xref: /dragonfly/sys/vfs/hammer/hammer_io.c (revision 5d5a3633)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * IO Primitives and buffer cache management
36  *
37  * All major data-tracking structures in HAMMER contain a struct hammer_io
38  * which is used to manage their backing store.  We use filesystem buffers
39  * for backing store and we leave them passively associated with their
40  * HAMMER structures.
41  *
42  * If the kernel tries to destroy a passively associated buf which we cannot
43  * yet let go we set B_LOCKED in the buffer and then actively released it
44  * later when we can.
45  *
46  * The io_token is required for anything which might race bioops and bio_done
47  * callbacks, with one exception: A successful hammer_try_interlock_norefs().
48  * the fs_token will be held in all other cases.
49  */
50 
51 #include <sys/buf2.h>
52 
53 #include "hammer.h"
54 
55 static void hammer_io_modify(hammer_io_t io, int count);
56 static void hammer_io_deallocate(struct buf *bp);
57 static void hammer_indirect_callback(struct bio *bio);
58 static void hammer_io_direct_write_complete(struct bio *nbio);
59 static int hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data);
60 static void hammer_io_set_modlist(struct hammer_io *io);
61 static __inline void hammer_io_flush_mark(hammer_volume_t volume);
62 static struct bio_ops hammer_bioops;
63 
64 static int
65 hammer_mod_rb_compare(hammer_io_t io1, hammer_io_t io2)
66 {
67 	hammer_off_t io1_offset;
68 	hammer_off_t io2_offset;
69 
70 	/*
71 	 * Encoded offsets are neither valid block device offsets
72 	 * nor valid zone-X offsets.
73 	 */
74 	io1_offset = HAMMER_ENCODE(0, io1->volume->vol_no, io1->offset);
75 	io2_offset = HAMMER_ENCODE(0, io2->volume->vol_no, io2->offset);
76 
77 	if (io1_offset < io2_offset)
78 		return(-1);
79 	if (io1_offset > io2_offset)
80 		return(1);
81 	return(0);
82 }
83 
84 RB_GENERATE(hammer_mod_rb_tree, hammer_io, rb_node, hammer_mod_rb_compare);
85 
86 /*
87  * Initialize a new, already-zero'd hammer_io structure, or reinitialize
88  * an existing hammer_io structure which may have switched to another type.
89  */
90 void
91 hammer_io_init(hammer_io_t io, hammer_volume_t volume, enum hammer_io_type type)
92 {
93 	io->volume = volume;
94 	io->hmp = volume->io.hmp;
95 	io->type = type;
96 }
97 
98 /*
99  * Helper routine to disassociate a buffer cache buffer from an I/O
100  * structure.  The io must be interlocked and marked appropriately for
101  * reclamation.
102  *
103  * The io must be in a released state with the io->bp owned and
104  * locked by the caller of this function.  When not called from an
105  * io_deallocate() this cannot race an io_deallocate() since the
106  * kernel would be unable to get the buffer lock in that case.
107  * (The released state in this case means we own the bp, not the
108  * hammer_io structure).
109  *
110  * The io may have 0 or 1 references depending on who called us.  The
111  * caller is responsible for dealing with the refs.
112  *
113  * This call can only be made when no action is required on the buffer.
114  *
115  * This function is guaranteed not to race against anything because we
116  * own both the io lock and the bp lock and are interlocked with no
117  * references.
118  */
119 static void
120 hammer_io_disassociate(hammer_io_t io)
121 {
122 	struct buf *bp = io->bp;
123 
124 	KKASSERT(io->released);
125 	KKASSERT(io->modified == 0);
126 	KKASSERT(hammer_buf_peek_io(bp) == io);
127 	buf_dep_init(bp);
128 	io->bp = NULL;
129 
130 	/*
131 	 * If the buffer was locked someone wanted to get rid of it.
132 	 */
133 	if (bp->b_flags & B_LOCKED) {
134 		atomic_add_int(&hammer_count_io_locked, -1);
135 		bp->b_flags &= ~B_LOCKED;
136 	}
137 	if (io->reclaim) {
138 		bp->b_flags |= B_NOCACHE|B_RELBUF;
139 		io->reclaim = 0;
140 	}
141 
142 	switch(io->type) {
143 	case HAMMER_STRUCTURE_VOLUME:
144 		HAMMER_ITOV(io)->ondisk = NULL;
145 		break;
146 	case HAMMER_STRUCTURE_DATA_BUFFER:
147 	case HAMMER_STRUCTURE_META_BUFFER:
148 	case HAMMER_STRUCTURE_UNDO_BUFFER:
149 		HAMMER_ITOB(io)->ondisk = NULL;
150 		break;
151 	case HAMMER_STRUCTURE_DUMMY:
152 		hpanic("bad io type");
153 		break;
154 	}
155 }
156 
157 /*
158  * Wait for any physical IO to complete
159  *
160  * XXX we aren't interlocked against a spinlock or anything so there
161  *     is a small window in the interlock / io->running == 0 test.
162  */
163 void
164 hammer_io_wait(hammer_io_t io)
165 {
166 	if (io->running) {
167 		hammer_mount_t hmp = io->hmp;
168 
169 		lwkt_gettoken(&hmp->io_token);
170 		while (io->running) {
171 			io->waiting = 1;
172 			tsleep_interlock(io, 0);
173 			if (io->running)
174 				tsleep(io, PINTERLOCKED, "hmrflw", hz);
175 		}
176 		lwkt_reltoken(&hmp->io_token);
177 	}
178 }
179 
180 /*
181  * Wait for all currently queued HAMMER-initiated I/Os to complete.
182  *
183  * This is not supposed to count direct I/O's but some can leak
184  * through (for non-full-sized direct I/Os).
185  */
186 void
187 hammer_io_wait_all(hammer_mount_t hmp, const char *ident, int doflush)
188 {
189 	struct hammer_io iodummy;
190 	hammer_io_t io;
191 
192 	/*
193 	 * Degenerate case, no I/O is running
194 	 */
195 	lwkt_gettoken(&hmp->io_token);
196 	if (TAILQ_EMPTY(&hmp->iorun_list)) {
197 		lwkt_reltoken(&hmp->io_token);
198 		if (doflush)
199 			hammer_io_flush_sync(hmp);
200 		return;
201 	}
202 	bzero(&iodummy, sizeof(iodummy));
203 	iodummy.type = HAMMER_STRUCTURE_DUMMY;
204 
205 	/*
206 	 * Add placemarker and then wait until it becomes the head of
207 	 * the list.
208 	 */
209 	TAILQ_INSERT_TAIL(&hmp->iorun_list, &iodummy, iorun_entry);
210 	while (TAILQ_FIRST(&hmp->iorun_list) != &iodummy) {
211 		tsleep(&iodummy, 0, ident, 0);
212 	}
213 
214 	/*
215 	 * Chain in case several placemarkers are present.
216 	 */
217 	TAILQ_REMOVE(&hmp->iorun_list, &iodummy, iorun_entry);
218 	io = TAILQ_FIRST(&hmp->iorun_list);
219 	if (io && io->type == HAMMER_STRUCTURE_DUMMY)
220 		wakeup(io);
221 	lwkt_reltoken(&hmp->io_token);
222 
223 	if (doflush)
224 		hammer_io_flush_sync(hmp);
225 }
226 
227 /*
228  * Clear a flagged error condition on a I/O buffer.  The caller must hold
229  * its own ref on the buffer.
230  */
231 void
232 hammer_io_clear_error(struct hammer_io *io)
233 {
234 	hammer_mount_t hmp = io->hmp;
235 
236 	lwkt_gettoken(&hmp->io_token);
237 	if (io->ioerror) {
238 		io->ioerror = 0;
239 		hammer_rel(&io->lock);
240 		KKASSERT(hammer_isactive(&io->lock));
241 	}
242 	lwkt_reltoken(&hmp->io_token);
243 }
244 
245 void
246 hammer_io_clear_error_noassert(struct hammer_io *io)
247 {
248 	hammer_mount_t hmp = io->hmp;
249 
250 	lwkt_gettoken(&hmp->io_token);
251 	if (io->ioerror) {
252 		io->ioerror = 0;
253 		hammer_rel(&io->lock);
254 	}
255 	lwkt_reltoken(&hmp->io_token);
256 }
257 
258 /*
259  * This is an advisory function only which tells the buffer cache
260  * the bp is not a meta-data buffer, even though it is backed by
261  * a block device.
262  *
263  * This is used by HAMMER's reblocking code to avoid trying to
264  * swapcache the filesystem's data when it is read or written
265  * by the reblocking code.
266  *
267  * The caller has a ref on the buffer preventing the bp from
268  * being disassociated from it.
269  */
270 void
271 hammer_io_notmeta(hammer_buffer_t buffer)
272 {
273 	if ((buffer->io.bp->b_flags & B_NOTMETA) == 0) {
274 		hammer_mount_t hmp = buffer->io.hmp;
275 
276 		lwkt_gettoken(&hmp->io_token);
277 		buffer->io.bp->b_flags |= B_NOTMETA;
278 		lwkt_reltoken(&hmp->io_token);
279 	}
280 }
281 
282 /*
283  * Load bp for a HAMMER structure.  The io must be exclusively locked by
284  * the caller.
285  *
286  * This routine is mostly used on meta-data and small-data blocks.  Generally
287  * speaking HAMMER assumes some locality of reference and will cluster.
288  *
289  * Note that the caller (hammer_ondisk.c) may place further restrictions
290  * on clusterability via the limit (in bytes).  Typically large-data
291  * zones cannot be clustered due to their mixed buffer sizes.  This is
292  * not an issue since such clustering occurs in hammer_vnops at the
293  * regular file layer, whereas this is the buffered block device layer.
294  *
295  * No I/O callbacks can occur while we hold the buffer locked.
296  */
297 int
298 hammer_io_read(struct vnode *devvp, struct hammer_io *io, int limit)
299 {
300 	struct buf *bp;
301 	int   error;
302 
303 	if ((bp = io->bp) == NULL) {
304 		atomic_add_long(&hammer_count_io_running_read, io->bytes);
305 		if (hammer_cluster_enable && limit > io->bytes) {
306 			error = cluster_read(devvp, io->offset + limit,
307 					     io->offset, io->bytes,
308 					     HAMMER_CLUSTER_SIZE,
309 					     HAMMER_CLUSTER_SIZE,
310 					     &io->bp);
311 		} else {
312 			error = bread(devvp, io->offset, io->bytes, &io->bp);
313 		}
314 		hammer_stats_disk_read += io->bytes;
315 		atomic_add_long(&hammer_count_io_running_read, -io->bytes);
316 
317 		/*
318 		 * The code generally assumes b_ops/b_dep has been set-up,
319 		 * even if we error out here.
320 		 */
321 		bp = io->bp;
322 		if ((hammer_debug_io & 0x0001) && (bp->b_flags & B_IODEBUG)) {
323 			const char *metatype;
324 
325 			switch(io->type) {
326 			case HAMMER_STRUCTURE_VOLUME:
327 				metatype = "volume";
328 				break;
329 			case HAMMER_STRUCTURE_META_BUFFER:
330 				switch(HAMMER_ITOB(io)->zoneX_offset
331 					& HAMMER_OFF_ZONE_MASK) {
332 				case HAMMER_ZONE_BTREE:
333 					metatype = "btree";
334 					break;
335 				case HAMMER_ZONE_META:
336 					metatype = "meta";
337 					break;
338 				case HAMMER_ZONE_FREEMAP:
339 					metatype = "freemap";
340 					break;
341 				default:
342 					metatype = "meta?";
343 					break;
344 				}
345 				break;
346 			case HAMMER_STRUCTURE_DATA_BUFFER:
347 				metatype = "data";
348 				break;
349 			case HAMMER_STRUCTURE_UNDO_BUFFER:
350 				metatype = "undo";
351 				break;
352 			default:
353 				metatype = "unknown";
354 				break;
355 			}
356 			hdkprintf("zone2_offset %016jx %s\n",
357 				(intmax_t)bp->b_bio2.bio_offset,
358 				metatype);
359 		}
360 		bp->b_flags &= ~B_IODEBUG;
361 		bp->b_ops = &hammer_bioops;
362 
363 		hammer_buf_attach_io(bp, io); /* locked by the io lock */
364 		BUF_KERNPROC(bp);
365 		KKASSERT(io->modified == 0);
366 		KKASSERT(io->running == 0);
367 		KKASSERT(io->waiting == 0);
368 		io->released = 0;	/* we hold an active lock on bp */
369 	} else {
370 		error = 0;
371 	}
372 	return(error);
373 }
374 
375 /*
376  * Similar to hammer_io_read() but returns a zero'd out buffer instead.
377  * Must be called with the IO exclusively locked.
378  *
379  * vfs_bio_clrbuf() is kinda nasty, enforce serialization against background
380  * I/O by forcing the buffer to not be in a released state before calling
381  * it.
382  *
383  * This function will also mark the IO as modified but it will not
384  * increment the modify_refs count.
385  *
386  * No I/O callbacks can occur while we hold the buffer locked.
387  */
388 int
389 hammer_io_new(struct vnode *devvp, struct hammer_io *io)
390 {
391 	struct buf *bp;
392 
393 	if ((bp = io->bp) == NULL) {
394 		io->bp = getblk(devvp, io->offset, io->bytes, 0, 0);
395 		bp = io->bp;
396 		bp->b_ops = &hammer_bioops;
397 
398 		hammer_buf_attach_io(bp, io); /* locked by the io lock */
399 		io->released = 0;
400 		KKASSERT(io->running == 0);
401 		io->waiting = 0;
402 		BUF_KERNPROC(bp);
403 	} else {
404 		if (io->released) {
405 			regetblk(bp);
406 			BUF_KERNPROC(bp);
407 			io->released = 0;
408 		}
409 	}
410 	hammer_io_modify(io, 0);
411 	vfs_bio_clrbuf(bp);
412 	return(0);
413 }
414 
415 /*
416  * Advance the activity count on the underlying buffer because
417  * HAMMER does not getblk/brelse on every access.
418  *
419  * The io->bp cannot go away while the buffer is referenced.
420  */
421 void
422 hammer_io_advance(struct hammer_io *io)
423 {
424 	if (io->bp)
425 		buf_act_advance(io->bp);
426 }
427 
428 /*
429  * Remove potential device level aliases against buffers managed by high level
430  * vnodes.  Aliases can also be created due to mixed buffer sizes or via
431  * direct access to the backing store device.
432  *
433  * This is nasty because the buffers are also VMIO-backed.  Even if a buffer
434  * does not exist its backing VM pages might, and we have to invalidate
435  * those as well or a getblk() will reinstate them.
436  *
437  * Buffer cache buffers associated with hammer_buffers cannot be
438  * invalidated.
439  */
440 int
441 hammer_io_inval(hammer_volume_t volume, hammer_off_t zone2_offset)
442 {
443 	hammer_io_t io;
444 	hammer_mount_t hmp;
445 	hammer_off_t phys_offset;
446 	struct buf *bp;
447 	int error;
448 
449 	hmp = volume->io.hmp;
450 	lwkt_gettoken(&hmp->io_token);
451 
452 	/*
453 	 * If a device buffer already exists for the specified physical
454 	 * offset use that, otherwise instantiate a buffer to cover any
455 	 * related VM pages, set BNOCACHE, and brelse().
456 	 */
457 	phys_offset = hammer_xlate_to_phys(volume->ondisk, zone2_offset);
458 	if ((bp = findblk(volume->devvp, phys_offset, 0)) != NULL)
459 		bremfree(bp);
460 	else
461 		bp = getblk(volume->devvp, phys_offset, HAMMER_BUFSIZE, 0, 0);
462 
463 	if ((io = hammer_buf_peek_io(bp)) != NULL) {
464 #if 0
465 		hammer_ref(&io->lock);
466 		hammer_io_clear_modify(io, 1);
467 		bundirty(bp);
468 		io->released = 0;
469 		BUF_KERNPROC(bp);
470 		io->reclaim = 1;
471 		io->waitdep = 1;	/* XXX this is a fs_token field */
472 		KKASSERT(hammer_isactive(&io->lock) == 1);
473 		hammer_rel_buffer(HAMMER_ITOB(io), 0);
474 		/*hammer_io_deallocate(bp);*/
475 #endif
476 		bqrelse(bp);
477 		error = EAGAIN;
478 	} else {
479 		KKASSERT((bp->b_flags & B_LOCKED) == 0);
480 		bundirty(bp);
481 		bp->b_flags |= B_NOCACHE|B_RELBUF;
482 		brelse(bp);
483 		error = 0;
484 	}
485 	lwkt_reltoken(&hmp->io_token);
486 	return(error);
487 }
488 
489 /*
490  * This routine is called on the last reference to a hammer structure.
491  * The io must be interlocked with a refcount of zero.  The hammer structure
492  * will remain interlocked on return.
493  *
494  * This routine may return a non-NULL bp to the caller for dispoal.
495  * The caller typically brelse()'s the bp.
496  *
497  * The bp may or may not still be passively associated with the IO.  It
498  * will remain passively associated if it is unreleasable (e.g. a modified
499  * meta-data buffer).
500  *
501  * The only requirement here is that modified meta-data and volume-header
502  * buffer may NOT be disassociated from the IO structure, and consequently
503  * we also leave such buffers actively associated with the IO if they already
504  * are (since the kernel can't do anything with them anyway).  Only the
505  * flusher is allowed to write such buffers out.  Modified pure-data and
506  * undo buffers are returned to the kernel but left passively associated
507  * so we can track when the kernel writes the bp out.
508  */
509 struct buf *
510 hammer_io_release(struct hammer_io *io, int flush)
511 {
512 	struct buf *bp;
513 
514 	if ((bp = io->bp) == NULL)
515 		return(NULL);
516 
517 	/*
518 	 * Try to flush a dirty IO to disk if asked to by the
519 	 * caller or if the kernel tried to flush the buffer in the past.
520 	 *
521 	 * Kernel-initiated flushes are only allowed for pure-data buffers.
522 	 * meta-data and volume buffers can only be flushed explicitly
523 	 * by HAMMER.
524 	 */
525 	if (io->modified) {
526 		if (flush) {
527 			hammer_io_flush(io, 0);
528 		} else if (bp->b_flags & B_LOCKED) {
529 			switch(io->type) {
530 			case HAMMER_STRUCTURE_DATA_BUFFER:
531 				hammer_io_flush(io, 0);
532 				break;
533 			case HAMMER_STRUCTURE_UNDO_BUFFER:
534 				hammer_io_flush(io, hammer_undo_reclaim(io));
535 				break;
536 			default:
537 				break;
538 			}
539 		} /* else no explicit request to flush the buffer */
540 	}
541 
542 	/*
543 	 * Wait for the IO to complete if asked to.  This occurs when
544 	 * the buffer must be disposed of definitively during an umount
545 	 * or buffer invalidation.
546 	 */
547 	if (io->waitdep && io->running) {
548 		hammer_io_wait(io);
549 	}
550 
551 	/*
552 	 * Return control of the buffer to the kernel (with the provisio
553 	 * that our bioops can override kernel decisions with regards to
554 	 * the buffer).
555 	 */
556 	if ((flush || io->reclaim) && io->modified == 0 && io->running == 0) {
557 		/*
558 		 * Always disassociate the bp if an explicit flush
559 		 * was requested and the IO completed with no error
560 		 * (so unmount can really clean up the structure).
561 		 */
562 		if (io->released) {
563 			regetblk(bp);
564 			BUF_KERNPROC(bp);
565 		} else {
566 			io->released = 1;
567 		}
568 		hammer_io_disassociate(io);
569 		/* return the bp */
570 	} else if (io->modified) {
571 		/*
572 		 * Only certain IO types can be released to the kernel if
573 		 * the buffer has been modified.
574 		 *
575 		 * volume and meta-data IO types may only be explicitly
576 		 * flushed by HAMMER.
577 		 */
578 		switch(io->type) {
579 		case HAMMER_STRUCTURE_DATA_BUFFER:
580 		case HAMMER_STRUCTURE_UNDO_BUFFER:
581 			if (io->released == 0) {
582 				io->released = 1;
583 				bp->b_flags |= B_CLUSTEROK;
584 				bdwrite(bp);
585 			}
586 			break;
587 		default:
588 			break;
589 		}
590 		bp = NULL;	/* bp left associated */
591 	} else if (io->released == 0) {
592 		/*
593 		 * Clean buffers can be generally released to the kernel.
594 		 * We leave the bp passively associated with the HAMMER
595 		 * structure and use bioops to disconnect it later on
596 		 * if the kernel wants to discard the buffer.
597 		 *
598 		 * We can steal the structure's ownership of the bp.
599 		 */
600 		io->released = 1;
601 		if (bp->b_flags & B_LOCKED) {
602 			hammer_io_disassociate(io);
603 			/* return the bp */
604 		} else {
605 			if (io->reclaim) {
606 				hammer_io_disassociate(io);
607 				/* return the bp */
608 			} else {
609 				/* return the bp (bp passively associated) */
610 			}
611 		}
612 	} else {
613 		/*
614 		 * A released buffer is passively associate with our
615 		 * hammer_io structure.  The kernel cannot destroy it
616 		 * without making a bioops call.  If the kernel (B_LOCKED)
617 		 * or we (reclaim) requested that the buffer be destroyed
618 		 * we destroy it, otherwise we do a quick get/release to
619 		 * reset its position in the kernel's LRU list.
620 		 *
621 		 * Leaving the buffer passively associated allows us to
622 		 * use the kernel's LRU buffer flushing mechanisms rather
623 		 * then rolling our own.
624 		 *
625 		 * XXX there are two ways of doing this.  We can re-acquire
626 		 * and passively release to reset the LRU, or not.
627 		 */
628 		if (io->running == 0) {
629 			regetblk(bp);
630 			if ((bp->b_flags & B_LOCKED) || io->reclaim) {
631 				hammer_io_disassociate(io);
632 				/* return the bp */
633 			} else {
634 				/* return the bp (bp passively associated) */
635 			}
636 		} else {
637 			/*
638 			 * bp is left passively associated but we do not
639 			 * try to reacquire it.  Interactions with the io
640 			 * structure will occur on completion of the bp's
641 			 * I/O.
642 			 */
643 			bp = NULL;
644 		}
645 	}
646 	return(bp);
647 }
648 
649 /*
650  * This routine is called with a locked IO when a flush is desired and
651  * no other references to the structure exists other then ours.  This
652  * routine is ONLY called when HAMMER believes it is safe to flush a
653  * potentially modified buffer out.
654  *
655  * The locked io or io reference prevents a flush from being initiated
656  * by the kernel.
657  */
658 void
659 hammer_io_flush(struct hammer_io *io, int reclaim)
660 {
661 	struct buf *bp;
662 	hammer_mount_t hmp;
663 
664 	/*
665 	 * Degenerate case - nothing to flush if nothing is dirty.
666 	 */
667 	if (io->modified == 0)
668 		return;
669 
670 	KKASSERT(io->bp);
671 	KKASSERT(io->modify_refs <= 0);
672 
673 	/*
674 	 * Acquire ownership of the bp, particularly before we clear our
675 	 * modified flag.
676 	 *
677 	 * We are going to bawrite() this bp.  Don't leave a window where
678 	 * io->released is set, we actually own the bp rather then our
679 	 * buffer.
680 	 *
681 	 * The io_token should not be required here as only
682 	 */
683 	hmp = io->hmp;
684 	bp = io->bp;
685 	if (io->released) {
686 		regetblk(bp);
687 		/* BUF_KERNPROC(io->bp); */
688 		/* io->released = 0; */
689 		KKASSERT(io->released);
690 		KKASSERT(io->bp == bp);
691 	} else {
692 		io->released = 1;
693 	}
694 
695 	if (reclaim) {
696 		io->reclaim = 1;
697 		if ((bp->b_flags & B_LOCKED) == 0) {
698 			bp->b_flags |= B_LOCKED;
699 			atomic_add_int(&hammer_count_io_locked, 1);
700 		}
701 	}
702 
703 	/*
704 	 * Acquire exclusive access to the bp and then clear the modified
705 	 * state of the buffer prior to issuing I/O to interlock any
706 	 * modifications made while the I/O is in progress.  This shouldn't
707 	 * happen anyway but losing data would be worse.  The modified bit
708 	 * will be rechecked after the IO completes.
709 	 *
710 	 * NOTE: This call also finalizes the buffer's content (inval == 0).
711 	 *
712 	 * This is only legal when lock.refs == 1 (otherwise we might clear
713 	 * the modified bit while there are still users of the cluster
714 	 * modifying the data).
715 	 *
716 	 * Do this before potentially blocking so any attempt to modify the
717 	 * ondisk while we are blocked blocks waiting for us.
718 	 */
719 	hammer_ref(&io->lock);
720 	hammer_io_clear_modify(io, 0);
721 	hammer_rel(&io->lock);
722 
723 	if (hammer_debug_io & 0x0002)
724 		hdkprintf("%016jx\n", bp->b_bio1.bio_offset);
725 
726 	/*
727 	 * Transfer ownership to the kernel and initiate I/O.
728 	 *
729 	 * NOTE: We do not hold io_token so an atomic op is required to
730 	 *	 update io_running_space.
731 	 */
732 	io->running = 1;
733 	atomic_add_long(&hmp->io_running_space, io->bytes);
734 	atomic_add_long(&hammer_count_io_running_write, io->bytes);
735 	lwkt_gettoken(&hmp->io_token);
736 	TAILQ_INSERT_TAIL(&hmp->iorun_list, io, iorun_entry);
737 	lwkt_reltoken(&hmp->io_token);
738 	cluster_awrite(bp);
739 	hammer_io_flush_mark(io->volume);
740 }
741 
742 /************************************************************************
743  *				BUFFER DIRTYING				*
744  ************************************************************************
745  *
746  * These routines deal with dependancies created when IO buffers get
747  * modified.  The caller must call hammer_modify_*() on a referenced
748  * HAMMER structure prior to modifying its on-disk data.
749  *
750  * Any intent to modify an IO buffer acquires the related bp and imposes
751  * various write ordering dependancies.
752  */
753 
754 /*
755  * Mark a HAMMER structure as undergoing modification.  Meta-data buffers
756  * are locked until the flusher can deal with them, pure data buffers
757  * can be written out.
758  *
759  * The referenced io prevents races.
760  */
761 static
762 void
763 hammer_io_modify(hammer_io_t io, int count)
764 {
765 	/*
766 	 * io->modify_refs must be >= 0
767 	 */
768 	while (io->modify_refs < 0) {
769 		io->waitmod = 1;
770 		tsleep(io, 0, "hmrmod", 0);
771 	}
772 
773 	/*
774 	 * Shortcut if nothing to do.
775 	 */
776 	KKASSERT(hammer_isactive(&io->lock) && io->bp != NULL);
777 	io->modify_refs += count;
778 	if (io->modified && io->released == 0)
779 		return;
780 
781 	/*
782 	 * NOTE: It is important not to set the modified bit
783 	 *	 until after we have acquired the bp or we risk
784 	 *	 racing against checkwrite.
785 	 */
786 	hammer_lock_ex(&io->lock);
787 	if (io->released) {
788 		regetblk(io->bp);
789 		BUF_KERNPROC(io->bp);
790 		io->released = 0;
791 	}
792 	if (io->modified == 0) {
793 		hammer_io_set_modlist(io);
794 		io->modified = 1;
795 	}
796 	hammer_unlock(&io->lock);
797 }
798 
799 static __inline
800 void
801 hammer_io_modify_done(hammer_io_t io)
802 {
803 	KKASSERT(io->modify_refs > 0);
804 	--io->modify_refs;
805 	if (io->modify_refs == 0 && io->waitmod) {
806 		io->waitmod = 0;
807 		wakeup(io);
808 	}
809 }
810 
811 /*
812  * The write interlock blocks other threads trying to modify a buffer
813  * (they block in hammer_io_modify()) after us, or blocks us while other
814  * threads are in the middle of modifying a buffer.
815  *
816  * The caller also has a ref on the io, however if we are not careful
817  * we will race bioops callbacks (checkwrite).  To deal with this
818  * we must at least acquire and release the io_token, and it is probably
819  * better to hold it through the setting of modify_refs.
820  */
821 void
822 hammer_io_write_interlock(hammer_io_t io)
823 {
824 	hammer_mount_t hmp = io->hmp;
825 
826 	lwkt_gettoken(&hmp->io_token);
827 	while (io->modify_refs != 0) {
828 		io->waitmod = 1;
829 		tsleep(io, 0, "hmrmod", 0);
830 	}
831 	io->modify_refs = -1;
832 	lwkt_reltoken(&hmp->io_token);
833 }
834 
835 void
836 hammer_io_done_interlock(hammer_io_t io)
837 {
838 	KKASSERT(io->modify_refs == -1);
839 	io->modify_refs = 0;
840 	if (io->waitmod) {
841 		io->waitmod = 0;
842 		wakeup(io);
843 	}
844 }
845 
846 /*
847  * Caller intends to modify a volume's ondisk structure.
848  *
849  * This is only allowed if we are the flusher or we have a ref on the
850  * sync_lock.
851  */
852 void
853 hammer_modify_volume(hammer_transaction_t trans, hammer_volume_t volume,
854 		     void *base, int len)
855 {
856 	KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
857 
858 	hammer_io_modify(&volume->io, 1);
859 	if (len) {
860 		intptr_t rel_offset = (intptr_t)base - (intptr_t)volume->ondisk;
861 		KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
862 		hammer_generate_undo(trans,
863 			 HAMMER_ENCODE_RAW_VOLUME(volume->vol_no, rel_offset),
864 			 base, len);
865 	}
866 }
867 
868 /*
869  * Caller intends to modify a buffer's ondisk structure.
870  *
871  * This is only allowed if we are the flusher or we have a ref on the
872  * sync_lock.
873  */
874 void
875 hammer_modify_buffer(hammer_transaction_t trans, hammer_buffer_t buffer,
876 		     void *base, int len)
877 {
878 	KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
879 
880 	hammer_io_modify(&buffer->io, 1);
881 	if (len) {
882 		intptr_t rel_offset = (intptr_t)base - (intptr_t)buffer->ondisk;
883 		KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
884 		hammer_generate_undo(trans,
885 				     buffer->zone2_offset + rel_offset,
886 				     base, len);
887 	}
888 }
889 
890 void
891 hammer_modify_volume_done(hammer_volume_t volume)
892 {
893 	hammer_io_modify_done(&volume->io);
894 }
895 
896 void
897 hammer_modify_buffer_done(hammer_buffer_t buffer)
898 {
899 	hammer_io_modify_done(&buffer->io);
900 }
901 
902 /*
903  * Mark an entity as not being dirty any more and finalize any
904  * delayed adjustments to the buffer.
905  *
906  * Delayed adjustments are an important performance enhancement, allowing
907  * us to avoid recalculating B-Tree node CRCs over and over again when
908  * making bulk-modifications to the B-Tree.
909  *
910  * If inval is non-zero delayed adjustments are ignored.
911  *
912  * This routine may dereference related btree nodes and cause the
913  * buffer to be dereferenced.  The caller must own a reference on io.
914  */
915 void
916 hammer_io_clear_modify(struct hammer_io *io, int inval)
917 {
918 	hammer_mount_t hmp;
919 
920 	/*
921 	 * io_token is needed to avoid races on mod_root
922 	 */
923 	if (io->modified == 0)
924 		return;
925 	hmp = io->hmp;
926 	lwkt_gettoken(&hmp->io_token);
927 	if (io->modified == 0) {
928 		lwkt_reltoken(&hmp->io_token);
929 		return;
930 	}
931 
932 	/*
933 	 * Take us off the mod-list and clear the modified bit.
934 	 */
935 	KKASSERT(io->mod_root != NULL);
936 	if (io->mod_root == &io->hmp->volu_root ||
937 	    io->mod_root == &io->hmp->meta_root) {
938 		io->hmp->locked_dirty_space -= io->bytes;
939 		atomic_add_long(&hammer_count_dirtybufspace, -io->bytes);
940 	}
941 	RB_REMOVE(hammer_mod_rb_tree, io->mod_root, io);
942 	io->mod_root = NULL;
943 	io->modified = 0;
944 
945 	lwkt_reltoken(&hmp->io_token);
946 
947 	/*
948 	 * If this bit is not set there are no delayed adjustments.
949 	 */
950 	if (io->gencrc == 0)
951 		return;
952 	io->gencrc = 0;
953 
954 	/*
955 	 * Finalize requested CRCs.  The NEEDSCRC flag also holds a reference
956 	 * on the node (& underlying buffer).  Release the node after clearing
957 	 * the flag.
958 	 */
959 	if (io->type == HAMMER_STRUCTURE_META_BUFFER) {
960 		hammer_buffer_t buffer = HAMMER_ITOB(io);
961 		hammer_node_t node;
962 
963 restart:
964 		TAILQ_FOREACH(node, &buffer->clist, entry) {
965 			if ((node->flags & HAMMER_NODE_NEEDSCRC) == 0)
966 				continue;
967 			node->flags &= ~HAMMER_NODE_NEEDSCRC;
968 			KKASSERT(node->ondisk);
969 			if (inval == 0)
970 				node->ondisk->crc = crc32(&node->ondisk->crc + 1, HAMMER_BTREE_CRCSIZE);
971 			hammer_rel_node(node);
972 			goto restart;
973 		}
974 	}
975 	/* caller must still have ref on io */
976 	KKASSERT(hammer_isactive(&io->lock));
977 }
978 
979 /*
980  * Clear the IO's modify list.  Even though the IO is no longer modified
981  * it may still be on the lose_root.  This routine is called just before
982  * the governing hammer_buffer is destroyed.
983  *
984  * mod_root requires io_token protection.
985  */
986 void
987 hammer_io_clear_modlist(struct hammer_io *io)
988 {
989 	hammer_mount_t hmp = io->hmp;
990 
991 	KKASSERT(io->modified == 0);
992 	if (io->mod_root) {
993 		lwkt_gettoken(&hmp->io_token);
994 		if (io->mod_root) {
995 			KKASSERT(io->mod_root == &io->hmp->lose_root);
996 			RB_REMOVE(hammer_mod_rb_tree, io->mod_root, io);
997 			io->mod_root = NULL;
998 		}
999 		lwkt_reltoken(&hmp->io_token);
1000 	}
1001 }
1002 
1003 static void
1004 hammer_io_set_modlist(struct hammer_io *io)
1005 {
1006 	struct hammer_mount *hmp = io->hmp;
1007 
1008 	lwkt_gettoken(&hmp->io_token);
1009 	KKASSERT(io->mod_root == NULL);
1010 
1011 	switch(io->type) {
1012 	case HAMMER_STRUCTURE_VOLUME:
1013 		io->mod_root = &hmp->volu_root;
1014 		hmp->locked_dirty_space += io->bytes;
1015 		atomic_add_long(&hammer_count_dirtybufspace, io->bytes);
1016 		break;
1017 	case HAMMER_STRUCTURE_META_BUFFER:
1018 		io->mod_root = &hmp->meta_root;
1019 		hmp->locked_dirty_space += io->bytes;
1020 		atomic_add_long(&hammer_count_dirtybufspace, io->bytes);
1021 		break;
1022 	case HAMMER_STRUCTURE_UNDO_BUFFER:
1023 		io->mod_root = &hmp->undo_root;
1024 		break;
1025 	case HAMMER_STRUCTURE_DATA_BUFFER:
1026 		io->mod_root = &hmp->data_root;
1027 		break;
1028 	case HAMMER_STRUCTURE_DUMMY:
1029 		hpanic("bad io type");
1030 		break; /* NOT REACHED */
1031 	}
1032 	if (RB_INSERT(hammer_mod_rb_tree, io->mod_root, io)) {
1033 		hpanic("duplicate entry @ %d:%015jx",
1034 			io->volume->vol_no, io->offset);
1035 		/* NOT REACHED */
1036 	}
1037 	lwkt_reltoken(&hmp->io_token);
1038 }
1039 
1040 /************************************************************************
1041  *				HAMMER_BIOOPS				*
1042  ************************************************************************
1043  *
1044  */
1045 
1046 /*
1047  * Pre-IO initiation kernel callback - cluster build only
1048  *
1049  * bioops callback - hold io_token
1050  */
1051 static void
1052 hammer_io_start(struct buf *bp)
1053 {
1054 	/* nothing to do, so io_token not needed */
1055 }
1056 
1057 /*
1058  * Post-IO completion kernel callback - MAY BE CALLED FROM INTERRUPT!
1059  *
1060  * NOTE: HAMMER may modify a data buffer after we have initiated write
1061  *	 I/O.
1062  *
1063  * NOTE: MPSAFE callback
1064  *
1065  * bioops callback - hold io_token
1066  */
1067 static void
1068 hammer_io_complete(struct buf *bp)
1069 {
1070 	hammer_io_t io = hammer_buf_peek_io(bp);
1071 	struct hammer_mount *hmp = io->hmp;
1072 	struct hammer_io *ionext;
1073 
1074 	lwkt_gettoken(&hmp->io_token);
1075 
1076 	KKASSERT(io->released == 1);
1077 
1078 	/*
1079 	 * Deal with people waiting for I/O to drain
1080 	 */
1081 	if (io->running) {
1082 		/*
1083 		 * Deal with critical write errors.  Once a critical error
1084 		 * has been flagged in hmp the UNDO FIFO will not be updated.
1085 		 * That way crash recover will give us a consistent
1086 		 * filesystem.
1087 		 *
1088 		 * Because of this we can throw away failed UNDO buffers.  If
1089 		 * we throw away META or DATA buffers we risk corrupting
1090 		 * the now read-only version of the filesystem visible to
1091 		 * the user.  Clear B_ERROR so the buffer is not re-dirtied
1092 		 * by the kernel and ref the io so it doesn't get thrown
1093 		 * away.
1094 		 */
1095 		if (bp->b_flags & B_ERROR) {
1096 			lwkt_gettoken(&hmp->fs_token);
1097 			hammer_critical_error(hmp, NULL, bp->b_error,
1098 					      "while flushing meta-data");
1099 			lwkt_reltoken(&hmp->fs_token);
1100 
1101 			switch(io->type) {
1102 			case HAMMER_STRUCTURE_UNDO_BUFFER:
1103 				break;
1104 			default:
1105 				if (io->ioerror == 0) {
1106 					io->ioerror = 1;
1107 					hammer_ref(&io->lock);
1108 				}
1109 				break;
1110 			}
1111 			bp->b_flags &= ~B_ERROR;
1112 			bundirty(bp);
1113 #if 0
1114 			hammer_io_set_modlist(io);
1115 			io->modified = 1;
1116 #endif
1117 		}
1118 		hammer_stats_disk_write += io->bytes;
1119 		atomic_add_long(&hammer_count_io_running_write, -io->bytes);
1120 		atomic_add_long(&hmp->io_running_space, -io->bytes);
1121 		KKASSERT(hmp->io_running_space >= 0);
1122 		io->running = 0;
1123 
1124 		/*
1125 		 * Remove from iorun list and wakeup any multi-io waiter(s).
1126 		 */
1127 		if (TAILQ_FIRST(&hmp->iorun_list) == io) {
1128 			ionext = TAILQ_NEXT(io, iorun_entry);
1129 			if (ionext && ionext->type == HAMMER_STRUCTURE_DUMMY)
1130 				wakeup(ionext);
1131 		}
1132 		TAILQ_REMOVE(&hmp->iorun_list, io, iorun_entry);
1133 	} else {
1134 		hammer_stats_disk_read += io->bytes;
1135 	}
1136 
1137 	if (io->waiting) {
1138 		io->waiting = 0;
1139 		wakeup(io);
1140 	}
1141 
1142 	/*
1143 	 * If B_LOCKED is set someone wanted to deallocate the bp at some
1144 	 * point, try to do it now.  The operation will fail if there are
1145 	 * refs or if hammer_io_deallocate() is unable to gain the
1146 	 * interlock.
1147 	 */
1148 	if (bp->b_flags & B_LOCKED) {
1149 		atomic_add_int(&hammer_count_io_locked, -1);
1150 		bp->b_flags &= ~B_LOCKED;
1151 		hammer_io_deallocate(bp);
1152 		/* structure may be dead now */
1153 	}
1154 	lwkt_reltoken(&hmp->io_token);
1155 }
1156 
1157 /*
1158  * Callback from kernel when it wishes to deallocate a passively
1159  * associated structure.  This mostly occurs with clean buffers
1160  * but it may be possible for a holding structure to be marked dirty
1161  * while its buffer is passively associated.  The caller owns the bp.
1162  *
1163  * If we cannot disassociate we set B_LOCKED to prevent the buffer
1164  * from getting reused.
1165  *
1166  * WARNING: Because this can be called directly by getnewbuf we cannot
1167  * recurse into the tree.  If a bp cannot be immediately disassociated
1168  * our only recourse is to set B_LOCKED.
1169  *
1170  * WARNING: This may be called from an interrupt via hammer_io_complete()
1171  *
1172  * bioops callback - hold io_token
1173  */
1174 static void
1175 hammer_io_deallocate(struct buf *bp)
1176 {
1177 	hammer_io_t io = hammer_buf_peek_io(bp);
1178 	hammer_mount_t hmp;
1179 
1180 	hmp = io->hmp;
1181 
1182 	lwkt_gettoken(&hmp->io_token);
1183 
1184 	KKASSERT((bp->b_flags & B_LOCKED) == 0 && io->running == 0);
1185 	if (hammer_try_interlock_norefs(&io->lock) == 0) {
1186 		/*
1187 		 * We cannot safely disassociate a bp from a referenced
1188 		 * or interlocked HAMMER structure.
1189 		 */
1190 		bp->b_flags |= B_LOCKED;
1191 		atomic_add_int(&hammer_count_io_locked, 1);
1192 	} else if (io->modified) {
1193 		/*
1194 		 * It is not legal to disassociate a modified buffer.  This
1195 		 * case really shouldn't ever occur.
1196 		 */
1197 		bp->b_flags |= B_LOCKED;
1198 		atomic_add_int(&hammer_count_io_locked, 1);
1199 		hammer_put_interlock(&io->lock, 0);
1200 	} else {
1201 		/*
1202 		 * Disassociate the BP.  If the io has no refs left we
1203 		 * have to add it to the loose list.  The kernel has
1204 		 * locked the buffer and therefore our io must be
1205 		 * in a released state.
1206 		 */
1207 		hammer_io_disassociate(io);
1208 		if (io->type != HAMMER_STRUCTURE_VOLUME) {
1209 			KKASSERT(io->bp == NULL);
1210 			KKASSERT(io->mod_root == NULL);
1211 			io->mod_root = &hmp->lose_root;
1212 			if (RB_INSERT(hammer_mod_rb_tree, io->mod_root, io)) {
1213 				hpanic("duplicate entry @ %d:%015jx",
1214 					io->volume->vol_no, io->offset);
1215 				/* NOT REACHED */
1216 			}
1217 		}
1218 		hammer_put_interlock(&io->lock, 1);
1219 	}
1220 	lwkt_reltoken(&hmp->io_token);
1221 }
1222 
1223 /*
1224  * bioops callback - hold io_token
1225  */
1226 static int
1227 hammer_io_fsync(struct vnode *vp)
1228 {
1229 	/* nothing to do, so io_token not needed */
1230 	return(0);
1231 }
1232 
1233 /*
1234  * NOTE: will not be called unless we tell the kernel about the
1235  * bioops.  Unused... we use the mount's VFS_SYNC instead.
1236  *
1237  * bioops callback - hold io_token
1238  */
1239 static int
1240 hammer_io_sync(struct mount *mp)
1241 {
1242 	/* nothing to do, so io_token not needed */
1243 	return(0);
1244 }
1245 
1246 /*
1247  * bioops callback - hold io_token
1248  */
1249 static void
1250 hammer_io_movedeps(struct buf *bp1, struct buf *bp2)
1251 {
1252 	/* nothing to do, so io_token not needed */
1253 }
1254 
1255 /*
1256  * I/O pre-check for reading and writing.  HAMMER only uses this for
1257  * B_CACHE buffers so checkread just shouldn't happen, but if it does
1258  * allow it.
1259  *
1260  * Writing is a different case.  We don't want the kernel to try to write
1261  * out a buffer that HAMMER may be modifying passively or which has a
1262  * dependancy.  In addition, kernel-demanded writes can only proceed for
1263  * certain types of buffers (i.e. UNDO and DATA types).  Other dirty
1264  * buffer types can only be explicitly written by the flusher.
1265  *
1266  * checkwrite will only be called for bdwrite()n buffers.  If we return
1267  * success the kernel is guaranteed to initiate the buffer write.
1268  *
1269  * bioops callback - hold io_token
1270  */
1271 static int
1272 hammer_io_checkread(struct buf *bp)
1273 {
1274 	/* nothing to do, so io_token not needed */
1275 	return(0);
1276 }
1277 
1278 /*
1279  * The kernel is asking us whether it can write out a dirty buffer or not.
1280  *
1281  * bioops callback - hold io_token
1282  */
1283 static int
1284 hammer_io_checkwrite(struct buf *bp)
1285 {
1286 	hammer_io_t io = hammer_buf_peek_io(bp);
1287 	hammer_mount_t hmp = io->hmp;
1288 
1289 	/*
1290 	 * This shouldn't happen under normal operation.
1291 	 */
1292 	lwkt_gettoken(&hmp->io_token);
1293 	if (io->type == HAMMER_STRUCTURE_VOLUME ||
1294 	    io->type == HAMMER_STRUCTURE_META_BUFFER) {
1295 		if (!panicstr)
1296 			hpanic("illegal buffer");
1297 		if ((bp->b_flags & B_LOCKED) == 0) {
1298 			bp->b_flags |= B_LOCKED;
1299 			atomic_add_int(&hammer_count_io_locked, 1);
1300 		}
1301 		lwkt_reltoken(&hmp->io_token);
1302 		return(1);
1303 	}
1304 
1305 	/*
1306 	 * We have to be able to interlock the IO to safely modify any
1307 	 * of its fields without holding the fs_token.  If we can't lock
1308 	 * it then we are racing someone.
1309 	 *
1310 	 * Our ownership of the bp lock prevents the io from being ripped
1311 	 * out from under us.
1312 	 */
1313 	if (hammer_try_interlock_norefs(&io->lock) == 0) {
1314 		bp->b_flags |= B_LOCKED;
1315 		atomic_add_int(&hammer_count_io_locked, 1);
1316 		lwkt_reltoken(&hmp->io_token);
1317 		return(1);
1318 	}
1319 
1320 	/*
1321 	 * The modified bit must be cleared prior to the initiation of
1322 	 * any IO (returning 0 initiates the IO).  Because this is a
1323 	 * normal data buffer hammer_io_clear_modify() runs through a
1324 	 * simple degenerate case.
1325 	 *
1326 	 * Return 0 will cause the kernel to initiate the IO, and we
1327 	 * must normally clear the modified bit before we begin.  If
1328 	 * the io has modify_refs we do not clear the modified bit,
1329 	 * otherwise we may miss changes.
1330 	 *
1331 	 * Only data and undo buffers can reach here.  These buffers do
1332 	 * not have terminal crc functions but we temporarily reference
1333 	 * the IO anyway, just in case.
1334 	 */
1335 	if (io->modify_refs == 0 && io->modified) {
1336 		hammer_ref(&io->lock);
1337 		hammer_io_clear_modify(io, 0);
1338 		hammer_rel(&io->lock);
1339 	} else if (io->modified) {
1340 		KKASSERT(io->type == HAMMER_STRUCTURE_DATA_BUFFER);
1341 	}
1342 
1343 	/*
1344 	 * The kernel is going to start the IO, set io->running.
1345 	 */
1346 	KKASSERT(io->running == 0);
1347 	io->running = 1;
1348 	atomic_add_long(&io->hmp->io_running_space, io->bytes);
1349 	atomic_add_long(&hammer_count_io_running_write, io->bytes);
1350 	TAILQ_INSERT_TAIL(&io->hmp->iorun_list, io, iorun_entry);
1351 
1352 	hammer_put_interlock(&io->lock, 1);
1353 	lwkt_reltoken(&hmp->io_token);
1354 
1355 	return(0);
1356 }
1357 
1358 /*
1359  * Return non-zero if we wish to delay the kernel's attempt to flush
1360  * this buffer to disk.
1361  *
1362  * bioops callback - hold io_token
1363  */
1364 static int
1365 hammer_io_countdeps(struct buf *bp, int n)
1366 {
1367 	/* nothing to do, so io_token not needed */
1368 	return(0);
1369 }
1370 
1371 static struct bio_ops hammer_bioops = {
1372 	.io_start	= hammer_io_start,
1373 	.io_complete	= hammer_io_complete,
1374 	.io_deallocate	= hammer_io_deallocate,
1375 	.io_fsync	= hammer_io_fsync,
1376 	.io_sync	= hammer_io_sync,
1377 	.io_movedeps	= hammer_io_movedeps,
1378 	.io_countdeps	= hammer_io_countdeps,
1379 	.io_checkread	= hammer_io_checkread,
1380 	.io_checkwrite	= hammer_io_checkwrite,
1381 };
1382 
1383 /************************************************************************
1384  *				DIRECT IO OPS 				*
1385  ************************************************************************
1386  *
1387  * These functions operate directly on the buffer cache buffer associated
1388  * with a front-end vnode rather then a back-end device vnode.
1389  */
1390 
1391 /*
1392  * Read a buffer associated with a front-end vnode directly from the
1393  * disk media.  The bio may be issued asynchronously.  If leaf is non-NULL
1394  * we validate the CRC.
1395  *
1396  * We must check for the presence of a HAMMER buffer to handle the case
1397  * where the reblocker has rewritten the data (which it does via the HAMMER
1398  * buffer system, not via the high-level vnode buffer cache), but not yet
1399  * committed the buffer to the media.
1400  */
1401 int
1402 hammer_io_direct_read(hammer_mount_t hmp, struct bio *bio,
1403 		      hammer_btree_leaf_elm_t leaf)
1404 {
1405 	hammer_off_t buf_offset;
1406 	hammer_off_t zone2_offset;
1407 	hammer_volume_t volume;
1408 	struct buf *bp;
1409 	struct bio *nbio;
1410 	int vol_no;
1411 	int error;
1412 
1413 	buf_offset = bio->bio_offset;
1414 	KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) ==
1415 		 HAMMER_ZONE_LARGE_DATA);
1416 
1417 	/*
1418 	 * The buffer cache may have an aliased buffer (the reblocker can
1419 	 * write them).  If it does we have to sync any dirty data before
1420 	 * we can build our direct-read.  This is a non-critical code path.
1421 	 */
1422 	bp = bio->bio_buf;
1423 	hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize);
1424 
1425 	/*
1426 	 * Resolve to a zone-2 offset.  The conversion just requires
1427 	 * munging the top 4 bits but we want to abstract it anyway
1428 	 * so the blockmap code can verify the zone assignment.
1429 	 */
1430 	zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1431 	if (error)
1432 		goto done;
1433 	KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
1434 		 HAMMER_ZONE_RAW_BUFFER);
1435 
1436 	/*
1437 	 * Resolve volume and raw-offset for 3rd level bio.  The
1438 	 * offset will be specific to the volume.
1439 	 */
1440 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
1441 	volume = hammer_get_volume(hmp, vol_no, &error);
1442 	if (error == 0 && zone2_offset >= volume->maxbuf_off)
1443 		error = EIO;
1444 
1445 	if (error == 0) {
1446 		/*
1447 		 * 3rd level bio (the caller has already pushed once)
1448 		 */
1449 		nbio = push_bio(bio);
1450 		nbio->bio_offset = hammer_xlate_to_phys(volume->ondisk,
1451 							zone2_offset);
1452 		hammer_stats_disk_read += bp->b_bufsize;
1453 		vn_strategy(volume->devvp, nbio);
1454 	}
1455 	hammer_rel_volume(volume, 0);
1456 done:
1457 	if (error) {
1458 		hdkprintf("failed @ %016llx\n", (long long)zone2_offset);
1459 		bp->b_error = error;
1460 		bp->b_flags |= B_ERROR;
1461 		biodone(bio);
1462 	}
1463 	return(error);
1464 }
1465 
1466 /*
1467  * This works similarly to hammer_io_direct_read() except instead of
1468  * directly reading from the device into the bio we instead indirectly
1469  * read through the device's buffer cache and then copy the data into
1470  * the bio.
1471  *
1472  * If leaf is non-NULL and validation is enabled, the CRC will be checked.
1473  *
1474  * This routine also executes asynchronously.  It allows hammer strategy
1475  * calls to operate asynchronously when in double_buffer mode (in addition
1476  * to operating asynchronously when in normal mode).
1477  */
1478 int
1479 hammer_io_indirect_read(hammer_mount_t hmp, struct bio *bio,
1480 			hammer_btree_leaf_elm_t leaf)
1481 {
1482 	hammer_off_t buf_offset;
1483 	hammer_off_t zone2_offset;
1484 	hammer_volume_t volume;
1485 	struct buf *bp;
1486 	int vol_no;
1487 	int error;
1488 
1489 	buf_offset = bio->bio_offset;
1490 	KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) ==
1491 		 HAMMER_ZONE_LARGE_DATA);
1492 
1493 	/*
1494 	 * The buffer cache may have an aliased buffer (the reblocker can
1495 	 * write them).  If it does we have to sync any dirty data before
1496 	 * we can build our direct-read.  This is a non-critical code path.
1497 	 */
1498 	bp = bio->bio_buf;
1499 	hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize);
1500 
1501 	/*
1502 	 * Resolve to a zone-2 offset.  The conversion just requires
1503 	 * munging the top 4 bits but we want to abstract it anyway
1504 	 * so the blockmap code can verify the zone assignment.
1505 	 */
1506 	zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1507 	if (error)
1508 		goto done;
1509 	KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
1510 		 HAMMER_ZONE_RAW_BUFFER);
1511 
1512 	/*
1513 	 * Resolve volume and raw-offset for 3rd level bio.  The
1514 	 * offset will be specific to the volume.
1515 	 */
1516 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
1517 	volume = hammer_get_volume(hmp, vol_no, &error);
1518 	if (error == 0 && zone2_offset >= volume->maxbuf_off)
1519 		error = EIO;
1520 
1521 	if (error == 0) {
1522 		/*
1523 		 * Convert to the raw volume->devvp offset and acquire
1524 		 * the buf, issuing async I/O if necessary.
1525 		 */
1526 		buf_offset = hammer_xlate_to_phys(volume->ondisk, zone2_offset);
1527 
1528 		if (leaf && hammer_verify_data) {
1529 			bio->bio_caller_info1.uvalue32 = leaf->data_crc;
1530 			bio->bio_caller_info2.index = 1;
1531 		} else {
1532 			bio->bio_caller_info2.index = 0;
1533 		}
1534 		breadcb(volume->devvp, buf_offset, bp->b_bufsize,
1535 			hammer_indirect_callback, bio);
1536 	}
1537 	hammer_rel_volume(volume, 0);
1538 done:
1539 	if (error) {
1540 		hdkprintf("failed @ %016llx\n", (long long)zone2_offset);
1541 		bp->b_error = error;
1542 		bp->b_flags |= B_ERROR;
1543 		biodone(bio);
1544 	}
1545 	return(error);
1546 }
1547 
1548 /*
1549  * Indirect callback on completion.  bio/bp specify the device-backed
1550  * buffer.  bio->bio_caller_info1.ptr holds obio.
1551  *
1552  * obio/obp is the original regular file buffer.  obio->bio_caller_info*
1553  * contains the crc specification.
1554  *
1555  * We are responsible for calling bpdone() and bqrelse() on bio/bp, and
1556  * for calling biodone() on obio.
1557  */
1558 static void
1559 hammer_indirect_callback(struct bio *bio)
1560 {
1561 	struct buf *bp = bio->bio_buf;
1562 	struct buf *obp;
1563 	struct bio *obio;
1564 
1565 	/*
1566 	 * If BIO_DONE is already set the device buffer was already
1567 	 * fully valid (B_CACHE).  If it is not set then I/O was issued
1568 	 * and we have to run I/O completion as the last bio.
1569 	 *
1570 	 * Nobody is waiting for our device I/O to complete, we are
1571 	 * responsible for bqrelse()ing it which means we also have to do
1572 	 * the equivalent of biowait() and clear BIO_DONE (which breadcb()
1573 	 * may have set).
1574 	 *
1575 	 * Any preexisting device buffer should match the requested size,
1576 	 * but due to big-block recycling and other factors there is some
1577 	 * fragility there, so we assert that the device buffer covers
1578 	 * the request.
1579 	 */
1580 	if ((bio->bio_flags & BIO_DONE) == 0)
1581 		bpdone(bp, 0);
1582 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
1583 
1584 	obio = bio->bio_caller_info1.ptr;
1585 	obp = obio->bio_buf;
1586 
1587 	if (bp->b_flags & B_ERROR) {
1588 		obp->b_flags |= B_ERROR;
1589 		obp->b_error = bp->b_error;
1590 	} else if (obio->bio_caller_info2.index &&
1591 		   obio->bio_caller_info1.uvalue32 !=
1592 		    crc32(bp->b_data, bp->b_bufsize)) {
1593 		obp->b_flags |= B_ERROR;
1594 		obp->b_error = EIO;
1595 	} else {
1596 		KKASSERT(bp->b_bufsize >= obp->b_bufsize);
1597 		bcopy(bp->b_data, obp->b_data, obp->b_bufsize);
1598 		obp->b_resid = 0;
1599 		obp->b_flags |= B_AGE;
1600 	}
1601 	biodone(obio);
1602 	bqrelse(bp);
1603 }
1604 
1605 /*
1606  * Write a buffer associated with a front-end vnode directly to the
1607  * disk media.  The bio may be issued asynchronously.
1608  *
1609  * The BIO is associated with the specified record and RECG_DIRECT_IO
1610  * is set.  The recorded is added to its object.
1611  */
1612 int
1613 hammer_io_direct_write(hammer_mount_t hmp, struct bio *bio,
1614 		       hammer_record_t record)
1615 {
1616 	hammer_btree_leaf_elm_t leaf = &record->leaf;
1617 	hammer_off_t buf_offset;
1618 	hammer_off_t zone2_offset;
1619 	hammer_volume_t volume;
1620 	hammer_buffer_t buffer;
1621 	struct buf *bp;
1622 	struct bio *nbio;
1623 	char *ptr;
1624 	int vol_no;
1625 	int error;
1626 
1627 	buf_offset = leaf->data_offset;
1628 
1629 	KKASSERT(hammer_is_zone2_mapped_index(
1630 		HAMMER_ZONE_DECODE(buf_offset)));
1631 	KKASSERT(bio->bio_buf->b_cmd == BUF_CMD_WRITE);
1632 
1633 	/*
1634 	 * Issue or execute the I/O.  The new memory record must replace
1635 	 * the old one before the I/O completes, otherwise a reaquisition of
1636 	 * the buffer will load the old media data instead of the new.
1637 	 */
1638 	if ((buf_offset & HAMMER_BUFMASK) == 0 &&
1639 	    leaf->data_len >= HAMMER_BUFSIZE) {
1640 		/*
1641 		 * We are using the vnode's bio to write directly to the
1642 		 * media, any hammer_buffer at the same zone-X offset will
1643 		 * now have stale data.
1644 		 */
1645 		zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1646 		vol_no = HAMMER_VOL_DECODE(zone2_offset);
1647 		volume = hammer_get_volume(hmp, vol_no, &error);
1648 
1649 		if (error == 0 && zone2_offset >= volume->maxbuf_off)
1650 			error = EIO;
1651 		if (error == 0) {
1652 			bp = bio->bio_buf;
1653 			KKASSERT((bp->b_bufsize & HAMMER_BUFMASK) == 0);
1654 			/*
1655 			hammer_del_buffers(hmp, buf_offset,
1656 					   zone2_offset, bp->b_bufsize);
1657 			*/
1658 
1659 			/*
1660 			 * Second level bio - cached zone2 offset.
1661 			 *
1662 			 * (We can put our bio_done function in either the
1663 			 *  2nd or 3rd level).
1664 			 */
1665 			nbio = push_bio(bio);
1666 			nbio->bio_offset = zone2_offset;
1667 			nbio->bio_done = hammer_io_direct_write_complete;
1668 			nbio->bio_caller_info1.ptr = record;
1669 			record->zone2_offset = zone2_offset;
1670 			record->gflags |= HAMMER_RECG_DIRECT_IO |
1671 					 HAMMER_RECG_DIRECT_INVAL;
1672 
1673 			/*
1674 			 * Third level bio - raw offset specific to the
1675 			 * correct volume.
1676 			 */
1677 			nbio = push_bio(nbio);
1678 			nbio->bio_offset = hammer_xlate_to_phys(volume->ondisk,
1679 								zone2_offset);
1680 			hammer_stats_disk_write += bp->b_bufsize;
1681 			hammer_ip_replace_bulk(hmp, record);
1682 			vn_strategy(volume->devvp, nbio);
1683 			hammer_io_flush_mark(volume);
1684 		}
1685 		hammer_rel_volume(volume, 0);
1686 	} else {
1687 		/*
1688 		 * Must fit in a standard HAMMER buffer.  In this case all
1689 		 * consumers use the HAMMER buffer system and RECG_DIRECT_IO
1690 		 * does not need to be set-up.
1691 		 */
1692 		KKASSERT(((buf_offset ^ (buf_offset + leaf->data_len - 1)) & ~HAMMER_BUFMASK64) == 0);
1693 		buffer = NULL;
1694 		ptr = hammer_bread(hmp, buf_offset, &error, &buffer);
1695 		if (error == 0) {
1696 			bp = bio->bio_buf;
1697 			bp->b_flags |= B_AGE;
1698 			hammer_io_modify(&buffer->io, 1);
1699 			bcopy(bp->b_data, ptr, leaf->data_len);
1700 			hammer_io_modify_done(&buffer->io);
1701 			hammer_rel_buffer(buffer, 0);
1702 			bp->b_resid = 0;
1703 			hammer_ip_replace_bulk(hmp, record);
1704 			biodone(bio);
1705 		}
1706 	}
1707 	if (error) {
1708 		/*
1709 		 * Major suckage occured.  Also note:  The record was
1710 		 * never added to the tree so we do not have to worry
1711 		 * about the backend.
1712 		 */
1713 		hdkprintf("failed @ %016llx\n", (long long)leaf->data_offset);
1714 		bp = bio->bio_buf;
1715 		bp->b_resid = 0;
1716 		bp->b_error = EIO;
1717 		bp->b_flags |= B_ERROR;
1718 		biodone(bio);
1719 		record->flags |= HAMMER_RECF_DELETED_FE;
1720 		hammer_rel_mem_record(record);
1721 	}
1722 	return(error);
1723 }
1724 
1725 /*
1726  * On completion of the BIO this callback must disconnect
1727  * it from the hammer_record and chain to the previous bio.
1728  *
1729  * An I/O error forces the mount to read-only.  Data buffers
1730  * are not B_LOCKED like meta-data buffers are, so we have to
1731  * throw the buffer away to prevent the kernel from retrying.
1732  *
1733  * NOTE: MPSAFE callback, only modify fields we have explicit
1734  *	 access to (the bp and the record->gflags).
1735  */
1736 static
1737 void
1738 hammer_io_direct_write_complete(struct bio *nbio)
1739 {
1740 	struct bio *obio;
1741 	struct buf *bp;
1742 	hammer_record_t record;
1743 	hammer_mount_t hmp;
1744 
1745 	record = nbio->bio_caller_info1.ptr;
1746 	KKASSERT(record != NULL);
1747 	hmp = record->ip->hmp;
1748 
1749 	lwkt_gettoken(&hmp->io_token);
1750 
1751 	bp = nbio->bio_buf;
1752 	obio = pop_bio(nbio);
1753 	if (bp->b_flags & B_ERROR) {
1754 		lwkt_gettoken(&hmp->fs_token);
1755 		hammer_critical_error(hmp, record->ip, bp->b_error,
1756 				      "while writing bulk data");
1757 		lwkt_reltoken(&hmp->fs_token);
1758 		bp->b_flags |= B_INVAL;
1759 	}
1760 	biodone(obio);
1761 
1762 	KKASSERT(record->gflags & HAMMER_RECG_DIRECT_IO);
1763 	if (record->gflags & HAMMER_RECG_DIRECT_WAIT) {
1764 		record->gflags &= ~(HAMMER_RECG_DIRECT_IO |
1765 				    HAMMER_RECG_DIRECT_WAIT);
1766 		/* record can disappear once DIRECT_IO flag is cleared */
1767 		wakeup(&record->flags);
1768 	} else {
1769 		record->gflags &= ~HAMMER_RECG_DIRECT_IO;
1770 		/* record can disappear once DIRECT_IO flag is cleared */
1771 	}
1772 	lwkt_reltoken(&hmp->io_token);
1773 }
1774 
1775 
1776 /*
1777  * This is called before a record is either committed to the B-Tree
1778  * or destroyed, to resolve any associated direct-IO.
1779  *
1780  * (1) We must wait for any direct-IO related to the record to complete.
1781  *
1782  * (2) We must remove any buffer cache aliases for data accessed via
1783  *     leaf->data_offset or zone2_offset so non-direct-IO consumers
1784  *     (the mirroring and reblocking code) do not see stale data.
1785  */
1786 void
1787 hammer_io_direct_wait(hammer_record_t record)
1788 {
1789 	hammer_mount_t hmp = record->ip->hmp;
1790 
1791 	/*
1792 	 * Wait for I/O to complete
1793 	 */
1794 	if (record->gflags & HAMMER_RECG_DIRECT_IO) {
1795 		lwkt_gettoken(&hmp->io_token);
1796 		while (record->gflags & HAMMER_RECG_DIRECT_IO) {
1797 			record->gflags |= HAMMER_RECG_DIRECT_WAIT;
1798 			tsleep(&record->flags, 0, "hmdiow", 0);
1799 		}
1800 		lwkt_reltoken(&hmp->io_token);
1801 	}
1802 
1803 	/*
1804 	 * Invalidate any related buffer cache aliases associated with the
1805 	 * backing device.  This is needed because the buffer cache buffer
1806 	 * for file data is associated with the file vnode, not the backing
1807 	 * device vnode.
1808 	 *
1809 	 * XXX I do not think this case can occur any more now that
1810 	 * reservations ensure that all such buffers are removed before
1811 	 * an area can be reused.
1812 	 */
1813 	if (record->gflags & HAMMER_RECG_DIRECT_INVAL) {
1814 		KKASSERT(record->leaf.data_offset);
1815 		hammer_del_buffers(hmp, record->leaf.data_offset,
1816 				   record->zone2_offset, record->leaf.data_len,
1817 				   1);
1818 		record->gflags &= ~HAMMER_RECG_DIRECT_INVAL;
1819 	}
1820 }
1821 
1822 /*
1823  * This is called to remove the second-level cached zone-2 offset from
1824  * frontend buffer cache buffers, now stale due to a data relocation.
1825  * These offsets are generated by cluster_read() via VOP_BMAP, or directly
1826  * by hammer_vop_strategy_read().
1827  *
1828  * This is rather nasty because here we have something like the reblocker
1829  * scanning the raw B-Tree with no held references on anything, really,
1830  * other then a shared lock on the B-Tree node, and we have to access the
1831  * frontend's buffer cache to check for and clean out the association.
1832  * Specifically, if the reblocker is moving data on the disk, these cached
1833  * offsets will become invalid.
1834  *
1835  * Only data record types associated with the large-data zone are subject
1836  * to direct-io and need to be checked.
1837  *
1838  */
1839 void
1840 hammer_io_direct_uncache(hammer_mount_t hmp, hammer_btree_leaf_elm_t leaf)
1841 {
1842 	struct hammer_inode_info iinfo;
1843 	int zone;
1844 
1845 	if (leaf->base.rec_type != HAMMER_RECTYPE_DATA)
1846 		return;
1847 	zone = HAMMER_ZONE_DECODE(leaf->data_offset);
1848 	if (zone != HAMMER_ZONE_LARGE_DATA_INDEX)
1849 		return;
1850 	iinfo.obj_id = leaf->base.obj_id;
1851 	iinfo.obj_asof = 0;	/* unused */
1852 	iinfo.obj_localization = leaf->base.localization &
1853 				 HAMMER_LOCALIZE_PSEUDOFS_MASK;
1854 	iinfo.u.leaf = leaf;
1855 	hammer_scan_inode_snapshots(hmp, &iinfo,
1856 				    hammer_io_direct_uncache_callback,
1857 				    leaf);
1858 }
1859 
1860 static int
1861 hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data)
1862 {
1863 	hammer_inode_info_t iinfo = data;
1864 	hammer_off_t file_offset;
1865 	struct vnode *vp;
1866 	struct buf *bp;
1867 	int blksize;
1868 
1869 	if (ip->vp == NULL)
1870 		return(0);
1871 	file_offset = iinfo->u.leaf->base.key - iinfo->u.leaf->data_len;
1872 	blksize = iinfo->u.leaf->data_len;
1873 	KKASSERT((blksize & HAMMER_BUFMASK) == 0);
1874 
1875 	/*
1876 	 * Warning: FINDBLK_TEST return stable storage but not stable
1877 	 *	    contents.  It happens to be ok in this case.
1878 	 */
1879 	hammer_ref(&ip->lock);
1880 	if (hammer_get_vnode(ip, &vp) == 0) {
1881 		if ((bp = findblk(ip->vp, file_offset, FINDBLK_TEST)) != NULL &&
1882 		    bp->b_bio2.bio_offset != NOOFFSET) {
1883 			bp = getblk(ip->vp, file_offset, blksize, 0, 0);
1884 			bp->b_bio2.bio_offset = NOOFFSET;
1885 			brelse(bp);
1886 		}
1887 		vput(vp);
1888 	}
1889 	hammer_rel_inode(ip, 0);
1890 	return(0);
1891 }
1892 
1893 
1894 /*
1895  * This function is called when writes may have occured on the volume,
1896  * indicating that the device may be holding cached writes.
1897  */
1898 static __inline void
1899 hammer_io_flush_mark(hammer_volume_t volume)
1900 {
1901 	atomic_set_int(&volume->vol_flags, HAMMER_VOLF_NEEDFLUSH);
1902 }
1903 
1904 /*
1905  * This function ensures that the device has flushed any cached writes out.
1906  */
1907 void
1908 hammer_io_flush_sync(hammer_mount_t hmp)
1909 {
1910 	hammer_volume_t volume;
1911 	struct buf *bp_base = NULL;
1912 	struct buf *bp;
1913 
1914 	RB_FOREACH(volume, hammer_vol_rb_tree, &hmp->rb_vols_root) {
1915 		if (volume->vol_flags & HAMMER_VOLF_NEEDFLUSH) {
1916 			atomic_clear_int(&volume->vol_flags,
1917 					 HAMMER_VOLF_NEEDFLUSH);
1918 			bp = getpbuf(NULL);
1919 			bp->b_bio1.bio_offset = 0;
1920 			bp->b_bufsize = 0;
1921 			bp->b_bcount = 0;
1922 			bp->b_cmd = BUF_CMD_FLUSH;
1923 			bp->b_bio1.bio_caller_info1.cluster_head = bp_base;
1924 			bp->b_bio1.bio_done = biodone_sync;
1925 			bp->b_bio1.bio_flags |= BIO_SYNC;
1926 			bp_base = bp;
1927 			vn_strategy(volume->devvp, &bp->b_bio1);
1928 		}
1929 	}
1930 	while ((bp = bp_base) != NULL) {
1931 		bp_base = bp->b_bio1.bio_caller_info1.cluster_head;
1932 		biowait(&bp->b_bio1, "hmrFLS");
1933 		relpbuf(bp, NULL);
1934 	}
1935 }
1936 
1937 /*
1938  * Limit the amount of backlog which we allow to build up
1939  */
1940 void
1941 hammer_io_limit_backlog(hammer_mount_t hmp)
1942 {
1943 	waitrunningbufspace();
1944 }
1945