xref: /dragonfly/sys/vfs/hammer/hammer_object.c (revision 235099c3)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_object.c,v 1.97 2008/09/23 22:28:56 dillon Exp $
35  */
36 
37 #include "hammer.h"
38 
39 static int hammer_mem_lookup(hammer_cursor_t cursor);
40 static void hammer_mem_first(hammer_cursor_t cursor);
41 static int hammer_frontend_trunc_callback(hammer_record_t record,
42 				void *data __unused);
43 static int hammer_bulk_scan_callback(hammer_record_t record, void *data);
44 static int hammer_record_needs_overwrite_delete(hammer_record_t record);
45 static int hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
46 		      hammer_btree_leaf_elm_t leaf);
47 
48 struct rec_trunc_info {
49 	u_int16_t	rec_type;
50 	int64_t		trunc_off;
51 };
52 
53 struct hammer_bulk_info {
54 	hammer_record_t record;
55 	struct hammer_btree_leaf_elm leaf;
56 };
57 
58 /*
59  * Red-black tree support.  Comparison code for insertion.
60  */
61 static int
62 hammer_rec_rb_compare(hammer_record_t rec1, hammer_record_t rec2)
63 {
64 	if (rec1->leaf.base.rec_type < rec2->leaf.base.rec_type)
65 		return(-1);
66 	if (rec1->leaf.base.rec_type > rec2->leaf.base.rec_type)
67 		return(1);
68 
69 	if (rec1->leaf.base.key < rec2->leaf.base.key)
70 		return(-1);
71 	if (rec1->leaf.base.key > rec2->leaf.base.key)
72 		return(1);
73 
74 	/*
75 	 * For search & insertion purposes records deleted by the
76 	 * frontend or deleted/committed by the backend are silently
77 	 * ignored.  Otherwise pipelined insertions will get messed
78 	 * up.
79 	 *
80 	 * rec1 is greater then rec2 if rec1 is marked deleted.
81 	 * rec1 is less then rec2 if rec2 is marked deleted.
82 	 *
83 	 * Multiple deleted records may be present, do not return 0
84 	 * if both are marked deleted.
85 	 */
86 	if (rec1->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
87 			   HAMMER_RECF_COMMITTED)) {
88 		return(1);
89 	}
90 	if (rec2->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
91 			   HAMMER_RECF_COMMITTED)) {
92 		return(-1);
93 	}
94 
95         return(0);
96 }
97 
98 /*
99  * Basic record comparison code similar to hammer_btree_cmp().
100  *
101  * obj_id is not compared and may not yet be assigned in the record.
102  */
103 static int
104 hammer_rec_cmp(hammer_base_elm_t elm, hammer_record_t rec)
105 {
106 	if (elm->rec_type < rec->leaf.base.rec_type)
107 		return(-3);
108 	if (elm->rec_type > rec->leaf.base.rec_type)
109 		return(3);
110 
111         if (elm->key < rec->leaf.base.key)
112                 return(-2);
113         if (elm->key > rec->leaf.base.key)
114                 return(2);
115 
116 	/*
117 	 * Never match against an item deleted by the frontend
118 	 * or backend, or committed by the backend.
119 	 *
120 	 * elm is less then rec if rec is marked deleted.
121 	 */
122 	if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
123 			  HAMMER_RECF_COMMITTED)) {
124 		return(-1);
125 	}
126         return(0);
127 }
128 
129 /*
130  * Ranged scan to locate overlapping record(s).  This is used by
131  * hammer_ip_get_bulk() to locate an overlapping record.  We have
132  * to use a ranged scan because the keys for data records with the
133  * same file base offset can be different due to differing data_len's.
134  *
135  * NOTE: The base file offset of a data record is (key - data_len), not (key).
136  */
137 static int
138 hammer_rec_overlap_cmp(hammer_record_t rec, void *data)
139 {
140 	struct hammer_bulk_info *info = data;
141 	hammer_btree_leaf_elm_t leaf = &info->leaf;
142 
143 	if (rec->leaf.base.rec_type < leaf->base.rec_type)
144 		return(-3);
145 	if (rec->leaf.base.rec_type > leaf->base.rec_type)
146 		return(3);
147 
148 	/*
149 	 * Overlap compare
150 	 */
151 	if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
152 		/* rec_beg >= leaf_end */
153 		if (rec->leaf.base.key - rec->leaf.data_len >= leaf->base.key)
154 			return(2);
155 		/* rec_end <= leaf_beg */
156 		if (rec->leaf.base.key <= leaf->base.key - leaf->data_len)
157 			return(-2);
158 	} else {
159 		if (rec->leaf.base.key < leaf->base.key)
160 			return(-2);
161 		if (rec->leaf.base.key > leaf->base.key)
162 			return(2);
163 	}
164 
165 	/*
166 	 * We have to return 0 at this point, even if DELETED_FE is set,
167 	 * because returning anything else will cause the scan to ignore
168 	 * one of the branches when we really want it to check both.
169 	 */
170         return(0);
171 }
172 
173 /*
174  * RB_SCAN comparison code for hammer_mem_first().  The argument order
175  * is reversed so the comparison result has to be negated.  key_beg and
176  * key_end are both range-inclusive.
177  *
178  * Localized deletions are not cached in-memory.
179  */
180 static
181 int
182 hammer_rec_scan_cmp(hammer_record_t rec, void *data)
183 {
184 	hammer_cursor_t cursor = data;
185 	int r;
186 
187 	r = hammer_rec_cmp(&cursor->key_beg, rec);
188 	if (r > 1)
189 		return(-1);
190 	r = hammer_rec_cmp(&cursor->key_end, rec);
191 	if (r < -1)
192 		return(1);
193 	return(0);
194 }
195 
196 /*
197  * This compare function is used when simply looking up key_beg.
198  */
199 static
200 int
201 hammer_rec_find_cmp(hammer_record_t rec, void *data)
202 {
203 	hammer_cursor_t cursor = data;
204 	int r;
205 
206 	r = hammer_rec_cmp(&cursor->key_beg, rec);
207 	if (r > 1)
208 		return(-1);
209 	if (r < -1)
210 		return(1);
211 	return(0);
212 }
213 
214 /*
215  * Locate blocks within the truncation range.  Partial blocks do not count.
216  */
217 static
218 int
219 hammer_rec_trunc_cmp(hammer_record_t rec, void *data)
220 {
221 	struct rec_trunc_info *info = data;
222 
223 	if (rec->leaf.base.rec_type < info->rec_type)
224 		return(-1);
225 	if (rec->leaf.base.rec_type > info->rec_type)
226 		return(1);
227 
228 	switch(rec->leaf.base.rec_type) {
229 	case HAMMER_RECTYPE_DB:
230 		/*
231 		 * DB record key is not beyond the truncation point, retain.
232 		 */
233 		if (rec->leaf.base.key < info->trunc_off)
234 			return(-1);
235 		break;
236 	case HAMMER_RECTYPE_DATA:
237 		/*
238 		 * DATA record offset start is not beyond the truncation point,
239 		 * retain.
240 		 */
241 		if (rec->leaf.base.key - rec->leaf.data_len < info->trunc_off)
242 			return(-1);
243 		break;
244 	default:
245 		panic("hammer_rec_trunc_cmp: unexpected record type");
246 	}
247 
248 	/*
249 	 * The record start is >= the truncation point, return match,
250 	 * the record should be destroyed.
251 	 */
252 	return(0);
253 }
254 
255 RB_GENERATE(hammer_rec_rb_tree, hammer_record, rb_node, hammer_rec_rb_compare);
256 
257 /*
258  * Allocate a record for the caller to finish filling in.  The record is
259  * returned referenced.
260  */
261 hammer_record_t
262 hammer_alloc_mem_record(hammer_inode_t ip, int data_len)
263 {
264 	hammer_record_t record;
265 	hammer_mount_t hmp;
266 
267 	hmp = ip->hmp;
268 	++hammer_count_records;
269 	record = kmalloc(sizeof(*record), hmp->m_misc,
270 			 M_WAITOK | M_ZERO | M_USE_RESERVE);
271 	record->flush_state = HAMMER_FST_IDLE;
272 	record->ip = ip;
273 	record->leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
274 	record->leaf.data_len = data_len;
275 	hammer_ref(&record->lock);
276 
277 	if (data_len) {
278 		record->data = kmalloc(data_len, hmp->m_misc, M_WAITOK | M_ZERO);
279 		record->flags |= HAMMER_RECF_ALLOCDATA;
280 		++hammer_count_record_datas;
281 	}
282 
283 	return (record);
284 }
285 
286 void
287 hammer_wait_mem_record_ident(hammer_record_t record, const char *ident)
288 {
289 	while (record->flush_state == HAMMER_FST_FLUSH) {
290 		record->flags |= HAMMER_RECF_WANTED;
291 		tsleep(record, 0, ident, 0);
292 	}
293 }
294 
295 /*
296  * Called from the backend, hammer_inode.c, after a record has been
297  * flushed to disk.  The record has been exclusively locked by the
298  * caller and interlocked with BE.
299  *
300  * We clean up the state, unlock, and release the record (the record
301  * was referenced by the fact that it was in the HAMMER_FST_FLUSH state).
302  */
303 void
304 hammer_flush_record_done(hammer_record_t record, int error)
305 {
306 	hammer_inode_t target_ip;
307 
308 	KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
309 	KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
310 
311 	/*
312 	 * If an error occured, the backend was unable to sync the
313 	 * record to its media.  Leave the record intact.
314 	 */
315 	if (error) {
316 		hammer_critical_error(record->ip->hmp, record->ip, error,
317 				      "while flushing record");
318 	}
319 
320 	--record->flush_group->refs;
321 	record->flush_group = NULL;
322 
323 	/*
324 	 * Adjust the flush state and dependancy based on success or
325 	 * failure.
326 	 */
327 	if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
328 		if ((target_ip = record->target_ip) != NULL) {
329 			TAILQ_REMOVE(&target_ip->target_list, record,
330 				     target_entry);
331 			record->target_ip = NULL;
332 			hammer_test_inode(target_ip);
333 		}
334 		record->flush_state = HAMMER_FST_IDLE;
335 	} else {
336 		if (record->target_ip) {
337 			record->flush_state = HAMMER_FST_SETUP;
338 			hammer_test_inode(record->ip);
339 			hammer_test_inode(record->target_ip);
340 		} else {
341 			record->flush_state = HAMMER_FST_IDLE;
342 		}
343 	}
344 	record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
345 
346 	/*
347 	 * Cleanup
348 	 */
349 	if (record->flags & HAMMER_RECF_WANTED) {
350 		record->flags &= ~HAMMER_RECF_WANTED;
351 		wakeup(record);
352 	}
353 	hammer_rel_mem_record(record);
354 }
355 
356 /*
357  * Release a memory record.  Records marked for deletion are immediately
358  * removed from the RB-Tree but otherwise left intact until the last ref
359  * goes away.
360  */
361 void
362 hammer_rel_mem_record(struct hammer_record *record)
363 {
364 	hammer_mount_t hmp;
365 	hammer_reserve_t resv;
366 	hammer_inode_t ip;
367 	hammer_inode_t target_ip;
368 	int diddrop;
369 
370 	hammer_unref(&record->lock);
371 
372 	if (record->lock.refs == 0) {
373 		/*
374 		 * Upon release of the last reference wakeup any waiters.
375 		 * The record structure may get destroyed so callers will
376 		 * loop up and do a relookup.
377 		 *
378 		 * WARNING!  Record must be removed from RB-TREE before we
379 		 * might possibly block.  hammer_test_inode() can block!
380 		 */
381 		ip = record->ip;
382 		hmp = ip->hmp;
383 
384 		/*
385 		 * Upon release of the last reference a record marked deleted
386 		 * by the front or backend, or committed by the backend,
387 		 * is destroyed.
388 		 */
389 		if (record->flags & (HAMMER_RECF_DELETED_FE |
390 				     HAMMER_RECF_DELETED_BE |
391 				     HAMMER_RECF_COMMITTED)) {
392 			KKASSERT(ip->lock.refs > 0);
393 			KKASSERT(record->flush_state != HAMMER_FST_FLUSH);
394 
395 			/*
396 			 * target_ip may have zero refs, we have to ref it
397 			 * to prevent it from being ripped out from under
398 			 * us.
399 			 */
400 			if ((target_ip = record->target_ip) != NULL) {
401 				TAILQ_REMOVE(&target_ip->target_list,
402 					     record, target_entry);
403 				record->target_ip = NULL;
404 				hammer_ref(&target_ip->lock);
405 			}
406 
407 			/*
408 			 * Remove the record from the B-Tree
409 			 */
410 			if (record->flags & HAMMER_RECF_ONRBTREE) {
411 				RB_REMOVE(hammer_rec_rb_tree,
412 					  &record->ip->rec_tree,
413 					  record);
414 				record->flags &= ~HAMMER_RECF_ONRBTREE;
415 				KKASSERT(ip->rsv_recs > 0);
416 				diddrop = 1;
417 			} else {
418 				diddrop = 0;
419 			}
420 
421 			/*
422 			 * We must wait for any direct-IO to complete before
423 			 * we can destroy the record because the bio may
424 			 * have a reference to it.
425 			 */
426 			if (record->flags &
427 			   (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL)) {
428 				hammer_io_direct_wait(record);
429 			}
430 
431 			/*
432 			 * Account for the completion after the direct IO
433 			 * has completed.
434 			 */
435 			if (diddrop) {
436 				--hmp->rsv_recs;
437 				--ip->rsv_recs;
438 				hmp->rsv_databytes -= record->leaf.data_len;
439 
440 				if (RB_EMPTY(&record->ip->rec_tree)) {
441 					record->ip->flags &= ~HAMMER_INODE_XDIRTY;
442 					record->ip->sync_flags &= ~HAMMER_INODE_XDIRTY;
443 					hammer_test_inode(record->ip);
444 				}
445 				if (ip->rsv_recs == hammer_limit_inode_recs - 1)
446 					wakeup(&ip->rsv_recs);
447 			}
448 
449 			/*
450 			 * Do this test after removing record from the B-Tree.
451 			 */
452 			if (target_ip) {
453 				hammer_test_inode(target_ip);
454 				hammer_rel_inode(target_ip, 0);
455 			}
456 
457 			if (record->flags & HAMMER_RECF_ALLOCDATA) {
458 				--hammer_count_record_datas;
459 				kfree(record->data, hmp->m_misc);
460 				record->flags &= ~HAMMER_RECF_ALLOCDATA;
461 			}
462 
463 			/*
464 			 * Release the reservation.
465 			 *
466 			 * If the record was not committed we can theoretically
467 			 * undo the reservation.  However, doing so might
468 			 * create weird edge cases with the ordering of
469 			 * direct writes because the related buffer cache
470 			 * elements are per-vnode.  So we don't try.
471 			 */
472 			if ((resv = record->resv) != NULL) {
473 				/* XXX undo leaf.data_offset,leaf.data_len */
474 				hammer_blockmap_reserve_complete(hmp, resv);
475 				record->resv = NULL;
476 			}
477 			record->data = NULL;
478 			--hammer_count_records;
479 			kfree(record, hmp->m_misc);
480 		}
481 	}
482 }
483 
484 /*
485  * Record visibility depends on whether the record is being accessed by
486  * the backend or the frontend.  Backend tests ignore the frontend delete
487  * flag.  Frontend tests do NOT ignore the backend delete/commit flags and
488  * must also check for commit races.
489  *
490  * Return non-zero if the record is visible, zero if it isn't or if it is
491  * deleted.  Returns 0 if the record has been comitted (unless the special
492  * delete-visibility flag is set).  A committed record must be located
493  * via the media B-Tree.  Returns non-zero if the record is good.
494  *
495  * If HAMMER_CURSOR_DELETE_VISIBILITY is set we allow deleted memory
496  * records to be returned.  This is so pending deletions are detected
497  * when using an iterator to locate an unused hash key, or when we need
498  * to locate historical records on-disk to destroy.
499  */
500 static __inline
501 int
502 hammer_ip_iterate_mem_good(hammer_cursor_t cursor, hammer_record_t record)
503 {
504 	if (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY)
505 		return(1);
506 	if (cursor->flags & HAMMER_CURSOR_BACKEND) {
507 		if (record->flags & (HAMMER_RECF_DELETED_BE |
508 				     HAMMER_RECF_COMMITTED)) {
509 			return(0);
510 		}
511 	} else {
512 		if (record->flags & (HAMMER_RECF_DELETED_FE |
513 				     HAMMER_RECF_DELETED_BE |
514 				     HAMMER_RECF_COMMITTED)) {
515 			return(0);
516 		}
517 	}
518 	return(1);
519 }
520 
521 /*
522  * This callback is used as part of the RB_SCAN function for in-memory
523  * records.  We terminate it (return -1) as soon as we get a match.
524  *
525  * This routine is used by frontend code.
526  *
527  * The primary compare code does not account for ASOF lookups.  This
528  * code handles that case as well as a few others.
529  */
530 static
531 int
532 hammer_rec_scan_callback(hammer_record_t rec, void *data)
533 {
534 	hammer_cursor_t cursor = data;
535 
536 	/*
537 	 * We terminate on success, so this should be NULL on entry.
538 	 */
539 	KKASSERT(cursor->iprec == NULL);
540 
541 	/*
542 	 * Skip if the record was marked deleted or committed.
543 	 */
544 	if (hammer_ip_iterate_mem_good(cursor, rec) == 0)
545 		return(0);
546 
547 	/*
548 	 * Skip if not visible due to our as-of TID
549 	 */
550         if (cursor->flags & HAMMER_CURSOR_ASOF) {
551                 if (cursor->asof < rec->leaf.base.create_tid)
552                         return(0);
553                 if (rec->leaf.base.delete_tid &&
554 		    cursor->asof >= rec->leaf.base.delete_tid) {
555                         return(0);
556 		}
557         }
558 
559 	/*
560 	 * ref the record.  The record is protected from backend B-Tree
561 	 * interactions by virtue of the cursor's IP lock.
562 	 */
563 	hammer_ref(&rec->lock);
564 
565 	/*
566 	 * The record may have been deleted or committed while we
567 	 * were blocked.  XXX remove?
568 	 */
569 	if (hammer_ip_iterate_mem_good(cursor, rec) == 0) {
570 		hammer_rel_mem_record(rec);
571 		return(0);
572 	}
573 
574 	/*
575 	 * Set the matching record and stop the scan.
576 	 */
577 	cursor->iprec = rec;
578 	return(-1);
579 }
580 
581 
582 /*
583  * Lookup an in-memory record given the key specified in the cursor.  Works
584  * just like hammer_btree_lookup() but operates on an inode's in-memory
585  * record list.
586  *
587  * The lookup must fail if the record is marked for deferred deletion.
588  *
589  * The API for mem/btree_lookup() does not mess with the ATE/EOF bits.
590  */
591 static
592 int
593 hammer_mem_lookup(hammer_cursor_t cursor)
594 {
595 	KKASSERT(cursor->ip);
596 	if (cursor->iprec) {
597 		hammer_rel_mem_record(cursor->iprec);
598 		cursor->iprec = NULL;
599 	}
600 	hammer_rec_rb_tree_RB_SCAN(&cursor->ip->rec_tree, hammer_rec_find_cmp,
601 				   hammer_rec_scan_callback, cursor);
602 
603 	return (cursor->iprec ? 0 : ENOENT);
604 }
605 
606 /*
607  * hammer_mem_first() - locate the first in-memory record matching the
608  * cursor within the bounds of the key range.
609  *
610  * WARNING!  API is slightly different from btree_first().  hammer_mem_first()
611  * will set ATEMEM the same as MEMEOF, and does not return any error.
612  */
613 static
614 void
615 hammer_mem_first(hammer_cursor_t cursor)
616 {
617 	hammer_inode_t ip;
618 
619 	ip = cursor->ip;
620 	KKASSERT(ip != NULL);
621 
622 	if (cursor->iprec) {
623 		hammer_rel_mem_record(cursor->iprec);
624 		cursor->iprec = NULL;
625 	}
626 	hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_scan_cmp,
627 				   hammer_rec_scan_callback, cursor);
628 
629 	if (cursor->iprec)
630 		cursor->flags &= ~(HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM);
631 	else
632 		cursor->flags |= HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM;
633 }
634 
635 /************************************************************************
636  *		     HAMMER IN-MEMORY RECORD FUNCTIONS			*
637  ************************************************************************
638  *
639  * These functions manipulate in-memory records.  Such records typically
640  * exist prior to being committed to disk or indexed via the on-disk B-Tree.
641  */
642 
643 /*
644  * Add a directory entry (dip,ncp) which references inode (ip).
645  *
646  * Note that the low 32 bits of the namekey are set temporarily to create
647  * a unique in-memory record, and may be modified a second time when the
648  * record is synchronized to disk.  In particular, the low 32 bits cannot be
649  * all 0's when synching to disk, which is not handled here.
650  *
651  * NOTE: bytes does not include any terminating \0 on name, and name might
652  * not be terminated.
653  */
654 int
655 hammer_ip_add_directory(struct hammer_transaction *trans,
656 		     struct hammer_inode *dip, const char *name, int bytes,
657 		     struct hammer_inode *ip)
658 {
659 	struct hammer_cursor cursor;
660 	hammer_record_t record;
661 	int error;
662 	u_int32_t max_iterations;
663 
664 	record = hammer_alloc_mem_record(dip, HAMMER_ENTRY_SIZE(bytes));
665 
666 	record->type = HAMMER_MEM_RECORD_ADD;
667 	record->leaf.base.localization = dip->obj_localization +
668 					 hammer_dir_localization(dip);
669 	record->leaf.base.obj_id = dip->obj_id;
670 	record->leaf.base.key = hammer_directory_namekey(dip, name, bytes,
671 							 &max_iterations);
672 	record->leaf.base.rec_type = HAMMER_RECTYPE_DIRENTRY;
673 	record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
674 	record->data->entry.obj_id = ip->obj_id;
675 	record->data->entry.localization = ip->obj_localization;
676 	bcopy(name, record->data->entry.name, bytes);
677 
678 	++ip->ino_data.nlinks;
679 	ip->ino_data.ctime = trans->time;
680 	hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
681 
682 	/*
683 	 * Find an unused namekey.  Both the in-memory record tree and
684 	 * the B-Tree are checked.  We do not want historically deleted
685 	 * names to create a collision as our iteration space may be limited,
686 	 * and since create_tid wouldn't match anyway an ASOF search
687 	 * must be used to locate collisions.
688 	 *
689 	 * delete-visibility is set so pending deletions do not give us
690 	 * a false-negative on our ability to use an iterator.
691 	 *
692 	 * The iterator must not rollover the key.  Directory keys only
693 	 * use the positive key space.
694 	 */
695 	hammer_init_cursor(trans, &cursor, &dip->cache[1], dip);
696 	cursor.key_beg = record->leaf.base;
697 	cursor.flags |= HAMMER_CURSOR_ASOF;
698 	cursor.flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
699 	cursor.asof = ip->obj_asof;
700 
701 	while (hammer_ip_lookup(&cursor) == 0) {
702 		++record->leaf.base.key;
703 		KKASSERT(record->leaf.base.key > 0);
704 		cursor.key_beg.key = record->leaf.base.key;
705 		if (--max_iterations == 0) {
706 			hammer_rel_mem_record(record);
707 			error = ENOSPC;
708 			goto failed;
709 		}
710 	}
711 
712 	/*
713 	 * The target inode and the directory entry are bound together.
714 	 */
715 	record->target_ip = ip;
716 	record->flush_state = HAMMER_FST_SETUP;
717 	TAILQ_INSERT_TAIL(&ip->target_list, record, target_entry);
718 
719 	/*
720 	 * The inode now has a dependancy and must be taken out of the idle
721 	 * state.  An inode not in an idle state is given an extra reference.
722 	 *
723 	 * When transitioning to a SETUP state flag for an automatic reflush
724 	 * when the dependancies are disposed of if someone is waiting on
725 	 * the inode.
726 	 */
727 	if (ip->flush_state == HAMMER_FST_IDLE) {
728 		hammer_ref(&ip->lock);
729 		ip->flush_state = HAMMER_FST_SETUP;
730 		if (ip->flags & HAMMER_INODE_FLUSHW)
731 			ip->flags |= HAMMER_INODE_REFLUSH;
732 	}
733 	error = hammer_mem_add(record);
734 	if (error == 0) {
735 		dip->ino_data.mtime = trans->time;
736 		hammer_modify_inode(dip, HAMMER_INODE_MTIME);
737 	}
738 failed:
739 	hammer_done_cursor(&cursor);
740 	return(error);
741 }
742 
743 /*
744  * Delete the directory entry and update the inode link count.  The
745  * cursor must be seeked to the directory entry record being deleted.
746  *
747  * The related inode should be share-locked by the caller.  The caller is
748  * on the frontend.  It could also be NULL indicating that the directory
749  * entry being removed has no related inode.
750  *
751  * This function can return EDEADLK requiring the caller to terminate
752  * the cursor, any locks, wait on the returned record, and retry.
753  */
754 int
755 hammer_ip_del_directory(struct hammer_transaction *trans,
756 		     hammer_cursor_t cursor, struct hammer_inode *dip,
757 		     struct hammer_inode *ip)
758 {
759 	hammer_record_t record;
760 	int error;
761 
762 	if (hammer_cursor_inmem(cursor)) {
763 		/*
764 		 * In-memory (unsynchronized) records can simply be freed.
765 		 *
766 		 * Even though the HAMMER_RECF_DELETED_FE flag is ignored
767 		 * by the backend, we must still avoid races against the
768 		 * backend potentially syncing the record to the media.
769 		 *
770 		 * We cannot call hammer_ip_delete_record(), that routine may
771 		 * only be called from the backend.
772 		 */
773 		record = cursor->iprec;
774 		if (record->flags & (HAMMER_RECF_INTERLOCK_BE |
775 				     HAMMER_RECF_DELETED_BE |
776 				     HAMMER_RECF_COMMITTED)) {
777 			KKASSERT(cursor->deadlk_rec == NULL);
778 			hammer_ref(&record->lock);
779 			cursor->deadlk_rec = record;
780 			error = EDEADLK;
781 		} else {
782 			KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
783 			record->flags |= HAMMER_RECF_DELETED_FE;
784 			error = 0;
785 		}
786 	} else {
787 		/*
788 		 * If the record is on-disk we have to queue the deletion by
789 		 * the record's key.  This also causes lookups to skip the
790 		 * record (lookups for the purposes of finding an unused
791 		 * directory key do not skip the record).
792 		 */
793 		KKASSERT(dip->flags &
794 			 (HAMMER_INODE_ONDISK | HAMMER_INODE_DONDISK));
795 		record = hammer_alloc_mem_record(dip, 0);
796 		record->type = HAMMER_MEM_RECORD_DEL;
797 		record->leaf.base = cursor->leaf->base;
798 		KKASSERT(dip->obj_id == record->leaf.base.obj_id);
799 
800 		/*
801 		 * ip may be NULL, indicating the deletion of a directory
802 		 * entry which has no related inode.
803 		 */
804 		record->target_ip = ip;
805 		if (ip) {
806 			record->flush_state = HAMMER_FST_SETUP;
807 			TAILQ_INSERT_TAIL(&ip->target_list, record,
808 					  target_entry);
809 		} else {
810 			record->flush_state = HAMMER_FST_IDLE;
811 		}
812 
813 		/*
814 		 * The inode now has a dependancy and must be taken out of
815 		 * the idle state.  An inode not in an idle state is given
816 		 * an extra reference.
817 		 *
818 		 * When transitioning to a SETUP state flag for an automatic
819 		 * reflush when the dependancies are disposed of if someone
820 		 * is waiting on the inode.
821 		 */
822 		if (ip && ip->flush_state == HAMMER_FST_IDLE) {
823 			hammer_ref(&ip->lock);
824 			ip->flush_state = HAMMER_FST_SETUP;
825 			if (ip->flags & HAMMER_INODE_FLUSHW)
826 				ip->flags |= HAMMER_INODE_REFLUSH;
827 		}
828 
829 		error = hammer_mem_add(record);
830 	}
831 
832 	/*
833 	 * One less link.  The file may still be open in the OS even after
834 	 * all links have gone away.
835 	 *
836 	 * We have to terminate the cursor before syncing the inode to
837 	 * avoid deadlocking against ourselves.  XXX this may no longer
838 	 * be true.
839 	 *
840 	 * If nlinks drops to zero and the vnode is inactive (or there is
841 	 * no vnode), call hammer_inode_unloadable_check() to zonk the
842 	 * inode.  If we don't do this here the inode will not be destroyed
843 	 * on-media until we unmount.
844 	 */
845 	if (error == 0) {
846 		if (ip) {
847 			--ip->ino_data.nlinks;	/* do before we might block */
848 			ip->ino_data.ctime = trans->time;
849 		}
850 		dip->ino_data.mtime = trans->time;
851 		hammer_modify_inode(dip, HAMMER_INODE_MTIME);
852 		if (ip) {
853 			hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
854 			if (ip->ino_data.nlinks == 0 &&
855 			    (ip->vp == NULL || (ip->vp->v_flag & VINACTIVE))) {
856 				hammer_done_cursor(cursor);
857 				hammer_inode_unloadable_check(ip, 1);
858 				hammer_flush_inode(ip, 0);
859 			}
860 		}
861 
862 	}
863 	return(error);
864 }
865 
866 /*
867  * Add a record to an inode.
868  *
869  * The caller must allocate the record with hammer_alloc_mem_record(ip) and
870  * initialize the following additional fields:
871  *
872  * The related inode should be share-locked by the caller.  The caller is
873  * on the frontend.
874  *
875  * record->rec.entry.base.base.key
876  * record->rec.entry.base.base.rec_type
877  * record->rec.entry.base.base.data_len
878  * record->data		(a copy will be kmalloc'd if it cannot be embedded)
879  */
880 int
881 hammer_ip_add_record(struct hammer_transaction *trans, hammer_record_t record)
882 {
883 	hammer_inode_t ip = record->ip;
884 	int error;
885 
886 	KKASSERT(record->leaf.base.localization != 0);
887 	record->leaf.base.obj_id = ip->obj_id;
888 	record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
889 	error = hammer_mem_add(record);
890 	return(error);
891 }
892 
893 /*
894  * Locate a bulk record in-memory.  Bulk records allow disk space to be
895  * reserved so the front-end can flush large data writes without having
896  * to queue the BIO to the flusher.  Only the related record gets queued
897  * to the flusher.
898  */
899 
900 static hammer_record_t
901 hammer_ip_get_bulk(hammer_inode_t ip, off_t file_offset, int bytes)
902 {
903 	struct hammer_bulk_info info;
904 
905 	bzero(&info, sizeof(info));
906 	info.leaf.base.obj_id = ip->obj_id;
907 	info.leaf.base.key = file_offset + bytes;
908 	info.leaf.base.create_tid = 0;
909 	info.leaf.base.delete_tid = 0;
910 	info.leaf.base.rec_type = HAMMER_RECTYPE_DATA;
911 	info.leaf.base.obj_type = 0;				/* unused */
912 	info.leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;	/* unused */
913 	info.leaf.base.localization = ip->obj_localization +	/* unused */
914 				      HAMMER_LOCALIZE_MISC;
915 	info.leaf.data_len = bytes;
916 
917 	hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_overlap_cmp,
918 				   hammer_bulk_scan_callback, &info);
919 
920 	return(info.record);	/* may be NULL */
921 }
922 
923 /*
924  * Take records vetted by overlap_cmp.  The first non-deleted record
925  * (if any) stops the scan.
926  */
927 static int
928 hammer_bulk_scan_callback(hammer_record_t record, void *data)
929 {
930 	struct hammer_bulk_info *info = data;
931 
932 	if (record->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
933 			     HAMMER_RECF_COMMITTED)) {
934 		return(0);
935 	}
936 	hammer_ref(&record->lock);
937 	info->record = record;
938 	return(-1);			/* stop scan */
939 }
940 
941 /*
942  * Reserve blockmap space placemarked with an in-memory record.
943  *
944  * This routine is called by the frontend in order to be able to directly
945  * flush a buffer cache buffer.  The frontend has locked the related buffer
946  * cache buffers and we should be able to manipulate any overlapping
947  * in-memory records.
948  *
949  * The caller is responsible for adding the returned record.
950  */
951 hammer_record_t
952 hammer_ip_add_bulk(hammer_inode_t ip, off_t file_offset, void *data, int bytes,
953 		   int *errorp)
954 {
955 	hammer_record_t record;
956 	hammer_record_t conflict;
957 	int zone;
958 
959 	/*
960 	 * Deal with conflicting in-memory records.  We cannot have multiple
961 	 * in-memory records for the same base offset without seriously
962 	 * confusing the backend, including but not limited to the backend
963 	 * issuing delete-create-delete or create-delete-create sequences
964 	 * and asserting on the delete_tid being the same as the create_tid.
965 	 *
966 	 * If we encounter a record with the backend interlock set we cannot
967 	 * immediately delete it without confusing the backend.
968 	 */
969 	while ((conflict = hammer_ip_get_bulk(ip, file_offset, bytes)) !=NULL) {
970 		if (conflict->flags & HAMMER_RECF_INTERLOCK_BE) {
971 			conflict->flags |= HAMMER_RECF_WANTED;
972 			tsleep(conflict, 0, "hmrrc3", 0);
973 		} else {
974 			conflict->flags |= HAMMER_RECF_DELETED_FE;
975 		}
976 		hammer_rel_mem_record(conflict);
977 	}
978 
979 	/*
980 	 * Create a record to cover the direct write.  This is called with
981 	 * the related BIO locked so there should be no possible conflict.
982 	 *
983 	 * The backend is responsible for finalizing the space reserved in
984 	 * this record.
985 	 *
986 	 * XXX bytes not aligned, depend on the reservation code to
987 	 * align the reservation.
988 	 */
989 	record = hammer_alloc_mem_record(ip, 0);
990 	zone = (bytes >= HAMMER_BUFSIZE) ? HAMMER_ZONE_LARGE_DATA_INDEX :
991 					   HAMMER_ZONE_SMALL_DATA_INDEX;
992 	record->resv = hammer_blockmap_reserve(ip->hmp, zone, bytes,
993 					       &record->leaf.data_offset,
994 					       errorp);
995 	if (record->resv == NULL) {
996 		kprintf("hammer_ip_add_bulk: reservation failed\n");
997 		hammer_rel_mem_record(record);
998 		return(NULL);
999 	}
1000 	record->type = HAMMER_MEM_RECORD_DATA;
1001 	record->leaf.base.rec_type = HAMMER_RECTYPE_DATA;
1002 	record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
1003 	record->leaf.base.obj_id = ip->obj_id;
1004 	record->leaf.base.key = file_offset + bytes;
1005 	record->leaf.base.localization = ip->obj_localization +
1006 					 HAMMER_LOCALIZE_MISC;
1007 	record->leaf.data_len = bytes;
1008 	hammer_crc_set_leaf(data, &record->leaf);
1009 	KKASSERT(*errorp == 0);
1010 	return(record);
1011 }
1012 
1013 /*
1014  * Frontend truncation code.  Scan in-memory records only.  On-disk records
1015  * and records in a flushing state are handled by the backend.  The vnops
1016  * setattr code will handle the block containing the truncation point.
1017  *
1018  * Partial blocks are not deleted.
1019  */
1020 int
1021 hammer_ip_frontend_trunc(struct hammer_inode *ip, off_t file_size)
1022 {
1023 	struct rec_trunc_info info;
1024 
1025 	switch(ip->ino_data.obj_type) {
1026 	case HAMMER_OBJTYPE_REGFILE:
1027 		info.rec_type = HAMMER_RECTYPE_DATA;
1028 		break;
1029 	case HAMMER_OBJTYPE_DBFILE:
1030 		info.rec_type = HAMMER_RECTYPE_DB;
1031 		break;
1032 	default:
1033 		return(EINVAL);
1034 	}
1035 	info.trunc_off = file_size;
1036 	hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_trunc_cmp,
1037 				   hammer_frontend_trunc_callback, &info);
1038 	return(0);
1039 }
1040 
1041 static int
1042 hammer_frontend_trunc_callback(hammer_record_t record, void *data __unused)
1043 {
1044 	if (record->flags & HAMMER_RECF_DELETED_FE)
1045 		return(0);
1046 	if (record->flush_state == HAMMER_FST_FLUSH)
1047 		return(0);
1048 	KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
1049 	hammer_ref(&record->lock);
1050 	record->flags |= HAMMER_RECF_DELETED_FE;
1051 	hammer_rel_mem_record(record);
1052 	return(0);
1053 }
1054 
1055 /*
1056  * Return 1 if the caller must check for and delete existing records
1057  * before writing out a new data record.
1058  *
1059  * Return 0 if the caller can just insert the record into the B-Tree without
1060  * checking.
1061  */
1062 static int
1063 hammer_record_needs_overwrite_delete(hammer_record_t record)
1064 {
1065 	hammer_inode_t ip = record->ip;
1066 	int64_t file_offset;
1067 	int r;
1068 
1069 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE)
1070 		file_offset = record->leaf.base.key;
1071 	else
1072 		file_offset = record->leaf.base.key - record->leaf.data_len;
1073 	r = (file_offset < ip->save_trunc_off);
1074 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1075 		if (ip->save_trunc_off <= record->leaf.base.key)
1076 			ip->save_trunc_off = record->leaf.base.key + 1;
1077 	} else {
1078 		if (ip->save_trunc_off < record->leaf.base.key)
1079 			ip->save_trunc_off = record->leaf.base.key;
1080 	}
1081 	return(r);
1082 }
1083 
1084 /*
1085  * Backend code.  Sync a record to the media.
1086  */
1087 int
1088 hammer_ip_sync_record_cursor(hammer_cursor_t cursor, hammer_record_t record)
1089 {
1090 	hammer_transaction_t trans = cursor->trans;
1091 	int64_t file_offset;
1092 	int bytes;
1093 	void *bdata;
1094 	int error;
1095 	int doprop;
1096 
1097 	KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1098 	KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
1099 	KKASSERT(record->leaf.base.localization != 0);
1100 
1101 	/*
1102 	 * Any direct-write related to the record must complete before we
1103 	 * can sync the record to the on-disk media.
1104 	 */
1105 	if (record->flags & (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL))
1106 		hammer_io_direct_wait(record);
1107 
1108 	/*
1109 	 * If this is a bulk-data record placemarker there may be an existing
1110 	 * record on-disk, indicating a data overwrite.  If there is the
1111 	 * on-disk record must be deleted before we can insert our new record.
1112 	 *
1113 	 * We've synthesized this record and do not know what the create_tid
1114 	 * on-disk is, nor how much data it represents.
1115 	 *
1116 	 * Keep in mind that (key) for data records is (base_offset + len),
1117 	 * not (base_offset).  Also, we only want to get rid of on-disk
1118 	 * records since we are trying to sync our in-memory record, call
1119 	 * hammer_ip_delete_range() with truncating set to 1 to make sure
1120 	 * it skips in-memory records.
1121 	 *
1122 	 * It is ok for the lookup to return ENOENT.
1123 	 *
1124 	 * NOTE OPTIMIZATION: sync_trunc_off is used to determine if we have
1125 	 * to call hammer_ip_delete_range() or not.  This also means we must
1126 	 * update sync_trunc_off() as we write.
1127 	 */
1128 	if (record->type == HAMMER_MEM_RECORD_DATA &&
1129 	    hammer_record_needs_overwrite_delete(record)) {
1130 		file_offset = record->leaf.base.key - record->leaf.data_len;
1131 		bytes = (record->leaf.data_len + HAMMER_BUFMASK) &
1132 			~HAMMER_BUFMASK;
1133 		KKASSERT((file_offset & HAMMER_BUFMASK) == 0);
1134 		error = hammer_ip_delete_range(
1135 				cursor, record->ip,
1136 				file_offset, file_offset + bytes - 1,
1137 				1);
1138 		if (error && error != ENOENT)
1139 			goto done;
1140 	}
1141 
1142 	/*
1143 	 * If this is a general record there may be an on-disk version
1144 	 * that must be deleted before we can insert the new record.
1145 	 */
1146 	if (record->type == HAMMER_MEM_RECORD_GENERAL) {
1147 		error = hammer_delete_general(cursor, record->ip,
1148 					      &record->leaf);
1149 		if (error && error != ENOENT)
1150 			goto done;
1151 	}
1152 
1153 	/*
1154 	 * Setup the cursor.
1155 	 */
1156 	hammer_normalize_cursor(cursor);
1157 	cursor->key_beg = record->leaf.base;
1158 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1159 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1160 	cursor->flags &= ~HAMMER_CURSOR_INSERT;
1161 
1162 	/*
1163 	 * Records can wind up on-media before the inode itself is on-media.
1164 	 * Flag the case.
1165 	 */
1166 	record->ip->flags |= HAMMER_INODE_DONDISK;
1167 
1168 	/*
1169 	 * If we are deleting a directory entry an exact match must be
1170 	 * found on-disk.
1171 	 */
1172 	if (record->type == HAMMER_MEM_RECORD_DEL) {
1173 		error = hammer_btree_lookup(cursor);
1174 		if (error == 0) {
1175 			KKASSERT(cursor->iprec == NULL);
1176 			error = hammer_ip_delete_record(cursor, record->ip,
1177 							trans->tid);
1178 			if (error == 0) {
1179 				record->flags |= HAMMER_RECF_DELETED_BE |
1180 						 HAMMER_RECF_COMMITTED;
1181 				++record->ip->rec_generation;
1182 			}
1183 		}
1184 		goto done;
1185 	}
1186 
1187 	/*
1188 	 * We are inserting.
1189 	 *
1190 	 * Issue a lookup to position the cursor and locate the insertion
1191 	 * point.  The target key should not exist.  If we are creating a
1192 	 * directory entry we may have to iterate the low 32 bits of the
1193 	 * key to find an unused key.
1194 	 */
1195 	hammer_sync_lock_sh(trans);
1196 	cursor->flags |= HAMMER_CURSOR_INSERT;
1197 	error = hammer_btree_lookup(cursor);
1198 	if (hammer_debug_inode)
1199 		kprintf("DOINSERT LOOKUP %d\n", error);
1200 	if (error == 0) {
1201 		kprintf("hammer_ip_sync_record: duplicate rec "
1202 			"at (%016llx)\n", (long long)record->leaf.base.key);
1203 		Debugger("duplicate record1");
1204 		error = EIO;
1205 	}
1206 #if 0
1207 	if (record->type == HAMMER_MEM_RECORD_DATA)
1208 		kprintf("sync_record  %016llx ---------------- %016llx %d\n",
1209 			record->leaf.base.key - record->leaf.data_len,
1210 			record->leaf.data_offset, error);
1211 #endif
1212 
1213 	if (error != ENOENT)
1214 		goto done_unlock;
1215 
1216 	/*
1217 	 * Allocate the record and data.  The result buffers will be
1218 	 * marked as being modified and further calls to
1219 	 * hammer_modify_buffer() will result in unneeded UNDO records.
1220 	 *
1221 	 * Support zero-fill records (data == NULL and data_len != 0)
1222 	 */
1223 	if (record->type == HAMMER_MEM_RECORD_DATA) {
1224 		/*
1225 		 * The data portion of a bulk-data record has already been
1226 		 * committed to disk, we need only adjust the layer2
1227 		 * statistics in the same transaction as our B-Tree insert.
1228 		 */
1229 		KKASSERT(record->leaf.data_offset != 0);
1230 		error = hammer_blockmap_finalize(trans,
1231 						 record->resv,
1232 						 record->leaf.data_offset,
1233 						 record->leaf.data_len);
1234 	} else if (record->data && record->leaf.data_len) {
1235 		/*
1236 		 * Wholely cached record, with data.  Allocate the data.
1237 		 */
1238 		bdata = hammer_alloc_data(trans, record->leaf.data_len,
1239 					  record->leaf.base.rec_type,
1240 					  &record->leaf.data_offset,
1241 					  &cursor->data_buffer,
1242 					  0, &error);
1243 		if (bdata == NULL)
1244 			goto done_unlock;
1245 		hammer_crc_set_leaf(record->data, &record->leaf);
1246 		hammer_modify_buffer(trans, cursor->data_buffer, NULL, 0);
1247 		bcopy(record->data, bdata, record->leaf.data_len);
1248 		hammer_modify_buffer_done(cursor->data_buffer);
1249 	} else {
1250 		/*
1251 		 * Wholely cached record, without data.
1252 		 */
1253 		record->leaf.data_offset = 0;
1254 		record->leaf.data_crc = 0;
1255 	}
1256 
1257 	error = hammer_btree_insert(cursor, &record->leaf, &doprop);
1258 	if (hammer_debug_inode && error) {
1259 		kprintf("BTREE INSERT error %d @ %016llx:%d key %016llx\n",
1260 			error,
1261 			(long long)cursor->node->node_offset,
1262 			cursor->index,
1263 			(long long)record->leaf.base.key);
1264 	}
1265 
1266 	/*
1267 	 * Our record is on-disk and we normally mark the in-memory version
1268 	 * as having been committed (and not BE-deleted).
1269 	 *
1270 	 * If the record represented a directory deletion but we had to
1271 	 * sync a valid directory entry to disk due to dependancies,
1272 	 * we must convert the record to a covering delete so the
1273 	 * frontend does not have visibility on the synced entry.
1274 	 *
1275 	 * WARNING: cursor's leaf pointer may have changed after do_propagation
1276 	 *	    returns!
1277 	 */
1278 	if (error == 0) {
1279 		if (doprop) {
1280 			hammer_btree_do_propagation(cursor,
1281 						    record->ip->pfsm,
1282 						    &record->leaf);
1283 		}
1284 		if (record->flags & HAMMER_RECF_CONVERT_DELETE) {
1285 			/*
1286 			 * Must convert deleted directory entry add
1287 			 * to a directory entry delete.
1288 			 */
1289 			KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
1290 			record->flags &= ~HAMMER_RECF_DELETED_FE;
1291 			record->type = HAMMER_MEM_RECORD_DEL;
1292 			KKASSERT(record->ip->obj_id == record->leaf.base.obj_id);
1293 			KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1294 			record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1295 			KKASSERT((record->flags & (HAMMER_RECF_COMMITTED |
1296 						 HAMMER_RECF_DELETED_BE)) == 0);
1297 			/* converted record is not yet committed */
1298 			/* hammer_flush_record_done takes care of the rest */
1299 		} else {
1300 			/*
1301 			 * Everything went fine and we are now done with
1302 			 * this record.
1303 			 */
1304 			record->flags |= HAMMER_RECF_COMMITTED;
1305 			++record->ip->rec_generation;
1306 		}
1307 	} else {
1308 		if (record->leaf.data_offset) {
1309 			hammer_blockmap_free(trans, record->leaf.data_offset,
1310 					     record->leaf.data_len);
1311 		}
1312 	}
1313 done_unlock:
1314 	hammer_sync_unlock(trans);
1315 done:
1316 	return(error);
1317 }
1318 
1319 /*
1320  * Add the record to the inode's rec_tree.  The low 32 bits of a directory
1321  * entry's key is used to deal with hash collisions in the upper 32 bits.
1322  * A unique 64 bit key is generated in-memory and may be regenerated a
1323  * second time when the directory record is flushed to the on-disk B-Tree.
1324  *
1325  * A referenced record is passed to this function.  This function
1326  * eats the reference.  If an error occurs the record will be deleted.
1327  *
1328  * A copy of the temporary record->data pointer provided by the caller
1329  * will be made.
1330  */
1331 int
1332 hammer_mem_add(hammer_record_t record)
1333 {
1334 	hammer_mount_t hmp = record->ip->hmp;
1335 
1336 	/*
1337 	 * Make a private copy of record->data
1338 	 */
1339 	if (record->data)
1340 		KKASSERT(record->flags & HAMMER_RECF_ALLOCDATA);
1341 
1342 	/*
1343 	 * Insert into the RB tree.  A unique key should have already
1344 	 * been selected if this is a directory entry.
1345 	 */
1346 	if (RB_INSERT(hammer_rec_rb_tree, &record->ip->rec_tree, record)) {
1347 		record->flags |= HAMMER_RECF_DELETED_FE;
1348 		hammer_rel_mem_record(record);
1349 		return (EEXIST);
1350 	}
1351 	++hmp->count_newrecords;
1352 	++hmp->rsv_recs;
1353 	++record->ip->rsv_recs;
1354 	record->ip->hmp->rsv_databytes += record->leaf.data_len;
1355 	record->flags |= HAMMER_RECF_ONRBTREE;
1356 	hammer_modify_inode(record->ip, HAMMER_INODE_XDIRTY);
1357 	hammer_rel_mem_record(record);
1358 	return(0);
1359 }
1360 
1361 /************************************************************************
1362  *		     HAMMER INODE MERGED-RECORD FUNCTIONS		*
1363  ************************************************************************
1364  *
1365  * These functions augment the B-Tree scanning functions in hammer_btree.c
1366  * by merging in-memory records with on-disk records.
1367  */
1368 
1369 /*
1370  * Locate a particular record either in-memory or on-disk.
1371  *
1372  * NOTE: This is basically a standalone routine, hammer_ip_next() may
1373  * NOT be called to iterate results.
1374  */
1375 int
1376 hammer_ip_lookup(hammer_cursor_t cursor)
1377 {
1378 	int error;
1379 
1380 	/*
1381 	 * If the element is in-memory return it without searching the
1382 	 * on-disk B-Tree
1383 	 */
1384 	KKASSERT(cursor->ip);
1385 	error = hammer_mem_lookup(cursor);
1386 	if (error == 0) {
1387 		cursor->leaf = &cursor->iprec->leaf;
1388 		return(error);
1389 	}
1390 	if (error != ENOENT)
1391 		return(error);
1392 
1393 	/*
1394 	 * If the inode has on-disk components search the on-disk B-Tree.
1395 	 */
1396 	if ((cursor->ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) == 0)
1397 		return(error);
1398 	error = hammer_btree_lookup(cursor);
1399 	if (error == 0)
1400 		error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1401 	return(error);
1402 }
1403 
1404 /*
1405  * Helper for hammer_ip_first()/hammer_ip_next()
1406  *
1407  * NOTE: Both ATEDISK and DISKEOF will be set the same.  This sets up
1408  * hammer_ip_first() for calling hammer_ip_next(), and sets up the re-seek
1409  * state if hammer_ip_next() needs to re-seek.
1410  */
1411 static __inline
1412 int
1413 _hammer_ip_seek_btree(hammer_cursor_t cursor)
1414 {
1415 	hammer_inode_t ip = cursor->ip;
1416 	int error;
1417 
1418 	if (ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) {
1419 		error = hammer_btree_lookup(cursor);
1420 		if (error == ENOENT || error == EDEADLK) {
1421 			if (hammer_debug_general & 0x2000) {
1422 				kprintf("error %d node %p %016llx index %d\n",
1423 					error, cursor->node,
1424 					(long long)cursor->node->node_offset,
1425 					cursor->index);
1426 			}
1427 			cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1428 			error = hammer_btree_iterate(cursor);
1429 		}
1430 		if (error == 0) {
1431 			cursor->flags &= ~(HAMMER_CURSOR_DISKEOF |
1432 					   HAMMER_CURSOR_ATEDISK);
1433 		} else {
1434 			cursor->flags |= HAMMER_CURSOR_DISKEOF |
1435 					 HAMMER_CURSOR_ATEDISK;
1436 			if (error == ENOENT)
1437 				error = 0;
1438 		}
1439 	} else {
1440 		cursor->flags |= HAMMER_CURSOR_DISKEOF | HAMMER_CURSOR_ATEDISK;
1441 		error = 0;
1442 	}
1443 	return(error);
1444 }
1445 
1446 /*
1447  * Helper for hammer_ip_next()
1448  *
1449  * The caller has determined that the media cursor is further along than the
1450  * memory cursor and must be reseeked after a generation number change.
1451  */
1452 static
1453 int
1454 _hammer_ip_reseek(hammer_cursor_t cursor)
1455 {
1456 	struct hammer_base_elm save;
1457 	hammer_btree_elm_t elm;
1458 	int error;
1459 	int r;
1460 	int again = 0;
1461 
1462 	/*
1463 	 * Do the re-seek.
1464 	 */
1465 	kprintf("HAMMER: Debug: re-seeked during scan @ino=%016llx\n",
1466 		(long long)cursor->ip->obj_id);
1467 	save = cursor->key_beg;
1468 	cursor->key_beg = cursor->iprec->leaf.base;
1469 	error = _hammer_ip_seek_btree(cursor);
1470 	KKASSERT(error == 0);
1471 	cursor->key_beg = save;
1472 
1473 	/*
1474 	 * If the memory record was previous returned to
1475 	 * the caller and the media record matches
1476 	 * (-1/+1: only create_tid differs), then iterate
1477 	 * the media record to avoid a double result.
1478 	 */
1479 	if ((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0 &&
1480 	    (cursor->flags & HAMMER_CURSOR_LASTWASMEM)) {
1481 		elm = &cursor->node->ondisk->elms[cursor->index];
1482 		r = hammer_btree_cmp(&elm->base,
1483 				     &cursor->iprec->leaf.base);
1484 		if (cursor->flags & HAMMER_CURSOR_ASOF) {
1485 			if (r >= -1 && r <= 1) {
1486 				kprintf("HAMMER: Debug: iterated after "
1487 					"re-seek (asof r=%d)\n", r);
1488 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
1489 				again = 1;
1490 			}
1491 		} else {
1492 			if (r == 0) {
1493 				kprintf("HAMMER: Debug: iterated after "
1494 					"re-seek\n");
1495 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
1496 				again = 1;
1497 			}
1498 		}
1499 	}
1500 	return(again);
1501 }
1502 
1503 /*
1504  * Locate the first record within the cursor's key_beg/key_end range,
1505  * restricted to a particular inode.  0 is returned on success, ENOENT
1506  * if no records matched the requested range, or some other error.
1507  *
1508  * When 0 is returned hammer_ip_next() may be used to iterate additional
1509  * records within the requested range.
1510  *
1511  * This function can return EDEADLK, requiring the caller to terminate
1512  * the cursor and try again.
1513  */
1514 
1515 int
1516 hammer_ip_first(hammer_cursor_t cursor)
1517 {
1518 	hammer_inode_t ip = cursor->ip;
1519 	int error;
1520 
1521 	KKASSERT(ip != NULL);
1522 
1523 	/*
1524 	 * Clean up fields and setup for merged scan
1525 	 */
1526 	cursor->flags &= ~HAMMER_CURSOR_RETEST;
1527 
1528 	/*
1529 	 * Search the in-memory record list (Red-Black tree).  Unlike the
1530 	 * B-Tree search, mem_first checks for records in the range.
1531 	 *
1532 	 * This function will setup both ATEMEM and MEMEOF properly for
1533 	 * the ip iteration.  ATEMEM will be set if MEMEOF is set.
1534 	 */
1535 	hammer_mem_first(cursor);
1536 
1537 	/*
1538 	 * Detect generation changes during blockages, including
1539 	 * blockages which occur on the initial btree search.
1540 	 */
1541 	cursor->rec_generation = cursor->ip->rec_generation;
1542 
1543 	/*
1544 	 * Initial search and result
1545 	 */
1546 	error = _hammer_ip_seek_btree(cursor);
1547 	if (error == 0)
1548 		error = hammer_ip_next(cursor);
1549 
1550 	return (error);
1551 }
1552 
1553 /*
1554  * Retrieve the next record in a merged iteration within the bounds of the
1555  * cursor.  This call may be made multiple times after the cursor has been
1556  * initially searched with hammer_ip_first().
1557  *
1558  * There are numerous special cases in this code to deal with races between
1559  * in-memory records and on-media records.
1560  *
1561  * 0 is returned on success, ENOENT if no further records match the
1562  * requested range, or some other error code is returned.
1563  */
1564 int
1565 hammer_ip_next(hammer_cursor_t cursor)
1566 {
1567 	hammer_btree_elm_t elm;
1568 	hammer_record_t rec;
1569 	hammer_record_t tmprec;
1570 	int error;
1571 	int r;
1572 
1573 again:
1574 	/*
1575 	 * Get the next on-disk record
1576 	 *
1577 	 * NOTE: If we deleted the last on-disk record we had scanned
1578 	 * 	 ATEDISK will be clear and RETEST will be set, forcing
1579 	 *	 a call to iterate.  The fact that ATEDISK is clear causes
1580 	 *	 iterate to re-test the 'current' element.  If ATEDISK is
1581 	 *	 set, iterate will skip the 'current' element.
1582 	 */
1583 	error = 0;
1584 	if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
1585 		if (cursor->flags & (HAMMER_CURSOR_ATEDISK |
1586 				     HAMMER_CURSOR_RETEST)) {
1587 			error = hammer_btree_iterate(cursor);
1588 			cursor->flags &= ~HAMMER_CURSOR_RETEST;
1589 			if (error == 0) {
1590 				cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1591 				hammer_cache_node(&cursor->ip->cache[1],
1592 						  cursor->node);
1593 			} else if (error == ENOENT) {
1594 				cursor->flags |= HAMMER_CURSOR_DISKEOF |
1595 						 HAMMER_CURSOR_ATEDISK;
1596 				error = 0;
1597 			}
1598 		}
1599 	}
1600 
1601 	/*
1602 	 * If the generation changed the backend has deleted or committed
1603 	 * one or more memory records since our last check.
1604 	 *
1605 	 * When this case occurs if the disk cursor is > current memory record
1606 	 * or the disk cursor is at EOF, we must re-seek the disk-cursor.
1607 	 * Since the cursor is ahead it must have not yet been eaten (if
1608 	 * not at eof anyway). (XXX data offset case?)
1609 	 *
1610 	 * NOTE: we are not doing a full check here.  That will be handled
1611 	 * later on.
1612 	 *
1613 	 * If we have exhausted all memory records we do not have to do any
1614 	 * further seeks.
1615 	 */
1616 	while (cursor->rec_generation != cursor->ip->rec_generation &&
1617 	       error == 0
1618 	) {
1619 		kprintf("HAMMER: Debug: generation changed during scan @ino=%016llx\n", (long long)cursor->ip->obj_id);
1620 		cursor->rec_generation = cursor->ip->rec_generation;
1621 		if (cursor->flags & HAMMER_CURSOR_MEMEOF)
1622 			break;
1623 		if (cursor->flags & HAMMER_CURSOR_DISKEOF) {
1624 			r = 1;
1625 		} else {
1626 			KKASSERT((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0);
1627 			elm = &cursor->node->ondisk->elms[cursor->index];
1628 			r = hammer_btree_cmp(&elm->base,
1629 					     &cursor->iprec->leaf.base);
1630 		}
1631 
1632 		/*
1633 		 * Do we re-seek the media cursor?
1634 		 */
1635 		if (r > 0) {
1636 			if (_hammer_ip_reseek(cursor))
1637 				goto again;
1638 		}
1639 	}
1640 
1641 	/*
1642 	 * We can now safely get the next in-memory record.  We cannot
1643 	 * block here.
1644 	 *
1645 	 * hammer_rec_scan_cmp:  Is the record still in our general range,
1646 	 *			 (non-inclusive of snapshot exclusions)?
1647 	 * hammer_rec_scan_callback: Is the record in our snapshot?
1648 	 */
1649 	tmprec = NULL;
1650 	if ((cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1651 		/*
1652 		 * If the current memory record was eaten then get the next
1653 		 * one.  Stale records are skipped.
1654 		 */
1655 		if (cursor->flags & HAMMER_CURSOR_ATEMEM) {
1656 			tmprec = cursor->iprec;
1657 			cursor->iprec = NULL;
1658 			rec = hammer_rec_rb_tree_RB_NEXT(tmprec);
1659 			while (rec) {
1660 				if (hammer_rec_scan_cmp(rec, cursor) != 0)
1661 					break;
1662 				if (hammer_rec_scan_callback(rec, cursor) != 0)
1663 					break;
1664 				rec = hammer_rec_rb_tree_RB_NEXT(rec);
1665 			}
1666 			if (cursor->iprec) {
1667 				KKASSERT(cursor->iprec == rec);
1668 				cursor->flags &= ~HAMMER_CURSOR_ATEMEM;
1669 			} else {
1670 				cursor->flags |= HAMMER_CURSOR_MEMEOF;
1671 			}
1672 			cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1673 		}
1674 	}
1675 
1676 	/*
1677 	 * MEMORY RECORD VALIDITY TEST
1678 	 *
1679 	 * (We still can't block, which is why tmprec is being held so
1680 	 * long).
1681 	 *
1682 	 * If the memory record is no longer valid we skip it.  It may
1683 	 * have been deleted by the frontend.  If it was deleted or
1684 	 * committed by the backend the generation change re-seeked the
1685 	 * disk cursor and the record will be present there.
1686 	 */
1687 	if (error == 0 && (cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1688 		KKASSERT(cursor->iprec);
1689 		KKASSERT((cursor->flags & HAMMER_CURSOR_ATEMEM) == 0);
1690 		if (!hammer_ip_iterate_mem_good(cursor, cursor->iprec)) {
1691 			cursor->flags |= HAMMER_CURSOR_ATEMEM;
1692 			if (tmprec)
1693 				hammer_rel_mem_record(tmprec);
1694 			goto again;
1695 		}
1696 	}
1697 	if (tmprec)
1698 		hammer_rel_mem_record(tmprec);
1699 
1700 	/*
1701 	 * Extract either the disk or memory record depending on their
1702 	 * relative position.
1703 	 */
1704 	error = 0;
1705 	switch(cursor->flags & (HAMMER_CURSOR_ATEDISK | HAMMER_CURSOR_ATEMEM)) {
1706 	case 0:
1707 		/*
1708 		 * Both entries valid.   Compare the entries and nominally
1709 		 * return the first one in the sort order.  Numerous cases
1710 		 * require special attention, however.
1711 		 */
1712 		elm = &cursor->node->ondisk->elms[cursor->index];
1713 		r = hammer_btree_cmp(&elm->base, &cursor->iprec->leaf.base);
1714 
1715 		/*
1716 		 * If the two entries differ only by their key (-2/2) or
1717 		 * create_tid (-1/1), and are DATA records, we may have a
1718 		 * nominal match.  We have to calculate the base file
1719 		 * offset of the data.
1720 		 */
1721 		if (r <= 2 && r >= -2 && r != 0 &&
1722 		    cursor->ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE &&
1723 		    cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1724 			int64_t base1 = elm->leaf.base.key - elm->leaf.data_len;
1725 			int64_t base2 = cursor->iprec->leaf.base.key -
1726 					cursor->iprec->leaf.data_len;
1727 			if (base1 == base2)
1728 				r = 0;
1729 		}
1730 
1731 		if (r < 0) {
1732 			error = hammer_btree_extract(cursor,
1733 						     HAMMER_CURSOR_GET_LEAF);
1734 			cursor->flags |= HAMMER_CURSOR_ATEDISK;
1735 			cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1736 			break;
1737 		}
1738 
1739 		/*
1740 		 * If the entries match exactly the memory entry is either
1741 		 * an on-disk directory entry deletion or a bulk data
1742 		 * overwrite.  If it is a directory entry deletion we eat
1743 		 * both entries.
1744 		 *
1745 		 * For the bulk-data overwrite case it is possible to have
1746 		 * visibility into both, which simply means the syncer
1747 		 * hasn't gotten around to doing the delete+insert sequence
1748 		 * on the B-Tree.  Use the memory entry and throw away the
1749 		 * on-disk entry.
1750 		 *
1751 		 * If the in-memory record is not either of these we
1752 		 * probably caught the syncer while it was syncing it to
1753 		 * the media.  Since we hold a shared lock on the cursor,
1754 		 * the in-memory record had better be marked deleted at
1755 		 * this point.
1756 		 */
1757 		if (r == 0) {
1758 			if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL) {
1759 				if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1760 					cursor->flags |= HAMMER_CURSOR_ATEDISK;
1761 					cursor->flags |= HAMMER_CURSOR_ATEMEM;
1762 					goto again;
1763 				}
1764 			} else if (cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1765 				if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1766 					cursor->flags |= HAMMER_CURSOR_ATEDISK;
1767 				}
1768 				/* fall through to memory entry */
1769 			} else {
1770 				panic("hammer_ip_next: duplicate mem/b-tree entry %p %d %08x", cursor->iprec, cursor->iprec->type, cursor->iprec->flags);
1771 				cursor->flags |= HAMMER_CURSOR_ATEMEM;
1772 				goto again;
1773 			}
1774 		}
1775 		/* fall through to the memory entry */
1776 	case HAMMER_CURSOR_ATEDISK:
1777 		/*
1778 		 * Only the memory entry is valid.
1779 		 */
1780 		cursor->leaf = &cursor->iprec->leaf;
1781 		cursor->flags |= HAMMER_CURSOR_ATEMEM;
1782 		cursor->flags |= HAMMER_CURSOR_LASTWASMEM;
1783 
1784 		/*
1785 		 * If the memory entry is an on-disk deletion we should have
1786 		 * also had found a B-Tree record.  If the backend beat us
1787 		 * to it it would have interlocked the cursor and we should
1788 		 * have seen the in-memory record marked DELETED_FE.
1789 		 */
1790 		if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL &&
1791 		    (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1792 			panic("hammer_ip_next: del-on-disk with no b-tree entry iprec %p flags %08x", cursor->iprec, cursor->iprec->flags);
1793 		}
1794 		break;
1795 	case HAMMER_CURSOR_ATEMEM:
1796 		/*
1797 		 * Only the disk entry is valid
1798 		 */
1799 		error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1800 		cursor->flags |= HAMMER_CURSOR_ATEDISK;
1801 		cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1802 		break;
1803 	default:
1804 		/*
1805 		 * Neither entry is valid
1806 		 *
1807 		 * XXX error not set properly
1808 		 */
1809 		cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1810 		cursor->leaf = NULL;
1811 		error = ENOENT;
1812 		break;
1813 	}
1814 	return(error);
1815 }
1816 
1817 /*
1818  * Resolve the cursor->data pointer for the current cursor position in
1819  * a merged iteration.
1820  */
1821 int
1822 hammer_ip_resolve_data(hammer_cursor_t cursor)
1823 {
1824 	hammer_record_t record;
1825 	int error;
1826 
1827 	if (hammer_cursor_inmem(cursor)) {
1828 		/*
1829 		 * The data associated with an in-memory record is usually
1830 		 * kmalloced, but reserve-ahead data records will have an
1831 		 * on-disk reference.
1832 		 *
1833 		 * NOTE: Reserve-ahead data records must be handled in the
1834 		 * context of the related high level buffer cache buffer
1835 		 * to interlock against async writes.
1836 		 */
1837 		record = cursor->iprec;
1838 		cursor->data = record->data;
1839 		error = 0;
1840 		if (cursor->data == NULL) {
1841 			KKASSERT(record->leaf.base.rec_type ==
1842 				 HAMMER_RECTYPE_DATA);
1843 			cursor->data = hammer_bread_ext(cursor->trans->hmp,
1844 						    record->leaf.data_offset,
1845 						    record->leaf.data_len,
1846 						    &error,
1847 						    &cursor->data_buffer);
1848 		}
1849 	} else {
1850 		cursor->leaf = &cursor->node->ondisk->elms[cursor->index].leaf;
1851 		error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_DATA);
1852 	}
1853 	return(error);
1854 }
1855 
1856 /*
1857  * Backend truncation / record replacement - delete records in range.
1858  *
1859  * Delete all records within the specified range for inode ip.  In-memory
1860  * records still associated with the frontend are ignored.
1861  *
1862  * If truncating is non-zero in-memory records associated with the back-end
1863  * are ignored.  If truncating is > 1 we can return EWOULDBLOCK.
1864  *
1865  * NOTES:
1866  *
1867  *	* An unaligned range will cause new records to be added to cover
1868  *        the edge cases. (XXX not implemented yet).
1869  *
1870  *	* Replacement via reservations (see hammer_ip_sync_record_cursor())
1871  *        also do not deal with unaligned ranges.
1872  *
1873  *	* ran_end is inclusive (e.g. 0,1023 instead of 0,1024).
1874  *
1875  *	* Record keys for regular file data have to be special-cased since
1876  * 	  they indicate the end of the range (key = base + bytes).
1877  *
1878  *	* This function may be asked to delete ridiculously huge ranges, for
1879  *	  example if someone truncates or removes a 1TB regular file.  We
1880  *	  must be very careful on restarts and we may have to stop w/
1881  *	  EWOULDBLOCK to avoid blowing out the buffer cache.
1882  */
1883 int
1884 hammer_ip_delete_range(hammer_cursor_t cursor, hammer_inode_t ip,
1885 		       int64_t ran_beg, int64_t ran_end, int truncating)
1886 {
1887 	hammer_transaction_t trans = cursor->trans;
1888 	hammer_btree_leaf_elm_t leaf;
1889 	int error;
1890 	int64_t off;
1891 	int64_t tmp64;
1892 
1893 #if 0
1894 	kprintf("delete_range %p %016llx-%016llx\n", ip, ran_beg, ran_end);
1895 #endif
1896 
1897 	KKASSERT(trans->type == HAMMER_TRANS_FLS);
1898 retry:
1899 	hammer_normalize_cursor(cursor);
1900 	cursor->key_beg.localization = ip->obj_localization +
1901 				       HAMMER_LOCALIZE_MISC;
1902 	cursor->key_beg.obj_id = ip->obj_id;
1903 	cursor->key_beg.create_tid = 0;
1904 	cursor->key_beg.delete_tid = 0;
1905 	cursor->key_beg.obj_type = 0;
1906 
1907 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1908 		cursor->key_beg.key = ran_beg;
1909 		cursor->key_beg.rec_type = HAMMER_RECTYPE_DB;
1910 	} else {
1911 		/*
1912 		 * The key in the B-Tree is (base+bytes), so the first possible
1913 		 * matching key is ran_beg + 1.
1914 		 */
1915 		cursor->key_beg.key = ran_beg + 1;
1916 		cursor->key_beg.rec_type = HAMMER_RECTYPE_DATA;
1917 	}
1918 
1919 	cursor->key_end = cursor->key_beg;
1920 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1921 		cursor->key_end.key = ran_end;
1922 	} else {
1923 		tmp64 = ran_end + MAXPHYS + 1;	/* work around GCC-4 bug */
1924 		if (tmp64 < ran_end)
1925 			cursor->key_end.key = 0x7FFFFFFFFFFFFFFFLL;
1926 		else
1927 			cursor->key_end.key = ran_end + MAXPHYS + 1;
1928 	}
1929 
1930 	cursor->asof = ip->obj_asof;
1931 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1932 	cursor->flags |= HAMMER_CURSOR_ASOF;
1933 	cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
1934 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1935 	cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE;
1936 
1937 	error = hammer_ip_first(cursor);
1938 
1939 	/*
1940 	 * Iterate through matching records and mark them as deleted.
1941 	 */
1942 	while (error == 0) {
1943 		leaf = cursor->leaf;
1944 
1945 		KKASSERT(leaf->base.delete_tid == 0);
1946 		KKASSERT(leaf->base.obj_id == ip->obj_id);
1947 
1948 		/*
1949 		 * There may be overlap cases for regular file data.  Also
1950 		 * remember the key for a regular file record is (base + len),
1951 		 * NOT (base).
1952 		 *
1953 		 * Note that do to duplicates (mem & media) allowed by
1954 		 * DELETE_VISIBILITY, off can wind up less then ran_beg.
1955 		 */
1956 		if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
1957 			off = leaf->base.key - leaf->data_len;
1958 			/*
1959 			 * Check the left edge case.  We currently do not
1960 			 * split existing records.
1961 			 */
1962 			if (off < ran_beg && leaf->base.key > ran_beg) {
1963 				panic("hammer left edge case %016llx %d\n",
1964 					(long long)leaf->base.key,
1965 					leaf->data_len);
1966 			}
1967 
1968 			/*
1969 			 * Check the right edge case.  Note that the
1970 			 * record can be completely out of bounds, which
1971 			 * terminates the search.
1972 			 *
1973 			 * base->key is exclusive of the right edge while
1974 			 * ran_end is inclusive of the right edge.  The
1975 			 * (key - data_len) left boundary is inclusive.
1976 			 *
1977 			 * XXX theory-check this test at some point, are
1978 			 * we missing a + 1 somewhere?  Note that ran_end
1979 			 * could overflow.
1980 			 */
1981 			if (leaf->base.key - 1 > ran_end) {
1982 				if (leaf->base.key - leaf->data_len > ran_end)
1983 					break;
1984 				panic("hammer right edge case\n");
1985 			}
1986 		} else {
1987 			off = leaf->base.key;
1988 		}
1989 
1990 		/*
1991 		 * Delete the record.  When truncating we do not delete
1992 		 * in-memory (data) records because they represent data
1993 		 * written after the truncation.
1994 		 *
1995 		 * This will also physically destroy the B-Tree entry and
1996 		 * data if the retention policy dictates.  The function
1997 		 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
1998 		 * to retest the new 'current' element.
1999 		 */
2000 		if (truncating == 0 || hammer_cursor_ondisk(cursor)) {
2001 			error = hammer_ip_delete_record(cursor, ip, trans->tid);
2002 			/*
2003 			 * If we have built up too many meta-buffers we risk
2004 			 * deadlocking the kernel and must stop.  This can
2005 			 * occur when deleting ridiculously huge files.
2006 			 * sync_trunc_off is updated so the next cycle does
2007 			 * not re-iterate records we have already deleted.
2008 			 *
2009 			 * This is only done with formal truncations.
2010 			 */
2011 			if (truncating > 1 && error == 0 &&
2012 			    hammer_flusher_meta_limit(ip->hmp)) {
2013 				ip->sync_trunc_off = off;
2014 				error = EWOULDBLOCK;
2015 			}
2016 		}
2017 		if (error)
2018 			break;
2019 		ran_beg = off;	/* for restart */
2020 		error = hammer_ip_next(cursor);
2021 	}
2022 	if (cursor->node)
2023 		hammer_cache_node(&ip->cache[1], cursor->node);
2024 
2025 	if (error == EDEADLK) {
2026 		hammer_done_cursor(cursor);
2027 		error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2028 		if (error == 0)
2029 			goto retry;
2030 	}
2031 	if (error == ENOENT)
2032 		error = 0;
2033 	return(error);
2034 }
2035 
2036 /*
2037  * This backend function deletes the specified record on-disk, similar to
2038  * delete_range but for a specific record.  Unlike the exact deletions
2039  * used when deleting a directory entry this function uses an ASOF search
2040  * like delete_range.
2041  *
2042  * This function may be called with ip->obj_asof set for a slave snapshot,
2043  * so don't use it.  We always delete non-historical records only.
2044  */
2045 static int
2046 hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
2047 		      hammer_btree_leaf_elm_t leaf)
2048 {
2049 	hammer_transaction_t trans = cursor->trans;
2050 	int error;
2051 
2052 	KKASSERT(trans->type == HAMMER_TRANS_FLS);
2053 retry:
2054 	hammer_normalize_cursor(cursor);
2055 	cursor->key_beg = leaf->base;
2056 	cursor->asof = HAMMER_MAX_TID;
2057 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
2058 	cursor->flags |= HAMMER_CURSOR_ASOF;
2059 	cursor->flags |= HAMMER_CURSOR_BACKEND;
2060 	cursor->flags &= ~HAMMER_CURSOR_INSERT;
2061 
2062 	error = hammer_btree_lookup(cursor);
2063 	if (error == 0) {
2064 		error = hammer_ip_delete_record(cursor, ip, trans->tid);
2065 	}
2066 	if (error == EDEADLK) {
2067 		hammer_done_cursor(cursor);
2068 		error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2069 		if (error == 0)
2070 			goto retry;
2071 	}
2072 	return(error);
2073 }
2074 
2075 /*
2076  * This function deletes remaining auxillary records when an inode is
2077  * being deleted.  This function explicitly does not delete the
2078  * inode record, directory entry, data, or db records.  Those must be
2079  * properly disposed of prior to this call.
2080  */
2081 int
2082 hammer_ip_delete_clean(hammer_cursor_t cursor, hammer_inode_t ip, int *countp)
2083 {
2084 	hammer_transaction_t trans = cursor->trans;
2085 	hammer_btree_leaf_elm_t leaf;
2086 	int error;
2087 
2088 	KKASSERT(trans->type == HAMMER_TRANS_FLS);
2089 retry:
2090 	hammer_normalize_cursor(cursor);
2091 	cursor->key_beg.localization = ip->obj_localization +
2092 				       HAMMER_LOCALIZE_MISC;
2093 	cursor->key_beg.obj_id = ip->obj_id;
2094 	cursor->key_beg.create_tid = 0;
2095 	cursor->key_beg.delete_tid = 0;
2096 	cursor->key_beg.obj_type = 0;
2097 	cursor->key_beg.rec_type = HAMMER_RECTYPE_CLEAN_START;
2098 	cursor->key_beg.key = HAMMER_MIN_KEY;
2099 
2100 	cursor->key_end = cursor->key_beg;
2101 	cursor->key_end.rec_type = HAMMER_RECTYPE_MAX;
2102 	cursor->key_end.key = HAMMER_MAX_KEY;
2103 
2104 	cursor->asof = ip->obj_asof;
2105 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
2106 	cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2107 	cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
2108 	cursor->flags |= HAMMER_CURSOR_BACKEND;
2109 
2110 	error = hammer_ip_first(cursor);
2111 
2112 	/*
2113 	 * Iterate through matching records and mark them as deleted.
2114 	 */
2115 	while (error == 0) {
2116 		leaf = cursor->leaf;
2117 
2118 		KKASSERT(leaf->base.delete_tid == 0);
2119 
2120 		/*
2121 		 * Mark the record and B-Tree entry as deleted.  This will
2122 		 * also physically delete the B-Tree entry, record, and
2123 		 * data if the retention policy dictates.  The function
2124 		 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
2125 		 * to retest the new 'current' element.
2126 		 *
2127 		 * Directory entries (and delete-on-disk directory entries)
2128 		 * must be synced and cannot be deleted.
2129 		 */
2130 		error = hammer_ip_delete_record(cursor, ip, trans->tid);
2131 		++*countp;
2132 		if (error)
2133 			break;
2134 		error = hammer_ip_next(cursor);
2135 	}
2136 	if (cursor->node)
2137 		hammer_cache_node(&ip->cache[1], cursor->node);
2138 	if (error == EDEADLK) {
2139 		hammer_done_cursor(cursor);
2140 		error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2141 		if (error == 0)
2142 			goto retry;
2143 	}
2144 	if (error == ENOENT)
2145 		error = 0;
2146 	return(error);
2147 }
2148 
2149 /*
2150  * Delete the record at the current cursor.  On success the cursor will
2151  * be positioned appropriately for an iteration but may no longer be at
2152  * a leaf node.
2153  *
2154  * This routine is only called from the backend.
2155  *
2156  * NOTE: This can return EDEADLK, requiring the caller to terminate the
2157  * cursor and retry.
2158  */
2159 int
2160 hammer_ip_delete_record(hammer_cursor_t cursor, hammer_inode_t ip,
2161 			hammer_tid_t tid)
2162 {
2163 	hammer_record_t iprec;
2164 	hammer_mount_t hmp;
2165 	int error;
2166 
2167 	KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
2168 	KKASSERT(tid != 0);
2169 	hmp = cursor->node->hmp;
2170 
2171 	/*
2172 	 * In-memory (unsynchronized) records can simply be freed.  This
2173 	 * only occurs in range iterations since all other records are
2174 	 * individually synchronized.  Thus there should be no confusion with
2175 	 * the interlock.
2176 	 *
2177 	 * An in-memory record may be deleted before being committed to disk,
2178 	 * but could have been accessed in the mean time.  The reservation
2179 	 * code will deal with the case.
2180 	 */
2181 	if (hammer_cursor_inmem(cursor)) {
2182 		iprec = cursor->iprec;
2183 		KKASSERT((iprec->flags & HAMMER_RECF_INTERLOCK_BE) ==0);
2184 		iprec->flags |= HAMMER_RECF_DELETED_FE;
2185 		iprec->flags |= HAMMER_RECF_DELETED_BE;
2186 		KKASSERT(iprec->ip == ip);
2187 		++ip->rec_generation;
2188 		return(0);
2189 	}
2190 
2191 	/*
2192 	 * On-disk records are marked as deleted by updating their delete_tid.
2193 	 * This does not effect their position in the B-Tree (which is based
2194 	 * on their create_tid).
2195 	 *
2196 	 * Frontend B-Tree operations track inodes so we tell
2197 	 * hammer_delete_at_cursor() not to.
2198 	 */
2199 	error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
2200 
2201 	if (error == 0) {
2202 		error = hammer_delete_at_cursor(
2203 				cursor,
2204 				HAMMER_DELETE_ADJUST | hammer_nohistory(ip),
2205 				cursor->trans->tid,
2206 				cursor->trans->time32,
2207 				0, NULL);
2208 	}
2209 	return(error);
2210 }
2211 
2212 /*
2213  * Delete the B-Tree element at the current cursor and do any necessary
2214  * mirror propagation.
2215  *
2216  * The cursor must be properly positioned for an iteration on return but
2217  * may be pointing at an internal element.
2218  *
2219  * An element can be un-deleted by passing a delete_tid of 0 with
2220  * HAMMER_DELETE_ADJUST.
2221  */
2222 int
2223 hammer_delete_at_cursor(hammer_cursor_t cursor, int delete_flags,
2224 			hammer_tid_t delete_tid, u_int32_t delete_ts,
2225 			int track, int64_t *stat_bytes)
2226 {
2227 	struct hammer_btree_leaf_elm save_leaf;
2228 	hammer_transaction_t trans;
2229 	hammer_btree_leaf_elm_t leaf;
2230 	hammer_node_t node;
2231 	hammer_btree_elm_t elm;
2232 	hammer_off_t data_offset;
2233 	int32_t data_len;
2234 	u_int16_t rec_type;
2235 	int error;
2236 	int icount;
2237 	int doprop;
2238 
2239 	error = hammer_cursor_upgrade(cursor);
2240 	if (error)
2241 		return(error);
2242 
2243 	trans = cursor->trans;
2244 	node = cursor->node;
2245 	elm = &node->ondisk->elms[cursor->index];
2246 	leaf = &elm->leaf;
2247 	KKASSERT(elm->base.btype == HAMMER_BTREE_TYPE_RECORD);
2248 
2249 	hammer_sync_lock_sh(trans);
2250 	doprop = 0;
2251 	icount = 0;
2252 
2253 	/*
2254 	 * Adjust the delete_tid.  Update the mirror_tid propagation field
2255 	 * as well.  delete_tid can be 0 (undelete -- used by mirroring).
2256 	 */
2257 	if (delete_flags & HAMMER_DELETE_ADJUST) {
2258 		if (elm->base.rec_type == HAMMER_RECTYPE_INODE) {
2259 			if (elm->leaf.base.delete_tid == 0 && delete_tid)
2260 				icount = -1;
2261 			if (elm->leaf.base.delete_tid && delete_tid == 0)
2262 				icount = 1;
2263 		}
2264 
2265 		hammer_modify_node(trans, node, elm, sizeof(*elm));
2266 		elm->leaf.base.delete_tid = delete_tid;
2267 		elm->leaf.delete_ts = delete_ts;
2268 		hammer_modify_node_done(node);
2269 
2270 		if (elm->leaf.base.delete_tid > node->ondisk->mirror_tid) {
2271 			hammer_modify_node_field(trans, node, mirror_tid);
2272 			node->ondisk->mirror_tid = elm->leaf.base.delete_tid;
2273 			hammer_modify_node_done(node);
2274 			doprop = 1;
2275 			if (hammer_debug_general & 0x0002) {
2276 				kprintf("delete_at_cursor: propagate %016llx"
2277 					" @%016llx\n",
2278 					(long long)elm->leaf.base.delete_tid,
2279 					(long long)node->node_offset);
2280 			}
2281 		}
2282 
2283 		/*
2284 		 * Adjust for the iteration.  We have deleted the current
2285 		 * element and want to clear ATEDISK so the iteration does
2286 		 * not skip the element after, which now becomes the current
2287 		 * element.  This element must be re-tested if doing an
2288 		 * iteration, which is handled by the RETEST flag.
2289 		 */
2290 		if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2291 			cursor->flags |= HAMMER_CURSOR_RETEST;
2292 			cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2293 		}
2294 
2295 		/*
2296 		 * An on-disk record cannot have the same delete_tid
2297 		 * as its create_tid.  In a chain of record updates
2298 		 * this could result in a duplicate record.
2299 		 */
2300 		KKASSERT(elm->leaf.base.delete_tid !=
2301 			 elm->leaf.base.create_tid);
2302 	}
2303 
2304 	/*
2305 	 * Destroy the B-Tree element if asked (typically if a nohistory
2306 	 * file or mount, or when called by the pruning code).
2307 	 *
2308 	 * Adjust the ATEDISK flag to properly support iterations.
2309 	 */
2310 	if (delete_flags & HAMMER_DELETE_DESTROY) {
2311 		data_offset = elm->leaf.data_offset;
2312 		data_len = elm->leaf.data_len;
2313 		rec_type = elm->leaf.base.rec_type;
2314 		if (doprop) {
2315 			save_leaf = elm->leaf;
2316 			leaf = &save_leaf;
2317 		}
2318 		if (elm->base.rec_type == HAMMER_RECTYPE_INODE &&
2319 		    elm->leaf.base.delete_tid == 0) {
2320 			icount = -1;
2321 		}
2322 
2323 		error = hammer_btree_delete(cursor);
2324 		if (error == 0) {
2325 			/*
2326 			 * The deletion moves the next element (if any) to
2327 			 * the current element position.  We must clear
2328 			 * ATEDISK so this element is not skipped and we
2329 			 * must set RETEST to force any iteration to re-test
2330 			 * the element.
2331 			 */
2332 			if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2333 				cursor->flags |= HAMMER_CURSOR_RETEST;
2334 				cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2335 			}
2336 		}
2337 		if (error == 0) {
2338 			switch(data_offset & HAMMER_OFF_ZONE_MASK) {
2339 			case HAMMER_ZONE_LARGE_DATA:
2340 			case HAMMER_ZONE_SMALL_DATA:
2341 			case HAMMER_ZONE_META:
2342 				hammer_blockmap_free(trans,
2343 						     data_offset, data_len);
2344 				break;
2345 			default:
2346 				break;
2347 			}
2348 		}
2349 	}
2350 
2351 	/*
2352 	 * Track inode count and next_tid.  This is used by the mirroring
2353 	 * and PFS code.  icount can be negative, zero, or positive.
2354 	 */
2355 	if (error == 0 && track) {
2356 		if (icount) {
2357 			hammer_modify_volume_field(trans, trans->rootvol,
2358 						   vol0_stat_inodes);
2359 			trans->rootvol->ondisk->vol0_stat_inodes += icount;
2360 			hammer_modify_volume_done(trans->rootvol);
2361 		}
2362 		if (trans->rootvol->ondisk->vol0_next_tid < delete_tid) {
2363 			hammer_modify_volume(trans, trans->rootvol, NULL, 0);
2364 			trans->rootvol->ondisk->vol0_next_tid = delete_tid;
2365 			hammer_modify_volume_done(trans->rootvol);
2366 		}
2367 	}
2368 
2369 	/*
2370 	 * mirror_tid propagation occurs if the node's mirror_tid had to be
2371 	 * updated while adjusting the delete_tid.
2372 	 *
2373 	 * This occurs when deleting even in nohistory mode, but does not
2374 	 * occur when pruning an already-deleted node.
2375 	 *
2376 	 * cursor->ip is NULL when called from the pruning, mirroring,
2377 	 * and pfs code.  If non-NULL propagation will be conditionalized
2378 	 * on whether the PFS is in no-history mode or not.
2379 	 *
2380 	 * WARNING: cursor's leaf pointer may have changed after do_propagation
2381 	 *	    returns!
2382 	 */
2383 	if (doprop) {
2384 		if (cursor->ip)
2385 			hammer_btree_do_propagation(cursor, cursor->ip->pfsm, leaf);
2386 		else
2387 			hammer_btree_do_propagation(cursor, NULL, leaf);
2388 	}
2389 	hammer_sync_unlock(trans);
2390 	return (error);
2391 }
2392 
2393 /*
2394  * Determine whether we can remove a directory.  This routine checks whether
2395  * a directory is empty or not and enforces flush connectivity.
2396  *
2397  * Flush connectivity requires that we block if the target directory is
2398  * currently flushing, otherwise it may not end up in the same flush group.
2399  *
2400  * Returns 0 on success, ENOTEMPTY or EDEADLK (or other errors) on failure.
2401  */
2402 int
2403 hammer_ip_check_directory_empty(hammer_transaction_t trans, hammer_inode_t ip)
2404 {
2405 	struct hammer_cursor cursor;
2406 	int error;
2407 
2408 	/*
2409 	 * Check directory empty
2410 	 */
2411 	hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2412 
2413 	cursor.key_beg.localization = ip->obj_localization +
2414 				      hammer_dir_localization(ip);
2415 	cursor.key_beg.obj_id = ip->obj_id;
2416 	cursor.key_beg.create_tid = 0;
2417 	cursor.key_beg.delete_tid = 0;
2418 	cursor.key_beg.obj_type = 0;
2419 	cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE + 1;
2420 	cursor.key_beg.key = HAMMER_MIN_KEY;
2421 
2422 	cursor.key_end = cursor.key_beg;
2423 	cursor.key_end.rec_type = 0xFFFF;
2424 	cursor.key_end.key = HAMMER_MAX_KEY;
2425 
2426 	cursor.asof = ip->obj_asof;
2427 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2428 
2429 	error = hammer_ip_first(&cursor);
2430 	if (error == ENOENT)
2431 		error = 0;
2432 	else if (error == 0)
2433 		error = ENOTEMPTY;
2434 	hammer_done_cursor(&cursor);
2435 	return(error);
2436 }
2437 
2438