xref: /dragonfly/sys/vfs/hammer/hammer_inode.c (revision d619e025)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <vm/vm_page2.h>
36 
37 #include "hammer.h"
38 
39 static int	hammer_unload_inode(hammer_inode_t ip);
40 static void	hammer_free_inode(hammer_inode_t ip);
41 static void	hammer_flush_inode_core(hammer_inode_t ip,
42 					hammer_flush_group_t flg, int flags);
43 static int	hammer_setup_child_callback(hammer_record_t rec, void *data);
44 #if 0
45 static int	hammer_syncgrp_child_callback(hammer_record_t rec, void *data);
46 #endif
47 static int	hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
48 					hammer_flush_group_t flg);
49 static int	hammer_setup_parent_inodes_helper(hammer_record_t record,
50 					int depth, hammer_flush_group_t flg);
51 static void	hammer_inode_wakereclaims(hammer_inode_t ip);
52 static struct hammer_inostats *hammer_inode_inostats(hammer_mount_t hmp,
53 					pid_t pid);
54 static hammer_inode_t __hammer_find_inode(hammer_transaction_t trans,
55 					int64_t obj_id, hammer_tid_t asof,
56 					uint32_t localization);
57 
58 struct krate hammer_gen_krate = { 1 };
59 
60 /*
61  * RB-Tree support for inode structures
62  */
63 int
64 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
65 {
66 	if (ip1->obj_localization < ip2->obj_localization)
67 		return(-1);
68 	if (ip1->obj_localization > ip2->obj_localization)
69 		return(1);
70 	if (ip1->obj_id < ip2->obj_id)
71 		return(-1);
72 	if (ip1->obj_id > ip2->obj_id)
73 		return(1);
74 	if (ip1->obj_asof < ip2->obj_asof)
75 		return(-1);
76 	if (ip1->obj_asof > ip2->obj_asof)
77 		return(1);
78 	return(0);
79 }
80 
81 int
82 hammer_redo_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
83 {
84 	if (ip1->redo_fifo_start < ip2->redo_fifo_start)
85 		return(-1);
86 	if (ip1->redo_fifo_start > ip2->redo_fifo_start)
87 		return(1);
88 	return(0);
89 }
90 
91 /*
92  * RB-Tree support for inode structures / special LOOKUP_INFO
93  */
94 static int
95 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
96 {
97 	if (info->obj_localization < ip->obj_localization)
98 		return(-1);
99 	if (info->obj_localization > ip->obj_localization)
100 		return(1);
101 	if (info->obj_id < ip->obj_id)
102 		return(-1);
103 	if (info->obj_id > ip->obj_id)
104 		return(1);
105 	if (info->obj_asof < ip->obj_asof)
106 		return(-1);
107 	if (info->obj_asof > ip->obj_asof)
108 		return(1);
109 	return(0);
110 }
111 
112 /*
113  * Used by hammer_scan_inode_snapshots() to locate all of an object's
114  * snapshots.  Note that the asof field is not tested, which we can get
115  * away with because it is the lowest-priority field.
116  */
117 static int
118 hammer_inode_info_cmp_all_history(hammer_inode_t ip, void *data)
119 {
120 	hammer_inode_info_t info = data;
121 
122 	if (ip->obj_localization > info->obj_localization)
123 		return(1);
124 	if (ip->obj_localization < info->obj_localization)
125 		return(-1);
126 	if (ip->obj_id > info->obj_id)
127 		return(1);
128 	if (ip->obj_id < info->obj_id)
129 		return(-1);
130 	return(0);
131 }
132 
133 /*
134  * Used by hammer_unload_pseudofs() to locate all inodes associated with
135  * a particular PFS.
136  */
137 static int
138 hammer_inode_pfs_cmp(hammer_inode_t ip, void *data)
139 {
140 	uint32_t localization = *(uint32_t *)data;
141 	if (ip->obj_localization > localization)
142 		return(1);
143 	if (ip->obj_localization < localization)
144 		return(-1);
145 	return(0);
146 }
147 
148 /*
149  * RB-Tree support for pseudofs structures
150  */
151 static int
152 hammer_pfs_rb_compare(hammer_pseudofs_inmem_t p1, hammer_pseudofs_inmem_t p2)
153 {
154 	if (p1->localization < p2->localization)
155 		return(-1);
156 	if (p1->localization > p2->localization)
157 		return(1);
158 	return(0);
159 }
160 
161 
162 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
163 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
164 		hammer_inode_info_cmp, hammer_inode_info_t);
165 RB_GENERATE2(hammer_pfs_rb_tree, hammer_pseudofs_inmem, rb_node,
166              hammer_pfs_rb_compare, uint32_t, localization);
167 
168 /*
169  * The kernel is not actively referencing this vnode but is still holding
170  * it cached.
171  *
172  * This is called from the frontend.
173  *
174  * MPALMOSTSAFE
175  */
176 int
177 hammer_vop_inactive(struct vop_inactive_args *ap)
178 {
179 	hammer_inode_t ip = VTOI(ap->a_vp);
180 	hammer_mount_t hmp;
181 
182 	/*
183 	 * Degenerate case
184 	 */
185 	if (ip == NULL) {
186 		vrecycle(ap->a_vp);
187 		return(0);
188 	}
189 
190 	/*
191 	 * If the inode no longer has visibility in the filesystem try to
192 	 * recycle it immediately, even if the inode is dirty.  Recycling
193 	 * it quickly allows the system to reclaim buffer cache and VM
194 	 * resources which can matter a lot in a heavily loaded system.
195 	 *
196 	 * This can deadlock in vfsync() if we aren't careful.
197 	 *
198 	 * Do not queue the inode to the flusher if we still have visibility,
199 	 * otherwise namespace calls such as chmod will unnecessarily generate
200 	 * multiple inode updates.
201 	 */
202 	if (ip->ino_data.nlinks == 0) {
203 		hmp = ip->hmp;
204 		lwkt_gettoken(&hmp->fs_token);
205 		hammer_inode_unloadable_check(ip, 0);
206 		if (ip->flags & HAMMER_INODE_MODMASK)
207 			hammer_flush_inode(ip, 0);
208 		lwkt_reltoken(&hmp->fs_token);
209 		vrecycle(ap->a_vp);
210 	}
211 	return(0);
212 }
213 
214 /*
215  * Release the vnode association.  This is typically (but not always)
216  * the last reference on the inode.
217  *
218  * Once the association is lost we are on our own with regards to
219  * flushing the inode.
220  *
221  * We must interlock ip->vp so hammer_get_vnode() can avoid races.
222  */
223 int
224 hammer_vop_reclaim(struct vop_reclaim_args *ap)
225 {
226 	hammer_inode_t ip;
227 	hammer_mount_t hmp;
228 	struct vnode *vp;
229 
230 	vp = ap->a_vp;
231 
232 	if ((ip = vp->v_data) != NULL) {
233 		hmp = ip->hmp;
234 		lwkt_gettoken(&hmp->fs_token);
235 		hammer_lock_ex(&ip->lock);
236 		vp->v_data = NULL;
237 		ip->vp = NULL;
238 
239 		if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
240 			++hammer_count_reclaims;
241 			++hmp->count_reclaims;
242 			ip->flags |= HAMMER_INODE_RECLAIM;
243 		}
244 		hammer_unlock(&ip->lock);
245 		vclrisdirty(vp);
246 		hammer_rel_inode(ip, 1);
247 		lwkt_reltoken(&hmp->fs_token);
248 	}
249 	return(0);
250 }
251 
252 /*
253  * Inform the kernel that the inode is dirty.  This will be checked
254  * by vn_unlock().
255  *
256  * Theoretically in order to reclaim a vnode the hammer_vop_reclaim()
257  * must be called which will interlock against our inode lock, so
258  * if VRECLAIMED is not set vp->v_mount (as used by vsetisdirty())
259  * should be stable without having to acquire any new locks.
260  */
261 void
262 hammer_inode_dirty(hammer_inode_t ip)
263 {
264 	struct vnode *vp;
265 
266 	if ((ip->flags & HAMMER_INODE_MODMASK) &&
267 	    (vp = ip->vp) != NULL &&
268 	    (vp->v_flag & (VRECLAIMED | VISDIRTY)) == 0) {
269 		vsetisdirty(vp);
270 	}
271 }
272 
273 /*
274  * Return a locked vnode for the specified inode.  The inode must be
275  * referenced but NOT LOCKED on entry and will remain referenced on
276  * return.
277  *
278  * Called from the frontend.
279  */
280 int
281 hammer_get_vnode(hammer_inode_t ip, struct vnode **vpp)
282 {
283 	hammer_mount_t hmp;
284 	struct vnode *vp;
285 	int error = 0;
286 	uint8_t obj_type;
287 
288 	hmp = ip->hmp;
289 
290 	for (;;) {
291 		if ((vp = ip->vp) == NULL) {
292 			error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
293 			if (error)
294 				break;
295 			hammer_lock_ex(&ip->lock);
296 			if (ip->vp != NULL) {
297 				hammer_unlock(&ip->lock);
298 				vp = *vpp;
299 				vp->v_type = VBAD;
300 				vx_put(vp);
301 				continue;
302 			}
303 			hammer_ref(&ip->lock);
304 			vp = *vpp;
305 			ip->vp = vp;
306 
307 			obj_type = ip->ino_data.obj_type;
308 			vp->v_type = hammer_get_vnode_type(obj_type);
309 
310 			hammer_inode_wakereclaims(ip);
311 
312 			switch(ip->ino_data.obj_type) {
313 			case HAMMER_OBJTYPE_CDEV:
314 			case HAMMER_OBJTYPE_BDEV:
315 				vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
316 				addaliasu(vp, ip->ino_data.rmajor,
317 					  ip->ino_data.rminor);
318 				break;
319 			case HAMMER_OBJTYPE_FIFO:
320 				vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
321 				break;
322 			case HAMMER_OBJTYPE_REGFILE:
323 				break;
324 			default:
325 				break;
326 			}
327 
328 			/*
329 			 * Only mark as the root vnode if the ip is not
330 			 * historical, otherwise the VFS cache will get
331 			 * confused.  The other half of the special handling
332 			 * is in hammer_vop_nlookupdotdot().
333 			 *
334 			 * Pseudo-filesystem roots can be accessed via
335 			 * non-root filesystem paths and setting VROOT may
336 			 * confuse the namecache.  Set VPFSROOT instead.
337 			 */
338 			if (ip->obj_id == HAMMER_OBJID_ROOT) {
339 				if (ip->obj_asof == hmp->asof) {
340 					if (ip->obj_localization ==
341 						HAMMER_DEF_LOCALIZATION)
342 						vsetflags(vp, VROOT);
343 					else
344 						vsetflags(vp, VPFSROOT);
345 				} else {
346 					vsetflags(vp, VPFSROOT);
347 				}
348 			}
349 
350 			vp->v_data = (void *)ip;
351 			/* vnode locked by getnewvnode() */
352 			/* make related vnode dirty if inode dirty? */
353 			hammer_unlock(&ip->lock);
354 			if (vp->v_type == VREG) {
355 				vinitvmio(vp, ip->ino_data.size,
356 					  hammer_blocksize(ip->ino_data.size),
357 					  hammer_blockoff(ip->ino_data.size));
358 			}
359 			break;
360 		}
361 
362 		/*
363 		 * Interlock vnode clearing.  This does not prevent the
364 		 * vnode from going into a reclaimed state but it does
365 		 * prevent it from being destroyed or reused so the vget()
366 		 * will properly fail.
367 		 */
368 		hammer_lock_ex(&ip->lock);
369 		if ((vp = ip->vp) == NULL) {
370 			hammer_unlock(&ip->lock);
371 			continue;
372 		}
373 		vhold(vp);
374 		hammer_unlock(&ip->lock);
375 
376 		/*
377 		 * loop if the vget fails (aka races), or if the vp
378 		 * no longer matches ip->vp.
379 		 */
380 		if (vget(vp, LK_EXCLUSIVE) == 0) {
381 			if (vp == ip->vp) {
382 				vdrop(vp);
383 				break;
384 			}
385 			vput(vp);
386 		}
387 		vdrop(vp);
388 	}
389 	*vpp = vp;
390 	return(error);
391 }
392 
393 /*
394  * Locate all copies of the inode for obj_id compatible with the specified
395  * asof, reference, and issue the related call-back.  This routine is used
396  * for direct-io invalidation and does not create any new inodes.
397  */
398 void
399 hammer_scan_inode_snapshots(hammer_mount_t hmp, hammer_inode_info_t iinfo,
400 		            int (*callback)(hammer_inode_t ip, void *data),
401 			    void *data)
402 {
403 	hammer_ino_rb_tree_RB_SCAN(&hmp->rb_inos_root,
404 				   hammer_inode_info_cmp_all_history,
405 				   callback, iinfo);
406 }
407 
408 /*
409  * Acquire a HAMMER inode.  The returned inode is not locked.  These functions
410  * do not attach or detach the related vnode (use hammer_get_vnode() for
411  * that).
412  *
413  * The flags argument is only applied for newly created inodes, and only
414  * certain flags are inherited.
415  *
416  * Called from the frontend.
417  */
418 hammer_inode_t
419 hammer_get_inode(hammer_transaction_t trans, hammer_inode_t dip,
420 		 int64_t obj_id, hammer_tid_t asof, uint32_t localization,
421 		 int flags, int *errorp)
422 {
423 	hammer_mount_t hmp = trans->hmp;
424 	struct hammer_node_cache *cachep;
425 	struct hammer_cursor cursor;
426 	hammer_inode_t ip;
427 
428 
429 	/*
430 	 * Determine if we already have an inode cached.  If we do then
431 	 * we are golden.
432 	 *
433 	 * If we find an inode with no vnode we have to mark the
434 	 * transaction such that hammer_inode_waitreclaims() is
435 	 * called later on to avoid building up an infinite number
436 	 * of inodes.  Otherwise we can continue to * add new inodes
437 	 * faster then they can be disposed of, even with the tsleep
438 	 * delay.
439 	 *
440 	 * If we find a dummy inode we return a failure so dounlink
441 	 * (which does another lookup) doesn't try to mess with the
442 	 * link count.  hammer_vop_nresolve() uses hammer_get_dummy_inode()
443 	 * to ref dummy inodes.
444 	 */
445 loop:
446 	*errorp = 0;
447 	ip = __hammer_find_inode(trans, obj_id, asof, localization);
448 	if (ip) {
449 		if (ip->flags & HAMMER_INODE_DUMMY) {
450 			*errorp = ENOENT;
451 			return(NULL);
452 		}
453 		hammer_ref(&ip->lock);
454 		return(ip);
455 	}
456 
457 	/*
458 	 * Allocate a new inode structure and deal with races later.
459 	 */
460 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
461 	++hammer_count_inodes;
462 	++hmp->count_inodes;
463 	ip->obj_id = obj_id;
464 	ip->obj_asof = asof;
465 	ip->obj_localization = localization;
466 	ip->hmp = hmp;
467 	ip->flags = flags & HAMMER_INODE_RO;
468 	ip->cache[0].ip = ip;
469 	ip->cache[1].ip = ip;
470 	ip->cache[2].ip = ip;
471 	ip->cache[3].ip = ip;
472 	if (hmp->ronly)
473 		ip->flags |= HAMMER_INODE_RO;
474 	ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
475 		HAMMER_MAX_KEY;
476 	RB_INIT(&ip->rec_tree);
477 	TAILQ_INIT(&ip->target_list);
478 	hammer_ref(&ip->lock);
479 
480 	/*
481 	 * Locate the on-disk inode.  If this is a PFS root we always
482 	 * access the current version of the root inode and (if it is not
483 	 * a master) always access information under it with a snapshot
484 	 * TID.
485 	 *
486 	 * We cache recent inode lookups in this directory in dip->cache[2].
487 	 * If we can't find it we assume the inode we are looking for is
488 	 * close to the directory inode.
489 	 */
490 retry:
491 	cachep = NULL;
492 	if (dip) {
493 		if (dip->cache[2].node)
494 			cachep = &dip->cache[2];
495 		else
496 			cachep = &dip->cache[0];
497 	}
498 	hammer_init_cursor(trans, &cursor, cachep, NULL);
499 	cursor.key_beg.localization = localization | HAMMER_LOCALIZE_INODE;
500 	cursor.key_beg.obj_id = ip->obj_id;
501 	cursor.key_beg.key = 0;
502 	cursor.key_beg.create_tid = 0;
503 	cursor.key_beg.delete_tid = 0;
504 	cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
505 	cursor.key_beg.obj_type = 0;
506 
507 	cursor.asof = asof;
508 	cursor.flags = HAMMER_CURSOR_GET_DATA | HAMMER_CURSOR_ASOF;
509 
510 	*errorp = hammer_btree_lookup(&cursor);
511 	if (*errorp == EDEADLK) {
512 		hammer_done_cursor(&cursor);
513 		goto retry;
514 	}
515 
516 	/*
517 	 * On success the B-Tree lookup will hold the appropriate
518 	 * buffer cache buffers and provide a pointer to the requested
519 	 * information.  Copy the information to the in-memory inode
520 	 * and cache the B-Tree node to improve future operations.
521 	 */
522 	if (*errorp == 0) {
523 		ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
524 		ip->ino_data = cursor.data->inode;
525 
526 		/*
527 		 * cache[0] tries to cache the location of the object inode.
528 		 * The assumption is that it is near the directory inode.
529 		 *
530 		 * cache[1] tries to cache the location of the object data.
531 		 * We might have something in the governing directory from
532 		 * scan optimizations (see the strategy code in
533 		 * hammer_vnops.c).
534 		 *
535 		 * We update dip->cache[2], if possible, with the location
536 		 * of the object inode for future directory shortcuts.
537 		 */
538 		hammer_cache_node(&ip->cache[0], cursor.node);
539 		if (dip) {
540 			if (dip->cache[3].node) {
541 				hammer_cache_node(&ip->cache[1],
542 						  dip->cache[3].node);
543 			}
544 			hammer_cache_node(&dip->cache[2], cursor.node);
545 		}
546 
547 		/*
548 		 * The file should not contain any data past the file size
549 		 * stored in the inode.  Setting save_trunc_off to the
550 		 * file size instead of max reduces B-Tree lookup overheads
551 		 * on append by allowing the flusher to avoid checking for
552 		 * record overwrites.
553 		 */
554 		ip->save_trunc_off = ip->ino_data.size;
555 
556 		/*
557 		 * Locate and assign the pseudofs management structure to
558 		 * the inode.
559 		 */
560 		if (dip && dip->obj_localization == ip->obj_localization) {
561 			ip->pfsm = dip->pfsm;
562 			hammer_ref(&ip->pfsm->lock);
563 		} else {
564 			ip->pfsm = hammer_load_pseudofs(trans,
565 							ip->obj_localization,
566 							errorp);
567 			*errorp = 0;	/* ignore ENOENT */
568 		}
569 	}
570 
571 	/*
572 	 * The inode is placed on the red-black tree and will be synced to
573 	 * the media when flushed or by the filesystem sync.  If this races
574 	 * another instantiation/lookup the insertion will fail.
575 	 */
576 	if (*errorp == 0) {
577 		if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
578 			hammer_free_inode(ip);
579 			hammer_done_cursor(&cursor);
580 			goto loop;
581 		}
582 		ip->flags |= HAMMER_INODE_ONDISK;
583 	} else {
584 		if (ip->flags & HAMMER_INODE_RSV_INODES) {
585 			ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
586 			--hmp->rsv_inodes;
587 		}
588 
589 		hammer_free_inode(ip);
590 		ip = NULL;
591 	}
592 	hammer_done_cursor(&cursor);
593 
594 	/*
595 	 * NEWINODE is only set if the inode becomes dirty later,
596 	 * setting it here just leads to unnecessary stalls.
597 	 *
598 	 * trans->flags |= HAMMER_TRANSF_NEWINODE;
599 	 */
600 	return (ip);
601 }
602 
603 /*
604  * Get a dummy inode to placemark a broken directory entry.
605  */
606 hammer_inode_t
607 hammer_get_dummy_inode(hammer_transaction_t trans, hammer_inode_t dip,
608 		 int64_t obj_id, hammer_tid_t asof, uint32_t localization,
609 		 int flags, int *errorp)
610 {
611 	hammer_mount_t hmp = trans->hmp;
612 	hammer_inode_t ip;
613 
614 	/*
615 	 * Determine if we already have an inode cached.  If we do then
616 	 * we are golden.
617 	 *
618 	 * If we find an inode with no vnode we have to mark the
619 	 * transaction such that hammer_inode_waitreclaims() is
620 	 * called later on to avoid building up an infinite number
621 	 * of inodes.  Otherwise we can continue to * add new inodes
622 	 * faster then they can be disposed of, even with the tsleep
623 	 * delay.
624 	 *
625 	 * If we find a non-fake inode we return an error.  Only fake
626 	 * inodes can be returned by this routine.
627 	 */
628 loop:
629 	*errorp = 0;
630 	ip = __hammer_find_inode(trans, obj_id, asof, localization);
631 	if (ip) {
632 		if ((ip->flags & HAMMER_INODE_DUMMY) == 0) {
633 			*errorp = ENOENT;
634 			return(NULL);
635 		}
636 		hammer_ref(&ip->lock);
637 		return(ip);
638 	}
639 
640 	/*
641 	 * Allocate a new inode structure and deal with races later.
642 	 */
643 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
644 	++hammer_count_inodes;
645 	++hmp->count_inodes;
646 	ip->obj_id = obj_id;
647 	ip->obj_asof = asof;
648 	ip->obj_localization = localization;
649 	ip->hmp = hmp;
650 	ip->flags = flags | HAMMER_INODE_RO | HAMMER_INODE_DUMMY;
651 	ip->cache[0].ip = ip;
652 	ip->cache[1].ip = ip;
653 	ip->cache[2].ip = ip;
654 	ip->cache[3].ip = ip;
655 	ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
656 		HAMMER_MAX_KEY;
657 	RB_INIT(&ip->rec_tree);
658 	TAILQ_INIT(&ip->target_list);
659 	hammer_ref(&ip->lock);
660 
661 	/*
662 	 * Populate the dummy inode.  Leave everything zero'd out.
663 	 *
664 	 * (ip->ino_leaf and ip->ino_data)
665 	 *
666 	 * Make the dummy inode a FIFO object which most copy programs
667 	 * will properly ignore.
668 	 */
669 	ip->save_trunc_off = ip->ino_data.size;
670 	ip->ino_data.obj_type = HAMMER_OBJTYPE_FIFO;
671 
672 	/*
673 	 * Locate and assign the pseudofs management structure to
674 	 * the inode.
675 	 */
676 	if (dip && dip->obj_localization == ip->obj_localization) {
677 		ip->pfsm = dip->pfsm;
678 		hammer_ref(&ip->pfsm->lock);
679 	} else {
680 		ip->pfsm = hammer_load_pseudofs(trans, ip->obj_localization,
681 						errorp);
682 		*errorp = 0;	/* ignore ENOENT */
683 	}
684 
685 	/*
686 	 * The inode is placed on the red-black tree and will be synced to
687 	 * the media when flushed or by the filesystem sync.  If this races
688 	 * another instantiation/lookup the insertion will fail.
689 	 *
690 	 * NOTE: Do not set HAMMER_INODE_ONDISK.  The inode is a fake.
691 	 */
692 	if (*errorp == 0) {
693 		if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
694 			hammer_free_inode(ip);
695 			goto loop;
696 		}
697 	} else {
698 		if (ip->flags & HAMMER_INODE_RSV_INODES) {
699 			ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
700 			--hmp->rsv_inodes;
701 		}
702 		hammer_free_inode(ip);
703 		ip = NULL;
704 	}
705 	trans->flags |= HAMMER_TRANSF_NEWINODE;
706 	return (ip);
707 }
708 
709 /*
710  * Return a referenced inode only if it is in our inode cache.
711  * Dummy inodes do not count.
712  */
713 hammer_inode_t
714 hammer_find_inode(hammer_transaction_t trans, int64_t obj_id,
715 		  hammer_tid_t asof, uint32_t localization)
716 {
717 	hammer_inode_t ip;
718 
719 	ip = __hammer_find_inode(trans, obj_id, asof, localization);
720 	if (ip) {
721 		if (ip->flags & HAMMER_INODE_DUMMY)
722 			ip = NULL;
723 		else
724 			hammer_ref(&ip->lock);
725 	}
726 	return(ip);
727 }
728 
729 /*
730  * Return a referenced inode only if it is in our inode cache.
731  * This function does not reference inode.
732  */
733 static hammer_inode_t
734 __hammer_find_inode(hammer_transaction_t trans, int64_t obj_id,
735 		  hammer_tid_t asof, uint32_t localization)
736 {
737 	hammer_mount_t hmp = trans->hmp;
738 	struct hammer_inode_info iinfo;
739 	hammer_inode_t ip;
740 
741 	iinfo.obj_id = obj_id;
742 	iinfo.obj_asof = asof;
743 	iinfo.obj_localization = localization;
744 
745 	ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
746 
747 	return(ip);
748 }
749 
750 /*
751  * Create a new filesystem object, returning the inode in *ipp.  The
752  * returned inode will be referenced.  The inode is created in-memory.
753  *
754  * If pfsm is non-NULL the caller wishes to create the root inode for
755  * a non-root PFS.
756  */
757 int
758 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
759 		    struct ucred *cred,
760 		    hammer_inode_t dip, const char *name, int namelen,
761 		    hammer_pseudofs_inmem_t pfsm, hammer_inode_t *ipp)
762 {
763 	hammer_mount_t hmp;
764 	hammer_inode_t ip;
765 	uid_t xuid;
766 	int error;
767 	int64_t namekey;
768 	uint32_t dummy;
769 
770 	hmp = trans->hmp;
771 
772 	/*
773 	 * Disallow the creation of new inodes in directories which
774 	 * have been deleted.  In HAMMER, this will cause a record
775 	 * syncing assertion later on in the flush code.
776 	 */
777 	if (dip && dip->ino_data.nlinks == 0) {
778 		*ipp = NULL;
779                 return (EINVAL);
780 	}
781 
782 	/*
783 	 * Allocate inode
784 	 */
785 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
786 	++hammer_count_inodes;
787 	++hmp->count_inodes;
788 	trans->flags |= HAMMER_TRANSF_NEWINODE;
789 
790 	if (pfsm) {
791 		KKASSERT(pfsm->localization != HAMMER_DEF_LOCALIZATION);
792 		ip->obj_id = HAMMER_OBJID_ROOT;
793 		ip->obj_localization = pfsm->localization;
794 	} else {
795 		KKASSERT(dip != NULL);
796 		namekey = hammer_direntry_namekey(dip, name, namelen, &dummy);
797 		ip->obj_id = hammer_alloc_objid(hmp, dip, namekey);
798 		ip->obj_localization = dip->obj_localization;
799 	}
800 
801 	KKASSERT(ip->obj_id != 0);
802 	ip->obj_asof = hmp->asof;
803 	ip->hmp = hmp;
804 	ip->flush_state = HAMMER_FST_IDLE;
805 	ip->flags = HAMMER_INODE_DDIRTY |
806 		    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME;
807 	ip->cache[0].ip = ip;
808 	ip->cache[1].ip = ip;
809 	ip->cache[2].ip = ip;
810 	ip->cache[3].ip = ip;
811 
812 	ip->trunc_off = HAMMER_MAX_KEY;
813 	/* ip->save_trunc_off = 0; (already zero) */
814 	RB_INIT(&ip->rec_tree);
815 	TAILQ_INIT(&ip->target_list);
816 
817 	ip->ino_data.atime = trans->time;
818 	ip->ino_data.mtime = trans->time;
819 	ip->ino_data.size = 0;
820 	ip->ino_data.nlinks = 0;
821 
822 	/*
823 	 * A nohistory designator on the parent directory is inherited by
824 	 * the child.  We will do this even for pseudo-fs creation... the
825 	 * sysad can turn it off.
826 	 */
827 	if (dip) {
828 		ip->ino_data.uflags = dip->ino_data.uflags &
829 				      (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
830 	}
831 
832 	ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
833 	ip->ino_leaf.base.localization = ip->obj_localization |
834 					 HAMMER_LOCALIZE_INODE;
835 	ip->ino_leaf.base.obj_id = ip->obj_id;
836 	ip->ino_leaf.base.key = 0;
837 	ip->ino_leaf.base.create_tid = 0;
838 	ip->ino_leaf.base.delete_tid = 0;
839 	ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
840 	ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
841 
842 	ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
843 	ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
844 	ip->ino_data.mode = vap->va_mode;
845 	ip->ino_data.ctime = trans->time;
846 
847 	/*
848 	 * If we are running version 2 or greater directory entries are
849 	 * inode-localized instead of data-localized.
850 	 */
851 	if (trans->hmp->version >= HAMMER_VOL_VERSION_TWO) {
852 		if (ip->ino_leaf.base.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
853 			ip->ino_data.cap_flags |=
854 				HAMMER_INODE_CAP_DIR_LOCAL_INO;
855 		}
856 	}
857 	if (trans->hmp->version >= HAMMER_VOL_VERSION_SIX) {
858 		if (ip->ino_leaf.base.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
859 			ip->ino_data.cap_flags |=
860 				HAMMER_INODE_CAP_DIRHASH_ALG1;
861 		}
862 	}
863 
864 	/*
865 	 * Setup the ".." pointer.  This only needs to be done for directories
866 	 * but we do it for all objects as a recovery aid if dip exists.
867 	 * The inode is probably a PFS root if dip is NULL.
868 	 */
869 	if (dip)
870 		ip->ino_data.parent_obj_id = dip->ino_leaf.base.obj_id;
871 
872 	switch(ip->ino_leaf.base.obj_type) {
873 	case HAMMER_OBJTYPE_CDEV:
874 	case HAMMER_OBJTYPE_BDEV:
875 		ip->ino_data.rmajor = vap->va_rmajor;
876 		ip->ino_data.rminor = vap->va_rminor;
877 		break;
878 	default:
879 		break;
880 	}
881 
882 	/*
883 	 * Calculate default uid/gid and overwrite with information from
884 	 * the vap.
885 	 */
886 	if (dip) {
887 		xuid = hammer_to_unix_xid(&dip->ino_data.uid);
888 		xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode,
889 					     xuid, cred, &vap->va_mode);
890 	} else {
891 		xuid = 0;
892 	}
893 	ip->ino_data.mode = vap->va_mode;
894 
895 	if (vap->va_vaflags & VA_UID_UUID_VALID)
896 		ip->ino_data.uid = vap->va_uid_uuid;
897 	else if (vap->va_uid != (uid_t)VNOVAL)
898 		hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
899 	else
900 		hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
901 
902 	if (vap->va_vaflags & VA_GID_UUID_VALID)
903 		ip->ino_data.gid = vap->va_gid_uuid;
904 	else if (vap->va_gid != (gid_t)VNOVAL)
905 		hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
906 	else if (dip)
907 		ip->ino_data.gid = dip->ino_data.gid;
908 
909 	hammer_ref(&ip->lock);
910 
911 	if (pfsm) {
912 		ip->pfsm = pfsm;
913 		hammer_ref(&pfsm->lock);
914 		error = 0;
915 	} else if (dip->obj_localization == ip->obj_localization) {
916 		ip->pfsm = dip->pfsm;
917 		hammer_ref(&ip->pfsm->lock);
918 		error = 0;
919 	} else {
920 		ip->pfsm = hammer_load_pseudofs(trans,
921 						ip->obj_localization,
922 						&error);
923 		error = 0;	/* ignore ENOENT */
924 	}
925 
926 	if (error) {
927 		hammer_free_inode(ip);
928 		ip = NULL;
929 	} else if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
930 		hpanic("duplicate obj_id %jx", (intmax_t)ip->obj_id);
931 		/* not reached */
932 		hammer_free_inode(ip);
933 	}
934 	*ipp = ip;
935 	return(error);
936 }
937 
938 /*
939  * Final cleanup / freeing of an inode structure
940  */
941 static void
942 hammer_free_inode(hammer_inode_t ip)
943 {
944 	hammer_mount_t hmp;
945 
946 	hmp = ip->hmp;
947 	KKASSERT(hammer_oneref(&ip->lock));
948 	hammer_uncache_node(&ip->cache[0]);
949 	hammer_uncache_node(&ip->cache[1]);
950 	hammer_uncache_node(&ip->cache[2]);
951 	hammer_uncache_node(&ip->cache[3]);
952 	hammer_inode_wakereclaims(ip);
953 	if (ip->objid_cache)
954 		hammer_clear_objid(ip);
955 	--hammer_count_inodes;
956 	--hmp->count_inodes;
957 	if (ip->pfsm) {
958 		hammer_rel_pseudofs(hmp, ip->pfsm);
959 		ip->pfsm = NULL;
960 	}
961 	kfree(ip, hmp->m_inodes);
962 }
963 
964 /*
965  * Retrieve pseudo-fs data.  NULL will never be returned.
966  *
967  * If an error occurs *errorp will be set and a default template is returned,
968  * otherwise *errorp is set to 0.  Typically when an error occurs it will
969  * be ENOENT.
970  */
971 hammer_pseudofs_inmem_t
972 hammer_load_pseudofs(hammer_transaction_t trans,
973 		     uint32_t localization, int *errorp)
974 {
975 	hammer_mount_t hmp = trans->hmp;
976 	hammer_inode_t ip;
977 	hammer_pseudofs_inmem_t pfsm;
978 	struct hammer_cursor cursor;
979 	int bytes;
980 
981 retry:
982 	pfsm = RB_LOOKUP(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, localization);
983 	if (pfsm) {
984 		hammer_ref(&pfsm->lock);
985 		*errorp = 0;
986 		return(pfsm);
987 	}
988 
989 	/*
990 	 * PFS records are associated with the root inode (not the PFS root
991 	 * inode, but the real root).  Avoid an infinite recursion if loading
992 	 * the PFS for the real root.
993 	 */
994 	if (localization) {
995 		ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT,
996 				      HAMMER_MAX_TID,
997 				      HAMMER_DEF_LOCALIZATION, 0, errorp);
998 	} else {
999 		ip = NULL;
1000 	}
1001 
1002 	pfsm = kmalloc(sizeof(*pfsm), hmp->m_misc, M_WAITOK | M_ZERO);
1003 	pfsm->localization = localization;
1004 	pfsm->pfsd.unique_uuid = trans->rootvol->ondisk->vol_fsid;
1005 	pfsm->pfsd.shared_uuid = pfsm->pfsd.unique_uuid;
1006 
1007 	hammer_init_cursor(trans, &cursor, (ip ? &ip->cache[1] : NULL), ip);
1008 	cursor.key_beg.localization = HAMMER_DEF_LOCALIZATION |
1009 				      HAMMER_LOCALIZE_MISC;
1010 	cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
1011 	cursor.key_beg.create_tid = 0;
1012 	cursor.key_beg.delete_tid = 0;
1013 	cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
1014 	cursor.key_beg.obj_type = 0;
1015 	cursor.key_beg.key = localization;
1016 	cursor.asof = HAMMER_MAX_TID;
1017 	cursor.flags |= HAMMER_CURSOR_ASOF;
1018 
1019 	if (ip)
1020 		*errorp = hammer_ip_lookup(&cursor);
1021 	else
1022 		*errorp = hammer_btree_lookup(&cursor);
1023 	if (*errorp == 0) {
1024 		*errorp = hammer_ip_resolve_data(&cursor);
1025 		if (*errorp == 0) {
1026 			if (hammer_is_pfs_deleted(&cursor.data->pfsd)) {
1027 				*errorp = ENOENT;
1028 			} else {
1029 				bytes = cursor.leaf->data_len;
1030 				if (bytes > sizeof(pfsm->pfsd))
1031 					bytes = sizeof(pfsm->pfsd);
1032 				bcopy(cursor.data, &pfsm->pfsd, bytes);
1033 			}
1034 		}
1035 	}
1036 	hammer_done_cursor(&cursor);
1037 
1038 	pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
1039 	hammer_ref(&pfsm->lock);
1040 	if (ip)
1041 		hammer_rel_inode(ip, 0);
1042 	if (RB_INSERT(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm)) {
1043 		kfree(pfsm, hmp->m_misc);
1044 		goto retry;
1045 	}
1046 	return(pfsm);
1047 }
1048 
1049 /*
1050  * Store pseudo-fs data.  The backend will automatically delete any prior
1051  * on-disk pseudo-fs data but we have to delete in-memory versions.
1052  */
1053 int
1054 hammer_save_pseudofs(hammer_transaction_t trans, hammer_pseudofs_inmem_t pfsm)
1055 {
1056 	struct hammer_cursor cursor;
1057 	hammer_record_t record;
1058 	hammer_inode_t ip;
1059 	int error;
1060 
1061 	/*
1062 	 * PFS records are associated with the root inode (not the PFS root
1063 	 * inode, but the real root).
1064 	 */
1065 	ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
1066 			      HAMMER_DEF_LOCALIZATION, 0, &error);
1067 retry:
1068 	pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
1069 	hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
1070 	cursor.key_beg.localization = ip->obj_localization |
1071 				      HAMMER_LOCALIZE_MISC;
1072 	cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
1073 	cursor.key_beg.create_tid = 0;
1074 	cursor.key_beg.delete_tid = 0;
1075 	cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
1076 	cursor.key_beg.obj_type = 0;
1077 	cursor.key_beg.key = pfsm->localization;
1078 	cursor.asof = HAMMER_MAX_TID;
1079 	cursor.flags |= HAMMER_CURSOR_ASOF;
1080 
1081 	/*
1082 	 * Replace any in-memory version of the record.
1083 	 */
1084 	error = hammer_ip_lookup(&cursor);
1085 	if (error == 0 && hammer_cursor_inmem(&cursor)) {
1086 		record = cursor.iprec;
1087 		if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
1088 			KKASSERT(cursor.deadlk_rec == NULL);
1089 			hammer_ref(&record->lock);
1090 			cursor.deadlk_rec = record;
1091 			error = EDEADLK;
1092 		} else {
1093 			record->flags |= HAMMER_RECF_DELETED_FE;
1094 			error = 0;
1095 		}
1096 	}
1097 
1098 	/*
1099 	 * Allocate replacement general record.  The backend flush will
1100 	 * delete any on-disk version of the record.
1101 	 */
1102 	if (error == 0 || error == ENOENT) {
1103 		record = hammer_alloc_mem_record(ip, sizeof(pfsm->pfsd));
1104 		record->type = HAMMER_MEM_RECORD_GENERAL;
1105 
1106 		record->leaf.base.localization = ip->obj_localization |
1107 						 HAMMER_LOCALIZE_MISC;
1108 		record->leaf.base.rec_type = HAMMER_RECTYPE_PFS;
1109 		record->leaf.base.key = pfsm->localization;
1110 		record->leaf.data_len = sizeof(pfsm->pfsd);
1111 		bcopy(&pfsm->pfsd, record->data, sizeof(pfsm->pfsd));
1112 		error = hammer_ip_add_record(trans, record);
1113 	}
1114 	hammer_done_cursor(&cursor);
1115 	if (error == EDEADLK)
1116 		goto retry;
1117 	hammer_rel_inode(ip, 0);
1118 	return(error);
1119 }
1120 
1121 /*
1122  * Create a root directory for a PFS if one does not alredy exist.
1123  *
1124  * The PFS root stands alone so we must also bump the nlinks count
1125  * to prevent it from being destroyed on release.
1126  *
1127  * Make sure a caller isn't creating a PFS from non-root PFS.
1128  */
1129 int
1130 hammer_mkroot_pseudofs(hammer_transaction_t trans, struct ucred *cred,
1131 		       hammer_pseudofs_inmem_t pfsm, hammer_inode_t dip)
1132 {
1133 	hammer_inode_t ip;
1134 	struct vattr vap;
1135 	int error;
1136 
1137 	ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
1138 			      pfsm->localization, 0, &error);
1139 	if (ip == NULL) {
1140 		if (lo_to_pfs(dip->obj_localization) != HAMMER_ROOT_PFSID) {
1141 			hmkprintf(trans->hmp,
1142 				"Warning: creating a PFS from non-root PFS "
1143 				"is not allowed\n");
1144 			return(EINVAL);
1145 		}
1146 		vattr_null(&vap);
1147 		vap.va_mode = 0755;
1148 		vap.va_type = VDIR;
1149 		error = hammer_create_inode(trans, &vap, cred,
1150 					    NULL, NULL, 0,
1151 					    pfsm, &ip);
1152 		if (error == 0) {
1153 			++ip->ino_data.nlinks;
1154 			hammer_modify_inode(trans, ip, HAMMER_INODE_DDIRTY);
1155 		}
1156 	}
1157 	if (ip)
1158 		hammer_rel_inode(ip, 0);
1159 	return(error);
1160 }
1161 
1162 /*
1163  * Unload any vnodes & inodes associated with a PFS, return ENOTEMPTY
1164  * if we are unable to disassociate all the inodes.
1165  */
1166 static
1167 int
1168 hammer_unload_pseudofs_callback(hammer_inode_t ip, void *data)
1169 {
1170 	int res;
1171 
1172 	hammer_ref(&ip->lock);
1173 	if (ip->vp && (ip->vp->v_flag & VPFSROOT)) {
1174 		/*
1175 		 * The hammer pfs-upgrade directive itself might have the
1176 		 * root of the pfs open.  Just allow it.
1177 		 */
1178 		res = 0;
1179 	} else {
1180 		/*
1181 		 * Don't allow any subdirectories or files to be open.
1182 		 */
1183 		if (hammer_isactive(&ip->lock) == 2 && ip->vp)
1184 			vclean_unlocked(ip->vp);
1185 		if (hammer_isactive(&ip->lock) == 1 && ip->vp == NULL)
1186 			res = 0;
1187 		else
1188 			res = -1;	/* stop, someone is using the inode */
1189 	}
1190 	hammer_rel_inode(ip, 0);
1191 	return(res);
1192 }
1193 
1194 int
1195 hammer_unload_pseudofs(hammer_transaction_t trans, uint32_t localization)
1196 {
1197 	int res;
1198 	int try;
1199 
1200 	for (try = res = 0; try < 4; ++try) {
1201 		res = hammer_ino_rb_tree_RB_SCAN(&trans->hmp->rb_inos_root,
1202 					   hammer_inode_pfs_cmp,
1203 					   hammer_unload_pseudofs_callback,
1204 					   &localization);
1205 		if (res == 0 && try > 1)
1206 			break;
1207 		hammer_flusher_sync(trans->hmp);
1208 	}
1209 	if (res != 0)
1210 		res = ENOTEMPTY;
1211 	return(res);
1212 }
1213 
1214 
1215 /*
1216  * Release a reference on a PFS
1217  */
1218 void
1219 hammer_rel_pseudofs(hammer_mount_t hmp, hammer_pseudofs_inmem_t pfsm)
1220 {
1221 	hammer_rel(&pfsm->lock);
1222 	if (hammer_norefs(&pfsm->lock)) {
1223 		RB_REMOVE(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm);
1224 		kfree(pfsm, hmp->m_misc);
1225 	}
1226 }
1227 
1228 /*
1229  * Called by hammer_sync_inode().
1230  */
1231 static int
1232 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
1233 {
1234 	hammer_transaction_t trans = cursor->trans;
1235 	hammer_record_t record;
1236 	int error;
1237 	int redirty;
1238 
1239 retry:
1240 	error = 0;
1241 
1242 	/*
1243 	 * If the inode has a presence on-disk then locate it and mark
1244 	 * it deleted, setting DELONDISK.
1245 	 *
1246 	 * The record may or may not be physically deleted, depending on
1247 	 * the retention policy.
1248 	 */
1249 	if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
1250 	    HAMMER_INODE_ONDISK) {
1251 		hammer_normalize_cursor(cursor);
1252 		cursor->key_beg.localization = ip->obj_localization |
1253 					       HAMMER_LOCALIZE_INODE;
1254 		cursor->key_beg.obj_id = ip->obj_id;
1255 		cursor->key_beg.key = 0;
1256 		cursor->key_beg.create_tid = 0;
1257 		cursor->key_beg.delete_tid = 0;
1258 		cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1259 		cursor->key_beg.obj_type = 0;
1260 		cursor->asof = ip->obj_asof;
1261 		cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1262 		cursor->flags |= HAMMER_CURSOR_ASOF;
1263 		cursor->flags |= HAMMER_CURSOR_BACKEND;
1264 
1265 		error = hammer_btree_lookup(cursor);
1266 		if (hammer_debug_inode)
1267 			hdkprintf("IPDEL %p %08x %d\n", ip, ip->flags, error);
1268 
1269 		if (error == 0) {
1270 			error = hammer_ip_delete_record(cursor, ip, trans->tid);
1271 			if (hammer_debug_inode)
1272 				hdkprintf("error %d\n", error);
1273 			if (error == 0) {
1274 				ip->flags |= HAMMER_INODE_DELONDISK;
1275 			}
1276 			if (cursor->node)
1277 				hammer_cache_node(&ip->cache[0], cursor->node);
1278 		}
1279 		if (error == EDEADLK) {
1280 			hammer_done_cursor(cursor);
1281 			error = hammer_init_cursor(trans, cursor,
1282 						   &ip->cache[0], ip);
1283 			if (hammer_debug_inode)
1284 				hdkprintf("IPDED %p %d\n", ip, error);
1285 			if (error == 0)
1286 				goto retry;
1287 		}
1288 	}
1289 
1290 	/*
1291 	 * Ok, write out the initial record or a new record (after deleting
1292 	 * the old one), unless the DELETED flag is set.  This routine will
1293 	 * clear DELONDISK if it writes out a record.
1294 	 *
1295 	 * Update our inode statistics if this is the first application of
1296 	 * the inode on-disk.
1297 	 */
1298 	if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
1299 		/*
1300 		 * Generate a record and write it to the media.  We clean-up
1301 		 * the state before releasing so we do not have to set-up
1302 		 * a flush_group.
1303 		 */
1304 		record = hammer_alloc_mem_record(ip, 0);
1305 		record->type = HAMMER_MEM_RECORD_INODE;
1306 		record->flush_state = HAMMER_FST_FLUSH;
1307 		record->leaf = ip->sync_ino_leaf;
1308 		record->leaf.base.create_tid = trans->tid;
1309 		record->leaf.data_len = sizeof(ip->sync_ino_data);
1310 		record->leaf.create_ts = trans->time32;
1311 		record->data = (void *)&ip->sync_ino_data;
1312 		record->flags |= HAMMER_RECF_INTERLOCK_BE;
1313 
1314 		/*
1315 		 * If this flag is set we cannot sync the new file size
1316 		 * because we haven't finished related truncations.  The
1317 		 * inode will be flushed in another flush group to finish
1318 		 * the job.
1319 		 */
1320 		if ((ip->flags & HAMMER_INODE_WOULDBLOCK) &&
1321 		    ip->sync_ino_data.size != ip->ino_data.size) {
1322 			redirty = 1;
1323 			ip->sync_ino_data.size = ip->ino_data.size;
1324 		} else {
1325 			redirty = 0;
1326 		}
1327 
1328 		for (;;) {
1329 			error = hammer_ip_sync_record_cursor(cursor, record);
1330 			if (hammer_debug_inode)
1331 				hdkprintf("GENREC %p rec %08x %d\n",
1332 					ip, record->flags, error);
1333 			if (error != EDEADLK)
1334 				break;
1335 			hammer_done_cursor(cursor);
1336 			error = hammer_init_cursor(trans, cursor,
1337 						   &ip->cache[0], ip);
1338 			if (hammer_debug_inode)
1339 				hdkprintf("GENREC reinit %d\n", error);
1340 			if (error)
1341 				break;
1342 		}
1343 
1344 		/*
1345 		 * Note:  The record was never on the inode's record tree
1346 		 * so just wave our hands importantly and destroy it.
1347 		 */
1348 		record->flags |= HAMMER_RECF_COMMITTED;
1349 		record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
1350 		record->flush_state = HAMMER_FST_IDLE;
1351 		++ip->rec_generation;
1352 		hammer_rel_mem_record(record);
1353 
1354 		/*
1355 		 * Finish up.
1356 		 */
1357 		if (error == 0) {
1358 			if (hammer_debug_inode)
1359 				hdkprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
1360 			ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1361 					    HAMMER_INODE_SDIRTY |
1362 					    HAMMER_INODE_ATIME |
1363 					    HAMMER_INODE_MTIME);
1364 			ip->flags &= ~HAMMER_INODE_DELONDISK;
1365 			if (redirty)
1366 				ip->sync_flags |= HAMMER_INODE_DDIRTY;
1367 
1368 			/*
1369 			 * Root volume count of inodes
1370 			 */
1371 			hammer_sync_lock_sh(trans);
1372 			if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
1373 				hammer_modify_volume_field(trans,
1374 							   trans->rootvol,
1375 							   vol0_stat_inodes);
1376 				++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1377 				hammer_modify_volume_done(trans->rootvol);
1378 				ip->flags |= HAMMER_INODE_ONDISK;
1379 				if (hammer_debug_inode)
1380 					hdkprintf("NOWONDISK %p\n", ip);
1381 			}
1382 			hammer_sync_unlock(trans);
1383 		}
1384 	}
1385 
1386 	/*
1387 	 * If the inode has been destroyed, clean out any left-over flags
1388 	 * that may have been set by the frontend.
1389 	 */
1390 	if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
1391 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1392 				    HAMMER_INODE_SDIRTY |
1393 				    HAMMER_INODE_ATIME |
1394 				    HAMMER_INODE_MTIME);
1395 	}
1396 	return(error);
1397 }
1398 
1399 /*
1400  * Update only the itimes fields.
1401  *
1402  * ATIME can be updated without generating any UNDO.  MTIME is updated
1403  * with UNDO so it is guaranteed to be synchronized properly in case of
1404  * a crash.
1405  *
1406  * Neither field is included in the B-Tree leaf element's CRC, which is how
1407  * we can get away with updating ATIME the way we do.
1408  */
1409 static int
1410 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
1411 {
1412 	hammer_transaction_t trans = cursor->trans;
1413 	int error;
1414 
1415 retry:
1416 	if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) !=
1417 	    HAMMER_INODE_ONDISK) {
1418 		return(0);
1419 	}
1420 
1421 	hammer_normalize_cursor(cursor);
1422 	cursor->key_beg.localization = ip->obj_localization |
1423 				       HAMMER_LOCALIZE_INODE;
1424 	cursor->key_beg.obj_id = ip->obj_id;
1425 	cursor->key_beg.key = 0;
1426 	cursor->key_beg.create_tid = 0;
1427 	cursor->key_beg.delete_tid = 0;
1428 	cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1429 	cursor->key_beg.obj_type = 0;
1430 	cursor->asof = ip->obj_asof;
1431 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1432 	cursor->flags |= HAMMER_CURSOR_ASOF;
1433 	cursor->flags |= HAMMER_CURSOR_GET_DATA;
1434 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1435 
1436 	error = hammer_btree_lookup(cursor);
1437 	if (error == 0) {
1438 		hammer_cache_node(&ip->cache[0], cursor->node);
1439 		if (ip->sync_flags & HAMMER_INODE_MTIME) {
1440 			/*
1441 			 * Updating MTIME requires an UNDO.  Just cover
1442 			 * both atime and mtime.
1443 			 */
1444 			hammer_sync_lock_sh(trans);
1445 			hammer_modify_buffer(trans, cursor->data_buffer,
1446 				&cursor->data->inode.mtime,
1447 				sizeof(cursor->data->inode.atime) +
1448 				sizeof(cursor->data->inode.mtime));
1449 			cursor->data->inode.atime = ip->sync_ino_data.atime;
1450 			cursor->data->inode.mtime = ip->sync_ino_data.mtime;
1451 			hammer_modify_buffer_done(cursor->data_buffer);
1452 			hammer_sync_unlock(trans);
1453 		} else if (ip->sync_flags & HAMMER_INODE_ATIME) {
1454 			/*
1455 			 * Updating atime only can be done in-place with
1456 			 * no UNDO.
1457 			 */
1458 			hammer_sync_lock_sh(trans);
1459 			hammer_modify_buffer_noundo(trans, cursor->data_buffer);
1460 			cursor->data->inode.atime = ip->sync_ino_data.atime;
1461 			hammer_modify_buffer_done(cursor->data_buffer);
1462 			hammer_sync_unlock(trans);
1463 		}
1464 		ip->sync_flags &= ~(HAMMER_INODE_ATIME | HAMMER_INODE_MTIME);
1465 	}
1466 	if (error == EDEADLK) {
1467 		hammer_done_cursor(cursor);
1468 		error = hammer_init_cursor(trans, cursor, &ip->cache[0], ip);
1469 		if (error == 0)
1470 			goto retry;
1471 	}
1472 	return(error);
1473 }
1474 
1475 /*
1476  * Release a reference on an inode, flush as requested.
1477  *
1478  * On the last reference we queue the inode to the flusher for its final
1479  * disposition.
1480  */
1481 void
1482 hammer_rel_inode(hammer_inode_t ip, int flush)
1483 {
1484 	/*
1485 	 * Handle disposition when dropping the last ref.
1486 	 */
1487 	for (;;) {
1488 		if (hammer_oneref(&ip->lock)) {
1489 			/*
1490 			 * Determine whether on-disk action is needed for
1491 			 * the inode's final disposition.
1492 			 */
1493 			KKASSERT(ip->vp == NULL);
1494 			hammer_inode_unloadable_check(ip, 0);
1495 			if (ip->flags & HAMMER_INODE_MODMASK) {
1496 				hammer_flush_inode(ip, 0);
1497 			} else if (hammer_oneref(&ip->lock)) {
1498 				hammer_unload_inode(ip);
1499 				break;
1500 			}
1501 		} else {
1502 			if (flush)
1503 				hammer_flush_inode(ip, 0);
1504 
1505 			/*
1506 			 * The inode still has multiple refs, try to drop
1507 			 * one ref.
1508 			 */
1509 			KKASSERT(hammer_isactive(&ip->lock) >= 1);
1510 			if (hammer_isactive(&ip->lock) > 1) {
1511 				hammer_rel(&ip->lock);
1512 				break;
1513 			}
1514 		}
1515 	}
1516 }
1517 
1518 /*
1519  * Unload and destroy the specified inode.  Must be called with one remaining
1520  * reference.  The reference is disposed of.
1521  *
1522  * The inode must be completely clean.
1523  */
1524 static int
1525 hammer_unload_inode(hammer_inode_t ip)
1526 {
1527 	hammer_mount_t hmp = ip->hmp;
1528 
1529 	KASSERT(hammer_oneref(&ip->lock),
1530 		("hammer_unload_inode: %d refs", hammer_isactive(&ip->lock)));
1531 	KKASSERT(ip->vp == NULL);
1532 	KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
1533 	KKASSERT(ip->cursor_ip_refs == 0);
1534 	KKASSERT(hammer_notlocked(&ip->lock));
1535 	KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
1536 
1537 	KKASSERT(RB_EMPTY(&ip->rec_tree));
1538 	KKASSERT(TAILQ_EMPTY(&ip->target_list));
1539 
1540 	if (ip->flags & HAMMER_INODE_RDIRTY) {
1541 		RB_REMOVE(hammer_redo_rb_tree, &hmp->rb_redo_root, ip);
1542 		ip->flags &= ~HAMMER_INODE_RDIRTY;
1543 	}
1544 	RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
1545 
1546 	hammer_free_inode(ip);
1547 	return(0);
1548 }
1549 
1550 /*
1551  * Called during unmounting if a critical error occured.  The in-memory
1552  * inode and all related structures are destroyed.
1553  *
1554  * If a critical error did not occur the unmount code calls the standard
1555  * release and asserts that the inode is gone.
1556  */
1557 int
1558 hammer_destroy_inode_callback(hammer_inode_t ip, void *data __unused)
1559 {
1560 	hammer_record_t rec;
1561 
1562 	/*
1563 	 * Get rid of the inodes in-memory records, regardless of their
1564 	 * state, and clear the mod-mask.
1565 	 */
1566 	while ((rec = TAILQ_FIRST(&ip->target_list)) != NULL) {
1567 		TAILQ_REMOVE(&ip->target_list, rec, target_entry);
1568 		rec->target_ip = NULL;
1569 		if (rec->flush_state == HAMMER_FST_SETUP)
1570 			rec->flush_state = HAMMER_FST_IDLE;
1571 	}
1572 	while ((rec = RB_ROOT(&ip->rec_tree)) != NULL) {
1573 		if (rec->flush_state == HAMMER_FST_FLUSH)
1574 			--rec->flush_group->refs;
1575 		else
1576 			hammer_ref(&rec->lock);
1577 		KKASSERT(hammer_oneref(&rec->lock));
1578 		rec->flush_state = HAMMER_FST_IDLE;
1579 		rec->flush_group = NULL;
1580 		rec->flags |= HAMMER_RECF_DELETED_FE; /* wave hands */
1581 		rec->flags |= HAMMER_RECF_DELETED_BE; /* wave hands */
1582 		++ip->rec_generation;
1583 		hammer_rel_mem_record(rec);
1584 	}
1585 	ip->flags &= ~HAMMER_INODE_MODMASK;
1586 	ip->sync_flags &= ~HAMMER_INODE_MODMASK;
1587 	KKASSERT(ip->vp == NULL);
1588 
1589 	/*
1590 	 * Remove the inode from any flush group, force it idle.  FLUSH
1591 	 * and SETUP states have an inode ref.
1592 	 */
1593 	switch(ip->flush_state) {
1594 	case HAMMER_FST_FLUSH:
1595 		RB_REMOVE(hammer_fls_rb_tree, &ip->flush_group->flush_tree, ip);
1596 		--ip->flush_group->refs;
1597 		ip->flush_group = NULL;
1598 		/* fall through */
1599 	case HAMMER_FST_SETUP:
1600 		hammer_rel(&ip->lock);
1601 		ip->flush_state = HAMMER_FST_IDLE;
1602 		/* fall through */
1603 	case HAMMER_FST_IDLE:
1604 		break;
1605 	}
1606 
1607 	/*
1608 	 * There shouldn't be any associated vnode.  The unload needs at
1609 	 * least one ref, if we do have a vp steal its ip ref.
1610 	 */
1611 	if (ip->vp) {
1612 		hdkprintf("Unexpected vnode association ip %p vp %p\n",
1613 			ip, ip->vp);
1614 		ip->vp->v_data = NULL;
1615 		ip->vp = NULL;
1616 	} else {
1617 		hammer_ref(&ip->lock);
1618 	}
1619 	hammer_unload_inode(ip);
1620 	return(0);
1621 }
1622 
1623 /*
1624  * Called on mount -u when switching from RW to RO or vise-versa.  Adjust
1625  * the read-only flag for cached inodes.
1626  *
1627  * This routine is called from a RB_SCAN().
1628  */
1629 int
1630 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
1631 {
1632 	hammer_mount_t hmp = ip->hmp;
1633 
1634 	if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
1635 		ip->flags |= HAMMER_INODE_RO;
1636 	else
1637 		ip->flags &= ~HAMMER_INODE_RO;
1638 	return(0);
1639 }
1640 
1641 /*
1642  * A transaction has modified an inode, requiring updates as specified by
1643  * the passed flags.
1644  *
1645  * HAMMER_INODE_DDIRTY: Inode data has been updated, not incl mtime/atime,
1646  *			and not including size changes due to write-append
1647  *			(but other size changes are included).
1648  * HAMMER_INODE_SDIRTY: Inode data has been updated, size changes due to
1649  *			write-append.
1650  * HAMMER_INODE_XDIRTY: Dirty in-memory records
1651  * HAMMER_INODE_BUFS:   Dirty buffer cache buffers
1652  * HAMMER_INODE_DELETED: Inode record/data must be deleted
1653  * HAMMER_INODE_ATIME/MTIME: mtime/atime has been updated
1654  */
1655 void
1656 hammer_modify_inode(hammer_transaction_t trans, hammer_inode_t ip, int flags)
1657 {
1658 	/*
1659 	 * ronly of 0 or 2 does not trigger assertion.
1660 	 * 2 is a special error state
1661 	 */
1662 	KKASSERT(ip->hmp->ronly != 1 ||
1663 		  (flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
1664 			    HAMMER_INODE_SDIRTY |
1665 			    HAMMER_INODE_BUFS | HAMMER_INODE_DELETED |
1666 			    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) == 0);
1667 	if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
1668 		ip->flags |= HAMMER_INODE_RSV_INODES;
1669 		++ip->hmp->rsv_inodes;
1670 	}
1671 
1672 	/*
1673 	 * Set the NEWINODE flag in the transaction if the inode
1674 	 * transitions to a dirty state.  This is used to track
1675 	 * the load on the inode cache.
1676 	 */
1677 	if (trans &&
1678 	    (ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1679 	    (flags & HAMMER_INODE_MODMASK)) {
1680 		trans->flags |= HAMMER_TRANSF_NEWINODE;
1681 	}
1682 	if (flags & HAMMER_INODE_MODMASK)
1683 		hammer_inode_dirty(ip);
1684 	ip->flags |= flags;
1685 }
1686 
1687 /*
1688  * Attempt to quickly update the atime for a hammer inode.  Return 0 on
1689  * success, -1 on failure.
1690  *
1691  * We attempt to update the atime with only the ip lock and not the
1692  * whole filesystem lock in order to improve concurrency.  We can only
1693  * do this safely if the ATIME flag is already pending on the inode.
1694  *
1695  * This function is called via a vnops path (ip pointer is stable) without
1696  * fs_token held.
1697  */
1698 int
1699 hammer_update_atime_quick(hammer_inode_t ip)
1700 {
1701 	struct timeval tv;
1702 	int res = -1;
1703 
1704 	if ((ip->flags & HAMMER_INODE_RO) ||
1705 	    (ip->hmp->mp->mnt_flag & MNT_NOATIME)) {
1706 		/*
1707 		 * Silently indicate success on read-only mount/snap
1708 		 */
1709 		res = 0;
1710 	} else if (ip->flags & HAMMER_INODE_ATIME) {
1711 		/*
1712 		 * Double check with inode lock held against backend.  This
1713 		 * is only safe if all we need to do is update
1714 		 * ino_data.atime.
1715 		 */
1716 		getmicrotime(&tv);
1717 		hammer_lock_ex(&ip->lock);
1718 		if (ip->flags & HAMMER_INODE_ATIME) {
1719 			ip->ino_data.atime =
1720 			    (unsigned long)tv.tv_sec * 1000000ULL + tv.tv_usec;
1721 			res = 0;
1722 		}
1723 		hammer_unlock(&ip->lock);
1724 	}
1725 	return res;
1726 }
1727 
1728 /*
1729  * Request that an inode be flushed.  This whole mess cannot block and may
1730  * recurse (if not synchronous).  Once requested HAMMER will attempt to
1731  * actively flush the inode until the flush can be done.
1732  *
1733  * The inode may already be flushing, or may be in a setup state.  We can
1734  * place the inode in a flushing state if it is currently idle and flag it
1735  * to reflush if it is currently flushing.
1736  *
1737  * Upon return if the inode could not be flushed due to a setup
1738  * dependancy, then it will be automatically flushed when the dependancy
1739  * is satisfied.
1740  */
1741 void
1742 hammer_flush_inode(hammer_inode_t ip, int flags)
1743 {
1744 	hammer_mount_t hmp;
1745 	hammer_flush_group_t flg;
1746 	int good;
1747 
1748 	/*
1749 	 * fill_flush_group is the first flush group we may be able to
1750 	 * continue filling, it may be open or closed but it will always
1751 	 * be past the currently flushing (running) flg.
1752 	 *
1753 	 * next_flush_group is the next open flush group.
1754 	 */
1755 	hmp = ip->hmp;
1756 	while ((flg = hmp->fill_flush_group) != NULL) {
1757 		KKASSERT(flg->running == 0);
1758 		if (flg->total_count + flg->refs <= ip->hmp->undo_rec_limit &&
1759 		    flg->total_count <= hammer_autoflush) {
1760 			break;
1761 		}
1762 		hmp->fill_flush_group = TAILQ_NEXT(flg, flush_entry);
1763 		hammer_flusher_async(ip->hmp, flg);
1764 	}
1765 	if (flg == NULL) {
1766 		flg = kmalloc(sizeof(*flg), hmp->m_misc, M_WAITOK|M_ZERO);
1767 		flg->seq = hmp->flusher.next++;
1768 		if (hmp->next_flush_group == NULL)
1769 			hmp->next_flush_group = flg;
1770 		if (hmp->fill_flush_group == NULL)
1771 			hmp->fill_flush_group = flg;
1772 		RB_INIT(&flg->flush_tree);
1773 		TAILQ_INSERT_TAIL(&hmp->flush_group_list, flg, flush_entry);
1774 	}
1775 
1776 	/*
1777 	 * Trivial 'nothing to flush' case.  If the inode is in a SETUP
1778 	 * state we have to put it back into an IDLE state so we can
1779 	 * drop the extra ref.
1780 	 *
1781 	 * If we have a parent dependancy we must still fall through
1782 	 * so we can run it.
1783 	 */
1784 	if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
1785 		if (ip->flush_state == HAMMER_FST_SETUP &&
1786 		    TAILQ_EMPTY(&ip->target_list)) {
1787 			ip->flush_state = HAMMER_FST_IDLE;
1788 			hammer_rel_inode(ip, 0);
1789 		}
1790 		if (ip->flush_state == HAMMER_FST_IDLE)
1791 			return;
1792 	}
1793 
1794 	/*
1795 	 * Our flush action will depend on the current state.
1796 	 */
1797 	switch(ip->flush_state) {
1798 	case HAMMER_FST_IDLE:
1799 		/*
1800 		 * We have no dependancies and can flush immediately.  Some
1801 		 * our children may not be flushable so we have to re-test
1802 		 * with that additional knowledge.
1803 		 */
1804 		hammer_flush_inode_core(ip, flg, flags);
1805 		break;
1806 	case HAMMER_FST_SETUP:
1807 		/*
1808 		 * Recurse upwards through dependancies via target_list
1809 		 * and start their flusher actions going if possible.
1810 		 *
1811 		 * 'good' is our connectivity.  -1 means we have none and
1812 		 * can't flush, 0 means there weren't any dependancies, and
1813 		 * 1 means we have good connectivity.
1814 		 */
1815 		good = hammer_setup_parent_inodes(ip, 0, flg);
1816 
1817 		if (good >= 0) {
1818 			/*
1819 			 * We can continue if good >= 0.  Determine how
1820 			 * many records under our inode can be flushed (and
1821 			 * mark them).
1822 			 */
1823 			hammer_flush_inode_core(ip, flg, flags);
1824 		} else {
1825 			/*
1826 			 * Parent has no connectivity, tell it to flush
1827 			 * us as soon as it does.
1828 			 *
1829 			 * The REFLUSH flag is also needed to trigger
1830 			 * dependancy wakeups.
1831 			 */
1832 			ip->flags |= HAMMER_INODE_CONN_DOWN |
1833 				     HAMMER_INODE_REFLUSH;
1834 			if (flags & HAMMER_FLUSH_SIGNAL) {
1835 				ip->flags |= HAMMER_INODE_RESIGNAL;
1836 				hammer_flusher_async(ip->hmp, flg);
1837 			}
1838 		}
1839 		break;
1840 	case HAMMER_FST_FLUSH:
1841 		/*
1842 		 * We are already flushing, flag the inode to reflush
1843 		 * if needed after it completes its current flush.
1844 		 *
1845 		 * The REFLUSH flag is also needed to trigger
1846 		 * dependancy wakeups.
1847 		 */
1848 		if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
1849 			ip->flags |= HAMMER_INODE_REFLUSH;
1850 		if (flags & HAMMER_FLUSH_SIGNAL) {
1851 			ip->flags |= HAMMER_INODE_RESIGNAL;
1852 			hammer_flusher_async(ip->hmp, flg);
1853 		}
1854 		break;
1855 	}
1856 }
1857 
1858 /*
1859  * Scan ip->target_list, which is a list of records owned by PARENTS to our
1860  * ip which reference our ip.
1861  *
1862  * XXX This is a huge mess of recursive code, but not one bit of it blocks
1863  *     so for now do not ref/deref the structures.  Note that if we use the
1864  *     ref/rel code later, the rel CAN block.
1865  */
1866 static int
1867 hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
1868 			   hammer_flush_group_t flg)
1869 {
1870 	hammer_record_t depend;
1871 	int good;
1872 	int r;
1873 
1874 	/*
1875 	 * If we hit our recursion limit and we have parent dependencies
1876 	 * We cannot continue.  Returning < 0 will cause us to be flagged
1877 	 * for reflush.  Returning -2 cuts off additional dependency checks
1878 	 * because they are likely to also hit the depth limit.
1879 	 *
1880 	 * We cannot return < 0 if there are no dependencies or there might
1881 	 * not be anything to wakeup (ip).
1882 	 */
1883 	if (depth == 20 && TAILQ_FIRST(&ip->target_list)) {
1884 		if (hammer_debug_general & 0x10000)
1885 			hkrateprintf(&hammer_gen_krate,
1886 			    "Warning: depth limit reached on "
1887 			    "setup recursion, inode %p %016jx\n",
1888 			    ip, (intmax_t)ip->obj_id);
1889 		return(-2);
1890 	}
1891 
1892 	/*
1893 	 * Scan dependencies
1894 	 */
1895 	good = 0;
1896 	TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
1897 		r = hammer_setup_parent_inodes_helper(depend, depth, flg);
1898 		KKASSERT(depend->target_ip == ip);
1899 		if (r < 0 && good == 0)
1900 			good = -1;
1901 		if (r > 0)
1902 			good = 1;
1903 
1904 		/*
1905 		 * If we failed due to the recursion depth limit then stop
1906 		 * now.
1907 		 */
1908 		if (r == -2)
1909 			break;
1910 	}
1911 	return(good);
1912 }
1913 
1914 /*
1915  * This helper function takes a record representing the dependancy between
1916  * the parent inode and child inode.
1917  *
1918  * record		= record in question (*rec in below)
1919  * record->ip		= parent inode (*pip in below)
1920  * record->target_ip	= child inode (*ip in below)
1921  *
1922  * *pip--------------\
1923  *    ^               \rec_tree
1924  *     \               \
1925  *      \ip            /\\\\\ rbtree of recs from parent inode's view
1926  *       \            //\\\\\\
1927  *        \          / ........
1928  *         \        /
1929  *          \------*rec------target_ip------>*ip
1930  *               ...target_entry<----...----->target_list<---...
1931  *                                            list of recs from inode's view
1932  *
1933  * We are asked to recurse upwards and convert the record from SETUP
1934  * to FLUSH if possible.
1935  *
1936  * Return 1 if the record gives us connectivity
1937  *
1938  * Return 0 if the record is not relevant
1939  *
1940  * Return -1 if we can't resolve the dependancy and there is no connectivity.
1941  */
1942 static int
1943 hammer_setup_parent_inodes_helper(hammer_record_t record, int depth,
1944 				  hammer_flush_group_t flg)
1945 {
1946 	hammer_inode_t pip;
1947 	int good;
1948 
1949 	KKASSERT(record->flush_state != HAMMER_FST_IDLE);
1950 	pip = record->ip;
1951 
1952 	/*
1953 	 * If the record is already flushing, is it in our flush group?
1954 	 *
1955 	 * If it is in our flush group but it is a general record or a
1956 	 * delete-on-disk, it does not improve our connectivity (return 0),
1957 	 * and if the target inode is not trying to destroy itself we can't
1958 	 * allow the operation yet anyway (the second return -1).
1959 	 */
1960 	if (record->flush_state == HAMMER_FST_FLUSH) {
1961 		/*
1962 		 * If not in our flush group ask the parent to reflush
1963 		 * us as soon as possible.
1964 		 */
1965 		if (record->flush_group != flg) {
1966 			pip->flags |= HAMMER_INODE_REFLUSH;
1967 			record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1968 			return(-1);
1969 		}
1970 
1971 		/*
1972 		 * If in our flush group everything is already set up,
1973 		 * just return whether the record will improve our
1974 		 * visibility or not.
1975 		 */
1976 		if (record->type == HAMMER_MEM_RECORD_ADD)
1977 			return(1);
1978 		return(0);
1979 	}
1980 
1981 	/*
1982 	 * It must be a setup record.  Try to resolve the setup dependancies
1983 	 * by recursing upwards so we can place ip on the flush list.
1984 	 *
1985 	 * Limit ourselves to 20 levels of recursion to avoid blowing out
1986 	 * the kernel stack.  If we hit the recursion limit we can't flush
1987 	 * until the parent flushes.  The parent will flush independantly
1988 	 * on its own and ultimately a deep recursion will be resolved.
1989 	 */
1990 	KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1991 
1992 	good = hammer_setup_parent_inodes(pip, depth + 1, flg);
1993 
1994 	/*
1995 	 * If good < 0 the parent has no connectivity and we cannot safely
1996 	 * flush the directory entry, which also means we can't flush our
1997 	 * ip.  Flag us for downward recursion once the parent's
1998 	 * connectivity is resolved.  Flag the parent for [re]flush or it
1999 	 * may not check for downward recursions.
2000 	 */
2001 	if (good < 0) {
2002 		pip->flags |= HAMMER_INODE_REFLUSH;
2003 		record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
2004 		return(good);
2005 	}
2006 
2007 	/*
2008 	 * We are go, place the parent inode in a flushing state so we can
2009 	 * place its record in a flushing state.  Note that the parent
2010 	 * may already be flushing.  The record must be in the same flush
2011 	 * group as the parent.
2012 	 */
2013 	if (pip->flush_state != HAMMER_FST_FLUSH)
2014 		hammer_flush_inode_core(pip, flg, HAMMER_FLUSH_RECURSION);
2015 	KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
2016 
2017 	/*
2018 	 * It is possible for a rename to create a loop in the recursion
2019 	 * and revisit a record.  This will result in the record being
2020 	 * placed in a flush state unexpectedly.  This check deals with
2021 	 * the case.
2022 	 */
2023 	if (record->flush_state == HAMMER_FST_FLUSH) {
2024 		if (record->type == HAMMER_MEM_RECORD_ADD)
2025 			return(1);
2026 		return(0);
2027 	}
2028 
2029 	KKASSERT(record->flush_state == HAMMER_FST_SETUP);
2030 
2031 #if 0
2032 	if (record->type == HAMMER_MEM_RECORD_DEL &&
2033 	    (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
2034 		/*
2035 		 * Regardless of flushing state we cannot sync this path if the
2036 		 * record represents a delete-on-disk but the target inode
2037 		 * is not ready to sync its own deletion.
2038 		 *
2039 		 * XXX need to count effective nlinks to determine whether
2040 		 * the flush is ok, otherwise removing a hardlink will
2041 		 * just leave the DEL record to rot.
2042 		 */
2043 		record->target_ip->flags |= HAMMER_INODE_REFLUSH;
2044 		return(-1);
2045 	} else
2046 #endif
2047 	if (pip->flush_group == flg) {
2048 		/*
2049 		 * Because we have not calculated nlinks yet we can just
2050 		 * set records to the flush state if the parent is in
2051 		 * the same flush group as we are.
2052 		 */
2053 		record->flush_state = HAMMER_FST_FLUSH;
2054 		record->flush_group = flg;
2055 		++record->flush_group->refs;
2056 		hammer_ref(&record->lock);
2057 
2058 		/*
2059 		 * A general directory-add contributes to our visibility.
2060 		 *
2061 		 * Otherwise it is probably a directory-delete or
2062 		 * delete-on-disk record and does not contribute to our
2063 		 * visbility (but we can still flush it).
2064 		 */
2065 		if (record->type == HAMMER_MEM_RECORD_ADD)
2066 			return(1);
2067 		return(0);
2068 	} else {
2069 		/*
2070 		 * If the parent is not in our flush group we cannot
2071 		 * flush this record yet, there is no visibility.
2072 		 * We tell the parent to reflush and mark ourselves
2073 		 * so the parent knows it should flush us too.
2074 		 */
2075 		pip->flags |= HAMMER_INODE_REFLUSH;
2076 		record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
2077 		return(-1);
2078 	}
2079 }
2080 
2081 /*
2082  * This is the core routine placing an inode into the FST_FLUSH state.
2083  */
2084 static void
2085 hammer_flush_inode_core(hammer_inode_t ip, hammer_flush_group_t flg, int flags)
2086 {
2087 	hammer_mount_t hmp = ip->hmp;
2088 	int go_count;
2089 
2090 	/*
2091 	 * Set flush state and prevent the flusher from cycling into
2092 	 * the next flush group.  Do not place the ip on the list yet.
2093 	 * Inodes not in the idle state get an extra reference.
2094 	 */
2095 	KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
2096 	if (ip->flush_state == HAMMER_FST_IDLE)
2097 		hammer_ref(&ip->lock);
2098 	ip->flush_state = HAMMER_FST_FLUSH;
2099 	ip->flush_group = flg;
2100 	++hmp->flusher.group_lock;
2101 	++hmp->count_iqueued;
2102 	++hammer_count_iqueued;
2103 	++flg->total_count;
2104 	hammer_redo_fifo_start_flush(ip);
2105 
2106 #if 0
2107 	/*
2108 	 * We need to be able to vfsync/truncate from the backend.
2109 	 *
2110 	 * XXX Any truncation from the backend will acquire the vnode
2111 	 *     independently.
2112 	 */
2113 	KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
2114 	if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
2115 		ip->flags |= HAMMER_INODE_VHELD;
2116 		vref(ip->vp);
2117 	}
2118 #endif
2119 
2120 	/*
2121 	 * Figure out how many in-memory records we can actually flush
2122 	 * (not including inode meta-data, buffers, etc).
2123 	 */
2124 	KKASSERT((ip->flags & HAMMER_INODE_WOULDBLOCK) == 0);
2125 	if (flags & HAMMER_FLUSH_RECURSION) {
2126 		/*
2127 		 * If this is a upwards recursion we do not want to
2128 		 * recurse down again!
2129 		 */
2130 		go_count = 1;
2131 #if 0
2132 	} else if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2133 		/*
2134 		 * No new records are added if we must complete a flush
2135 		 * from a previous cycle, but we do have to move the records
2136 		 * from the previous cycle to the current one.
2137 		 */
2138 #if 0
2139 		go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2140 				   hammer_syncgrp_child_callback, NULL);
2141 #endif
2142 		go_count = 1;
2143 #endif
2144 	} else {
2145 		/*
2146 		 * Normal flush, scan records and bring them into the flush.
2147 		 * Directory adds and deletes are usually skipped (they are
2148 		 * grouped with the related inode rather then with the
2149 		 * directory).
2150 		 *
2151 		 * go_count can be negative, which means the scan aborted
2152 		 * due to the flush group being over-full and we should
2153 		 * flush what we have.
2154 		 */
2155 		go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2156 				   hammer_setup_child_callback, NULL);
2157 	}
2158 
2159 	/*
2160 	 * This is a more involved test that includes go_count.  If we
2161 	 * can't flush, flag the inode and return.  If go_count is 0 we
2162 	 * were are unable to flush any records in our rec_tree and
2163 	 * must ignore the XDIRTY flag.
2164 	 */
2165 	if (go_count == 0) {
2166 		if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
2167 			--hmp->count_iqueued;
2168 			--hammer_count_iqueued;
2169 
2170 			--flg->total_count;
2171 			ip->flush_state = HAMMER_FST_SETUP;
2172 			ip->flush_group = NULL;
2173 			if (flags & HAMMER_FLUSH_SIGNAL) {
2174 				ip->flags |= HAMMER_INODE_REFLUSH |
2175 					     HAMMER_INODE_RESIGNAL;
2176 			} else {
2177 				ip->flags |= HAMMER_INODE_REFLUSH;
2178 			}
2179 #if 0
2180 			if (ip->flags & HAMMER_INODE_VHELD) {
2181 				ip->flags &= ~HAMMER_INODE_VHELD;
2182 				vrele(ip->vp);
2183 			}
2184 #endif
2185 
2186 			/*
2187 			 * REFLUSH is needed to trigger dependancy wakeups
2188 			 * when an inode is in SETUP.
2189 			 */
2190 			ip->flags |= HAMMER_INODE_REFLUSH;
2191 			if (--hmp->flusher.group_lock == 0)
2192 				wakeup(&hmp->flusher.group_lock);
2193 			return;
2194 		}
2195 	}
2196 
2197 	/*
2198 	 * Snapshot the state of the inode for the backend flusher.
2199 	 *
2200 	 * We continue to retain save_trunc_off even when all truncations
2201 	 * have been resolved as an optimization to determine if we can
2202 	 * skip the B-Tree lookup for overwrite deletions.
2203 	 *
2204 	 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
2205 	 * and stays in ip->flags.  Once set, it stays set until the
2206 	 * inode is destroyed.
2207 	 */
2208 	if (ip->flags & HAMMER_INODE_TRUNCATED) {
2209 		KKASSERT((ip->sync_flags & HAMMER_INODE_TRUNCATED) == 0);
2210 		ip->sync_trunc_off = ip->trunc_off;
2211 		ip->trunc_off = HAMMER_MAX_KEY;
2212 		ip->flags &= ~HAMMER_INODE_TRUNCATED;
2213 		ip->sync_flags |= HAMMER_INODE_TRUNCATED;
2214 
2215 		/*
2216 		 * The save_trunc_off used to cache whether the B-Tree
2217 		 * holds any records past that point is not used until
2218 		 * after the truncation has succeeded, so we can safely
2219 		 * set it now.
2220 		 */
2221 		if (ip->save_trunc_off > ip->sync_trunc_off)
2222 			ip->save_trunc_off = ip->sync_trunc_off;
2223 	}
2224 	ip->sync_flags |= (ip->flags & HAMMER_INODE_MODMASK &
2225 			   ~HAMMER_INODE_TRUNCATED);
2226 	ip->sync_ino_leaf = ip->ino_leaf;
2227 	ip->sync_ino_data = ip->ino_data;
2228 	ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
2229 
2230 	/*
2231 	 * The flusher list inherits our inode and reference.
2232 	 */
2233 	KKASSERT(flg->running == 0);
2234 	RB_INSERT(hammer_fls_rb_tree, &flg->flush_tree, ip);
2235 	if (--hmp->flusher.group_lock == 0)
2236 		wakeup(&hmp->flusher.group_lock);
2237 
2238 	/*
2239 	 * Auto-flush the group if it grows too large.  Make sure the
2240 	 * inode reclaim wait pipeline continues to work.
2241 	 */
2242 	if (flg->total_count >= hammer_autoflush ||
2243 	    flg->total_count >= hammer_limit_reclaims / 4) {
2244 		if (hmp->fill_flush_group == flg)
2245 			hmp->fill_flush_group = TAILQ_NEXT(flg, flush_entry);
2246 		hammer_flusher_async(hmp, flg);
2247 	}
2248 }
2249 
2250 /*
2251  * Callback for scan of ip->rec_tree.  Try to include each record in our
2252  * flush.  ip->flush_group has been set but the inode has not yet been
2253  * moved into a flushing state.
2254  *
2255  * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
2256  * both inodes.
2257  *
2258  * We return 1 for any record placed or found in FST_FLUSH, which prevents
2259  * the caller from shortcutting the flush.
2260  */
2261 static int
2262 hammer_setup_child_callback(hammer_record_t rec, void *data)
2263 {
2264 	hammer_flush_group_t flg;
2265 	hammer_inode_t target_ip;
2266 	hammer_inode_t ip;
2267 	int r;
2268 
2269 	/*
2270 	 * Records deleted or committed by the backend are ignored.
2271 	 * Note that the flush detects deleted frontend records at
2272 	 * multiple points to deal with races.  This is just the first
2273 	 * line of defense.  The only time HAMMER_RECF_DELETED_FE cannot
2274 	 * be set is when HAMMER_RECF_INTERLOCK_BE is set, because it
2275 	 * messes up link-count calculations.
2276 	 *
2277 	 * NOTE: Don't get confused between record deletion and, say,
2278 	 * directory entry deletion.  The deletion of a directory entry
2279 	 * which is on-media has nothing to do with the record deletion
2280 	 * flags.
2281 	 */
2282 	if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
2283 			  HAMMER_RECF_COMMITTED)) {
2284 		if (rec->flush_state == HAMMER_FST_FLUSH) {
2285 			KKASSERT(rec->flush_group == rec->ip->flush_group);
2286 			r = 1;
2287 		} else {
2288 			r = 0;
2289 		}
2290 		return(r);
2291 	}
2292 
2293 	/*
2294 	 * If the record is in an idle state it has no dependancies and
2295 	 * can be flushed.
2296 	 */
2297 	ip = rec->ip;
2298 	flg = ip->flush_group;
2299 	r = 0;
2300 
2301 	switch(rec->flush_state) {
2302 	case HAMMER_FST_IDLE:
2303 		/*
2304 		 * The record has no setup dependancy, we can flush it.
2305 		 */
2306 		KKASSERT(rec->target_ip == NULL);
2307 		rec->flush_state = HAMMER_FST_FLUSH;
2308 		rec->flush_group = flg;
2309 		++flg->refs;
2310 		hammer_ref(&rec->lock);
2311 		r = 1;
2312 		break;
2313 	case HAMMER_FST_SETUP:
2314 		/*
2315 		 * The record has a setup dependancy.  These are typically
2316 		 * directory entry adds and deletes.  Such entries will be
2317 		 * flushed when their inodes are flushed so we do not
2318 		 * usually have to add them to the flush here.  However,
2319 		 * if the target_ip has set HAMMER_INODE_CONN_DOWN then
2320 		 * it is asking us to flush this record (and it).
2321 		 */
2322 		target_ip = rec->target_ip;
2323 		KKASSERT(target_ip != NULL);
2324 		KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
2325 
2326 		/*
2327 		 * If the target IP is already flushing in our group
2328 		 * we could associate the record, but target_ip has
2329 		 * already synced ino_data to sync_ino_data and we
2330 		 * would also have to adjust nlinks.   Plus there are
2331 		 * ordering issues for adds and deletes.
2332 		 *
2333 		 * Reflush downward if this is an ADD, and upward if
2334 		 * this is a DEL.
2335 		 */
2336 		if (target_ip->flush_state == HAMMER_FST_FLUSH) {
2337 			if (rec->type == HAMMER_MEM_RECORD_ADD)
2338 				ip->flags |= HAMMER_INODE_REFLUSH;
2339 			else
2340 				target_ip->flags |= HAMMER_INODE_REFLUSH;
2341 			break;
2342 		}
2343 
2344 		/*
2345 		 * Target IP is not yet flushing.  This can get complex
2346 		 * because we have to be careful about the recursion.
2347 		 *
2348 		 * Directories create an issue for us in that if a flush
2349 		 * of a directory is requested the expectation is to flush
2350 		 * any pending directory entries, but this will cause the
2351 		 * related inodes to recursively flush as well.  We can't
2352 		 * really defer the operation so just get as many as we
2353 		 * can and
2354 		 */
2355 #if 0
2356 		if ((target_ip->flags & HAMMER_INODE_RECLAIM) == 0 &&
2357 		    (target_ip->flags & HAMMER_INODE_CONN_DOWN) == 0) {
2358 			/*
2359 			 * We aren't reclaiming and the target ip was not
2360 			 * previously prevented from flushing due to this
2361 			 * record dependancy.  Do not flush this record.
2362 			 */
2363 			/*r = 0;*/
2364 		} else
2365 #endif
2366 		if (flg->total_count + flg->refs >
2367 			   ip->hmp->undo_rec_limit) {
2368 			/*
2369 			 * Our flush group is over-full and we risk blowing
2370 			 * out the UNDO FIFO.  Stop the scan, flush what we
2371 			 * have, then reflush the directory.
2372 			 *
2373 			 * The directory may be forced through multiple
2374 			 * flush groups before it can be completely
2375 			 * flushed.
2376 			 */
2377 			ip->flags |= HAMMER_INODE_RESIGNAL |
2378 				     HAMMER_INODE_REFLUSH;
2379 			r = -1;
2380 		} else if (rec->type == HAMMER_MEM_RECORD_ADD) {
2381 			/*
2382 			 * If the target IP is not flushing we can force
2383 			 * it to flush, even if it is unable to write out
2384 			 * any of its own records we have at least one in
2385 			 * hand that we CAN deal with.
2386 			 */
2387 			rec->flush_state = HAMMER_FST_FLUSH;
2388 			rec->flush_group = flg;
2389 			++flg->refs;
2390 			hammer_ref(&rec->lock);
2391 			hammer_flush_inode_core(target_ip, flg,
2392 						HAMMER_FLUSH_RECURSION);
2393 			r = 1;
2394 		} else {
2395 			/*
2396 			 * General or delete-on-disk record.
2397 			 *
2398 			 * XXX this needs help.  If a delete-on-disk we could
2399 			 * disconnect the target.  If the target has its own
2400 			 * dependancies they really need to be flushed.
2401 			 *
2402 			 * XXX
2403 			 */
2404 			rec->flush_state = HAMMER_FST_FLUSH;
2405 			rec->flush_group = flg;
2406 			++flg->refs;
2407 			hammer_ref(&rec->lock);
2408 			hammer_flush_inode_core(target_ip, flg,
2409 						HAMMER_FLUSH_RECURSION);
2410 			r = 1;
2411 		}
2412 		break;
2413 	case HAMMER_FST_FLUSH:
2414 		/*
2415 		 * The record could be part of a previous flush group if the
2416 		 * inode is a directory (the record being a directory entry).
2417 		 * Once the flush group was closed a hammer_test_inode()
2418 		 * function can cause a new flush group to be setup, placing
2419 		 * the directory inode itself in a new flush group.
2420 		 *
2421 		 * When associated with a previous flush group we count it
2422 		 * as if it were in our current flush group, since it will
2423 		 * effectively be flushed by the time we flush our current
2424 		 * flush group.
2425 		 */
2426 		KKASSERT(
2427 		    rec->ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY ||
2428 		    rec->flush_group == flg);
2429 		r = 1;
2430 		break;
2431 	}
2432 	return(r);
2433 }
2434 
2435 #if 0
2436 /*
2437  * This version just moves records already in a flush state to the new
2438  * flush group and that is it.
2439  */
2440 static int
2441 hammer_syncgrp_child_callback(hammer_record_t rec, void *data)
2442 {
2443 	hammer_inode_t ip = rec->ip;
2444 
2445 	switch(rec->flush_state) {
2446 	case HAMMER_FST_FLUSH:
2447 		KKASSERT(rec->flush_group == ip->flush_group);
2448 		break;
2449 	default:
2450 		break;
2451 	}
2452 	return(0);
2453 }
2454 #endif
2455 
2456 /*
2457  * Wait for a previously queued flush to complete.
2458  *
2459  * If a critical error occured we don't try to wait.
2460  */
2461 void
2462 hammer_wait_inode(hammer_inode_t ip)
2463 {
2464 	/*
2465 	 * The inode can be in a SETUP state in which case RESIGNAL
2466 	 * should be set.  If RESIGNAL is not set then the previous
2467 	 * flush completed and a later operation placed the inode
2468 	 * in a passive setup state again, so we're done.
2469 	 *
2470 	 * The inode can be in a FLUSH state in which case we
2471 	 * can just wait for completion.
2472 	 */
2473 	while (ip->flush_state == HAMMER_FST_FLUSH ||
2474 	    (ip->flush_state == HAMMER_FST_SETUP &&
2475 	     (ip->flags & HAMMER_INODE_RESIGNAL))) {
2476 		/*
2477 		 * Don't try to flush on a critical error
2478 		 */
2479 		if (ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
2480 			break;
2481 
2482 		/*
2483 		 * If the inode was already being flushed its flg
2484 		 * may not have been queued to the backend.  We
2485 		 * have to make sure it gets queued or we can wind
2486 		 * up blocked or deadlocked (particularly if we are
2487 		 * the vnlru thread).
2488 		 */
2489 		if (ip->flush_state == HAMMER_FST_FLUSH) {
2490 			KKASSERT(ip->flush_group);
2491 			if (ip->flush_group->closed == 0) {
2492 				if (hammer_debug_inode) {
2493 					hkprintf("debug: forcing "
2494 						"async flush ip %016jx\n",
2495 						(intmax_t)ip->obj_id);
2496 				}
2497 				hammer_flusher_async(ip->hmp, ip->flush_group);
2498 				continue; /* retest */
2499 			}
2500 		}
2501 
2502 		/*
2503 		 * In a flush state with the flg queued to the backend
2504 		 * or in a setup state with RESIGNAL set, we can safely
2505 		 * wait.
2506 		 */
2507 		ip->flags |= HAMMER_INODE_FLUSHW;
2508 		tsleep(&ip->flags, 0, "hmrwin", 0);
2509 	}
2510 
2511 #if 0
2512 	/*
2513 	 * The inode may have been in a passive setup state,
2514 	 * call flush to make sure we get signaled.
2515 	 */
2516 	if (ip->flush_state == HAMMER_FST_SETUP)
2517 		hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2518 #endif
2519 
2520 }
2521 
2522 /*
2523  * Called by the backend code when a flush has been completed.
2524  * The inode has already been removed from the flush list.
2525  *
2526  * A pipelined flush can occur, in which case we must re-enter the
2527  * inode on the list and re-copy its fields.
2528  */
2529 void
2530 hammer_sync_inode_done(hammer_inode_t ip, int error)
2531 {
2532 	hammer_mount_t hmp;
2533 	int dorel;
2534 
2535 	KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
2536 
2537 	hmp = ip->hmp;
2538 
2539 	/*
2540 	 * Auto-reflush if the backend could not completely flush
2541 	 * the inode.  This fixes a case where a deferred buffer flush
2542 	 * could cause fsync to return early.
2543 	 */
2544 	if (ip->sync_flags & HAMMER_INODE_MODMASK)
2545 		ip->flags |= HAMMER_INODE_REFLUSH;
2546 
2547 	/*
2548 	 * Merge left-over flags back into the frontend and fix the state.
2549 	 * Incomplete truncations are retained by the backend.
2550 	 */
2551 	ip->error = error;
2552 	ip->flags |= ip->sync_flags & ~HAMMER_INODE_TRUNCATED;
2553 	ip->sync_flags &= HAMMER_INODE_TRUNCATED;
2554 
2555 	/*
2556 	 * The backend may have adjusted nlinks, so if the adjusted nlinks
2557 	 * does not match the fronttend set the frontend's DDIRTY flag again.
2558 	 */
2559 	if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
2560 		ip->flags |= HAMMER_INODE_DDIRTY;
2561 
2562 	/*
2563 	 * Fix up the dirty buffer status.
2564 	 */
2565 	if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
2566 		ip->flags |= HAMMER_INODE_BUFS;
2567 	}
2568 	hammer_redo_fifo_end_flush(ip);
2569 
2570 	/*
2571 	 * Re-set the XDIRTY flag if some of the inode's in-memory records
2572 	 * could not be flushed.
2573 	 */
2574 	KKASSERT((RB_EMPTY(&ip->rec_tree) &&
2575 		  (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
2576 		 (!RB_EMPTY(&ip->rec_tree) &&
2577 		  (ip->flags & HAMMER_INODE_XDIRTY) != 0));
2578 
2579 	/*
2580 	 * Do not lose track of inodes which no longer have vnode
2581 	 * assocations, otherwise they may never get flushed again.
2582 	 *
2583 	 * The reflush flag can be set superfluously, causing extra pain
2584 	 * for no reason.  If the inode is no longer modified it no longer
2585 	 * needs to be flushed.
2586 	 */
2587 	if (ip->flags & HAMMER_INODE_MODMASK) {
2588 		if (ip->vp == NULL)
2589 			ip->flags |= HAMMER_INODE_REFLUSH;
2590 	} else {
2591 		ip->flags &= ~HAMMER_INODE_REFLUSH;
2592 	}
2593 
2594 	/*
2595 	 * The fs token is held but the inode lock is not held.  Because this
2596 	 * is a backend flush it is possible that the vnode has no references
2597 	 * and cause a reclaim race inside vsetisdirty() if/when it blocks.
2598 	 *
2599 	 * Therefore, we must lock the inode around this particular dirtying
2600 	 * operation.  We don't have to around other dirtying operations
2601 	 * where the vnode is implicitly or explicitly held.
2602 	 */
2603 	if (ip->flags & HAMMER_INODE_MODMASK) {
2604 		hammer_lock_ex(&ip->lock);
2605 		hammer_inode_dirty(ip);
2606 		hammer_unlock(&ip->lock);
2607 	}
2608 
2609 	/*
2610 	 * Adjust the flush state.
2611 	 */
2612 	if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2613 		/*
2614 		 * We were unable to flush out all our records, leave the
2615 		 * inode in a flush state and in the current flush group.
2616 		 * The flush group will be re-run.
2617 		 *
2618 		 * This occurs if the UNDO block gets too full or there is
2619 		 * too much dirty meta-data and allows the flusher to
2620 		 * finalize the UNDO block and then re-flush.
2621 		 */
2622 		ip->flags &= ~HAMMER_INODE_WOULDBLOCK;
2623 		dorel = 0;
2624 	} else {
2625 		/*
2626 		 * Remove from the flush_group
2627 		 */
2628 		RB_REMOVE(hammer_fls_rb_tree, &ip->flush_group->flush_tree, ip);
2629 		ip->flush_group = NULL;
2630 
2631 #if 0
2632 		/*
2633 		 * Clean up the vnode ref and tracking counts.
2634 		 */
2635 		if (ip->flags & HAMMER_INODE_VHELD) {
2636 			ip->flags &= ~HAMMER_INODE_VHELD;
2637 			vrele(ip->vp);
2638 		}
2639 #endif
2640 		--hmp->count_iqueued;
2641 		--hammer_count_iqueued;
2642 
2643 		/*
2644 		 * And adjust the state.
2645 		 */
2646 		if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
2647 			ip->flush_state = HAMMER_FST_IDLE;
2648 			dorel = 1;
2649 		} else {
2650 			ip->flush_state = HAMMER_FST_SETUP;
2651 			dorel = 0;
2652 		}
2653 
2654 		/*
2655 		 * If the frontend is waiting for a flush to complete,
2656 		 * wake it up.
2657 		 */
2658 		if (ip->flags & HAMMER_INODE_FLUSHW) {
2659 			ip->flags &= ~HAMMER_INODE_FLUSHW;
2660 			wakeup(&ip->flags);
2661 		}
2662 
2663 		/*
2664 		 * If the frontend made more changes and requested another
2665 		 * flush, then try to get it running.
2666 		 *
2667 		 * Reflushes are aborted when the inode is errored out.
2668 		 */
2669 		if (ip->flags & HAMMER_INODE_REFLUSH) {
2670 			ip->flags &= ~HAMMER_INODE_REFLUSH;
2671 			if (ip->flags & HAMMER_INODE_RESIGNAL) {
2672 				ip->flags &= ~HAMMER_INODE_RESIGNAL;
2673 				hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2674 			} else {
2675 				hammer_flush_inode(ip, 0);
2676 			}
2677 		}
2678 	}
2679 
2680 	/*
2681 	 * If we have no parent dependancies we can clear CONN_DOWN
2682 	 */
2683 	if (TAILQ_EMPTY(&ip->target_list))
2684 		ip->flags &= ~HAMMER_INODE_CONN_DOWN;
2685 
2686 	/*
2687 	 * If the inode is now clean drop the space reservation.
2688 	 */
2689 	if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
2690 	    (ip->flags & HAMMER_INODE_RSV_INODES)) {
2691 		ip->flags &= ~HAMMER_INODE_RSV_INODES;
2692 		--hmp->rsv_inodes;
2693 	}
2694 
2695 	ip->flags &= ~HAMMER_INODE_SLAVEFLUSH;
2696 
2697 	if (dorel)
2698 		hammer_rel_inode(ip, 0);
2699 }
2700 
2701 /*
2702  * Called from hammer_sync_inode() to synchronize in-memory records
2703  * to the media.
2704  */
2705 static int
2706 hammer_sync_record_callback(hammer_record_t record, void *data)
2707 {
2708 	hammer_cursor_t cursor = data;
2709 	hammer_transaction_t trans = cursor->trans;
2710 	hammer_mount_t hmp = trans->hmp;
2711 	int error;
2712 
2713 	/*
2714 	 * Skip records that do not belong to the current flush.
2715 	 */
2716 	++hammer_stats_record_iterations;
2717 	if (record->flush_state != HAMMER_FST_FLUSH)
2718 		return(0);
2719 
2720 	if (record->flush_group != record->ip->flush_group) {
2721 		hdkprintf("rec %p ip %p bad flush group %p %p\n",
2722 			record,
2723 			record->ip,
2724 			record->flush_group,
2725 			record->ip->flush_group);
2726 		if (hammer_debug_critical)
2727 			Debugger("blah2");
2728 		return(0);
2729 	}
2730 	KKASSERT(record->flush_group == record->ip->flush_group);
2731 
2732 	/*
2733 	 * Interlock the record using the BE flag.  Once BE is set the
2734 	 * frontend cannot change the state of FE.
2735 	 *
2736 	 * NOTE: If FE is set prior to us setting BE we still sync the
2737 	 * record out, but the flush completion code converts it to
2738 	 * a delete-on-disk record instead of destroying it.
2739 	 */
2740 	KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
2741 	record->flags |= HAMMER_RECF_INTERLOCK_BE;
2742 
2743 	/*
2744 	 * The backend has already disposed of the record.
2745 	 */
2746 	if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
2747 		error = 0;
2748 		goto done;
2749 	}
2750 
2751 	/*
2752 	 * If the whole inode is being deleted and all on-disk records will
2753 	 * be deleted very soon, we can't sync any new records to disk
2754 	 * because they will be deleted in the same transaction they were
2755 	 * created in (delete_tid == create_tid), which will assert.
2756 	 *
2757 	 * XXX There may be a case with RECORD_ADD with DELETED_FE set
2758 	 * that we currently panic on.
2759 	 */
2760 	if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
2761 		switch(record->type) {
2762 		case HAMMER_MEM_RECORD_DATA:
2763 			/*
2764 			 * We don't have to do anything, if the record was
2765 			 * committed the space will have been accounted for
2766 			 * in the blockmap.
2767 			 */
2768 			/* fall through */
2769 		case HAMMER_MEM_RECORD_GENERAL:
2770 			/*
2771 			 * Set deleted-by-backend flag.  Do not set the
2772 			 * backend committed flag, because we are throwing
2773 			 * the record away.
2774 			 */
2775 			record->flags |= HAMMER_RECF_DELETED_BE;
2776 			++record->ip->rec_generation;
2777 			error = 0;
2778 			goto done;
2779 		case HAMMER_MEM_RECORD_ADD:
2780 			hpanic("illegal add during inode deletion record %p",
2781 				record);
2782 			break; /* NOT REACHED */
2783 		case HAMMER_MEM_RECORD_INODE:
2784 			hpanic("attempt to sync inode record %p?", record);
2785 			break; /* NOT REACHED */
2786 		case HAMMER_MEM_RECORD_DEL:
2787 			/*
2788 			 * Follow through and issue the on-disk deletion
2789 			 */
2790 			break;
2791 		}
2792 	}
2793 
2794 	/*
2795 	 * If DELETED_FE is set special handling is needed for directory
2796 	 * entries.  Dependant pieces related to the directory entry may
2797 	 * have already been synced to disk.  If this occurs we have to
2798 	 * sync the directory entry and then change the in-memory record
2799 	 * from an ADD to a DELETE to cover the fact that it's been
2800 	 * deleted by the frontend.
2801 	 *
2802 	 * A directory delete covering record (MEM_RECORD_DEL) can never
2803 	 * be deleted by the frontend.
2804 	 *
2805 	 * Any other record type (aka DATA) can be deleted by the frontend.
2806 	 * XXX At the moment the flusher must skip it because there may
2807 	 * be another data record in the flush group for the same block,
2808 	 * meaning that some frontend data changes can leak into the backend's
2809 	 * synchronization point.
2810 	 */
2811 	if (record->flags & HAMMER_RECF_DELETED_FE) {
2812 		if (record->type == HAMMER_MEM_RECORD_ADD) {
2813 			/*
2814 			 * Convert a front-end deleted directory-add to
2815 			 * a directory-delete entry later.
2816 			 */
2817 			record->flags |= HAMMER_RECF_CONVERT_DELETE;
2818 		} else {
2819 			/*
2820 			 * Dispose of the record (race case).  Mark as
2821 			 * deleted by backend (and not committed).
2822 			 */
2823 			KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
2824 			record->flags |= HAMMER_RECF_DELETED_BE;
2825 			++record->ip->rec_generation;
2826 			error = 0;
2827 			goto done;
2828 		}
2829 	}
2830 
2831 	/*
2832 	 * Assign the create_tid for new records.  Deletions already
2833 	 * have the record's entire key properly set up.
2834 	 */
2835 	if (record->type != HAMMER_MEM_RECORD_DEL) {
2836 		record->leaf.base.create_tid = trans->tid;
2837 		record->leaf.create_ts = trans->time32;
2838 	}
2839 
2840 	/*
2841 	 * This actually moves the record to the on-media B-Tree.  We
2842 	 * must also generate REDO_TERM entries in the UNDO/REDO FIFO
2843 	 * indicating that the related REDO_WRITE(s) have been committed.
2844 	 *
2845 	 * During recovery any REDO_TERM's within the nominal recovery span
2846 	 * are ignored since the related meta-data is being undone, causing
2847 	 * any matching REDO_WRITEs to execute.  The REDO_TERMs outside
2848 	 * the nominal recovery span will match against REDO_WRITEs and
2849 	 * prevent them from being executed (because the meta-data has
2850 	 * already been synchronized).
2851 	 */
2852 	if (record->flags & HAMMER_RECF_REDO) {
2853 		KKASSERT(record->type == HAMMER_MEM_RECORD_DATA);
2854 		hammer_generate_redo(trans, record->ip,
2855 				     record->leaf.base.key -
2856 					 record->leaf.data_len,
2857 				     HAMMER_REDO_TERM_WRITE,
2858 				     NULL,
2859 				     record->leaf.data_len);
2860 	}
2861 
2862 	for (;;) {
2863 		error = hammer_ip_sync_record_cursor(cursor, record);
2864 		if (error != EDEADLK)
2865 			break;
2866 		hammer_done_cursor(cursor);
2867 		error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
2868 					   record->ip);
2869 		if (error)
2870 			break;
2871 	}
2872 	record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
2873 
2874 	if (error)
2875 		error = -error;
2876 done:
2877 	hammer_flush_record_done(record, error);
2878 
2879 	/*
2880 	 * Do partial finalization if we have built up too many dirty
2881 	 * buffers.  Otherwise a buffer cache deadlock can occur when
2882 	 * doing things like creating tens of thousands of tiny files.
2883 	 *
2884 	 * We must release our cursor lock to avoid a 3-way deadlock
2885 	 * due to the exclusive sync lock the finalizer must get.
2886 	 *
2887 	 * WARNING: See warnings in hammer_unlock_cursor() function.
2888 	 */
2889         if (hammer_flusher_meta_limit(hmp) ||
2890 	    vm_page_count_severe()) {
2891 		hammer_unlock_cursor(cursor);
2892                 hammer_flusher_finalize(trans, 0);
2893 		hammer_lock_cursor(cursor);
2894 	}
2895 	return(error);
2896 }
2897 
2898 /*
2899  * Backend function called by the flusher to sync an inode to media.
2900  */
2901 int
2902 hammer_sync_inode(hammer_transaction_t trans, hammer_inode_t ip)
2903 {
2904 	struct hammer_cursor cursor;
2905 	hammer_node_t tmp_node;
2906 	hammer_record_t depend;
2907 	hammer_record_t next;
2908 	int error, tmp_error;
2909 	uint64_t nlinks;
2910 
2911 	if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
2912 		return(0);
2913 
2914 	error = hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2915 	if (error)
2916 		goto done;
2917 
2918 	/*
2919 	 * Any directory records referencing this inode which are not in
2920 	 * our current flush group must adjust our nlink count for the
2921 	 * purposes of synchronizating to disk.
2922 	 *
2923 	 * Records which are in our flush group can be unlinked from our
2924 	 * inode now, potentially allowing the inode to be physically
2925 	 * deleted.
2926 	 *
2927 	 * This cannot block.
2928 	 */
2929 	nlinks = ip->ino_data.nlinks;
2930 	next = TAILQ_FIRST(&ip->target_list);
2931 	while ((depend = next) != NULL) {
2932 		next = TAILQ_NEXT(depend, target_entry);
2933 		if (depend->flush_state == HAMMER_FST_FLUSH &&
2934 		    depend->flush_group == ip->flush_group) {
2935 			/*
2936 			 * If this is an ADD that was deleted by the frontend
2937 			 * the frontend nlinks count will have already been
2938 			 * decremented, but the backend is going to sync its
2939 			 * directory entry and must account for it.  The
2940 			 * record will be converted to a delete-on-disk when
2941 			 * it gets synced.
2942 			 *
2943 			 * If the ADD was not deleted by the frontend we
2944 			 * can remove the dependancy from our target_list.
2945 			 */
2946 			if (depend->flags & HAMMER_RECF_DELETED_FE) {
2947 				++nlinks;
2948 			} else {
2949 				TAILQ_REMOVE(&ip->target_list, depend,
2950 					     target_entry);
2951 				depend->target_ip = NULL;
2952 			}
2953 		} else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
2954 			/*
2955 			 * Not part of our flush group and not deleted by
2956 			 * the front-end, adjust the link count synced to
2957 			 * the media (undo what the frontend did when it
2958 			 * queued the record).
2959 			 */
2960 			KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
2961 			switch(depend->type) {
2962 			case HAMMER_MEM_RECORD_ADD:
2963 				--nlinks;
2964 				break;
2965 			case HAMMER_MEM_RECORD_DEL:
2966 				++nlinks;
2967 				break;
2968 			default:
2969 				break;
2970 			}
2971 		}
2972 	}
2973 
2974 	/*
2975 	 * Set dirty if we had to modify the link count.
2976 	 */
2977 	if (ip->sync_ino_data.nlinks != nlinks) {
2978 		KKASSERT((int64_t)nlinks >= 0);
2979 		ip->sync_ino_data.nlinks = nlinks;
2980 		ip->sync_flags |= HAMMER_INODE_DDIRTY;
2981 	}
2982 
2983 	/*
2984 	 * If there is a trunction queued destroy any data past the (aligned)
2985 	 * truncation point.  Userland will have dealt with the buffer
2986 	 * containing the truncation point for us.
2987 	 *
2988 	 * We don't flush pending frontend data buffers until after we've
2989 	 * dealt with the truncation.
2990 	 */
2991 	if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2992 		/*
2993 		 * Interlock trunc_off.  The VOP front-end may continue to
2994 		 * make adjustments to it while we are blocked.
2995 		 */
2996 		off_t trunc_off;
2997 		off_t aligned_trunc_off;
2998 		int blkmask;
2999 
3000 		trunc_off = ip->sync_trunc_off;
3001 		blkmask = hammer_blocksize(trunc_off) - 1;
3002 		aligned_trunc_off = (trunc_off + blkmask) & ~(int64_t)blkmask;
3003 
3004 		/*
3005 		 * Delete any whole blocks on-media.  The front-end has
3006 		 * already cleaned out any partial block and made it
3007 		 * pending.  The front-end may have updated trunc_off
3008 		 * while we were blocked so we only use sync_trunc_off.
3009 		 *
3010 		 * This operation can blow out the buffer cache, EWOULDBLOCK
3011 		 * means we were unable to complete the deletion.  The
3012 		 * deletion will update sync_trunc_off in that case.
3013 		 */
3014 		error = hammer_ip_delete_range(&cursor, ip,
3015 						aligned_trunc_off,
3016 						HAMMER_MAX_KEY, 2);
3017 		if (error == EWOULDBLOCK) {
3018 			ip->flags |= HAMMER_INODE_WOULDBLOCK;
3019 			error = 0;
3020 			goto defer_buffer_flush;
3021 		}
3022 
3023 		if (error)
3024 			goto done;
3025 
3026 		/*
3027 		 * Generate a REDO_TERM_TRUNC entry in the UNDO/REDO FIFO.
3028 		 *
3029 		 * XXX we do this even if we did not previously generate
3030 		 * a REDO_TRUNC record.  This operation may enclosed the
3031 		 * range for multiple prior truncation entries in the REDO
3032 		 * log.
3033 		 */
3034 		if (trans->hmp->version >= HAMMER_VOL_VERSION_FOUR &&
3035 		    (ip->flags & HAMMER_INODE_RDIRTY)) {
3036 			hammer_generate_redo(trans, ip, aligned_trunc_off,
3037 					     HAMMER_REDO_TERM_TRUNC,
3038 					     NULL, 0);
3039 		}
3040 
3041 		/*
3042 		 * Clear the truncation flag on the backend after we have
3043 		 * completed the deletions.  Backend data is now good again
3044 		 * (including new records we are about to sync, below).
3045 		 *
3046 		 * Leave sync_trunc_off intact.  As we write additional
3047 		 * records the backend will update sync_trunc_off.  This
3048 		 * tells the backend whether it can skip the overwrite
3049 		 * test.  This should work properly even when the backend
3050 		 * writes full blocks where the truncation point straddles
3051 		 * the block because the comparison is against the base
3052 		 * offset of the record.
3053 		 */
3054 		ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
3055 		/* ip->sync_trunc_off = HAMMER_MAX_KEY; */
3056 	} else {
3057 		error = 0;
3058 	}
3059 
3060 	/*
3061 	 * Now sync related records.  These will typically be directory
3062 	 * entries, records tracking direct-writes, or delete-on-disk records.
3063 	 */
3064 	if (error == 0) {
3065 		tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
3066 				    hammer_sync_record_callback, &cursor);
3067 		if (tmp_error < 0)
3068 			tmp_error = -error;
3069 		if (tmp_error)
3070 			error = tmp_error;
3071 	}
3072 	hammer_cache_node(&ip->cache[1], cursor.node);
3073 
3074 	/*
3075 	 * Re-seek for inode update, assuming our cache hasn't been ripped
3076 	 * out from under us.
3077 	 */
3078 	if (error == 0) {
3079 		tmp_node = hammer_ref_node_safe(trans, &ip->cache[0], &error);
3080 		if (tmp_node) {
3081 			hammer_cursor_downgrade(&cursor);
3082 			hammer_lock_sh(&tmp_node->lock);
3083 			if ((tmp_node->flags & HAMMER_NODE_DELETED) == 0)
3084 				hammer_cursor_seek(&cursor, tmp_node, 0);
3085 			hammer_unlock(&tmp_node->lock);
3086 			hammer_rel_node(tmp_node);
3087 		}
3088 		error = 0;
3089 	}
3090 
3091 	/*
3092 	 * If we are deleting the inode the frontend had better not have
3093 	 * any active references on elements making up the inode.
3094 	 *
3095 	 * The call to hammer_ip_delete_clean() cleans up auxillary records
3096 	 * but not DB or DATA records.  Those must have already been deleted
3097 	 * by the normal truncation mechanic.
3098 	 */
3099 	if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
3100 		RB_EMPTY(&ip->rec_tree)  &&
3101 	    (ip->sync_flags & HAMMER_INODE_DELETING) &&
3102 	    (ip->flags & HAMMER_INODE_DELETED) == 0) {
3103 		int count1 = 0;
3104 
3105 		error = hammer_ip_delete_clean(&cursor, ip, &count1);
3106 		if (error == 0) {
3107 			ip->flags |= HAMMER_INODE_DELETED;
3108 			ip->sync_flags &= ~HAMMER_INODE_DELETING;
3109 			ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
3110 			KKASSERT(RB_EMPTY(&ip->rec_tree));
3111 
3112 			/*
3113 			 * Set delete_tid in both the frontend and backend
3114 			 * copy of the inode record.  The DELETED flag handles
3115 			 * this, do not set DDIRTY.
3116 			 */
3117 			ip->ino_leaf.base.delete_tid = trans->tid;
3118 			ip->sync_ino_leaf.base.delete_tid = trans->tid;
3119 			ip->ino_leaf.delete_ts = trans->time32;
3120 			ip->sync_ino_leaf.delete_ts = trans->time32;
3121 
3122 
3123 			/*
3124 			 * Adjust the inode count in the volume header
3125 			 */
3126 			hammer_sync_lock_sh(trans);
3127 			if (ip->flags & HAMMER_INODE_ONDISK) {
3128 				hammer_modify_volume_field(trans,
3129 							   trans->rootvol,
3130 							   vol0_stat_inodes);
3131 				--ip->hmp->rootvol->ondisk->vol0_stat_inodes;
3132 				hammer_modify_volume_done(trans->rootvol);
3133 			}
3134 			hammer_sync_unlock(trans);
3135 		}
3136 	}
3137 
3138 	if (error)
3139 		goto done;
3140 	ip->sync_flags &= ~HAMMER_INODE_BUFS;
3141 
3142 defer_buffer_flush:
3143 	/*
3144 	 * Now update the inode's on-disk inode-data and/or on-disk record.
3145 	 * DELETED and ONDISK are managed only in ip->flags.
3146 	 *
3147 	 * In the case of a defered buffer flush we still update the on-disk
3148 	 * inode to satisfy visibility requirements if there happen to be
3149 	 * directory dependancies.
3150 	 */
3151 	switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
3152 	case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
3153 		/*
3154 		 * If deleted and on-disk, don't set any additional flags.
3155 		 * the delete flag takes care of things.
3156 		 *
3157 		 * Clear flags which may have been set by the frontend.
3158 		 */
3159 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
3160 				    HAMMER_INODE_SDIRTY |
3161 				    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
3162 				    HAMMER_INODE_DELETING);
3163 		break;
3164 	case HAMMER_INODE_DELETED:
3165 		/*
3166 		 * Take care of the case where a deleted inode was never
3167 		 * flushed to the disk in the first place.
3168 		 *
3169 		 * Clear flags which may have been set by the frontend.
3170 		 */
3171 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
3172 				    HAMMER_INODE_SDIRTY |
3173 				    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
3174 				    HAMMER_INODE_DELETING);
3175 		while (RB_ROOT(&ip->rec_tree)) {
3176 			hammer_record_t record = RB_ROOT(&ip->rec_tree);
3177 			hammer_ref(&record->lock);
3178 			KKASSERT(hammer_oneref(&record->lock));
3179 			record->flags |= HAMMER_RECF_DELETED_BE;
3180 			++record->ip->rec_generation;
3181 			hammer_rel_mem_record(record);
3182 		}
3183 		break;
3184 	case HAMMER_INODE_ONDISK:
3185 		/*
3186 		 * If already on-disk, do not set any additional flags.
3187 		 */
3188 		break;
3189 	default:
3190 		/*
3191 		 * If not on-disk and not deleted, set DDIRTY to force
3192 		 * an initial record to be written.
3193 		 *
3194 		 * Also set the create_tid in both the frontend and backend
3195 		 * copy of the inode record.
3196 		 */
3197 		ip->ino_leaf.base.create_tid = trans->tid;
3198 		ip->ino_leaf.create_ts = trans->time32;
3199 		ip->sync_ino_leaf.base.create_tid = trans->tid;
3200 		ip->sync_ino_leaf.create_ts = trans->time32;
3201 		ip->sync_flags |= HAMMER_INODE_DDIRTY;
3202 		break;
3203 	}
3204 
3205 	/*
3206 	 * If DDIRTY or SDIRTY is set, write out a new record.
3207 	 * If the inode is already on-disk the old record is marked as
3208 	 * deleted.
3209 	 *
3210 	 * If DELETED is set hammer_update_inode() will delete the existing
3211 	 * record without writing out a new one.
3212 	 */
3213 	if (ip->flags & HAMMER_INODE_DELETED) {
3214 		error = hammer_update_inode(&cursor, ip);
3215 	} else
3216 	if (!(ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_SDIRTY)) &&
3217 	    (ip->sync_flags & (HAMMER_INODE_ATIME | HAMMER_INODE_MTIME))) {
3218 		error = hammer_update_itimes(&cursor, ip);
3219 	} else
3220 	if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_SDIRTY |
3221 			      HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) {
3222 		error = hammer_update_inode(&cursor, ip);
3223 	}
3224 done:
3225 	if (ip->flags & HAMMER_INODE_MODMASK)
3226 		hammer_inode_dirty(ip);
3227 	if (error) {
3228 		hammer_critical_error(ip->hmp, ip, error,
3229 				      "while syncing inode");
3230 	}
3231 	hammer_done_cursor(&cursor);
3232 	return(error);
3233 }
3234 
3235 /*
3236  * This routine is called when the OS is no longer actively referencing
3237  * the inode (but might still be keeping it cached), or when releasing
3238  * the last reference to an inode.
3239  *
3240  * At this point if the inode's nlinks count is zero we want to destroy
3241  * it, which may mean destroying it on-media too.
3242  */
3243 void
3244 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
3245 {
3246 	struct vnode *vp;
3247 
3248 	/*
3249 	 * Set the DELETING flag when the link count drops to 0 and the
3250 	 * OS no longer has any opens on the inode.
3251 	 *
3252 	 * The backend will clear DELETING (a mod flag) and set DELETED
3253 	 * (a state flag) when it is actually able to perform the
3254 	 * operation.
3255 	 *
3256 	 * Don't reflag the deletion if the flusher is currently syncing
3257 	 * one that was already flagged.  A previously set DELETING flag
3258 	 * may bounce around flags and sync_flags until the operation is
3259 	 * completely done.
3260 	 *
3261 	 * Do not attempt to modify a snapshot inode (one set to read-only).
3262 	 */
3263 	if (ip->ino_data.nlinks == 0 &&
3264 	    ((ip->flags | ip->sync_flags) & (HAMMER_INODE_RO|HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
3265 		ip->flags |= HAMMER_INODE_DELETING;
3266 		ip->flags |= HAMMER_INODE_TRUNCATED;
3267 		ip->trunc_off = 0;
3268 		vp = NULL;
3269 		if (getvp) {
3270 			if (hammer_get_vnode(ip, &vp) != 0)
3271 				return;
3272 		}
3273 
3274 		/*
3275 		 * Final cleanup
3276 		 */
3277 		if (ip->vp)
3278 			nvtruncbuf(ip->vp, 0, HAMMER_BUFSIZE, 0, 0);
3279 		if (ip->flags & HAMMER_INODE_MODMASK)
3280 			hammer_inode_dirty(ip);
3281 		if (getvp)
3282 			vput(vp);
3283 	}
3284 }
3285 
3286 /*
3287  * After potentially resolving a dependancy the inode is tested
3288  * to determine whether it needs to be reflushed.
3289  */
3290 void
3291 hammer_test_inode(hammer_inode_t ip)
3292 {
3293 	if (ip->flags & HAMMER_INODE_REFLUSH) {
3294 		ip->flags &= ~HAMMER_INODE_REFLUSH;
3295 		hammer_ref(&ip->lock);
3296 		if (ip->flags & HAMMER_INODE_RESIGNAL) {
3297 			ip->flags &= ~HAMMER_INODE_RESIGNAL;
3298 			hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
3299 		} else {
3300 			hammer_flush_inode(ip, 0);
3301 		}
3302 		hammer_rel_inode(ip, 0);
3303 	}
3304 }
3305 
3306 /*
3307  * Clear the RECLAIM flag on an inode.  This occurs when the inode is
3308  * reassociated with a vp or just before it gets freed.
3309  *
3310  * Pipeline wakeups to threads blocked due to an excessive number of
3311  * detached inodes.  This typically occurs when atime updates accumulate
3312  * while scanning a directory tree.
3313  */
3314 static void
3315 hammer_inode_wakereclaims(hammer_inode_t ip)
3316 {
3317 	struct hammer_reclaim *reclaim;
3318 	hammer_mount_t hmp = ip->hmp;
3319 
3320 	if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
3321 		return;
3322 
3323 	--hammer_count_reclaims;
3324 	--hmp->count_reclaims;
3325 	ip->flags &= ~HAMMER_INODE_RECLAIM;
3326 
3327 	if ((reclaim = TAILQ_FIRST(&hmp->reclaim_list)) != NULL) {
3328 		KKASSERT(reclaim->count > 0);
3329 		if (--reclaim->count == 0) {
3330 			TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
3331 			wakeup(reclaim);
3332 		}
3333 	}
3334 }
3335 
3336 /*
3337  * Setup our reclaim pipeline.  We only let so many detached (and dirty)
3338  * inodes build up before we start blocking.  This routine is called
3339  * if a new inode is created or an inode is loaded from media.
3340  *
3341  * When we block we don't care *which* inode has finished reclaiming,
3342  * as long as one does.
3343  *
3344  * The reclaim pipeline is primarily governed by the auto-flush which is
3345  * 1/4 hammer_limit_reclaims.  We don't want to block if the count is
3346  * less than 1/2 hammer_limit_reclaims.  From 1/2 to full count is
3347  * dynamically governed.
3348  */
3349 void
3350 hammer_inode_waitreclaims(hammer_transaction_t trans)
3351 {
3352 	hammer_mount_t hmp = trans->hmp;
3353 	struct hammer_reclaim reclaim;
3354 	int lower_limit;
3355 
3356 	/*
3357 	 * Track inode load, delay if the number of reclaiming inodes is
3358 	 * between 2/4 and 4/4 hammer_limit_reclaims, depending.
3359 	 */
3360 	if (curthread->td_proc) {
3361 		struct hammer_inostats *stats;
3362 
3363 		stats = hammer_inode_inostats(hmp, curthread->td_proc->p_pid);
3364 		++stats->count;
3365 
3366 		if (stats->count > hammer_limit_reclaims / 2)
3367 			stats->count = hammer_limit_reclaims / 2;
3368 		lower_limit = hammer_limit_reclaims - stats->count;
3369 		if (hammer_debug_general & 0x10000) {
3370 			hdkprintf("pid %5d limit %d\n",
3371 				(int)curthread->td_proc->p_pid, lower_limit);
3372 		}
3373 	} else {
3374 		lower_limit = hammer_limit_reclaims * 3 / 4;
3375 	}
3376 	if (hmp->count_reclaims >= lower_limit) {
3377 		reclaim.count = 1;
3378 		TAILQ_INSERT_TAIL(&hmp->reclaim_list, &reclaim, entry);
3379 		tsleep(&reclaim, 0, "hmrrcm", hz);
3380 		if (reclaim.count > 0)
3381 			TAILQ_REMOVE(&hmp->reclaim_list, &reclaim, entry);
3382 	}
3383 }
3384 
3385 /*
3386  * Keep track of reclaim statistics on a per-pid basis using a loose
3387  * 4-way set associative hash table.  Collisions inherit the count of
3388  * the previous entry.
3389  *
3390  * NOTE: We want to be careful here to limit the chain size.  If the chain
3391  *	 size is too large a pid will spread its stats out over too many
3392  *	 entries under certain types of heavy filesystem activity and
3393  *	 wind up not delaying long enough.
3394  */
3395 static
3396 struct hammer_inostats *
3397 hammer_inode_inostats(hammer_mount_t hmp, pid_t pid)
3398 {
3399 	struct hammer_inostats *stats;
3400 	int delta;
3401 	int chain;
3402 	static volatile int iterator;	/* we don't care about MP races */
3403 
3404 	/*
3405 	 * Chain up to 4 times to find our entry.
3406 	 */
3407 	for (chain = 0; chain < 4; ++chain) {
3408 		stats = &hmp->inostats[(pid + chain) & HAMMER_INOSTATS_HMASK];
3409 		if (stats->pid == pid)
3410 			break;
3411 	}
3412 
3413 	/*
3414 	 * Replace one of the four chaining entries with our new entry.
3415 	 */
3416 	if (chain == 4) {
3417 		stats = &hmp->inostats[(pid + (iterator++ & 3)) &
3418 				       HAMMER_INOSTATS_HMASK];
3419 		stats->pid = pid;
3420 	}
3421 
3422 	/*
3423 	 * Decay the entry
3424 	 */
3425 	if (stats->count && stats->ltick != ticks) {
3426 		delta = ticks - stats->ltick;
3427 		stats->ltick = ticks;
3428 		if (delta <= 0 || delta > hz * 60)
3429 			stats->count = 0;
3430 		else
3431 			stats->count = stats->count * hz / (hz + delta);
3432 	}
3433 	if (hammer_debug_general & 0x10000)
3434 		hdkprintf("pid %5d stats %d\n", (int)pid, stats->count);
3435 	return (stats);
3436 }
3437 
3438 #if 0
3439 
3440 /*
3441  * XXX not used, doesn't work very well due to the large batching nature
3442  * of flushes.
3443  *
3444  * A larger then normal backlog of inodes is sitting in the flusher,
3445  * enforce a general slowdown to let it catch up.  This routine is only
3446  * called on completion of a non-flusher-related transaction which
3447  * performed B-Tree node I/O.
3448  *
3449  * It is possible for the flusher to stall in a continuous load.
3450  * blogbench -i1000 -o seems to do a good job generating this sort of load.
3451  * If the flusher is unable to catch up the inode count can bloat until
3452  * we run out of kvm.
3453  *
3454  * This is a bit of a hack.
3455  */
3456 void
3457 hammer_inode_waithard(hammer_mount_t hmp)
3458 {
3459 	/*
3460 	 * Hysteresis.
3461 	 */
3462 	if (hmp->flags & HAMMER_MOUNT_FLUSH_RECOVERY) {
3463 		if (hmp->count_reclaims < hammer_limit_reclaims / 2 &&
3464 		    hmp->count_iqueued < hmp->count_inodes / 20) {
3465 			hmp->flags &= ~HAMMER_MOUNT_FLUSH_RECOVERY;
3466 			return;
3467 		}
3468 	} else {
3469 		if (hmp->count_reclaims < hammer_limit_reclaims ||
3470 		    hmp->count_iqueued < hmp->count_inodes / 10) {
3471 			return;
3472 		}
3473 		hmp->flags |= HAMMER_MOUNT_FLUSH_RECOVERY;
3474 	}
3475 
3476 	/*
3477 	 * Block for one flush cycle.
3478 	 */
3479 	hammer_flusher_wait_next(hmp);
3480 }
3481 
3482 #endif
3483