xref: /dragonfly/sys/vfs/hammer/hammer_io.c (revision ce0e08e2)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_io.c,v 1.55 2008/09/15 17:02:49 dillon Exp $
35  */
36 /*
37  * IO Primitives and buffer cache management
38  *
39  * All major data-tracking structures in HAMMER contain a struct hammer_io
40  * which is used to manage their backing store.  We use filesystem buffers
41  * for backing store and we leave them passively associated with their
42  * HAMMER structures.
43  *
44  * If the kernel tries to destroy a passively associated buf which we cannot
45  * yet let go we set B_LOCKED in the buffer and then actively released it
46  * later when we can.
47  */
48 
49 #include "hammer.h"
50 #include <sys/fcntl.h>
51 #include <sys/nlookup.h>
52 #include <sys/buf.h>
53 #include <sys/buf2.h>
54 
55 static void hammer_io_modify(hammer_io_t io, int count);
56 static void hammer_io_deallocate(struct buf *bp);
57 #if 0
58 static void hammer_io_direct_read_complete(struct bio *nbio);
59 #endif
60 static void hammer_io_direct_write_complete(struct bio *nbio);
61 static int hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data);
62 static void hammer_io_set_modlist(struct hammer_io *io);
63 static void hammer_io_flush_mark(hammer_volume_t volume);
64 static void hammer_io_flush_sync_done(struct bio *bio);
65 
66 
67 /*
68  * Initialize a new, already-zero'd hammer_io structure, or reinitialize
69  * an existing hammer_io structure which may have switched to another type.
70  */
71 void
72 hammer_io_init(hammer_io_t io, hammer_volume_t volume, enum hammer_io_type type)
73 {
74 	io->volume = volume;
75 	io->hmp = volume->io.hmp;
76 	io->type = type;
77 }
78 
79 /*
80  * Helper routine to disassociate a buffer cache buffer from an I/O
81  * structure.  The buffer is unlocked and marked appropriate for reclamation.
82  *
83  * The io may have 0 or 1 references depending on who called us.  The
84  * caller is responsible for dealing with the refs.
85  *
86  * This call can only be made when no action is required on the buffer.
87  *
88  * The caller must own the buffer and the IO must indicate that the
89  * structure no longer owns it (io.released != 0).
90  */
91 static void
92 hammer_io_disassociate(hammer_io_structure_t iou)
93 {
94 	struct buf *bp = iou->io.bp;
95 
96 	KKASSERT(iou->io.released);
97 	KKASSERT(iou->io.modified == 0);
98 	KKASSERT(LIST_FIRST(&bp->b_dep) == (void *)iou);
99 	buf_dep_init(bp);
100 	iou->io.bp = NULL;
101 
102 	/*
103 	 * If the buffer was locked someone wanted to get rid of it.
104 	 */
105 	if (bp->b_flags & B_LOCKED) {
106 		--hammer_count_io_locked;
107 		bp->b_flags &= ~B_LOCKED;
108 	}
109 	if (iou->io.reclaim) {
110 		bp->b_flags |= B_NOCACHE|B_RELBUF;
111 		iou->io.reclaim = 0;
112 	}
113 
114 	switch(iou->io.type) {
115 	case HAMMER_STRUCTURE_VOLUME:
116 		iou->volume.ondisk = NULL;
117 		break;
118 	case HAMMER_STRUCTURE_DATA_BUFFER:
119 	case HAMMER_STRUCTURE_META_BUFFER:
120 	case HAMMER_STRUCTURE_UNDO_BUFFER:
121 		iou->buffer.ondisk = NULL;
122 		break;
123 	}
124 }
125 
126 /*
127  * Wait for any physical IO to complete
128  */
129 void
130 hammer_io_wait(hammer_io_t io)
131 {
132 	if (io->running) {
133 		crit_enter();
134 		tsleep_interlock(io);
135 		io->waiting = 1;
136 		for (;;) {
137 			tsleep(io, 0, "hmrflw", 0);
138 			if (io->running == 0)
139 				break;
140 			tsleep_interlock(io);
141 			io->waiting = 1;
142 			if (io->running == 0)
143 				break;
144 		}
145 		crit_exit();
146 	}
147 }
148 
149 /*
150  * Wait for all hammer_io-initated write I/O's to complete.  This is not
151  * supposed to count direct I/O's but some can leak through (for
152  * non-full-sized direct I/Os).
153  */
154 void
155 hammer_io_wait_all(hammer_mount_t hmp, const char *ident)
156 {
157 	hammer_io_flush_sync(hmp);
158 	crit_enter();
159 	while (hmp->io_running_space)
160 		tsleep(&hmp->io_running_space, 0, ident, 0);
161 	crit_exit();
162 }
163 
164 #define HAMMER_MAXRA	4
165 
166 /*
167  * Load bp for a HAMMER structure.  The io must be exclusively locked by
168  * the caller.
169  *
170  * This routine is mostly used on meta-data and small-data blocks.  Generally
171  * speaking HAMMER assumes some locality of reference and will cluster
172  * a 64K read.
173  *
174  * Note that clustering occurs at the device layer, not the logical layer.
175  * If the buffers do not apply to the current operation they may apply to
176  * some other.
177  */
178 int
179 hammer_io_read(struct vnode *devvp, struct hammer_io *io, hammer_off_t limit)
180 {
181 	struct buf *bp;
182 	int   error;
183 
184 	if ((bp = io->bp) == NULL) {
185 		hammer_count_io_running_read += io->bytes;
186 		if (hammer_cluster_enable) {
187 			error = cluster_read(devvp, limit,
188 					     io->offset, io->bytes,
189 					     HAMMER_CLUSTER_SIZE,
190 					     HAMMER_CLUSTER_BUFS, &io->bp);
191 		} else {
192 			error = bread(devvp, io->offset, io->bytes, &io->bp);
193 		}
194 		hammer_stats_disk_read += io->bytes;
195 		hammer_count_io_running_read -= io->bytes;
196 
197 		/*
198 		 * The code generally assumes b_ops/b_dep has been set-up,
199 		 * even if we error out here.
200 		 */
201 		bp = io->bp;
202 		bp->b_ops = &hammer_bioops;
203 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
204 		LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node);
205 		BUF_KERNPROC(bp);
206 		KKASSERT(io->modified == 0);
207 		KKASSERT(io->running == 0);
208 		KKASSERT(io->waiting == 0);
209 		io->released = 0;	/* we hold an active lock on bp */
210 	} else {
211 		error = 0;
212 	}
213 	return(error);
214 }
215 
216 /*
217  * Similar to hammer_io_read() but returns a zero'd out buffer instead.
218  * Must be called with the IO exclusively locked.
219  *
220  * vfs_bio_clrbuf() is kinda nasty, enforce serialization against background
221  * I/O by forcing the buffer to not be in a released state before calling
222  * it.
223  *
224  * This function will also mark the IO as modified but it will not
225  * increment the modify_refs count.
226  */
227 int
228 hammer_io_new(struct vnode *devvp, struct hammer_io *io)
229 {
230 	struct buf *bp;
231 
232 	if ((bp = io->bp) == NULL) {
233 		io->bp = getblk(devvp, io->offset, io->bytes, 0, 0);
234 		bp = io->bp;
235 		bp->b_ops = &hammer_bioops;
236 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
237 		LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node);
238 		io->released = 0;
239 		KKASSERT(io->running == 0);
240 		io->waiting = 0;
241 		BUF_KERNPROC(bp);
242 	} else {
243 		if (io->released) {
244 			regetblk(bp);
245 			BUF_KERNPROC(bp);
246 			io->released = 0;
247 		}
248 	}
249 	hammer_io_modify(io, 0);
250 	vfs_bio_clrbuf(bp);
251 	return(0);
252 }
253 
254 /*
255  * Remove potential device level aliases against buffers managed by high level
256  * vnodes.  Aliases can also be created due to mixed buffer sizes.
257  *
258  * This is nasty because the buffers are also VMIO-backed.  Even if a buffer
259  * does not exist its backing VM pages might, and we have to invalidate
260  * those as well or a getblk() will reinstate them.
261  */
262 void
263 hammer_io_inval(hammer_volume_t volume, hammer_off_t zone2_offset)
264 {
265 	hammer_io_structure_t iou;
266 	hammer_off_t phys_offset;
267 	struct buf *bp;
268 
269 	phys_offset = volume->ondisk->vol_buf_beg +
270 		      (zone2_offset & HAMMER_OFF_SHORT_MASK);
271 	crit_enter();
272 	if ((bp = findblk(volume->devvp, phys_offset)) != NULL)
273 		bp = getblk(volume->devvp, phys_offset, bp->b_bufsize, 0, 0);
274 	else
275 		bp = getblk(volume->devvp, phys_offset, HAMMER_BUFSIZE, 0, 0);
276 	if ((iou = (void *)LIST_FIRST(&bp->b_dep)) != NULL) {
277 		hammer_ref(&iou->io.lock);
278 		hammer_io_clear_modify(&iou->io, 1);
279 		bundirty(bp);
280 		iou->io.released = 0;
281 		BUF_KERNPROC(bp);
282 		iou->io.reclaim = 1;
283 		iou->io.waitdep = 1;
284 		KKASSERT(iou->io.lock.refs == 1);
285 		hammer_rel_buffer(&iou->buffer, 0);
286 		/*hammer_io_deallocate(bp);*/
287 	} else {
288 		KKASSERT((bp->b_flags & B_LOCKED) == 0);
289 		bundirty(bp);
290 		bp->b_flags |= B_NOCACHE|B_RELBUF;
291 		brelse(bp);
292 	}
293 	crit_exit();
294 }
295 
296 /*
297  * This routine is called on the last reference to a hammer structure.
298  * The io is usually interlocked with io.loading and io.refs must be 1.
299  *
300  * This routine may return a non-NULL bp to the caller for dispoal.  Disposal
301  * simply means the caller finishes decrementing the ref-count on the
302  * IO structure then brelse()'s the bp.  The bp may or may not still be
303  * passively associated with the IO.
304  *
305  * The only requirement here is that modified meta-data and volume-header
306  * buffer may NOT be disassociated from the IO structure, and consequently
307  * we also leave such buffers actively associated with the IO if they already
308  * are (since the kernel can't do anything with them anyway).  Only the
309  * flusher is allowed to write such buffers out.  Modified pure-data and
310  * undo buffers are returned to the kernel but left passively associated
311  * so we can track when the kernel writes the bp out.
312  */
313 struct buf *
314 hammer_io_release(struct hammer_io *io, int flush)
315 {
316 	union hammer_io_structure *iou = (void *)io;
317 	struct buf *bp;
318 
319 	if ((bp = io->bp) == NULL)
320 		return(NULL);
321 
322 	/*
323 	 * Try to flush a dirty IO to disk if asked to by the
324 	 * caller or if the kernel tried to flush the buffer in the past.
325 	 *
326 	 * Kernel-initiated flushes are only allowed for pure-data buffers.
327 	 * meta-data and volume buffers can only be flushed explicitly
328 	 * by HAMMER.
329 	 */
330 	if (io->modified) {
331 		if (flush) {
332 			hammer_io_flush(io);
333 		} else if (bp->b_flags & B_LOCKED) {
334 			switch(io->type) {
335 			case HAMMER_STRUCTURE_DATA_BUFFER:
336 			case HAMMER_STRUCTURE_UNDO_BUFFER:
337 				hammer_io_flush(io);
338 				break;
339 			default:
340 				break;
341 			}
342 		} /* else no explicit request to flush the buffer */
343 	}
344 
345 	/*
346 	 * Wait for the IO to complete if asked to.  This occurs when
347 	 * the buffer must be disposed of definitively during an umount
348 	 * or buffer invalidation.
349 	 */
350 	if (io->waitdep && io->running) {
351 		hammer_io_wait(io);
352 	}
353 
354 	/*
355 	 * Return control of the buffer to the kernel (with the provisio
356 	 * that our bioops can override kernel decisions with regards to
357 	 * the buffer).
358 	 */
359 	if ((flush || io->reclaim) && io->modified == 0 && io->running == 0) {
360 		/*
361 		 * Always disassociate the bp if an explicit flush
362 		 * was requested and the IO completed with no error
363 		 * (so unmount can really clean up the structure).
364 		 */
365 		if (io->released) {
366 			regetblk(bp);
367 			BUF_KERNPROC(bp);
368 		} else {
369 			io->released = 1;
370 		}
371 		hammer_io_disassociate((hammer_io_structure_t)io);
372 		/* return the bp */
373 	} else if (io->modified) {
374 		/*
375 		 * Only certain IO types can be released to the kernel if
376 		 * the buffer has been modified.
377 		 *
378 		 * volume and meta-data IO types may only be explicitly
379 		 * flushed by HAMMER.
380 		 */
381 		switch(io->type) {
382 		case HAMMER_STRUCTURE_DATA_BUFFER:
383 		case HAMMER_STRUCTURE_UNDO_BUFFER:
384 			if (io->released == 0) {
385 				io->released = 1;
386 				bdwrite(bp);
387 			}
388 			break;
389 		default:
390 			break;
391 		}
392 		bp = NULL;	/* bp left associated */
393 	} else if (io->released == 0) {
394 		/*
395 		 * Clean buffers can be generally released to the kernel.
396 		 * We leave the bp passively associated with the HAMMER
397 		 * structure and use bioops to disconnect it later on
398 		 * if the kernel wants to discard the buffer.
399 		 *
400 		 * We can steal the structure's ownership of the bp.
401 		 */
402 		io->released = 1;
403 		if (bp->b_flags & B_LOCKED) {
404 			hammer_io_disassociate(iou);
405 			/* return the bp */
406 		} else {
407 			if (io->reclaim) {
408 				hammer_io_disassociate(iou);
409 				/* return the bp */
410 			} else {
411 				/* return the bp (bp passively associated) */
412 			}
413 		}
414 	} else {
415 		/*
416 		 * A released buffer is passively associate with our
417 		 * hammer_io structure.  The kernel cannot destroy it
418 		 * without making a bioops call.  If the kernel (B_LOCKED)
419 		 * or we (reclaim) requested that the buffer be destroyed
420 		 * we destroy it, otherwise we do a quick get/release to
421 		 * reset its position in the kernel's LRU list.
422 		 *
423 		 * Leaving the buffer passively associated allows us to
424 		 * use the kernel's LRU buffer flushing mechanisms rather
425 		 * then rolling our own.
426 		 *
427 		 * XXX there are two ways of doing this.  We can re-acquire
428 		 * and passively release to reset the LRU, or not.
429 		 */
430 		if (io->running == 0) {
431 			regetblk(bp);
432 			if ((bp->b_flags & B_LOCKED) || io->reclaim) {
433 				hammer_io_disassociate(iou);
434 				/* return the bp */
435 			} else {
436 				/* return the bp (bp passively associated) */
437 			}
438 		} else {
439 			/*
440 			 * bp is left passively associated but we do not
441 			 * try to reacquire it.  Interactions with the io
442 			 * structure will occur on completion of the bp's
443 			 * I/O.
444 			 */
445 			bp = NULL;
446 		}
447 	}
448 	return(bp);
449 }
450 
451 /*
452  * This routine is called with a locked IO when a flush is desired and
453  * no other references to the structure exists other then ours.  This
454  * routine is ONLY called when HAMMER believes it is safe to flush a
455  * potentially modified buffer out.
456  */
457 void
458 hammer_io_flush(struct hammer_io *io)
459 {
460 	struct buf *bp;
461 
462 	/*
463 	 * Degenerate case - nothing to flush if nothing is dirty.
464 	 */
465 	if (io->modified == 0) {
466 		return;
467 	}
468 
469 	KKASSERT(io->bp);
470 	KKASSERT(io->modify_refs <= 0);
471 
472 	/*
473 	 * Acquire ownership of the bp, particularly before we clear our
474 	 * modified flag.
475 	 *
476 	 * We are going to bawrite() this bp.  Don't leave a window where
477 	 * io->released is set, we actually own the bp rather then our
478 	 * buffer.
479 	 */
480 	bp = io->bp;
481 	if (io->released) {
482 		regetblk(bp);
483 		/* BUF_KERNPROC(io->bp); */
484 		/* io->released = 0; */
485 		KKASSERT(io->released);
486 		KKASSERT(io->bp == bp);
487 	}
488 	io->released = 1;
489 
490 	/*
491 	 * Acquire exclusive access to the bp and then clear the modified
492 	 * state of the buffer prior to issuing I/O to interlock any
493 	 * modifications made while the I/O is in progress.  This shouldn't
494 	 * happen anyway but losing data would be worse.  The modified bit
495 	 * will be rechecked after the IO completes.
496 	 *
497 	 * NOTE: This call also finalizes the buffer's content (inval == 0).
498 	 *
499 	 * This is only legal when lock.refs == 1 (otherwise we might clear
500 	 * the modified bit while there are still users of the cluster
501 	 * modifying the data).
502 	 *
503 	 * Do this before potentially blocking so any attempt to modify the
504 	 * ondisk while we are blocked blocks waiting for us.
505 	 */
506 	hammer_ref(&io->lock);
507 	hammer_io_clear_modify(io, 0);
508 	hammer_unref(&io->lock);
509 
510 	/*
511 	 * Transfer ownership to the kernel and initiate I/O.
512 	 */
513 	io->running = 1;
514 	io->hmp->io_running_space += io->bytes;
515 	hammer_count_io_running_write += io->bytes;
516 	bawrite(bp);
517 	hammer_io_flush_mark(io->volume);
518 }
519 
520 /************************************************************************
521  *				BUFFER DIRTYING				*
522  ************************************************************************
523  *
524  * These routines deal with dependancies created when IO buffers get
525  * modified.  The caller must call hammer_modify_*() on a referenced
526  * HAMMER structure prior to modifying its on-disk data.
527  *
528  * Any intent to modify an IO buffer acquires the related bp and imposes
529  * various write ordering dependancies.
530  */
531 
532 /*
533  * Mark a HAMMER structure as undergoing modification.  Meta-data buffers
534  * are locked until the flusher can deal with them, pure data buffers
535  * can be written out.
536  */
537 static
538 void
539 hammer_io_modify(hammer_io_t io, int count)
540 {
541 	/*
542 	 * io->modify_refs must be >= 0
543 	 */
544 	while (io->modify_refs < 0) {
545 		io->waitmod = 1;
546 		tsleep(io, 0, "hmrmod", 0);
547 	}
548 
549 	/*
550 	 * Shortcut if nothing to do.
551 	 */
552 	KKASSERT(io->lock.refs != 0 && io->bp != NULL);
553 	io->modify_refs += count;
554 	if (io->modified && io->released == 0)
555 		return;
556 
557 	hammer_lock_ex(&io->lock);
558 	if (io->modified == 0) {
559 		hammer_io_set_modlist(io);
560 		io->modified = 1;
561 	}
562 	if (io->released) {
563 		regetblk(io->bp);
564 		BUF_KERNPROC(io->bp);
565 		io->released = 0;
566 		KKASSERT(io->modified != 0);
567 	}
568 	hammer_unlock(&io->lock);
569 }
570 
571 static __inline
572 void
573 hammer_io_modify_done(hammer_io_t io)
574 {
575 	KKASSERT(io->modify_refs > 0);
576 	--io->modify_refs;
577 	if (io->modify_refs == 0 && io->waitmod) {
578 		io->waitmod = 0;
579 		wakeup(io);
580 	}
581 }
582 
583 void
584 hammer_io_write_interlock(hammer_io_t io)
585 {
586 	while (io->modify_refs != 0) {
587 		io->waitmod = 1;
588 		tsleep(io, 0, "hmrmod", 0);
589 	}
590 	io->modify_refs = -1;
591 }
592 
593 void
594 hammer_io_done_interlock(hammer_io_t io)
595 {
596 	KKASSERT(io->modify_refs == -1);
597 	io->modify_refs = 0;
598 	if (io->waitmod) {
599 		io->waitmod = 0;
600 		wakeup(io);
601 	}
602 }
603 
604 /*
605  * Caller intends to modify a volume's ondisk structure.
606  *
607  * This is only allowed if we are the flusher or we have a ref on the
608  * sync_lock.
609  */
610 void
611 hammer_modify_volume(hammer_transaction_t trans, hammer_volume_t volume,
612 		     void *base, int len)
613 {
614 	KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
615 
616 	hammer_io_modify(&volume->io, 1);
617 	if (len) {
618 		intptr_t rel_offset = (intptr_t)base - (intptr_t)volume->ondisk;
619 		KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
620 		hammer_generate_undo(trans, &volume->io,
621 			 HAMMER_ENCODE_RAW_VOLUME(volume->vol_no, rel_offset),
622 			 base, len);
623 	}
624 }
625 
626 /*
627  * Caller intends to modify a buffer's ondisk structure.
628  *
629  * This is only allowed if we are the flusher or we have a ref on the
630  * sync_lock.
631  */
632 void
633 hammer_modify_buffer(hammer_transaction_t trans, hammer_buffer_t buffer,
634 		     void *base, int len)
635 {
636 	KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
637 
638 	hammer_io_modify(&buffer->io, 1);
639 	if (len) {
640 		intptr_t rel_offset = (intptr_t)base - (intptr_t)buffer->ondisk;
641 		KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
642 		hammer_generate_undo(trans, &buffer->io,
643 				     buffer->zone2_offset + rel_offset,
644 				     base, len);
645 	}
646 }
647 
648 void
649 hammer_modify_volume_done(hammer_volume_t volume)
650 {
651 	hammer_io_modify_done(&volume->io);
652 }
653 
654 void
655 hammer_modify_buffer_done(hammer_buffer_t buffer)
656 {
657 	hammer_io_modify_done(&buffer->io);
658 }
659 
660 /*
661  * Mark an entity as not being dirty any more and finalize any
662  * delayed adjustments to the buffer.
663  *
664  * Delayed adjustments are an important performance enhancement, allowing
665  * us to avoid recalculating B-Tree node CRCs over and over again when
666  * making bulk-modifications to the B-Tree.
667  *
668  * If inval is non-zero delayed adjustments are ignored.
669  *
670  * This routine may dereference related btree nodes and cause the
671  * buffer to be dereferenced.  The caller must own a reference on io.
672  */
673 void
674 hammer_io_clear_modify(struct hammer_io *io, int inval)
675 {
676 	if (io->modified == 0)
677 		return;
678 
679 	/*
680 	 * Take us off the mod-list and clear the modified bit.
681 	 */
682 	KKASSERT(io->mod_list != NULL);
683 	if (io->mod_list == &io->hmp->volu_list ||
684 	    io->mod_list == &io->hmp->meta_list) {
685 		io->hmp->locked_dirty_space -= io->bytes;
686 		hammer_count_dirtybufspace -= io->bytes;
687 	}
688 	TAILQ_REMOVE(io->mod_list, io, mod_entry);
689 	io->mod_list = NULL;
690 	io->modified = 0;
691 
692 	/*
693 	 * If this bit is not set there are no delayed adjustments.
694 	 */
695 	if (io->gencrc == 0)
696 		return;
697 	io->gencrc = 0;
698 
699 	/*
700 	 * Finalize requested CRCs.  The NEEDSCRC flag also holds a reference
701 	 * on the node (& underlying buffer).  Release the node after clearing
702 	 * the flag.
703 	 */
704 	if (io->type == HAMMER_STRUCTURE_META_BUFFER) {
705 		hammer_buffer_t buffer = (void *)io;
706 		hammer_node_t node;
707 
708 restart:
709 		TAILQ_FOREACH(node, &buffer->clist, entry) {
710 			if ((node->flags & HAMMER_NODE_NEEDSCRC) == 0)
711 				continue;
712 			node->flags &= ~HAMMER_NODE_NEEDSCRC;
713 			KKASSERT(node->ondisk);
714 			if (inval == 0)
715 				node->ondisk->crc = crc32(&node->ondisk->crc + 1, HAMMER_BTREE_CRCSIZE);
716 			hammer_rel_node(node);
717 			goto restart;
718 		}
719 	}
720 	/* caller must still have ref on io */
721 	KKASSERT(io->lock.refs > 0);
722 }
723 
724 /*
725  * Clear the IO's modify list.  Even though the IO is no longer modified
726  * it may still be on the lose_list.  This routine is called just before
727  * the governing hammer_buffer is destroyed.
728  */
729 void
730 hammer_io_clear_modlist(struct hammer_io *io)
731 {
732 	KKASSERT(io->modified == 0);
733 	if (io->mod_list) {
734 		crit_enter();	/* biodone race against list */
735 		KKASSERT(io->mod_list == &io->hmp->lose_list);
736 		TAILQ_REMOVE(io->mod_list, io, mod_entry);
737 		io->mod_list = NULL;
738 		crit_exit();
739 	}
740 }
741 
742 static void
743 hammer_io_set_modlist(struct hammer_io *io)
744 {
745 	struct hammer_mount *hmp = io->hmp;
746 
747 	KKASSERT(io->mod_list == NULL);
748 
749 	switch(io->type) {
750 	case HAMMER_STRUCTURE_VOLUME:
751 		io->mod_list = &hmp->volu_list;
752 		hmp->locked_dirty_space += io->bytes;
753 		hammer_count_dirtybufspace += io->bytes;
754 		break;
755 	case HAMMER_STRUCTURE_META_BUFFER:
756 		io->mod_list = &hmp->meta_list;
757 		hmp->locked_dirty_space += io->bytes;
758 		hammer_count_dirtybufspace += io->bytes;
759 		break;
760 	case HAMMER_STRUCTURE_UNDO_BUFFER:
761 		io->mod_list = &hmp->undo_list;
762 		break;
763 	case HAMMER_STRUCTURE_DATA_BUFFER:
764 		io->mod_list = &hmp->data_list;
765 		break;
766 	}
767 	TAILQ_INSERT_TAIL(io->mod_list, io, mod_entry);
768 }
769 
770 /************************************************************************
771  *				HAMMER_BIOOPS				*
772  ************************************************************************
773  *
774  */
775 
776 /*
777  * Pre-IO initiation kernel callback - cluster build only
778  */
779 static void
780 hammer_io_start(struct buf *bp)
781 {
782 }
783 
784 /*
785  * Post-IO completion kernel callback - MAY BE CALLED FROM INTERRUPT!
786  *
787  * NOTE: HAMMER may modify a buffer after initiating I/O.  The modified bit
788  * may also be set if we were marking a cluster header open.  Only remove
789  * our dependancy if the modified bit is clear.
790  */
791 static void
792 hammer_io_complete(struct buf *bp)
793 {
794 	union hammer_io_structure *iou = (void *)LIST_FIRST(&bp->b_dep);
795 
796 	KKASSERT(iou->io.released == 1);
797 
798 	/*
799 	 * Deal with people waiting for I/O to drain
800 	 */
801 	if (iou->io.running) {
802 		/*
803 		 * Deal with critical write errors.  Once a critical error
804 		 * has been flagged in hmp the UNDO FIFO will not be updated.
805 		 * That way crash recover will give us a consistent
806 		 * filesystem.
807 		 *
808 		 * Because of this we can throw away failed UNDO buffers.  If
809 		 * we throw away META or DATA buffers we risk corrupting
810 		 * the now read-only version of the filesystem visible to
811 		 * the user.  Clear B_ERROR so the buffer is not re-dirtied
812 		 * by the kernel and ref the io so it doesn't get thrown
813 		 * away.
814 		 */
815 		if (bp->b_flags & B_ERROR) {
816 			hammer_critical_error(iou->io.hmp, NULL, bp->b_error,
817 					      "while flushing meta-data");
818 			switch(iou->io.type) {
819 			case HAMMER_STRUCTURE_UNDO_BUFFER:
820 				break;
821 			default:
822 				if (iou->io.ioerror == 0) {
823 					iou->io.ioerror = 1;
824 					if (iou->io.lock.refs == 0)
825 						++hammer_count_refedbufs;
826 					hammer_ref(&iou->io.lock);
827 				}
828 				break;
829 			}
830 			bp->b_flags &= ~B_ERROR;
831 			bundirty(bp);
832 #if 0
833 			hammer_io_set_modlist(&iou->io);
834 			iou->io.modified = 1;
835 #endif
836 		}
837 		hammer_stats_disk_write += iou->io.bytes;
838 		hammer_count_io_running_write -= iou->io.bytes;
839 		iou->io.hmp->io_running_space -= iou->io.bytes;
840 		if (iou->io.hmp->io_running_space == 0)
841 			wakeup(&iou->io.hmp->io_running_space);
842 		KKASSERT(iou->io.hmp->io_running_space >= 0);
843 		iou->io.running = 0;
844 	} else {
845 		hammer_stats_disk_read += iou->io.bytes;
846 	}
847 
848 	if (iou->io.waiting) {
849 		iou->io.waiting = 0;
850 		wakeup(iou);
851 	}
852 
853 	/*
854 	 * If B_LOCKED is set someone wanted to deallocate the bp at some
855 	 * point, do it now if refs has become zero.
856 	 */
857 	if ((bp->b_flags & B_LOCKED) && iou->io.lock.refs == 0) {
858 		KKASSERT(iou->io.modified == 0);
859 		--hammer_count_io_locked;
860 		bp->b_flags &= ~B_LOCKED;
861 		hammer_io_deallocate(bp);
862 		/* structure may be dead now */
863 	}
864 }
865 
866 /*
867  * Callback from kernel when it wishes to deallocate a passively
868  * associated structure.  This mostly occurs with clean buffers
869  * but it may be possible for a holding structure to be marked dirty
870  * while its buffer is passively associated.  The caller owns the bp.
871  *
872  * If we cannot disassociate we set B_LOCKED to prevent the buffer
873  * from getting reused.
874  *
875  * WARNING: Because this can be called directly by getnewbuf we cannot
876  * recurse into the tree.  If a bp cannot be immediately disassociated
877  * our only recourse is to set B_LOCKED.
878  *
879  * WARNING: This may be called from an interrupt via hammer_io_complete()
880  */
881 static void
882 hammer_io_deallocate(struct buf *bp)
883 {
884 	hammer_io_structure_t iou = (void *)LIST_FIRST(&bp->b_dep);
885 
886 	KKASSERT((bp->b_flags & B_LOCKED) == 0 && iou->io.running == 0);
887 	if (iou->io.lock.refs > 0 || iou->io.modified) {
888 		/*
889 		 * It is not legal to disassociate a modified buffer.  This
890 		 * case really shouldn't ever occur.
891 		 */
892 		bp->b_flags |= B_LOCKED;
893 		++hammer_count_io_locked;
894 	} else {
895 		/*
896 		 * Disassociate the BP.  If the io has no refs left we
897 		 * have to add it to the loose list.
898 		 */
899 		hammer_io_disassociate(iou);
900 		if (iou->io.type != HAMMER_STRUCTURE_VOLUME) {
901 			KKASSERT(iou->io.bp == NULL);
902 			KKASSERT(iou->io.mod_list == NULL);
903 			crit_enter();	/* biodone race against list */
904 			iou->io.mod_list = &iou->io.hmp->lose_list;
905 			TAILQ_INSERT_TAIL(iou->io.mod_list, &iou->io, mod_entry);
906 			crit_exit();
907 		}
908 	}
909 }
910 
911 static int
912 hammer_io_fsync(struct vnode *vp)
913 {
914 	return(0);
915 }
916 
917 /*
918  * NOTE: will not be called unless we tell the kernel about the
919  * bioops.  Unused... we use the mount's VFS_SYNC instead.
920  */
921 static int
922 hammer_io_sync(struct mount *mp)
923 {
924 	return(0);
925 }
926 
927 static void
928 hammer_io_movedeps(struct buf *bp1, struct buf *bp2)
929 {
930 }
931 
932 /*
933  * I/O pre-check for reading and writing.  HAMMER only uses this for
934  * B_CACHE buffers so checkread just shouldn't happen, but if it does
935  * allow it.
936  *
937  * Writing is a different case.  We don't want the kernel to try to write
938  * out a buffer that HAMMER may be modifying passively or which has a
939  * dependancy.  In addition, kernel-demanded writes can only proceed for
940  * certain types of buffers (i.e. UNDO and DATA types).  Other dirty
941  * buffer types can only be explicitly written by the flusher.
942  *
943  * checkwrite will only be called for bdwrite()n buffers.  If we return
944  * success the kernel is guaranteed to initiate the buffer write.
945  */
946 static int
947 hammer_io_checkread(struct buf *bp)
948 {
949 	return(0);
950 }
951 
952 static int
953 hammer_io_checkwrite(struct buf *bp)
954 {
955 	hammer_io_t io = (void *)LIST_FIRST(&bp->b_dep);
956 
957 	/*
958 	 * This shouldn't happen under normal operation.
959 	 */
960 	if (io->type == HAMMER_STRUCTURE_VOLUME ||
961 	    io->type == HAMMER_STRUCTURE_META_BUFFER) {
962 		if (!panicstr)
963 			panic("hammer_io_checkwrite: illegal buffer");
964 		if ((bp->b_flags & B_LOCKED) == 0) {
965 			bp->b_flags |= B_LOCKED;
966 			++hammer_count_io_locked;
967 		}
968 		return(1);
969 	}
970 
971 	/*
972 	 * We can only clear the modified bit if the IO is not currently
973 	 * undergoing modification.  Otherwise we may miss changes.
974 	 *
975 	 * Only data and undo buffers can reach here.  These buffers do
976 	 * not have terminal crc functions but we temporarily reference
977 	 * the IO anyway, just in case.
978 	 */
979 	if (io->modify_refs == 0 && io->modified) {
980 		hammer_ref(&io->lock);
981 		hammer_io_clear_modify(io, 0);
982 		hammer_unref(&io->lock);
983 	} else if (io->modified) {
984 		KKASSERT(io->type == HAMMER_STRUCTURE_DATA_BUFFER);
985 	}
986 
987 	/*
988 	 * The kernel is going to start the IO, set io->running.
989 	 */
990 	KKASSERT(io->running == 0);
991 	io->running = 1;
992 	io->hmp->io_running_space += io->bytes;
993 	hammer_count_io_running_write += io->bytes;
994 	return(0);
995 }
996 
997 /*
998  * Return non-zero if we wish to delay the kernel's attempt to flush
999  * this buffer to disk.
1000  */
1001 static int
1002 hammer_io_countdeps(struct buf *bp, int n)
1003 {
1004 	return(0);
1005 }
1006 
1007 struct bio_ops hammer_bioops = {
1008 	.io_start	= hammer_io_start,
1009 	.io_complete	= hammer_io_complete,
1010 	.io_deallocate	= hammer_io_deallocate,
1011 	.io_fsync	= hammer_io_fsync,
1012 	.io_sync	= hammer_io_sync,
1013 	.io_movedeps	= hammer_io_movedeps,
1014 	.io_countdeps	= hammer_io_countdeps,
1015 	.io_checkread	= hammer_io_checkread,
1016 	.io_checkwrite	= hammer_io_checkwrite,
1017 };
1018 
1019 /************************************************************************
1020  *				DIRECT IO OPS 				*
1021  ************************************************************************
1022  *
1023  * These functions operate directly on the buffer cache buffer associated
1024  * with a front-end vnode rather then a back-end device vnode.
1025  */
1026 
1027 /*
1028  * Read a buffer associated with a front-end vnode directly from the
1029  * disk media.  The bio may be issued asynchronously.  If leaf is non-NULL
1030  * we validate the CRC.
1031  *
1032  * We must check for the presence of a HAMMER buffer to handle the case
1033  * where the reblocker has rewritten the data (which it does via the HAMMER
1034  * buffer system, not via the high-level vnode buffer cache), but not yet
1035  * committed the buffer to the media.
1036  */
1037 int
1038 hammer_io_direct_read(hammer_mount_t hmp, struct bio *bio,
1039 		      hammer_btree_leaf_elm_t leaf)
1040 {
1041 	hammer_off_t buf_offset;
1042 	hammer_off_t zone2_offset;
1043 	hammer_volume_t volume;
1044 	struct buf *bp;
1045 	struct bio *nbio;
1046 	int vol_no;
1047 	int error;
1048 
1049 	buf_offset = bio->bio_offset;
1050 	KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) ==
1051 		 HAMMER_ZONE_LARGE_DATA);
1052 
1053 	/*
1054 	 * The buffer cache may have an aliased buffer (the reblocker can
1055 	 * write them).  If it does we have to sync any dirty data before
1056 	 * we can build our direct-read.  This is a non-critical code path.
1057 	 */
1058 	bp = bio->bio_buf;
1059 	hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize);
1060 
1061 	/*
1062 	 * Resolve to a zone-2 offset.  The conversion just requires
1063 	 * munging the top 4 bits but we want to abstract it anyway
1064 	 * so the blockmap code can verify the zone assignment.
1065 	 */
1066 	zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1067 	if (error)
1068 		goto done;
1069 	KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
1070 		 HAMMER_ZONE_RAW_BUFFER);
1071 
1072 	/*
1073 	 * Resolve volume and raw-offset for 3rd level bio.  The
1074 	 * offset will be specific to the volume.
1075 	 */
1076 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
1077 	volume = hammer_get_volume(hmp, vol_no, &error);
1078 	if (error == 0 && zone2_offset >= volume->maxbuf_off)
1079 		error = EIO;
1080 
1081 	if (error == 0) {
1082 		/*
1083 		 * 3rd level bio
1084 		 */
1085 		nbio = push_bio(bio);
1086 		nbio->bio_offset = volume->ondisk->vol_buf_beg +
1087 				   (zone2_offset & HAMMER_OFF_SHORT_MASK);
1088 #if 0
1089 		/*
1090 		 * XXX disabled - our CRC check doesn't work if the OS
1091 		 * does bogus_page replacement on the direct-read.
1092 		 */
1093 		if (leaf && hammer_verify_data) {
1094 			nbio->bio_done = hammer_io_direct_read_complete;
1095 			nbio->bio_caller_info1.uvalue32 = leaf->data_crc;
1096 		}
1097 #endif
1098 		hammer_stats_disk_read += bp->b_bufsize;
1099 		vn_strategy(volume->devvp, nbio);
1100 	}
1101 	hammer_rel_volume(volume, 0);
1102 done:
1103 	if (error) {
1104 		kprintf("hammer_direct_read: failed @ %016llx\n",
1105 			zone2_offset);
1106 		bp->b_error = error;
1107 		bp->b_flags |= B_ERROR;
1108 		biodone(bio);
1109 	}
1110 	return(error);
1111 }
1112 
1113 #if 0
1114 /*
1115  * On completion of the BIO this callback must check the data CRC
1116  * and chain to the previous bio.
1117  */
1118 static
1119 void
1120 hammer_io_direct_read_complete(struct bio *nbio)
1121 {
1122 	struct bio *obio;
1123 	struct buf *bp;
1124 	u_int32_t rec_crc = nbio->bio_caller_info1.uvalue32;
1125 
1126 	bp = nbio->bio_buf;
1127 	if (crc32(bp->b_data, bp->b_bufsize) != rec_crc) {
1128 		kprintf("HAMMER: data_crc error @%016llx/%d\n",
1129 			nbio->bio_offset, bp->b_bufsize);
1130 		if (hammer_debug_debug)
1131 			Debugger("");
1132 		bp->b_flags |= B_ERROR;
1133 		bp->b_error = EIO;
1134 	}
1135 	obio = pop_bio(nbio);
1136 	biodone(obio);
1137 }
1138 #endif
1139 
1140 /*
1141  * Write a buffer associated with a front-end vnode directly to the
1142  * disk media.  The bio may be issued asynchronously.
1143  *
1144  * The BIO is associated with the specified record and RECF_DIRECT_IO
1145  * is set.  The recorded is added to its object.
1146  */
1147 int
1148 hammer_io_direct_write(hammer_mount_t hmp, hammer_record_t record,
1149 		       struct bio *bio)
1150 {
1151 	hammer_btree_leaf_elm_t leaf = &record->leaf;
1152 	hammer_off_t buf_offset;
1153 	hammer_off_t zone2_offset;
1154 	hammer_volume_t volume;
1155 	hammer_buffer_t buffer;
1156 	struct buf *bp;
1157 	struct bio *nbio;
1158 	char *ptr;
1159 	int vol_no;
1160 	int error;
1161 
1162 	buf_offset = leaf->data_offset;
1163 
1164 	KKASSERT(buf_offset > HAMMER_ZONE_BTREE);
1165 	KKASSERT(bio->bio_buf->b_cmd == BUF_CMD_WRITE);
1166 
1167 	if ((buf_offset & HAMMER_BUFMASK) == 0 &&
1168 	    leaf->data_len >= HAMMER_BUFSIZE) {
1169 		/*
1170 		 * We are using the vnode's bio to write directly to the
1171 		 * media, any hammer_buffer at the same zone-X offset will
1172 		 * now have stale data.
1173 		 */
1174 		zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1175 		vol_no = HAMMER_VOL_DECODE(zone2_offset);
1176 		volume = hammer_get_volume(hmp, vol_no, &error);
1177 
1178 		if (error == 0 && zone2_offset >= volume->maxbuf_off)
1179 			error = EIO;
1180 		if (error == 0) {
1181 			bp = bio->bio_buf;
1182 			KKASSERT((bp->b_bufsize & HAMMER_BUFMASK) == 0);
1183 			/*
1184 			hammer_del_buffers(hmp, buf_offset,
1185 					   zone2_offset, bp->b_bufsize);
1186 			*/
1187 
1188 			/*
1189 			 * Second level bio - cached zone2 offset.
1190 			 *
1191 			 * (We can put our bio_done function in either the
1192 			 *  2nd or 3rd level).
1193 			 */
1194 			nbio = push_bio(bio);
1195 			nbio->bio_offset = zone2_offset;
1196 			nbio->bio_done = hammer_io_direct_write_complete;
1197 			nbio->bio_caller_info1.ptr = record;
1198 			record->zone2_offset = zone2_offset;
1199 			record->flags |= HAMMER_RECF_DIRECT_IO |
1200 					 HAMMER_RECF_DIRECT_INVAL;
1201 
1202 			/*
1203 			 * Third level bio - raw offset specific to the
1204 			 * correct volume.
1205 			 */
1206 			zone2_offset &= HAMMER_OFF_SHORT_MASK;
1207 			nbio = push_bio(nbio);
1208 			nbio->bio_offset = volume->ondisk->vol_buf_beg +
1209 					   zone2_offset;
1210 			hammer_stats_disk_write += bp->b_bufsize;
1211 			vn_strategy(volume->devvp, nbio);
1212 			hammer_io_flush_mark(volume);
1213 		}
1214 		hammer_rel_volume(volume, 0);
1215 	} else {
1216 		/*
1217 		 * Must fit in a standard HAMMER buffer.  In this case all
1218 		 * consumers use the HAMMER buffer system and RECF_DIRECT_IO
1219 		 * does not need to be set-up.
1220 		 */
1221 		KKASSERT(((buf_offset ^ (buf_offset + leaf->data_len - 1)) & ~HAMMER_BUFMASK64) == 0);
1222 		buffer = NULL;
1223 		ptr = hammer_bread(hmp, buf_offset, &error, &buffer);
1224 		if (error == 0) {
1225 			bp = bio->bio_buf;
1226 			bp->b_flags |= B_AGE;
1227 			hammer_io_modify(&buffer->io, 1);
1228 			bcopy(bp->b_data, ptr, leaf->data_len);
1229 			hammer_io_modify_done(&buffer->io);
1230 			hammer_rel_buffer(buffer, 0);
1231 			bp->b_resid = 0;
1232 			biodone(bio);
1233 		}
1234 	}
1235 	if (error == 0) {
1236 		/*
1237 		 * The record is all setup now, add it.  Potential conflics
1238 		 * have already been dealt with.
1239 		 */
1240 		error = hammer_mem_add(record);
1241 		KKASSERT(error == 0);
1242 	} else {
1243 		/*
1244 		 * Major suckage occured.
1245 		 */
1246 		kprintf("hammer_direct_write: failed @ %016llx\n",
1247 			leaf->data_offset);
1248 		bp = bio->bio_buf;
1249 		bp->b_resid = 0;
1250 		bp->b_error = EIO;
1251 		bp->b_flags |= B_ERROR;
1252 		biodone(bio);
1253 		record->flags |= HAMMER_RECF_DELETED_FE;
1254 		hammer_rel_mem_record(record);
1255 	}
1256 	return(error);
1257 }
1258 
1259 /*
1260  * On completion of the BIO this callback must disconnect
1261  * it from the hammer_record and chain to the previous bio.
1262  *
1263  * An I/O error forces the mount to read-only.  Data buffers
1264  * are not B_LOCKED like meta-data buffers are, so we have to
1265  * throw the buffer away to prevent the kernel from retrying.
1266  */
1267 static
1268 void
1269 hammer_io_direct_write_complete(struct bio *nbio)
1270 {
1271 	struct bio *obio;
1272 	struct buf *bp;
1273 	hammer_record_t record = nbio->bio_caller_info1.ptr;
1274 
1275 	bp = nbio->bio_buf;
1276 	obio = pop_bio(nbio);
1277 	if (bp->b_flags & B_ERROR) {
1278 		hammer_critical_error(record->ip->hmp, record->ip,
1279 				      bp->b_error,
1280 				      "while writing bulk data");
1281 		bp->b_flags |= B_INVAL;
1282 	}
1283 	biodone(obio);
1284 
1285 	KKASSERT(record != NULL);
1286 	KKASSERT(record->flags & HAMMER_RECF_DIRECT_IO);
1287 	record->flags &= ~HAMMER_RECF_DIRECT_IO;
1288 	if (record->flags & HAMMER_RECF_DIRECT_WAIT) {
1289 		record->flags &= ~HAMMER_RECF_DIRECT_WAIT;
1290 		wakeup(&record->flags);
1291 	}
1292 }
1293 
1294 
1295 /*
1296  * This is called before a record is either committed to the B-Tree
1297  * or destroyed, to resolve any associated direct-IO.
1298  *
1299  * (1) We must wait for any direct-IO related to the record to complete.
1300  *
1301  * (2) We must remove any buffer cache aliases for data accessed via
1302  *     leaf->data_offset or zone2_offset so non-direct-IO consumers
1303  *     (the mirroring and reblocking code) do not see stale data.
1304  */
1305 void
1306 hammer_io_direct_wait(hammer_record_t record)
1307 {
1308 	/*
1309 	 * Wait for I/O to complete
1310 	 */
1311 	if (record->flags & HAMMER_RECF_DIRECT_IO) {
1312 		crit_enter();
1313 		while (record->flags & HAMMER_RECF_DIRECT_IO) {
1314 			record->flags |= HAMMER_RECF_DIRECT_WAIT;
1315 			tsleep(&record->flags, 0, "hmdiow", 0);
1316 		}
1317 		crit_exit();
1318 	}
1319 
1320 	/*
1321 	 * Invalidate any related buffer cache aliases.
1322 	 */
1323 	if (record->flags & HAMMER_RECF_DIRECT_INVAL) {
1324 		KKASSERT(record->leaf.data_offset);
1325 		hammer_del_buffers(record->ip->hmp,
1326 				   record->leaf.data_offset,
1327 				   record->zone2_offset,
1328 				   record->leaf.data_len);
1329 		record->flags &= ~HAMMER_RECF_DIRECT_INVAL;
1330 	}
1331 }
1332 
1333 /*
1334  * This is called to remove the second-level cached zone-2 offset from
1335  * frontend buffer cache buffers, now stale due to a data relocation.
1336  * These offsets are generated by cluster_read() via VOP_BMAP, or directly
1337  * by hammer_vop_strategy_read().
1338  *
1339  * This is rather nasty because here we have something like the reblocker
1340  * scanning the raw B-Tree with no held references on anything, really,
1341  * other then a shared lock on the B-Tree node, and we have to access the
1342  * frontend's buffer cache to check for and clean out the association.
1343  * Specifically, if the reblocker is moving data on the disk, these cached
1344  * offsets will become invalid.
1345  *
1346  * Only data record types associated with the large-data zone are subject
1347  * to direct-io and need to be checked.
1348  *
1349  */
1350 void
1351 hammer_io_direct_uncache(hammer_mount_t hmp, hammer_btree_leaf_elm_t leaf)
1352 {
1353 	struct hammer_inode_info iinfo;
1354 	int zone;
1355 
1356 	if (leaf->base.rec_type != HAMMER_RECTYPE_DATA)
1357 		return;
1358 	zone = HAMMER_ZONE_DECODE(leaf->data_offset);
1359 	if (zone != HAMMER_ZONE_LARGE_DATA_INDEX)
1360 		return;
1361 	iinfo.obj_id = leaf->base.obj_id;
1362 	iinfo.obj_asof = 0;	/* unused */
1363 	iinfo.obj_localization = leaf->base.localization &
1364 				 HAMMER_LOCALIZE_PSEUDOFS_MASK;
1365 	iinfo.u.leaf = leaf;
1366 	hammer_scan_inode_snapshots(hmp, &iinfo,
1367 				    hammer_io_direct_uncache_callback,
1368 				    leaf);
1369 }
1370 
1371 static int
1372 hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data)
1373 {
1374 	hammer_inode_info_t iinfo = data;
1375 	hammer_off_t data_offset;
1376 	hammer_off_t file_offset;
1377 	struct vnode *vp;
1378 	struct buf *bp;
1379 	int blksize;
1380 
1381 	if (ip->vp == NULL)
1382 		return(0);
1383 	data_offset = iinfo->u.leaf->data_offset;
1384 	file_offset = iinfo->u.leaf->base.key - iinfo->u.leaf->data_len;
1385 	blksize = iinfo->u.leaf->data_len;
1386 	KKASSERT((blksize & HAMMER_BUFMASK) == 0);
1387 
1388 	hammer_ref(&ip->lock);
1389 	if (hammer_get_vnode(ip, &vp) == 0) {
1390 		if ((bp = findblk(ip->vp, file_offset)) != NULL &&
1391 		    bp->b_bio2.bio_offset != NOOFFSET) {
1392 			bp = getblk(ip->vp, file_offset, blksize, 0, 0);
1393 			bp->b_bio2.bio_offset = NOOFFSET;
1394 			brelse(bp);
1395 		}
1396 		vput(vp);
1397 	}
1398 	hammer_rel_inode(ip, 0);
1399 	return(0);
1400 }
1401 
1402 
1403 /*
1404  * This function is called when writes may have occured on the volume,
1405  * indicating that the device may be holding cached writes.
1406  */
1407 static void
1408 hammer_io_flush_mark(hammer_volume_t volume)
1409 {
1410 	volume->vol_flags |= HAMMER_VOLF_NEEDFLUSH;
1411 }
1412 
1413 /*
1414  * This function ensures that the device has flushed any cached writes out.
1415  */
1416 void
1417 hammer_io_flush_sync(hammer_mount_t hmp)
1418 {
1419 	hammer_volume_t volume;
1420 	struct buf *bp_base = NULL;
1421 	struct buf *bp;
1422 
1423 	RB_FOREACH(volume, hammer_vol_rb_tree, &hmp->rb_vols_root) {
1424 		if (volume->vol_flags & HAMMER_VOLF_NEEDFLUSH) {
1425 			volume->vol_flags &= ~HAMMER_VOLF_NEEDFLUSH;
1426 			bp = getpbuf(NULL);
1427 			bp->b_bio1.bio_offset = 0;
1428 			bp->b_bufsize = 0;
1429 			bp->b_bcount = 0;
1430 			bp->b_cmd = BUF_CMD_FLUSH;
1431 			bp->b_bio1.bio_caller_info1.cluster_head = bp_base;
1432 			bp->b_bio1.bio_done = hammer_io_flush_sync_done;
1433 			bp->b_flags |= B_ASYNC;
1434 			bp_base = bp;
1435 			vn_strategy(volume->devvp, &bp->b_bio1);
1436 		}
1437 	}
1438 	while ((bp = bp_base) != NULL) {
1439 		bp_base = bp->b_bio1.bio_caller_info1.cluster_head;
1440 		while (bp->b_cmd != BUF_CMD_DONE) {
1441 			crit_enter();
1442 			tsleep_interlock(&bp->b_cmd);
1443 			if (bp->b_cmd != BUF_CMD_DONE)
1444 				tsleep(&bp->b_cmd, 0, "hmrFLS", 0);
1445 			crit_exit();
1446 		}
1447 		bp->b_flags &= ~B_ASYNC;
1448 		relpbuf(bp, NULL);
1449 	}
1450 }
1451 
1452 /*
1453  * Callback to deal with completed flush commands to the device.
1454  */
1455 static void
1456 hammer_io_flush_sync_done(struct bio *bio)
1457 {
1458 	struct buf *bp;
1459 
1460 	bp = bio->bio_buf;
1461 	bp->b_cmd = BUF_CMD_DONE;
1462 	wakeup(&bp->b_cmd);
1463 }
1464 
1465