pid);
53 
54 #ifdef DEBUG_TRUNCATE
55 extern struct hammer_inode *HammerTruncIp;
56 #endif
57 
58 struct krate hammer_gen_krate = { 1 };
59 
60 /*
61  * RB-Tree support for inode structures
62  */
63 int
64 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
65 {
66 	if (ip1->obj_localization < ip2->obj_localization)
67 		return(-1);
68 	if (ip1->obj_localization > ip2->obj_localization)
69 		return(1);
70 	if (ip1->obj_id < ip2->obj_id)
71 		return(-1);
72 	if (ip1->obj_id > ip2->obj_id)
73 		return(1);
74 	if (ip1->obj_asof < ip2->obj_asof)
75 		return(-1);
76 	if (ip1->obj_asof > ip2->obj_asof)
77 		return(1);
78 	return(0);
79 }
80 
81 int
82 hammer_redo_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
83 {
84 	if (ip1->redo_fifo_start < ip2->redo_fifo_start)
85 		return(-1);
86 	if (ip1->redo_fifo_start > ip2->redo_fifo_start)
87 		return(1);
88 	return(0);
89 }
90 
91 /*
92  * RB-Tree support for inode structures / special LOOKUP_INFO
93  */
94 static int
95 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
96 {
97 	if (info->obj_localization < ip->obj_localization)
98 		return(-1);
99 	if (info->obj_localization > ip->obj_localization)
100 		return(1);
101 	if (info->obj_id < ip->obj_id)
102 		return(-1);
103 	if (info->obj_id > ip->obj_id)
104 		return(1);
105 	if (info->obj_asof < ip->obj_asof)
106 		return(-1);
107 	if (info->obj_asof > ip->obj_asof)
108 		return(1);
109 	return(0);
110 }
111 
112 /*
113  * Used by hammer_scan_inode_snapshots() to locate all of an object's
114  * snapshots.  Note that the asof field is not tested, which we can get
115  * away with because it is the lowest-priority field.
116  */
117 static int
118 hammer_inode_info_cmp_all_history(hammer_inode_t ip, void *data)
119 {
120 	hammer_inode_info_t info = data;
121 
122 	if (ip->obj_localization > info->obj_localization)
123 		return(1);
124 	if (ip->obj_localization < info->obj_localization)
125 		return(-1);
126 	if (ip->obj_id > info->obj_id)
127 		return(1);
128 	if (ip->obj_id < info->obj_id)
129 		return(-1);
130 	return(0);
131 }
132 
133 /*
134  * Used by hammer_unload_pseudofs() to locate all inodes associated with
135  * a particular PFS.
136  */
137 static int
138 hammer_inode_pfs_cmp(hammer_inode_t ip, void *data)
139 {
140 	u_int32_t localization = *(u_int32_t *)data;
141 	if (ip->obj_localization > localization)
142 		return(1);
143 	if (ip->obj_localization < localization)
144 		return(-1);
145 	return(0);
146 }
147 
148 /*
149  * RB-Tree support for pseudofs structures
150  */
151 static int
152 hammer_pfs_rb_compare(hammer_pseudofs_inmem_t p1, hammer_pseudofs_inmem_t p2)
153 {
154 	if (p1->localization < p2->localization)
155 		return(-1);
156 	if (p1->localization > p2->localization)
157 		return(1);
158 	return(0);
159 }
160 
161 
162 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
163 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
164 		hammer_inode_info_cmp, hammer_inode_info_t);
165 RB_GENERATE2(hammer_pfs_rb_tree, hammer_pseudofs_inmem, rb_node,
166              hammer_pfs_rb_compare, u_int32_t, localization);
167 
168 /*
169  * The kernel is not actively referencing this vnode but is still holding
170  * it cached.
171  *
172  * This is called from the frontend.
173  *
174  * MPALMOSTSAFE
175  */
176 int
177 hammer_vop_inactive(struct vop_inactive_args *ap)
178 {
179 	struct hammer_inode *ip = VTOI(ap->a_vp);
180 	hammer_mount_t hmp;
181 
182 	/*
183 	 * Degenerate case
184 	 */
185 	if (ip == NULL) {
186 		vrecycle(ap->a_vp);
187 		return(0);
188 	}
189 
190 	/*
191 	 * If the inode no longer has visibility in the filesystem try to
192 	 * recycle it immediately, even if the inode is dirty.  Recycling
193 	 * it quickly allows the system to reclaim buffer cache and VM
194 	 * resources which can matter a lot in a heavily loaded system.
195 	 *
196 	 * This can deadlock in vfsync() if we aren't careful.
197 	 *
198 	 * Do not queue the inode to the flusher if we still have visibility,
199 	 * otherwise namespace calls such as chmod will unnecessarily generate
200 	 * multiple inode updates.
201 	 */
202 	if (ip->ino_data.nlinks == 0) {
203 		hmp = ip->hmp;
204 		lwkt_gettoken(&hmp->fs_token);
205 		hammer_inode_unloadable_check(ip, 0);
206 		if (ip->flags & HAMMER_INODE_MODMASK)
207 			hammer_flush_inode(ip, 0);
208 		lwkt_reltoken(&hmp->fs_token);
209 		vrecycle(ap->a_vp);
210 	}
211 	return(0);
212 }
213 
214 /*
215  * Release the vnode association.  This is typically (but not always)
216  * the last reference on the inode.
217  *
218  * Once the association is lost we are on our own with regards to
219  * flushing the inode.
220  *
221  * We must interlock ip->vp so hammer_get_vnode() can avoid races.
222  */
223 int
224 hammer_vop_reclaim(struct vop_reclaim_args *ap)
225 {
226 	struct hammer_inode *ip;
227 	hammer_mount_t hmp;
228 	struct vnode *vp;
229 
230 	vp = ap->a_vp;
231 
232 	if ((ip = vp->v_data) != NULL) {
233 		hmp = ip->hmp;
234 		lwkt_gettoken(&hmp->fs_token);
235 		hammer_lock_ex(&ip->lock);
236 		vp->v_data = NULL;
237 		ip->vp = NULL;
238 
239 		if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
240 			++hammer_count_reclaims;
241 			++hmp->count_reclaims;
242 			ip->flags |= HAMMER_INODE_RECLAIM;
243 		}
244 		hammer_unlock(&ip->lock);
245 		vclrisdirty(vp);
246 		hammer_rel_inode(ip, 1);
247 		lwkt_reltoken(&hmp->fs_token);
248 	}
249 	return(0);
250 }
251 
252 /*
253  * Inform the kernel that the inode is dirty.  This will be checked
254  * by vn_unlock().
255  */
256 void
257 hammer_inode_dirty(struct hammer_inode *ip)
258 {
259 	struct vnode *vp;
260 
261 	if ((ip->flags & HAMMER_INODE_MODMASK) &&
262 	    (vp = ip->vp) != NULL) {
263 		vsetisdirty(vp);
264 	}
265 }
266 
267 /*
268  * Return a locked vnode for the specified inode.  The inode must be
269  * referenced but NOT LOCKED on entry and will remain referenced on
270  * return.
271  *
272  * Called from the frontend.
273  */
274 int
275 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
276 {
277 	hammer_mount_t hmp;
278 	struct vnode *vp;
279 	int error = 0;
280 	u_int8_t obj_type;
281 
282 	hmp = ip->hmp;
283 
284 	for (;;) {
285 		if ((vp = ip->vp) == NULL) {
286 			error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
287 			if (error)
288 				break;
289 			hammer_lock_ex(&ip->lock);
290 			if (ip->vp != NULL) {
291 				hammer_unlock(&ip->lock);
292 				vp = *vpp;
293 				vp->v_type = VBAD;
294 				vx_put(vp);
295 				continue;
296 			}
297 			hammer_ref(&ip->lock);
298 			vp = *vpp;
299 			ip->vp = vp;
300 
301 			obj_type = ip->ino_data.obj_type;
302 			vp->v_type = hammer_get_vnode_type(obj_type);
303 
304 			hammer_inode_wakereclaims(ip);
305 
306 			switch(ip->ino_data.obj_type) {
307 			case HAMMER_OBJTYPE_CDEV:
308 			case HAMMER_OBJTYPE_BDEV:
309 				vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
310 				addaliasu(vp, ip->ino_data.rmajor,
311 					  ip->ino_data.rminor);
312 				break;
313 			case HAMMER_OBJTYPE_FIFO:
314 				vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
315 				break;
316 			case HAMMER_OBJTYPE_REGFILE:
317 				break;
318 			default:
319 				break;
320 			}
321 
322 			/*
323 			 * Only mark as the root vnode if the ip is not
324 			 * historical, otherwise the VFS cache will get
325 			 * confused.  The other half of the special handling
326 			 * is in hammer_vop_nlookupdotdot().
327 			 *
328 			 * Pseudo-filesystem roots can be accessed via
329 			 * non-root filesystem paths and setting VROOT may
330 			 * confuse the namecache.  Set VPFSROOT instead.
331 			 */
332 			if (ip->obj_id == HAMMER_OBJID_ROOT &&
333 			    ip->obj_asof == hmp->asof) {
334 				if (ip->obj_localization == 0)
335 					vsetflags(vp, VROOT);
336 				else
337 					vsetflags(vp, VPFSROOT);
338 			}
339 
340 			vp->v_data = (void *)ip;
341 			/* vnode locked by getnewvnode() */
342 			/* make related vnode dirty if inode dirty? */
343 			hammer_unlock(&ip->lock);
344 			if (vp->v_type == VREG) {
345 				vinitvmio(vp, ip->ino_data.size,
346 					  hammer_blocksize(ip->ino_data.size),
347 					  hammer_blockoff(ip->ino_data.size));
348 			}
349 			break;
350 		}
351 
352 		/*
353 		 * Interlock vnode clearing.  This does not prevent the
354 		 * vnode from going into a reclaimed state but it does
355 		 * prevent it from being destroyed or reused so the vget()
356 		 * will properly fail.
357 		 */
358 		hammer_lock_ex(&ip->lock);
359 		if ((vp = ip->vp) == NULL) {
360 			hammer_unlock(&ip->lock);
361 			continue;
362 		}
363 		vhold(vp);
364 		hammer_unlock(&ip->lock);
365 
366 		/*
367 		 * loop if the vget fails (aka races), or if the vp
368 		 * no longer matches ip->vp.
369 		 */
370 		if (vget(vp, LK_EXCLUSIVE) == 0) {
371 			if (vp == ip->vp) {
372 				vdrop(vp);
373 				break;
374 			}
375 			vput(vp);
376 		}
377 		vdrop(vp);
378 	}
379 	*vpp = vp;
380 	return(error);
381 }
382 
383 /*
384  * Locate all copies of the inode for obj_id compatible with the specified
385  * asof, reference, and issue the related call-back.  This routine is used
386  * for direct-io invalidation and does not create any new inodes.
387  */
388 void
389 hammer_scan_inode_snapshots(hammer_mount_t hmp, hammer_inode_info_t iinfo,
390 		            int (*callback)(hammer_inode_t ip, void *data),
391 			    void *data)
392 {
393 	hammer_ino_rb_tree_RB_SCAN(&hmp->rb_inos_root,
394 				   hammer_inode_info_cmp_all_history,
395 				   callback, iinfo);
396 }
397 
398 /*
399  * Acquire a HAMMER inode.  The returned inode is not locked.  These functions
400  * do not attach or detach the related vnode (use hammer_get_vnode() for
401  * that).
402  *
403  * The flags argument is only applied for newly created inodes, and only
404  * certain flags are inherited.
405  *
406  * Called from the frontend.
407  */
408 struct hammer_inode *
409 hammer_get_inode(hammer_transaction_t trans, hammer_inode_t dip,
410 		 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
411 		 int flags, int *errorp)
412 {
413 	hammer_mount_t hmp = trans->hmp;
414 	struct hammer_node_cache *cachep;
415 	struct hammer_inode_info iinfo;
416 	struct hammer_cursor cursor;
417 	struct hammer_inode *ip;
418 
419 
420 	/*
421 	 * Determine if we already have an inode cached.  If we do then
422 	 * we are golden.
423 	 *
424 	 * If we find an inode with no vnode we have to mark the
425 	 * transaction such that hammer_inode_waitreclaims() is
426 	 * called later on to avoid building up an infinite number
427 	 * of inodes.  Otherwise we can continue to * add new inodes
428 	 * faster then they can be disposed of, even with the tsleep
429 	 * delay.
430 	 *
431 	 * If we find a dummy inode we return a failure so dounlink
432 	 * (which does another lookup) doesn't try to mess with the
433 	 * link count.  hammer_vop_nresolve() uses hammer_get_dummy_inode()
434 	 * to ref dummy inodes.
435 	 */
436 	iinfo.obj_id = obj_id;
437 	iinfo.obj_asof = asof;
438 	iinfo.obj_localization = localization;
439 loop:
440 	ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
441 	if (ip) {
442 		if (ip->flags & HAMMER_INODE_DUMMY) {
443 			*errorp = ENOENT;
444 			return(NULL);
445 		}
446 		hammer_ref(&ip->lock);
447 		*errorp = 0;
448 		return(ip);
449 	}
450 
451 	/*
452 	 * Allocate a new inode structure and deal with races later.
453 	 */
454 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
455 	++hammer_count_inodes;
456 	++hmp->count_inodes;
457 	ip->obj_id = obj_id;
458 	ip->obj_asof = iinfo.obj_asof;
459 	ip->obj_localization = localization;
460 	ip->hmp = hmp;
461 	ip->flags = flags & HAMMER_INODE_RO;
462 	ip->cache[0].ip = ip;
463 	ip->cache[1].ip = ip;
464 	ip->cache[2].ip = ip;
465 	ip->cache[3].ip = ip;
466 	if (hmp->ronly)
467 		ip->flags |= HAMMER_INODE_RO;
468 	ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
469 		0x7FFFFFFFFFFFFFFFLL;
470 	RB_INIT(&ip->rec_tree);
471 	TAILQ_INIT(&ip->target_list);
472 	hammer_ref(&ip->lock);
473 
474 	/*
475 	 * Locate the on-disk inode.  If this is a PFS root we always
476 	 * access the current version of the root inode and (if it is not
477 	 * a master) always access information under it with a snapshot
478 	 * TID.
479 	 *
480 	 * We cache recent inode lookups in this directory in dip->cache[2].
481 	 * If we can't find it we assume the inode we are looking for is
482 	 * close to the directory inode.
483 	 */
484 retry:
485 	cachep = NULL;
486 	if (dip) {
487 		if (dip->cache[2].node)
488 			cachep = &dip->cache[2];
489 		else
490 			cachep = &dip->cache[0];
491 	}
492 	hammer_init_cursor(trans, &cursor, cachep, NULL);
493 	cursor.key_beg.localization = localization + HAMMER_LOCALIZE_INODE;
494 	cursor.key_beg.obj_id = ip->obj_id;
495 	cursor.key_beg.key = 0;
496 	cursor.key_beg.create_tid = 0;
497 	cursor.key_beg.delete_tid = 0;
498 	cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
499 	cursor.key_beg.obj_type = 0;
500 
501 	cursor.asof = iinfo.obj_asof;
502 	cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
503 		       HAMMER_CURSOR_ASOF;
504 
505 	*errorp = hammer_btree_lookup(&cursor);
506 	if (*errorp == EDEADLK) {
507 		hammer_done_cursor(&cursor);
508 		goto retry;
509 	}
510 
511 	/*
512 	 * On success the B-Tree lookup will hold the appropriate
513 	 * buffer cache buffers and provide a pointer to the requested
514 	 * information.  Copy the information to the in-memory inode
515 	 * and cache the B-Tree node to improve future operations.
516 	 */
517 	if (*errorp == 0) {
518 		ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
519 		ip->ino_data = cursor.data->inode;
520 
521 		/*
522 		 * cache[0] tries to cache the location of the object inode.
523 		 * The assumption is that it is near the directory inode.
524 		 *
525 		 * cache[1] tries to cache the location of the object data.
526 		 * We might have something in the governing directory from
527 		 * scan optimizations (see the strategy code in
528 		 * hammer_vnops.c).
529 		 *
530 		 * We update dip->cache[2], if possible, with the location
531 		 * of the object inode for future directory shortcuts.
532 		 */
533 		hammer_cache_node(&ip->cache[0], cursor.node);
534 		if (dip) {
535 			if (dip->cache[3].node) {
536 				hammer_cache_node(&ip->cache[1],
537 						  dip->cache[3].node);
538 			}
539 			hammer_cache_node(&dip->cache[2], cursor.node);
540 		}
541 
542 		/*
543 		 * The file should not contain any data past the file size
544 		 * stored in the inode.  Setting save_trunc_off to the
545 		 * file size instead of max reduces B-Tree lookup overheads
546 		 * on append by allowing the flusher to avoid checking for
547 		 * record overwrites.
548 		 */
549 		ip->save_trunc_off = ip->ino_data.size;
550 
551 		/*
552 		 * Locate and assign the pseudofs management structure to
553 		 * the inode.
554 		 */
555 		if (dip && dip->obj_localization == ip->obj_localization) {
556 			ip->pfsm = dip->pfsm;
557 			hammer_ref(&ip->pfsm->lock);
558 		} else {
559 			ip->pfsm = hammer_load_pseudofs(trans,
560 							ip->obj_localization,
561 							errorp);
562 			*errorp = 0;	/* ignore ENOENT */
563 		}
564 	}
565 
566 	/*
567 	 * The inode is placed on the red-black tree and will be synced to
568 	 * the media when flushed or by the filesystem sync.  If this races
569 	 * another instantiation/lookup the insertion will fail.
570 	 */
571 	if (*errorp == 0) {
572 		if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
573 			hammer_free_inode(ip);
574 			hammer_done_cursor(&cursor);
575 			goto loop;
576 		}
577 		ip->flags |= HAMMER_INODE_ONDISK;
578 	} else {
579 		if (ip->flags & HAMMER_INODE_RSV_INODES) {
580 			ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
581 			--hmp->rsv_inodes;
582 		}
583 
584 		hammer_free_inode(ip);
585 		ip = NULL;
586 	}
587 	hammer_done_cursor(&cursor);
588 
589 	/*
590 	 * NEWINODE is only set if the inode becomes dirty later,
591 	 * setting it here just leads to unnecessary stalls.
592 	 *
593 	 * trans->flags |= HAMMER_TRANSF_NEWINODE;
594 	 */
595 	return (ip);
596 }
597 
598 /*
599  * Get a dummy inode to placemark a broken directory entry.
600  */
601 struct hammer_inode *
602 hammer_get_dummy_inode(hammer_transaction_t trans, hammer_inode_t dip,
603 		 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
604 		 int flags, int *errorp)
605 {
606 	hammer_mount_t hmp = trans->hmp;
607 	struct hammer_inode_info iinfo;
608 	struct hammer_inode *ip;
609 
610 	/*
611 	 * Determine if we already have an inode cached.  If we do then
612 	 * we are golden.
613 	 *
614 	 * If we find an inode with no vnode we have to mark the
615 	 * transaction such that hammer_inode_waitreclaims() is
616 	 * called later on to avoid building up an infinite number
617 	 * of inodes.  Otherwise we can continue to * add new inodes
618 	 * faster then they can be disposed of, even with the tsleep
619 	 * delay.
620 	 *
621 	 * If we find a non-fake inode we return an error.  Only fake
622 	 * inodes can be returned by this routine.
623 	 */
624 	iinfo.obj_id = obj_id;
625 	iinfo.obj_asof = asof;
626 	iinfo.obj_localization = localization;
627 loop:
628 	*errorp = 0;
629 	ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
630 	if (ip) {
631 		if ((ip->flags & HAMMER_INODE_DUMMY) == 0) {
632 			*errorp = ENOENT;
633 			return(NULL);
634 		}
635 		hammer_ref(&ip->lock);
636 		return(ip);
637 	}
638 
639 	/*
640 	 * Allocate a new inode structure and deal with races later.
641 	 */
642 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
643 	++hammer_count_inodes;
644 	++hmp->count_inodes;
645 	ip->obj_id = obj_id;
646 	ip->obj_asof = iinfo.obj_asof;
647 	ip->obj_localization = localization;
648 	ip->hmp = hmp;
649 	ip->flags = flags | HAMMER_INODE_RO | HAMMER_INODE_DUMMY;
650 	ip->cache[0].ip = ip;
651 	ip->cache[1].ip = ip;
652 	ip->cache[2].ip = ip;
653 	ip->cache[3].ip = ip;
654 	ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
655 		0x7FFFFFFFFFFFFFFFLL;
656 	RB_INIT(&ip->rec_tree);
657 	TAILQ_INIT(&ip->target_list);
658 	hammer_ref(&ip->lock);
659 
660 	/*
661 	 * Populate the dummy inode.  Leave everything zero'd out.
662 	 *
663 	 * (ip->ino_leaf and ip->ino_data)
664 	 *
665 	 * Make the dummy inode a FIFO object which most copy programs
666 	 * will properly ignore.
667 	 */
668 	ip->save_trunc_off = ip->ino_data.size;
669 	ip->ino_data.obj_type = HAMMER_OBJTYPE_FIFO;
670 
671 	/*
672 	 * Locate and assign the pseudofs management structure to
673 	 * the inode.
674 	 */
675 	if (dip && dip->obj_localization == ip->obj_localization) {
676 		ip->pfsm = dip->pfsm;
677 		hammer_ref(&ip->pfsm->lock);
678 	} else {
679 		ip->pfsm = hammer_load_pseudofs(trans, ip->obj_localization,
680 						errorp);
681 		*errorp = 0;	/* ignore ENOENT */
682 	}
683 
684 	/*
685 	 * The inode is placed on the red-black tree and will be synced to
686 	 * the media when flushed or by the filesystem sync.  If this races
687 	 * another instantiation/lookup the insertion will fail.
688 	 *
689 	 * NOTE: Do not set HAMMER_INODE_ONDISK.  The inode is a fake.
690 	 */
691 	if (*errorp == 0) {
692 		if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
693 			hammer_free_inode(ip);
694 			goto loop;
695 		}
696 	} else {
697 		if (ip->flags & HAMMER_INODE_RSV_INODES) {
698 			ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
699 			--hmp->rsv_inodes;
700 		}
701 		hammer_free_inode(ip);
702 		ip = NULL;
703 	}
704 	trans->flags |= HAMMER_TRANSF_NEWINODE;
705 	return (ip);
706 }
707 
708 /*
709  * Return a referenced inode only if it is in our inode cache.
710  *
711  * Dummy inodes do not count.
712  */
713 struct hammer_inode *
714 hammer_find_inode(hammer_transaction_t trans, int64_t obj_id,
715 		  hammer_tid_t asof, u_int32_t localization)
716 {
717 	hammer_mount_t hmp = trans->hmp;
718 	struct hammer_inode_info iinfo;
719 	struct hammer_inode *ip;
720 
721 	iinfo.obj_id = obj_id;
722 	iinfo.obj_asof = asof;
723 	iinfo.obj_localization = localization;
724 
725 	ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
726 	if (ip) {
727 		if (ip->flags & HAMMER_INODE_DUMMY)
728 			ip = NULL;
729 		else
730 			hammer_ref(&ip->lock);
731 	}
732 	return(ip);
733 }
734 
735 /*
736  * Create a new filesystem object, returning the inode in *ipp.  The
737  * returned inode will be referenced.  The inode is created in-memory.
738  *
739  * If pfsm is non-NULL the caller wishes to create the root inode for
740  * a master PFS.
741  */
742 int
743 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
744 		    struct ucred *cred,
745 		    hammer_inode_t dip, const char *name, int namelen,
746 		    hammer_pseudofs_inmem_t pfsm, struct hammer_inode **ipp)
747 {
748 	hammer_mount_t hmp;
749 	hammer_inode_t ip;
750 	uid_t xuid;
751 	int error;
752 	int64_t namekey;
753 	u_int32_t dummy;
754 
755 	hmp = trans->hmp;
756 
757 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
758 	++hammer_count_inodes;
759 	++hmp->count_inodes;
760 	trans->flags |= HAMMER_TRANSF_NEWINODE;
761 
762 	if (pfsm) {
763 		KKASSERT(pfsm->localization != 0);
764 		ip->obj_id = HAMMER_OBJID_ROOT;
765 		ip->obj_localization = pfsm->localization;
766 	} else {
767 		KKASSERT(dip != NULL);
768 		namekey = hammer_directory_namekey(dip, name, namelen, &dummy);
769 		ip->obj_id = hammer_alloc_objid(hmp, dip, namekey);
770 		ip->obj_localization = dip->obj_localization;
771 	}
772 
773 	KKASSERT(ip->obj_id != 0);
774 	ip->obj_asof = hmp->asof;
775 	ip->hmp = hmp;
776 	ip->flush_state = HAMMER_FST_IDLE;
777 	ip->flags = HAMMER_INODE_DDIRTY |
778 		    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME;
779 	ip->cache[0].ip = ip;
780 	ip->cache[1].ip = ip;
781 	ip->cache[2].ip = ip;
782 	ip->cache[3].ip = ip;
783 
784 	ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
785 	/* ip->save_trunc_off = 0; (already zero) */
786 	RB_INIT(&ip->rec_tree);
787 	TAILQ_INIT(&ip->target_list);
788 
789 	ip->ino_data.atime = trans->time;
790 	ip->ino_data.mtime = trans->time;
791 	ip->ino_data.size = 0;
792 	ip->ino_data.nlinks = 0;
793 
794 	/*
795 	 * A nohistory designator on the parent directory is inherited by
796 	 * the child.  We will do this even for pseudo-fs creation... the
797 	 * sysad can turn it off.
798 	 */
799 	if (dip) {
800 		ip->ino_data.uflags = dip->ino_data.uflags &
801 				      (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
802 	}
803 
804 	ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
805 	ip->ino_leaf.base.localization = ip->obj_localization +
806 					 HAMMER_LOCALIZE_INODE;
807 	ip->ino_leaf.base.obj_id = ip->obj_id;
808 	ip->ino_leaf.base.key = 0;
809 	ip->ino_leaf.base.create_tid = 0;
810 	ip->ino_leaf.base.delete_tid = 0;
811 	ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
812 	ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
813 
814 	ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
815 	ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
816 	ip->ino_data.mode = vap->va_mode;
817 	ip->ino_data.ctime = trans->time;
818 
819 	/*
820 	 * If we are running version 2 or greater directory entries are
821 	 * inode-localized instead of data-localized.
822 	 */
823 	if (trans->hmp->version >= HAMMER_VOL_VERSION_TWO) {
824 		if (ip->ino_leaf.base.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
825 			ip->ino_data.cap_flags |=
826 				HAMMER_INODE_CAP_DIR_LOCAL_INO;
827 		}
828 	}
829 	if (trans->hmp->version >= HAMMER_VOL_VERSION_SIX) {
830 		if (ip->ino_leaf.base.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
831 			ip->ino_data.cap_flags |=
832 				HAMMER_INODE_CAP_DIRHASH_ALG1;
833 		}
834 	}
835 
836 	/*
837 	 * Setup the ".." pointer.  This only needs to be done for directories
838 	 * but we do it for all objects as a recovery aid.
839 	 */
840 	if (dip)
841 		ip->ino_data.parent_obj_id = dip->ino_leaf.base.obj_id;
842 #if 0
843 	/*
844 	 * The parent_obj_localization field only applies to pseudo-fs roots.
845 	 * XXX this is no longer applicable, PFSs are no longer directly
846 	 * tied into the parent's directory structure.
847 	 */
848 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY &&
849 	    ip->obj_id == HAMMER_OBJID_ROOT) {
850 		ip->ino_data.ext.obj.parent_obj_localization =
851 						dip->obj_localization;
852 	}
853 #endif
854 
855 	switch(ip->ino_leaf.base.obj_type) {
856 	case HAMMER_OBJTYPE_CDEV:
857 	case HAMMER_OBJTYPE_BDEV:
858 		ip->ino_data.rmajor = vap->va_rmajor;
859 		ip->ino_data.rminor = vap->va_rminor;
860 		break;
861 	default:
862 		break;
863 	}
864 
865 	/*
866 	 * Calculate default uid/gid and overwrite with information from
867 	 * the vap.
868 	 */
869 	if (dip) {
870 		xuid = hammer_to_unix_xid(&dip->ino_data.uid);
871 		xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode,
872 					     xuid, cred, &vap->va_mode);
873 	} else {
874 		xuid = 0;
875 	}
876 	ip->ino_data.mode = vap->va_mode;
877 
878 	if (vap->va_vaflags & VA_UID_UUID_VALID)
879 		ip->ino_data.uid = vap->va_uid_uuid;
880 	else if (vap->va_uid != (uid_t)VNOVAL)
881 		hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
882 	else
883 		hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
884 
885 	if (vap->va_vaflags & VA_GID_UUID_VALID)
886 		ip->ino_data.gid = vap->va_gid_uuid;
887 	else if (vap->va_gid != (gid_t)VNOVAL)
888 		hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
889 	else if (dip)
890 		ip->ino_data.gid = dip->ino_data.gid;
891 
892 	hammer_ref(&ip->lock);
893 
894 	if (pfsm) {
895 		ip->pfsm = pfsm;
896 		hammer_ref(&pfsm->lock);
897 		error = 0;
898 	} else if (dip->obj_localization == ip->obj_localization) {
899 		ip->pfsm = dip->pfsm;
900 		hammer_ref(&ip->pfsm->lock);
901 		error = 0;
902 	} else {
903 		ip->pfsm = hammer_load_pseudofs(trans,
904 						ip->obj_localization,
905 						&error);
906 		error = 0;	/* ignore ENOENT */
907 	}
908 
909 	if (error) {
910 		hammer_free_inode(ip);
911 		ip = NULL;
912 	} else if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
913 		panic("hammer_create_inode: duplicate obj_id %llx",
914 		      (long long)ip->obj_id);
915 		/* not reached */
916 		hammer_free_inode(ip);
917 	}
918 	*ipp = ip;
919 	return(error);
920 }
921 
922 /*
923  * Final cleanup / freeing of an inode structure
924  */
925 static void
926 hammer_free_inode(hammer_inode_t ip)
927 {
928 	struct hammer_mount *hmp;
929 
930 	hmp = ip->hmp;
931 	KKASSERT(hammer_oneref(&ip->lock));
932 	hammer_uncache_node(&ip->cache[0]);
933 	hammer_uncache_node(&ip->cache[1]);
934 	hammer_uncache_node(&ip->cache[2]);
935 	hammer_uncache_node(&ip->cache[3]);
936 	hammer_inode_wakereclaims(ip);
937 	if (ip->objid_cache)
938 		hammer_clear_objid(ip);
939 	--hammer_count_inodes;
940 	--hmp->count_inodes;
941 	if (ip->pfsm) {
942 		hammer_rel_pseudofs(hmp, ip->pfsm);
943 		ip->pfsm = NULL;
944 	}
945 	kfree(ip, hmp->m_inodes);
946 	ip = NULL;
947 }
948 
949 /*
950  * Retrieve pseudo-fs data.  NULL will never be returned.
951  *
952  * If an error occurs *errorp will be set and a default template is returned,
953  * otherwise *errorp is set to 0.  Typically when an error occurs it will
954  * be ENOENT.
955  */
956 hammer_pseudofs_inmem_t
957 hammer_load_pseudofs(hammer_transaction_t trans,
958 		     u_int32_t localization, int *errorp)
959 {
960 	hammer_mount_t hmp = trans->hmp;
961 	hammer_inode_t ip;
962 	hammer_pseudofs_inmem_t pfsm;
963 	struct hammer_cursor cursor;
964 	int bytes;
965 
966 retry:
967 	pfsm = RB_LOOKUP(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, localization);
968 	if (pfsm) {
969 		hammer_ref(&pfsm->lock);
970 		*errorp = 0;
971 		return(pfsm);
972 	}
973 
974 	/*
975 	 * PFS records are stored in the root inode (not the PFS root inode,
976 	 * but the real root).  Avoid an infinite recursion if loading
977 	 * the PFS for the real root.
978 	 */
979 	if (localization) {
980 		ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT,
981 				      HAMMER_MAX_TID,
982 				      HAMMER_DEF_LOCALIZATION, 0, errorp);
983 	} else {
984 		ip = NULL;
985 	}
986 
987 	pfsm = kmalloc(sizeof(*pfsm), hmp->m_misc, M_WAITOK | M_ZERO);
988 	pfsm->localization = localization;
989 	pfsm->pfsd.unique_uuid = trans->rootvol->ondisk->vol_fsid;
990 	pfsm->pfsd.shared_uuid = pfsm->pfsd.unique_uuid;
991 
992 	hammer_init_cursor(trans, &cursor, (ip ? &ip->cache[1] : NULL), ip);
993 	cursor.key_beg.localization = HAMMER_DEF_LOCALIZATION +
994 				      HAMMER_LOCALIZE_MISC;
995 	cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
996 	cursor.key_beg.create_tid = 0;
997 	cursor.key_beg.delete_tid = 0;
998 	cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
999 	cursor.key_beg.obj_type = 0;
1000 	cursor.key_beg.key = localization;
1001 	cursor.asof = HAMMER_MAX_TID;
1002 	cursor.flags |= HAMMER_CURSOR_ASOF;
1003 
1004 	if (ip)
1005 		*errorp = hammer_ip_lookup(&cursor);
1006 	else
1007 		*errorp = hammer_btree_lookup(&cursor);
1008 	if (*errorp == 0) {
1009 		*errorp = hammer_ip_resolve_data(&cursor);
1010 		if (*errorp == 0) {
1011 			if (cursor.data->pfsd.mirror_flags &
1012 			    HAMMER_PFSD_DELETED) {
1013 				*errorp = ENOENT;
1014 			} else {
1015 				bytes = cursor.leaf->data_len;
1016 				if (bytes > sizeof(pfsm->pfsd))
1017 					bytes = sizeof(pfsm->pfsd);
1018 				bcopy(cursor.data, &pfsm->pfsd, bytes);
1019 			}
1020 		}
1021 	}
1022 	hammer_done_cursor(&cursor);
1023 
1024 	pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
1025 	hammer_ref(&pfsm->lock);
1026 	if (ip)
1027 		hammer_rel_inode(ip, 0);
1028 	if (RB_INSERT(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm)) {
1029 		kfree(pfsm, hmp->m_misc);
1030 		goto retry;
1031 	}
1032 	return(pfsm);
1033 }
1034 
1035 /*
1036  * Store pseudo-fs data.  The backend will automatically delete any prior
1037  * on-disk pseudo-fs data but we have to delete in-memory versions.
1038  */
1039 int
1040 hammer_save_pseudofs(hammer_transaction_t trans, hammer_pseudofs_inmem_t pfsm)
1041 {
1042 	struct hammer_cursor cursor;
1043 	hammer_record_t record;
1044 	hammer_inode_t ip;
1045 	int error;
1046 
1047 	ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
1048 			      HAMMER_DEF_LOCALIZATION, 0, &error);
1049 retry:
1050 	pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
1051 	hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
1052 	cursor.key_beg.localization = ip->obj_localization +
1053 				      HAMMER_LOCALIZE_MISC;
1054 	cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
1055 	cursor.key_beg.create_tid = 0;
1056 	cursor.key_beg.delete_tid = 0;
1057 	cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
1058 	cursor.key_beg.obj_type = 0;
1059 	cursor.key_beg.key = pfsm->localization;
1060 	cursor.asof = HAMMER_MAX_TID;
1061 	cursor.flags |= HAMMER_CURSOR_ASOF;
1062 
1063 	/*
1064 	 * Replace any in-memory version of the record.
1065 	 */
1066 	error = hammer_ip_lookup(&cursor);
1067 	if (error == 0 && hammer_cursor_inmem(&cursor)) {
1068 		record = cursor.iprec;
1069 		if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
1070 			KKASSERT(cursor.deadlk_rec == NULL);
1071 			hammer_ref(&record->lock);
1072 			cursor.deadlk_rec = record;
1073 			error = EDEADLK;
1074 		} else {
1075 			record->flags |= HAMMER_RECF_DELETED_FE;
1076 			error = 0;
1077 		}
1078 	}
1079 
1080 	/*
1081 	 * Allocate replacement general record.  The backend flush will
1082 	 * delete any on-disk version of the record.
1083 	 */
1084 	if (error == 0 || error == ENOENT) {
1085 		record = hammer_alloc_mem_record(ip, sizeof(pfsm->pfsd));
1086 		record->type = HAMMER_MEM_RECORD_GENERAL;
1087 
1088 		record->leaf.base.localization = ip->obj_localization +
1089 						 HAMMER_LOCALIZE_MISC;
1090 		record->leaf.base.rec_type = HAMMER_RECTYPE_PFS;
1091 		record->leaf.base.key = pfsm->localization;
1092 		record->leaf.data_len = sizeof(pfsm->pfsd);
1093 		bcopy(&pfsm->pfsd, record->data, sizeof(pfsm->pfsd));
1094 		error = hammer_ip_add_record(trans, record);
1095 	}
1096 	hammer_done_cursor(&cursor);
1097 	if (error == EDEADLK)
1098 		goto retry;
1099 	hammer_rel_inode(ip, 0);
1100 	return(error);
1101 }
1102 
1103 /*
1104  * Create a root directory for a PFS if one does not alredy exist.
1105  *
1106  * The PFS root stands alone so we must also bump the nlinks count
1107  * to prevent it from being destroyed on release.
1108  */
1109 int
1110 hammer_mkroot_pseudofs(hammer_transaction_t trans, struct ucred *cred,
1111 		       hammer_pseudofs_inmem_t pfsm)
1112 {
1113 	hammer_inode_t ip;
1114 	struct vattr vap;
1115 	int error;
1116 
1117 	ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
1118 			      pfsm->localization, 0, &error);
1119 	if (ip == NULL) {
1120 		vattr_null(&vap);
1121 		vap.va_mode = 0755;
1122 		vap.va_type = VDIR;
1123 		error = hammer_create_inode(trans, &vap, cred,
1124 					    NULL, NULL, 0,
1125 					    pfsm, &ip);
1126 		if (error == 0) {
1127 			++ip->ino_data.nlinks;
1128 			hammer_modify_inode(trans, ip, HAMMER_INODE_DDIRTY);
1129 		}
1130 	}
1131 	if (ip)
1132 		hammer_rel_inode(ip, 0);
1133 	return(error);
1134 }
1135 
1136 /*
1137  * Unload any vnodes & inodes associated with a PFS, return ENOTEMPTY
1138  * if we are unable to disassociate all the inodes.
1139  */
1140 static
1141 int
1142 hammer_unload_pseudofs_callback(hammer_inode_t ip, void *data)
1143 {
1144 	int res;
1145 
1146 	hammer_ref(&ip->lock);
1147 	if (hammer_isactive(&ip->lock) == 2 && ip->vp)
1148 		vclean_unlocked(ip->vp);
1149 	if (hammer_isactive(&ip->lock) == 1 && ip->vp == NULL)
1150 		res = 0;
1151 	else
1152 		res = -1;	/* stop, someone is using the inode */
1153 	hammer_rel_inode(ip, 0);
1154 	return(res);
1155 }
1156 
1157 int
1158 hammer_unload_pseudofs(hammer_transaction_t trans, u_int32_t localization)
1159 {
1160 	int res;
1161 	int try;
1162 
1163 	for (try = res = 0; try < 4; ++try) {
1164 		res = hammer_ino_rb_tree_RB_SCAN(&trans->hmp->rb_inos_root,
1165 					   hammer_inode_pfs_cmp,
1166 					   hammer_unload_pseudofs_callback,
1167 					   &localization);
1168 		if (res == 0 && try > 1)
1169 			break;
1170 		hammer_flusher_sync(trans->hmp);
1171 	}
1172 	if (res != 0)
1173 		res = ENOTEMPTY;
1174 	return(res);
1175 }
1176 
1177 
1178 /*
1179  * Release a reference on a PFS
1180  */
1181 void
1182 hammer_rel_pseudofs(hammer_mount_t hmp, hammer_pseudofs_inmem_t pfsm)
1183 {
1184 	hammer_rel(&pfsm->lock);
1185 	if (hammer_norefs(&pfsm->lock)) {
1186 		RB_REMOVE(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm);
1187 		kfree(pfsm, hmp->m_misc);
1188 	}
1189 }
1190 
1191 /*
1192  * Called by hammer_sync_inode().
1193  */
1194 static int
1195 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
1196 {
1197 	hammer_transaction_t trans = cursor->trans;
1198 	hammer_record_t record;
1199 	int error;
1200 	int redirty;
1201 
1202 retry:
1203 	error = 0;
1204 
1205 	/*
1206 	 * If the inode has a presence on-disk then locate it and mark
1207 	 * it deleted, setting DELONDISK.
1208 	 *
1209 	 * The record may or may not be physically deleted, depending on
1210 	 * the retention policy.
1211 	 */
1212 	if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
1213 	    HAMMER_INODE_ONDISK) {
1214 		hammer_normalize_cursor(cursor);
1215 		cursor->key_beg.localization = ip->obj_localization +
1216 					       HAMMER_LOCALIZE_INODE;
1217 		cursor->key_beg.obj_id = ip->obj_id;
1218 		cursor->key_beg.key = 0;
1219 		cursor->key_beg.create_tid = 0;
1220 		cursor->key_beg.delete_tid = 0;
1221 		cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1222 		cursor->key_beg.obj_type = 0;
1223 		cursor->asof = ip->obj_asof;
1224 		cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1225 		cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
1226 		cursor->flags |= HAMMER_CURSOR_BACKEND;
1227 
1228 		error = hammer_btree_lookup(cursor);
1229 		if (hammer_debug_inode)
1230 			kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
1231 
1232 		if (error == 0) {
1233 			error = hammer_ip_delete_record(cursor, ip, trans->tid);
1234 			if (hammer_debug_inode)
1235 				kprintf(" error %d\n", error);
1236 			if (error == 0) {
1237 				ip->flags |= HAMMER_INODE_DELONDISK;
1238 			}
1239 			if (cursor->node)
1240 				hammer_cache_node(&ip->cache[0], cursor->node);
1241 		}
1242 		if (error == EDEADLK) {
1243 			hammer_done_cursor(cursor);
1244 			error = hammer_init_cursor(trans, cursor,
1245 						   &ip->cache[0], ip);
1246 			if (hammer_debug_inode)
1247 				kprintf("IPDED %p %d\n", ip, error);
1248 			if (error == 0)
1249 				goto retry;
1250 		}
1251 	}
1252 
1253 	/*
1254 	 * Ok, write out the initial record or a new record (after deleting
1255 	 * the old one), unless the DELETED flag is set.  This routine will
1256 	 * clear DELONDISK if it writes out a record.
1257 	 *
1258 	 * Update our inode statistics if this is the first application of
1259 	 * the inode on-disk.
1260 	 */
1261 	if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
1262 		/*
1263 		 * Generate a record and write it to the media.  We clean-up
1264 		 * the state before releasing so we do not have to set-up
1265 		 * a flush_group.
1266 		 */
1267 		record = hammer_alloc_mem_record(ip, 0);
1268 		record->type = HAMMER_MEM_RECORD_INODE;
1269 		record->flush_state = HAMMER_FST_FLUSH;
1270 		record->leaf = ip->sync_ino_leaf;
1271 		record->leaf.base.create_tid = trans->tid;
1272 		record->leaf.data_len = sizeof(ip->sync_ino_data);
1273 		record->leaf.create_ts = trans->time32;
1274 		record->data = (void *)&ip->sync_ino_data;
1275 		record->flags |= HAMMER_RECF_INTERLOCK_BE;
1276 
1277 		/*
1278 		 * If this flag is set we cannot sync the new file size
1279 		 * because we haven't finished related truncations.  The
1280 		 * inode will be flushed in another flush group to finish
1281 		 * the job.
1282 		 */
1283 		if ((ip->flags & HAMMER_INODE_WOULDBLOCK) &&
1284 		    ip->sync_ino_data.size != ip->ino_data.size) {
1285 			redirty = 1;
1286 			ip->sync_ino_data.size = ip->ino_data.size;
1287 		} else {
1288 			redirty = 0;
1289 		}
1290 
1291 		for (;;) {
1292 			error = hammer_ip_sync_record_cursor(cursor, record);
1293 			if (hammer_debug_inode)
1294 				kprintf("GENREC %p rec %08x %d\n",
1295 					ip, record->flags, error);
1296 			if (error != EDEADLK)
1297 				break;
1298 			hammer_done_cursor(cursor);
1299 			error = hammer_init_cursor(trans, cursor,
1300 						   &ip->cache[0], ip);
1301 			if (hammer_debug_inode)
1302 				kprintf("GENREC reinit %d\n", error);
1303 			if (error)
1304 				break;
1305 		}
1306 
1307 		/*
1308 		 * Note:  The record was never on the inode's record tree
1309 		 * so just wave our hands importantly and destroy it.
1310 		 */
1311 		record->flags |= HAMMER_RECF_COMMITTED;
1312 		record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
1313 		record->flush_state = HAMMER_FST_IDLE;
1314 		++ip->rec_generation;
1315 		hammer_rel_mem_record(record);
1316 
1317 		/*
1318 		 * Finish up.
1319 		 */
1320 		if (error == 0) {
1321 			if (hammer_debug_inode)
1322 				kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
1323 			ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1324 					    HAMMER_INODE_SDIRTY |
1325 					    HAMMER_INODE_ATIME |
1326 					    HAMMER_INODE_MTIME);
1327 			ip->flags &= ~HAMMER_INODE_DELONDISK;
1328 			if (redirty)
1329 				ip->sync_flags |= HAMMER_INODE_DDIRTY;
1330 
1331 			/*
1332 			 * Root volume count of inodes
1333 			 */
1334 			hammer_sync_lock_sh(trans);
1335 			if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
1336 				hammer_modify_volume_field(trans,
1337 							   trans->rootvol,
1338 							   vol0_stat_inodes);
1339 				++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1340 				hammer_modify_volume_done(trans->rootvol);
1341 				ip->flags |= HAMMER_INODE_ONDISK;
1342 				if (hammer_debug_inode)
1343 					kprintf("NOWONDISK %p\n", ip);
1344 			}
1345 			hammer_sync_unlock(trans);
1346 		}
1347 	}
1348 
1349 	/*
1350 	 * If the inode has been destroyed, clean out any left-over flags
1351 	 * that may have been set by the frontend.
1352 	 */
1353 	if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
1354 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1355 				    HAMMER_INODE_SDIRTY |
1356 				    HAMMER_INODE_ATIME |
1357 				    HAMMER_INODE_MTIME);
1358 	}
1359 	return(error);
1360 }
1361 
1362 /*
1363  * Update only the itimes fields.
1364  *
1365  * ATIME can be updated without generating any UNDO.  MTIME is updated
1366  * with UNDO so it is guaranteed to be synchronized properly in case of
1367  * a crash.
1368  *
1369  * Neither field is included in the B-Tree leaf element's CRC, which is how
1370  * we can get away with updating ATIME the way we do.
1371  */
1372 static int
1373 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
1374 {
1375 	hammer_transaction_t trans = cursor->trans;
1376 	int error;
1377 
1378 retry:
1379 	if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) !=
1380 	    HAMMER_INODE_ONDISK) {
1381 		return(0);
1382 	}
1383 
1384 	hammer_normalize_cursor(cursor);
1385 	cursor->key_beg.localization = ip->obj_localization +
1386 				       HAMMER_LOCALIZE_INODE;
1387 	cursor->key_beg.obj_id = ip->obj_id;
1388 	cursor->key_beg.key = 0;
1389 	cursor->key_beg.create_tid = 0;
1390 	cursor->key_beg.delete_tid = 0;
1391 	cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1392 	cursor->key_beg.obj_type = 0;
1393 	cursor->asof = ip->obj_asof;
1394 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1395 	cursor->flags |= HAMMER_CURSOR_ASOF;
1396 	cursor->flags |= HAMMER_CURSOR_GET_LEAF;
1397 	cursor->flags |= HAMMER_CURSOR_GET_DATA;
1398 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1399 
1400 	error = hammer_btree_lookup(cursor);
1401 	if (error == 0) {
1402 		hammer_cache_node(&ip->cache[0], cursor->node);
1403 		if (ip->sync_flags & HAMMER_INODE_MTIME) {
1404 			/*
1405 			 * Updating MTIME requires an UNDO.  Just cover
1406 			 * both atime and mtime.
1407 			 */
1408 			hammer_sync_lock_sh(trans);
1409 			hammer_modify_buffer(trans, cursor->data_buffer,
1410 				     HAMMER_ITIMES_BASE(&cursor->data->inode),
1411 				     HAMMER_ITIMES_BYTES);
1412 			cursor->data->inode.atime = ip->sync_ino_data.atime;
1413 			cursor->data->inode.mtime = ip->sync_ino_data.mtime;
1414 			hammer_modify_buffer_done(cursor->data_buffer);
1415 			hammer_sync_unlock(trans);
1416 		} else if (ip->sync_flags & HAMMER_INODE_ATIME) {
1417 			/*
1418 			 * Updating atime only can be done in-place with
1419 			 * no UNDO.
1420 			 */
1421 			hammer_sync_lock_sh(trans);
1422 			hammer_modify_buffer(trans, cursor->data_buffer,
1423 					     NULL, 0);
1424 			cursor->data->inode.atime = ip->sync_ino_data.atime;
1425 			hammer_modify_buffer_done(cursor->data_buffer);
1426 			hammer_sync_unlock(trans);
1427 		}
1428 		ip->sync_flags &= ~(HAMMER_INODE_ATIME | HAMMER_INODE_MTIME);
1429 	}
1430 	if (error == EDEADLK) {
1431 		hammer_done_cursor(cursor);
1432 		error = hammer_init_cursor(trans, cursor,
1433 					   &ip->cache[0], ip);
1434 		if (error == 0)
1435 			goto retry;
1436 	}
1437 	return(error);
1438 }
1439 
1440 /*
1441  * Release a reference on an inode, flush as requested.
1442  *
1443  * On the last reference we queue the inode to the flusher for its final
1444  * disposition.
1445  */
1446 void
1447 hammer_rel_inode(struct hammer_inode *ip, int flush)
1448 {
1449 	/*hammer_mount_t hmp = ip->hmp;*/
1450 
1451 	/*
1452 	 * Handle disposition when dropping the last ref.
1453 	 */
1454 	for (;;) {
1455 		if (hammer_oneref(&ip->lock)) {
1456 			/*
1457 			 * Determine whether on-disk action is needed for
1458 			 * the inode's final disposition.
1459 			 */
1460 			KKASSERT(ip->vp == NULL);
1461 			hammer_inode_unloadable_check(ip, 0);
1462 			if (ip->flags & HAMMER_INODE_MODMASK) {
1463 				hammer_flush_inode(ip, 0);
1464 			} else if (hammer_oneref(&ip->lock)) {
1465 				hammer_unload_inode(ip);
1466 				break;
1467 			}
1468 		} else {
1469 			if (flush)
1470 				hammer_flush_inode(ip, 0);
1471 
1472 			/*
1473 			 * The inode still has multiple refs, try to drop
1474 			 * one ref.
1475 			 */
1476 			KKASSERT(hammer_isactive(&ip->lock) >= 1);
1477 			if (hammer_isactive(&ip->lock) > 1) {
1478 				hammer_rel(&ip->lock);
1479 				break;
1480 			}
1481 		}
1482 	}
1483 }
1484 
1485 /*
1486  * Unload and destroy the specified inode.  Must be called with one remaining
1487  * reference.  The reference is disposed of.
1488  *
1489  * The inode must be completely clean.
1490  */
1491 static int
1492 hammer_unload_inode(struct hammer_inode *ip)
1493 {
1494 	hammer_mount_t hmp = ip->hmp;
1495 
1496 	KASSERT(hammer_oneref(&ip->lock),
1497 		("hammer_unload_inode: %d refs", hammer_isactive(&ip->lock)));
1498 	KKASSERT(ip->vp == NULL);
1499 	KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
1500 	KKASSERT(ip->cursor_ip_refs == 0);
1501 	KKASSERT(hammer_notlocked(&ip->lock));
1502 	KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
1503 
1504 	KKASSERT(RB_EMPTY(&ip->rec_tree));
1505 	KKASSERT(TAILQ_EMPTY(&ip->target_list));
1506 
1507 	if (ip->flags & HAMMER_INODE_RDIRTY) {
1508 		RB_REMOVE(hammer_redo_rb_tree, &hmp->rb_redo_root, ip);
1509 		ip->flags &= ~HAMMER_INODE_RDIRTY;
1510 	}
1511 	RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
1512 
1513 	hammer_free_inode(ip);
1514 	return(0);
1515 }
1516 
1517 /*
1518  * Called during unmounting if a critical error occured.  The in-memory
1519  * inode and all related structures are destroyed.
1520  *
1521  * If a critical error did not occur the unmount code calls the standard
1522  * release and asserts that the inode is gone.
1523  */
1524 int
1525 hammer_destroy_inode_callback(struct hammer_inode *ip, void *data __unused)
1526 {
1527 	hammer_record_t rec;
1528 
1529 	/*
1530 	 * Get rid of the inodes in-memory records, regardless of their
1531 	 * state, and clear the mod-mask.
1532 	 */
1533 	while ((rec = TAILQ_FIRST(&ip->target_list)) != NULL) {
1534 		TAILQ_REMOVE(&ip->target_list, rec, target_entry);
1535 		rec->target_ip = NULL;
1536 		if (rec->flush_state == HAMMER_FST_SETUP)
1537 			rec->flush_state = HAMMER_FST_IDLE;
1538 	}
1539 	while ((rec = RB_ROOT(&ip->rec_tree)) != NULL) {
1540 		if (rec->flush_state == HAMMER_FST_FLUSH)
1541 			--rec->flush_group->refs;
1542 		else
1543 			hammer_ref(&rec->lock);
1544 		KKASSERT(hammer_oneref(&rec->lock));
1545 		rec->flush_state = HAMMER_FST_IDLE;
1546 		rec->flush_group = NULL;
1547 		rec->flags |= HAMMER_RECF_DELETED_FE; /* wave hands */
1548 		rec->flags |= HAMMER_RECF_DELETED_BE; /* wave hands */
1549 		++ip->rec_generation;
1550 		hammer_rel_mem_record(rec);
1551 	}
1552 	ip->flags &= ~HAMMER_INODE_MODMASK;
1553 	ip->sync_flags &= ~HAMMER_INODE_MODMASK;
1554 	KKASSERT(ip->vp == NULL);
1555 
1556 	/*
1557 	 * Remove the inode from any flush group, force it idle.  FLUSH
1558 	 * and SETUP states have an inode ref.
1559 	 */
1560 	switch(ip->flush_state) {
1561 	case HAMMER_FST_FLUSH:
1562 		RB_REMOVE(hammer_fls_rb_tree, &ip->flush_group->flush_tree, ip);
1563 		--ip->flush_group->refs;
1564 		ip->flush_group = NULL;
1565 		/* fall through */
1566 	case HAMMER_FST_SETUP:
1567 		hammer_rel(&ip->lock);
1568 		ip->flush_state = HAMMER_FST_IDLE;
1569 		/* fall through */
1570 	case HAMMER_FST_IDLE:
1571 		break;
1572 	}
1573 
1574 	/*
1575 	 * There shouldn't be any associated vnode.  The unload needs at
1576 	 * least one ref, if we do have a vp steal its ip ref.
1577 	 */
1578 	if (ip->vp) {
1579 		kprintf("hammer_destroy_inode_callback: Unexpected "
1580 			"vnode association ip %p vp %p\n", ip, ip->vp);
1581 		ip->vp->v_data = NULL;
1582 		ip->vp = NULL;
1583 	} else {
1584 		hammer_ref(&ip->lock);
1585 	}
1586 	hammer_unload_inode(ip);
1587 	return(0);
1588 }
1589 
1590 /*
1591  * Called on mount -u when switching from RW to RO or vise-versa.  Adjust
1592  * the read-only flag for cached inodes.
1593  *
1594  * This routine is called from a RB_SCAN().
1595  */
1596 int
1597 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
1598 {
1599 	hammer_mount_t hmp = ip->hmp;
1600 
1601 	if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
1602 		ip->flags |= HAMMER_INODE_RO;
1603 	else
1604 		ip->flags &= ~HAMMER_INODE_RO;
1605 	return(0);
1606 }
1607 
1608 /*
1609  * A transaction has modified an inode, requiring updates as specified by
1610  * the passed flags.
1611  *
1612  * HAMMER_INODE_DDIRTY: Inode data has been updated, not incl mtime/atime,
1613  *			and not including size changes due to write-append
1614  *			(but other size changes are included).
1615  * HAMMER_INODE_SDIRTY: Inode data has been updated, size changes due to
1616  *			write-append.
1617  * HAMMER_INODE_XDIRTY: Dirty in-memory records
1618  * HAMMER_INODE_BUFS:   Dirty buffer cache buffers
1619  * HAMMER_INODE_DELETED: Inode record/data must be deleted
1620  * HAMMER_INODE_ATIME/MTIME: mtime/atime has been updated
1621  */
1622 void
1623 hammer_modify_inode(hammer_transaction_t trans, hammer_inode_t ip, int flags)
1624 {
1625 	/*
1626 	 * ronly of 0 or 2 does not trigger assertion.
1627 	 * 2 is a special error state
1628 	 */
1629 	KKASSERT(ip->hmp->ronly != 1 ||
1630 		  (flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
1631 			    HAMMER_INODE_SDIRTY |
1632 			    HAMMER_INODE_BUFS | HAMMER_INODE_DELETED |
1633 			    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) == 0);
1634 	if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
1635 		ip->flags |= HAMMER_INODE_RSV_INODES;
1636 		++ip->hmp->rsv_inodes;
1637 	}
1638 
1639 	/*
1640 	 * Set the NEWINODE flag in the transaction if the inode
1641 	 * transitions to a dirty state.  This is used to track
1642 	 * the load on the inode cache.
1643 	 */
1644 	if (trans &&
1645 	    (ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1646 	    (flags & HAMMER_INODE_MODMASK)) {
1647 		trans->flags |= HAMMER_TRANSF_NEWINODE;
1648 	}
1649 	if (flags & HAMMER_INODE_MODMASK)
1650 		hammer_inode_dirty(ip);
1651 	ip->flags |= flags;
1652 }
1653 
1654 /*
1655  * Attempt to quickly update the atime for a hammer inode.  Return 0 on
1656  * success, -1 on failure.
1657  *
1658  * We attempt to update the atime with only the ip lock and not the
1659  * whole filesystem lock in order to improve concurrency.  We can only
1660  * do this safely if the ATIME flag is already pending on the inode.
1661  *
1662  * This function is called via a vnops path (ip pointer is stable) without
1663  * fs_token held.
1664  */
1665 int
1666 hammer_update_atime_quick(hammer_inode_t ip)
1667 {
1668 	struct timeval tv;
1669 	int res = -1;
1670 
1671 	if ((ip->flags & HAMMER_INODE_RO) ||
1672 	    (ip->hmp->mp->mnt_flag & MNT_NOATIME)) {
1673 		/*
1674 		 * Silently indicate success on read-only mount/snap
1675 		 */
1676 		res = 0;
1677 	} else if (ip->flags & HAMMER_INODE_ATIME) {
1678 		/*
1679 		 * Double check with inode lock held against backend.  This
1680 		 * is only safe if all we need to do is update
1681 		 * ino_data.atime.
1682 		 */
1683 		getmicrotime(&tv);
1684 		hammer_lock_ex(&ip->lock);
1685 		if (ip->flags & HAMMER_INODE_ATIME) {
1686 			ip->ino_data.atime =
1687 			    (unsigned long)tv.tv_sec * 1000000ULL + tv.tv_usec;
1688 			res = 0;
1689 		}
1690 		hammer_unlock(&ip->lock);
1691 	}
1692 	return res;
1693 }
1694 
1695 /*
1696  * Request that an inode be flushed.  This whole mess cannot block and may
1697  * recurse (if not synchronous).  Once requested HAMMER will attempt to
1698  * actively flush the inode until the flush can be done.
1699  *
1700  * The inode may already be flushing, or may be in a setup state.  We can
1701  * place the inode in a flushing state if it is currently idle and flag it
1702  * to reflush if it is currently flushing.
1703  *
1704  * Upon return if the inode could not be flushed due to a setup
1705  * dependancy, then it will be automatically flushed when the dependancy
1706  * is satisfied.
1707  */
1708 void
1709 hammer_flush_inode(hammer_inode_t ip, int flags)
1710 {
1711 	hammer_mount_t hmp;
1712 	hammer_flush_group_t flg;
1713 	int good;
1714 
1715 	/*
1716 	 * fill_flush_group is the first flush group we may be able to
1717 	 * continue filling, it may be open or closed but it will always
1718 	 * be past the currently flushing (running) flg.
1719 	 *
1720 	 * next_flush_group is the next open flush group.
1721 	 */
1722 	hmp = ip->hmp;
1723 	while ((flg = hmp->fill_flush_group) != NULL) {
1724 		KKASSERT(flg->running == 0);
1725 		if (flg->total_count + flg->refs <= ip->hmp->undo_rec_limit &&
1726 		    flg->total_count <= hammer_autoflush) {
1727 			break;
1728 		}
1729 		hmp->fill_flush_group = TAILQ_NEXT(flg, flush_entry);
1730 		hammer_flusher_async(ip->hmp, flg);
1731 	}
1732 	if (flg == NULL) {
1733 		flg = kmalloc(sizeof(*flg), hmp->m_misc, M_WAITOK|M_ZERO);
1734 		flg->seq = hmp->flusher.next++;
1735 		if (hmp->next_flush_group == NULL)
1736 			hmp->next_flush_group = flg;
1737 		if (hmp->fill_flush_group == NULL)
1738 			hmp->fill_flush_group = flg;
1739 		RB_INIT(&flg->flush_tree);
1740 		TAILQ_INSERT_TAIL(&hmp->flush_group_list, flg, flush_entry);
1741 	}
1742 
1743 	/*
1744 	 * Trivial 'nothing to flush' case.  If the inode is in a SETUP
1745 	 * state we have to put it back into an IDLE state so we can
1746 	 * drop the extra ref.
1747 	 *
1748 	 * If we have a parent dependancy we must still fall through
1749 	 * so we can run it.
1750 	 */
1751 	if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
1752 		if (ip->flush_state == HAMMER_FST_SETUP &&
1753 		    TAILQ_EMPTY(&ip->target_list)) {
1754 			ip->flush_state = HAMMER_FST_IDLE;
1755 			hammer_rel_inode(ip, 0);
1756 		}
1757 		if (ip->flush_state == HAMMER_FST_IDLE)
1758 			return;
1759 	}
1760 
1761 	/*
1762 	 * Our flush action will depend on the current state.
1763 	 */
1764 	switch(ip->flush_state) {
1765 	case HAMMER_FST_IDLE:
1766 		/*
1767 		 * We have no dependancies and can flush immediately.  Some
1768 		 * our children may not be flushable so we have to re-test
1769 		 * with that additional knowledge.
1770 		 */
1771 		hammer_flush_inode_core(ip, flg, flags);
1772 		break;
1773 	case HAMMER_FST_SETUP:
1774 		/*
1775 		 * Recurse upwards through dependancies via target_list
1776 		 * and start their flusher actions going if possible.
1777 		 *
1778 		 * 'good' is our connectivity.  -1 means we have none and
1779 		 * can't flush, 0 means there weren't any dependancies, and
1780 		 * 1 means we have good connectivity.
1781 		 */
1782 		good = hammer_setup_parent_inodes(ip, 0, flg);
1783 
1784 		if (good >= 0) {
1785 			/*
1786 			 * We can continue if good >= 0.  Determine how
1787 			 * many records under our inode can be flushed (and
1788 			 * mark them).
1789 			 */
1790 			hammer_flush_inode_core(ip, flg, flags);
1791 		} else {
1792 			/*
1793 			 * Parent has no connectivity, tell it to flush
1794 			 * us as soon as it does.
1795 			 *
1796 			 * The REFLUSH flag is also needed to trigger
1797 			 * dependancy wakeups.
1798 			 */
1799 			ip->flags |= HAMMER_INODE_CONN_DOWN |
1800 				     HAMMER_INODE_REFLUSH;
1801 			if (flags & HAMMER_FLUSH_SIGNAL) {
1802 				ip->flags |= HAMMER_INODE_RESIGNAL;
1803 				hammer_flusher_async(ip->hmp, flg);
1804 			}
1805 		}
1806 		break;
1807 	case HAMMER_FST_FLUSH:
1808 		/*
1809 		 * We are already flushing, flag the inode to reflush
1810 		 * if needed after it completes its current flush.
1811 		 *
1812 		 * The REFLUSH flag is also needed to trigger
1813 		 * dependancy wakeups.
1814 		 */
1815 		if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
1816 			ip->flags |= HAMMER_INODE_REFLUSH;
1817 		if (flags & HAMMER_FLUSH_SIGNAL) {
1818 			ip->flags |= HAMMER_INODE_RESIGNAL;
1819 			hammer_flusher_async(ip->hmp, flg);
1820 		}
1821 		break;
1822 	}
1823 }
1824 
1825 /*
1826  * Scan ip->target_list, which is a list of records owned by PARENTS to our
1827  * ip which reference our ip.
1828  *
1829  * XXX This is a huge mess of recursive code, but not one bit of it blocks
1830  *     so for now do not ref/deref the structures.  Note that if we use the
1831  *     ref/rel code later, the rel CAN block.
1832  */
1833 static int
1834 hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
1835 			   hammer_flush_group_t flg)
1836 {
1837 	hammer_record_t depend;
1838 	int good;
1839 	int r;
1840 
1841 	/*
1842 	 * If we hit our recursion limit and we have parent dependencies
1843 	 * We cannot continue.  Returning < 0 will cause us to be flagged
1844 	 * for reflush.  Returning -2 cuts off additional dependency checks
1845 	 * because they are likely to also hit the depth limit.
1846 	 *
1847 	 * We cannot return < 0 if there are no dependencies or there might
1848 	 * not be anything to wakeup (ip).
1849 	 */
1850 	if (depth == 20 && TAILQ_FIRST(&ip->target_list)) {
1851 		krateprintf(&hammer_gen_krate,
1852 			    "HAMMER Warning: depth limit reached on "
1853 			    "setup recursion, inode %p %016llx\n",
1854 			    ip, (long long)ip->obj_id);
1855 		return(-2);
1856 	}
1857 
1858 	/*
1859 	 * Scan dependencies
1860 	 */
1861 	good = 0;
1862 	TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
1863 		r = hammer_setup_parent_inodes_helper(depend, depth, flg);
1864 		KKASSERT(depend->target_ip == ip);
1865 		if (r < 0 && good == 0)
1866 			good = -1;
1867 		if (r > 0)
1868 			good = 1;
1869 
1870 		/*
1871 		 * If we failed due to the recursion depth limit then stop
1872 		 * now.
1873 		 */
1874 		if (r == -2)
1875 			break;
1876 	}
1877 	return(good);
1878 }
1879 
1880 /*
1881  * This helper function takes a record representing the dependancy between
1882  * the parent inode and child inode.
1883  *
1884  * record->ip		= parent inode
1885  * record->target_ip	= child inode
1886  *
1887  * We are asked to recurse upwards and convert the record from SETUP
1888  * to FLUSH if possible.
1889  *
1890  * Return 1 if the record gives us connectivity
1891  *
1892  * Return 0 if the record is not relevant
1893  *
1894  * Return -1 if we can't resolve the dependancy and there is no connectivity.
1895  */
1896 static int
1897 hammer_setup_parent_inodes_helper(hammer_record_t record, int depth,
1898 				  hammer_flush_group_t flg)
1899 {
1900 	hammer_inode_t pip;
1901 	int good;
1902 
1903 	KKASSERT(record->flush_state != HAMMER_FST_IDLE);
1904 	pip = record->ip;
1905 
1906 	/*
1907 	 * If the record is already flushing, is it in our flush group?
1908 	 *
1909 	 * If it is in our flush group but it is a general record or a
1910 	 * delete-on-disk, it does not improve our connectivity (return 0),
1911 	 * and if the target inode is not trying to destroy itself we can't
1912 	 * allow the operation yet anyway (the second return -1).
1913 	 */
1914 	if (record->flush_state == HAMMER_FST_FLUSH) {
1915 		/*
1916 		 * If not in our flush group ask the parent to reflush
1917 		 * us as soon as possible.
1918 		 */
1919 		if (record->flush_group != flg) {
1920 			pip->flags |= HAMMER_INODE_REFLUSH;
1921 			record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1922 			return(-1);
1923 		}
1924 
1925 		/*
1926 		 * If in our flush group everything is already set up,
1927 		 * just return whether the record will improve our
1928 		 * visibility or not.
1929 		 */
1930 		if (record->type == HAMMER_MEM_RECORD_ADD)
1931 			return(1);
1932 		return(0);
1933 	}
1934 
1935 	/*
1936 	 * It must be a setup record.  Try to resolve the setup dependancies
1937 	 * by recursing upwards so we can place ip on the flush list.
1938 	 *
1939 	 * Limit ourselves to 20 levels of recursion to avoid blowing out
1940 	 * the kernel stack.  If we hit the recursion limit we can't flush
1941 	 * until the parent flushes.  The parent will flush independantly
1942 	 * on its own and ultimately a deep recursion will be resolved.
1943 	 */
1944 	KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1945 
1946 	good = hammer_setup_parent_inodes(pip, depth + 1, flg);
1947 
1948 	/*
1949 	 * If good < 0 the parent has no connectivity and we cannot safely
1950 	 * flush the directory entry, which also means we can't flush our
1951 	 * ip.  Flag us for downward recursion once the parent's
1952 	 * connectivity is resolved.  Flag the parent for [re]flush or it
1953 	 * may not check for downward recursions.
1954 	 */
1955 	if (good < 0) {
1956 		pip->flags |= HAMMER_INODE_REFLUSH;
1957 		record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1958 		return(good);
1959 	}
1960 
1961 	/*
1962 	 * We are go, place the parent inode in a flushing state so we can
1963 	 * place its record in a flushing state.  Note that the parent
1964 	 * may already be flushing.  The record must be in the same flush
1965 	 * group as the parent.
1966 	 */
1967 	if (pip->flush_state != HAMMER_FST_FLUSH)
1968 		hammer_flush_inode_core(pip, flg, HAMMER_FLUSH_RECURSION);
1969 	KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
1970 
1971 	/*
1972 	 * It is possible for a rename to create a loop in the recursion
1973 	 * and revisit a record.  This will result in the record being
1974 	 * placed in a flush state unexpectedly.  This check deals with
1975 	 * the case.
1976 	 */
1977 	if (record->flush_state == HAMMER_FST_FLUSH) {
1978 		if (record->type == HAMMER_MEM_RECORD_ADD)
1979 			return(1);
1980 		return(0);
1981 	}
1982 
1983 	KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1984 
1985 #if 0
1986 	if (record->type == HAMMER_MEM_RECORD_DEL &&
1987 	    (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
1988 		/*
1989 		 * Regardless of flushing state we cannot sync this path if the
1990 		 * record represents a delete-on-disk but the target inode
1991 		 * is not ready to sync its own deletion.
1992 		 *
1993 		 * XXX need to count effective nlinks to determine whether
1994 		 * the flush is ok, otherwise removing a hardlink will
1995 		 * just leave the DEL record to rot.
1996 		 */
1997 		record->target_ip->flags |= HAMMER_INODE_REFLUSH;
1998 		return(-1);
1999 	} else
2000 #endif
2001 	if (pip->flush_group == flg) {
2002 		/*
2003 		 * Because we have not calculated nlinks yet we can just
2004 		 * set records to the flush state if the parent is in
2005 		 * the same flush group as we are.
2006 		 */
2007 		record->flush_state = HAMMER_FST_FLUSH;
2008 		record->flush_group = flg;
2009 		++record->flush_group->refs;
2010 		hammer_ref(&record->lock);
2011 
2012 		/*
2013 		 * A general directory-add contributes to our visibility.
2014 		 *
2015 		 * Otherwise it is probably a directory-delete or
2016 		 * delete-on-disk record and does not contribute to our
2017 		 * visbility (but we can still flush it).
2018 		 */
2019 		if (record->type == HAMMER_MEM_RECORD_ADD)
2020 			return(1);
2021 		return(0);
2022 	} else {
2023 		/*
2024 		 * If the parent is not in our flush group we cannot
2025 		 * flush this record yet, there is no visibility.
2026 		 * We tell the parent to reflush and mark ourselves
2027 		 * so the parent knows it should flush us too.
2028 		 */
2029 		pip->flags |= HAMMER_INODE_REFLUSH;
2030 		record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
2031 		return(-1);
2032 	}
2033 }
2034 
2035 /*
2036  * This is the core routine placing an inode into the FST_FLUSH state.
2037  */
2038 static void
2039 hammer_flush_inode_core(hammer_inode_t ip, hammer_flush_group_t flg, int flags)
2040 {
2041 	hammer_mount_t hmp = ip->hmp;
2042 	int go_count;
2043 
2044 	/*
2045 	 * Set flush state and prevent the flusher from cycling into
2046 	 * the next flush group.  Do not place the ip on the list yet.
2047 	 * Inodes not in the idle state get an extra reference.
2048 	 */
2049 	KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
2050 	if (ip->flush_state == HAMMER_FST_IDLE)
2051 		hammer_ref(&ip->lock);
2052 	ip->flush_state = HAMMER_FST_FLUSH;
2053 	ip->flush_group = flg;
2054 	++hmp->flusher.group_lock;
2055 	++hmp->count_iqueued;
2056 	++hammer_count_iqueued;
2057 	++flg->total_count;
2058 	hammer_redo_fifo_start_flush(ip);
2059 
2060 #if 0
2061 	/*
2062 	 * We need to be able to vfsync/truncate from the backend.
2063 	 *
2064 	 * XXX Any truncation from the backend will acquire the vnode
2065 	 *     independently.
2066 	 */
2067 	KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
2068 	if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
2069 		ip->flags |= HAMMER_INODE_VHELD;
2070 		vref(ip->vp);
2071 	}
2072 #endif
2073 
2074 	/*
2075 	 * Figure out how many in-memory records we can actually flush
2076 	 * (not including inode meta-data, buffers, etc).
2077 	 */
2078 	KKASSERT((ip->flags & HAMMER_INODE_WOULDBLOCK) == 0);
2079 	if (flags & HAMMER_FLUSH_RECURSION) {
2080 		/*
2081 		 * If this is a upwards recursion we do not want to
2082 		 * recurse down again!
2083 		 */
2084 		go_count = 1;
2085 #if 0
2086 	} else if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2087 		/*
2088 		 * No new records are added if we must complete a flush
2089 		 * from a previous cycle, but we do have to move the records
2090 		 * from the previous cycle to the current one.
2091 		 */
2092 #if 0
2093 		go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2094 				   hammer_syncgrp_child_callback, NULL);
2095 #endif
2096 		go_count = 1;
2097 #endif
2098 	} else {
2099 		/*
2100 		 * Normal flush, scan records and bring them into the flush.
2101 		 * Directory adds and deletes are usually skipped (they are
2102 		 * grouped with the related inode rather then with the
2103 		 * directory).
2104 		 *
2105 		 * go_count can be negative, which means the scan aborted
2106 		 * due to the flush group being over-full and we should
2107 		 * flush what we have.
2108 		 */
2109 		go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2110 				   hammer_setup_child_callback, NULL);
2111 	}
2112 
2113 	/*
2114 	 * This is a more involved test that includes go_count.  If we
2115 	 * can't flush, flag the inode and return.  If go_count is 0 we
2116 	 * were are unable to flush any records in our rec_tree and
2117 	 * must ignore the XDIRTY flag.
2118 	 */
2119 	if (go_count == 0) {
2120 		if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
2121 			--hmp->count_iqueued;
2122 			--hammer_count_iqueued;
2123 
2124 			--flg->total_count;
2125 			ip->flush_state = HAMMER_FST_SETUP;
2126 			ip->flush_group = NULL;
2127 			if (flags & HAMMER_FLUSH_SIGNAL) {
2128 				ip->flags |= HAMMER_INODE_REFLUSH |
2129 					     HAMMER_INODE_RESIGNAL;
2130 			} else {
2131 				ip->flags |= HAMMER_INODE_REFLUSH;
2132 			}
2133 #if 0
2134 			if (ip->flags & HAMMER_INODE_VHELD) {
2135 				ip->flags &= ~HAMMER_INODE_VHELD;
2136 				vrele(ip->vp);
2137 			}
2138 #endif
2139 
2140 			/*
2141 			 * REFLUSH is needed to trigger dependancy wakeups
2142 			 * when an inode is in SETUP.
2143 			 */
2144 			ip->flags |= HAMMER_INODE_REFLUSH;
2145 			if (--hmp->flusher.group_lock == 0)
2146 				wakeup(&hmp->flusher.group_lock);
2147 			return;
2148 		}
2149 	}
2150 
2151 	/*
2152 	 * Snapshot the state of the inode for the backend flusher.
2153 	 *
2154 	 * We continue to retain save_trunc_off even when all truncations
2155 	 * have been resolved as an optimization to determine if we can
2156 	 * skip the B-Tree lookup for overwrite deletions.
2157 	 *
2158 	 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
2159 	 * and stays in ip->flags.  Once set, it stays set until the
2160 	 * inode is destroyed.
2161 	 */
2162 	if (ip->flags & HAMMER_INODE_TRUNCATED) {
2163 		KKASSERT((ip->sync_flags & HAMMER_INODE_TRUNCATED) == 0);
2164 		ip->sync_trunc_off = ip->trunc_off;
2165 		ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
2166 		ip->flags &= ~HAMMER_INODE_TRUNCATED;
2167 		ip->sync_flags |= HAMMER_INODE_TRUNCATED;
2168 
2169 		/*
2170 		 * The save_trunc_off used to cache whether the B-Tree
2171 		 * holds any records past that point is not used until
2172 		 * after the truncation has succeeded, so we can safely
2173 		 * set it now.
2174 		 */
2175 		if (ip->save_trunc_off > ip->sync_trunc_off)
2176 			ip->save_trunc_off = ip->sync_trunc_off;
2177 	}
2178 	ip->sync_flags |= (ip->flags & HAMMER_INODE_MODMASK &
2179 			   ~HAMMER_INODE_TRUNCATED);
2180 	ip->sync_ino_leaf = ip->ino_leaf;
2181 	ip->sync_ino_data = ip->ino_data;
2182 	ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
2183 #ifdef DEBUG_TRUNCATE
2184 	if ((ip->sync_flags & HAMMER_INODE_TRUNCATED) && ip == HammerTruncIp)
2185 		kprintf("truncateS %016llx\n", ip->sync_trunc_off);
2186 #endif
2187 
2188 	/*
2189 	 * The flusher list inherits our inode and reference.
2190 	 */
2191 	KKASSERT(flg->running == 0);
2192 	RB_INSERT(hammer_fls_rb_tree, &flg->flush_tree, ip);
2193 	if (--hmp->flusher.group_lock == 0)
2194 		wakeup(&hmp->flusher.group_lock);
2195 
2196 	/*
2197 	 * Auto-flush the group if it grows too large.  Make sure the
2198 	 * inode reclaim wait pipeline continues to work.
2199 	 */
2200 	if (flg->total_count >= hammer_autoflush ||
2201 	    flg->total_count >= hammer_limit_reclaims / 4) {
2202 		if (hmp->fill_flush_group == flg)
2203 			hmp->fill_flush_group = TAILQ_NEXT(flg, flush_entry);
2204 		hammer_flusher_async(hmp, flg);
2205 	}
2206 }
2207 
2208 /*
2209  * Callback for scan of ip->rec_tree.  Try to include each record in our
2210  * flush.  ip->flush_group has been set but the inode has not yet been
2211  * moved into a flushing state.
2212  *
2213  * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
2214  * both inodes.
2215  *
2216  * We return 1 for any record placed or found in FST_FLUSH, which prevents
2217  * the caller from shortcutting the flush.
2218  */
2219 static int
2220 hammer_setup_child_callback(hammer_record_t rec, void *data)
2221 {
2222 	hammer_flush_group_t flg;
2223 	hammer_inode_t target_ip;
2224 	hammer_inode_t ip;
2225 	int r;
2226 
2227 	/*
2228 	 * Records deleted or committed by the backend are ignored.
2229 	 * Note that the flush detects deleted frontend records at
2230 	 * multiple points to deal with races.  This is just the first
2231 	 * line of defense.  The only time HAMMER_RECF_DELETED_FE cannot
2232 	 * be set is when HAMMER_RECF_INTERLOCK_BE is set, because it
2233 	 * messes up link-count calculations.
2234 	 *
2235 	 * NOTE: Don't get confused between record deletion and, say,
2236 	 * directory entry deletion.  The deletion of a directory entry
2237 	 * which is on-media has nothing to do with the record deletion
2238 	 * flags.
2239 	 */
2240 	if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
2241 			  HAMMER_RECF_COMMITTED)) {
2242 		if (rec->flush_state == HAMMER_FST_FLUSH) {
2243 			KKASSERT(rec->flush_group == rec->ip->flush_group);
2244 			r = 1;
2245 		} else {
2246 			r = 0;
2247 		}
2248 		return(r);
2249 	}
2250 
2251 	/*
2252 	 * If the record is in an idle state it has no dependancies and
2253 	 * can be flushed.
2254 	 */
2255 	ip = rec->ip;
2256 	flg = ip->flush_group;
2257 	r = 0;
2258 
2259 	switch(rec->flush_state) {
2260 	case HAMMER_FST_IDLE:
2261 		/*
2262 		 * The record has no setup dependancy, we can flush it.
2263 		 */
2264 		KKASSERT(rec->target_ip == NULL);
2265 		rec->flush_state = HAMMER_FST_FLUSH;
2266 		rec->flush_group = flg;
2267 		++flg->refs;
2268 		hammer_ref(&rec->lock);
2269 		r = 1;
2270 		break;
2271 	case HAMMER_FST_SETUP:
2272 		/*
2273 		 * The record has a setup dependancy.  These are typically
2274 		 * directory entry adds and deletes.  Such entries will be
2275 		 * flushed when their inodes are flushed so we do not
2276 		 * usually have to add them to the flush here.  However,
2277 		 * if the target_ip has set HAMMER_INODE_CONN_DOWN then
2278 		 * it is asking us to flush this record (and it).
2279 		 */
2280 		target_ip = rec->target_ip;
2281 		KKASSERT(target_ip != NULL);
2282 		KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
2283 
2284 		/*
2285 		 * If the target IP is already flushing in our group
2286 		 * we could associate the record, but target_ip has
2287 		 * already synced ino_data to sync_ino_data and we
2288 		 * would also have to adjust nlinks.   Plus there are
2289 		 * ordering issues for adds and deletes.
2290 		 *
2291 		 * Reflush downward if this is an ADD, and upward if
2292 		 * this is a DEL.
2293 		 */
2294 		if (target_ip->flush_state == HAMMER_FST_FLUSH) {
2295 			if (rec->type == HAMMER_MEM_RECORD_ADD)
2296 				ip->flags |= HAMMER_INODE_REFLUSH;
2297 			else
2298 				target_ip->flags |= HAMMER_INODE_REFLUSH;
2299 			break;
2300 		}
2301 
2302 		/*
2303 		 * Target IP is not yet flushing.  This can get complex
2304 		 * because we have to be careful about the recursion.
2305 		 *
2306 		 * Directories create an issue for us in that if a flush
2307 		 * of a directory is requested the expectation is to flush
2308 		 * any pending directory entries, but this will cause the
2309 		 * related inodes to recursively flush as well.  We can't
2310 		 * really defer the operation so just get as many as we
2311 		 * can and
2312 		 */
2313 #if 0
2314 		if ((target_ip->flags & HAMMER_INODE_RECLAIM) == 0 &&
2315 		    (target_ip->flags & HAMMER_INODE_CONN_DOWN) == 0) {
2316 			/*
2317 			 * We aren't reclaiming and the target ip was not
2318 			 * previously prevented from flushing due to this
2319 			 * record dependancy.  Do not flush this record.
2320 			 */
2321 			/*r = 0;*/
2322 		} else
2323 #endif
2324 		if (flg->total_count + flg->refs >
2325 			   ip->hmp->undo_rec_limit) {
2326 			/*
2327 			 * Our flush group is over-full and we risk blowing
2328 			 * out the UNDO FIFO.  Stop the scan, flush what we
2329 			 * have, then reflush the directory.
2330 			 *
2331 			 * The directory may be forced through multiple
2332 			 * flush groups before it can be completely
2333 			 * flushed.
2334 			 */
2335 			ip->flags |= HAMMER_INODE_RESIGNAL |
2336 				     HAMMER_INODE_REFLUSH;
2337 			r = -1;
2338 		} else if (rec->type == HAMMER_MEM_RECORD_ADD) {
2339 			/*
2340 			 * If the target IP is not flushing we can force
2341 			 * it to flush, even if it is unable to write out
2342 			 * any of its own records we have at least one in
2343 			 * hand that we CAN deal with.
2344 			 */
2345 			rec->flush_state = HAMMER_FST_FLUSH;
2346 			rec->flush_group = flg;
2347 			++flg->refs;
2348 			hammer_ref(&rec->lock);
2349 			hammer_flush_inode_core(target_ip, flg,
2350 						HAMMER_FLUSH_RECURSION);
2351 			r = 1;
2352 		} else {
2353 			/*
2354 			 * General or delete-on-disk record.
2355 			 *
2356 			 * XXX this needs help.  If a delete-on-disk we could
2357 			 * disconnect the target.  If the target has its own
2358 			 * dependancies they really need to be flushed.
2359 			 *
2360 			 * XXX
2361 			 */
2362 			rec->flush_state = HAMMER_FST_FLUSH;
2363 			rec->flush_group = flg;
2364 			++flg->refs;
2365 			hammer_ref(&rec->lock);
2366 			hammer_flush_inode_core(target_ip, flg,
2367 						HAMMER_FLUSH_RECURSION);
2368 			r = 1;
2369 		}
2370 		break;
2371 	case HAMMER_FST_FLUSH:
2372 		/*
2373 		 * The record could be part of a previous flush group if the
2374 		 * inode is a directory (the record being a directory entry).
2375 		 * Once the flush group was closed a hammer_test_inode()
2376 		 * function can cause a new flush group to be setup, placing
2377 		 * the directory inode itself in a new flush group.
2378 		 *
2379 		 * When associated with a previous flush group we count it
2380 		 * as if it were in our current flush group, since it will
2381 		 * effectively be flushed by the time we flush our current
2382 		 * flush group.
2383 		 */
2384 		KKASSERT(
2385 		    rec->ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY ||
2386 		    rec->flush_group == flg);
2387 		r = 1;
2388 		break;
2389 	}
2390 	return(r);
2391 }
2392 
2393 #if 0
2394 /*
2395  * This version just moves records already in a flush state to the new
2396  * flush group and that is it.
2397  */
2398 static int
2399 hammer_syncgrp_child_callback(hammer_record_t rec, void *data)
2400 {
2401 	hammer_inode_t ip = rec->ip;
2402 
2403 	switch(rec->flush_state) {
2404 	case HAMMER_FST_FLUSH:
2405 		KKASSERT(rec->flush_group == ip->flush_group);
2406 		break;
2407 	default:
2408 		break;
2409 	}
2410 	return(0);
2411 }
2412 #endif
2413 
2414 /*
2415  * Wait for a previously queued flush to complete.
2416  *
2417  * If a critical error occured we don't try to wait.
2418  */
2419 void
2420 hammer_wait_inode(hammer_inode_t ip)
2421 {
2422 	/*
2423 	 * The inode can be in a SETUP state in which case RESIGNAL
2424 	 * should be set.  If RESIGNAL is not set then the previous
2425 	 * flush completed and a later operation placed the inode
2426 	 * in a passive setup state again, so we're done.
2427 	 *
2428 	 * The inode can be in a FLUSH state in which case we
2429 	 * can just wait for completion.
2430 	 */
2431 	while (ip->flush_state == HAMMER_FST_FLUSH ||
2432 	    (ip->flush_state == HAMMER_FST_SETUP &&
2433 	     (ip->flags & HAMMER_INODE_RESIGNAL))) {
2434 		/*
2435 		 * Don't try to flush on a critical error
2436 		 */
2437 		if (ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
2438 			break;
2439 
2440 		/*
2441 		 * If the inode was already being flushed its flg
2442 		 * may not have been queued to the backend.  We
2443 		 * have to make sure it gets queued or we can wind
2444 		 * up blocked or deadlocked (particularly if we are
2445 		 * the vnlru thread).
2446 		 */
2447 		if (ip->flush_state == HAMMER_FST_FLUSH) {
2448 			KKASSERT(ip->flush_group);
2449 			if (ip->flush_group->closed == 0) {
2450 				if (hammer_debug_inode) {
2451 					kprintf("hammer: debug: forcing "
2452 						"async flush ip %016jx\n",
2453 						(intmax_t)ip->obj_id);
2454 				}
2455 				hammer_flusher_async(ip->hmp,
2456 						     ip->flush_group);
2457 				continue; /* retest */
2458 			}
2459 		}
2460 
2461 		/*
2462 		 * In a flush state with the flg queued to the backend
2463 		 * or in a setup state with RESIGNAL set, we can safely
2464 		 * wait.
2465 		 */
2466 		ip->flags |= HAMMER_INODE_FLUSHW;
2467 		tsleep(&ip->flags, 0, "hmrwin", 0);
2468 	}
2469 
2470 #if 0
2471 	/*
2472 	 * The inode may have been in a passive setup state,
2473 	 * call flush to make sure we get signaled.
2474 	 */
2475 	if (ip->flush_state == HAMMER_FST_SETUP)
2476 		hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2477 #endif
2478 
2479 }
2480 
2481 /*
2482  * Called by the backend code when a flush has been completed.
2483  * The inode has already been removed from the flush list.
2484  *
2485  * A pipelined flush can occur, in which case we must re-enter the
2486  * inode on the list and re-copy its fields.
2487  */
2488 void
2489 hammer_flush_inode_done(hammer_inode_t ip, int error)
2490 {
2491 	hammer_mount_t hmp;
2492 	int dorel;
2493 
2494 	KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
2495 
2496 	hmp = ip->hmp;
2497 
2498 	/*
2499 	 * Auto-reflush if the backend could not completely flush
2500 	 * the inode.  This fixes a case where a deferred buffer flush
2501 	 * could cause fsync to return early.
2502 	 */
2503 	if (ip->sync_flags & HAMMER_INODE_MODMASK)
2504 		ip->flags |= HAMMER_INODE_REFLUSH;
2505 
2506 	/*
2507 	 * Merge left-over flags back into the frontend and fix the state.
2508 	 * Incomplete truncations are retained by the backend.
2509 	 */
2510 	ip->error = error;
2511 	ip->flags |= ip->sync_flags & ~HAMMER_INODE_TRUNCATED;
2512 	ip->sync_flags &= HAMMER_INODE_TRUNCATED;
2513 
2514 	/*
2515 	 * The backend may have adjusted nlinks, so if the adjusted nlinks
2516 	 * does not match the fronttend set the frontend's DDIRTY flag again.
2517 	 */
2518 	if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
2519 		ip->flags |= HAMMER_INODE_DDIRTY;
2520 
2521 	/*
2522 	 * Fix up the dirty buffer status.
2523 	 */
2524 	if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
2525 		ip->flags |= HAMMER_INODE_BUFS;
2526 	}
2527 	hammer_redo_fifo_end_flush(ip);
2528 
2529 	/*
2530 	 * Re-set the XDIRTY flag if some of the inode's in-memory records
2531 	 * could not be flushed.
2532 	 */
2533 	KKASSERT((RB_EMPTY(&ip->rec_tree) &&
2534 		  (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
2535 		 (!RB_EMPTY(&ip->rec_tree) &&
2536 		  (ip->flags & HAMMER_INODE_XDIRTY) != 0));
2537 
2538 	/*
2539 	 * Do not lose track of inodes which no longer have vnode
2540 	 * assocations, otherwise they may never get flushed again.
2541 	 *
2542 	 * The reflush flag can be set superfluously, causing extra pain
2543 	 * for no reason.  If the inode is no longer modified it no longer
2544 	 * needs to be flushed.
2545 	 */
2546 	if (ip->flags & HAMMER_INODE_MODMASK) {
2547 		if (ip->vp == NULL)
2548 			ip->flags |= HAMMER_INODE_REFLUSH;
2549 	} else {
2550 		ip->flags &= ~HAMMER_INODE_REFLUSH;
2551 	}
2552 	if (ip->flags & HAMMER_INODE_MODMASK)
2553 		hammer_inode_dirty(ip);
2554 
2555 	/*
2556 	 * Adjust the flush state.
2557 	 */
2558 	if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2559 		/*
2560 		 * We were unable to flush out all our records, leave the
2561 		 * inode in a flush state and in the current flush group.
2562 		 * The flush group will be re-run.
2563 		 *
2564 		 * This occurs if the UNDO block gets too full or there is
2565 		 * too much dirty meta-data and allows the flusher to
2566 		 * finalize the UNDO block and then re-flush.
2567 		 */
2568 		ip->flags &= ~HAMMER_INODE_WOULDBLOCK;
2569 		dorel = 0;
2570 	} else {
2571 		/*
2572 		 * Remove from the flush_group
2573 		 */
2574 		RB_REMOVE(hammer_fls_rb_tree, &ip->flush_group->flush_tree, ip);
2575 		ip->flush_group = NULL;
2576 
2577 #if 0
2578 		/*
2579 		 * Clean up the vnode ref and tracking counts.
2580 		 */
2581 		if (ip->flags & HAMMER_INODE_VHELD) {
2582 			ip->flags &= ~HAMMER_INODE_VHELD;
2583 			vrele(ip->vp);
2584 		}
2585 #endif
2586 		--hmp->count_iqueued;
2587 		--hammer_count_iqueued;
2588 
2589 		/*
2590 		 * And adjust the state.
2591 		 */
2592 		if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
2593 			ip->flush_state = HAMMER_FST_IDLE;
2594 			dorel = 1;
2595 		} else {
2596 			ip->flush_state = HAMMER_FST_SETUP;
2597 			dorel = 0;
2598 		}
2599 
2600 		/*
2601 		 * If the frontend is waiting for a flush to complete,
2602 		 * wake it up.
2603 		 */
2604 		if (ip->flags & HAMMER_INODE_FLUSHW) {
2605 			ip->flags &= ~HAMMER_INODE_FLUSHW;
2606 			wakeup(&ip->flags);
2607 		}
2608 
2609 		/*
2610 		 * If the frontend made more changes and requested another
2611 		 * flush, then try to get it running.
2612 		 *
2613 		 * Reflushes are aborted when the inode is errored out.
2614 		 */
2615 		if (ip->flags & HAMMER_INODE_REFLUSH) {
2616 			ip->flags &= ~HAMMER_INODE_REFLUSH;
2617 			if (ip->flags & HAMMER_INODE_RESIGNAL) {
2618 				ip->flags &= ~HAMMER_INODE_RESIGNAL;
2619 				hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2620 			} else {
2621 				hammer_flush_inode(ip, 0);
2622 			}
2623 		}
2624 	}
2625 
2626 	/*
2627 	 * If we have no parent dependancies we can clear CONN_DOWN
2628 	 */
2629 	if (TAILQ_EMPTY(&ip->target_list))
2630 		ip->flags &= ~HAMMER_INODE_CONN_DOWN;
2631 
2632 	/*
2633 	 * If the inode is now clean drop the space reservation.
2634 	 */
2635 	if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
2636 	    (ip->flags & HAMMER_INODE_RSV_INODES)) {
2637 		ip->flags &= ~HAMMER_INODE_RSV_INODES;
2638 		--hmp->rsv_inodes;
2639 	}
2640 
2641 	ip->flags &= ~HAMMER_INODE_SLAVEFLUSH;
2642 
2643 	if (dorel)
2644 		hammer_rel_inode(ip, 0);
2645 }
2646 
2647 /*
2648  * Called from hammer_sync_inode() to synchronize in-memory records
2649  * to the media.
2650  */
2651 static int
2652 hammer_sync_record_callback(hammer_record_t record, void *data)
2653 {
2654 	hammer_cursor_t cursor = data;
2655 	hammer_transaction_t trans = cursor->trans;
2656 	hammer_mount_t hmp = trans->hmp;
2657 	int error;
2658 
2659 	/*
2660 	 * Skip records that do not belong to the current flush.
2661 	 */
2662 	++hammer_stats_record_iterations;
2663 	if (record->flush_state != HAMMER_FST_FLUSH)
2664 		return(0);
2665 
2666 #if 1
2667 	if (record->flush_group != record->ip->flush_group) {
2668 		kprintf("sync_record %p ip %p bad flush group %p %p\n", record, record->ip, record->flush_group ,record->ip->flush_group);
2669 		if (hammer_debug_critical)
2670 			Debugger("blah2");
2671 		return(0);
2672 	}
2673 #endif
2674 	KKASSERT(record->flush_group == record->ip->flush_group);
2675 
2676 	/*
2677 	 * Interlock the record using the BE flag.  Once BE is set the
2678 	 * frontend cannot change the state of FE.
2679 	 *
2680 	 * NOTE: If FE is set prior to us setting BE we still sync the
2681 	 * record out, but the flush completion code converts it to
2682 	 * a delete-on-disk record instead of destroying it.
2683 	 */
2684 	KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
2685 	record->flags |= HAMMER_RECF_INTERLOCK_BE;
2686 
2687 	/*
2688 	 * The backend has already disposed of the record.
2689 	 */
2690 	if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
2691 		error = 0;
2692 		goto done;
2693 	}
2694 
2695 	/*
2696 	 * If the whole inode is being deleted and all on-disk records will
2697 	 * be deleted very soon, we can't sync any new records to disk
2698 	 * because they will be deleted in the same transaction they were
2699 	 * created in (delete_tid == create_tid), which will assert.
2700 	 *
2701 	 * XXX There may be a case with RECORD_ADD with DELETED_FE set
2702 	 * that we currently panic on.
2703 	 */
2704 	if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
2705 		switch(record->type) {
2706 		case HAMMER_MEM_RECORD_DATA:
2707 			/*
2708 			 * We don't have to do anything, if the record was
2709 			 * committed the space will have been accounted for
2710 			 * in the blockmap.
2711 			 */
2712 			/* fall through */
2713 		case HAMMER_MEM_RECORD_GENERAL:
2714 			/*
2715 			 * Set deleted-by-backend flag.  Do not set the
2716 			 * backend committed flag, because we are throwing
2717 			 * the record away.
2718 			 */
2719 			record->flags |= HAMMER_RECF_DELETED_BE;
2720 			++record->ip->rec_generation;
2721 			error = 0;
2722 			goto done;
2723 		case HAMMER_MEM_RECORD_ADD:
2724 			panic("hammer_sync_record_callback: illegal add "
2725 			      "during inode deletion record %p", record);
2726 			break; /* NOT REACHED */
2727 		case HAMMER_MEM_RECORD_INODE:
2728 			panic("hammer_sync_record_callback: attempt to "
2729 			      "sync inode record %p?", record);
2730 			break; /* NOT REACHED */
2731 		case HAMMER_MEM_RECORD_DEL:
2732 			/*
2733 			 * Follow through and issue the on-disk deletion
2734 			 */
2735 			break;
2736 		}
2737 	}
2738 
2739 	/*
2740 	 * If DELETED_FE is set special handling is needed for directory
2741 	 * entries.  Dependant pieces related to the directory entry may
2742 	 * have already been synced to disk.  If this occurs we have to
2743 	 * sync the directory entry and then change the in-memory record
2744 	 * from an ADD to a DELETE to cover the fact that it's been
2745 	 * deleted by the frontend.
2746 	 *
2747 	 * A directory delete covering record (MEM_RECORD_DEL) can never
2748 	 * be deleted by the frontend.
2749 	 *
2750 	 * Any other record type (aka DATA) can be deleted by the frontend.
2751 	 * XXX At the moment the flusher must skip it because there may
2752 	 * be another data record in the flush group for the same block,
2753 	 * meaning that some frontend data changes can leak into the backend's
2754 	 * synchronization point.
2755 	 */
2756 	if (record->flags & HAMMER_RECF_DELETED_FE) {
2757 		if (record->type == HAMMER_MEM_RECORD_ADD) {
2758 			/*
2759 			 * Convert a front-end deleted directory-add to
2760 			 * a directory-delete entry later.
2761 			 */
2762 			record->flags |= HAMMER_RECF_CONVERT_DELETE;
2763 		} else {
2764 			/*
2765 			 * Dispose of the record (race case).  Mark as
2766 			 * deleted by backend (and not committed).
2767 			 */
2768 			KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
2769 			record->flags |= HAMMER_RECF_DELETED_BE;
2770 			++record->ip->rec_generation;
2771 			error = 0;
2772 			goto done;
2773 		}
2774 	}
2775 
2776 	/*
2777 	 * Assign the create_tid for new records.  Deletions already
2778 	 * have the record's entire key properly set up.
2779 	 */
2780 	if (record->type != HAMMER_MEM_RECORD_DEL) {
2781 		record->leaf.base.create_tid = trans->tid;
2782 		record->leaf.create_ts = trans->time32;
2783 	}
2784 
2785 	/*
2786 	 * This actually moves the record to the on-media B-Tree.  We
2787 	 * must also generate REDO_TERM entries in the UNDO/REDO FIFO
2788 	 * indicating that the related REDO_WRITE(s) have been committed.
2789 	 *
2790 	 * During recovery any REDO_TERM's within the nominal recovery span
2791 	 * are ignored since the related meta-data is being undone, causing
2792 	 * any matching REDO_WRITEs to execute.  The REDO_TERMs outside
2793 	 * the nominal recovery span will match against REDO_WRITEs and
2794 	 * prevent them from being executed (because the meta-data has
2795 	 * already been synchronized).
2796 	 */
2797 	if (record->flags & HAMMER_RECF_REDO) {
2798 		KKASSERT(record->type == HAMMER_MEM_RECORD_DATA);
2799 		hammer_generate_redo(trans, record->ip,
2800 				     record->leaf.base.key -
2801 					 record->leaf.data_len,
2802 				     HAMMER_REDO_TERM_WRITE,
2803 				     NULL,
2804 				     record->leaf.data_len);
2805 	}
2806 
2807 	for (;;) {
2808 		error = hammer_ip_sync_record_cursor(cursor, record);
2809 		if (error != EDEADLK)
2810 			break;
2811 		hammer_done_cursor(cursor);
2812 		error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
2813 					   record->ip);
2814 		if (error)
2815 			break;
2816 	}
2817 	record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
2818 
2819 	if (error)
2820 		error = -error;
2821 done:
2822 	hammer_flush_record_done(record, error);
2823 
2824 	/*
2825 	 * Do partial finalization if we have built up too many dirty
2826 	 * buffers.  Otherwise a buffer cache deadlock can occur when
2827 	 * doing things like creating tens of thousands of tiny files.
2828 	 *
2829 	 * We must release our cursor lock to avoid a 3-way deadlock
2830 	 * due to the exclusive sync lock the finalizer must get.
2831 	 *
2832 	 * WARNING: See warnings in hammer_unlock_cursor() function.
2833 	 */
2834         if (hammer_flusher_meta_limit(hmp) ||
2835 	    vm_page_count_severe()) {
2836 		hammer_unlock_cursor(cursor);
2837                 hammer_flusher_finalize(trans, 0);
2838 		hammer_lock_cursor(cursor);
2839 	}
2840 	return(error);
2841 }
2842 
2843 /*
2844  * Backend function called by the flusher to sync an inode to media.
2845  */
2846 int
2847 hammer_sync_inode(hammer_transaction_t trans, hammer_inode_t ip)
2848 {
2849 	struct hammer_cursor cursor;
2850 	hammer_node_t tmp_node;
2851 	hammer_record_t depend;
2852 	hammer_record_t next;
2853 	int error, tmp_error;
2854 	u_int64_t nlinks;
2855 
2856 	if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
2857 		return(0);
2858 
2859 	error = hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2860 	if (error)
2861 		goto done;
2862 
2863 	/*
2864 	 * Any directory records referencing this inode which are not in
2865 	 * our current flush group must adjust our nlink count for the
2866 	 * purposes of synchronizating to disk.
2867 	 *
2868 	 * Records which are in our flush group can be unlinked from our
2869 	 * inode now, potentially allowing the inode to be physically
2870 	 * deleted.
2871 	 *
2872 	 * This cannot block.
2873 	 */
2874 	nlinks = ip->ino_data.nlinks;
2875 	next = TAILQ_FIRST(&ip->target_list);
2876 	while ((depend = next) != NULL) {
2877 		next = TAILQ_NEXT(depend, target_entry);
2878 		if (depend->flush_state == HAMMER_FST_FLUSH &&
2879 		    depend->flush_group == ip->flush_group) {
2880 			/*
2881 			 * If this is an ADD that was deleted by the frontend
2882 			 * the frontend nlinks count will have already been
2883 			 * decremented, but the backend is going to sync its
2884 			 * directory entry and must account for it.  The
2885 			 * record will be converted to a delete-on-disk when
2886 			 * it gets synced.
2887 			 *
2888 			 * If the ADD was not deleted by the frontend we
2889 			 * can remove the dependancy from our target_list.
2890 			 */
2891 			if (depend->flags & HAMMER_RECF_DELETED_FE) {
2892 				++nlinks;
2893 			} else {
2894 				TAILQ_REMOVE(&ip->target_list, depend,
2895 					     target_entry);
2896 				depend->target_ip = NULL;
2897 			}
2898 		} else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
2899 			/*
2900 			 * Not part of our flush group and not deleted by
2901 			 * the front-end, adjust the link count synced to
2902 			 * the media (undo what the frontend did when it
2903 			 * queued the record).
2904 			 */
2905 			KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
2906 			switch(depend->type) {
2907 			case HAMMER_MEM_RECORD_ADD:
2908 				--nlinks;
2909 				break;
2910 			case HAMMER_MEM_RECORD_DEL:
2911 				++nlinks;
2912 				break;
2913 			default:
2914 				break;
2915 			}
2916 		}
2917 	}
2918 
2919 	/*
2920 	 * Set dirty if we had to modify the link count.
2921 	 */
2922 	if (ip->sync_ino_data.nlinks != nlinks) {
2923 		KKASSERT((int64_t)nlinks >= 0);
2924 		ip->sync_ino_data.nlinks = nlinks;
2925 		ip->sync_flags |= HAMMER_INODE_DDIRTY;
2926 	}
2927 
2928 	/*
2929 	 * If there is a trunction queued destroy any data past the (aligned)
2930 	 * truncation point.  Userland will have dealt with the buffer
2931 	 * containing the truncation point for us.
2932 	 *
2933 	 * We don't flush pending frontend data buffers until after we've
2934 	 * dealt with the truncation.
2935 	 */
2936 	if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2937 		/*
2938 		 * Interlock trunc_off.  The VOP front-end may continue to
2939 		 * make adjustments to it while we are blocked.
2940 		 */
2941 		off_t trunc_off;
2942 		off_t aligned_trunc_off;
2943 		int blkmask;
2944 
2945 		trunc_off = ip->sync_trunc_off;
2946 		blkmask = hammer_blocksize(trunc_off) - 1;
2947 		aligned_trunc_off = (trunc_off + blkmask) & ~(int64_t)blkmask;
2948 
2949 		/*
2950 		 * Delete any whole blocks on-media.  The front-end has
2951 		 * already cleaned out any partial block and made it
2952 		 * pending.  The front-end may have updated trunc_off
2953 		 * while we were blocked so we only use sync_trunc_off.
2954 		 *
2955 		 * This operation can blow out the buffer cache, EWOULDBLOCK
2956 		 * means we were unable to complete the deletion.  The
2957 		 * deletion will update sync_trunc_off in that case.
2958 		 */
2959 		error = hammer_ip_delete_range(&cursor, ip,
2960 						aligned_trunc_off,
2961 						0x7FFFFFFFFFFFFFFFLL, 2);
2962 		if (error == EWOULDBLOCK) {
2963 			ip->flags |= HAMMER_INODE_WOULDBLOCK;
2964 			error = 0;
2965 			goto defer_buffer_flush;
2966 		}
2967 
2968 		if (error)
2969 			goto done;
2970 
2971 		/*
2972 		 * Generate a REDO_TERM_TRUNC entry in the UNDO/REDO FIFO.
2973 		 *
2974 		 * XXX we do this even if we did not previously generate
2975 		 * a REDO_TRUNC record.  This operation may enclosed the
2976 		 * range for multiple prior truncation entries in the REDO
2977 		 * log.
2978 		 */
2979 		if (trans->hmp->version >= HAMMER_VOL_VERSION_FOUR &&
2980 		    (ip->flags & HAMMER_INODE_RDIRTY)) {
2981 			hammer_generate_redo(trans, ip, aligned_trunc_off,
2982 					     HAMMER_REDO_TERM_TRUNC,
2983 					     NULL, 0);
2984 		}
2985 
2986 		/*
2987 		 * Clear the truncation flag on the backend after we have
2988 		 * completed the deletions.  Backend data is now good again
2989 		 * (including new records we are about to sync, below).
2990 		 *
2991 		 * Leave sync_trunc_off intact.  As we write additional
2992 		 * records the backend will update sync_trunc_off.  This
2993 		 * tells the backend whether it can skip the overwrite
2994 		 * test.  This should work properly even when the backend
2995 		 * writes full blocks where the truncation point straddles
2996 		 * the block because the comparison is against the base
2997 		 * offset of the record.
2998 		 */
2999 		ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
3000 		/* ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL; */
3001 	} else {
3002 		error = 0;
3003 	}
3004 
3005 	/*
3006 	 * Now sync related records.  These will typically be directory
3007 	 * entries, records tracking direct-writes, or delete-on-disk records.
3008 	 */
3009 	if (error == 0) {
3010 		tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
3011 				    hammer_sync_record_callback, &cursor);
3012 		if (tmp_error < 0)
3013 			tmp_error = -error;
3014 		if (tmp_error)
3015 			error = tmp_error;
3016 	}
3017 	hammer_cache_node(&ip->cache[1], cursor.node);
3018 
3019 	/*
3020 	 * Re-seek for inode update, assuming our cache hasn't been ripped
3021 	 * out from under us.
3022 	 */
3023 	if (error == 0) {
3024 		tmp_node = hammer_ref_node_safe(trans, &ip->cache[0], &error);
3025 		if (tmp_node) {
3026 			hammer_cursor_downgrade(&cursor);
3027 			hammer_lock_sh(&tmp_node->lock);
3028 			if ((tmp_node->flags & HAMMER_NODE_DELETED) == 0)
3029 				hammer_cursor_seek(&cursor, tmp_node, 0);
3030 			hammer_unlock(&tmp_node->lock);
3031 			hammer_rel_node(tmp_node);
3032 		}
3033 		error = 0;
3034 	}
3035 
3036 	/*
3037 	 * If we are deleting the inode the frontend had better not have
3038 	 * any active references on elements making up the inode.
3039 	 *
3040 	 * The call to hammer_ip_delete_clean() cleans up auxillary records
3041 	 * but not DB or DATA records.  Those must have already been deleted
3042 	 * by the normal truncation mechanic.
3043 	 */
3044 	if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
3045 		RB_EMPTY(&ip->rec_tree)  &&
3046 	    (ip->sync_flags & HAMMER_INODE_DELETING) &&
3047 	    (ip->flags & HAMMER_INODE_DELETED) == 0) {
3048 		int count1 = 0;
3049 
3050 		error = hammer_ip_delete_clean(&cursor, ip, &count1);
3051 		if (error == 0) {
3052 			ip->flags |= HAMMER_INODE_DELETED;
3053 			ip->sync_flags &= ~HAMMER_INODE_DELETING;
3054 			ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
3055 			KKASSERT(RB_EMPTY(&ip->rec_tree));
3056 
3057 			/*
3058 			 * Set delete_tid in both the frontend and backend
3059 			 * copy of the inode record.  The DELETED flag handles
3060 			 * this, do not set DDIRTY.
3061 			 */
3062 			ip->ino_leaf.base.delete_tid = trans->tid;
3063 			ip->sync_ino_leaf.base.delete_tid = trans->tid;
3064 			ip->ino_leaf.delete_ts = trans->time32;
3065 			ip->sync_ino_leaf.delete_ts = trans->time32;
3066 
3067 
3068 			/*
3069 			 * Adjust the inode count in the volume header
3070 			 */
3071 			hammer_sync_lock_sh(trans);
3072 			if (ip->flags & HAMMER_INODE_ONDISK) {
3073 				hammer_modify_volume_field(trans,
3074 							   trans->rootvol,
3075 							   vol0_stat_inodes);
3076 				--ip->hmp->rootvol->ondisk->vol0_stat_inodes;
3077 				hammer_modify_volume_done(trans->rootvol);
3078 			}
3079 			hammer_sync_unlock(trans);
3080 		}
3081 	}
3082 
3083 	if (error)
3084 		goto done;
3085 	ip->sync_flags &= ~HAMMER_INODE_BUFS;
3086 
3087 defer_buffer_flush:
3088 	/*
3089 	 * Now update the inode's on-disk inode-data and/or on-disk record.
3090 	 * DELETED and ONDISK are managed only in ip->flags.
3091 	 *
3092 	 * In the case of a defered buffer flush we still update the on-disk
3093 	 * inode to satisfy visibility requirements if there happen to be
3094 	 * directory dependancies.
3095 	 */
3096 	switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
3097 	case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
3098 		/*
3099 		 * If deleted and on-disk, don't set any additional flags.
3100 		 * the delete flag takes care of things.
3101 		 *
3102 		 * Clear flags which may have been set by the frontend.
3103 		 */
3104 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
3105 				    HAMMER_INODE_SDIRTY |
3106 				    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
3107 				    HAMMER_INODE_DELETING);
3108 		break;
3109 	case HAMMER_INODE_DELETED:
3110 		/*
3111 		 * Take care of the case where a deleted inode was never
3112 		 * flushed to the disk in the first place.
3113 		 *
3114 		 * Clear flags which may have been set by the frontend.
3115 		 */
3116 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
3117 				    HAMMER_INODE_SDIRTY |
3118 				    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
3119 				    HAMMER_INODE_DELETING);
3120 		while (RB_ROOT(&ip->rec_tree)) {
3121 			hammer_record_t record = RB_ROOT(&ip->rec_tree);
3122 			hammer_ref(&record->lock);
3123 			KKASSERT(hammer_oneref(&record->lock));
3124 			record->flags |= HAMMER_RECF_DELETED_BE;
3125 			++record->ip->rec_generation;
3126 			hammer_rel_mem_record(record);
3127 		}
3128 		break;
3129 	case HAMMER_INODE_ONDISK:
3130 		/*
3131 		 * If already on-disk, do not set any additional flags.
3132 		 */
3133 		break;
3134 	default:
3135 		/*
3136 		 * If not on-disk and not deleted, set DDIRTY to force
3137 		 * an initial record to be written.
3138 		 *
3139 		 * Also set the create_tid in both the frontend and backend
3140 		 * copy of the inode record.
3141 		 */
3142 		ip->ino_leaf.base.create_tid = trans->tid;
3143 		ip->ino_leaf.create_ts = trans->time32;
3144 		ip->sync_ino_leaf.base.create_tid = trans->tid;
3145 		ip->sync_ino_leaf.create_ts = trans->time32;
3146 		ip->sync_flags |= HAMMER_INODE_DDIRTY;
3147 		break;
3148 	}
3149 
3150 	/*
3151 	 * If DDIRTY or SDIRTY is set, write out a new record.
3152 	 * If the inode is already on-disk the old record is marked as
3153 	 * deleted.
3154 	 *
3155 	 * If DELETED is set hammer_update_inode() will delete the existing
3156 	 * record without writing out a new one.
3157 	 *
3158 	 * If *ONLY* the ITIMES flag is set we can update the record in-place.
3159 	 */
3160 	if (ip->flags & HAMMER_INODE_DELETED) {
3161 		error = hammer_update_inode(&cursor, ip);
3162 	} else
3163 	if (!(ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_SDIRTY)) &&
3164 	    (ip->sync_flags & (HAMMER_INODE_ATIME | HAMMER_INODE_MTIME))) {
3165 		error = hammer_update_itimes(&cursor, ip);
3166 	} else
3167 	if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_SDIRTY |
3168 			      HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) {
3169 		error = hammer_update_inode(&cursor, ip);
3170 	}
3171 done:
3172 	if (ip->flags & HAMMER_INODE_MODMASK)
3173 		hammer_inode_dirty(ip);
3174 	if (error) {
3175 		hammer_critical_error(ip->hmp, ip, error,
3176 				      "while syncing inode");
3177 	}
3178 	hammer_done_cursor(&cursor);
3179 	return(error);
3180 }
3181 
3182 /*
3183  * This routine is called when the OS is no longer actively referencing
3184  * the inode (but might still be keeping it cached), or when releasing
3185  * the last reference to an inode.
3186  *
3187  * At this point if the inode's nlinks count is zero we want to destroy
3188  * it, which may mean destroying it on-media too.
3189  */
3190 void
3191 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
3192 {
3193 	struct vnode *vp;
3194 
3195 	/*
3196 	 * Set the DELETING flag when the link count drops to 0 and the
3197 	 * OS no longer has any opens on the inode.
3198 	 *
3199 	 * The backend will clear DELETING (a mod flag) and set DELETED
3200 	 * (a state flag) when it is actually able to perform the
3201 	 * operation.
3202 	 *
3203 	 * Don't reflag the deletion if the flusher is currently syncing
3204 	 * one that was already flagged.  A previously set DELETING flag
3205 	 * may bounce around flags and sync_flags until the operation is
3206 	 * completely done.
3207 	 *
3208 	 * Do not attempt to modify a snapshot inode (one set to read-only).
3209 	 */
3210 	if (ip->ino_data.nlinks == 0 &&
3211 	    ((ip->flags | ip->sync_flags) & (HAMMER_INODE_RO|HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
3212 		ip->flags |= HAMMER_INODE_DELETING;
3213 		ip->flags |= HAMMER_INODE_TRUNCATED;
3214 		ip->trunc_off = 0;
3215 		vp = NULL;
3216 		if (getvp) {
3217 			if (hammer_get_vnode(ip, &vp) != 0)
3218 				return;
3219 		}
3220 
3221 		/*
3222 		 * Final cleanup
3223 		 */
3224 		if (ip->vp)
3225 			nvtruncbuf(ip->vp, 0, HAMMER_BUFSIZE, 0, 0);
3226 		if (ip->flags & HAMMER_INODE_MODMASK)
3227 			hammer_inode_dirty(ip);
3228 		if (getvp)
3229 			vput(vp);
3230 	}
3231 }
3232 
3233 /*
3234  * After potentially resolving a dependancy the inode is tested
3235  * to determine whether it needs to be reflushed.
3236  */
3237 void
3238 hammer_test_inode(hammer_inode_t ip)
3239 {
3240 	if (ip->flags & HAMMER_INODE_REFLUSH) {
3241 		ip->flags &= ~HAMMER_INODE_REFLUSH;
3242 		hammer_ref(&ip->lock);
3243 		if (ip->flags & HAMMER_INODE_RESIGNAL) {
3244 			ip->flags &= ~HAMMER_INODE_RESIGNAL;
3245 			hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
3246 		} else {
3247 			hammer_flush_inode(ip, 0);
3248 		}
3249 		hammer_rel_inode(ip, 0);
3250 	}
3251 }
3252 
3253 /*
3254  * Clear the RECLAIM flag on an inode.  This occurs when the inode is
3255  * reassociated with a vp or just before it gets freed.
3256  *
3257  * Pipeline wakeups to threads blocked due to an excessive number of
3258  * detached inodes.  This typically occurs when atime updates accumulate
3259  * while scanning a directory tree.
3260  */
3261 static void
3262 hammer_inode_wakereclaims(hammer_inode_t ip)
3263 {
3264 	struct hammer_reclaim *reclaim;
3265 	hammer_mount_t hmp = ip->hmp;
3266 
3267 	if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
3268 		return;
3269 
3270 	--hammer_count_reclaims;
3271 	--hmp->count_reclaims;
3272 	ip->flags &= ~HAMMER_INODE_RECLAIM;
3273 
3274 	if ((reclaim = TAILQ_FIRST(&hmp->reclaim_list)) != NULL) {
3275 		KKASSERT(reclaim->count > 0);
3276 		if (--reclaim->count == 0) {
3277 			TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
3278 			wakeup(reclaim);
3279 		}
3280 	}
3281 }
3282 
3283 /*
3284  * Setup our reclaim pipeline.  We only let so many detached (and dirty)
3285  * inodes build up before we start blocking.  This routine is called
3286  * if a new inode is created or an inode is loaded from media.
3287  *
3288  * When we block we don't care *which* inode has finished reclaiming,
3289  * as long as one does.
3290  *
3291  * The reclaim pipeline is primarily governed by the auto-flush which is
3292  * 1/4 hammer_limit_reclaims.  We don't want to block if the count is
3293  * less than 1/2 hammer_limit_reclaims.  From 1/2 to full count is
3294  * dynamically governed.
3295  */
3296 void
3297 hammer_inode_waitreclaims(hammer_transaction_t trans)
3298 {
3299 	hammer_mount_t hmp = trans->hmp;
3300 	struct hammer_reclaim reclaim;
3301 	int lower_limit;
3302 
3303 	/*
3304 	 * Track inode load, delay if the number of reclaiming inodes is
3305 	 * between 2/4 and 4/4 hammer_limit_reclaims, depending.
3306 	 */
3307 	if (curthread->td_proc) {
3308 		struct hammer_inostats *stats;
3309 
3310 		stats = hammer_inode_inostats(hmp, curthread->td_proc->p_pid);
3311 		++stats->count;
3312 
3313 		if (stats->count > hammer_limit_reclaims / 2)
3314 			stats->count = hammer_limit_reclaims / 2;
3315 		lower_limit = hammer_limit_reclaims - stats->count;
3316 		if (hammer_debug_general & 0x10000) {
3317 			kprintf("pid %5d limit %d\n",
3318 				(int)curthread->td_proc->p_pid, lower_limit);
3319 		}
3320 	} else {
3321 		lower_limit = hammer_limit_reclaims * 3 / 4;
3322 	}
3323 	if (hmp->count_reclaims >= lower_limit) {
3324 		reclaim.count = 1;
3325 		TAILQ_INSERT_TAIL(&hmp->reclaim_list, &reclaim, entry);
3326 		tsleep(&reclaim, 0, "hmrrcm", hz);
3327 		if (reclaim.count > 0)
3328 			TAILQ_REMOVE(&hmp->reclaim_list, &reclaim, entry);
3329 	}
3330 }
3331 
3332 /*
3333  * Keep track of reclaim statistics on a per-pid basis using a loose
3334  * 4-way set associative hash table.  Collisions inherit the count of
3335  * the previous entry.
3336  *
3337  * NOTE: We want to be careful here to limit the chain size.  If the chain
3338  *	 size is too large a pid will spread its stats out over too many
3339  *	 entries under certain types of heavy filesystem activity and
3340  *	 wind up not delaying long enough.
3341  */
3342 static
3343 struct hammer_inostats *
3344 hammer_inode_inostats(hammer_mount_t hmp, pid_t pid)
3345 {
3346 	struct hammer_inostats *stats;
3347 	int delta;
3348 	int chain;
3349 	static volatile int iterator;	/* we don't care about MP races */
3350 
3351 	/*
3352 	 * Chain up to 4 times to find our entry.
3353 	 */
3354 	for (chain = 0; chain < 4; ++chain) {
3355 		stats = &hmp->inostats[(pid + chain) & HAMMER_INOSTATS_HMASK];
3356 		if (stats->pid == pid)
3357 			break;
3358 	}
3359 
3360 	/*
3361 	 * Replace one of the four chaining entries with our new entry.
3362 	 */
3363 	if (chain == 4) {
3364 		stats = &hmp->inostats[(pid + (iterator++ & 3)) &
3365 				       HAMMER_INOSTATS_HMASK];
3366 		stats->pid = pid;
3367 	}
3368 
3369 	/*
3370 	 * Decay the entry
3371 	 */
3372 	if (stats->count && stats->ltick != ticks) {
3373 		delta = ticks - stats->ltick;
3374 		stats->ltick = ticks;
3375 		if (delta <= 0 || delta > hz * 60)
3376 			stats->count = 0;
3377 		else
3378 			stats->count = stats->count * hz / (hz + delta);
3379 	}
3380 	if (hammer_debug_general & 0x10000)
3381 		kprintf("pid %5d stats %d\n", (int)pid, stats->count);
3382 	return (stats);
3383 }
3384 
3385 #if 0
3386 
3387 /*
3388  * XXX not used, doesn't work very well due to the large batching nature
3389  * of flushes.
3390  *
3391  * A larger then normal backlog of inodes is sitting in the flusher,
3392  * enforce a general slowdown to let it catch up.  This routine is only
3393  * called on completion of a non-flusher-related transaction which
3394  * performed B-Tree node I/O.
3395  *
3396  * It is possible for the flusher to stall in a continuous load.
3397  * blogbench -i1000 -o seems to do a good job generating this sort of load.
3398  * If the flusher is unable to catch up the inode count can bloat until
3399  * we run out of kvm.
3400  *
3401  * This is a bit of a hack.
3402  */
3403 void
3404 hammer_inode_waithard(hammer_mount_t hmp)
3405 {
3406 	/*
3407 	 * Hysteresis.
3408 	 */
3409 	if (hmp->flags & HAMMER_MOUNT_FLUSH_RECOVERY) {
3410 		if (hmp->count_reclaims < hammer_limit_reclaims / 2 &&
3411 		    hmp->count_iqueued < hmp->count_inodes / 20) {
3412 			hmp->flags &= ~HAMMER_MOUNT_FLUSH_RECOVERY;
3413 			return;
3414 		}
3415 	} else {
3416 		if (hmp->count_reclaims < hammer_limit_reclaims ||
3417 		    hmp->count_iqueued < hmp->count_inodes / 10) {
3418 			return;
3419 		}
3420 		hmp->flags |= HAMMER_MOUNT_FLUSH_RECOVERY;
3421 	}
3422 
3423 	/*
3424 	 * Block for one flush cycle.
3425 	 */
3426 	hammer_flusher_wait_next(hmp);
3427 }
3428 
3429 #endif
3430