xref: /dragonfly/sys/vfs/hammer/hammer_io.c (revision cfd1aba3)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * IO Primitives and buffer cache management
36  *
37  * All major data-tracking structures in HAMMER contain a struct hammer_io
38  * which is used to manage their backing store.  We use filesystem buffers
39  * for backing store and we leave them passively associated with their
40  * HAMMER structures.
41  *
42  * If the kernel tries to destroy a passively associated buf which we cannot
43  * yet let go we set B_LOCKED in the buffer and then actively released it
44  * later when we can.
45  *
46  * The io_token is required for anything which might race bioops and bio_done
47  * callbacks, with one exception: A successful hammer_try_interlock_norefs().
48  * the fs_token will be held in all other cases.
49  */
50 
51 #include "hammer.h"
52 #include <sys/fcntl.h>
53 #include <sys/nlookup.h>
54 #include <sys/buf.h>
55 
56 #include <sys/buf2.h>
57 
58 static void hammer_io_modify(hammer_io_t io, int count);
59 static void hammer_io_deallocate(struct buf *bp);
60 static void hammer_indirect_callback(struct bio *bio);
61 static void hammer_io_direct_write_complete(struct bio *nbio);
62 static int hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data);
63 static void hammer_io_set_modlist(struct hammer_io *io);
64 static void hammer_io_flush_mark(hammer_volume_t volume);
65 
66 static int
67 hammer_mod_rb_compare(hammer_io_t io1, hammer_io_t io2)
68 {
69 	hammer_off_t io1_offset;
70 	hammer_off_t io2_offset;
71 
72 	io1_offset = ((io1->offset & HAMMER_OFF_SHORT_MASK) << 8) |
73 		     io1->volume->vol_no;
74 	io2_offset = ((io2->offset & HAMMER_OFF_SHORT_MASK) << 8) |
75 		     io2->volume->vol_no;
76 
77 	if (io1_offset < io2_offset)
78 		return(-1);
79 	if (io1_offset > io2_offset)
80 		return(1);
81 	return(0);
82 }
83 
84 RB_GENERATE(hammer_mod_rb_tree, hammer_io, rb_node, hammer_mod_rb_compare);
85 
86 /*
87  * Initialize a new, already-zero'd hammer_io structure, or reinitialize
88  * an existing hammer_io structure which may have switched to another type.
89  */
90 void
91 hammer_io_init(hammer_io_t io, hammer_volume_t volume, enum hammer_io_type type)
92 {
93 	io->volume = volume;
94 	io->hmp = volume->io.hmp;
95 	io->type = type;
96 }
97 
98 /*
99  * Helper routine to disassociate a buffer cache buffer from an I/O
100  * structure.  The io must be interlocked and marked appropriately for
101  * reclamation.
102  *
103  * The io must be in a released state with the io->bp owned and
104  * locked by the caller of this function.  When not called from an
105  * io_deallocate() this cannot race an io_deallocate() since the
106  * kernel would be unable to get the buffer lock in that case.
107  * (The released state in this case means we own the bp, not the
108  * hammer_io structure).
109  *
110  * The io may have 0 or 1 references depending on who called us.  The
111  * caller is responsible for dealing with the refs.
112  *
113  * This call can only be made when no action is required on the buffer.
114  *
115  * This function is guaranteed not to race against anything because we
116  * own both the io lock and the bp lock and are interlocked with no
117  * references.
118  */
119 static void
120 hammer_io_disassociate(hammer_io_structure_t iou)
121 {
122 	struct buf *bp = iou->io.bp;
123 
124 	KKASSERT(iou->io.released);
125 	KKASSERT(iou->io.modified == 0);
126 	KKASSERT(LIST_FIRST(&bp->b_dep) == (void *)iou);
127 	buf_dep_init(bp);
128 	iou->io.bp = NULL;
129 
130 	/*
131 	 * If the buffer was locked someone wanted to get rid of it.
132 	 */
133 	if (bp->b_flags & B_LOCKED) {
134 		atomic_add_int(&hammer_count_io_locked, -1);
135 		bp->b_flags &= ~B_LOCKED;
136 	}
137 	if (iou->io.reclaim) {
138 		bp->b_flags |= B_NOCACHE|B_RELBUF;
139 		iou->io.reclaim = 0;
140 	}
141 
142 	switch(iou->io.type) {
143 	case HAMMER_STRUCTURE_VOLUME:
144 		iou->volume.ondisk = NULL;
145 		break;
146 	case HAMMER_STRUCTURE_DATA_BUFFER:
147 	case HAMMER_STRUCTURE_META_BUFFER:
148 	case HAMMER_STRUCTURE_UNDO_BUFFER:
149 		iou->buffer.ondisk = NULL;
150 		break;
151 	case HAMMER_STRUCTURE_DUMMY:
152 		panic("hammer_io_disassociate: bad io type");
153 		break;
154 	}
155 }
156 
157 /*
158  * Wait for any physical IO to complete
159  *
160  * XXX we aren't interlocked against a spinlock or anything so there
161  *     is a small window in the interlock / io->running == 0 test.
162  */
163 void
164 hammer_io_wait(hammer_io_t io)
165 {
166 	if (io->running) {
167 		hammer_mount_t hmp = io->hmp;
168 
169 		lwkt_gettoken(&hmp->io_token);
170 		while (io->running) {
171 			io->waiting = 1;
172 			tsleep_interlock(io, 0);
173 			if (io->running)
174 				tsleep(io, PINTERLOCKED, "hmrflw", hz);
175 		}
176 		lwkt_reltoken(&hmp->io_token);
177 	}
178 }
179 
180 /*
181  * Wait for all currently queued HAMMER-initiated I/Os to complete.
182  *
183  * This is not supposed to count direct I/O's but some can leak
184  * through (for non-full-sized direct I/Os).
185  */
186 void
187 hammer_io_wait_all(hammer_mount_t hmp, const char *ident, int doflush)
188 {
189 	struct hammer_io iodummy;
190 	hammer_io_t io;
191 
192 	/*
193 	 * Degenerate case, no I/O is running
194 	 */
195 	lwkt_gettoken(&hmp->io_token);
196 	if (TAILQ_EMPTY(&hmp->iorun_list)) {
197 		lwkt_reltoken(&hmp->io_token);
198 		if (doflush)
199 			hammer_io_flush_sync(hmp);
200 		return;
201 	}
202 	bzero(&iodummy, sizeof(iodummy));
203 	iodummy.type = HAMMER_STRUCTURE_DUMMY;
204 
205 	/*
206 	 * Add placemarker and then wait until it becomes the head of
207 	 * the list.
208 	 */
209 	TAILQ_INSERT_TAIL(&hmp->iorun_list, &iodummy, iorun_entry);
210 	while (TAILQ_FIRST(&hmp->iorun_list) != &iodummy) {
211 		tsleep(&iodummy, 0, ident, 0);
212 	}
213 
214 	/*
215 	 * Chain in case several placemarkers are present.
216 	 */
217 	TAILQ_REMOVE(&hmp->iorun_list, &iodummy, iorun_entry);
218 	io = TAILQ_FIRST(&hmp->iorun_list);
219 	if (io && io->type == HAMMER_STRUCTURE_DUMMY)
220 		wakeup(io);
221 	lwkt_reltoken(&hmp->io_token);
222 
223 	if (doflush)
224 		hammer_io_flush_sync(hmp);
225 }
226 
227 /*
228  * Clear a flagged error condition on a I/O buffer.  The caller must hold
229  * its own ref on the buffer.
230  */
231 void
232 hammer_io_clear_error(struct hammer_io *io)
233 {
234 	hammer_mount_t hmp = io->hmp;
235 
236 	lwkt_gettoken(&hmp->io_token);
237 	if (io->ioerror) {
238 		io->ioerror = 0;
239 		hammer_rel(&io->lock);
240 		KKASSERT(hammer_isactive(&io->lock));
241 	}
242 	lwkt_reltoken(&hmp->io_token);
243 }
244 
245 void
246 hammer_io_clear_error_noassert(struct hammer_io *io)
247 {
248 	hammer_mount_t hmp = io->hmp;
249 
250 	lwkt_gettoken(&hmp->io_token);
251 	if (io->ioerror) {
252 		io->ioerror = 0;
253 		hammer_rel(&io->lock);
254 	}
255 	lwkt_reltoken(&hmp->io_token);
256 }
257 
258 /*
259  * This is an advisory function only which tells the buffer cache
260  * the bp is not a meta-data buffer, even though it is backed by
261  * a block device.
262  *
263  * This is used by HAMMER's reblocking code to avoid trying to
264  * swapcache the filesystem's data when it is read or written
265  * by the reblocking code.
266  *
267  * The caller has a ref on the buffer preventing the bp from
268  * being disassociated from it.
269  */
270 void
271 hammer_io_notmeta(hammer_buffer_t buffer)
272 {
273 	if ((buffer->io.bp->b_flags & B_NOTMETA) == 0) {
274 		hammer_mount_t hmp = buffer->io.hmp;
275 
276 		lwkt_gettoken(&hmp->io_token);
277 		buffer->io.bp->b_flags |= B_NOTMETA;
278 		lwkt_reltoken(&hmp->io_token);
279 	}
280 }
281 
282 /*
283  * Load bp for a HAMMER structure.  The io must be exclusively locked by
284  * the caller.
285  *
286  * This routine is mostly used on meta-data and small-data blocks.  Generally
287  * speaking HAMMER assumes some locality of reference and will cluster.
288  *
289  * Note that the caller (hammer_ondisk.c) may place further restrictions
290  * on clusterability via the limit (in bytes).  Typically large-data
291  * zones cannot be clustered due to their mixed buffer sizes.  This is
292  * not an issue since such clustering occurs in hammer_vnops at the
293  * regular file layer, whereas this is the buffered block device layer.
294  *
295  * No I/O callbacks can occur while we hold the buffer locked.
296  */
297 int
298 hammer_io_read(struct vnode *devvp, struct hammer_io *io, int limit)
299 {
300 	struct buf *bp;
301 	int   error;
302 
303 	if ((bp = io->bp) == NULL) {
304 		atomic_add_long(&hammer_count_io_running_read, io->bytes);
305 		if (hammer_cluster_enable && limit > io->bytes) {
306 			error = cluster_read(devvp, io->offset + limit,
307 					     io->offset, io->bytes,
308 					     HAMMER_CLUSTER_SIZE,
309 					     HAMMER_CLUSTER_SIZE,
310 					     &io->bp);
311 		} else {
312 			error = bread(devvp, io->offset, io->bytes, &io->bp);
313 		}
314 		hammer_stats_disk_read += io->bytes;
315 		atomic_add_long(&hammer_count_io_running_read, -io->bytes);
316 
317 		/*
318 		 * The code generally assumes b_ops/b_dep has been set-up,
319 		 * even if we error out here.
320 		 */
321 		bp = io->bp;
322 		if ((hammer_debug_io & 0x0001) && (bp->b_flags & B_IODEBUG)) {
323 			const char *metatype;
324 
325 			switch(io->type) {
326 			case HAMMER_STRUCTURE_VOLUME:
327 				metatype = "volume";
328 				break;
329 			case HAMMER_STRUCTURE_META_BUFFER:
330 				switch(((struct hammer_buffer *)io)->
331 					zoneX_offset & HAMMER_OFF_ZONE_MASK) {
332 				case HAMMER_ZONE_BTREE:
333 					metatype = "btree";
334 					break;
335 				case HAMMER_ZONE_META:
336 					metatype = "meta";
337 					break;
338 				case HAMMER_ZONE_FREEMAP:
339 					metatype = "freemap";
340 					break;
341 				default:
342 					metatype = "meta?";
343 					break;
344 				}
345 				break;
346 			case HAMMER_STRUCTURE_DATA_BUFFER:
347 				metatype = "data";
348 				break;
349 			case HAMMER_STRUCTURE_UNDO_BUFFER:
350 				metatype = "undo";
351 				break;
352 			default:
353 				metatype = "unknown";
354 				break;
355 			}
356 			kprintf("doff %016jx %s\n",
357 				(intmax_t)bp->b_bio2.bio_offset,
358 				metatype);
359 		}
360 		bp->b_flags &= ~B_IODEBUG;
361 		bp->b_ops = &hammer_bioops;
362 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
363 
364 		/* io->worklist is locked by the io lock */
365 		LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node);
366 		BUF_KERNPROC(bp);
367 		KKASSERT(io->modified == 0);
368 		KKASSERT(io->running == 0);
369 		KKASSERT(io->waiting == 0);
370 		io->released = 0;	/* we hold an active lock on bp */
371 	} else {
372 		error = 0;
373 	}
374 	return(error);
375 }
376 
377 /*
378  * Similar to hammer_io_read() but returns a zero'd out buffer instead.
379  * Must be called with the IO exclusively locked.
380  *
381  * vfs_bio_clrbuf() is kinda nasty, enforce serialization against background
382  * I/O by forcing the buffer to not be in a released state before calling
383  * it.
384  *
385  * This function will also mark the IO as modified but it will not
386  * increment the modify_refs count.
387  *
388  * No I/O callbacks can occur while we hold the buffer locked.
389  */
390 int
391 hammer_io_new(struct vnode *devvp, struct hammer_io *io)
392 {
393 	struct buf *bp;
394 
395 	if ((bp = io->bp) == NULL) {
396 		io->bp = getblk(devvp, io->offset, io->bytes, 0, 0);
397 		bp = io->bp;
398 		bp->b_ops = &hammer_bioops;
399 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
400 
401 		/* io->worklist is locked by the io lock */
402 		LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node);
403 		io->released = 0;
404 		KKASSERT(io->running == 0);
405 		io->waiting = 0;
406 		BUF_KERNPROC(bp);
407 	} else {
408 		if (io->released) {
409 			regetblk(bp);
410 			BUF_KERNPROC(bp);
411 			io->released = 0;
412 		}
413 	}
414 	hammer_io_modify(io, 0);
415 	vfs_bio_clrbuf(bp);
416 	return(0);
417 }
418 
419 /*
420  * Advance the activity count on the underlying buffer because
421  * HAMMER does not getblk/brelse on every access.
422  *
423  * The io->bp cannot go away while the buffer is referenced.
424  */
425 void
426 hammer_io_advance(struct hammer_io *io)
427 {
428 	if (io->bp)
429 		buf_act_advance(io->bp);
430 }
431 
432 /*
433  * Remove potential device level aliases against buffers managed by high level
434  * vnodes.  Aliases can also be created due to mixed buffer sizes or via
435  * direct access to the backing store device.
436  *
437  * This is nasty because the buffers are also VMIO-backed.  Even if a buffer
438  * does not exist its backing VM pages might, and we have to invalidate
439  * those as well or a getblk() will reinstate them.
440  *
441  * Buffer cache buffers associated with hammer_buffers cannot be
442  * invalidated.
443  */
444 int
445 hammer_io_inval(hammer_volume_t volume, hammer_off_t zone2_offset)
446 {
447 	hammer_io_structure_t iou;
448 	hammer_mount_t hmp;
449 	hammer_off_t phys_offset;
450 	struct buf *bp;
451 	int error;
452 
453 	hmp = volume->io.hmp;
454 	lwkt_gettoken(&hmp->io_token);
455 
456 	/*
457 	 * If a device buffer already exists for the specified physical
458 	 * offset use that, otherwise instantiate a buffer to cover any
459 	 * related VM pages, set BNOCACHE, and brelse().
460 	 */
461 	phys_offset = volume->ondisk->vol_buf_beg +
462 		      (zone2_offset & HAMMER_OFF_SHORT_MASK);
463 	if ((bp = findblk(volume->devvp, phys_offset, 0)) != NULL)
464 		bremfree(bp);
465 	else
466 		bp = getblk(volume->devvp, phys_offset, HAMMER_BUFSIZE, 0, 0);
467 
468 	if ((iou = (void *)LIST_FIRST(&bp->b_dep)) != NULL) {
469 #if 0
470 		hammer_ref(&iou->io.lock);
471 		hammer_io_clear_modify(&iou->io, 1);
472 		bundirty(bp);
473 		iou->io.released = 0;
474 		BUF_KERNPROC(bp);
475 		iou->io.reclaim = 1;
476 		iou->io.waitdep = 1;	/* XXX this is a fs_token field */
477 		KKASSERT(hammer_isactive(&iou->io.lock) == 1);
478 		hammer_rel_buffer(&iou->buffer, 0);
479 		/*hammer_io_deallocate(bp);*/
480 #endif
481 		bqrelse(bp);
482 		error = EAGAIN;
483 	} else {
484 		KKASSERT((bp->b_flags & B_LOCKED) == 0);
485 		bundirty(bp);
486 		bp->b_flags |= B_NOCACHE|B_RELBUF;
487 		brelse(bp);
488 		error = 0;
489 	}
490 	lwkt_reltoken(&hmp->io_token);
491 	return(error);
492 }
493 
494 /*
495  * This routine is called on the last reference to a hammer structure.
496  * The io must be interlocked with a refcount of zero.  The hammer structure
497  * will remain interlocked on return.
498  *
499  * This routine may return a non-NULL bp to the caller for dispoal.
500  * The caller typically brelse()'s the bp.
501  *
502  * The bp may or may not still be passively associated with the IO.  It
503  * will remain passively associated if it is unreleasable (e.g. a modified
504  * meta-data buffer).
505  *
506  * The only requirement here is that modified meta-data and volume-header
507  * buffer may NOT be disassociated from the IO structure, and consequently
508  * we also leave such buffers actively associated with the IO if they already
509  * are (since the kernel can't do anything with them anyway).  Only the
510  * flusher is allowed to write such buffers out.  Modified pure-data and
511  * undo buffers are returned to the kernel but left passively associated
512  * so we can track when the kernel writes the bp out.
513  */
514 struct buf *
515 hammer_io_release(struct hammer_io *io, int flush)
516 {
517 	union hammer_io_structure *iou = (void *)io;
518 	struct buf *bp;
519 
520 	if ((bp = io->bp) == NULL)
521 		return(NULL);
522 
523 	/*
524 	 * Try to flush a dirty IO to disk if asked to by the
525 	 * caller or if the kernel tried to flush the buffer in the past.
526 	 *
527 	 * Kernel-initiated flushes are only allowed for pure-data buffers.
528 	 * meta-data and volume buffers can only be flushed explicitly
529 	 * by HAMMER.
530 	 */
531 	if (io->modified) {
532 		if (flush) {
533 			hammer_io_flush(io, 0);
534 		} else if (bp->b_flags & B_LOCKED) {
535 			switch(io->type) {
536 			case HAMMER_STRUCTURE_DATA_BUFFER:
537 				hammer_io_flush(io, 0);
538 				break;
539 			case HAMMER_STRUCTURE_UNDO_BUFFER:
540 				hammer_io_flush(io, hammer_undo_reclaim(io));
541 				break;
542 			default:
543 				break;
544 			}
545 		} /* else no explicit request to flush the buffer */
546 	}
547 
548 	/*
549 	 * Wait for the IO to complete if asked to.  This occurs when
550 	 * the buffer must be disposed of definitively during an umount
551 	 * or buffer invalidation.
552 	 */
553 	if (io->waitdep && io->running) {
554 		hammer_io_wait(io);
555 	}
556 
557 	/*
558 	 * Return control of the buffer to the kernel (with the provisio
559 	 * that our bioops can override kernel decisions with regards to
560 	 * the buffer).
561 	 */
562 	if ((flush || io->reclaim) && io->modified == 0 && io->running == 0) {
563 		/*
564 		 * Always disassociate the bp if an explicit flush
565 		 * was requested and the IO completed with no error
566 		 * (so unmount can really clean up the structure).
567 		 */
568 		if (io->released) {
569 			regetblk(bp);
570 			BUF_KERNPROC(bp);
571 		} else {
572 			io->released = 1;
573 		}
574 		hammer_io_disassociate((hammer_io_structure_t)io);
575 		/* return the bp */
576 	} else if (io->modified) {
577 		/*
578 		 * Only certain IO types can be released to the kernel if
579 		 * the buffer has been modified.
580 		 *
581 		 * volume and meta-data IO types may only be explicitly
582 		 * flushed by HAMMER.
583 		 */
584 		switch(io->type) {
585 		case HAMMER_STRUCTURE_DATA_BUFFER:
586 		case HAMMER_STRUCTURE_UNDO_BUFFER:
587 			if (io->released == 0) {
588 				io->released = 1;
589 				bp->b_flags |= B_CLUSTEROK;
590 				bdwrite(bp);
591 			}
592 			break;
593 		default:
594 			break;
595 		}
596 		bp = NULL;	/* bp left associated */
597 	} else if (io->released == 0) {
598 		/*
599 		 * Clean buffers can be generally released to the kernel.
600 		 * We leave the bp passively associated with the HAMMER
601 		 * structure and use bioops to disconnect it later on
602 		 * if the kernel wants to discard the buffer.
603 		 *
604 		 * We can steal the structure's ownership of the bp.
605 		 */
606 		io->released = 1;
607 		if (bp->b_flags & B_LOCKED) {
608 			hammer_io_disassociate(iou);
609 			/* return the bp */
610 		} else {
611 			if (io->reclaim) {
612 				hammer_io_disassociate(iou);
613 				/* return the bp */
614 			} else {
615 				/* return the bp (bp passively associated) */
616 			}
617 		}
618 	} else {
619 		/*
620 		 * A released buffer is passively associate with our
621 		 * hammer_io structure.  The kernel cannot destroy it
622 		 * without making a bioops call.  If the kernel (B_LOCKED)
623 		 * or we (reclaim) requested that the buffer be destroyed
624 		 * we destroy it, otherwise we do a quick get/release to
625 		 * reset its position in the kernel's LRU list.
626 		 *
627 		 * Leaving the buffer passively associated allows us to
628 		 * use the kernel's LRU buffer flushing mechanisms rather
629 		 * then rolling our own.
630 		 *
631 		 * XXX there are two ways of doing this.  We can re-acquire
632 		 * and passively release to reset the LRU, or not.
633 		 */
634 		if (io->running == 0) {
635 			regetblk(bp);
636 			if ((bp->b_flags & B_LOCKED) || io->reclaim) {
637 				hammer_io_disassociate(iou);
638 				/* return the bp */
639 			} else {
640 				/* return the bp (bp passively associated) */
641 			}
642 		} else {
643 			/*
644 			 * bp is left passively associated but we do not
645 			 * try to reacquire it.  Interactions with the io
646 			 * structure will occur on completion of the bp's
647 			 * I/O.
648 			 */
649 			bp = NULL;
650 		}
651 	}
652 	return(bp);
653 }
654 
655 /*
656  * This routine is called with a locked IO when a flush is desired and
657  * no other references to the structure exists other then ours.  This
658  * routine is ONLY called when HAMMER believes it is safe to flush a
659  * potentially modified buffer out.
660  *
661  * The locked io or io reference prevents a flush from being initiated
662  * by the kernel.
663  */
664 void
665 hammer_io_flush(struct hammer_io *io, int reclaim)
666 {
667 	struct buf *bp;
668 	hammer_mount_t hmp;
669 
670 	/*
671 	 * Degenerate case - nothing to flush if nothing is dirty.
672 	 */
673 	if (io->modified == 0)
674 		return;
675 
676 	KKASSERT(io->bp);
677 	KKASSERT(io->modify_refs <= 0);
678 
679 	/*
680 	 * Acquire ownership of the bp, particularly before we clear our
681 	 * modified flag.
682 	 *
683 	 * We are going to bawrite() this bp.  Don't leave a window where
684 	 * io->released is set, we actually own the bp rather then our
685 	 * buffer.
686 	 *
687 	 * The io_token should not be required here as only
688 	 */
689 	hmp = io->hmp;
690 	bp = io->bp;
691 	if (io->released) {
692 		regetblk(bp);
693 		/* BUF_KERNPROC(io->bp); */
694 		/* io->released = 0; */
695 		KKASSERT(io->released);
696 		KKASSERT(io->bp == bp);
697 	} else {
698 		io->released = 1;
699 	}
700 
701 	if (reclaim) {
702 		io->reclaim = 1;
703 		if ((bp->b_flags & B_LOCKED) == 0) {
704 			bp->b_flags |= B_LOCKED;
705 			atomic_add_int(&hammer_count_io_locked, 1);
706 		}
707 	}
708 
709 	/*
710 	 * Acquire exclusive access to the bp and then clear the modified
711 	 * state of the buffer prior to issuing I/O to interlock any
712 	 * modifications made while the I/O is in progress.  This shouldn't
713 	 * happen anyway but losing data would be worse.  The modified bit
714 	 * will be rechecked after the IO completes.
715 	 *
716 	 * NOTE: This call also finalizes the buffer's content (inval == 0).
717 	 *
718 	 * This is only legal when lock.refs == 1 (otherwise we might clear
719 	 * the modified bit while there are still users of the cluster
720 	 * modifying the data).
721 	 *
722 	 * Do this before potentially blocking so any attempt to modify the
723 	 * ondisk while we are blocked blocks waiting for us.
724 	 */
725 	hammer_ref(&io->lock);
726 	hammer_io_clear_modify(io, 0);
727 	hammer_rel(&io->lock);
728 
729 	if (hammer_debug_io & 0x0002)
730 		kprintf("hammer io_write %016jx\n", bp->b_bio1.bio_offset);
731 
732 	/*
733 	 * Transfer ownership to the kernel and initiate I/O.
734 	 *
735 	 * NOTE: We do not hold io_token so an atomic op is required to
736 	 *	 update io_running_space.
737 	 */
738 	io->running = 1;
739 	atomic_add_long(&hmp->io_running_space, io->bytes);
740 	atomic_add_long(&hammer_count_io_running_write, io->bytes);
741 	lwkt_gettoken(&hmp->io_token);
742 	TAILQ_INSERT_TAIL(&hmp->iorun_list, io, iorun_entry);
743 	lwkt_reltoken(&hmp->io_token);
744 	cluster_awrite(bp);
745 	hammer_io_flush_mark(io->volume);
746 }
747 
748 /************************************************************************
749  *				BUFFER DIRTYING				*
750  ************************************************************************
751  *
752  * These routines deal with dependancies created when IO buffers get
753  * modified.  The caller must call hammer_modify_*() on a referenced
754  * HAMMER structure prior to modifying its on-disk data.
755  *
756  * Any intent to modify an IO buffer acquires the related bp and imposes
757  * various write ordering dependancies.
758  */
759 
760 /*
761  * Mark a HAMMER structure as undergoing modification.  Meta-data buffers
762  * are locked until the flusher can deal with them, pure data buffers
763  * can be written out.
764  *
765  * The referenced io prevents races.
766  */
767 static
768 void
769 hammer_io_modify(hammer_io_t io, int count)
770 {
771 	/*
772 	 * io->modify_refs must be >= 0
773 	 */
774 	while (io->modify_refs < 0) {
775 		io->waitmod = 1;
776 		tsleep(io, 0, "hmrmod", 0);
777 	}
778 
779 	/*
780 	 * Shortcut if nothing to do.
781 	 */
782 	KKASSERT(hammer_isactive(&io->lock) && io->bp != NULL);
783 	io->modify_refs += count;
784 	if (io->modified && io->released == 0)
785 		return;
786 
787 	/*
788 	 * NOTE: It is important not to set the modified bit
789 	 *	 until after we have acquired the bp or we risk
790 	 *	 racing against checkwrite.
791 	 */
792 	hammer_lock_ex(&io->lock);
793 	if (io->released) {
794 		regetblk(io->bp);
795 		BUF_KERNPROC(io->bp);
796 		io->released = 0;
797 	}
798 	if (io->modified == 0) {
799 		hammer_io_set_modlist(io);
800 		io->modified = 1;
801 	}
802 	hammer_unlock(&io->lock);
803 }
804 
805 static __inline
806 void
807 hammer_io_modify_done(hammer_io_t io)
808 {
809 	KKASSERT(io->modify_refs > 0);
810 	--io->modify_refs;
811 	if (io->modify_refs == 0 && io->waitmod) {
812 		io->waitmod = 0;
813 		wakeup(io);
814 	}
815 }
816 
817 /*
818  * The write interlock blocks other threads trying to modify a buffer
819  * (they block in hammer_io_modify()) after us, or blocks us while other
820  * threads are in the middle of modifying a buffer.
821  *
822  * The caller also has a ref on the io, however if we are not careful
823  * we will race bioops callbacks (checkwrite).  To deal with this
824  * we must at least acquire and release the io_token, and it is probably
825  * better to hold it through the setting of modify_refs.
826  */
827 void
828 hammer_io_write_interlock(hammer_io_t io)
829 {
830 	hammer_mount_t hmp = io->hmp;
831 
832 	lwkt_gettoken(&hmp->io_token);
833 	while (io->modify_refs != 0) {
834 		io->waitmod = 1;
835 		tsleep(io, 0, "hmrmod", 0);
836 	}
837 	io->modify_refs = -1;
838 	lwkt_reltoken(&hmp->io_token);
839 }
840 
841 void
842 hammer_io_done_interlock(hammer_io_t io)
843 {
844 	KKASSERT(io->modify_refs == -1);
845 	io->modify_refs = 0;
846 	if (io->waitmod) {
847 		io->waitmod = 0;
848 		wakeup(io);
849 	}
850 }
851 
852 /*
853  * Caller intends to modify a volume's ondisk structure.
854  *
855  * This is only allowed if we are the flusher or we have a ref on the
856  * sync_lock.
857  */
858 void
859 hammer_modify_volume(hammer_transaction_t trans, hammer_volume_t volume,
860 		     void *base, int len)
861 {
862 	KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
863 
864 	hammer_io_modify(&volume->io, 1);
865 	if (len) {
866 		intptr_t rel_offset = (intptr_t)base - (intptr_t)volume->ondisk;
867 		KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
868 		hammer_generate_undo(trans,
869 			 HAMMER_ENCODE_RAW_VOLUME(volume->vol_no, rel_offset),
870 			 base, len);
871 	}
872 }
873 
874 /*
875  * Caller intends to modify a buffer's ondisk structure.
876  *
877  * This is only allowed if we are the flusher or we have a ref on the
878  * sync_lock.
879  */
880 void
881 hammer_modify_buffer(hammer_transaction_t trans, hammer_buffer_t buffer,
882 		     void *base, int len)
883 {
884 	KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
885 
886 	hammer_io_modify(&buffer->io, 1);
887 	if (len) {
888 		intptr_t rel_offset = (intptr_t)base - (intptr_t)buffer->ondisk;
889 		KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
890 		hammer_generate_undo(trans,
891 				     buffer->zone2_offset + rel_offset,
892 				     base, len);
893 	}
894 }
895 
896 void
897 hammer_modify_volume_done(hammer_volume_t volume)
898 {
899 	hammer_io_modify_done(&volume->io);
900 }
901 
902 void
903 hammer_modify_buffer_done(hammer_buffer_t buffer)
904 {
905 	hammer_io_modify_done(&buffer->io);
906 }
907 
908 /*
909  * Mark an entity as not being dirty any more and finalize any
910  * delayed adjustments to the buffer.
911  *
912  * Delayed adjustments are an important performance enhancement, allowing
913  * us to avoid recalculating B-Tree node CRCs over and over again when
914  * making bulk-modifications to the B-Tree.
915  *
916  * If inval is non-zero delayed adjustments are ignored.
917  *
918  * This routine may dereference related btree nodes and cause the
919  * buffer to be dereferenced.  The caller must own a reference on io.
920  */
921 void
922 hammer_io_clear_modify(struct hammer_io *io, int inval)
923 {
924 	hammer_mount_t hmp;
925 
926 	/*
927 	 * io_token is needed to avoid races on mod_root
928 	 */
929 	if (io->modified == 0)
930 		return;
931 	hmp = io->hmp;
932 	lwkt_gettoken(&hmp->io_token);
933 	if (io->modified == 0) {
934 		lwkt_reltoken(&hmp->io_token);
935 		return;
936 	}
937 
938 	/*
939 	 * Take us off the mod-list and clear the modified bit.
940 	 */
941 	KKASSERT(io->mod_root != NULL);
942 	if (io->mod_root == &io->hmp->volu_root ||
943 	    io->mod_root == &io->hmp->meta_root) {
944 		io->hmp->locked_dirty_space -= io->bytes;
945 		atomic_add_long(&hammer_count_dirtybufspace, -io->bytes);
946 	}
947 	RB_REMOVE(hammer_mod_rb_tree, io->mod_root, io);
948 	io->mod_root = NULL;
949 	io->modified = 0;
950 
951 	lwkt_reltoken(&hmp->io_token);
952 
953 	/*
954 	 * If this bit is not set there are no delayed adjustments.
955 	 */
956 	if (io->gencrc == 0)
957 		return;
958 	io->gencrc = 0;
959 
960 	/*
961 	 * Finalize requested CRCs.  The NEEDSCRC flag also holds a reference
962 	 * on the node (& underlying buffer).  Release the node after clearing
963 	 * the flag.
964 	 */
965 	if (io->type == HAMMER_STRUCTURE_META_BUFFER) {
966 		hammer_buffer_t buffer = (void *)io;
967 		hammer_node_t node;
968 
969 restart:
970 		TAILQ_FOREACH(node, &buffer->clist, entry) {
971 			if ((node->flags & HAMMER_NODE_NEEDSCRC) == 0)
972 				continue;
973 			node->flags &= ~HAMMER_NODE_NEEDSCRC;
974 			KKASSERT(node->ondisk);
975 			if (inval == 0)
976 				node->ondisk->crc = crc32(&node->ondisk->crc + 1, HAMMER_BTREE_CRCSIZE);
977 			hammer_rel_node(node);
978 			goto restart;
979 		}
980 	}
981 	/* caller must still have ref on io */
982 	KKASSERT(hammer_isactive(&io->lock));
983 }
984 
985 /*
986  * Clear the IO's modify list.  Even though the IO is no longer modified
987  * it may still be on the lose_root.  This routine is called just before
988  * the governing hammer_buffer is destroyed.
989  *
990  * mod_root requires io_token protection.
991  */
992 void
993 hammer_io_clear_modlist(struct hammer_io *io)
994 {
995 	hammer_mount_t hmp = io->hmp;
996 
997 	KKASSERT(io->modified == 0);
998 	if (io->mod_root) {
999 		lwkt_gettoken(&hmp->io_token);
1000 		if (io->mod_root) {
1001 			KKASSERT(io->mod_root == &io->hmp->lose_root);
1002 			RB_REMOVE(hammer_mod_rb_tree, io->mod_root, io);
1003 			io->mod_root = NULL;
1004 		}
1005 		lwkt_reltoken(&hmp->io_token);
1006 	}
1007 }
1008 
1009 static void
1010 hammer_io_set_modlist(struct hammer_io *io)
1011 {
1012 	struct hammer_mount *hmp = io->hmp;
1013 
1014 	lwkt_gettoken(&hmp->io_token);
1015 	KKASSERT(io->mod_root == NULL);
1016 
1017 	switch(io->type) {
1018 	case HAMMER_STRUCTURE_VOLUME:
1019 		io->mod_root = &hmp->volu_root;
1020 		hmp->locked_dirty_space += io->bytes;
1021 		atomic_add_long(&hammer_count_dirtybufspace, io->bytes);
1022 		break;
1023 	case HAMMER_STRUCTURE_META_BUFFER:
1024 		io->mod_root = &hmp->meta_root;
1025 		hmp->locked_dirty_space += io->bytes;
1026 		atomic_add_long(&hammer_count_dirtybufspace, io->bytes);
1027 		break;
1028 	case HAMMER_STRUCTURE_UNDO_BUFFER:
1029 		io->mod_root = &hmp->undo_root;
1030 		break;
1031 	case HAMMER_STRUCTURE_DATA_BUFFER:
1032 		io->mod_root = &hmp->data_root;
1033 		break;
1034 	case HAMMER_STRUCTURE_DUMMY:
1035 		panic("hammer_io_set_modlist: bad io type");
1036 		break; /* NOT REACHED */
1037 	}
1038 	if (RB_INSERT(hammer_mod_rb_tree, io->mod_root, io)) {
1039 		panic("hammer_io_set_modlist: duplicate entry");
1040 		/* NOT REACHED */
1041 	}
1042 	lwkt_reltoken(&hmp->io_token);
1043 }
1044 
1045 /************************************************************************
1046  *				HAMMER_BIOOPS				*
1047  ************************************************************************
1048  *
1049  */
1050 
1051 /*
1052  * Pre-IO initiation kernel callback - cluster build only
1053  *
1054  * bioops callback - hold io_token
1055  */
1056 static void
1057 hammer_io_start(struct buf *bp)
1058 {
1059 	/* nothing to do, so io_token not needed */
1060 }
1061 
1062 /*
1063  * Post-IO completion kernel callback - MAY BE CALLED FROM INTERRUPT!
1064  *
1065  * NOTE: HAMMER may modify a data buffer after we have initiated write
1066  *	 I/O.
1067  *
1068  * NOTE: MPSAFE callback
1069  *
1070  * bioops callback - hold io_token
1071  */
1072 static void
1073 hammer_io_complete(struct buf *bp)
1074 {
1075 	union hammer_io_structure *iou = (void *)LIST_FIRST(&bp->b_dep);
1076 	struct hammer_mount *hmp = iou->io.hmp;
1077 	struct hammer_io *ionext;
1078 
1079 	lwkt_gettoken(&hmp->io_token);
1080 
1081 	KKASSERT(iou->io.released == 1);
1082 
1083 	/*
1084 	 * Deal with people waiting for I/O to drain
1085 	 */
1086 	if (iou->io.running) {
1087 		/*
1088 		 * Deal with critical write errors.  Once a critical error
1089 		 * has been flagged in hmp the UNDO FIFO will not be updated.
1090 		 * That way crash recover will give us a consistent
1091 		 * filesystem.
1092 		 *
1093 		 * Because of this we can throw away failed UNDO buffers.  If
1094 		 * we throw away META or DATA buffers we risk corrupting
1095 		 * the now read-only version of the filesystem visible to
1096 		 * the user.  Clear B_ERROR so the buffer is not re-dirtied
1097 		 * by the kernel and ref the io so it doesn't get thrown
1098 		 * away.
1099 		 */
1100 		if (bp->b_flags & B_ERROR) {
1101 			lwkt_gettoken(&hmp->fs_token);
1102 			hammer_critical_error(hmp, NULL, bp->b_error,
1103 					      "while flushing meta-data");
1104 			lwkt_reltoken(&hmp->fs_token);
1105 
1106 			switch(iou->io.type) {
1107 			case HAMMER_STRUCTURE_UNDO_BUFFER:
1108 				break;
1109 			default:
1110 				if (iou->io.ioerror == 0) {
1111 					iou->io.ioerror = 1;
1112 					hammer_ref(&iou->io.lock);
1113 				}
1114 				break;
1115 			}
1116 			bp->b_flags &= ~B_ERROR;
1117 			bundirty(bp);
1118 #if 0
1119 			hammer_io_set_modlist(&iou->io);
1120 			iou->io.modified = 1;
1121 #endif
1122 		}
1123 		hammer_stats_disk_write += iou->io.bytes;
1124 		atomic_add_long(&hammer_count_io_running_write, -iou->io.bytes);
1125 		atomic_add_long(&hmp->io_running_space, -iou->io.bytes);
1126 		KKASSERT(hmp->io_running_space >= 0);
1127 		iou->io.running = 0;
1128 
1129 		/*
1130 		 * Remove from iorun list and wakeup any multi-io waiter(s).
1131 		 */
1132 		if (TAILQ_FIRST(&hmp->iorun_list) == &iou->io) {
1133 			ionext = TAILQ_NEXT(&iou->io, iorun_entry);
1134 			if (ionext && ionext->type == HAMMER_STRUCTURE_DUMMY)
1135 				wakeup(ionext);
1136 		}
1137 		TAILQ_REMOVE(&hmp->iorun_list, &iou->io, iorun_entry);
1138 	} else {
1139 		hammer_stats_disk_read += iou->io.bytes;
1140 	}
1141 
1142 	if (iou->io.waiting) {
1143 		iou->io.waiting = 0;
1144 		wakeup(iou);
1145 	}
1146 
1147 	/*
1148 	 * If B_LOCKED is set someone wanted to deallocate the bp at some
1149 	 * point, try to do it now.  The operation will fail if there are
1150 	 * refs or if hammer_io_deallocate() is unable to gain the
1151 	 * interlock.
1152 	 */
1153 	if (bp->b_flags & B_LOCKED) {
1154 		atomic_add_int(&hammer_count_io_locked, -1);
1155 		bp->b_flags &= ~B_LOCKED;
1156 		hammer_io_deallocate(bp);
1157 		/* structure may be dead now */
1158 	}
1159 	lwkt_reltoken(&hmp->io_token);
1160 }
1161 
1162 /*
1163  * Callback from kernel when it wishes to deallocate a passively
1164  * associated structure.  This mostly occurs with clean buffers
1165  * but it may be possible for a holding structure to be marked dirty
1166  * while its buffer is passively associated.  The caller owns the bp.
1167  *
1168  * If we cannot disassociate we set B_LOCKED to prevent the buffer
1169  * from getting reused.
1170  *
1171  * WARNING: Because this can be called directly by getnewbuf we cannot
1172  * recurse into the tree.  If a bp cannot be immediately disassociated
1173  * our only recourse is to set B_LOCKED.
1174  *
1175  * WARNING: This may be called from an interrupt via hammer_io_complete()
1176  *
1177  * bioops callback - hold io_token
1178  */
1179 static void
1180 hammer_io_deallocate(struct buf *bp)
1181 {
1182 	hammer_io_structure_t iou = (void *)LIST_FIRST(&bp->b_dep);
1183 	hammer_mount_t hmp;
1184 
1185 	hmp = iou->io.hmp;
1186 
1187 	lwkt_gettoken(&hmp->io_token);
1188 
1189 	KKASSERT((bp->b_flags & B_LOCKED) == 0 && iou->io.running == 0);
1190 	if (hammer_try_interlock_norefs(&iou->io.lock) == 0) {
1191 		/*
1192 		 * We cannot safely disassociate a bp from a referenced
1193 		 * or interlocked HAMMER structure.
1194 		 */
1195 		bp->b_flags |= B_LOCKED;
1196 		atomic_add_int(&hammer_count_io_locked, 1);
1197 	} else if (iou->io.modified) {
1198 		/*
1199 		 * It is not legal to disassociate a modified buffer.  This
1200 		 * case really shouldn't ever occur.
1201 		 */
1202 		bp->b_flags |= B_LOCKED;
1203 		atomic_add_int(&hammer_count_io_locked, 1);
1204 		hammer_put_interlock(&iou->io.lock, 0);
1205 	} else {
1206 		/*
1207 		 * Disassociate the BP.  If the io has no refs left we
1208 		 * have to add it to the loose list.  The kernel has
1209 		 * locked the buffer and therefore our io must be
1210 		 * in a released state.
1211 		 */
1212 		hammer_io_disassociate(iou);
1213 		if (iou->io.type != HAMMER_STRUCTURE_VOLUME) {
1214 			KKASSERT(iou->io.bp == NULL);
1215 			KKASSERT(iou->io.mod_root == NULL);
1216 			iou->io.mod_root = &hmp->lose_root;
1217 			if (RB_INSERT(hammer_mod_rb_tree, iou->io.mod_root,
1218 				      &iou->io)) {
1219 				panic("hammer_io_deallocate: duplicate entry");
1220 			}
1221 		}
1222 		hammer_put_interlock(&iou->io.lock, 1);
1223 	}
1224 	lwkt_reltoken(&hmp->io_token);
1225 }
1226 
1227 /*
1228  * bioops callback - hold io_token
1229  */
1230 static int
1231 hammer_io_fsync(struct vnode *vp)
1232 {
1233 	/* nothing to do, so io_token not needed */
1234 	return(0);
1235 }
1236 
1237 /*
1238  * NOTE: will not be called unless we tell the kernel about the
1239  * bioops.  Unused... we use the mount's VFS_SYNC instead.
1240  *
1241  * bioops callback - hold io_token
1242  */
1243 static int
1244 hammer_io_sync(struct mount *mp)
1245 {
1246 	/* nothing to do, so io_token not needed */
1247 	return(0);
1248 }
1249 
1250 /*
1251  * bioops callback - hold io_token
1252  */
1253 static void
1254 hammer_io_movedeps(struct buf *bp1, struct buf *bp2)
1255 {
1256 	/* nothing to do, so io_token not needed */
1257 }
1258 
1259 /*
1260  * I/O pre-check for reading and writing.  HAMMER only uses this for
1261  * B_CACHE buffers so checkread just shouldn't happen, but if it does
1262  * allow it.
1263  *
1264  * Writing is a different case.  We don't want the kernel to try to write
1265  * out a buffer that HAMMER may be modifying passively or which has a
1266  * dependancy.  In addition, kernel-demanded writes can only proceed for
1267  * certain types of buffers (i.e. UNDO and DATA types).  Other dirty
1268  * buffer types can only be explicitly written by the flusher.
1269  *
1270  * checkwrite will only be called for bdwrite()n buffers.  If we return
1271  * success the kernel is guaranteed to initiate the buffer write.
1272  *
1273  * bioops callback - hold io_token
1274  */
1275 static int
1276 hammer_io_checkread(struct buf *bp)
1277 {
1278 	/* nothing to do, so io_token not needed */
1279 	return(0);
1280 }
1281 
1282 /*
1283  * The kernel is asking us whether it can write out a dirty buffer or not.
1284  *
1285  * bioops callback - hold io_token
1286  */
1287 static int
1288 hammer_io_checkwrite(struct buf *bp)
1289 {
1290 	hammer_io_t io = (void *)LIST_FIRST(&bp->b_dep);
1291 	hammer_mount_t hmp = io->hmp;
1292 
1293 	/*
1294 	 * This shouldn't happen under normal operation.
1295 	 */
1296 	lwkt_gettoken(&hmp->io_token);
1297 	if (io->type == HAMMER_STRUCTURE_VOLUME ||
1298 	    io->type == HAMMER_STRUCTURE_META_BUFFER) {
1299 		if (!panicstr)
1300 			panic("hammer_io_checkwrite: illegal buffer");
1301 		if ((bp->b_flags & B_LOCKED) == 0) {
1302 			bp->b_flags |= B_LOCKED;
1303 			atomic_add_int(&hammer_count_io_locked, 1);
1304 		}
1305 		lwkt_reltoken(&hmp->io_token);
1306 		return(1);
1307 	}
1308 
1309 	/*
1310 	 * We have to be able to interlock the IO to safely modify any
1311 	 * of its fields without holding the fs_token.  If we can't lock
1312 	 * it then we are racing someone.
1313 	 *
1314 	 * Our ownership of the bp lock prevents the io from being ripped
1315 	 * out from under us.
1316 	 */
1317 	if (hammer_try_interlock_norefs(&io->lock) == 0) {
1318 		bp->b_flags |= B_LOCKED;
1319 		atomic_add_int(&hammer_count_io_locked, 1);
1320 		lwkt_reltoken(&hmp->io_token);
1321 		return(1);
1322 	}
1323 
1324 	/*
1325 	 * The modified bit must be cleared prior to the initiation of
1326 	 * any IO (returning 0 initiates the IO).  Because this is a
1327 	 * normal data buffer hammer_io_clear_modify() runs through a
1328 	 * simple degenerate case.
1329 	 *
1330 	 * Return 0 will cause the kernel to initiate the IO, and we
1331 	 * must normally clear the modified bit before we begin.  If
1332 	 * the io has modify_refs we do not clear the modified bit,
1333 	 * otherwise we may miss changes.
1334 	 *
1335 	 * Only data and undo buffers can reach here.  These buffers do
1336 	 * not have terminal crc functions but we temporarily reference
1337 	 * the IO anyway, just in case.
1338 	 */
1339 	if (io->modify_refs == 0 && io->modified) {
1340 		hammer_ref(&io->lock);
1341 		hammer_io_clear_modify(io, 0);
1342 		hammer_rel(&io->lock);
1343 	} else if (io->modified) {
1344 		KKASSERT(io->type == HAMMER_STRUCTURE_DATA_BUFFER);
1345 	}
1346 
1347 	/*
1348 	 * The kernel is going to start the IO, set io->running.
1349 	 */
1350 	KKASSERT(io->running == 0);
1351 	io->running = 1;
1352 	atomic_add_long(&io->hmp->io_running_space, io->bytes);
1353 	atomic_add_long(&hammer_count_io_running_write, io->bytes);
1354 	TAILQ_INSERT_TAIL(&io->hmp->iorun_list, io, iorun_entry);
1355 
1356 	hammer_put_interlock(&io->lock, 1);
1357 	lwkt_reltoken(&hmp->io_token);
1358 
1359 	return(0);
1360 }
1361 
1362 /*
1363  * Return non-zero if we wish to delay the kernel's attempt to flush
1364  * this buffer to disk.
1365  *
1366  * bioops callback - hold io_token
1367  */
1368 static int
1369 hammer_io_countdeps(struct buf *bp, int n)
1370 {
1371 	/* nothing to do, so io_token not needed */
1372 	return(0);
1373 }
1374 
1375 struct bio_ops hammer_bioops = {
1376 	.io_start	= hammer_io_start,
1377 	.io_complete	= hammer_io_complete,
1378 	.io_deallocate	= hammer_io_deallocate,
1379 	.io_fsync	= hammer_io_fsync,
1380 	.io_sync	= hammer_io_sync,
1381 	.io_movedeps	= hammer_io_movedeps,
1382 	.io_countdeps	= hammer_io_countdeps,
1383 	.io_checkread	= hammer_io_checkread,
1384 	.io_checkwrite	= hammer_io_checkwrite,
1385 };
1386 
1387 /************************************************************************
1388  *				DIRECT IO OPS 				*
1389  ************************************************************************
1390  *
1391  * These functions operate directly on the buffer cache buffer associated
1392  * with a front-end vnode rather then a back-end device vnode.
1393  */
1394 
1395 /*
1396  * Read a buffer associated with a front-end vnode directly from the
1397  * disk media.  The bio may be issued asynchronously.  If leaf is non-NULL
1398  * we validate the CRC.
1399  *
1400  * We must check for the presence of a HAMMER buffer to handle the case
1401  * where the reblocker has rewritten the data (which it does via the HAMMER
1402  * buffer system, not via the high-level vnode buffer cache), but not yet
1403  * committed the buffer to the media.
1404  */
1405 int
1406 hammer_io_direct_read(hammer_mount_t hmp, struct bio *bio,
1407 		      hammer_btree_leaf_elm_t leaf)
1408 {
1409 	hammer_off_t buf_offset;
1410 	hammer_off_t zone2_offset;
1411 	hammer_volume_t volume;
1412 	struct buf *bp;
1413 	struct bio *nbio;
1414 	int vol_no;
1415 	int error;
1416 
1417 	buf_offset = bio->bio_offset;
1418 	KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) ==
1419 		 HAMMER_ZONE_LARGE_DATA);
1420 
1421 	/*
1422 	 * The buffer cache may have an aliased buffer (the reblocker can
1423 	 * write them).  If it does we have to sync any dirty data before
1424 	 * we can build our direct-read.  This is a non-critical code path.
1425 	 */
1426 	bp = bio->bio_buf;
1427 	hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize);
1428 
1429 	/*
1430 	 * Resolve to a zone-2 offset.  The conversion just requires
1431 	 * munging the top 4 bits but we want to abstract it anyway
1432 	 * so the blockmap code can verify the zone assignment.
1433 	 */
1434 	zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1435 	if (error)
1436 		goto done;
1437 	KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
1438 		 HAMMER_ZONE_RAW_BUFFER);
1439 
1440 	/*
1441 	 * Resolve volume and raw-offset for 3rd level bio.  The
1442 	 * offset will be specific to the volume.
1443 	 */
1444 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
1445 	volume = hammer_get_volume(hmp, vol_no, &error);
1446 	if (error == 0 && zone2_offset >= volume->maxbuf_off)
1447 		error = EIO;
1448 
1449 	if (error == 0) {
1450 		/*
1451 		 * 3rd level bio
1452 		 */
1453 		nbio = push_bio(bio);
1454 		nbio->bio_offset = volume->ondisk->vol_buf_beg +
1455 				   (zone2_offset & HAMMER_OFF_SHORT_MASK);
1456 		hammer_stats_disk_read += bp->b_bufsize;
1457 		vn_strategy(volume->devvp, nbio);
1458 	}
1459 	hammer_rel_volume(volume, 0);
1460 done:
1461 	if (error) {
1462 		kprintf("hammer_direct_read: failed @ %016llx\n",
1463 			(long long)zone2_offset);
1464 		bp->b_error = error;
1465 		bp->b_flags |= B_ERROR;
1466 		biodone(bio);
1467 	}
1468 	return(error);
1469 }
1470 
1471 /*
1472  * This works similarly to hammer_io_direct_read() except instead of
1473  * directly reading from the device into the bio we instead indirectly
1474  * read through the device's buffer cache and then copy the data into
1475  * the bio.
1476  *
1477  * If leaf is non-NULL and validation is enabled, the CRC will be checked.
1478  *
1479  * This routine also executes asynchronously.  It allows hammer strategy
1480  * calls to operate asynchronously when in double_buffer mode (in addition
1481  * to operating asynchronously when in normal mode).
1482  */
1483 int
1484 hammer_io_indirect_read(hammer_mount_t hmp, struct bio *bio,
1485 			hammer_btree_leaf_elm_t leaf)
1486 {
1487 	hammer_off_t buf_offset;
1488 	hammer_off_t zone2_offset;
1489 	hammer_volume_t volume;
1490 	struct buf *bp;
1491 	int vol_no;
1492 	int error;
1493 
1494 	buf_offset = bio->bio_offset;
1495 	KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) ==
1496 		 HAMMER_ZONE_LARGE_DATA);
1497 
1498 	/*
1499 	 * The buffer cache may have an aliased buffer (the reblocker can
1500 	 * write them).  If it does we have to sync any dirty data before
1501 	 * we can build our direct-read.  This is a non-critical code path.
1502 	 */
1503 	bp = bio->bio_buf;
1504 	hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize);
1505 
1506 	/*
1507 	 * Resolve to a zone-2 offset.  The conversion just requires
1508 	 * munging the top 4 bits but we want to abstract it anyway
1509 	 * so the blockmap code can verify the zone assignment.
1510 	 */
1511 	zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1512 	if (error)
1513 		goto done;
1514 	KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
1515 		 HAMMER_ZONE_RAW_BUFFER);
1516 
1517 	/*
1518 	 * Resolve volume and raw-offset for 3rd level bio.  The
1519 	 * offset will be specific to the volume.
1520 	 */
1521 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
1522 	volume = hammer_get_volume(hmp, vol_no, &error);
1523 	if (error == 0 && zone2_offset >= volume->maxbuf_off)
1524 		error = EIO;
1525 
1526 	if (error == 0) {
1527 		/*
1528 		 * Convert to the raw volume->devvp offset and acquire
1529 		 * the buf, issuing async I/O if necessary.
1530 		 */
1531 		buf_offset = volume->ondisk->vol_buf_beg +
1532 			     (zone2_offset & HAMMER_OFF_SHORT_MASK);
1533 
1534 		if (leaf && hammer_verify_data) {
1535 			bio->bio_caller_info1.uvalue32 = leaf->data_crc;
1536 			bio->bio_caller_info2.index = 1;
1537 		} else {
1538 			bio->bio_caller_info2.index = 0;
1539 		}
1540 		breadcb(volume->devvp, buf_offset, bp->b_bufsize,
1541 			hammer_indirect_callback, bio);
1542 	}
1543 	hammer_rel_volume(volume, 0);
1544 done:
1545 	if (error) {
1546 		kprintf("hammer_direct_read: failed @ %016llx\n",
1547 			(long long)zone2_offset);
1548 		bp->b_error = error;
1549 		bp->b_flags |= B_ERROR;
1550 		biodone(bio);
1551 	}
1552 	return(error);
1553 }
1554 
1555 /*
1556  * Indirect callback on completion.  bio/bp specify the device-backed
1557  * buffer.  bio->bio_caller_info1.ptr holds obio.
1558  *
1559  * obio/obp is the original regular file buffer.  obio->bio_caller_info*
1560  * contains the crc specification.
1561  *
1562  * We are responsible for calling bpdone() and bqrelse() on bio/bp, and
1563  * for calling biodone() on obio.
1564  */
1565 static void
1566 hammer_indirect_callback(struct bio *bio)
1567 {
1568 	struct buf *bp = bio->bio_buf;
1569 	struct buf *obp;
1570 	struct bio *obio;
1571 
1572 	/*
1573 	 * If BIO_DONE is already set the device buffer was already
1574 	 * fully valid (B_CACHE).  If it is not set then I/O was issued
1575 	 * and we have to run I/O completion as the last bio.
1576 	 *
1577 	 * Nobody is waiting for our device I/O to complete, we are
1578 	 * responsible for bqrelse()ing it which means we also have to do
1579 	 * the equivalent of biowait() and clear BIO_DONE (which breadcb()
1580 	 * may have set).
1581 	 *
1582 	 * Any preexisting device buffer should match the requested size,
1583 	 * but due to bigblock recycling and other factors there is some
1584 	 * fragility there, so we assert that the device buffer covers
1585 	 * the request.
1586 	 */
1587 	if ((bio->bio_flags & BIO_DONE) == 0)
1588 		bpdone(bp, 0);
1589 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
1590 
1591 	obio = bio->bio_caller_info1.ptr;
1592 	obp = obio->bio_buf;
1593 
1594 	if (bp->b_flags & B_ERROR) {
1595 		obp->b_flags |= B_ERROR;
1596 		obp->b_error = bp->b_error;
1597 	} else if (obio->bio_caller_info2.index &&
1598 		   obio->bio_caller_info1.uvalue32 !=
1599 		    crc32(bp->b_data, bp->b_bufsize)) {
1600 		obp->b_flags |= B_ERROR;
1601 		obp->b_error = EIO;
1602 	} else {
1603 		KKASSERT(bp->b_bufsize >= obp->b_bufsize);
1604 		bcopy(bp->b_data, obp->b_data, obp->b_bufsize);
1605 		obp->b_resid = 0;
1606 		obp->b_flags |= B_AGE;
1607 	}
1608 	biodone(obio);
1609 	bqrelse(bp);
1610 }
1611 
1612 /*
1613  * Write a buffer associated with a front-end vnode directly to the
1614  * disk media.  The bio may be issued asynchronously.
1615  *
1616  * The BIO is associated with the specified record and RECG_DIRECT_IO
1617  * is set.  The recorded is added to its object.
1618  */
1619 int
1620 hammer_io_direct_write(hammer_mount_t hmp, struct bio *bio,
1621 		       hammer_record_t record)
1622 {
1623 	hammer_btree_leaf_elm_t leaf = &record->leaf;
1624 	hammer_off_t buf_offset;
1625 	hammer_off_t zone2_offset;
1626 	hammer_volume_t volume;
1627 	hammer_buffer_t buffer;
1628 	struct buf *bp;
1629 	struct bio *nbio;
1630 	char *ptr;
1631 	int vol_no;
1632 	int error;
1633 
1634 	buf_offset = leaf->data_offset;
1635 
1636 	KKASSERT(buf_offset > HAMMER_ZONE_BTREE);
1637 	KKASSERT(bio->bio_buf->b_cmd == BUF_CMD_WRITE);
1638 
1639 	/*
1640 	 * Issue or execute the I/O.  The new memory record must replace
1641 	 * the old one before the I/O completes, otherwise a reaquisition of
1642 	 * the buffer will load the old media data instead of the new.
1643 	 */
1644 	if ((buf_offset & HAMMER_BUFMASK) == 0 &&
1645 	    leaf->data_len >= HAMMER_BUFSIZE) {
1646 		/*
1647 		 * We are using the vnode's bio to write directly to the
1648 		 * media, any hammer_buffer at the same zone-X offset will
1649 		 * now have stale data.
1650 		 */
1651 		zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1652 		vol_no = HAMMER_VOL_DECODE(zone2_offset);
1653 		volume = hammer_get_volume(hmp, vol_no, &error);
1654 
1655 		if (error == 0 && zone2_offset >= volume->maxbuf_off)
1656 			error = EIO;
1657 		if (error == 0) {
1658 			bp = bio->bio_buf;
1659 			KKASSERT((bp->b_bufsize & HAMMER_BUFMASK) == 0);
1660 			/*
1661 			hammer_del_buffers(hmp, buf_offset,
1662 					   zone2_offset, bp->b_bufsize);
1663 			*/
1664 
1665 			/*
1666 			 * Second level bio - cached zone2 offset.
1667 			 *
1668 			 * (We can put our bio_done function in either the
1669 			 *  2nd or 3rd level).
1670 			 */
1671 			nbio = push_bio(bio);
1672 			nbio->bio_offset = zone2_offset;
1673 			nbio->bio_done = hammer_io_direct_write_complete;
1674 			nbio->bio_caller_info1.ptr = record;
1675 			record->zone2_offset = zone2_offset;
1676 			record->gflags |= HAMMER_RECG_DIRECT_IO |
1677 					 HAMMER_RECG_DIRECT_INVAL;
1678 
1679 			/*
1680 			 * Third level bio - raw offset specific to the
1681 			 * correct volume.
1682 			 */
1683 			zone2_offset &= HAMMER_OFF_SHORT_MASK;
1684 			nbio = push_bio(nbio);
1685 			nbio->bio_offset = volume->ondisk->vol_buf_beg +
1686 					   zone2_offset;
1687 			hammer_stats_disk_write += bp->b_bufsize;
1688 			hammer_ip_replace_bulk(hmp, record);
1689 			vn_strategy(volume->devvp, nbio);
1690 			hammer_io_flush_mark(volume);
1691 		}
1692 		hammer_rel_volume(volume, 0);
1693 	} else {
1694 		/*
1695 		 * Must fit in a standard HAMMER buffer.  In this case all
1696 		 * consumers use the HAMMER buffer system and RECG_DIRECT_IO
1697 		 * does not need to be set-up.
1698 		 */
1699 		KKASSERT(((buf_offset ^ (buf_offset + leaf->data_len - 1)) & ~HAMMER_BUFMASK64) == 0);
1700 		buffer = NULL;
1701 		ptr = hammer_bread(hmp, buf_offset, &error, &buffer);
1702 		if (error == 0) {
1703 			bp = bio->bio_buf;
1704 			bp->b_flags |= B_AGE;
1705 			hammer_io_modify(&buffer->io, 1);
1706 			bcopy(bp->b_data, ptr, leaf->data_len);
1707 			hammer_io_modify_done(&buffer->io);
1708 			hammer_rel_buffer(buffer, 0);
1709 			bp->b_resid = 0;
1710 			hammer_ip_replace_bulk(hmp, record);
1711 			biodone(bio);
1712 		}
1713 	}
1714 	if (error) {
1715 		/*
1716 		 * Major suckage occured.  Also note:  The record was
1717 		 * never added to the tree so we do not have to worry
1718 		 * about the backend.
1719 		 */
1720 		kprintf("hammer_direct_write: failed @ %016llx\n",
1721 			(long long)leaf->data_offset);
1722 		bp = bio->bio_buf;
1723 		bp->b_resid = 0;
1724 		bp->b_error = EIO;
1725 		bp->b_flags |= B_ERROR;
1726 		biodone(bio);
1727 		record->flags |= HAMMER_RECF_DELETED_FE;
1728 		hammer_rel_mem_record(record);
1729 	}
1730 	return(error);
1731 }
1732 
1733 /*
1734  * On completion of the BIO this callback must disconnect
1735  * it from the hammer_record and chain to the previous bio.
1736  *
1737  * An I/O error forces the mount to read-only.  Data buffers
1738  * are not B_LOCKED like meta-data buffers are, so we have to
1739  * throw the buffer away to prevent the kernel from retrying.
1740  *
1741  * NOTE: MPSAFE callback, only modify fields we have explicit
1742  *	 access to (the bp and the record->gflags).
1743  */
1744 static
1745 void
1746 hammer_io_direct_write_complete(struct bio *nbio)
1747 {
1748 	struct bio *obio;
1749 	struct buf *bp;
1750 	hammer_record_t record;
1751 	hammer_mount_t hmp;
1752 
1753 	record = nbio->bio_caller_info1.ptr;
1754 	KKASSERT(record != NULL);
1755 	hmp = record->ip->hmp;
1756 
1757 	lwkt_gettoken(&hmp->io_token);
1758 
1759 	bp = nbio->bio_buf;
1760 	obio = pop_bio(nbio);
1761 	if (bp->b_flags & B_ERROR) {
1762 		lwkt_gettoken(&hmp->fs_token);
1763 		hammer_critical_error(hmp, record->ip,
1764 				      bp->b_error,
1765 				      "while writing bulk data");
1766 		lwkt_reltoken(&hmp->fs_token);
1767 		bp->b_flags |= B_INVAL;
1768 	}
1769 	biodone(obio);
1770 
1771 	KKASSERT(record->gflags & HAMMER_RECG_DIRECT_IO);
1772 	if (record->gflags & HAMMER_RECG_DIRECT_WAIT) {
1773 		record->gflags &= ~(HAMMER_RECG_DIRECT_IO |
1774 				    HAMMER_RECG_DIRECT_WAIT);
1775 		/* record can disappear once DIRECT_IO flag is cleared */
1776 		wakeup(&record->flags);
1777 	} else {
1778 		record->gflags &= ~HAMMER_RECG_DIRECT_IO;
1779 		/* record can disappear once DIRECT_IO flag is cleared */
1780 	}
1781 	lwkt_reltoken(&hmp->io_token);
1782 }
1783 
1784 
1785 /*
1786  * This is called before a record is either committed to the B-Tree
1787  * or destroyed, to resolve any associated direct-IO.
1788  *
1789  * (1) We must wait for any direct-IO related to the record to complete.
1790  *
1791  * (2) We must remove any buffer cache aliases for data accessed via
1792  *     leaf->data_offset or zone2_offset so non-direct-IO consumers
1793  *     (the mirroring and reblocking code) do not see stale data.
1794  */
1795 void
1796 hammer_io_direct_wait(hammer_record_t record)
1797 {
1798 	hammer_mount_t hmp = record->ip->hmp;
1799 
1800 	/*
1801 	 * Wait for I/O to complete
1802 	 */
1803 	if (record->gflags & HAMMER_RECG_DIRECT_IO) {
1804 		lwkt_gettoken(&hmp->io_token);
1805 		while (record->gflags & HAMMER_RECG_DIRECT_IO) {
1806 			record->gflags |= HAMMER_RECG_DIRECT_WAIT;
1807 			tsleep(&record->flags, 0, "hmdiow", 0);
1808 		}
1809 		lwkt_reltoken(&hmp->io_token);
1810 	}
1811 
1812 	/*
1813 	 * Invalidate any related buffer cache aliases associated with the
1814 	 * backing device.  This is needed because the buffer cache buffer
1815 	 * for file data is associated with the file vnode, not the backing
1816 	 * device vnode.
1817 	 *
1818 	 * XXX I do not think this case can occur any more now that
1819 	 * reservations ensure that all such buffers are removed before
1820 	 * an area can be reused.
1821 	 */
1822 	if (record->gflags & HAMMER_RECG_DIRECT_INVAL) {
1823 		KKASSERT(record->leaf.data_offset);
1824 		hammer_del_buffers(hmp, record->leaf.data_offset,
1825 				   record->zone2_offset, record->leaf.data_len,
1826 				   1);
1827 		record->gflags &= ~HAMMER_RECG_DIRECT_INVAL;
1828 	}
1829 }
1830 
1831 /*
1832  * This is called to remove the second-level cached zone-2 offset from
1833  * frontend buffer cache buffers, now stale due to a data relocation.
1834  * These offsets are generated by cluster_read() via VOP_BMAP, or directly
1835  * by hammer_vop_strategy_read().
1836  *
1837  * This is rather nasty because here we have something like the reblocker
1838  * scanning the raw B-Tree with no held references on anything, really,
1839  * other then a shared lock on the B-Tree node, and we have to access the
1840  * frontend's buffer cache to check for and clean out the association.
1841  * Specifically, if the reblocker is moving data on the disk, these cached
1842  * offsets will become invalid.
1843  *
1844  * Only data record types associated with the large-data zone are subject
1845  * to direct-io and need to be checked.
1846  *
1847  */
1848 void
1849 hammer_io_direct_uncache(hammer_mount_t hmp, hammer_btree_leaf_elm_t leaf)
1850 {
1851 	struct hammer_inode_info iinfo;
1852 	int zone;
1853 
1854 	if (leaf->base.rec_type != HAMMER_RECTYPE_DATA)
1855 		return;
1856 	zone = HAMMER_ZONE_DECODE(leaf->data_offset);
1857 	if (zone != HAMMER_ZONE_LARGE_DATA_INDEX)
1858 		return;
1859 	iinfo.obj_id = leaf->base.obj_id;
1860 	iinfo.obj_asof = 0;	/* unused */
1861 	iinfo.obj_localization = leaf->base.localization &
1862 				 HAMMER_LOCALIZE_PSEUDOFS_MASK;
1863 	iinfo.u.leaf = leaf;
1864 	hammer_scan_inode_snapshots(hmp, &iinfo,
1865 				    hammer_io_direct_uncache_callback,
1866 				    leaf);
1867 }
1868 
1869 static int
1870 hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data)
1871 {
1872 	hammer_inode_info_t iinfo = data;
1873 	hammer_off_t file_offset;
1874 	struct vnode *vp;
1875 	struct buf *bp;
1876 	int blksize;
1877 
1878 	if (ip->vp == NULL)
1879 		return(0);
1880 	file_offset = iinfo->u.leaf->base.key - iinfo->u.leaf->data_len;
1881 	blksize = iinfo->u.leaf->data_len;
1882 	KKASSERT((blksize & HAMMER_BUFMASK) == 0);
1883 
1884 	/*
1885 	 * Warning: FINDBLK_TEST return stable storage but not stable
1886 	 *	    contents.  It happens to be ok in this case.
1887 	 */
1888 	hammer_ref(&ip->lock);
1889 	if (hammer_get_vnode(ip, &vp) == 0) {
1890 		if ((bp = findblk(ip->vp, file_offset, FINDBLK_TEST)) != NULL &&
1891 		    bp->b_bio2.bio_offset != NOOFFSET) {
1892 			bp = getblk(ip->vp, file_offset, blksize, 0, 0);
1893 			bp->b_bio2.bio_offset = NOOFFSET;
1894 			brelse(bp);
1895 		}
1896 		vput(vp);
1897 	}
1898 	hammer_rel_inode(ip, 0);
1899 	return(0);
1900 }
1901 
1902 
1903 /*
1904  * This function is called when writes may have occured on the volume,
1905  * indicating that the device may be holding cached writes.
1906  */
1907 static void
1908 hammer_io_flush_mark(hammer_volume_t volume)
1909 {
1910 	atomic_set_int(&volume->vol_flags, HAMMER_VOLF_NEEDFLUSH);
1911 }
1912 
1913 /*
1914  * This function ensures that the device has flushed any cached writes out.
1915  */
1916 void
1917 hammer_io_flush_sync(hammer_mount_t hmp)
1918 {
1919 	hammer_volume_t volume;
1920 	struct buf *bp_base = NULL;
1921 	struct buf *bp;
1922 
1923 	RB_FOREACH(volume, hammer_vol_rb_tree, &hmp->rb_vols_root) {
1924 		if (volume->vol_flags & HAMMER_VOLF_NEEDFLUSH) {
1925 			atomic_clear_int(&volume->vol_flags,
1926 					 HAMMER_VOLF_NEEDFLUSH);
1927 			bp = getpbuf(NULL);
1928 			bp->b_bio1.bio_offset = 0;
1929 			bp->b_bufsize = 0;
1930 			bp->b_bcount = 0;
1931 			bp->b_cmd = BUF_CMD_FLUSH;
1932 			bp->b_bio1.bio_caller_info1.cluster_head = bp_base;
1933 			bp->b_bio1.bio_done = biodone_sync;
1934 			bp->b_bio1.bio_flags |= BIO_SYNC;
1935 			bp_base = bp;
1936 			vn_strategy(volume->devvp, &bp->b_bio1);
1937 		}
1938 	}
1939 	while ((bp = bp_base) != NULL) {
1940 		bp_base = bp->b_bio1.bio_caller_info1.cluster_head;
1941 		biowait(&bp->b_bio1, "hmrFLS");
1942 		relpbuf(bp, NULL);
1943 	}
1944 }
1945 
1946 /*
1947  * Limit the amount of backlog which we allow to build up
1948  */
1949 void
1950 hammer_io_limit_backlog(hammer_mount_t hmp)
1951 {
1952 	waitrunningbufspace();
1953 }
1954