xref: /dragonfly/sys/vfs/hammer/hammer_io.c (revision 956939d5)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_io.c,v 1.55 2008/09/15 17:02:49 dillon Exp $
35  */
36 /*
37  * IO Primitives and buffer cache management
38  *
39  * All major data-tracking structures in HAMMER contain a struct hammer_io
40  * which is used to manage their backing store.  We use filesystem buffers
41  * for backing store and we leave them passively associated with their
42  * HAMMER structures.
43  *
44  * If the kernel tries to destroy a passively associated buf which we cannot
45  * yet let go we set B_LOCKED in the buffer and then actively released it
46  * later when we can.
47  */
48 
49 #include "hammer.h"
50 #include <sys/fcntl.h>
51 #include <sys/nlookup.h>
52 #include <sys/buf.h>
53 #include <sys/buf2.h>
54 
55 static void hammer_io_modify(hammer_io_t io, int count);
56 static void hammer_io_deallocate(struct buf *bp);
57 #if 0
58 static void hammer_io_direct_read_complete(struct bio *nbio);
59 #endif
60 static void hammer_io_direct_write_complete(struct bio *nbio);
61 static int hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data);
62 static void hammer_io_set_modlist(struct hammer_io *io);
63 static void hammer_io_flush_mark(hammer_volume_t volume);
64 
65 
66 /*
67  * Initialize a new, already-zero'd hammer_io structure, or reinitialize
68  * an existing hammer_io structure which may have switched to another type.
69  */
70 void
71 hammer_io_init(hammer_io_t io, hammer_volume_t volume, enum hammer_io_type type)
72 {
73 	io->volume = volume;
74 	io->hmp = volume->io.hmp;
75 	io->type = type;
76 }
77 
78 /*
79  * Helper routine to disassociate a buffer cache buffer from an I/O
80  * structure.  The buffer is unlocked and marked appropriate for reclamation.
81  *
82  * The io may have 0 or 1 references depending on who called us.  The
83  * caller is responsible for dealing with the refs.
84  *
85  * This call can only be made when no action is required on the buffer.
86  *
87  * The caller must own the buffer and the IO must indicate that the
88  * structure no longer owns it (io.released != 0).
89  */
90 static void
91 hammer_io_disassociate(hammer_io_structure_t iou)
92 {
93 	struct buf *bp = iou->io.bp;
94 
95 	KKASSERT(iou->io.released);
96 	KKASSERT(iou->io.modified == 0);
97 	KKASSERT(LIST_FIRST(&bp->b_dep) == (void *)iou);
98 	buf_dep_init(bp);
99 	iou->io.bp = NULL;
100 
101 	/*
102 	 * If the buffer was locked someone wanted to get rid of it.
103 	 */
104 	if (bp->b_flags & B_LOCKED) {
105 		--hammer_count_io_locked;
106 		bp->b_flags &= ~B_LOCKED;
107 	}
108 	if (iou->io.reclaim) {
109 		bp->b_flags |= B_NOCACHE|B_RELBUF;
110 		iou->io.reclaim = 0;
111 	}
112 
113 	switch(iou->io.type) {
114 	case HAMMER_STRUCTURE_VOLUME:
115 		iou->volume.ondisk = NULL;
116 		break;
117 	case HAMMER_STRUCTURE_DATA_BUFFER:
118 	case HAMMER_STRUCTURE_META_BUFFER:
119 	case HAMMER_STRUCTURE_UNDO_BUFFER:
120 		iou->buffer.ondisk = NULL;
121 		break;
122 	}
123 }
124 
125 /*
126  * Wait for any physical IO to complete
127  *
128  * XXX we aren't interlocked against a spinlock or anything so there
129  *     is a small window in the interlock / io->running == 0 test.
130  */
131 void
132 hammer_io_wait(hammer_io_t io)
133 {
134 	if (io->running) {
135 		for (;;) {
136 			io->waiting = 1;
137 			tsleep_interlock(io, 0);
138 			if (io->running == 0)
139 				break;
140 			tsleep(io, PINTERLOCKED, "hmrflw", hz);
141 			if (io->running == 0)
142 				break;
143 		}
144 	}
145 }
146 
147 /*
148  * Wait for all hammer_io-initated write I/O's to complete.  This is not
149  * supposed to count direct I/O's but some can leak through (for
150  * non-full-sized direct I/Os).
151  */
152 void
153 hammer_io_wait_all(hammer_mount_t hmp, const char *ident)
154 {
155 	hammer_io_flush_sync(hmp);
156 	crit_enter();
157 	while (hmp->io_running_space)
158 		tsleep(&hmp->io_running_space, 0, ident, 0);
159 	crit_exit();
160 }
161 
162 #define HAMMER_MAXRA	4
163 
164 /*
165  * Load bp for a HAMMER structure.  The io must be exclusively locked by
166  * the caller.
167  *
168  * This routine is mostly used on meta-data and small-data blocks.  Generally
169  * speaking HAMMER assumes some locality of reference and will cluster
170  * a 64K read.
171  *
172  * Note that clustering occurs at the device layer, not the logical layer.
173  * If the buffers do not apply to the current operation they may apply to
174  * some other.
175  */
176 int
177 hammer_io_read(struct vnode *devvp, struct hammer_io *io, hammer_off_t limit)
178 {
179 	struct buf *bp;
180 	int   error;
181 
182 	if ((bp = io->bp) == NULL) {
183 		hammer_count_io_running_read += io->bytes;
184 		if (hammer_cluster_enable) {
185 			error = cluster_read(devvp, limit,
186 					     io->offset, io->bytes,
187 					     HAMMER_CLUSTER_SIZE,
188 					     HAMMER_CLUSTER_BUFS, &io->bp);
189 		} else {
190 			error = bread(devvp, io->offset, io->bytes, &io->bp);
191 		}
192 		hammer_stats_disk_read += io->bytes;
193 		hammer_count_io_running_read -= io->bytes;
194 
195 		/*
196 		 * The code generally assumes b_ops/b_dep has been set-up,
197 		 * even if we error out here.
198 		 */
199 		bp = io->bp;
200 		bp->b_ops = &hammer_bioops;
201 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
202 		LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node);
203 		BUF_KERNPROC(bp);
204 		KKASSERT(io->modified == 0);
205 		KKASSERT(io->running == 0);
206 		KKASSERT(io->waiting == 0);
207 		io->released = 0;	/* we hold an active lock on bp */
208 	} else {
209 		error = 0;
210 	}
211 	return(error);
212 }
213 
214 /*
215  * Similar to hammer_io_read() but returns a zero'd out buffer instead.
216  * Must be called with the IO exclusively locked.
217  *
218  * vfs_bio_clrbuf() is kinda nasty, enforce serialization against background
219  * I/O by forcing the buffer to not be in a released state before calling
220  * it.
221  *
222  * This function will also mark the IO as modified but it will not
223  * increment the modify_refs count.
224  */
225 int
226 hammer_io_new(struct vnode *devvp, struct hammer_io *io)
227 {
228 	struct buf *bp;
229 
230 	if ((bp = io->bp) == NULL) {
231 		io->bp = getblk(devvp, io->offset, io->bytes, 0, 0);
232 		bp = io->bp;
233 		bp->b_ops = &hammer_bioops;
234 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
235 		LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node);
236 		io->released = 0;
237 		KKASSERT(io->running == 0);
238 		io->waiting = 0;
239 		BUF_KERNPROC(bp);
240 	} else {
241 		if (io->released) {
242 			regetblk(bp);
243 			BUF_KERNPROC(bp);
244 			io->released = 0;
245 		}
246 	}
247 	hammer_io_modify(io, 0);
248 	vfs_bio_clrbuf(bp);
249 	return(0);
250 }
251 
252 /*
253  * Remove potential device level aliases against buffers managed by high level
254  * vnodes.  Aliases can also be created due to mixed buffer sizes or via
255  * direct access to the backing store device.
256  *
257  * This is nasty because the buffers are also VMIO-backed.  Even if a buffer
258  * does not exist its backing VM pages might, and we have to invalidate
259  * those as well or a getblk() will reinstate them.
260  *
261  * Buffer cache buffers associated with hammer_buffers cannot be
262  * invalidated.
263  */
264 int
265 hammer_io_inval(hammer_volume_t volume, hammer_off_t zone2_offset)
266 {
267 	hammer_io_structure_t iou;
268 	hammer_off_t phys_offset;
269 	struct buf *bp;
270 	int error;
271 
272 	phys_offset = volume->ondisk->vol_buf_beg +
273 		      (zone2_offset & HAMMER_OFF_SHORT_MASK);
274 	crit_enter();
275 	if ((bp = findblk(volume->devvp, phys_offset, FINDBLK_TEST)) != NULL)
276 		bp = getblk(volume->devvp, phys_offset, bp->b_bufsize, 0, 0);
277 	else
278 		bp = getblk(volume->devvp, phys_offset, HAMMER_BUFSIZE, 0, 0);
279 	if ((iou = (void *)LIST_FIRST(&bp->b_dep)) != NULL) {
280 #if 0
281 		hammer_ref(&iou->io.lock);
282 		hammer_io_clear_modify(&iou->io, 1);
283 		bundirty(bp);
284 		iou->io.released = 0;
285 		BUF_KERNPROC(bp);
286 		iou->io.reclaim = 1;
287 		iou->io.waitdep = 1;
288 		KKASSERT(iou->io.lock.refs == 1);
289 		hammer_rel_buffer(&iou->buffer, 0);
290 		/*hammer_io_deallocate(bp);*/
291 #endif
292 		bqrelse(bp);
293 		error = EAGAIN;
294 	} else {
295 		KKASSERT((bp->b_flags & B_LOCKED) == 0);
296 		bundirty(bp);
297 		bp->b_flags |= B_NOCACHE|B_RELBUF;
298 		brelse(bp);
299 		error = 0;
300 	}
301 	crit_exit();
302 	return(error);
303 }
304 
305 /*
306  * This routine is called on the last reference to a hammer structure.
307  * The io is usually interlocked with io.loading and io.refs must be 1.
308  *
309  * This routine may return a non-NULL bp to the caller for dispoal.  Disposal
310  * simply means the caller finishes decrementing the ref-count on the
311  * IO structure then brelse()'s the bp.  The bp may or may not still be
312  * passively associated with the IO.
313  *
314  * The only requirement here is that modified meta-data and volume-header
315  * buffer may NOT be disassociated from the IO structure, and consequently
316  * we also leave such buffers actively associated with the IO if they already
317  * are (since the kernel can't do anything with them anyway).  Only the
318  * flusher is allowed to write such buffers out.  Modified pure-data and
319  * undo buffers are returned to the kernel but left passively associated
320  * so we can track when the kernel writes the bp out.
321  */
322 struct buf *
323 hammer_io_release(struct hammer_io *io, int flush)
324 {
325 	union hammer_io_structure *iou = (void *)io;
326 	struct buf *bp;
327 
328 	if ((bp = io->bp) == NULL)
329 		return(NULL);
330 
331 	/*
332 	 * Try to flush a dirty IO to disk if asked to by the
333 	 * caller or if the kernel tried to flush the buffer in the past.
334 	 *
335 	 * Kernel-initiated flushes are only allowed for pure-data buffers.
336 	 * meta-data and volume buffers can only be flushed explicitly
337 	 * by HAMMER.
338 	 */
339 	if (io->modified) {
340 		if (flush) {
341 			hammer_io_flush(io, 0);
342 		} else if (bp->b_flags & B_LOCKED) {
343 			switch(io->type) {
344 			case HAMMER_STRUCTURE_DATA_BUFFER:
345 				hammer_io_flush(io, 0);
346 				break;
347 			case HAMMER_STRUCTURE_UNDO_BUFFER:
348 				hammer_io_flush(io, hammer_undo_reclaim(io));
349 				break;
350 			default:
351 				break;
352 			}
353 		} /* else no explicit request to flush the buffer */
354 	}
355 
356 	/*
357 	 * Wait for the IO to complete if asked to.  This occurs when
358 	 * the buffer must be disposed of definitively during an umount
359 	 * or buffer invalidation.
360 	 */
361 	if (io->waitdep && io->running) {
362 		hammer_io_wait(io);
363 	}
364 
365 	/*
366 	 * Return control of the buffer to the kernel (with the provisio
367 	 * that our bioops can override kernel decisions with regards to
368 	 * the buffer).
369 	 */
370 	if ((flush || io->reclaim) && io->modified == 0 && io->running == 0) {
371 		/*
372 		 * Always disassociate the bp if an explicit flush
373 		 * was requested and the IO completed with no error
374 		 * (so unmount can really clean up the structure).
375 		 */
376 		if (io->released) {
377 			regetblk(bp);
378 			BUF_KERNPROC(bp);
379 		} else {
380 			io->released = 1;
381 		}
382 		hammer_io_disassociate((hammer_io_structure_t)io);
383 		/* return the bp */
384 	} else if (io->modified) {
385 		/*
386 		 * Only certain IO types can be released to the kernel if
387 		 * the buffer has been modified.
388 		 *
389 		 * volume and meta-data IO types may only be explicitly
390 		 * flushed by HAMMER.
391 		 */
392 		switch(io->type) {
393 		case HAMMER_STRUCTURE_DATA_BUFFER:
394 		case HAMMER_STRUCTURE_UNDO_BUFFER:
395 			if (io->released == 0) {
396 				io->released = 1;
397 				bdwrite(bp);
398 			}
399 			break;
400 		default:
401 			break;
402 		}
403 		bp = NULL;	/* bp left associated */
404 	} else if (io->released == 0) {
405 		/*
406 		 * Clean buffers can be generally released to the kernel.
407 		 * We leave the bp passively associated with the HAMMER
408 		 * structure and use bioops to disconnect it later on
409 		 * if the kernel wants to discard the buffer.
410 		 *
411 		 * We can steal the structure's ownership of the bp.
412 		 */
413 		io->released = 1;
414 		if (bp->b_flags & B_LOCKED) {
415 			hammer_io_disassociate(iou);
416 			/* return the bp */
417 		} else {
418 			if (io->reclaim) {
419 				hammer_io_disassociate(iou);
420 				/* return the bp */
421 			} else {
422 				/* return the bp (bp passively associated) */
423 			}
424 		}
425 	} else {
426 		/*
427 		 * A released buffer is passively associate with our
428 		 * hammer_io structure.  The kernel cannot destroy it
429 		 * without making a bioops call.  If the kernel (B_LOCKED)
430 		 * or we (reclaim) requested that the buffer be destroyed
431 		 * we destroy it, otherwise we do a quick get/release to
432 		 * reset its position in the kernel's LRU list.
433 		 *
434 		 * Leaving the buffer passively associated allows us to
435 		 * use the kernel's LRU buffer flushing mechanisms rather
436 		 * then rolling our own.
437 		 *
438 		 * XXX there are two ways of doing this.  We can re-acquire
439 		 * and passively release to reset the LRU, or not.
440 		 */
441 		if (io->running == 0) {
442 			regetblk(bp);
443 			if ((bp->b_flags & B_LOCKED) || io->reclaim) {
444 				hammer_io_disassociate(iou);
445 				/* return the bp */
446 			} else {
447 				/* return the bp (bp passively associated) */
448 			}
449 		} else {
450 			/*
451 			 * bp is left passively associated but we do not
452 			 * try to reacquire it.  Interactions with the io
453 			 * structure will occur on completion of the bp's
454 			 * I/O.
455 			 */
456 			bp = NULL;
457 		}
458 	}
459 	return(bp);
460 }
461 
462 /*
463  * This routine is called with a locked IO when a flush is desired and
464  * no other references to the structure exists other then ours.  This
465  * routine is ONLY called when HAMMER believes it is safe to flush a
466  * potentially modified buffer out.
467  */
468 void
469 hammer_io_flush(struct hammer_io *io, int reclaim)
470 {
471 	struct buf *bp;
472 
473 	/*
474 	 * Degenerate case - nothing to flush if nothing is dirty.
475 	 */
476 	if (io->modified == 0) {
477 		return;
478 	}
479 
480 	KKASSERT(io->bp);
481 	KKASSERT(io->modify_refs <= 0);
482 
483 	/*
484 	 * Acquire ownership of the bp, particularly before we clear our
485 	 * modified flag.
486 	 *
487 	 * We are going to bawrite() this bp.  Don't leave a window where
488 	 * io->released is set, we actually own the bp rather then our
489 	 * buffer.
490 	 */
491 	bp = io->bp;
492 	if (io->released) {
493 		regetblk(bp);
494 		/* BUF_KERNPROC(io->bp); */
495 		/* io->released = 0; */
496 		KKASSERT(io->released);
497 		KKASSERT(io->bp == bp);
498 	}
499 	io->released = 1;
500 
501 	if (reclaim) {
502 		io->reclaim = 1;
503 		if ((bp->b_flags & B_LOCKED) == 0) {
504 			bp->b_flags |= B_LOCKED;
505 			++hammer_count_io_locked;
506 		}
507 	}
508 
509 	/*
510 	 * Acquire exclusive access to the bp and then clear the modified
511 	 * state of the buffer prior to issuing I/O to interlock any
512 	 * modifications made while the I/O is in progress.  This shouldn't
513 	 * happen anyway but losing data would be worse.  The modified bit
514 	 * will be rechecked after the IO completes.
515 	 *
516 	 * NOTE: This call also finalizes the buffer's content (inval == 0).
517 	 *
518 	 * This is only legal when lock.refs == 1 (otherwise we might clear
519 	 * the modified bit while there are still users of the cluster
520 	 * modifying the data).
521 	 *
522 	 * Do this before potentially blocking so any attempt to modify the
523 	 * ondisk while we are blocked blocks waiting for us.
524 	 */
525 	hammer_ref(&io->lock);
526 	hammer_io_clear_modify(io, 0);
527 	hammer_unref(&io->lock);
528 
529 	/*
530 	 * Transfer ownership to the kernel and initiate I/O.
531 	 */
532 	io->running = 1;
533 	io->hmp->io_running_space += io->bytes;
534 	hammer_count_io_running_write += io->bytes;
535 	bawrite(bp);
536 	hammer_io_flush_mark(io->volume);
537 }
538 
539 /************************************************************************
540  *				BUFFER DIRTYING				*
541  ************************************************************************
542  *
543  * These routines deal with dependancies created when IO buffers get
544  * modified.  The caller must call hammer_modify_*() on a referenced
545  * HAMMER structure prior to modifying its on-disk data.
546  *
547  * Any intent to modify an IO buffer acquires the related bp and imposes
548  * various write ordering dependancies.
549  */
550 
551 /*
552  * Mark a HAMMER structure as undergoing modification.  Meta-data buffers
553  * are locked until the flusher can deal with them, pure data buffers
554  * can be written out.
555  */
556 static
557 void
558 hammer_io_modify(hammer_io_t io, int count)
559 {
560 	/*
561 	 * io->modify_refs must be >= 0
562 	 */
563 	while (io->modify_refs < 0) {
564 		io->waitmod = 1;
565 		tsleep(io, 0, "hmrmod", 0);
566 	}
567 
568 	/*
569 	 * Shortcut if nothing to do.
570 	 */
571 	KKASSERT(io->lock.refs != 0 && io->bp != NULL);
572 	io->modify_refs += count;
573 	if (io->modified && io->released == 0)
574 		return;
575 
576 	hammer_lock_ex(&io->lock);
577 	if (io->modified == 0) {
578 		hammer_io_set_modlist(io);
579 		io->modified = 1;
580 	}
581 	if (io->released) {
582 		regetblk(io->bp);
583 		BUF_KERNPROC(io->bp);
584 		io->released = 0;
585 		KKASSERT(io->modified != 0);
586 	}
587 	hammer_unlock(&io->lock);
588 }
589 
590 static __inline
591 void
592 hammer_io_modify_done(hammer_io_t io)
593 {
594 	KKASSERT(io->modify_refs > 0);
595 	--io->modify_refs;
596 	if (io->modify_refs == 0 && io->waitmod) {
597 		io->waitmod = 0;
598 		wakeup(io);
599 	}
600 }
601 
602 void
603 hammer_io_write_interlock(hammer_io_t io)
604 {
605 	while (io->modify_refs != 0) {
606 		io->waitmod = 1;
607 		tsleep(io, 0, "hmrmod", 0);
608 	}
609 	io->modify_refs = -1;
610 }
611 
612 void
613 hammer_io_done_interlock(hammer_io_t io)
614 {
615 	KKASSERT(io->modify_refs == -1);
616 	io->modify_refs = 0;
617 	if (io->waitmod) {
618 		io->waitmod = 0;
619 		wakeup(io);
620 	}
621 }
622 
623 /*
624  * Caller intends to modify a volume's ondisk structure.
625  *
626  * This is only allowed if we are the flusher or we have a ref on the
627  * sync_lock.
628  */
629 void
630 hammer_modify_volume(hammer_transaction_t trans, hammer_volume_t volume,
631 		     void *base, int len)
632 {
633 	KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
634 
635 	hammer_io_modify(&volume->io, 1);
636 	if (len) {
637 		intptr_t rel_offset = (intptr_t)base - (intptr_t)volume->ondisk;
638 		KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
639 		hammer_generate_undo(trans, &volume->io,
640 			 HAMMER_ENCODE_RAW_VOLUME(volume->vol_no, rel_offset),
641 			 base, len);
642 	}
643 }
644 
645 /*
646  * Caller intends to modify a buffer's ondisk structure.
647  *
648  * This is only allowed if we are the flusher or we have a ref on the
649  * sync_lock.
650  */
651 void
652 hammer_modify_buffer(hammer_transaction_t trans, hammer_buffer_t buffer,
653 		     void *base, int len)
654 {
655 	KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
656 
657 	hammer_io_modify(&buffer->io, 1);
658 	if (len) {
659 		intptr_t rel_offset = (intptr_t)base - (intptr_t)buffer->ondisk;
660 		KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
661 		hammer_generate_undo(trans, &buffer->io,
662 				     buffer->zone2_offset + rel_offset,
663 				     base, len);
664 	}
665 }
666 
667 void
668 hammer_modify_volume_done(hammer_volume_t volume)
669 {
670 	hammer_io_modify_done(&volume->io);
671 }
672 
673 void
674 hammer_modify_buffer_done(hammer_buffer_t buffer)
675 {
676 	hammer_io_modify_done(&buffer->io);
677 }
678 
679 /*
680  * Mark an entity as not being dirty any more and finalize any
681  * delayed adjustments to the buffer.
682  *
683  * Delayed adjustments are an important performance enhancement, allowing
684  * us to avoid recalculating B-Tree node CRCs over and over again when
685  * making bulk-modifications to the B-Tree.
686  *
687  * If inval is non-zero delayed adjustments are ignored.
688  *
689  * This routine may dereference related btree nodes and cause the
690  * buffer to be dereferenced.  The caller must own a reference on io.
691  */
692 void
693 hammer_io_clear_modify(struct hammer_io *io, int inval)
694 {
695 	if (io->modified == 0)
696 		return;
697 
698 	/*
699 	 * Take us off the mod-list and clear the modified bit.
700 	 */
701 	KKASSERT(io->mod_list != NULL);
702 	if (io->mod_list == &io->hmp->volu_list ||
703 	    io->mod_list == &io->hmp->meta_list) {
704 		io->hmp->locked_dirty_space -= io->bytes;
705 		hammer_count_dirtybufspace -= io->bytes;
706 	}
707 	TAILQ_REMOVE(io->mod_list, io, mod_entry);
708 	io->mod_list = NULL;
709 	io->modified = 0;
710 
711 	/*
712 	 * If this bit is not set there are no delayed adjustments.
713 	 */
714 	if (io->gencrc == 0)
715 		return;
716 	io->gencrc = 0;
717 
718 	/*
719 	 * Finalize requested CRCs.  The NEEDSCRC flag also holds a reference
720 	 * on the node (& underlying buffer).  Release the node after clearing
721 	 * the flag.
722 	 */
723 	if (io->type == HAMMER_STRUCTURE_META_BUFFER) {
724 		hammer_buffer_t buffer = (void *)io;
725 		hammer_node_t node;
726 
727 restart:
728 		TAILQ_FOREACH(node, &buffer->clist, entry) {
729 			if ((node->flags & HAMMER_NODE_NEEDSCRC) == 0)
730 				continue;
731 			node->flags &= ~HAMMER_NODE_NEEDSCRC;
732 			KKASSERT(node->ondisk);
733 			if (inval == 0)
734 				node->ondisk->crc = crc32(&node->ondisk->crc + 1, HAMMER_BTREE_CRCSIZE);
735 			hammer_rel_node(node);
736 			goto restart;
737 		}
738 	}
739 	/* caller must still have ref on io */
740 	KKASSERT(io->lock.refs > 0);
741 }
742 
743 /*
744  * Clear the IO's modify list.  Even though the IO is no longer modified
745  * it may still be on the lose_list.  This routine is called just before
746  * the governing hammer_buffer is destroyed.
747  */
748 void
749 hammer_io_clear_modlist(struct hammer_io *io)
750 {
751 	KKASSERT(io->modified == 0);
752 	if (io->mod_list) {
753 		crit_enter();	/* biodone race against list */
754 		KKASSERT(io->mod_list == &io->hmp->lose_list);
755 		TAILQ_REMOVE(io->mod_list, io, mod_entry);
756 		io->mod_list = NULL;
757 		crit_exit();
758 	}
759 }
760 
761 static void
762 hammer_io_set_modlist(struct hammer_io *io)
763 {
764 	struct hammer_mount *hmp = io->hmp;
765 
766 	KKASSERT(io->mod_list == NULL);
767 
768 	switch(io->type) {
769 	case HAMMER_STRUCTURE_VOLUME:
770 		io->mod_list = &hmp->volu_list;
771 		hmp->locked_dirty_space += io->bytes;
772 		hammer_count_dirtybufspace += io->bytes;
773 		break;
774 	case HAMMER_STRUCTURE_META_BUFFER:
775 		io->mod_list = &hmp->meta_list;
776 		hmp->locked_dirty_space += io->bytes;
777 		hammer_count_dirtybufspace += io->bytes;
778 		break;
779 	case HAMMER_STRUCTURE_UNDO_BUFFER:
780 		io->mod_list = &hmp->undo_list;
781 		break;
782 	case HAMMER_STRUCTURE_DATA_BUFFER:
783 		io->mod_list = &hmp->data_list;
784 		break;
785 	}
786 	TAILQ_INSERT_TAIL(io->mod_list, io, mod_entry);
787 }
788 
789 /************************************************************************
790  *				HAMMER_BIOOPS				*
791  ************************************************************************
792  *
793  */
794 
795 /*
796  * Pre-IO initiation kernel callback - cluster build only
797  */
798 static void
799 hammer_io_start(struct buf *bp)
800 {
801 }
802 
803 /*
804  * Post-IO completion kernel callback - MAY BE CALLED FROM INTERRUPT!
805  *
806  * NOTE: HAMMER may modify a buffer after initiating I/O.  The modified bit
807  * may also be set if we were marking a cluster header open.  Only remove
808  * our dependancy if the modified bit is clear.
809  */
810 static void
811 hammer_io_complete(struct buf *bp)
812 {
813 	union hammer_io_structure *iou = (void *)LIST_FIRST(&bp->b_dep);
814 
815 	KKASSERT(iou->io.released == 1);
816 
817 	/*
818 	 * Deal with people waiting for I/O to drain
819 	 */
820 	if (iou->io.running) {
821 		/*
822 		 * Deal with critical write errors.  Once a critical error
823 		 * has been flagged in hmp the UNDO FIFO will not be updated.
824 		 * That way crash recover will give us a consistent
825 		 * filesystem.
826 		 *
827 		 * Because of this we can throw away failed UNDO buffers.  If
828 		 * we throw away META or DATA buffers we risk corrupting
829 		 * the now read-only version of the filesystem visible to
830 		 * the user.  Clear B_ERROR so the buffer is not re-dirtied
831 		 * by the kernel and ref the io so it doesn't get thrown
832 		 * away.
833 		 */
834 		if (bp->b_flags & B_ERROR) {
835 			hammer_critical_error(iou->io.hmp, NULL, bp->b_error,
836 					      "while flushing meta-data");
837 			switch(iou->io.type) {
838 			case HAMMER_STRUCTURE_UNDO_BUFFER:
839 				break;
840 			default:
841 				if (iou->io.ioerror == 0) {
842 					iou->io.ioerror = 1;
843 					if (iou->io.lock.refs == 0)
844 						++hammer_count_refedbufs;
845 					hammer_ref(&iou->io.lock);
846 				}
847 				break;
848 			}
849 			bp->b_flags &= ~B_ERROR;
850 			bundirty(bp);
851 #if 0
852 			hammer_io_set_modlist(&iou->io);
853 			iou->io.modified = 1;
854 #endif
855 		}
856 		hammer_stats_disk_write += iou->io.bytes;
857 		hammer_count_io_running_write -= iou->io.bytes;
858 		iou->io.hmp->io_running_space -= iou->io.bytes;
859 		if (iou->io.hmp->io_running_space == 0)
860 			wakeup(&iou->io.hmp->io_running_space);
861 		KKASSERT(iou->io.hmp->io_running_space >= 0);
862 		iou->io.running = 0;
863 	} else {
864 		hammer_stats_disk_read += iou->io.bytes;
865 	}
866 
867 	if (iou->io.waiting) {
868 		iou->io.waiting = 0;
869 		wakeup(iou);
870 	}
871 
872 	/*
873 	 * If B_LOCKED is set someone wanted to deallocate the bp at some
874 	 * point, do it now if refs has become zero.
875 	 */
876 	if ((bp->b_flags & B_LOCKED) && iou->io.lock.refs == 0) {
877 		KKASSERT(iou->io.modified == 0);
878 		--hammer_count_io_locked;
879 		bp->b_flags &= ~B_LOCKED;
880 		hammer_io_deallocate(bp);
881 		/* structure may be dead now */
882 	}
883 }
884 
885 /*
886  * Callback from kernel when it wishes to deallocate a passively
887  * associated structure.  This mostly occurs with clean buffers
888  * but it may be possible for a holding structure to be marked dirty
889  * while its buffer is passively associated.  The caller owns the bp.
890  *
891  * If we cannot disassociate we set B_LOCKED to prevent the buffer
892  * from getting reused.
893  *
894  * WARNING: Because this can be called directly by getnewbuf we cannot
895  * recurse into the tree.  If a bp cannot be immediately disassociated
896  * our only recourse is to set B_LOCKED.
897  *
898  * WARNING: This may be called from an interrupt via hammer_io_complete()
899  */
900 static void
901 hammer_io_deallocate(struct buf *bp)
902 {
903 	hammer_io_structure_t iou = (void *)LIST_FIRST(&bp->b_dep);
904 
905 	KKASSERT((bp->b_flags & B_LOCKED) == 0 && iou->io.running == 0);
906 	if (iou->io.lock.refs > 0 || iou->io.modified) {
907 		/*
908 		 * It is not legal to disassociate a modified buffer.  This
909 		 * case really shouldn't ever occur.
910 		 */
911 		bp->b_flags |= B_LOCKED;
912 		++hammer_count_io_locked;
913 	} else {
914 		/*
915 		 * Disassociate the BP.  If the io has no refs left we
916 		 * have to add it to the loose list.
917 		 */
918 		hammer_io_disassociate(iou);
919 		if (iou->io.type != HAMMER_STRUCTURE_VOLUME) {
920 			KKASSERT(iou->io.bp == NULL);
921 			KKASSERT(iou->io.mod_list == NULL);
922 			crit_enter();	/* biodone race against list */
923 			iou->io.mod_list = &iou->io.hmp->lose_list;
924 			TAILQ_INSERT_TAIL(iou->io.mod_list, &iou->io, mod_entry);
925 			crit_exit();
926 		}
927 	}
928 }
929 
930 static int
931 hammer_io_fsync(struct vnode *vp)
932 {
933 	return(0);
934 }
935 
936 /*
937  * NOTE: will not be called unless we tell the kernel about the
938  * bioops.  Unused... we use the mount's VFS_SYNC instead.
939  */
940 static int
941 hammer_io_sync(struct mount *mp)
942 {
943 	return(0);
944 }
945 
946 static void
947 hammer_io_movedeps(struct buf *bp1, struct buf *bp2)
948 {
949 }
950 
951 /*
952  * I/O pre-check for reading and writing.  HAMMER only uses this for
953  * B_CACHE buffers so checkread just shouldn't happen, but if it does
954  * allow it.
955  *
956  * Writing is a different case.  We don't want the kernel to try to write
957  * out a buffer that HAMMER may be modifying passively or which has a
958  * dependancy.  In addition, kernel-demanded writes can only proceed for
959  * certain types of buffers (i.e. UNDO and DATA types).  Other dirty
960  * buffer types can only be explicitly written by the flusher.
961  *
962  * checkwrite will only be called for bdwrite()n buffers.  If we return
963  * success the kernel is guaranteed to initiate the buffer write.
964  */
965 static int
966 hammer_io_checkread(struct buf *bp)
967 {
968 	return(0);
969 }
970 
971 static int
972 hammer_io_checkwrite(struct buf *bp)
973 {
974 	hammer_io_t io = (void *)LIST_FIRST(&bp->b_dep);
975 
976 	/*
977 	 * This shouldn't happen under normal operation.
978 	 */
979 	if (io->type == HAMMER_STRUCTURE_VOLUME ||
980 	    io->type == HAMMER_STRUCTURE_META_BUFFER) {
981 		if (!panicstr)
982 			panic("hammer_io_checkwrite: illegal buffer");
983 		if ((bp->b_flags & B_LOCKED) == 0) {
984 			bp->b_flags |= B_LOCKED;
985 			++hammer_count_io_locked;
986 		}
987 		return(1);
988 	}
989 
990 	/*
991 	 * We can only clear the modified bit if the IO is not currently
992 	 * undergoing modification.  Otherwise we may miss changes.
993 	 *
994 	 * Only data and undo buffers can reach here.  These buffers do
995 	 * not have terminal crc functions but we temporarily reference
996 	 * the IO anyway, just in case.
997 	 */
998 	if (io->modify_refs == 0 && io->modified) {
999 		hammer_ref(&io->lock);
1000 		hammer_io_clear_modify(io, 0);
1001 		hammer_unref(&io->lock);
1002 	} else if (io->modified) {
1003 		KKASSERT(io->type == HAMMER_STRUCTURE_DATA_BUFFER);
1004 	}
1005 
1006 	/*
1007 	 * The kernel is going to start the IO, set io->running.
1008 	 */
1009 	KKASSERT(io->running == 0);
1010 	io->running = 1;
1011 	io->hmp->io_running_space += io->bytes;
1012 	hammer_count_io_running_write += io->bytes;
1013 	return(0);
1014 }
1015 
1016 /*
1017  * Return non-zero if we wish to delay the kernel's attempt to flush
1018  * this buffer to disk.
1019  */
1020 static int
1021 hammer_io_countdeps(struct buf *bp, int n)
1022 {
1023 	return(0);
1024 }
1025 
1026 struct bio_ops hammer_bioops = {
1027 	.io_start	= hammer_io_start,
1028 	.io_complete	= hammer_io_complete,
1029 	.io_deallocate	= hammer_io_deallocate,
1030 	.io_fsync	= hammer_io_fsync,
1031 	.io_sync	= hammer_io_sync,
1032 	.io_movedeps	= hammer_io_movedeps,
1033 	.io_countdeps	= hammer_io_countdeps,
1034 	.io_checkread	= hammer_io_checkread,
1035 	.io_checkwrite	= hammer_io_checkwrite,
1036 };
1037 
1038 /************************************************************************
1039  *				DIRECT IO OPS 				*
1040  ************************************************************************
1041  *
1042  * These functions operate directly on the buffer cache buffer associated
1043  * with a front-end vnode rather then a back-end device vnode.
1044  */
1045 
1046 /*
1047  * Read a buffer associated with a front-end vnode directly from the
1048  * disk media.  The bio may be issued asynchronously.  If leaf is non-NULL
1049  * we validate the CRC.
1050  *
1051  * We must check for the presence of a HAMMER buffer to handle the case
1052  * where the reblocker has rewritten the data (which it does via the HAMMER
1053  * buffer system, not via the high-level vnode buffer cache), but not yet
1054  * committed the buffer to the media.
1055  */
1056 int
1057 hammer_io_direct_read(hammer_mount_t hmp, struct bio *bio,
1058 		      hammer_btree_leaf_elm_t leaf)
1059 {
1060 	hammer_off_t buf_offset;
1061 	hammer_off_t zone2_offset;
1062 	hammer_volume_t volume;
1063 	struct buf *bp;
1064 	struct bio *nbio;
1065 	int vol_no;
1066 	int error;
1067 
1068 	buf_offset = bio->bio_offset;
1069 	KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) ==
1070 		 HAMMER_ZONE_LARGE_DATA);
1071 
1072 	/*
1073 	 * The buffer cache may have an aliased buffer (the reblocker can
1074 	 * write them).  If it does we have to sync any dirty data before
1075 	 * we can build our direct-read.  This is a non-critical code path.
1076 	 */
1077 	bp = bio->bio_buf;
1078 	hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize);
1079 
1080 	/*
1081 	 * Resolve to a zone-2 offset.  The conversion just requires
1082 	 * munging the top 4 bits but we want to abstract it anyway
1083 	 * so the blockmap code can verify the zone assignment.
1084 	 */
1085 	zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1086 	if (error)
1087 		goto done;
1088 	KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
1089 		 HAMMER_ZONE_RAW_BUFFER);
1090 
1091 	/*
1092 	 * Resolve volume and raw-offset for 3rd level bio.  The
1093 	 * offset will be specific to the volume.
1094 	 */
1095 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
1096 	volume = hammer_get_volume(hmp, vol_no, &error);
1097 	if (error == 0 && zone2_offset >= volume->maxbuf_off)
1098 		error = EIO;
1099 
1100 	if (error == 0) {
1101 		/*
1102 		 * 3rd level bio
1103 		 */
1104 		nbio = push_bio(bio);
1105 		nbio->bio_offset = volume->ondisk->vol_buf_beg +
1106 				   (zone2_offset & HAMMER_OFF_SHORT_MASK);
1107 #if 0
1108 		/*
1109 		 * XXX disabled - our CRC check doesn't work if the OS
1110 		 * does bogus_page replacement on the direct-read.
1111 		 */
1112 		if (leaf && hammer_verify_data) {
1113 			nbio->bio_done = hammer_io_direct_read_complete;
1114 			nbio->bio_caller_info1.uvalue32 = leaf->data_crc;
1115 		}
1116 #endif
1117 		hammer_stats_disk_read += bp->b_bufsize;
1118 		vn_strategy(volume->devvp, nbio);
1119 	}
1120 	hammer_rel_volume(volume, 0);
1121 done:
1122 	if (error) {
1123 		kprintf("hammer_direct_read: failed @ %016llx\n",
1124 			(long long)zone2_offset);
1125 		bp->b_error = error;
1126 		bp->b_flags |= B_ERROR;
1127 		biodone(bio);
1128 	}
1129 	return(error);
1130 }
1131 
1132 #if 0
1133 /*
1134  * On completion of the BIO this callback must check the data CRC
1135  * and chain to the previous bio.
1136  */
1137 static
1138 void
1139 hammer_io_direct_read_complete(struct bio *nbio)
1140 {
1141 	struct bio *obio;
1142 	struct buf *bp;
1143 	u_int32_t rec_crc = nbio->bio_caller_info1.uvalue32;
1144 
1145 	bp = nbio->bio_buf;
1146 	if (crc32(bp->b_data, bp->b_bufsize) != rec_crc) {
1147 		kprintf("HAMMER: data_crc error @%016llx/%d\n",
1148 			nbio->bio_offset, bp->b_bufsize);
1149 		if (hammer_debug_debug)
1150 			Debugger("");
1151 		bp->b_flags |= B_ERROR;
1152 		bp->b_error = EIO;
1153 	}
1154 	obio = pop_bio(nbio);
1155 	biodone(obio);
1156 }
1157 #endif
1158 
1159 /*
1160  * Write a buffer associated with a front-end vnode directly to the
1161  * disk media.  The bio may be issued asynchronously.
1162  *
1163  * The BIO is associated with the specified record and RECF_DIRECT_IO
1164  * is set.  The recorded is added to its object.
1165  */
1166 int
1167 hammer_io_direct_write(hammer_mount_t hmp, hammer_record_t record,
1168 		       struct bio *bio)
1169 {
1170 	hammer_btree_leaf_elm_t leaf = &record->leaf;
1171 	hammer_off_t buf_offset;
1172 	hammer_off_t zone2_offset;
1173 	hammer_volume_t volume;
1174 	hammer_buffer_t buffer;
1175 	struct buf *bp;
1176 	struct bio *nbio;
1177 	char *ptr;
1178 	int vol_no;
1179 	int error;
1180 
1181 	buf_offset = leaf->data_offset;
1182 
1183 	KKASSERT(buf_offset > HAMMER_ZONE_BTREE);
1184 	KKASSERT(bio->bio_buf->b_cmd == BUF_CMD_WRITE);
1185 
1186 	if ((buf_offset & HAMMER_BUFMASK) == 0 &&
1187 	    leaf->data_len >= HAMMER_BUFSIZE) {
1188 		/*
1189 		 * We are using the vnode's bio to write directly to the
1190 		 * media, any hammer_buffer at the same zone-X offset will
1191 		 * now have stale data.
1192 		 */
1193 		zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1194 		vol_no = HAMMER_VOL_DECODE(zone2_offset);
1195 		volume = hammer_get_volume(hmp, vol_no, &error);
1196 
1197 		if (error == 0 && zone2_offset >= volume->maxbuf_off)
1198 			error = EIO;
1199 		if (error == 0) {
1200 			bp = bio->bio_buf;
1201 			KKASSERT((bp->b_bufsize & HAMMER_BUFMASK) == 0);
1202 			/*
1203 			hammer_del_buffers(hmp, buf_offset,
1204 					   zone2_offset, bp->b_bufsize);
1205 			*/
1206 
1207 			/*
1208 			 * Second level bio - cached zone2 offset.
1209 			 *
1210 			 * (We can put our bio_done function in either the
1211 			 *  2nd or 3rd level).
1212 			 */
1213 			nbio = push_bio(bio);
1214 			nbio->bio_offset = zone2_offset;
1215 			nbio->bio_done = hammer_io_direct_write_complete;
1216 			nbio->bio_caller_info1.ptr = record;
1217 			record->zone2_offset = zone2_offset;
1218 			record->flags |= HAMMER_RECF_DIRECT_IO |
1219 					 HAMMER_RECF_DIRECT_INVAL;
1220 
1221 			/*
1222 			 * Third level bio - raw offset specific to the
1223 			 * correct volume.
1224 			 */
1225 			zone2_offset &= HAMMER_OFF_SHORT_MASK;
1226 			nbio = push_bio(nbio);
1227 			nbio->bio_offset = volume->ondisk->vol_buf_beg +
1228 					   zone2_offset;
1229 			hammer_stats_disk_write += bp->b_bufsize;
1230 			vn_strategy(volume->devvp, nbio);
1231 			hammer_io_flush_mark(volume);
1232 		}
1233 		hammer_rel_volume(volume, 0);
1234 	} else {
1235 		/*
1236 		 * Must fit in a standard HAMMER buffer.  In this case all
1237 		 * consumers use the HAMMER buffer system and RECF_DIRECT_IO
1238 		 * does not need to be set-up.
1239 		 */
1240 		KKASSERT(((buf_offset ^ (buf_offset + leaf->data_len - 1)) & ~HAMMER_BUFMASK64) == 0);
1241 		buffer = NULL;
1242 		ptr = hammer_bread(hmp, buf_offset, &error, &buffer);
1243 		if (error == 0) {
1244 			bp = bio->bio_buf;
1245 			bp->b_flags |= B_AGE;
1246 			hammer_io_modify(&buffer->io, 1);
1247 			bcopy(bp->b_data, ptr, leaf->data_len);
1248 			hammer_io_modify_done(&buffer->io);
1249 			hammer_rel_buffer(buffer, 0);
1250 			bp->b_resid = 0;
1251 			biodone(bio);
1252 		}
1253 	}
1254 	if (error == 0) {
1255 		/*
1256 		 * The record is all setup now, add it.  Potential conflics
1257 		 * have already been dealt with.
1258 		 */
1259 		error = hammer_mem_add(record);
1260 		KKASSERT(error == 0);
1261 	} else {
1262 		/*
1263 		 * Major suckage occured.  Also note:  The record was never added
1264 		 * to the tree so we do not have to worry about the backend.
1265 		 */
1266 		kprintf("hammer_direct_write: failed @ %016llx\n",
1267 			(long long)leaf->data_offset);
1268 		bp = bio->bio_buf;
1269 		bp->b_resid = 0;
1270 		bp->b_error = EIO;
1271 		bp->b_flags |= B_ERROR;
1272 		biodone(bio);
1273 		record->flags |= HAMMER_RECF_DELETED_FE;
1274 		hammer_rel_mem_record(record);
1275 	}
1276 	return(error);
1277 }
1278 
1279 /*
1280  * On completion of the BIO this callback must disconnect
1281  * it from the hammer_record and chain to the previous bio.
1282  *
1283  * An I/O error forces the mount to read-only.  Data buffers
1284  * are not B_LOCKED like meta-data buffers are, so we have to
1285  * throw the buffer away to prevent the kernel from retrying.
1286  */
1287 static
1288 void
1289 hammer_io_direct_write_complete(struct bio *nbio)
1290 {
1291 	struct bio *obio;
1292 	struct buf *bp;
1293 	hammer_record_t record = nbio->bio_caller_info1.ptr;
1294 
1295 	bp = nbio->bio_buf;
1296 	obio = pop_bio(nbio);
1297 	if (bp->b_flags & B_ERROR) {
1298 		hammer_critical_error(record->ip->hmp, record->ip,
1299 				      bp->b_error,
1300 				      "while writing bulk data");
1301 		bp->b_flags |= B_INVAL;
1302 	}
1303 	biodone(obio);
1304 
1305 	KKASSERT(record != NULL);
1306 	KKASSERT(record->flags & HAMMER_RECF_DIRECT_IO);
1307 	if (record->flags & HAMMER_RECF_DIRECT_WAIT) {
1308 		record->flags &= ~(HAMMER_RECF_DIRECT_IO |
1309 				   HAMMER_RECF_DIRECT_WAIT);
1310 		/* record can disappear once DIRECT_IO flag is cleared */
1311 		wakeup(&record->flags);
1312 	} else {
1313 		record->flags &= ~HAMMER_RECF_DIRECT_IO;
1314 		/* record can disappear once DIRECT_IO flag is cleared */
1315 	}
1316 }
1317 
1318 
1319 /*
1320  * This is called before a record is either committed to the B-Tree
1321  * or destroyed, to resolve any associated direct-IO.
1322  *
1323  * (1) We must wait for any direct-IO related to the record to complete.
1324  *
1325  * (2) We must remove any buffer cache aliases for data accessed via
1326  *     leaf->data_offset or zone2_offset so non-direct-IO consumers
1327  *     (the mirroring and reblocking code) do not see stale data.
1328  */
1329 void
1330 hammer_io_direct_wait(hammer_record_t record)
1331 {
1332 	/*
1333 	 * Wait for I/O to complete
1334 	 */
1335 	if (record->flags & HAMMER_RECF_DIRECT_IO) {
1336 		crit_enter();
1337 		while (record->flags & HAMMER_RECF_DIRECT_IO) {
1338 			record->flags |= HAMMER_RECF_DIRECT_WAIT;
1339 			tsleep(&record->flags, 0, "hmdiow", 0);
1340 		}
1341 		crit_exit();
1342 	}
1343 
1344 	/*
1345 	 * Invalidate any related buffer cache aliases associated with the
1346 	 * backing device.  This is needed because the buffer cache buffer
1347 	 * for file data is associated with the file vnode, not the backing
1348 	 * device vnode.
1349 	 *
1350 	 * XXX I do not think this case can occur any more now that
1351 	 * reservations ensure that all such buffers are removed before
1352 	 * an area can be reused.
1353 	 */
1354 	if (record->flags & HAMMER_RECF_DIRECT_INVAL) {
1355 		KKASSERT(record->leaf.data_offset);
1356 		hammer_del_buffers(record->ip->hmp, record->leaf.data_offset,
1357 				   record->zone2_offset, record->leaf.data_len,
1358 				   1);
1359 		record->flags &= ~HAMMER_RECF_DIRECT_INVAL;
1360 	}
1361 }
1362 
1363 /*
1364  * This is called to remove the second-level cached zone-2 offset from
1365  * frontend buffer cache buffers, now stale due to a data relocation.
1366  * These offsets are generated by cluster_read() via VOP_BMAP, or directly
1367  * by hammer_vop_strategy_read().
1368  *
1369  * This is rather nasty because here we have something like the reblocker
1370  * scanning the raw B-Tree with no held references on anything, really,
1371  * other then a shared lock on the B-Tree node, and we have to access the
1372  * frontend's buffer cache to check for and clean out the association.
1373  * Specifically, if the reblocker is moving data on the disk, these cached
1374  * offsets will become invalid.
1375  *
1376  * Only data record types associated with the large-data zone are subject
1377  * to direct-io and need to be checked.
1378  *
1379  */
1380 void
1381 hammer_io_direct_uncache(hammer_mount_t hmp, hammer_btree_leaf_elm_t leaf)
1382 {
1383 	struct hammer_inode_info iinfo;
1384 	int zone;
1385 
1386 	if (leaf->base.rec_type != HAMMER_RECTYPE_DATA)
1387 		return;
1388 	zone = HAMMER_ZONE_DECODE(leaf->data_offset);
1389 	if (zone != HAMMER_ZONE_LARGE_DATA_INDEX)
1390 		return;
1391 	iinfo.obj_id = leaf->base.obj_id;
1392 	iinfo.obj_asof = 0;	/* unused */
1393 	iinfo.obj_localization = leaf->base.localization &
1394 				 HAMMER_LOCALIZE_PSEUDOFS_MASK;
1395 	iinfo.u.leaf = leaf;
1396 	hammer_scan_inode_snapshots(hmp, &iinfo,
1397 				    hammer_io_direct_uncache_callback,
1398 				    leaf);
1399 }
1400 
1401 static int
1402 hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data)
1403 {
1404 	hammer_inode_info_t iinfo = data;
1405 	hammer_off_t data_offset;
1406 	hammer_off_t file_offset;
1407 	struct vnode *vp;
1408 	struct buf *bp;
1409 	int blksize;
1410 
1411 	if (ip->vp == NULL)
1412 		return(0);
1413 	data_offset = iinfo->u.leaf->data_offset;
1414 	file_offset = iinfo->u.leaf->base.key - iinfo->u.leaf->data_len;
1415 	blksize = iinfo->u.leaf->data_len;
1416 	KKASSERT((blksize & HAMMER_BUFMASK) == 0);
1417 
1418 	hammer_ref(&ip->lock);
1419 	if (hammer_get_vnode(ip, &vp) == 0) {
1420 		if ((bp = findblk(ip->vp, file_offset, FINDBLK_TEST)) != NULL &&
1421 		    bp->b_bio2.bio_offset != NOOFFSET) {
1422 			bp = getblk(ip->vp, file_offset, blksize, 0, 0);
1423 			bp->b_bio2.bio_offset = NOOFFSET;
1424 			brelse(bp);
1425 		}
1426 		vput(vp);
1427 	}
1428 	hammer_rel_inode(ip, 0);
1429 	return(0);
1430 }
1431 
1432 
1433 /*
1434  * This function is called when writes may have occured on the volume,
1435  * indicating that the device may be holding cached writes.
1436  */
1437 static void
1438 hammer_io_flush_mark(hammer_volume_t volume)
1439 {
1440 	volume->vol_flags |= HAMMER_VOLF_NEEDFLUSH;
1441 }
1442 
1443 /*
1444  * This function ensures that the device has flushed any cached writes out.
1445  */
1446 void
1447 hammer_io_flush_sync(hammer_mount_t hmp)
1448 {
1449 	hammer_volume_t volume;
1450 	struct buf *bp_base = NULL;
1451 	struct buf *bp;
1452 
1453 	RB_FOREACH(volume, hammer_vol_rb_tree, &hmp->rb_vols_root) {
1454 		if (volume->vol_flags & HAMMER_VOLF_NEEDFLUSH) {
1455 			volume->vol_flags &= ~HAMMER_VOLF_NEEDFLUSH;
1456 			bp = getpbuf(NULL);
1457 			bp->b_bio1.bio_offset = 0;
1458 			bp->b_bufsize = 0;
1459 			bp->b_bcount = 0;
1460 			bp->b_cmd = BUF_CMD_FLUSH;
1461 			bp->b_bio1.bio_caller_info1.cluster_head = bp_base;
1462 			bp->b_bio1.bio_done = biodone_sync;
1463 			bp->b_bio1.bio_flags |= BIO_SYNC;
1464 			bp_base = bp;
1465 			vn_strategy(volume->devvp, &bp->b_bio1);
1466 		}
1467 	}
1468 	while ((bp = bp_base) != NULL) {
1469 		bp_base = bp->b_bio1.bio_caller_info1.cluster_head;
1470 		biowait(&bp->b_bio1, "hmrFLS");
1471 		relpbuf(bp, NULL);
1472 	}
1473 }
1474