xref: /dragonfly/sys/vfs/hammer/hammer_io.c (revision 0d27ae55)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * IO Primitives and buffer cache management
36  *
37  * All major data-tracking structures in HAMMER contain a struct hammer_io
38  * which is used to manage their backing store.  We use filesystem buffers
39  * for backing store and we leave them passively associated with their
40  * HAMMER structures.
41  *
42  * If the kernel tries to destroy a passively associated buf which we cannot
43  * yet let go we set B_LOCKED in the buffer and then actively released it
44  * later when we can.
45  *
46  * The io_token is required for anything which might race bioops and bio_done
47  * callbacks, with one exception: A successful hammer_try_interlock_norefs().
48  * the fs_token will be held in all other cases.
49  */
50 
51 #include <sys/buf2.h>
52 
53 #include "hammer.h"
54 
55 static void hammer_io_modify(hammer_io_t io, int count);
56 static void hammer_io_deallocate(struct buf *bp);
57 static void hammer_indirect_callback(struct bio *bio);
58 static void hammer_io_direct_write_complete(struct bio *nbio);
59 static int hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data);
60 static void hammer_io_set_modlist(struct hammer_io *io);
61 static __inline void hammer_io_flush_mark(hammer_volume_t volume);
62 static struct bio_ops hammer_bioops;
63 
64 static int
65 hammer_mod_rb_compare(hammer_io_t io1, hammer_io_t io2)
66 {
67 	hammer_off_t io1_offset;
68 	hammer_off_t io2_offset;
69 
70 	/*
71 	 * Encoded offsets are neither valid block device offsets
72 	 * nor valid zone-X offsets.
73 	 */
74 	io1_offset = HAMMER_ENCODE(0, io1->volume->vol_no, io1->offset);
75 	io2_offset = HAMMER_ENCODE(0, io2->volume->vol_no, io2->offset);
76 
77 	if (io1_offset < io2_offset)
78 		return(-1);
79 	if (io1_offset > io2_offset)
80 		return(1);
81 	return(0);
82 }
83 
84 RB_GENERATE(hammer_mod_rb_tree, hammer_io, rb_node, hammer_mod_rb_compare);
85 
86 /*
87  * Initialize a new, already-zero'd hammer_io structure, or reinitialize
88  * an existing hammer_io structure which may have switched to another type.
89  */
90 void
91 hammer_io_init(hammer_io_t io, hammer_volume_t volume, enum hammer_io_type type)
92 {
93 	io->volume = volume;
94 	io->hmp = volume->io.hmp;
95 	io->type = type;
96 }
97 
98 /*
99  * Helper routine to disassociate a buffer cache buffer from an I/O
100  * structure.  The io must be interlocked and marked appropriately for
101  * reclamation.
102  *
103  * The io must be in a released state with the io->bp owned and
104  * locked by the caller of this function.  When not called from an
105  * io_deallocate() this cannot race an io_deallocate() since the
106  * kernel would be unable to get the buffer lock in that case.
107  * (The released state in this case means we own the bp, not the
108  * hammer_io structure).
109  *
110  * The io may have 0 or 1 references depending on who called us.  The
111  * caller is responsible for dealing with the refs.
112  *
113  * This call can only be made when no action is required on the buffer.
114  *
115  * This function is guaranteed not to race against anything because we
116  * own both the io lock and the bp lock and are interlocked with no
117  * references.
118  */
119 static void
120 hammer_io_disassociate(hammer_io_t io)
121 {
122 	struct buf *bp = io->bp;
123 
124 	KKASSERT(io->released);
125 	KKASSERT(io->modified == 0);
126 	KKASSERT(hammer_buf_peek_io(bp) == io);
127 	buf_dep_init(bp);
128 	io->bp = NULL;
129 
130 	/*
131 	 * If the buffer was locked someone wanted to get rid of it.
132 	 */
133 	if (bp->b_flags & B_LOCKED) {
134 		atomic_add_int(&hammer_count_io_locked, -1);
135 		bp->b_flags &= ~B_LOCKED;
136 	}
137 	if (io->reclaim) {
138 		bp->b_flags |= B_NOCACHE|B_RELBUF;
139 		io->reclaim = 0;
140 	}
141 
142 	switch(io->type) {
143 	case HAMMER_STRUCTURE_VOLUME:
144 		HAMMER_ITOV(io)->ondisk = NULL;
145 		break;
146 	case HAMMER_STRUCTURE_DATA_BUFFER:
147 	case HAMMER_STRUCTURE_META_BUFFER:
148 	case HAMMER_STRUCTURE_UNDO_BUFFER:
149 		HAMMER_ITOB(io)->ondisk = NULL;
150 		break;
151 	case HAMMER_STRUCTURE_DUMMY:
152 		hpanic("bad io type");
153 		break;
154 	}
155 }
156 
157 /*
158  * Wait for any physical IO to complete
159  *
160  * XXX we aren't interlocked against a spinlock or anything so there
161  *     is a small window in the interlock / io->running == 0 test.
162  */
163 void
164 hammer_io_wait(hammer_io_t io)
165 {
166 	if (io->running) {
167 		hammer_mount_t hmp = io->hmp;
168 
169 		lwkt_gettoken(&hmp->io_token);
170 		while (io->running) {
171 			io->waiting = 1;
172 			tsleep_interlock(io, 0);
173 			if (io->running)
174 				tsleep(io, PINTERLOCKED, "hmrflw", hz);
175 		}
176 		lwkt_reltoken(&hmp->io_token);
177 	}
178 }
179 
180 /*
181  * Wait for all currently queued HAMMER-initiated I/Os to complete.
182  *
183  * This is not supposed to count direct I/O's but some can leak
184  * through (for non-full-sized direct I/Os).
185  */
186 void
187 hammer_io_wait_all(hammer_mount_t hmp, const char *ident, int doflush)
188 {
189 	struct hammer_io iodummy;
190 	hammer_io_t io;
191 
192 	/*
193 	 * Degenerate case, no I/O is running
194 	 */
195 	lwkt_gettoken(&hmp->io_token);
196 	if (TAILQ_EMPTY(&hmp->iorun_list)) {
197 		lwkt_reltoken(&hmp->io_token);
198 		if (doflush)
199 			hammer_io_flush_sync(hmp);
200 		return;
201 	}
202 	bzero(&iodummy, sizeof(iodummy));
203 	iodummy.type = HAMMER_STRUCTURE_DUMMY;
204 
205 	/*
206 	 * Add placemarker and then wait until it becomes the head of
207 	 * the list.
208 	 */
209 	TAILQ_INSERT_TAIL(&hmp->iorun_list, &iodummy, iorun_entry);
210 	while (TAILQ_FIRST(&hmp->iorun_list) != &iodummy) {
211 		tsleep(&iodummy, 0, ident, 0);
212 	}
213 
214 	/*
215 	 * Chain in case several placemarkers are present.
216 	 */
217 	TAILQ_REMOVE(&hmp->iorun_list, &iodummy, iorun_entry);
218 	io = TAILQ_FIRST(&hmp->iorun_list);
219 	if (io && io->type == HAMMER_STRUCTURE_DUMMY)
220 		wakeup(io);
221 	lwkt_reltoken(&hmp->io_token);
222 
223 	if (doflush)
224 		hammer_io_flush_sync(hmp);
225 }
226 
227 /*
228  * Clear a flagged error condition on a I/O buffer.  The caller must hold
229  * its own ref on the buffer.
230  */
231 void
232 hammer_io_clear_error(struct hammer_io *io)
233 {
234 	hammer_mount_t hmp = io->hmp;
235 
236 	lwkt_gettoken(&hmp->io_token);
237 	if (io->ioerror) {
238 		io->ioerror = 0;
239 		hammer_rel(&io->lock);
240 		KKASSERT(hammer_isactive(&io->lock));
241 	}
242 	lwkt_reltoken(&hmp->io_token);
243 }
244 
245 void
246 hammer_io_clear_error_noassert(struct hammer_io *io)
247 {
248 	hammer_mount_t hmp = io->hmp;
249 
250 	lwkt_gettoken(&hmp->io_token);
251 	if (io->ioerror) {
252 		io->ioerror = 0;
253 		hammer_rel(&io->lock);
254 	}
255 	lwkt_reltoken(&hmp->io_token);
256 }
257 
258 /*
259  * This is an advisory function only which tells the buffer cache
260  * the bp is not a meta-data buffer, even though it is backed by
261  * a block device.
262  *
263  * This is used by HAMMER's reblocking code to avoid trying to
264  * swapcache the filesystem's data when it is read or written
265  * by the reblocking code.
266  *
267  * The caller has a ref on the buffer preventing the bp from
268  * being disassociated from it.
269  */
270 void
271 hammer_io_notmeta(hammer_buffer_t buffer)
272 {
273 	if ((buffer->io.bp->b_flags & B_NOTMETA) == 0) {
274 		hammer_mount_t hmp = buffer->io.hmp;
275 
276 		lwkt_gettoken(&hmp->io_token);
277 		buffer->io.bp->b_flags |= B_NOTMETA;
278 		lwkt_reltoken(&hmp->io_token);
279 	}
280 }
281 
282 /*
283  * Load bp for a HAMMER structure.  The io must be exclusively locked by
284  * the caller.
285  *
286  * This routine is mostly used on meta-data and small-data blocks.  Generally
287  * speaking HAMMER assumes some locality of reference and will cluster.
288  *
289  * Note that the caller (hammer_ondisk.c) may place further restrictions
290  * on clusterability via the limit (in bytes).  Typically large-data
291  * zones cannot be clustered due to their mixed buffer sizes.  This is
292  * not an issue since such clustering occurs in hammer_vnops at the
293  * regular file layer, whereas this is the buffered block device layer.
294  *
295  * No I/O callbacks can occur while we hold the buffer locked.
296  */
297 int
298 hammer_io_read(struct vnode *devvp, struct hammer_io *io, int limit)
299 {
300 	struct buf *bp;
301 	int   error;
302 
303 	if ((bp = io->bp) == NULL) {
304 		atomic_add_long(&hammer_count_io_running_read, io->bytes);
305 		if (hammer_cluster_enable && limit > io->bytes) {
306 			error = cluster_read(devvp, io->offset + limit,
307 					     io->offset, io->bytes,
308 					     HAMMER_CLUSTER_SIZE,
309 					     HAMMER_CLUSTER_SIZE,
310 					     &io->bp);
311 		} else {
312 			error = bread(devvp, io->offset, io->bytes, &io->bp);
313 		}
314 		hammer_stats_disk_read += io->bytes;
315 		atomic_add_long(&hammer_count_io_running_read, -io->bytes);
316 
317 		/*
318 		 * The code generally assumes b_ops/b_dep has been set-up,
319 		 * even if we error out here.
320 		 */
321 		bp = io->bp;
322 		if ((hammer_debug_io & 0x0001) && (bp->b_flags & B_IODEBUG)) {
323 			const char *metatype;
324 
325 			switch(io->type) {
326 			case HAMMER_STRUCTURE_VOLUME:
327 				metatype = "volume";
328 				break;
329 			case HAMMER_STRUCTURE_META_BUFFER:
330 				switch(HAMMER_ZONE(HAMMER_ITOB(io)->zoneX_offset)) {
331 				case HAMMER_ZONE_BTREE:
332 					metatype = "btree";
333 					break;
334 				case HAMMER_ZONE_META:
335 					metatype = "meta";
336 					break;
337 				case HAMMER_ZONE_FREEMAP:
338 					metatype = "freemap";
339 					break;
340 				default:
341 					metatype = "meta?";
342 					break;
343 				}
344 				break;
345 			case HAMMER_STRUCTURE_DATA_BUFFER:
346 				metatype = "data";
347 				break;
348 			case HAMMER_STRUCTURE_UNDO_BUFFER:
349 				metatype = "undo";
350 				break;
351 			default:
352 				metatype = "unknown";
353 				break;
354 			}
355 			hdkprintf("zone2_offset %016jx %s\n",
356 				(intmax_t)bp->b_bio2.bio_offset,
357 				metatype);
358 		}
359 		bp->b_flags &= ~B_IODEBUG;
360 		bp->b_ops = &hammer_bioops;
361 
362 		hammer_buf_attach_io(bp, io); /* locked by the io lock */
363 		BUF_KERNPROC(bp);
364 		KKASSERT(io->modified == 0);
365 		KKASSERT(io->running == 0);
366 		KKASSERT(io->waiting == 0);
367 		io->released = 0;	/* we hold an active lock on bp */
368 	} else {
369 		error = 0;
370 	}
371 	return(error);
372 }
373 
374 /*
375  * Similar to hammer_io_read() but returns a zero'd out buffer instead.
376  * Must be called with the IO exclusively locked.
377  *
378  * vfs_bio_clrbuf() is kinda nasty, enforce serialization against background
379  * I/O by forcing the buffer to not be in a released state before calling
380  * it.
381  *
382  * This function will also mark the IO as modified but it will not
383  * increment the modify_refs count.
384  *
385  * No I/O callbacks can occur while we hold the buffer locked.
386  */
387 int
388 hammer_io_new(struct vnode *devvp, struct hammer_io *io)
389 {
390 	struct buf *bp;
391 
392 	if ((bp = io->bp) == NULL) {
393 		io->bp = getblk(devvp, io->offset, io->bytes, 0, 0);
394 		bp = io->bp;
395 		bp->b_ops = &hammer_bioops;
396 
397 		hammer_buf_attach_io(bp, io); /* locked by the io lock */
398 		io->released = 0;
399 		KKASSERT(io->running == 0);
400 		io->waiting = 0;
401 		BUF_KERNPROC(bp);
402 	} else {
403 		if (io->released) {
404 			regetblk(bp);
405 			BUF_KERNPROC(bp);
406 			io->released = 0;
407 		}
408 	}
409 	hammer_io_modify(io, 0);
410 	vfs_bio_clrbuf(bp);
411 	return(0);
412 }
413 
414 /*
415  * Advance the activity count on the underlying buffer because
416  * HAMMER does not getblk/brelse on every access.
417  *
418  * The io->bp cannot go away while the buffer is referenced.
419  */
420 void
421 hammer_io_advance(struct hammer_io *io)
422 {
423 	if (io->bp)
424 		buf_act_advance(io->bp);
425 }
426 
427 /*
428  * Remove potential device level aliases against buffers managed by high level
429  * vnodes.  Aliases can also be created due to mixed buffer sizes or via
430  * direct access to the backing store device.
431  *
432  * This is nasty because the buffers are also VMIO-backed.  Even if a buffer
433  * does not exist its backing VM pages might, and we have to invalidate
434  * those as well or a getblk() will reinstate them.
435  *
436  * Buffer cache buffers associated with hammer_buffers cannot be
437  * invalidated.
438  */
439 int
440 hammer_io_inval(hammer_volume_t volume, hammer_off_t zone2_offset)
441 {
442 	hammer_io_t io;
443 	hammer_mount_t hmp;
444 	hammer_off_t phys_offset;
445 	struct buf *bp;
446 	int error;
447 
448 	hmp = volume->io.hmp;
449 	lwkt_gettoken(&hmp->io_token);
450 
451 	/*
452 	 * If a device buffer already exists for the specified physical
453 	 * offset use that, otherwise instantiate a buffer to cover any
454 	 * related VM pages, set BNOCACHE, and brelse().
455 	 */
456 	phys_offset = hammer_xlate_to_phys(volume->ondisk, zone2_offset);
457 	if ((bp = findblk(volume->devvp, phys_offset, 0)) != NULL)
458 		bremfree(bp);
459 	else
460 		bp = getblk(volume->devvp, phys_offset, HAMMER_BUFSIZE, 0, 0);
461 
462 	if ((io = hammer_buf_peek_io(bp)) != NULL) {
463 #if 0
464 		hammer_ref(&io->lock);
465 		hammer_io_clear_modify(io, 1);
466 		bundirty(bp);
467 		io->released = 0;
468 		BUF_KERNPROC(bp);
469 		io->reclaim = 1;
470 		io->waitdep = 1;	/* XXX this is a fs_token field */
471 		KKASSERT(hammer_isactive(&io->lock) == 1);
472 		hammer_rel_buffer(HAMMER_ITOB(io), 0);
473 		/*hammer_io_deallocate(bp);*/
474 #endif
475 		bqrelse(bp);
476 		error = EAGAIN;
477 	} else {
478 		KKASSERT((bp->b_flags & B_LOCKED) == 0);
479 		bundirty(bp);
480 		bp->b_flags |= B_NOCACHE|B_RELBUF;
481 		brelse(bp);
482 		error = 0;
483 	}
484 	lwkt_reltoken(&hmp->io_token);
485 	return(error);
486 }
487 
488 /*
489  * This routine is called on the last reference to a hammer structure.
490  * The io must be interlocked with a refcount of zero.  The hammer structure
491  * will remain interlocked on return.
492  *
493  * This routine may return a non-NULL bp to the caller for dispoal.
494  * The caller typically brelse()'s the bp.
495  *
496  * The bp may or may not still be passively associated with the IO.  It
497  * will remain passively associated if it is unreleasable (e.g. a modified
498  * meta-data buffer).
499  *
500  * The only requirement here is that modified meta-data and volume-header
501  * buffer may NOT be disassociated from the IO structure, and consequently
502  * we also leave such buffers actively associated with the IO if they already
503  * are (since the kernel can't do anything with them anyway).  Only the
504  * flusher is allowed to write such buffers out.  Modified pure-data and
505  * undo buffers are returned to the kernel but left passively associated
506  * so we can track when the kernel writes the bp out.
507  */
508 struct buf *
509 hammer_io_release(struct hammer_io *io, int flush)
510 {
511 	struct buf *bp;
512 
513 	if ((bp = io->bp) == NULL)
514 		return(NULL);
515 
516 	/*
517 	 * Try to flush a dirty IO to disk if asked to by the
518 	 * caller or if the kernel tried to flush the buffer in the past.
519 	 *
520 	 * Kernel-initiated flushes are only allowed for pure-data buffers.
521 	 * meta-data and volume buffers can only be flushed explicitly
522 	 * by HAMMER.
523 	 */
524 	if (io->modified) {
525 		if (flush) {
526 			hammer_io_flush(io, 0);
527 		} else if (bp->b_flags & B_LOCKED) {
528 			switch(io->type) {
529 			case HAMMER_STRUCTURE_DATA_BUFFER:
530 				hammer_io_flush(io, 0);
531 				break;
532 			case HAMMER_STRUCTURE_UNDO_BUFFER:
533 				hammer_io_flush(io, hammer_undo_reclaim(io));
534 				break;
535 			default:
536 				break;
537 			}
538 		} /* else no explicit request to flush the buffer */
539 	}
540 
541 	/*
542 	 * Wait for the IO to complete if asked to.  This occurs when
543 	 * the buffer must be disposed of definitively during an umount
544 	 * or buffer invalidation.
545 	 */
546 	if (io->waitdep && io->running) {
547 		hammer_io_wait(io);
548 	}
549 
550 	/*
551 	 * Return control of the buffer to the kernel (with the provisio
552 	 * that our bioops can override kernel decisions with regards to
553 	 * the buffer).
554 	 */
555 	if ((flush || io->reclaim) && io->modified == 0 && io->running == 0) {
556 		/*
557 		 * Always disassociate the bp if an explicit flush
558 		 * was requested and the IO completed with no error
559 		 * (so unmount can really clean up the structure).
560 		 */
561 		if (io->released) {
562 			regetblk(bp);
563 			BUF_KERNPROC(bp);
564 		} else {
565 			io->released = 1;
566 		}
567 		hammer_io_disassociate(io);
568 		/* return the bp */
569 	} else if (io->modified) {
570 		/*
571 		 * Only certain IO types can be released to the kernel if
572 		 * the buffer has been modified.
573 		 *
574 		 * volume and meta-data IO types may only be explicitly
575 		 * flushed by HAMMER.
576 		 */
577 		switch(io->type) {
578 		case HAMMER_STRUCTURE_DATA_BUFFER:
579 		case HAMMER_STRUCTURE_UNDO_BUFFER:
580 			if (io->released == 0) {
581 				io->released = 1;
582 				bp->b_flags |= B_CLUSTEROK;
583 				bdwrite(bp);
584 			}
585 			break;
586 		default:
587 			break;
588 		}
589 		bp = NULL;	/* bp left associated */
590 	} else if (io->released == 0) {
591 		/*
592 		 * Clean buffers can be generally released to the kernel.
593 		 * We leave the bp passively associated with the HAMMER
594 		 * structure and use bioops to disconnect it later on
595 		 * if the kernel wants to discard the buffer.
596 		 *
597 		 * We can steal the structure's ownership of the bp.
598 		 */
599 		io->released = 1;
600 		if (bp->b_flags & B_LOCKED) {
601 			hammer_io_disassociate(io);
602 			/* return the bp */
603 		} else {
604 			if (io->reclaim) {
605 				hammer_io_disassociate(io);
606 				/* return the bp */
607 			} else {
608 				/* return the bp (bp passively associated) */
609 			}
610 		}
611 	} else {
612 		/*
613 		 * A released buffer is passively associate with our
614 		 * hammer_io structure.  The kernel cannot destroy it
615 		 * without making a bioops call.  If the kernel (B_LOCKED)
616 		 * or we (reclaim) requested that the buffer be destroyed
617 		 * we destroy it, otherwise we do a quick get/release to
618 		 * reset its position in the kernel's LRU list.
619 		 *
620 		 * Leaving the buffer passively associated allows us to
621 		 * use the kernel's LRU buffer flushing mechanisms rather
622 		 * then rolling our own.
623 		 *
624 		 * XXX there are two ways of doing this.  We can re-acquire
625 		 * and passively release to reset the LRU, or not.
626 		 */
627 		if (io->running == 0) {
628 			regetblk(bp);
629 			if ((bp->b_flags & B_LOCKED) || io->reclaim) {
630 				hammer_io_disassociate(io);
631 				/* return the bp */
632 			} else {
633 				/* return the bp (bp passively associated) */
634 			}
635 		} else {
636 			/*
637 			 * bp is left passively associated but we do not
638 			 * try to reacquire it.  Interactions with the io
639 			 * structure will occur on completion of the bp's
640 			 * I/O.
641 			 */
642 			bp = NULL;
643 		}
644 	}
645 	return(bp);
646 }
647 
648 /*
649  * This routine is called with a locked IO when a flush is desired and
650  * no other references to the structure exists other then ours.  This
651  * routine is ONLY called when HAMMER believes it is safe to flush a
652  * potentially modified buffer out.
653  *
654  * The locked io or io reference prevents a flush from being initiated
655  * by the kernel.
656  */
657 void
658 hammer_io_flush(struct hammer_io *io, int reclaim)
659 {
660 	struct buf *bp;
661 	hammer_mount_t hmp;
662 
663 	/*
664 	 * Degenerate case - nothing to flush if nothing is dirty.
665 	 */
666 	if (io->modified == 0)
667 		return;
668 
669 	KKASSERT(io->bp);
670 	KKASSERT(io->modify_refs <= 0);
671 
672 	/*
673 	 * Acquire ownership of the bp, particularly before we clear our
674 	 * modified flag.
675 	 *
676 	 * We are going to bawrite() this bp.  Don't leave a window where
677 	 * io->released is set, we actually own the bp rather then our
678 	 * buffer.
679 	 *
680 	 * The io_token should not be required here as only
681 	 */
682 	hmp = io->hmp;
683 	bp = io->bp;
684 	if (io->released) {
685 		regetblk(bp);
686 		/* BUF_KERNPROC(io->bp); */
687 		/* io->released = 0; */
688 		KKASSERT(io->released);
689 		KKASSERT(io->bp == bp);
690 	} else {
691 		io->released = 1;
692 	}
693 
694 	if (reclaim) {
695 		io->reclaim = 1;
696 		if ((bp->b_flags & B_LOCKED) == 0) {
697 			bp->b_flags |= B_LOCKED;
698 			atomic_add_int(&hammer_count_io_locked, 1);
699 		}
700 	}
701 
702 	/*
703 	 * Acquire exclusive access to the bp and then clear the modified
704 	 * state of the buffer prior to issuing I/O to interlock any
705 	 * modifications made while the I/O is in progress.  This shouldn't
706 	 * happen anyway but losing data would be worse.  The modified bit
707 	 * will be rechecked after the IO completes.
708 	 *
709 	 * NOTE: This call also finalizes the buffer's content (inval == 0).
710 	 *
711 	 * This is only legal when lock.refs == 1 (otherwise we might clear
712 	 * the modified bit while there are still users of the cluster
713 	 * modifying the data).
714 	 *
715 	 * Do this before potentially blocking so any attempt to modify the
716 	 * ondisk while we are blocked blocks waiting for us.
717 	 */
718 	hammer_ref(&io->lock);
719 	hammer_io_clear_modify(io, 0);
720 	hammer_rel(&io->lock);
721 
722 	if (hammer_debug_io & 0x0002)
723 		hdkprintf("%016jx\n", bp->b_bio1.bio_offset);
724 
725 	/*
726 	 * Transfer ownership to the kernel and initiate I/O.
727 	 *
728 	 * NOTE: We do not hold io_token so an atomic op is required to
729 	 *	 update io_running_space.
730 	 */
731 	io->running = 1;
732 	atomic_add_long(&hmp->io_running_space, io->bytes);
733 	atomic_add_long(&hammer_count_io_running_write, io->bytes);
734 	lwkt_gettoken(&hmp->io_token);
735 	TAILQ_INSERT_TAIL(&hmp->iorun_list, io, iorun_entry);
736 	lwkt_reltoken(&hmp->io_token);
737 	cluster_awrite(bp);
738 	hammer_io_flush_mark(io->volume);
739 }
740 
741 /************************************************************************
742  *				BUFFER DIRTYING				*
743  ************************************************************************
744  *
745  * These routines deal with dependancies created when IO buffers get
746  * modified.  The caller must call hammer_modify_*() on a referenced
747  * HAMMER structure prior to modifying its on-disk data.
748  *
749  * Any intent to modify an IO buffer acquires the related bp and imposes
750  * various write ordering dependancies.
751  */
752 
753 /*
754  * Mark a HAMMER structure as undergoing modification.  Meta-data buffers
755  * are locked until the flusher can deal with them, pure data buffers
756  * can be written out.
757  *
758  * The referenced io prevents races.
759  */
760 static
761 void
762 hammer_io_modify(hammer_io_t io, int count)
763 {
764 	/*
765 	 * io->modify_refs must be >= 0
766 	 */
767 	while (io->modify_refs < 0) {
768 		io->waitmod = 1;
769 		tsleep(io, 0, "hmrmod", 0);
770 	}
771 
772 	/*
773 	 * Shortcut if nothing to do.
774 	 */
775 	KKASSERT(hammer_isactive(&io->lock) && io->bp != NULL);
776 	io->modify_refs += count;
777 	if (io->modified && io->released == 0)
778 		return;
779 
780 	/*
781 	 * NOTE: It is important not to set the modified bit
782 	 *	 until after we have acquired the bp or we risk
783 	 *	 racing against checkwrite.
784 	 */
785 	hammer_lock_ex(&io->lock);
786 	if (io->released) {
787 		regetblk(io->bp);
788 		BUF_KERNPROC(io->bp);
789 		io->released = 0;
790 	}
791 	if (io->modified == 0) {
792 		hammer_io_set_modlist(io);
793 		io->modified = 1;
794 	}
795 	hammer_unlock(&io->lock);
796 }
797 
798 static __inline
799 void
800 hammer_io_modify_done(hammer_io_t io)
801 {
802 	KKASSERT(io->modify_refs > 0);
803 	--io->modify_refs;
804 	if (io->modify_refs == 0 && io->waitmod) {
805 		io->waitmod = 0;
806 		wakeup(io);
807 	}
808 }
809 
810 /*
811  * The write interlock blocks other threads trying to modify a buffer
812  * (they block in hammer_io_modify()) after us, or blocks us while other
813  * threads are in the middle of modifying a buffer.
814  *
815  * The caller also has a ref on the io, however if we are not careful
816  * we will race bioops callbacks (checkwrite).  To deal with this
817  * we must at least acquire and release the io_token, and it is probably
818  * better to hold it through the setting of modify_refs.
819  */
820 void
821 hammer_io_write_interlock(hammer_io_t io)
822 {
823 	hammer_mount_t hmp = io->hmp;
824 
825 	lwkt_gettoken(&hmp->io_token);
826 	while (io->modify_refs != 0) {
827 		io->waitmod = 1;
828 		tsleep(io, 0, "hmrmod", 0);
829 	}
830 	io->modify_refs = -1;
831 	lwkt_reltoken(&hmp->io_token);
832 }
833 
834 void
835 hammer_io_done_interlock(hammer_io_t io)
836 {
837 	KKASSERT(io->modify_refs == -1);
838 	io->modify_refs = 0;
839 	if (io->waitmod) {
840 		io->waitmod = 0;
841 		wakeup(io);
842 	}
843 }
844 
845 /*
846  * Caller intends to modify a volume's ondisk structure.
847  *
848  * This is only allowed if we are the flusher or we have a ref on the
849  * sync_lock.
850  */
851 void
852 hammer_modify_volume(hammer_transaction_t trans, hammer_volume_t volume,
853 		     void *base, int len)
854 {
855 	KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
856 
857 	hammer_io_modify(&volume->io, 1);
858 	if (len) {
859 		intptr_t rel_offset = (intptr_t)base - (intptr_t)volume->ondisk;
860 		KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
861 		hammer_generate_undo(trans,
862 			 HAMMER_ENCODE_RAW_VOLUME(volume->vol_no, rel_offset),
863 			 base, len);
864 	}
865 }
866 
867 /*
868  * Caller intends to modify a buffer's ondisk structure.
869  *
870  * This is only allowed if we are the flusher or we have a ref on the
871  * sync_lock.
872  */
873 void
874 hammer_modify_buffer(hammer_transaction_t trans, hammer_buffer_t buffer,
875 		     void *base, int len)
876 {
877 	KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
878 
879 	hammer_io_modify(&buffer->io, 1);
880 	if (len) {
881 		intptr_t rel_offset = (intptr_t)base - (intptr_t)buffer->ondisk;
882 		KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
883 		hammer_generate_undo(trans,
884 				     buffer->zone2_offset + rel_offset,
885 				     base, len);
886 	}
887 }
888 
889 void
890 hammer_modify_volume_done(hammer_volume_t volume)
891 {
892 	hammer_io_modify_done(&volume->io);
893 }
894 
895 void
896 hammer_modify_buffer_done(hammer_buffer_t buffer)
897 {
898 	hammer_io_modify_done(&buffer->io);
899 }
900 
901 /*
902  * Mark an entity as not being dirty any more and finalize any
903  * delayed adjustments to the buffer.
904  *
905  * Delayed adjustments are an important performance enhancement, allowing
906  * us to avoid recalculating B-Tree node CRCs over and over again when
907  * making bulk-modifications to the B-Tree.
908  *
909  * If inval is non-zero delayed adjustments are ignored.
910  *
911  * This routine may dereference related btree nodes and cause the
912  * buffer to be dereferenced.  The caller must own a reference on io.
913  */
914 void
915 hammer_io_clear_modify(struct hammer_io *io, int inval)
916 {
917 	hammer_mount_t hmp;
918 
919 	/*
920 	 * io_token is needed to avoid races on mod_root
921 	 */
922 	if (io->modified == 0)
923 		return;
924 	hmp = io->hmp;
925 	lwkt_gettoken(&hmp->io_token);
926 	if (io->modified == 0) {
927 		lwkt_reltoken(&hmp->io_token);
928 		return;
929 	}
930 
931 	/*
932 	 * Take us off the mod-list and clear the modified bit.
933 	 */
934 	KKASSERT(io->mod_root != NULL);
935 	if (io->mod_root == &io->hmp->volu_root ||
936 	    io->mod_root == &io->hmp->meta_root) {
937 		io->hmp->locked_dirty_space -= io->bytes;
938 		atomic_add_long(&hammer_count_dirtybufspace, -io->bytes);
939 	}
940 	RB_REMOVE(hammer_mod_rb_tree, io->mod_root, io);
941 	io->mod_root = NULL;
942 	io->modified = 0;
943 
944 	lwkt_reltoken(&hmp->io_token);
945 
946 	/*
947 	 * If this bit is not set there are no delayed adjustments.
948 	 */
949 	if (io->gencrc == 0)
950 		return;
951 	io->gencrc = 0;
952 
953 	/*
954 	 * Finalize requested CRCs.  The NEEDSCRC flag also holds a reference
955 	 * on the node (& underlying buffer).  Release the node after clearing
956 	 * the flag.
957 	 */
958 	if (io->type == HAMMER_STRUCTURE_META_BUFFER) {
959 		hammer_buffer_t buffer = HAMMER_ITOB(io);
960 		hammer_node_t node;
961 
962 restart:
963 		TAILQ_FOREACH(node, &buffer->node_list, entry) {
964 			if ((node->flags & HAMMER_NODE_NEEDSCRC) == 0)
965 				continue;
966 			node->flags &= ~HAMMER_NODE_NEEDSCRC;
967 			KKASSERT(node->ondisk);
968 			if (inval == 0)
969 				hammer_crc_set_btree(node->ondisk);
970 			hammer_rel_node(node);
971 			goto restart;
972 		}
973 	}
974 	/* caller must still have ref on io */
975 	KKASSERT(hammer_isactive(&io->lock));
976 }
977 
978 /*
979  * Clear the IO's modify list.  Even though the IO is no longer modified
980  * it may still be on the lose_root.  This routine is called just before
981  * the governing hammer_buffer is destroyed.
982  *
983  * mod_root requires io_token protection.
984  */
985 void
986 hammer_io_clear_modlist(struct hammer_io *io)
987 {
988 	hammer_mount_t hmp = io->hmp;
989 
990 	KKASSERT(io->modified == 0);
991 	if (io->mod_root) {
992 		lwkt_gettoken(&hmp->io_token);
993 		if (io->mod_root) {
994 			KKASSERT(io->mod_root == &io->hmp->lose_root);
995 			RB_REMOVE(hammer_mod_rb_tree, io->mod_root, io);
996 			io->mod_root = NULL;
997 		}
998 		lwkt_reltoken(&hmp->io_token);
999 	}
1000 }
1001 
1002 static void
1003 hammer_io_set_modlist(struct hammer_io *io)
1004 {
1005 	struct hammer_mount *hmp = io->hmp;
1006 
1007 	lwkt_gettoken(&hmp->io_token);
1008 	KKASSERT(io->mod_root == NULL);
1009 
1010 	switch(io->type) {
1011 	case HAMMER_STRUCTURE_VOLUME:
1012 		io->mod_root = &hmp->volu_root;
1013 		hmp->locked_dirty_space += io->bytes;
1014 		atomic_add_long(&hammer_count_dirtybufspace, io->bytes);
1015 		break;
1016 	case HAMMER_STRUCTURE_META_BUFFER:
1017 		io->mod_root = &hmp->meta_root;
1018 		hmp->locked_dirty_space += io->bytes;
1019 		atomic_add_long(&hammer_count_dirtybufspace, io->bytes);
1020 		break;
1021 	case HAMMER_STRUCTURE_UNDO_BUFFER:
1022 		io->mod_root = &hmp->undo_root;
1023 		break;
1024 	case HAMMER_STRUCTURE_DATA_BUFFER:
1025 		io->mod_root = &hmp->data_root;
1026 		break;
1027 	case HAMMER_STRUCTURE_DUMMY:
1028 		hpanic("bad io type");
1029 		break; /* NOT REACHED */
1030 	}
1031 	if (RB_INSERT(hammer_mod_rb_tree, io->mod_root, io)) {
1032 		hpanic("duplicate entry @ %d:%015jx",
1033 			io->volume->vol_no, io->offset);
1034 		/* NOT REACHED */
1035 	}
1036 	lwkt_reltoken(&hmp->io_token);
1037 }
1038 
1039 /************************************************************************
1040  *				HAMMER_BIOOPS				*
1041  ************************************************************************
1042  *
1043  */
1044 
1045 /*
1046  * Pre-IO initiation kernel callback - cluster build only
1047  *
1048  * bioops callback - hold io_token
1049  */
1050 static void
1051 hammer_io_start(struct buf *bp)
1052 {
1053 	/* nothing to do, so io_token not needed */
1054 }
1055 
1056 /*
1057  * Post-IO completion kernel callback - MAY BE CALLED FROM INTERRUPT!
1058  *
1059  * NOTE: HAMMER may modify a data buffer after we have initiated write
1060  *	 I/O.
1061  *
1062  * NOTE: MPSAFE callback
1063  *
1064  * bioops callback - hold io_token
1065  */
1066 static void
1067 hammer_io_complete(struct buf *bp)
1068 {
1069 	hammer_io_t io = hammer_buf_peek_io(bp);
1070 	struct hammer_mount *hmp = io->hmp;
1071 	struct hammer_io *ionext;
1072 
1073 	lwkt_gettoken(&hmp->io_token);
1074 
1075 	KKASSERT(io->released == 1);
1076 
1077 	/*
1078 	 * Deal with people waiting for I/O to drain
1079 	 */
1080 	if (io->running) {
1081 		/*
1082 		 * Deal with critical write errors.  Once a critical error
1083 		 * has been flagged in hmp the UNDO FIFO will not be updated.
1084 		 * That way crash recover will give us a consistent
1085 		 * filesystem.
1086 		 *
1087 		 * Because of this we can throw away failed UNDO buffers.  If
1088 		 * we throw away META or DATA buffers we risk corrupting
1089 		 * the now read-only version of the filesystem visible to
1090 		 * the user.  Clear B_ERROR so the buffer is not re-dirtied
1091 		 * by the kernel and ref the io so it doesn't get thrown
1092 		 * away.
1093 		 */
1094 		if (bp->b_flags & B_ERROR) {
1095 			lwkt_gettoken(&hmp->fs_token);
1096 			hammer_critical_error(hmp, NULL, bp->b_error,
1097 					      "while flushing meta-data");
1098 			lwkt_reltoken(&hmp->fs_token);
1099 
1100 			switch(io->type) {
1101 			case HAMMER_STRUCTURE_UNDO_BUFFER:
1102 				break;
1103 			default:
1104 				if (io->ioerror == 0) {
1105 					io->ioerror = 1;
1106 					hammer_ref(&io->lock);
1107 				}
1108 				break;
1109 			}
1110 			bp->b_flags &= ~B_ERROR;
1111 			bundirty(bp);
1112 #if 0
1113 			hammer_io_set_modlist(io);
1114 			io->modified = 1;
1115 #endif
1116 		}
1117 		hammer_stats_disk_write += io->bytes;
1118 		atomic_add_long(&hammer_count_io_running_write, -io->bytes);
1119 		atomic_add_long(&hmp->io_running_space, -io->bytes);
1120 		KKASSERT(hmp->io_running_space >= 0);
1121 		io->running = 0;
1122 
1123 		/*
1124 		 * Remove from iorun list and wakeup any multi-io waiter(s).
1125 		 */
1126 		if (TAILQ_FIRST(&hmp->iorun_list) == io) {
1127 			ionext = TAILQ_NEXT(io, iorun_entry);
1128 			if (ionext && ionext->type == HAMMER_STRUCTURE_DUMMY)
1129 				wakeup(ionext);
1130 		}
1131 		TAILQ_REMOVE(&hmp->iorun_list, io, iorun_entry);
1132 	} else {
1133 		hammer_stats_disk_read += io->bytes;
1134 	}
1135 
1136 	if (io->waiting) {
1137 		io->waiting = 0;
1138 		wakeup(io);
1139 	}
1140 
1141 	/*
1142 	 * If B_LOCKED is set someone wanted to deallocate the bp at some
1143 	 * point, try to do it now.  The operation will fail if there are
1144 	 * refs or if hammer_io_deallocate() is unable to gain the
1145 	 * interlock.
1146 	 */
1147 	if (bp->b_flags & B_LOCKED) {
1148 		atomic_add_int(&hammer_count_io_locked, -1);
1149 		bp->b_flags &= ~B_LOCKED;
1150 		hammer_io_deallocate(bp);
1151 		/* structure may be dead now */
1152 	}
1153 	lwkt_reltoken(&hmp->io_token);
1154 }
1155 
1156 /*
1157  * Callback from kernel when it wishes to deallocate a passively
1158  * associated structure.  This mostly occurs with clean buffers
1159  * but it may be possible for a holding structure to be marked dirty
1160  * while its buffer is passively associated.  The caller owns the bp.
1161  *
1162  * If we cannot disassociate we set B_LOCKED to prevent the buffer
1163  * from getting reused.
1164  *
1165  * WARNING: Because this can be called directly by getnewbuf we cannot
1166  * recurse into the tree.  If a bp cannot be immediately disassociated
1167  * our only recourse is to set B_LOCKED.
1168  *
1169  * WARNING: This may be called from an interrupt via hammer_io_complete()
1170  *
1171  * bioops callback - hold io_token
1172  */
1173 static void
1174 hammer_io_deallocate(struct buf *bp)
1175 {
1176 	hammer_io_t io = hammer_buf_peek_io(bp);
1177 	hammer_mount_t hmp;
1178 
1179 	hmp = io->hmp;
1180 
1181 	lwkt_gettoken(&hmp->io_token);
1182 
1183 	KKASSERT((bp->b_flags & B_LOCKED) == 0 && io->running == 0);
1184 	if (hammer_try_interlock_norefs(&io->lock) == 0) {
1185 		/*
1186 		 * We cannot safely disassociate a bp from a referenced
1187 		 * or interlocked HAMMER structure.
1188 		 */
1189 		bp->b_flags |= B_LOCKED;
1190 		atomic_add_int(&hammer_count_io_locked, 1);
1191 	} else if (io->modified) {
1192 		/*
1193 		 * It is not legal to disassociate a modified buffer.  This
1194 		 * case really shouldn't ever occur.
1195 		 */
1196 		bp->b_flags |= B_LOCKED;
1197 		atomic_add_int(&hammer_count_io_locked, 1);
1198 		hammer_put_interlock(&io->lock, 0);
1199 	} else {
1200 		/*
1201 		 * Disassociate the BP.  If the io has no refs left we
1202 		 * have to add it to the loose list.  The kernel has
1203 		 * locked the buffer and therefore our io must be
1204 		 * in a released state.
1205 		 */
1206 		hammer_io_disassociate(io);
1207 		if (io->type != HAMMER_STRUCTURE_VOLUME) {
1208 			KKASSERT(io->bp == NULL);
1209 			KKASSERT(io->mod_root == NULL);
1210 			io->mod_root = &hmp->lose_root;
1211 			if (RB_INSERT(hammer_mod_rb_tree, io->mod_root, io)) {
1212 				hpanic("duplicate entry @ %d:%015jx",
1213 					io->volume->vol_no, io->offset);
1214 				/* NOT REACHED */
1215 			}
1216 		}
1217 		hammer_put_interlock(&io->lock, 1);
1218 	}
1219 	lwkt_reltoken(&hmp->io_token);
1220 }
1221 
1222 /*
1223  * bioops callback - hold io_token
1224  */
1225 static int
1226 hammer_io_fsync(struct vnode *vp)
1227 {
1228 	/* nothing to do, so io_token not needed */
1229 	return(0);
1230 }
1231 
1232 /*
1233  * NOTE: will not be called unless we tell the kernel about the
1234  * bioops.  Unused... we use the mount's VFS_SYNC instead.
1235  *
1236  * bioops callback - hold io_token
1237  */
1238 static int
1239 hammer_io_sync(struct mount *mp)
1240 {
1241 	/* nothing to do, so io_token not needed */
1242 	return(0);
1243 }
1244 
1245 /*
1246  * bioops callback - hold io_token
1247  */
1248 static void
1249 hammer_io_movedeps(struct buf *bp1, struct buf *bp2)
1250 {
1251 	/* nothing to do, so io_token not needed */
1252 }
1253 
1254 /*
1255  * I/O pre-check for reading and writing.  HAMMER only uses this for
1256  * B_CACHE buffers so checkread just shouldn't happen, but if it does
1257  * allow it.
1258  *
1259  * Writing is a different case.  We don't want the kernel to try to write
1260  * out a buffer that HAMMER may be modifying passively or which has a
1261  * dependancy.  In addition, kernel-demanded writes can only proceed for
1262  * certain types of buffers (i.e. UNDO and DATA types).  Other dirty
1263  * buffer types can only be explicitly written by the flusher.
1264  *
1265  * checkwrite will only be called for bdwrite()n buffers.  If we return
1266  * success the kernel is guaranteed to initiate the buffer write.
1267  *
1268  * bioops callback - hold io_token
1269  */
1270 static int
1271 hammer_io_checkread(struct buf *bp)
1272 {
1273 	/* nothing to do, so io_token not needed */
1274 	return(0);
1275 }
1276 
1277 /*
1278  * The kernel is asking us whether it can write out a dirty buffer or not.
1279  *
1280  * bioops callback - hold io_token
1281  */
1282 static int
1283 hammer_io_checkwrite(struct buf *bp)
1284 {
1285 	hammer_io_t io = hammer_buf_peek_io(bp);
1286 	hammer_mount_t hmp = io->hmp;
1287 
1288 	/*
1289 	 * This shouldn't happen under normal operation.
1290 	 */
1291 	lwkt_gettoken(&hmp->io_token);
1292 	if (io->type == HAMMER_STRUCTURE_VOLUME ||
1293 	    io->type == HAMMER_STRUCTURE_META_BUFFER) {
1294 		if (!panicstr)
1295 			hpanic("illegal buffer");
1296 		if ((bp->b_flags & B_LOCKED) == 0) {
1297 			bp->b_flags |= B_LOCKED;
1298 			atomic_add_int(&hammer_count_io_locked, 1);
1299 		}
1300 		lwkt_reltoken(&hmp->io_token);
1301 		return(1);
1302 	}
1303 
1304 	/*
1305 	 * We have to be able to interlock the IO to safely modify any
1306 	 * of its fields without holding the fs_token.  If we can't lock
1307 	 * it then we are racing someone.
1308 	 *
1309 	 * Our ownership of the bp lock prevents the io from being ripped
1310 	 * out from under us.
1311 	 */
1312 	if (hammer_try_interlock_norefs(&io->lock) == 0) {
1313 		bp->b_flags |= B_LOCKED;
1314 		atomic_add_int(&hammer_count_io_locked, 1);
1315 		lwkt_reltoken(&hmp->io_token);
1316 		return(1);
1317 	}
1318 
1319 	/*
1320 	 * The modified bit must be cleared prior to the initiation of
1321 	 * any IO (returning 0 initiates the IO).  Because this is a
1322 	 * normal data buffer hammer_io_clear_modify() runs through a
1323 	 * simple degenerate case.
1324 	 *
1325 	 * Return 0 will cause the kernel to initiate the IO, and we
1326 	 * must normally clear the modified bit before we begin.  If
1327 	 * the io has modify_refs we do not clear the modified bit,
1328 	 * otherwise we may miss changes.
1329 	 *
1330 	 * Only data and undo buffers can reach here.  These buffers do
1331 	 * not have terminal crc functions but we temporarily reference
1332 	 * the IO anyway, just in case.
1333 	 */
1334 	if (io->modify_refs == 0 && io->modified) {
1335 		hammer_ref(&io->lock);
1336 		hammer_io_clear_modify(io, 0);
1337 		hammer_rel(&io->lock);
1338 	} else if (io->modified) {
1339 		KKASSERT(io->type == HAMMER_STRUCTURE_DATA_BUFFER);
1340 	}
1341 
1342 	/*
1343 	 * The kernel is going to start the IO, set io->running.
1344 	 */
1345 	KKASSERT(io->running == 0);
1346 	io->running = 1;
1347 	atomic_add_long(&io->hmp->io_running_space, io->bytes);
1348 	atomic_add_long(&hammer_count_io_running_write, io->bytes);
1349 	TAILQ_INSERT_TAIL(&io->hmp->iorun_list, io, iorun_entry);
1350 
1351 	hammer_put_interlock(&io->lock, 1);
1352 	lwkt_reltoken(&hmp->io_token);
1353 
1354 	return(0);
1355 }
1356 
1357 /*
1358  * Return non-zero if we wish to delay the kernel's attempt to flush
1359  * this buffer to disk.
1360  *
1361  * bioops callback - hold io_token
1362  */
1363 static int
1364 hammer_io_countdeps(struct buf *bp, int n)
1365 {
1366 	/* nothing to do, so io_token not needed */
1367 	return(0);
1368 }
1369 
1370 static struct bio_ops hammer_bioops = {
1371 	.io_start	= hammer_io_start,
1372 	.io_complete	= hammer_io_complete,
1373 	.io_deallocate	= hammer_io_deallocate,
1374 	.io_fsync	= hammer_io_fsync,
1375 	.io_sync	= hammer_io_sync,
1376 	.io_movedeps	= hammer_io_movedeps,
1377 	.io_countdeps	= hammer_io_countdeps,
1378 	.io_checkread	= hammer_io_checkread,
1379 	.io_checkwrite	= hammer_io_checkwrite,
1380 };
1381 
1382 /************************************************************************
1383  *				DIRECT IO OPS 				*
1384  ************************************************************************
1385  *
1386  * These functions operate directly on the buffer cache buffer associated
1387  * with a front-end vnode rather then a back-end device vnode.
1388  */
1389 
1390 /*
1391  * Read a buffer associated with a front-end vnode directly from the
1392  * disk media.  The bio may be issued asynchronously.  If leaf is non-NULL
1393  * we validate the CRC.
1394  *
1395  * We must check for the presence of a HAMMER buffer to handle the case
1396  * where the reblocker has rewritten the data (which it does via the HAMMER
1397  * buffer system, not via the high-level vnode buffer cache), but not yet
1398  * committed the buffer to the media.
1399  */
1400 int
1401 hammer_io_direct_read(hammer_mount_t hmp, struct bio *bio,
1402 		      hammer_btree_leaf_elm_t leaf)
1403 {
1404 	hammer_off_t buf_offset;
1405 	hammer_off_t zone2_offset;
1406 	hammer_volume_t volume;
1407 	struct buf *bp;
1408 	struct bio *nbio;
1409 	int vol_no;
1410 	int error;
1411 
1412 	buf_offset = bio->bio_offset;
1413 	KKASSERT(hammer_is_zone_large_data(buf_offset));
1414 
1415 	/*
1416 	 * The buffer cache may have an aliased buffer (the reblocker can
1417 	 * write them).  If it does we have to sync any dirty data before
1418 	 * we can build our direct-read.  This is a non-critical code path.
1419 	 */
1420 	bp = bio->bio_buf;
1421 	hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize);
1422 
1423 	/*
1424 	 * Resolve to a zone-2 offset.  The conversion just requires
1425 	 * munging the top 4 bits but we want to abstract it anyway
1426 	 * so the blockmap code can verify the zone assignment.
1427 	 */
1428 	zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1429 	if (error)
1430 		goto done;
1431 	KKASSERT(hammer_is_zone_raw_buffer(zone2_offset));
1432 
1433 	/*
1434 	 * Resolve volume and raw-offset for 3rd level bio.  The
1435 	 * offset will be specific to the volume.
1436 	 */
1437 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
1438 	volume = hammer_get_volume(hmp, vol_no, &error);
1439 	if (error == 0 && zone2_offset >= volume->maxbuf_off)
1440 		error = EIO;
1441 
1442 	if (error == 0) {
1443 		/*
1444 		 * 3rd level bio (the caller has already pushed once)
1445 		 */
1446 		nbio = push_bio(bio);
1447 		nbio->bio_offset = hammer_xlate_to_phys(volume->ondisk,
1448 							zone2_offset);
1449 		hammer_stats_disk_read += bp->b_bufsize;
1450 		vn_strategy(volume->devvp, nbio);
1451 	}
1452 	hammer_rel_volume(volume, 0);
1453 done:
1454 	if (error) {
1455 		hdkprintf("failed @ %016jx\n", (intmax_t)zone2_offset);
1456 		bp->b_error = error;
1457 		bp->b_flags |= B_ERROR;
1458 		biodone(bio);
1459 	}
1460 	return(error);
1461 }
1462 
1463 /*
1464  * This works similarly to hammer_io_direct_read() except instead of
1465  * directly reading from the device into the bio we instead indirectly
1466  * read through the device's buffer cache and then copy the data into
1467  * the bio.
1468  *
1469  * If leaf is non-NULL and validation is enabled, the CRC will be checked.
1470  *
1471  * This routine also executes asynchronously.  It allows hammer strategy
1472  * calls to operate asynchronously when in double_buffer mode (in addition
1473  * to operating asynchronously when in normal mode).
1474  */
1475 int
1476 hammer_io_indirect_read(hammer_mount_t hmp, struct bio *bio,
1477 			hammer_btree_leaf_elm_t leaf)
1478 {
1479 	hammer_off_t buf_offset;
1480 	hammer_off_t zone2_offset;
1481 	hammer_volume_t volume;
1482 	struct buf *bp;
1483 	int vol_no;
1484 	int error;
1485 
1486 	buf_offset = bio->bio_offset;
1487 	KKASSERT(hammer_is_zone_large_data(buf_offset));
1488 
1489 	/*
1490 	 * The buffer cache may have an aliased buffer (the reblocker can
1491 	 * write them).  If it does we have to sync any dirty data before
1492 	 * we can build our direct-read.  This is a non-critical code path.
1493 	 */
1494 	bp = bio->bio_buf;
1495 	hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize);
1496 
1497 	/*
1498 	 * Resolve to a zone-2 offset.  The conversion just requires
1499 	 * munging the top 4 bits but we want to abstract it anyway
1500 	 * so the blockmap code can verify the zone assignment.
1501 	 */
1502 	zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1503 	if (error)
1504 		goto done;
1505 	KKASSERT(hammer_is_zone_raw_buffer(zone2_offset));
1506 
1507 	/*
1508 	 * Resolve volume and raw-offset for 3rd level bio.  The
1509 	 * offset will be specific to the volume.
1510 	 */
1511 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
1512 	volume = hammer_get_volume(hmp, vol_no, &error);
1513 	if (error == 0 && zone2_offset >= volume->maxbuf_off)
1514 		error = EIO;
1515 
1516 	if (error == 0) {
1517 		/*
1518 		 * Convert to the raw volume->devvp offset and acquire
1519 		 * the buf, issuing async I/O if necessary.
1520 		 */
1521 		buf_offset = hammer_xlate_to_phys(volume->ondisk, zone2_offset);
1522 
1523 		if (leaf && hammer_verify_data) {
1524 			bio->bio_caller_info1.uvalue32 = leaf->data_crc;
1525 			bio->bio_caller_info2.index = 1;
1526 		} else {
1527 			bio->bio_caller_info2.index = 0;
1528 		}
1529 		breadcb(volume->devvp, buf_offset, bp->b_bufsize,
1530 			hammer_indirect_callback, bio);
1531 	}
1532 	hammer_rel_volume(volume, 0);
1533 done:
1534 	if (error) {
1535 		hdkprintf("failed @ %016jx\n", (intmax_t)zone2_offset);
1536 		bp->b_error = error;
1537 		bp->b_flags |= B_ERROR;
1538 		biodone(bio);
1539 	}
1540 	return(error);
1541 }
1542 
1543 /*
1544  * Indirect callback on completion.  bio/bp specify the device-backed
1545  * buffer.  bio->bio_caller_info1.ptr holds obio.
1546  *
1547  * obio/obp is the original regular file buffer.  obio->bio_caller_info*
1548  * contains the crc specification.
1549  *
1550  * We are responsible for calling bpdone() and bqrelse() on bio/bp, and
1551  * for calling biodone() on obio.
1552  */
1553 static void
1554 hammer_indirect_callback(struct bio *bio)
1555 {
1556 	struct buf *bp = bio->bio_buf;
1557 	struct buf *obp;
1558 	struct bio *obio;
1559 
1560 	/*
1561 	 * If BIO_DONE is already set the device buffer was already
1562 	 * fully valid (B_CACHE).  If it is not set then I/O was issued
1563 	 * and we have to run I/O completion as the last bio.
1564 	 *
1565 	 * Nobody is waiting for our device I/O to complete, we are
1566 	 * responsible for bqrelse()ing it which means we also have to do
1567 	 * the equivalent of biowait() and clear BIO_DONE (which breadcb()
1568 	 * may have set).
1569 	 *
1570 	 * Any preexisting device buffer should match the requested size,
1571 	 * but due to big-block recycling and other factors there is some
1572 	 * fragility there, so we assert that the device buffer covers
1573 	 * the request.
1574 	 */
1575 	if ((bio->bio_flags & BIO_DONE) == 0)
1576 		bpdone(bp, 0);
1577 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
1578 
1579 	obio = bio->bio_caller_info1.ptr;
1580 	obp = obio->bio_buf;
1581 
1582 	if (bp->b_flags & B_ERROR) {
1583 		obp->b_flags |= B_ERROR;
1584 		obp->b_error = bp->b_error;
1585 	} else if (obio->bio_caller_info2.index &&
1586 		   obio->bio_caller_info1.uvalue32 !=
1587 		    crc32(bp->b_data, bp->b_bufsize)) {
1588 		obp->b_flags |= B_ERROR;
1589 		obp->b_error = EIO;
1590 	} else {
1591 		KKASSERT(bp->b_bufsize >= obp->b_bufsize);
1592 		bcopy(bp->b_data, obp->b_data, obp->b_bufsize);
1593 		obp->b_resid = 0;
1594 		obp->b_flags |= B_AGE;
1595 	}
1596 	biodone(obio);
1597 	bqrelse(bp);
1598 }
1599 
1600 /*
1601  * Write a buffer associated with a front-end vnode directly to the
1602  * disk media.  The bio may be issued asynchronously.
1603  *
1604  * The BIO is associated with the specified record and RECG_DIRECT_IO
1605  * is set.  The recorded is added to its object.
1606  */
1607 int
1608 hammer_io_direct_write(hammer_mount_t hmp, struct bio *bio,
1609 		       hammer_record_t record)
1610 {
1611 	hammer_btree_leaf_elm_t leaf = &record->leaf;
1612 	hammer_off_t buf_offset;
1613 	hammer_off_t zone2_offset;
1614 	hammer_volume_t volume;
1615 	hammer_buffer_t buffer;
1616 	struct buf *bp;
1617 	struct bio *nbio;
1618 	char *ptr;
1619 	int vol_no;
1620 	int error;
1621 
1622 	buf_offset = leaf->data_offset;
1623 
1624 	KKASSERT(hammer_is_zone2_mapped_index(
1625 		HAMMER_ZONE_DECODE(buf_offset)));
1626 	KKASSERT(bio->bio_buf->b_cmd == BUF_CMD_WRITE);
1627 
1628 	/*
1629 	 * Issue or execute the I/O.  The new memory record must replace
1630 	 * the old one before the I/O completes, otherwise a reaquisition of
1631 	 * the buffer will load the old media data instead of the new.
1632 	 */
1633 	if ((buf_offset & HAMMER_BUFMASK) == 0 &&
1634 	    leaf->data_len >= HAMMER_BUFSIZE) {
1635 		/*
1636 		 * We are using the vnode's bio to write directly to the
1637 		 * media, any hammer_buffer at the same zone-X offset will
1638 		 * now have stale data.
1639 		 */
1640 		zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1641 		vol_no = HAMMER_VOL_DECODE(zone2_offset);
1642 		volume = hammer_get_volume(hmp, vol_no, &error);
1643 
1644 		if (error == 0 && zone2_offset >= volume->maxbuf_off)
1645 			error = EIO;
1646 		if (error == 0) {
1647 			bp = bio->bio_buf;
1648 			KKASSERT((bp->b_bufsize & HAMMER_BUFMASK) == 0);
1649 			/*
1650 			hammer_del_buffers(hmp, buf_offset,
1651 					   zone2_offset, bp->b_bufsize);
1652 			*/
1653 
1654 			/*
1655 			 * Second level bio - cached zone2 offset.
1656 			 *
1657 			 * (We can put our bio_done function in either the
1658 			 *  2nd or 3rd level).
1659 			 */
1660 			nbio = push_bio(bio);
1661 			nbio->bio_offset = zone2_offset;
1662 			nbio->bio_done = hammer_io_direct_write_complete;
1663 			nbio->bio_caller_info1.ptr = record;
1664 			record->zone2_offset = zone2_offset;
1665 			record->gflags |= HAMMER_RECG_DIRECT_IO |
1666 					 HAMMER_RECG_DIRECT_INVAL;
1667 
1668 			/*
1669 			 * Third level bio - raw offset specific to the
1670 			 * correct volume.
1671 			 */
1672 			nbio = push_bio(nbio);
1673 			nbio->bio_offset = hammer_xlate_to_phys(volume->ondisk,
1674 								zone2_offset);
1675 			hammer_stats_disk_write += bp->b_bufsize;
1676 			hammer_ip_replace_bulk(hmp, record);
1677 			vn_strategy(volume->devvp, nbio);
1678 			hammer_io_flush_mark(volume);
1679 		}
1680 		hammer_rel_volume(volume, 0);
1681 	} else {
1682 		/*
1683 		 * Must fit in a standard HAMMER buffer.  In this case all
1684 		 * consumers use the HAMMER buffer system and RECG_DIRECT_IO
1685 		 * does not need to be set-up.
1686 		 */
1687 		KKASSERT(((buf_offset ^ (buf_offset + leaf->data_len - 1)) & ~HAMMER_BUFMASK64) == 0);
1688 		buffer = NULL;
1689 		ptr = hammer_bread(hmp, buf_offset, &error, &buffer);
1690 		if (error == 0) {
1691 			bp = bio->bio_buf;
1692 			bp->b_flags |= B_AGE;
1693 			hammer_io_modify(&buffer->io, 1);
1694 			bcopy(bp->b_data, ptr, leaf->data_len);
1695 			hammer_io_modify_done(&buffer->io);
1696 			hammer_rel_buffer(buffer, 0);
1697 			bp->b_resid = 0;
1698 			hammer_ip_replace_bulk(hmp, record);
1699 			biodone(bio);
1700 		}
1701 	}
1702 	if (error) {
1703 		/*
1704 		 * Major suckage occured.  Also note:  The record was
1705 		 * never added to the tree so we do not have to worry
1706 		 * about the backend.
1707 		 */
1708 		hdkprintf("failed @ %016jx\n", (intmax_t)leaf->data_offset);
1709 		bp = bio->bio_buf;
1710 		bp->b_resid = 0;
1711 		bp->b_error = EIO;
1712 		bp->b_flags |= B_ERROR;
1713 		biodone(bio);
1714 		record->flags |= HAMMER_RECF_DELETED_FE;
1715 		hammer_rel_mem_record(record);
1716 	}
1717 	return(error);
1718 }
1719 
1720 /*
1721  * On completion of the BIO this callback must disconnect
1722  * it from the hammer_record and chain to the previous bio.
1723  *
1724  * An I/O error forces the mount to read-only.  Data buffers
1725  * are not B_LOCKED like meta-data buffers are, so we have to
1726  * throw the buffer away to prevent the kernel from retrying.
1727  *
1728  * NOTE: MPSAFE callback, only modify fields we have explicit
1729  *	 access to (the bp and the record->gflags).
1730  */
1731 static
1732 void
1733 hammer_io_direct_write_complete(struct bio *nbio)
1734 {
1735 	struct bio *obio;
1736 	struct buf *bp;
1737 	hammer_record_t record;
1738 	hammer_mount_t hmp;
1739 
1740 	record = nbio->bio_caller_info1.ptr;
1741 	KKASSERT(record != NULL);
1742 	hmp = record->ip->hmp;
1743 
1744 	lwkt_gettoken(&hmp->io_token);
1745 
1746 	bp = nbio->bio_buf;
1747 	obio = pop_bio(nbio);
1748 	if (bp->b_flags & B_ERROR) {
1749 		lwkt_gettoken(&hmp->fs_token);
1750 		hammer_critical_error(hmp, record->ip, bp->b_error,
1751 				      "while writing bulk data");
1752 		lwkt_reltoken(&hmp->fs_token);
1753 		bp->b_flags |= B_INVAL;
1754 	}
1755 	biodone(obio);
1756 
1757 	KKASSERT(record->gflags & HAMMER_RECG_DIRECT_IO);
1758 	if (record->gflags & HAMMER_RECG_DIRECT_WAIT) {
1759 		record->gflags &= ~(HAMMER_RECG_DIRECT_IO |
1760 				    HAMMER_RECG_DIRECT_WAIT);
1761 		/* record can disappear once DIRECT_IO flag is cleared */
1762 		wakeup(&record->flags);
1763 	} else {
1764 		record->gflags &= ~HAMMER_RECG_DIRECT_IO;
1765 		/* record can disappear once DIRECT_IO flag is cleared */
1766 	}
1767 	lwkt_reltoken(&hmp->io_token);
1768 }
1769 
1770 
1771 /*
1772  * This is called before a record is either committed to the B-Tree
1773  * or destroyed, to resolve any associated direct-IO.
1774  *
1775  * (1) We must wait for any direct-IO related to the record to complete.
1776  *
1777  * (2) We must remove any buffer cache aliases for data accessed via
1778  *     leaf->data_offset or zone2_offset so non-direct-IO consumers
1779  *     (the mirroring and reblocking code) do not see stale data.
1780  */
1781 void
1782 hammer_io_direct_wait(hammer_record_t record)
1783 {
1784 	hammer_mount_t hmp = record->ip->hmp;
1785 
1786 	/*
1787 	 * Wait for I/O to complete
1788 	 */
1789 	if (record->gflags & HAMMER_RECG_DIRECT_IO) {
1790 		lwkt_gettoken(&hmp->io_token);
1791 		while (record->gflags & HAMMER_RECG_DIRECT_IO) {
1792 			record->gflags |= HAMMER_RECG_DIRECT_WAIT;
1793 			tsleep(&record->flags, 0, "hmdiow", 0);
1794 		}
1795 		lwkt_reltoken(&hmp->io_token);
1796 	}
1797 
1798 	/*
1799 	 * Invalidate any related buffer cache aliases associated with the
1800 	 * backing device.  This is needed because the buffer cache buffer
1801 	 * for file data is associated with the file vnode, not the backing
1802 	 * device vnode.
1803 	 *
1804 	 * XXX I do not think this case can occur any more now that
1805 	 * reservations ensure that all such buffers are removed before
1806 	 * an area can be reused.
1807 	 */
1808 	if (record->gflags & HAMMER_RECG_DIRECT_INVAL) {
1809 		KKASSERT(record->leaf.data_offset);
1810 		hammer_del_buffers(hmp, record->leaf.data_offset,
1811 				   record->zone2_offset, record->leaf.data_len,
1812 				   1);
1813 		record->gflags &= ~HAMMER_RECG_DIRECT_INVAL;
1814 	}
1815 }
1816 
1817 /*
1818  * This is called to remove the second-level cached zone-2 offset from
1819  * frontend buffer cache buffers, now stale due to a data relocation.
1820  * These offsets are generated by cluster_read() via VOP_BMAP, or directly
1821  * by hammer_vop_strategy_read().
1822  *
1823  * This is rather nasty because here we have something like the reblocker
1824  * scanning the raw B-Tree with no held references on anything, really,
1825  * other then a shared lock on the B-Tree node, and we have to access the
1826  * frontend's buffer cache to check for and clean out the association.
1827  * Specifically, if the reblocker is moving data on the disk, these cached
1828  * offsets will become invalid.
1829  *
1830  * Only data record types associated with the large-data zone are subject
1831  * to direct-io and need to be checked.
1832  *
1833  */
1834 void
1835 hammer_io_direct_uncache(hammer_mount_t hmp, hammer_btree_leaf_elm_t leaf)
1836 {
1837 	struct hammer_inode_info iinfo;
1838 	int zone;
1839 
1840 	if (leaf->base.rec_type != HAMMER_RECTYPE_DATA)
1841 		return;
1842 	zone = HAMMER_ZONE_DECODE(leaf->data_offset);
1843 	if (zone != HAMMER_ZONE_LARGE_DATA_INDEX)
1844 		return;
1845 	iinfo.obj_id = leaf->base.obj_id;
1846 	iinfo.obj_asof = 0;	/* unused */
1847 	iinfo.obj_localization = leaf->base.localization &
1848 				 HAMMER_LOCALIZE_PSEUDOFS_MASK;
1849 	iinfo.u.leaf = leaf;
1850 	hammer_scan_inode_snapshots(hmp, &iinfo,
1851 				    hammer_io_direct_uncache_callback,
1852 				    leaf);
1853 }
1854 
1855 static int
1856 hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data)
1857 {
1858 	hammer_inode_info_t iinfo = data;
1859 	hammer_off_t file_offset;
1860 	struct vnode *vp;
1861 	struct buf *bp;
1862 	int blksize;
1863 
1864 	if (ip->vp == NULL)
1865 		return(0);
1866 	file_offset = iinfo->u.leaf->base.key - iinfo->u.leaf->data_len;
1867 	blksize = iinfo->u.leaf->data_len;
1868 	KKASSERT((blksize & HAMMER_BUFMASK) == 0);
1869 
1870 	/*
1871 	 * Warning: FINDBLK_TEST return stable storage but not stable
1872 	 *	    contents.  It happens to be ok in this case.
1873 	 */
1874 	hammer_ref(&ip->lock);
1875 	if (hammer_get_vnode(ip, &vp) == 0) {
1876 		if ((bp = findblk(ip->vp, file_offset, FINDBLK_TEST)) != NULL &&
1877 		    bp->b_bio2.bio_offset != NOOFFSET) {
1878 			bp = getblk(ip->vp, file_offset, blksize, 0, 0);
1879 			bp->b_bio2.bio_offset = NOOFFSET;
1880 			brelse(bp);
1881 		}
1882 		vput(vp);
1883 	}
1884 	hammer_rel_inode(ip, 0);
1885 	return(0);
1886 }
1887 
1888 
1889 /*
1890  * This function is called when writes may have occured on the volume,
1891  * indicating that the device may be holding cached writes.
1892  */
1893 static __inline void
1894 hammer_io_flush_mark(hammer_volume_t volume)
1895 {
1896 	atomic_set_int(&volume->vol_flags, HAMMER_VOLF_NEEDFLUSH);
1897 }
1898 
1899 /*
1900  * This function ensures that the device has flushed any cached writes out.
1901  */
1902 void
1903 hammer_io_flush_sync(hammer_mount_t hmp)
1904 {
1905 	hammer_volume_t volume;
1906 	struct buf *bp_base = NULL;
1907 	struct buf *bp;
1908 
1909 	RB_FOREACH(volume, hammer_vol_rb_tree, &hmp->rb_vols_root) {
1910 		if (volume->vol_flags & HAMMER_VOLF_NEEDFLUSH) {
1911 			atomic_clear_int(&volume->vol_flags,
1912 					 HAMMER_VOLF_NEEDFLUSH);
1913 			bp = getpbuf(NULL);
1914 			bp->b_bio1.bio_offset = 0;
1915 			bp->b_bufsize = 0;
1916 			bp->b_bcount = 0;
1917 			bp->b_cmd = BUF_CMD_FLUSH;
1918 			bp->b_bio1.bio_caller_info1.cluster_head = bp_base;
1919 			bp->b_bio1.bio_done = biodone_sync;
1920 			bp->b_bio1.bio_flags |= BIO_SYNC;
1921 			bp_base = bp;
1922 			vn_strategy(volume->devvp, &bp->b_bio1);
1923 		}
1924 	}
1925 	while ((bp = bp_base) != NULL) {
1926 		bp_base = bp->b_bio1.bio_caller_info1.cluster_head;
1927 		biowait(&bp->b_bio1, "hmrFLS");
1928 		relpbuf(bp, NULL);
1929 	}
1930 }
1931 
1932 /*
1933  * Limit the amount of backlog which we allow to build up
1934  */
1935 void
1936 hammer_io_limit_backlog(hammer_mount_t hmp)
1937 {
1938 	waitrunningbufspace();
1939 }
1940