xref: /dragonfly/sys/vfs/hammer/hammer_object.c (revision cad2e385)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include "hammer.h"
36 
37 static int hammer_mem_lookup(hammer_cursor_t cursor);
38 static int hammer_mem_first(hammer_cursor_t cursor);
39 static int hammer_frontend_trunc_callback(hammer_record_t record,
40 				void *data __unused);
41 static int hammer_bulk_scan_callback(hammer_record_t record, void *data);
42 static int hammer_record_needs_overwrite_delete(hammer_record_t record);
43 static int hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
44 				hammer_btree_leaf_elm_t leaf);
45 static int hammer_cursor_localize_data(hammer_data_ondisk_t data,
46 				hammer_btree_leaf_elm_t leaf);
47 
48 struct rec_trunc_info {
49 	u_int16_t	rec_type;
50 	int64_t		trunc_off;
51 };
52 
53 struct hammer_bulk_info {
54 	hammer_record_t record;
55 	hammer_record_t conflict;
56 };
57 
58 /*
59  * Red-black tree support.  Comparison code for insertion.
60  */
61 static int
62 hammer_rec_rb_compare(hammer_record_t rec1, hammer_record_t rec2)
63 {
64 	if (rec1->leaf.base.rec_type < rec2->leaf.base.rec_type)
65 		return(-1);
66 	if (rec1->leaf.base.rec_type > rec2->leaf.base.rec_type)
67 		return(1);
68 
69 	if (rec1->leaf.base.key < rec2->leaf.base.key)
70 		return(-1);
71 	if (rec1->leaf.base.key > rec2->leaf.base.key)
72 		return(1);
73 
74 	/*
75 	 * For search & insertion purposes records deleted by the
76 	 * frontend or deleted/committed by the backend are silently
77 	 * ignored.  Otherwise pipelined insertions will get messed
78 	 * up.
79 	 *
80 	 * rec1 is greater then rec2 if rec1 is marked deleted.
81 	 * rec1 is less then rec2 if rec2 is marked deleted.
82 	 *
83 	 * Multiple deleted records may be present, do not return 0
84 	 * if both are marked deleted.
85 	 */
86 	if (rec1->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
87 			   HAMMER_RECF_COMMITTED)) {
88 		return(1);
89 	}
90 	if (rec2->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
91 			   HAMMER_RECF_COMMITTED)) {
92 		return(-1);
93 	}
94 
95         return(0);
96 }
97 
98 /*
99  * Basic record comparison code similar to hammer_btree_cmp().
100  *
101  * obj_id is not compared and may not yet be assigned in the record.
102  */
103 static int
104 hammer_rec_cmp(hammer_base_elm_t elm, hammer_record_t rec)
105 {
106 	if (elm->rec_type < rec->leaf.base.rec_type)
107 		return(-3);
108 	if (elm->rec_type > rec->leaf.base.rec_type)
109 		return(3);
110 
111         if (elm->key < rec->leaf.base.key)
112                 return(-2);
113         if (elm->key > rec->leaf.base.key)
114                 return(2);
115 
116 	/*
117 	 * Never match against an item deleted by the frontend
118 	 * or backend, or committed by the backend.
119 	 *
120 	 * elm is less then rec if rec is marked deleted.
121 	 */
122 	if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
123 			  HAMMER_RECF_COMMITTED)) {
124 		return(-1);
125 	}
126         return(0);
127 }
128 
129 /*
130  * Ranged scan to locate overlapping record(s).  This is used by
131  * hammer_ip_get_bulk() to locate an overlapping record.  We have
132  * to use a ranged scan because the keys for data records with the
133  * same file base offset can be different due to differing data_len's.
134  *
135  * NOTE: The base file offset of a data record is (key - data_len), not (key).
136  */
137 static int
138 hammer_rec_overlap_cmp(hammer_record_t rec, void *data)
139 {
140 	struct hammer_bulk_info *info = data;
141 	hammer_btree_leaf_elm_t leaf = &info->record->leaf;
142 
143 	if (rec->leaf.base.rec_type < leaf->base.rec_type)
144 		return(-3);
145 	if (rec->leaf.base.rec_type > leaf->base.rec_type)
146 		return(3);
147 
148 	/*
149 	 * Overlap compare
150 	 */
151 	if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
152 		/* rec_beg >= leaf_end */
153 		if (rec->leaf.base.key - rec->leaf.data_len >= leaf->base.key)
154 			return(2);
155 		/* rec_end <= leaf_beg */
156 		if (rec->leaf.base.key <= leaf->base.key - leaf->data_len)
157 			return(-2);
158 	} else {
159 		if (rec->leaf.base.key < leaf->base.key)
160 			return(-2);
161 		if (rec->leaf.base.key > leaf->base.key)
162 			return(2);
163 	}
164 
165 	/*
166 	 * We have to return 0 at this point, even if DELETED_FE is set,
167 	 * because returning anything else will cause the scan to ignore
168 	 * one of the branches when we really want it to check both.
169 	 */
170         return(0);
171 }
172 
173 /*
174  * RB_SCAN comparison code for hammer_mem_first().  The argument order
175  * is reversed so the comparison result has to be negated.  key_beg and
176  * key_end are both range-inclusive.
177  *
178  * Localized deletions are not cached in-memory.
179  */
180 static
181 int
182 hammer_rec_scan_cmp(hammer_record_t rec, void *data)
183 {
184 	hammer_cursor_t cursor = data;
185 	int r;
186 
187 	r = hammer_rec_cmp(&cursor->key_beg, rec);
188 	if (r > 1)
189 		return(-1);
190 	r = hammer_rec_cmp(&cursor->key_end, rec);
191 	if (r < -1)
192 		return(1);
193 	return(0);
194 }
195 
196 /*
197  * This compare function is used when simply looking up key_beg.
198  */
199 static
200 int
201 hammer_rec_find_cmp(hammer_record_t rec, void *data)
202 {
203 	hammer_cursor_t cursor = data;
204 	int r;
205 
206 	r = hammer_rec_cmp(&cursor->key_beg, rec);
207 	if (r > 1)
208 		return(-1);
209 	if (r < -1)
210 		return(1);
211 	return(0);
212 }
213 
214 /*
215  * Locate blocks within the truncation range.  Partial blocks do not count.
216  */
217 static
218 int
219 hammer_rec_trunc_cmp(hammer_record_t rec, void *data)
220 {
221 	struct rec_trunc_info *info = data;
222 
223 	if (rec->leaf.base.rec_type < info->rec_type)
224 		return(-1);
225 	if (rec->leaf.base.rec_type > info->rec_type)
226 		return(1);
227 
228 	switch(rec->leaf.base.rec_type) {
229 	case HAMMER_RECTYPE_DB:
230 		/*
231 		 * DB record key is not beyond the truncation point, retain.
232 		 */
233 		if (rec->leaf.base.key < info->trunc_off)
234 			return(-1);
235 		break;
236 	case HAMMER_RECTYPE_DATA:
237 		/*
238 		 * DATA record offset start is not beyond the truncation point,
239 		 * retain.
240 		 */
241 		if (rec->leaf.base.key - rec->leaf.data_len < info->trunc_off)
242 			return(-1);
243 		break;
244 	default:
245 		hpanic("unexpected record type");
246 	}
247 
248 	/*
249 	 * The record start is >= the truncation point, return match,
250 	 * the record should be destroyed.
251 	 */
252 	return(0);
253 }
254 
255 RB_GENERATE(hammer_rec_rb_tree, hammer_record, rb_node, hammer_rec_rb_compare);
256 
257 /*
258  * Allocate a record for the caller to finish filling in.  The record is
259  * returned referenced.  In order to manually set data call this function
260  * with data_len=0 and then manually set record->leaf.data_len and
261  * record->data later.
262  */
263 hammer_record_t
264 hammer_alloc_mem_record(hammer_inode_t ip, int data_len)
265 {
266 	hammer_record_t record;
267 	hammer_mount_t hmp;
268 
269 	hmp = ip->hmp;
270 	++hammer_count_records;
271 	record = kmalloc(sizeof(*record), hmp->m_misc,
272 			 M_WAITOK | M_ZERO | M_USE_RESERVE);
273 	record->flush_state = HAMMER_FST_IDLE;
274 	record->ip = ip;
275 	record->leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
276 	record->leaf.data_len = data_len;
277 	hammer_ref(&record->lock);
278 
279 	if (data_len) {
280 		record->data = kmalloc(data_len, hmp->m_misc, M_WAITOK | M_ZERO);
281 		record->flags |= HAMMER_RECF_ALLOCDATA;
282 		++hammer_count_record_datas;
283 	}
284 
285 	return (record);
286 }
287 
288 void
289 hammer_wait_mem_record_ident(hammer_record_t record, const char *ident)
290 {
291 	while (record->flush_state == HAMMER_FST_FLUSH) {
292 		record->flags |= HAMMER_RECF_WANTED;
293 		tsleep(record, 0, ident, 0);
294 	}
295 }
296 
297 /*
298  * Called from the backend, hammer_inode.c, after a record has been
299  * flushed to disk.  The record has been exclusively locked by the
300  * caller and interlocked with BE.
301  *
302  * We clean up the state, unlock, and release the record (the record
303  * was referenced by the fact that it was in the HAMMER_FST_FLUSH state).
304  */
305 void
306 hammer_flush_record_done(hammer_record_t record, int error)
307 {
308 	hammer_inode_t target_ip;
309 
310 	KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
311 	KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
312 
313 	/*
314 	 * If an error occured, the backend was unable to sync the
315 	 * record to its media.  Leave the record intact.
316 	 */
317 	if (error) {
318 		hammer_critical_error(record->ip->hmp, record->ip, error,
319 				      "while flushing record");
320 	}
321 
322 	--record->flush_group->refs;
323 	record->flush_group = NULL;
324 
325 	/*
326 	 * Adjust the flush state and dependancy based on success or
327 	 * failure.
328 	 */
329 	if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
330 		if ((target_ip = record->target_ip) != NULL) {
331 			TAILQ_REMOVE(&target_ip->target_list, record,
332 				     target_entry);
333 			record->target_ip = NULL;
334 			hammer_test_inode(target_ip);
335 		}
336 		record->flush_state = HAMMER_FST_IDLE;
337 	} else {
338 		if (record->target_ip) {
339 			record->flush_state = HAMMER_FST_SETUP;
340 			hammer_test_inode(record->ip);
341 			hammer_test_inode(record->target_ip);
342 		} else {
343 			record->flush_state = HAMMER_FST_IDLE;
344 		}
345 	}
346 	record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
347 
348 	/*
349 	 * Cleanup
350 	 */
351 	if (record->flags & HAMMER_RECF_WANTED) {
352 		record->flags &= ~HAMMER_RECF_WANTED;
353 		wakeup(record);
354 	}
355 	hammer_rel_mem_record(record);
356 }
357 
358 /*
359  * Release a memory record.  Records marked for deletion are immediately
360  * removed from the RB-Tree but otherwise left intact until the last ref
361  * goes away.
362  */
363 void
364 hammer_rel_mem_record(struct hammer_record *record)
365 {
366 	hammer_mount_t hmp;
367 	hammer_reserve_t resv;
368 	hammer_inode_t ip;
369 	hammer_inode_t target_ip;
370 	int diddrop;
371 
372 	hammer_rel(&record->lock);
373 
374 	if (hammer_norefs(&record->lock)) {
375 		/*
376 		 * Upon release of the last reference wakeup any waiters.
377 		 * The record structure may get destroyed so callers will
378 		 * loop up and do a relookup.
379 		 *
380 		 * WARNING!  Record must be removed from RB-TREE before we
381 		 * might possibly block.  hammer_test_inode() can block!
382 		 */
383 		ip = record->ip;
384 		hmp = ip->hmp;
385 
386 		/*
387 		 * Upon release of the last reference a record marked deleted
388 		 * by the front or backend, or committed by the backend,
389 		 * is destroyed.
390 		 */
391 		if (record->flags & (HAMMER_RECF_DELETED_FE |
392 				     HAMMER_RECF_DELETED_BE |
393 				     HAMMER_RECF_COMMITTED)) {
394 			KKASSERT(hammer_isactive(&ip->lock) > 0);
395 			KKASSERT(record->flush_state != HAMMER_FST_FLUSH);
396 
397 			/*
398 			 * target_ip may have zero refs, we have to ref it
399 			 * to prevent it from being ripped out from under
400 			 * us.
401 			 */
402 			if ((target_ip = record->target_ip) != NULL) {
403 				TAILQ_REMOVE(&target_ip->target_list,
404 					     record, target_entry);
405 				record->target_ip = NULL;
406 				hammer_ref(&target_ip->lock);
407 			}
408 
409 			/*
410 			 * Remove the record from the RB-Tree
411 			 */
412 			if (record->flags & HAMMER_RECF_ONRBTREE) {
413 				RB_REMOVE(hammer_rec_rb_tree,
414 					  &ip->rec_tree,
415 					  record);
416 				record->flags &= ~HAMMER_RECF_ONRBTREE;
417 				KKASSERT(ip->rsv_recs > 0);
418 				if (RB_EMPTY(&ip->rec_tree)) {
419 					ip->flags &= ~HAMMER_INODE_XDIRTY;
420 					ip->sync_flags &= ~HAMMER_INODE_XDIRTY;
421 				}
422 				diddrop = 1;
423 			} else {
424 				diddrop = 0;
425 			}
426 
427 			/*
428 			 * We must wait for any direct-IO to complete before
429 			 * we can destroy the record because the bio may
430 			 * have a reference to it.
431 			 */
432 			if (record->gflags &
433 			   (HAMMER_RECG_DIRECT_IO | HAMMER_RECG_DIRECT_INVAL)) {
434 				hammer_io_direct_wait(record);
435 			}
436 
437 			/*
438 			 * Account for the completion after the direct IO
439 			 * has completed.
440 			 */
441 			if (diddrop) {
442 				--hmp->rsv_recs;
443 				--ip->rsv_recs;
444 				hmp->rsv_databytes -= record->leaf.data_len;
445 
446 				if (RB_EMPTY(&ip->rec_tree))
447 					hammer_test_inode(ip);
448 				if ((ip->flags & HAMMER_INODE_RECSW) &&
449 				    ip->rsv_recs <= hammer_limit_inode_recs/2) {
450 					ip->flags &= ~HAMMER_INODE_RECSW;
451 					wakeup(&ip->rsv_recs);
452 				}
453 			}
454 
455 			/*
456 			 * Do this test after removing record from the RB-Tree.
457 			 */
458 			if (target_ip) {
459 				hammer_test_inode(target_ip);
460 				hammer_rel_inode(target_ip, 0);
461 			}
462 
463 			if (record->flags & HAMMER_RECF_ALLOCDATA) {
464 				--hammer_count_record_datas;
465 				kfree(record->data, hmp->m_misc);
466 				record->flags &= ~HAMMER_RECF_ALLOCDATA;
467 			}
468 
469 			/*
470 			 * Release the reservation.
471 			 *
472 			 * If the record was not committed we can theoretically
473 			 * undo the reservation.  However, doing so might
474 			 * create weird edge cases with the ordering of
475 			 * direct writes because the related buffer cache
476 			 * elements are per-vnode.  So we don't try.
477 			 */
478 			if ((resv = record->resv) != NULL) {
479 				/* XXX undo leaf.data_offset,leaf.data_len */
480 				hammer_blockmap_reserve_complete(hmp, resv);
481 				record->resv = NULL;
482 			}
483 			record->data = NULL;
484 			--hammer_count_records;
485 			kfree(record, hmp->m_misc);
486 		}
487 	}
488 }
489 
490 /*
491  * Record visibility depends on whether the record is being accessed by
492  * the backend or the frontend.  Backend tests ignore the frontend delete
493  * flag.  Frontend tests do NOT ignore the backend delete/commit flags and
494  * must also check for commit races.
495  *
496  * Return non-zero if the record is visible, zero if it isn't or if it is
497  * deleted.  Returns 0 if the record has been comitted (unless the special
498  * delete-visibility flag is set).  A committed record must be located
499  * via the media B-Tree.  Returns non-zero if the record is good.
500  *
501  * If HAMMER_CURSOR_DELETE_VISIBILITY is set we allow deleted memory
502  * records to be returned.  This is so pending deletions are detected
503  * when using an iterator to locate an unused hash key, or when we need
504  * to locate historical records on-disk to destroy.
505  */
506 static __inline
507 int
508 hammer_ip_iterate_mem_good(hammer_cursor_t cursor, hammer_record_t record)
509 {
510 	if (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY)
511 		return(1);
512 	if (cursor->flags & HAMMER_CURSOR_BACKEND) {
513 		if (record->flags & (HAMMER_RECF_DELETED_BE |
514 				     HAMMER_RECF_COMMITTED)) {
515 			return(0);
516 		}
517 	} else {
518 		if (record->flags & (HAMMER_RECF_DELETED_FE |
519 				     HAMMER_RECF_DELETED_BE |
520 				     HAMMER_RECF_COMMITTED)) {
521 			return(0);
522 		}
523 	}
524 	return(1);
525 }
526 
527 /*
528  * This callback is used as part of the RB_SCAN function for in-memory
529  * records.  We terminate it (return -1) as soon as we get a match.
530  *
531  * This routine is used by frontend code.
532  *
533  * The primary compare code does not account for ASOF lookups.  This
534  * code handles that case as well as a few others.
535  */
536 static
537 int
538 hammer_rec_scan_callback(hammer_record_t rec, void *data)
539 {
540 	hammer_cursor_t cursor = data;
541 
542 	/*
543 	 * We terminate on success, so this should be NULL on entry.
544 	 */
545 	KKASSERT(cursor->iprec == NULL);
546 
547 	/*
548 	 * Skip if the record was marked deleted or committed.
549 	 */
550 	if (hammer_ip_iterate_mem_good(cursor, rec) == 0)
551 		return(0);
552 
553 	/*
554 	 * Skip if not visible due to our as-of TID
555 	 */
556         if (cursor->flags & HAMMER_CURSOR_ASOF) {
557                 if (cursor->asof < rec->leaf.base.create_tid)
558                         return(0);
559                 if (rec->leaf.base.delete_tid &&
560 		    cursor->asof >= rec->leaf.base.delete_tid) {
561                         return(0);
562 		}
563         }
564 
565 	/*
566 	 * ref the record.  The record is protected from backend B-Tree
567 	 * interactions by virtue of the cursor's IP lock.
568 	 */
569 	hammer_ref(&rec->lock);
570 
571 	/*
572 	 * The record may have been deleted or committed while we
573 	 * were blocked.  XXX remove?
574 	 */
575 	if (hammer_ip_iterate_mem_good(cursor, rec) == 0) {
576 		hammer_rel_mem_record(rec);
577 		return(0);
578 	}
579 
580 	/*
581 	 * Set the matching record and stop the scan.
582 	 */
583 	cursor->iprec = rec;
584 	return(-1);
585 }
586 
587 
588 /*
589  * Lookup an in-memory record given the key specified in the cursor.  Works
590  * just like hammer_btree_lookup() but operates on an inode's in-memory
591  * record list.
592  *
593  * The lookup must fail if the record is marked for deferred deletion.
594  *
595  * The API for mem/btree_lookup() does not mess with the ATE/EOF bits.
596  */
597 static
598 int
599 hammer_mem_lookup(hammer_cursor_t cursor)
600 {
601 	KKASSERT(cursor->ip != NULL);
602 	if (cursor->iprec) {
603 		hammer_rel_mem_record(cursor->iprec);
604 		cursor->iprec = NULL;
605 	}
606 	hammer_rec_rb_tree_RB_SCAN(&cursor->ip->rec_tree, hammer_rec_find_cmp,
607 				   hammer_rec_scan_callback, cursor);
608 
609 	return (cursor->iprec ? 0 : ENOENT);
610 }
611 
612 /*
613  * hammer_mem_first() - locate the first in-memory record matching the
614  * cursor within the bounds of the key range.
615  *
616  * WARNING!  API is slightly different from btree_first().  hammer_mem_first()
617  * will set ATEMEM the same as MEMEOF, and does not return any error.
618  */
619 static
620 int
621 hammer_mem_first(hammer_cursor_t cursor)
622 {
623 	KKASSERT(cursor->ip != NULL);
624 	if (cursor->iprec) {
625 		hammer_rel_mem_record(cursor->iprec);
626 		cursor->iprec = NULL;
627 	}
628 	hammer_rec_rb_tree_RB_SCAN(&cursor->ip->rec_tree, hammer_rec_scan_cmp,
629 				   hammer_rec_scan_callback, cursor);
630 
631 	if (cursor->iprec)
632 		cursor->flags &= ~(HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM);
633 	else
634 		cursor->flags |= HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM;
635 
636 	return (cursor->iprec ? 0 : ENOENT);
637 }
638 
639 /************************************************************************
640  *		     HAMMER IN-MEMORY RECORD FUNCTIONS			*
641  ************************************************************************
642  *
643  * These functions manipulate in-memory records.  Such records typically
644  * exist prior to being committed to disk or indexed via the on-disk B-Tree.
645  */
646 
647 /*
648  * Add a directory entry (dip,ncp) which references inode (ip).
649  *
650  * Note that the low 32 bits of the namekey are set temporarily to create
651  * a unique in-memory record, and may be modified a second time when the
652  * record is synchronized to disk.  In particular, the low 32 bits cannot be
653  * all 0's when synching to disk, which is not handled here.
654  *
655  * NOTE: bytes does not include any terminating \0 on name, and name might
656  * not be terminated.
657  */
658 int
659 hammer_ip_add_directory(struct hammer_transaction *trans,
660 		     struct hammer_inode *dip, const char *name, int bytes,
661 		     struct hammer_inode *ip)
662 {
663 	struct hammer_cursor cursor;
664 	hammer_record_t record;
665 	int error;
666 	u_int32_t max_iterations;
667 
668 	KKASSERT(dip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY);
669 
670 	record = hammer_alloc_mem_record(dip, HAMMER_ENTRY_SIZE(bytes));
671 
672 	record->type = HAMMER_MEM_RECORD_ADD;
673 	record->leaf.base.localization = dip->obj_localization +
674 					 hammer_dir_localization(dip);
675 	record->leaf.base.obj_id = dip->obj_id;
676 	record->leaf.base.key = hammer_directory_namekey(dip, name, bytes,
677 							 &max_iterations);
678 	record->leaf.base.rec_type = HAMMER_RECTYPE_DIRENTRY;
679 	record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
680 	record->data->entry.obj_id = ip->obj_id;
681 	record->data->entry.localization = ip->obj_localization;
682 	bcopy(name, record->data->entry.name, bytes);
683 
684 	++ip->ino_data.nlinks;
685 	ip->ino_data.ctime = trans->time;
686 	hammer_modify_inode(trans, ip, HAMMER_INODE_DDIRTY);
687 
688 	/*
689 	 * Find an unused namekey.  Both the in-memory record tree and
690 	 * the B-Tree are checked.  We do not want historically deleted
691 	 * names to create a collision as our iteration space may be limited,
692 	 * and since create_tid wouldn't match anyway an ASOF search
693 	 * must be used to locate collisions.
694 	 *
695 	 * delete-visibility is set so pending deletions do not give us
696 	 * a false-negative on our ability to use an iterator.
697 	 *
698 	 * The iterator must not rollover the key.  Directory keys only
699 	 * use the positive key space.
700 	 */
701 	hammer_init_cursor(trans, &cursor, &dip->cache[1], dip);
702 	cursor.key_beg = record->leaf.base;
703 	cursor.flags |= HAMMER_CURSOR_ASOF;
704 	cursor.flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
705 	cursor.asof = ip->obj_asof;
706 
707 	while (hammer_ip_lookup(&cursor) == 0) {
708 		++record->leaf.base.key;
709 		KKASSERT(record->leaf.base.key > 0);
710 		cursor.key_beg.key = record->leaf.base.key;
711 		if (--max_iterations == 0) {
712 			hammer_rel_mem_record(record);
713 			error = ENOSPC;
714 			goto failed;
715 		}
716 	}
717 
718 	/*
719 	 * The target inode and the directory entry are bound together.
720 	 */
721 	record->target_ip = ip;
722 	record->flush_state = HAMMER_FST_SETUP;
723 	TAILQ_INSERT_TAIL(&ip->target_list, record, target_entry);
724 
725 	/*
726 	 * The inode now has a dependancy and must be taken out of the idle
727 	 * state.  An inode not in an idle state is given an extra reference.
728 	 *
729 	 * When transitioning to a SETUP state flag for an automatic reflush
730 	 * when the dependancies are disposed of if someone is waiting on
731 	 * the inode.
732 	 */
733 	if (ip->flush_state == HAMMER_FST_IDLE) {
734 		hammer_ref(&ip->lock);
735 		ip->flush_state = HAMMER_FST_SETUP;
736 		if (ip->flags & HAMMER_INODE_FLUSHW)
737 			ip->flags |= HAMMER_INODE_REFLUSH;
738 	}
739 	error = hammer_mem_add(record);
740 	if (error == 0) {
741 		dip->ino_data.mtime = trans->time;
742 		hammer_modify_inode(trans, dip, HAMMER_INODE_MTIME);
743 	}
744 failed:
745 	hammer_done_cursor(&cursor);
746 	return(error);
747 }
748 
749 /*
750  * Delete the directory entry and update the inode link count.  The
751  * cursor must be seeked to the directory entry record being deleted.
752  *
753  * The related inode should be share-locked by the caller.  The caller is
754  * on the frontend.  It could also be NULL indicating that the directory
755  * entry being removed has no related inode.
756  *
757  * This function can return EDEADLK requiring the caller to terminate
758  * the cursor, any locks, wait on the returned record, and retry.
759  */
760 int
761 hammer_ip_del_directory(struct hammer_transaction *trans,
762 		     hammer_cursor_t cursor, struct hammer_inode *dip,
763 		     struct hammer_inode *ip)
764 {
765 	hammer_record_t record;
766 	int error;
767 
768 	if (hammer_cursor_inmem(cursor)) {
769 		/*
770 		 * In-memory (unsynchronized) records can simply be freed.
771 		 *
772 		 * Even though the HAMMER_RECF_DELETED_FE flag is ignored
773 		 * by the backend, we must still avoid races against the
774 		 * backend potentially syncing the record to the media.
775 		 *
776 		 * We cannot call hammer_ip_delete_record(), that routine may
777 		 * only be called from the backend.
778 		 */
779 		record = cursor->iprec;
780 		if (record->flags & (HAMMER_RECF_INTERLOCK_BE |
781 				     HAMMER_RECF_DELETED_BE |
782 				     HAMMER_RECF_COMMITTED)) {
783 			KKASSERT(cursor->deadlk_rec == NULL);
784 			hammer_ref(&record->lock);
785 			cursor->deadlk_rec = record;
786 			error = EDEADLK;
787 		} else {
788 			KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
789 			record->flags |= HAMMER_RECF_DELETED_FE;
790 			error = 0;
791 		}
792 	} else {
793 		/*
794 		 * If the record is on-disk we have to queue the deletion by
795 		 * the record's key.  This also causes lookups to skip the
796 		 * record (lookups for the purposes of finding an unused
797 		 * directory key do not skip the record).
798 		 */
799 		KKASSERT(dip->flags &
800 			 (HAMMER_INODE_ONDISK | HAMMER_INODE_DONDISK));
801 		record = hammer_alloc_mem_record(dip, 0);
802 		record->type = HAMMER_MEM_RECORD_DEL;
803 		record->leaf.base = cursor->leaf->base;
804 		KKASSERT(dip->obj_id == record->leaf.base.obj_id);
805 
806 		/*
807 		 * ip may be NULL, indicating the deletion of a directory
808 		 * entry which has no related inode.
809 		 */
810 		record->target_ip = ip;
811 		if (ip) {
812 			record->flush_state = HAMMER_FST_SETUP;
813 			TAILQ_INSERT_TAIL(&ip->target_list, record,
814 					  target_entry);
815 		} else {
816 			record->flush_state = HAMMER_FST_IDLE;
817 		}
818 
819 		/*
820 		 * The inode now has a dependancy and must be taken out of
821 		 * the idle state.  An inode not in an idle state is given
822 		 * an extra reference.
823 		 *
824 		 * When transitioning to a SETUP state flag for an automatic
825 		 * reflush when the dependancies are disposed of if someone
826 		 * is waiting on the inode.
827 		 */
828 		if (ip && ip->flush_state == HAMMER_FST_IDLE) {
829 			hammer_ref(&ip->lock);
830 			ip->flush_state = HAMMER_FST_SETUP;
831 			if (ip->flags & HAMMER_INODE_FLUSHW)
832 				ip->flags |= HAMMER_INODE_REFLUSH;
833 		}
834 
835 		error = hammer_mem_add(record);
836 	}
837 
838 	/*
839 	 * One less link.  The file may still be open in the OS even after
840 	 * all links have gone away.
841 	 *
842 	 * We have to terminate the cursor before syncing the inode to
843 	 * avoid deadlocking against ourselves.  XXX this may no longer
844 	 * be true.
845 	 *
846 	 * If nlinks drops to zero and the vnode is inactive (or there is
847 	 * no vnode), call hammer_inode_unloadable_check() to zonk the
848 	 * inode.  If we don't do this here the inode will not be destroyed
849 	 * on-media until we unmount.
850 	 */
851 	if (error == 0) {
852 		if (ip) {
853 			--ip->ino_data.nlinks;	/* do before we might block */
854 			ip->ino_data.ctime = trans->time;
855 		}
856 		dip->ino_data.mtime = trans->time;
857 		hammer_modify_inode(trans, dip, HAMMER_INODE_MTIME);
858 		if (ip) {
859 			hammer_modify_inode(trans, ip, HAMMER_INODE_DDIRTY);
860 			if (ip->ino_data.nlinks == 0 &&
861 			    (ip->vp == NULL || (ip->vp->v_flag & VINACTIVE))) {
862 				hammer_done_cursor(cursor);
863 				hammer_inode_unloadable_check(ip, 1);
864 				hammer_flush_inode(ip, 0);
865 			}
866 		}
867 
868 	}
869 	return(error);
870 }
871 
872 /*
873  * Add a record to an inode.
874  *
875  * The caller must allocate the record with hammer_alloc_mem_record(ip,len) and
876  * initialize the following additional fields that are not initialized by these
877  * functions.
878  *
879  * The related inode should be share-locked by the caller.  The caller is
880  * on the frontend.
881  *
882  * record->leaf.base.key
883  * record->leaf.base.rec_type
884  * record->leaf.base.localization
885  */
886 int
887 hammer_ip_add_record(struct hammer_transaction *trans, hammer_record_t record)
888 {
889 	hammer_inode_t ip = record->ip;
890 	int error;
891 
892 	KKASSERT(record->leaf.base.localization != 0);
893 	record->leaf.base.obj_id = ip->obj_id;
894 	record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
895 	error = hammer_mem_add(record);
896 	return(error);
897 }
898 
899 /*
900  * Locate a pre-existing bulk record in memory.  The caller wishes to
901  * replace the record with a new one.  The existing record may have a
902  * different length (and thus a different key) so we have to use an
903  * overlap check function.
904  */
905 static hammer_record_t
906 hammer_ip_get_bulk(hammer_record_t record)
907 {
908 	struct hammer_bulk_info info;
909 	hammer_inode_t ip = record->ip;
910 
911 	info.record = record;
912 	info.conflict = NULL;
913 	hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_overlap_cmp,
914 				   hammer_bulk_scan_callback, &info);
915 
916 	return(info.conflict);	/* may be NULL */
917 }
918 
919 /*
920  * Take records vetted by overlap_cmp.  The first non-deleted record
921  * (if any) stops the scan.
922  */
923 static int
924 hammer_bulk_scan_callback(hammer_record_t record, void *data)
925 {
926 	struct hammer_bulk_info *info = data;
927 
928 	if (record->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
929 			     HAMMER_RECF_COMMITTED)) {
930 		return(0);
931 	}
932 	hammer_ref(&record->lock);
933 	info->conflict = record;
934 	return(-1);			/* stop scan */
935 }
936 
937 /*
938  * Reserve blockmap space placemarked with an in-memory record.
939  *
940  * This routine is called by the frontend in order to be able to directly
941  * flush a buffer cache buffer.  The frontend has locked the related buffer
942  * cache buffers and we should be able to manipulate any overlapping
943  * in-memory records.
944  *
945  * The caller is responsible for adding the returned record and deleting
946  * the returned conflicting record (if any), typically by calling
947  * hammer_ip_replace_bulk() (via hammer_io_direct_write()).
948  */
949 hammer_record_t
950 hammer_ip_add_bulk(hammer_inode_t ip, off_t file_offset, void *data, int bytes,
951 		   int *errorp)
952 {
953 	hammer_record_t record;
954 	hammer_dedup_cache_t dcp;
955 	hammer_crc_t crc;
956 	int zone;
957 
958 	/*
959 	 * Create a record to cover the direct write.  The record cannot
960 	 * be added to the in-memory RB tree here as it might conflict
961 	 * with an existing memory record.  See hammer_io_direct_write().
962 	 *
963 	 * The backend is responsible for finalizing the space reserved in
964 	 * this record.
965 	 *
966 	 * XXX bytes not aligned, depend on the reservation code to
967 	 * align the reservation.
968 	 */
969 	record = hammer_alloc_mem_record(ip, 0);
970 	zone = hammer_data_zone_index(bytes);
971 	if (bytes == 0)
972 		crc = 0;
973 	else
974 		crc = crc32(data, bytes);
975 
976 	if (hammer_live_dedup == 0)
977 		goto nodedup;
978 	if ((dcp = hammer_dedup_cache_lookup(ip->hmp, crc)) != NULL) {
979 		struct hammer_dedup_cache tmp = *dcp;
980 
981 		record->resv = hammer_blockmap_reserve_dedup(ip->hmp, zone,
982 			bytes, tmp.data_offset, errorp);
983 		if (record->resv == NULL)
984 			goto nodedup;
985 
986 		if (!hammer_dedup_validate(&tmp, zone, bytes, data)) {
987 			hammer_blockmap_reserve_complete(ip->hmp, record->resv);
988 			goto nodedup;
989 		}
990 
991 		record->leaf.data_offset = tmp.data_offset;
992 		record->flags |= HAMMER_RECF_DEDUPED;
993 	} else {
994 nodedup:
995 		record->resv = hammer_blockmap_reserve(ip->hmp, zone, bytes,
996 		       &record->leaf.data_offset, errorp);
997 		if (record->resv == NULL) {
998 			hdkprintf("reservation failed\n");
999 			hammer_rel_mem_record(record);
1000 			return(NULL);
1001 		}
1002 	}
1003 
1004 	record->type = HAMMER_MEM_RECORD_DATA;
1005 	record->leaf.base.rec_type = HAMMER_RECTYPE_DATA;
1006 	record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
1007 	record->leaf.base.obj_id = ip->obj_id;
1008 	record->leaf.base.key = file_offset + bytes;
1009 	record->leaf.base.localization = ip->obj_localization +
1010 					 HAMMER_LOCALIZE_MISC;
1011 	record->leaf.data_len = bytes;
1012 	record->leaf.data_crc = crc;
1013 	KKASSERT(*errorp == 0);
1014 
1015 	return(record);
1016 }
1017 
1018 /*
1019  * Called by hammer_io_direct_write() prior to any possible completion
1020  * of the BIO to emplace the memory record associated with the I/O and
1021  * to replace any prior memory record which might still be active.
1022  *
1023  * Setting the FE deleted flag on the old record (if any) avoids any RB
1024  * tree insertion conflict, amoung other things.
1025  *
1026  * This has to be done prior to the caller completing any related buffer
1027  * cache I/O or a reinstantiation of the buffer may load data from the
1028  * old media location instead of the new media location.  The holding
1029  * of the locked buffer cache buffer serves to interlock the record
1030  * replacement operation.
1031  */
1032 void
1033 hammer_ip_replace_bulk(hammer_mount_t hmp, hammer_record_t record)
1034 {
1035 	hammer_record_t conflict;
1036 	int error __debugvar;
1037 
1038 	while ((conflict = hammer_ip_get_bulk(record)) != NULL) {
1039 		if ((conflict->flags & HAMMER_RECF_INTERLOCK_BE) == 0) {
1040 			conflict->flags |= HAMMER_RECF_DELETED_FE;
1041 			break;
1042 		}
1043 		conflict->flags |= HAMMER_RECF_WANTED;
1044 		tsleep(conflict, 0, "hmrrc3", 0);
1045 		hammer_rel_mem_record(conflict);
1046 	}
1047 	error = hammer_mem_add(record);
1048 	if (conflict)
1049 		hammer_rel_mem_record(conflict);
1050 	KKASSERT(error == 0);
1051 }
1052 
1053 /*
1054  * Frontend truncation code.  Scan in-memory records only.  On-disk records
1055  * and records in a flushing state are handled by the backend.  The vnops
1056  * setattr code will handle the block containing the truncation point.
1057  *
1058  * Partial blocks are not deleted.
1059  *
1060  * This code is only called on regular files.
1061  */
1062 int
1063 hammer_ip_frontend_trunc(struct hammer_inode *ip, off_t file_size)
1064 {
1065 	struct rec_trunc_info info;
1066 
1067 	switch(ip->ino_data.obj_type) {
1068 	case HAMMER_OBJTYPE_REGFILE:
1069 		info.rec_type = HAMMER_RECTYPE_DATA;
1070 		break;
1071 	case HAMMER_OBJTYPE_DBFILE:
1072 		info.rec_type = HAMMER_RECTYPE_DB;
1073 		break;
1074 	default:
1075 		return(EINVAL);
1076 	}
1077 	info.trunc_off = file_size;
1078 	hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_trunc_cmp,
1079 				   hammer_frontend_trunc_callback, &info);
1080 	return(0);
1081 }
1082 
1083 /*
1084  * Scan callback for frontend records to destroy during a truncation.
1085  * We must ensure that DELETED_FE is set on the record or the frontend
1086  * will get confused in future read() calls.
1087  *
1088  * NOTE: DELETED_FE cannot be set while the record interlock (BE) is held.
1089  *	 In this rare case we must wait for the interlock to be cleared.
1090  *
1091  * NOTE: This function is only called on regular files.  There are further
1092  *	 restrictions to the setting of DELETED_FE on directory records
1093  *	 undergoing a flush due to sensitive inode link count calculations.
1094  */
1095 static int
1096 hammer_frontend_trunc_callback(hammer_record_t record, void *data __unused)
1097 {
1098 	if (record->flags & HAMMER_RECF_DELETED_FE)
1099 		return(0);
1100 #if 0
1101 	if (record->flush_state == HAMMER_FST_FLUSH)
1102 		return(0);
1103 #endif
1104 	hammer_ref(&record->lock);
1105 	while (record->flags & HAMMER_RECF_INTERLOCK_BE)
1106 		hammer_wait_mem_record_ident(record, "hmmtrr");
1107 	record->flags |= HAMMER_RECF_DELETED_FE;
1108 	hammer_rel_mem_record(record);
1109 	return(0);
1110 }
1111 
1112 /*
1113  * Return 1 if the caller must check for and delete existing records
1114  * before writing out a new data record.
1115  *
1116  * Return 0 if the caller can just insert the record into the B-Tree without
1117  * checking.
1118  */
1119 static int
1120 hammer_record_needs_overwrite_delete(hammer_record_t record)
1121 {
1122 	hammer_inode_t ip = record->ip;
1123 	int64_t file_offset;
1124 	int r;
1125 
1126 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE)
1127 		file_offset = record->leaf.base.key;
1128 	else
1129 		file_offset = record->leaf.base.key - record->leaf.data_len;
1130 	r = (file_offset < ip->save_trunc_off);
1131 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1132 		if (ip->save_trunc_off <= record->leaf.base.key)
1133 			ip->save_trunc_off = record->leaf.base.key + 1;
1134 	} else {
1135 		if (ip->save_trunc_off < record->leaf.base.key)
1136 			ip->save_trunc_off = record->leaf.base.key;
1137 	}
1138 	return(r);
1139 }
1140 
1141 /*
1142  * Backend code.  Sync a record to the media.
1143  */
1144 int
1145 hammer_ip_sync_record_cursor(hammer_cursor_t cursor, hammer_record_t record)
1146 {
1147 	hammer_transaction_t trans = cursor->trans;
1148 	int64_t file_offset;
1149 	int bytes;
1150 	void *bdata;
1151 	int error;
1152 	int doprop;
1153 
1154 	KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1155 	KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
1156 	KKASSERT(record->leaf.base.localization != 0);
1157 
1158 	/*
1159 	 * Any direct-write related to the record must complete before we
1160 	 * can sync the record to the on-disk media.
1161 	 */
1162 	if (record->gflags & (HAMMER_RECG_DIRECT_IO | HAMMER_RECG_DIRECT_INVAL))
1163 		hammer_io_direct_wait(record);
1164 
1165 	/*
1166 	 * If this is a bulk-data record placemarker there may be an existing
1167 	 * record on-disk, indicating a data overwrite.  If there is the
1168 	 * on-disk record must be deleted before we can insert our new record.
1169 	 *
1170 	 * We've synthesized this record and do not know what the create_tid
1171 	 * on-disk is, nor how much data it represents.
1172 	 *
1173 	 * Keep in mind that (key) for data records is (base_offset + len),
1174 	 * not (base_offset).  Also, we only want to get rid of on-disk
1175 	 * records since we are trying to sync our in-memory record, call
1176 	 * hammer_ip_delete_range() with truncating set to 1 to make sure
1177 	 * it skips in-memory records.
1178 	 *
1179 	 * It is ok for the lookup to return ENOENT.
1180 	 *
1181 	 * NOTE OPTIMIZATION: sync_trunc_off is used to determine if we have
1182 	 * to call hammer_ip_delete_range() or not.  This also means we must
1183 	 * update sync_trunc_off() as we write.
1184 	 */
1185 	if (record->type == HAMMER_MEM_RECORD_DATA &&
1186 	    hammer_record_needs_overwrite_delete(record)) {
1187 		file_offset = record->leaf.base.key - record->leaf.data_len;
1188 		bytes = (record->leaf.data_len + HAMMER_BUFMASK) &
1189 			~HAMMER_BUFMASK;
1190 		KKASSERT((file_offset & HAMMER_BUFMASK) == 0);
1191 		error = hammer_ip_delete_range(
1192 				cursor, record->ip,
1193 				file_offset, file_offset + bytes - 1,
1194 				1);
1195 		if (error && error != ENOENT)
1196 			goto done;
1197 	}
1198 
1199 	/*
1200 	 * If this is a general record there may be an on-disk version
1201 	 * that must be deleted before we can insert the new record.
1202 	 */
1203 	if (record->type == HAMMER_MEM_RECORD_GENERAL) {
1204 		error = hammer_delete_general(cursor, record->ip, &record->leaf);
1205 		if (error && error != ENOENT)
1206 			goto done;
1207 	}
1208 
1209 	/*
1210 	 * Setup the cursor.
1211 	 */
1212 	hammer_normalize_cursor(cursor);
1213 	cursor->key_beg = record->leaf.base;
1214 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1215 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1216 	cursor->flags &= ~HAMMER_CURSOR_INSERT;
1217 
1218 	/*
1219 	 * Records can wind up on-media before the inode itself is on-media.
1220 	 * Flag the case.
1221 	 */
1222 	record->ip->flags |= HAMMER_INODE_DONDISK;
1223 
1224 	/*
1225 	 * If we are deleting a directory entry an exact match must be
1226 	 * found on-disk.
1227 	 */
1228 	if (record->type == HAMMER_MEM_RECORD_DEL) {
1229 		error = hammer_btree_lookup(cursor);
1230 		if (error == 0) {
1231 			KKASSERT(cursor->iprec == NULL);
1232 			error = hammer_ip_delete_record(cursor, record->ip,
1233 							trans->tid);
1234 			if (error == 0) {
1235 				record->flags |= HAMMER_RECF_DELETED_BE |
1236 						 HAMMER_RECF_COMMITTED;
1237 				++record->ip->rec_generation;
1238 			}
1239 		}
1240 		goto done;
1241 	}
1242 
1243 	/*
1244 	 * We are inserting.
1245 	 *
1246 	 * Issue a lookup to position the cursor and locate the insertion
1247 	 * point.  The target key should not exist.  If we are creating a
1248 	 * directory entry we may have to iterate the low 32 bits of the
1249 	 * key to find an unused key.
1250 	 */
1251 	hammer_sync_lock_sh(trans);
1252 	cursor->flags |= HAMMER_CURSOR_INSERT;
1253 	error = hammer_btree_lookup(cursor);
1254 	if (hammer_debug_inode)
1255 		hdkprintf("DOINSERT LOOKUP %d\n", error);
1256 	if (error == 0) {
1257 		hdkprintf("duplicate rec at (%016llx)\n",
1258 			(long long)record->leaf.base.key);
1259 		if (hammer_debug_critical)
1260 			Debugger("duplicate record1");
1261 		error = EIO;
1262 	}
1263 #if 0
1264 	if (record->type == HAMMER_MEM_RECORD_DATA)
1265 		hdkprintf("%016llx ---------------- %016llx %d\n",
1266 			record->leaf.base.key - record->leaf.data_len,
1267 			record->leaf.data_offset, error);
1268 #endif
1269 
1270 	if (error != ENOENT)
1271 		goto done_unlock;
1272 
1273 	/*
1274 	 * Allocate the record and data.  The result buffers will be
1275 	 * marked as being modified and further calls to
1276 	 * hammer_modify_buffer() will result in unneeded UNDO records.
1277 	 *
1278 	 * Support zero-fill records (data == NULL and data_len != 0)
1279 	 */
1280 	if (record->type == HAMMER_MEM_RECORD_DATA) {
1281 		/*
1282 		 * The data portion of a bulk-data record has already been
1283 		 * committed to disk, we need only adjust the layer2
1284 		 * statistics in the same transaction as our B-Tree insert.
1285 		 */
1286 		KKASSERT(record->leaf.data_offset != 0);
1287 		error = hammer_blockmap_finalize(trans,
1288 						 record->resv,
1289 						 record->leaf.data_offset,
1290 						 record->leaf.data_len);
1291 
1292 		if (hammer_live_dedup == 2 &&
1293 		    (record->flags & HAMMER_RECF_DEDUPED) == 0) {
1294 			hammer_dedup_cache_add(record->ip, &record->leaf);
1295 		}
1296 	} else if (record->data && record->leaf.data_len) {
1297 		/*
1298 		 * Wholely cached record, with data.  Allocate the data.
1299 		 */
1300 		bdata = hammer_alloc_data(trans, record->leaf.data_len,
1301 					  record->leaf.base.rec_type,
1302 					  &record->leaf.data_offset,
1303 					  &cursor->data_buffer,
1304 					  0, &error);
1305 		if (bdata == NULL)
1306 			goto done_unlock;
1307 		hammer_crc_set_leaf(record->data, &record->leaf);
1308 		hammer_modify_buffer_noundo(trans, cursor->data_buffer);
1309 		bcopy(record->data, bdata, record->leaf.data_len);
1310 		hammer_modify_buffer_done(cursor->data_buffer);
1311 	} else {
1312 		/*
1313 		 * Wholely cached record, without data.
1314 		 */
1315 		record->leaf.data_offset = 0;
1316 		record->leaf.data_crc = 0;
1317 	}
1318 
1319 	error = hammer_btree_insert(cursor, &record->leaf, &doprop);
1320 	if (hammer_debug_inode && error) {
1321 		hdkprintf("BTREE INSERT error %d @ %016llx:%d key %016llx\n",
1322 			error,
1323 			(long long)cursor->node->node_offset,
1324 			cursor->index,
1325 			(long long)record->leaf.base.key);
1326 	}
1327 
1328 	/*
1329 	 * Our record is on-disk and we normally mark the in-memory version
1330 	 * as having been committed (and not BE-deleted).
1331 	 *
1332 	 * If the record represented a directory deletion but we had to
1333 	 * sync a valid directory entry to disk due to dependancies,
1334 	 * we must convert the record to a covering delete so the
1335 	 * frontend does not have visibility on the synced entry.
1336 	 *
1337 	 * WARNING: cursor's leaf pointer may have changed after do_propagation
1338 	 *	    returns!
1339 	 */
1340 	if (error == 0) {
1341 		if (doprop) {
1342 			hammer_btree_do_propagation(cursor,
1343 						    record->ip->pfsm,
1344 						    &record->leaf);
1345 		}
1346 		if (record->flags & HAMMER_RECF_CONVERT_DELETE) {
1347 			/*
1348 			 * Must convert deleted directory entry add
1349 			 * to a directory entry delete.
1350 			 */
1351 			KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
1352 			record->flags &= ~HAMMER_RECF_DELETED_FE;
1353 			record->type = HAMMER_MEM_RECORD_DEL;
1354 			KKASSERT(record->ip->obj_id == record->leaf.base.obj_id);
1355 			KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1356 			record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1357 			KKASSERT((record->flags & (HAMMER_RECF_COMMITTED |
1358 						 HAMMER_RECF_DELETED_BE)) == 0);
1359 			/* converted record is not yet committed */
1360 			/* hammer_flush_record_done takes care of the rest */
1361 		} else {
1362 			/*
1363 			 * Everything went fine and we are now done with
1364 			 * this record.
1365 			 */
1366 			record->flags |= HAMMER_RECF_COMMITTED;
1367 			++record->ip->rec_generation;
1368 		}
1369 	} else {
1370 		if (record->leaf.data_offset) {
1371 			hammer_blockmap_free(trans, record->leaf.data_offset,
1372 					     record->leaf.data_len);
1373 		}
1374 	}
1375 done_unlock:
1376 	hammer_sync_unlock(trans);
1377 done:
1378 	return(error);
1379 }
1380 
1381 /*
1382  * Add the record to the inode's rec_tree.  The low 32 bits of a directory
1383  * entry's key is used to deal with hash collisions in the upper 32 bits.
1384  * A unique 64 bit key is generated in-memory and may be regenerated a
1385  * second time when the directory record is flushed to the on-disk B-Tree.
1386  *
1387  * A referenced record is passed to this function.  This function
1388  * eats the reference.  If an error occurs the record will be deleted.
1389  *
1390  * A copy of the temporary record->data pointer provided by the caller
1391  * will be made.
1392  */
1393 int
1394 hammer_mem_add(hammer_record_t record)
1395 {
1396 	hammer_mount_t hmp = record->ip->hmp;
1397 
1398 	/*
1399 	 * Make a private copy of record->data
1400 	 */
1401 	if (record->data)
1402 		KKASSERT(record->flags & HAMMER_RECF_ALLOCDATA);
1403 
1404 	/*
1405 	 * Insert into the RB tree.  A unique key should have already
1406 	 * been selected if this is a directory entry.
1407 	 */
1408 	if (RB_INSERT(hammer_rec_rb_tree, &record->ip->rec_tree, record)) {
1409 		record->flags |= HAMMER_RECF_DELETED_FE;
1410 		hammer_rel_mem_record(record);
1411 		return (EEXIST);
1412 	}
1413 	++hmp->count_newrecords;
1414 	++hmp->rsv_recs;
1415 	++record->ip->rsv_recs;
1416 	record->ip->hmp->rsv_databytes += record->leaf.data_len;
1417 	record->flags |= HAMMER_RECF_ONRBTREE;
1418 	hammer_modify_inode(NULL, record->ip, HAMMER_INODE_XDIRTY);
1419 	hammer_rel_mem_record(record);
1420 	return(0);
1421 }
1422 
1423 /************************************************************************
1424  *		     HAMMER INODE MERGED-RECORD FUNCTIONS		*
1425  ************************************************************************
1426  *
1427  * These functions augment the B-Tree scanning functions in hammer_btree.c
1428  * by merging in-memory records with on-disk records.
1429  */
1430 
1431 /*
1432  * Locate a particular record either in-memory or on-disk.
1433  *
1434  * NOTE: This is basically a standalone routine, hammer_ip_next() may
1435  * NOT be called to iterate results.
1436  */
1437 int
1438 hammer_ip_lookup(hammer_cursor_t cursor)
1439 {
1440 	int error;
1441 
1442 	/*
1443 	 * If the element is in-memory return it without searching the
1444 	 * on-disk B-Tree
1445 	 */
1446 	KKASSERT(cursor->ip);
1447 	error = hammer_mem_lookup(cursor);
1448 	if (error == 0) {
1449 		cursor->leaf = &cursor->iprec->leaf;
1450 		return(error);
1451 	}
1452 	if (error != ENOENT)
1453 		return(error);
1454 
1455 	/*
1456 	 * If the inode has on-disk components search the on-disk B-Tree.
1457 	 */
1458 	if ((cursor->ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) == 0)
1459 		return(error);
1460 	error = hammer_btree_lookup(cursor);
1461 	if (error == 0)
1462 		error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1463 	return(error);
1464 }
1465 
1466 /*
1467  * Helper for hammer_ip_first()/hammer_ip_next()
1468  *
1469  * NOTE: Both ATEDISK and DISKEOF will be set the same.  This sets up
1470  * hammer_ip_first() for calling hammer_ip_next(), and sets up the re-seek
1471  * state if hammer_ip_next() needs to re-seek.
1472  */
1473 static __inline
1474 int
1475 _hammer_ip_seek_btree(hammer_cursor_t cursor)
1476 {
1477 	hammer_inode_t ip = cursor->ip;
1478 	int error;
1479 
1480 	if (ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) {
1481 		error = hammer_btree_lookup(cursor);
1482 		if (error == ENOENT || error == EDEADLK) {
1483 			if (hammer_debug_general & 0x2000) {
1484 				hdkprintf("error %d node %p %016llx index %d\n",
1485 					error, cursor->node,
1486 					(long long)cursor->node->node_offset,
1487 					cursor->index);
1488 			}
1489 			cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1490 			error = hammer_btree_iterate(cursor);
1491 		}
1492 		if (error == 0) {
1493 			cursor->flags &= ~(HAMMER_CURSOR_DISKEOF |
1494 					   HAMMER_CURSOR_ATEDISK);
1495 		} else {
1496 			cursor->flags |= HAMMER_CURSOR_DISKEOF |
1497 					 HAMMER_CURSOR_ATEDISK;
1498 			if (error == ENOENT)
1499 				error = 0;
1500 		}
1501 	} else {
1502 		cursor->flags |= HAMMER_CURSOR_DISKEOF | HAMMER_CURSOR_ATEDISK;
1503 		error = 0;
1504 	}
1505 	return(error);
1506 }
1507 
1508 /*
1509  * Helper for hammer_ip_next()
1510  *
1511  * The caller has determined that the media cursor is further along than the
1512  * memory cursor and must be reseeked after a generation number change.
1513  */
1514 static
1515 int
1516 _hammer_ip_reseek(hammer_cursor_t cursor)
1517 {
1518 	struct hammer_base_elm save;
1519 	hammer_btree_elm_t elm;
1520 	int error __debugvar;
1521 	int r;
1522 	int again = 0;
1523 
1524 	/*
1525 	 * Do the re-seek.
1526 	 */
1527 	hkprintf("Debug: re-seeked during scan @ino=%016llx\n",
1528 		(long long)cursor->ip->obj_id);
1529 	save = cursor->key_beg;
1530 	cursor->key_beg = cursor->iprec->leaf.base;
1531 	error = _hammer_ip_seek_btree(cursor);
1532 	KKASSERT(error == 0);
1533 	cursor->key_beg = save;
1534 
1535 	/*
1536 	 * If the memory record was previous returned to
1537 	 * the caller and the media record matches
1538 	 * (-1/+1: only create_tid differs), then iterate
1539 	 * the media record to avoid a double result.
1540 	 */
1541 	if ((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0 &&
1542 	    (cursor->flags & HAMMER_CURSOR_LASTWASMEM)) {
1543 		elm = &cursor->node->ondisk->elms[cursor->index];
1544 		r = hammer_btree_cmp(&elm->base, &cursor->iprec->leaf.base);
1545 		if (cursor->flags & HAMMER_CURSOR_ASOF) {
1546 			if (r >= -1 && r <= 1) {
1547 				hkprintf("Debug: iterated after "
1548 					"re-seek (asof r=%d)\n", r);
1549 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
1550 				again = 1;
1551 			}
1552 		} else {
1553 			if (r == 0) {
1554 				hkprintf("Debug: iterated after "
1555 					"re-seek\n");
1556 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
1557 				again = 1;
1558 			}
1559 		}
1560 	}
1561 	return(again);
1562 }
1563 
1564 /*
1565  * Locate the first record within the cursor's key_beg/key_end range,
1566  * restricted to a particular inode.  0 is returned on success, ENOENT
1567  * if no records matched the requested range, or some other error.
1568  *
1569  * When 0 is returned hammer_ip_next() may be used to iterate additional
1570  * records within the requested range.
1571  *
1572  * This function can return EDEADLK, requiring the caller to terminate
1573  * the cursor and try again.
1574  */
1575 
1576 int
1577 hammer_ip_first(hammer_cursor_t cursor)
1578 {
1579 	hammer_inode_t ip __debugvar = cursor->ip;
1580 	int error;
1581 
1582 	KKASSERT(ip != NULL);
1583 
1584 	/*
1585 	 * Clean up fields and setup for merged scan
1586 	 */
1587 	cursor->flags &= ~HAMMER_CURSOR_RETEST;
1588 
1589 	/*
1590 	 * Search the in-memory record list (Red-Black tree).  Unlike the
1591 	 * B-Tree search, mem_first checks for records in the range.
1592 	 *
1593 	 * This function will setup both ATEMEM and MEMEOF properly for
1594 	 * the ip iteration.  ATEMEM will be set if MEMEOF is set.
1595 	 */
1596 	hammer_mem_first(cursor);
1597 
1598 	/*
1599 	 * Detect generation changes during blockages, including
1600 	 * blockages which occur on the initial btree search.
1601 	 */
1602 	cursor->rec_generation = cursor->ip->rec_generation;
1603 
1604 	/*
1605 	 * Initial search and result
1606 	 */
1607 	error = _hammer_ip_seek_btree(cursor);
1608 	if (error == 0)
1609 		error = hammer_ip_next(cursor);
1610 
1611 	return (error);
1612 }
1613 
1614 /*
1615  * Retrieve the next record in a merged iteration within the bounds of the
1616  * cursor.  This call may be made multiple times after the cursor has been
1617  * initially searched with hammer_ip_first().
1618  *
1619  * There are numerous special cases in this code to deal with races between
1620  * in-memory records and on-media records.
1621  *
1622  * 0 is returned on success, ENOENT if no further records match the
1623  * requested range, or some other error code is returned.
1624  */
1625 int
1626 hammer_ip_next(hammer_cursor_t cursor)
1627 {
1628 	hammer_btree_elm_t elm;
1629 	hammer_record_t rec;
1630 	hammer_record_t tmprec;
1631 	int error;
1632 	int r;
1633 
1634 again:
1635 	/*
1636 	 * Get the next on-disk record
1637 	 *
1638 	 * NOTE: If we deleted the last on-disk record we had scanned
1639 	 * 	 ATEDISK will be clear and RETEST will be set, forcing
1640 	 *	 a call to iterate.  The fact that ATEDISK is clear causes
1641 	 *	 iterate to re-test the 'current' element.  If ATEDISK is
1642 	 *	 set, iterate will skip the 'current' element.
1643 	 */
1644 	error = 0;
1645 	if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
1646 		if (cursor->flags & (HAMMER_CURSOR_ATEDISK |
1647 				     HAMMER_CURSOR_RETEST)) {
1648 			error = hammer_btree_iterate(cursor);
1649 			cursor->flags &= ~HAMMER_CURSOR_RETEST;
1650 			if (error == 0) {
1651 				cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1652 				hammer_cache_node(&cursor->ip->cache[1],
1653 						  cursor->node);
1654 			} else if (error == ENOENT) {
1655 				cursor->flags |= HAMMER_CURSOR_DISKEOF |
1656 						 HAMMER_CURSOR_ATEDISK;
1657 				error = 0;
1658 			}
1659 		}
1660 	}
1661 
1662 	/*
1663 	 * If the generation changed the backend has deleted or committed
1664 	 * one or more memory records since our last check.
1665 	 *
1666 	 * When this case occurs if the disk cursor is > current memory record
1667 	 * or the disk cursor is at EOF, we must re-seek the disk-cursor.
1668 	 * Since the cursor is ahead it must have not yet been eaten (if
1669 	 * not at eof anyway). (XXX data offset case?)
1670 	 *
1671 	 * NOTE: we are not doing a full check here.  That will be handled
1672 	 * later on.
1673 	 *
1674 	 * If we have exhausted all memory records we do not have to do any
1675 	 * further seeks.
1676 	 */
1677 	while (cursor->rec_generation != cursor->ip->rec_generation &&
1678 	       error == 0) {
1679 		hkprintf("Debug: generation changed during scan @ino=%016llx\n",
1680 			(long long)cursor->ip->obj_id);
1681 		cursor->rec_generation = cursor->ip->rec_generation;
1682 		if (cursor->flags & HAMMER_CURSOR_MEMEOF)
1683 			break;
1684 		if (cursor->flags & HAMMER_CURSOR_DISKEOF) {
1685 			r = 1;
1686 		} else {
1687 			KKASSERT((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0);
1688 			elm = &cursor->node->ondisk->elms[cursor->index];
1689 			r = hammer_btree_cmp(&elm->base,
1690 					     &cursor->iprec->leaf.base);
1691 		}
1692 
1693 		/*
1694 		 * Do we re-seek the media cursor?
1695 		 */
1696 		if (r > 0) {
1697 			if (_hammer_ip_reseek(cursor))
1698 				goto again;
1699 		}
1700 	}
1701 
1702 	/*
1703 	 * We can now safely get the next in-memory record.  We cannot
1704 	 * block here.
1705 	 *
1706 	 * hammer_rec_scan_cmp:  Is the record still in our general range,
1707 	 *			 (non-inclusive of snapshot exclusions)?
1708 	 * hammer_rec_scan_callback: Is the record in our snapshot?
1709 	 */
1710 	tmprec = NULL;
1711 	if ((cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1712 		/*
1713 		 * If the current memory record was eaten then get the next
1714 		 * one.  Stale records are skipped.
1715 		 */
1716 		if (cursor->flags & HAMMER_CURSOR_ATEMEM) {
1717 			tmprec = cursor->iprec;
1718 			cursor->iprec = NULL;
1719 			rec = hammer_rec_rb_tree_RB_NEXT(tmprec);
1720 			while (rec) {
1721 				if (hammer_rec_scan_cmp(rec, cursor) != 0)
1722 					break;
1723 				if (hammer_rec_scan_callback(rec, cursor) != 0)
1724 					break;
1725 				rec = hammer_rec_rb_tree_RB_NEXT(rec);
1726 			}
1727 			if (cursor->iprec) {
1728 				KKASSERT(cursor->iprec == rec);
1729 				cursor->flags &= ~HAMMER_CURSOR_ATEMEM;
1730 			} else {
1731 				cursor->flags |= HAMMER_CURSOR_MEMEOF;
1732 			}
1733 			cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1734 		}
1735 	}
1736 
1737 	/*
1738 	 * MEMORY RECORD VALIDITY TEST
1739 	 *
1740 	 * (We still can't block, which is why tmprec is being held so
1741 	 * long).
1742 	 *
1743 	 * If the memory record is no longer valid we skip it.  It may
1744 	 * have been deleted by the frontend.  If it was deleted or
1745 	 * committed by the backend the generation change re-seeked the
1746 	 * disk cursor and the record will be present there.
1747 	 */
1748 	if (error == 0 && (cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1749 		KKASSERT(cursor->iprec);
1750 		KKASSERT((cursor->flags & HAMMER_CURSOR_ATEMEM) == 0);
1751 		if (!hammer_ip_iterate_mem_good(cursor, cursor->iprec)) {
1752 			cursor->flags |= HAMMER_CURSOR_ATEMEM;
1753 			if (tmprec)
1754 				hammer_rel_mem_record(tmprec);
1755 			goto again;
1756 		}
1757 	}
1758 	if (tmprec)
1759 		hammer_rel_mem_record(tmprec);
1760 
1761 	/*
1762 	 * Extract either the disk or memory record depending on their
1763 	 * relative position.
1764 	 */
1765 	error = 0;
1766 	switch(cursor->flags & (HAMMER_CURSOR_ATEDISK | HAMMER_CURSOR_ATEMEM)) {
1767 	case 0:
1768 		/*
1769 		 * Both entries valid.   Compare the entries and nominally
1770 		 * return the first one in the sort order.  Numerous cases
1771 		 * require special attention, however.
1772 		 */
1773 		elm = &cursor->node->ondisk->elms[cursor->index];
1774 		r = hammer_btree_cmp(&elm->base, &cursor->iprec->leaf.base);
1775 
1776 		/*
1777 		 * If the two entries differ only by their key (-2/2) or
1778 		 * create_tid (-1/1), and are DATA records, we may have a
1779 		 * nominal match.  We have to calculate the base file
1780 		 * offset of the data.
1781 		 */
1782 		if (r <= 2 && r >= -2 && r != 0 &&
1783 		    cursor->ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE &&
1784 		    cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1785 			int64_t base1 = elm->leaf.base.key - elm->leaf.data_len;
1786 			int64_t base2 = cursor->iprec->leaf.base.key -
1787 					cursor->iprec->leaf.data_len;
1788 			if (base1 == base2)
1789 				r = 0;
1790 		}
1791 
1792 		if (r < 0) {
1793 			error = hammer_btree_extract(cursor,
1794 						     HAMMER_CURSOR_GET_LEAF);
1795 			cursor->flags |= HAMMER_CURSOR_ATEDISK;
1796 			cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1797 			break;
1798 		}
1799 
1800 		/*
1801 		 * If the entries match exactly the memory entry is either
1802 		 * an on-disk directory entry deletion or a bulk data
1803 		 * overwrite.  If it is a directory entry deletion we eat
1804 		 * both entries.
1805 		 *
1806 		 * For the bulk-data overwrite case it is possible to have
1807 		 * visibility into both, which simply means the syncer
1808 		 * hasn't gotten around to doing the delete+insert sequence
1809 		 * on the B-Tree.  Use the memory entry and throw away the
1810 		 * on-disk entry.
1811 		 *
1812 		 * If the in-memory record is not either of these we
1813 		 * probably caught the syncer while it was syncing it to
1814 		 * the media.  Since we hold a shared lock on the cursor,
1815 		 * the in-memory record had better be marked deleted at
1816 		 * this point.
1817 		 */
1818 		if (r == 0) {
1819 			if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL) {
1820 				if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1821 					cursor->flags |= HAMMER_CURSOR_ATEDISK;
1822 					cursor->flags |= HAMMER_CURSOR_ATEMEM;
1823 					goto again;
1824 				}
1825 			} else if (cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1826 				if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1827 					cursor->flags |= HAMMER_CURSOR_ATEDISK;
1828 				}
1829 				/* fall through to memory entry */
1830 			} else {
1831 				hpanic("duplicate mem/B-Tree entry %p %d %08x",
1832 					cursor->iprec,
1833 					cursor->iprec->type,
1834 					cursor->iprec->flags);
1835 				cursor->flags |= HAMMER_CURSOR_ATEMEM;
1836 				goto again;
1837 			}
1838 		}
1839 		/* fall through to the memory entry */
1840 	case HAMMER_CURSOR_ATEDISK:
1841 		/*
1842 		 * Only the memory entry is valid.
1843 		 */
1844 		cursor->leaf = &cursor->iprec->leaf;
1845 		cursor->flags |= HAMMER_CURSOR_ATEMEM;
1846 		cursor->flags |= HAMMER_CURSOR_LASTWASMEM;
1847 
1848 		/*
1849 		 * If the memory entry is an on-disk deletion we should have
1850 		 * also had found a B-Tree record.  If the backend beat us
1851 		 * to it it would have interlocked the cursor and we should
1852 		 * have seen the in-memory record marked DELETED_FE.
1853 		 */
1854 		if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL &&
1855 		    (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1856 			hpanic("del-on-disk with no B-Tree entry iprec %p flags %08x",
1857 				cursor->iprec,
1858 				cursor->iprec->flags);
1859 		}
1860 		break;
1861 	case HAMMER_CURSOR_ATEMEM:
1862 		/*
1863 		 * Only the disk entry is valid
1864 		 */
1865 		error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1866 		cursor->flags |= HAMMER_CURSOR_ATEDISK;
1867 		cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1868 		break;
1869 	default:
1870 		/*
1871 		 * Neither entry is valid
1872 		 *
1873 		 * XXX error not set properly
1874 		 */
1875 		cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1876 		cursor->leaf = NULL;
1877 		error = ENOENT;
1878 		break;
1879 	}
1880 	return(error);
1881 }
1882 
1883 /*
1884  * Resolve the cursor->data pointer for the current cursor position in
1885  * a merged iteration.
1886  */
1887 int
1888 hammer_ip_resolve_data(hammer_cursor_t cursor)
1889 {
1890 	hammer_record_t record;
1891 	int error;
1892 
1893 	if (hammer_cursor_inmem(cursor)) {
1894 		/*
1895 		 * The data associated with an in-memory record is usually
1896 		 * kmalloced, but reserve-ahead data records will have an
1897 		 * on-disk reference.
1898 		 *
1899 		 * NOTE: Reserve-ahead data records must be handled in the
1900 		 * context of the related high level buffer cache buffer
1901 		 * to interlock against async writes.
1902 		 */
1903 		record = cursor->iprec;
1904 		cursor->data = record->data;
1905 		error = 0;
1906 		if (cursor->data == NULL) {
1907 			KKASSERT(record->leaf.base.rec_type ==
1908 				 HAMMER_RECTYPE_DATA);
1909 			cursor->data = hammer_bread_ext(cursor->trans->hmp,
1910 						    record->leaf.data_offset,
1911 						    record->leaf.data_len,
1912 						    &error,
1913 						    &cursor->data_buffer);
1914 		}
1915 	} else {
1916 		cursor->leaf = &cursor->node->ondisk->elms[cursor->index].leaf;
1917 		error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_DATA);
1918 	}
1919 	return(error);
1920 }
1921 
1922 /*
1923  * Backend truncation / record replacement - delete records in range.
1924  *
1925  * Delete all records within the specified range for inode ip.  In-memory
1926  * records still associated with the frontend are ignored.
1927  *
1928  * If truncating is non-zero in-memory records associated with the back-end
1929  * are ignored.  If truncating is > 1 we can return EWOULDBLOCK.
1930  *
1931  * NOTES:
1932  *
1933  *	* An unaligned range will cause new records to be added to cover
1934  *        the edge cases. (XXX not implemented yet).
1935  *
1936  *	* Replacement via reservations (see hammer_ip_sync_record_cursor())
1937  *        also do not deal with unaligned ranges.
1938  *
1939  *	* ran_end is inclusive (e.g. 0,1023 instead of 0,1024).
1940  *
1941  *	* Record keys for regular file data have to be special-cased since
1942  * 	  they indicate the end of the range (key = base + bytes).
1943  *
1944  *	* This function may be asked to delete ridiculously huge ranges, for
1945  *	  example if someone truncates or removes a 1TB regular file.  We
1946  *	  must be very careful on restarts and we may have to stop w/
1947  *	  EWOULDBLOCK to avoid blowing out the buffer cache.
1948  */
1949 int
1950 hammer_ip_delete_range(hammer_cursor_t cursor, hammer_inode_t ip,
1951 		       int64_t ran_beg, int64_t ran_end, int truncating)
1952 {
1953 	hammer_transaction_t trans = cursor->trans;
1954 	hammer_btree_leaf_elm_t leaf;
1955 	int error;
1956 	int64_t off;
1957 	int64_t tmp64;
1958 
1959 #if 0
1960 	hdkprintf("%p %016llx-%016llx\n", ip, ran_beg, ran_end);
1961 #endif
1962 
1963 	KKASSERT(trans->type == HAMMER_TRANS_FLS);
1964 retry:
1965 	hammer_normalize_cursor(cursor);
1966 	cursor->key_beg.localization = ip->obj_localization +
1967 				       HAMMER_LOCALIZE_MISC;
1968 	cursor->key_beg.obj_id = ip->obj_id;
1969 	cursor->key_beg.create_tid = 0;
1970 	cursor->key_beg.delete_tid = 0;
1971 	cursor->key_beg.obj_type = 0;
1972 
1973 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1974 		cursor->key_beg.key = ran_beg;
1975 		cursor->key_beg.rec_type = HAMMER_RECTYPE_DB;
1976 	} else {
1977 		/*
1978 		 * The key in the B-Tree is (base+bytes), so the first possible
1979 		 * matching key is ran_beg + 1.
1980 		 */
1981 		cursor->key_beg.key = ran_beg + 1;
1982 		cursor->key_beg.rec_type = HAMMER_RECTYPE_DATA;
1983 	}
1984 
1985 	cursor->key_end = cursor->key_beg;
1986 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1987 		cursor->key_end.key = ran_end;
1988 	} else {
1989 		tmp64 = ran_end + MAXPHYS + 1;	/* work around GCC-4 bug */
1990 		if (tmp64 < ran_end)
1991 			cursor->key_end.key = 0x7FFFFFFFFFFFFFFFLL;
1992 		else
1993 			cursor->key_end.key = ran_end + MAXPHYS + 1;
1994 	}
1995 
1996 	cursor->asof = ip->obj_asof;
1997 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1998 	cursor->flags |= HAMMER_CURSOR_ASOF;
1999 	cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
2000 	cursor->flags |= HAMMER_CURSOR_BACKEND;
2001 	cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE;
2002 
2003 	error = hammer_ip_first(cursor);
2004 
2005 	/*
2006 	 * Iterate through matching records and mark them as deleted.
2007 	 */
2008 	while (error == 0) {
2009 		leaf = cursor->leaf;
2010 
2011 		KKASSERT(leaf->base.delete_tid == 0);
2012 		KKASSERT(leaf->base.obj_id == ip->obj_id);
2013 
2014 		/*
2015 		 * There may be overlap cases for regular file data.  Also
2016 		 * remember the key for a regular file record is (base + len),
2017 		 * NOT (base).
2018 		 *
2019 		 * Note that due to duplicates (mem & media) allowed by
2020 		 * DELETE_VISIBILITY, off can wind up less then ran_beg.
2021 		 */
2022 		if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
2023 			off = leaf->base.key - leaf->data_len;
2024 			/*
2025 			 * Check the left edge case.  We currently do not
2026 			 * split existing records.
2027 			 */
2028 			if (off < ran_beg && leaf->base.key > ran_beg) {
2029 				hpanic("hammer left edge case %016llx %d",
2030 					(long long)leaf->base.key,
2031 					leaf->data_len);
2032 			}
2033 
2034 			/*
2035 			 * Check the right edge case.  Note that the
2036 			 * record can be completely out of bounds, which
2037 			 * terminates the search.
2038 			 *
2039 			 * base->key is exclusive of the right edge while
2040 			 * ran_end is inclusive of the right edge.  The
2041 			 * (key - data_len) left boundary is inclusive.
2042 			 *
2043 			 * XXX theory-check this test at some point, are
2044 			 * we missing a + 1 somewhere?  Note that ran_end
2045 			 * could overflow.
2046 			 */
2047 			if (leaf->base.key - 1 > ran_end) {
2048 				if (leaf->base.key - leaf->data_len > ran_end)
2049 					break;
2050 				hpanic("hammer right edge case");
2051 			}
2052 		} else {
2053 			off = leaf->base.key;
2054 		}
2055 
2056 		/*
2057 		 * Delete the record.  When truncating we do not delete
2058 		 * in-memory (data) records because they represent data
2059 		 * written after the truncation.
2060 		 *
2061 		 * This will also physically destroy the B-Tree entry and
2062 		 * data if the retention policy dictates.  The function
2063 		 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
2064 		 * to retest the new 'current' element.
2065 		 */
2066 		if (truncating == 0 || hammer_cursor_ondisk(cursor)) {
2067 			error = hammer_ip_delete_record(cursor, ip, trans->tid);
2068 			/*
2069 			 * If we have built up too many meta-buffers we risk
2070 			 * deadlocking the kernel and must stop.  This can
2071 			 * occur when deleting ridiculously huge files.
2072 			 * sync_trunc_off is updated so the next cycle does
2073 			 * not re-iterate records we have already deleted.
2074 			 *
2075 			 * This is only done with formal truncations.
2076 			 */
2077 			if (truncating > 1 && error == 0 &&
2078 			    hammer_flusher_meta_limit(ip->hmp)) {
2079 				ip->sync_trunc_off = off;
2080 				error = EWOULDBLOCK;
2081 			}
2082 		}
2083 		if (error)
2084 			break;
2085 		ran_beg = off;	/* for restart */
2086 		error = hammer_ip_next(cursor);
2087 	}
2088 	if (cursor->node)
2089 		hammer_cache_node(&ip->cache[1], cursor->node);
2090 
2091 	if (error == EDEADLK) {
2092 		hammer_done_cursor(cursor);
2093 		error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2094 		if (error == 0)
2095 			goto retry;
2096 	}
2097 	if (error == ENOENT)
2098 		error = 0;
2099 	return(error);
2100 }
2101 
2102 /*
2103  * This backend function deletes the specified record on-disk, similar to
2104  * delete_range but for a specific record.  Unlike the exact deletions
2105  * used when deleting a directory entry this function uses an ASOF search
2106  * like delete_range.
2107  *
2108  * This function may be called with ip->obj_asof set for a slave snapshot,
2109  * so don't use it.  We always delete non-historical records only.
2110  */
2111 static int
2112 hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
2113 		      hammer_btree_leaf_elm_t leaf)
2114 {
2115 	hammer_transaction_t trans = cursor->trans;
2116 	int error;
2117 
2118 	KKASSERT(trans->type == HAMMER_TRANS_FLS);
2119 retry:
2120 	hammer_normalize_cursor(cursor);
2121 	cursor->key_beg = leaf->base;
2122 	cursor->asof = HAMMER_MAX_TID;
2123 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
2124 	cursor->flags |= HAMMER_CURSOR_ASOF;
2125 	cursor->flags |= HAMMER_CURSOR_BACKEND;
2126 	cursor->flags &= ~HAMMER_CURSOR_INSERT;
2127 
2128 	error = hammer_btree_lookup(cursor);
2129 	if (error == 0) {
2130 		error = hammer_ip_delete_record(cursor, ip, trans->tid);
2131 	}
2132 	if (error == EDEADLK) {
2133 		hammer_done_cursor(cursor);
2134 		error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2135 		if (error == 0)
2136 			goto retry;
2137 	}
2138 	return(error);
2139 }
2140 
2141 /*
2142  * This function deletes remaining auxillary records when an inode is
2143  * being deleted.  This function explicitly does not delete the
2144  * inode record, directory entry, data, or db records.  Those must be
2145  * properly disposed of prior to this call.
2146  */
2147 int
2148 hammer_ip_delete_clean(hammer_cursor_t cursor, hammer_inode_t ip, int *countp)
2149 {
2150 	hammer_transaction_t trans = cursor->trans;
2151 	hammer_btree_leaf_elm_t leaf __debugvar;
2152 	int error;
2153 
2154 	KKASSERT(trans->type == HAMMER_TRANS_FLS);
2155 retry:
2156 	hammer_normalize_cursor(cursor);
2157 	cursor->key_beg.localization = ip->obj_localization +
2158 				       HAMMER_LOCALIZE_MISC;
2159 	cursor->key_beg.obj_id = ip->obj_id;
2160 	cursor->key_beg.create_tid = 0;
2161 	cursor->key_beg.delete_tid = 0;
2162 	cursor->key_beg.obj_type = 0;
2163 	cursor->key_beg.rec_type = HAMMER_RECTYPE_CLEAN_START;
2164 	cursor->key_beg.key = HAMMER_MIN_KEY;
2165 
2166 	cursor->key_end = cursor->key_beg;
2167 	cursor->key_end.rec_type = HAMMER_RECTYPE_MAX;
2168 	cursor->key_end.key = HAMMER_MAX_KEY;
2169 
2170 	cursor->asof = ip->obj_asof;
2171 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
2172 	cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2173 	cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
2174 	cursor->flags |= HAMMER_CURSOR_BACKEND;
2175 
2176 	error = hammer_ip_first(cursor);
2177 
2178 	/*
2179 	 * Iterate through matching records and mark them as deleted.
2180 	 */
2181 	while (error == 0) {
2182 		leaf = cursor->leaf;
2183 
2184 		KKASSERT(leaf->base.delete_tid == 0);
2185 
2186 		/*
2187 		 * Mark the record and B-Tree entry as deleted.  This will
2188 		 * also physically delete the B-Tree entry, record, and
2189 		 * data if the retention policy dictates.  The function
2190 		 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
2191 		 * to retest the new 'current' element.
2192 		 *
2193 		 * Directory entries (and delete-on-disk directory entries)
2194 		 * must be synced and cannot be deleted.
2195 		 */
2196 		error = hammer_ip_delete_record(cursor, ip, trans->tid);
2197 		++*countp;
2198 		if (error)
2199 			break;
2200 		error = hammer_ip_next(cursor);
2201 	}
2202 	if (cursor->node)
2203 		hammer_cache_node(&ip->cache[1], cursor->node);
2204 	if (error == EDEADLK) {
2205 		hammer_done_cursor(cursor);
2206 		error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2207 		if (error == 0)
2208 			goto retry;
2209 	}
2210 	if (error == ENOENT)
2211 		error = 0;
2212 	return(error);
2213 }
2214 
2215 /*
2216  * Delete the record at the current cursor.  On success the cursor will
2217  * be positioned appropriately for an iteration but may no longer be at
2218  * a leaf node.
2219  *
2220  * This routine is only called from the backend.
2221  *
2222  * NOTE: This can return EDEADLK, requiring the caller to terminate the
2223  * cursor and retry.
2224  */
2225 int
2226 hammer_ip_delete_record(hammer_cursor_t cursor, hammer_inode_t ip,
2227 			hammer_tid_t tid)
2228 {
2229 	hammer_record_t iprec;
2230 	int error;
2231 
2232 	KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
2233 	KKASSERT(tid != 0);
2234 
2235 	/*
2236 	 * In-memory (unsynchronized) records can simply be freed.  This
2237 	 * only occurs in range iterations since all other records are
2238 	 * individually synchronized.  Thus there should be no confusion with
2239 	 * the interlock.
2240 	 *
2241 	 * An in-memory record may be deleted before being committed to disk,
2242 	 * but could have been accessed in the mean time.  The reservation
2243 	 * code will deal with the case.
2244 	 */
2245 	if (hammer_cursor_inmem(cursor)) {
2246 		iprec = cursor->iprec;
2247 		KKASSERT((iprec->flags & HAMMER_RECF_INTERLOCK_BE) ==0);
2248 		iprec->flags |= HAMMER_RECF_DELETED_FE;
2249 		iprec->flags |= HAMMER_RECF_DELETED_BE;
2250 		KKASSERT(iprec->ip == ip);
2251 		++ip->rec_generation;
2252 		return(0);
2253 	}
2254 
2255 	/*
2256 	 * On-disk records are marked as deleted by updating their delete_tid.
2257 	 * This does not effect their position in the B-Tree (which is based
2258 	 * on their create_tid).
2259 	 *
2260 	 * Frontend B-Tree operations track inodes so we tell
2261 	 * hammer_delete_at_cursor() not to.
2262 	 */
2263 	error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
2264 
2265 	if (error == 0) {
2266 		error = hammer_delete_at_cursor(
2267 				cursor,
2268 				HAMMER_DELETE_ADJUST | hammer_nohistory(ip),
2269 				cursor->trans->tid,
2270 				cursor->trans->time32,
2271 				0, NULL);
2272 	}
2273 	return(error);
2274 }
2275 
2276 /*
2277  * Used to write a generic record w/optional data to the media b-tree
2278  * when no inode context is available.  Used by the mirroring and
2279  * snapshot code.
2280  *
2281  * Caller must set cursor->key_beg to leaf->base.  The cursor must be
2282  * flagged for backend operation and not flagged ASOF (since we are
2283  * doing an insertion).
2284  *
2285  * This function will acquire the appropriate sync lock and will set
2286  * the cursor insertion flag for the operation, do the btree lookup,
2287  * and the insertion, and clear the insertion flag and sync lock before
2288  * returning.  The cursor state will be such that the caller can continue
2289  * scanning (used by the mirroring code).
2290  *
2291  * mode: HAMMER_CREATE_MODE_UMIRROR	copyin data, check crc
2292  *	 HAMMER_CREATE_MODE_SYS		bcopy data, generate crc
2293  *
2294  * NOTE: EDEADLK can be returned.  The caller must do deadlock handling and
2295  *		  retry.
2296  *
2297  *	 EALREADY can be returned if the record already exists (WARNING,
2298  *	 	  because ASOF cannot be used no check is made for illegal
2299  *		  duplicates).
2300  *
2301  * NOTE: Do not use the function for normal inode-related records as this
2302  *	 functions goes directly to the media and is not integrated with
2303  *	 in-memory records.
2304  */
2305 int
2306 hammer_create_at_cursor(hammer_cursor_t cursor, hammer_btree_leaf_elm_t leaf,
2307 			void *udata, int mode)
2308 {
2309 	hammer_transaction_t trans;
2310 	hammer_buffer_t data_buffer;
2311 	hammer_off_t ndata_offset;
2312 	hammer_tid_t high_tid;
2313 	void *ndata;
2314 	int error;
2315 	int doprop;
2316 
2317 	trans = cursor->trans;
2318 	data_buffer = NULL;
2319 	ndata_offset = 0;
2320 	doprop = 0;
2321 
2322 	KKASSERT((cursor->flags &
2323 		  (HAMMER_CURSOR_BACKEND | HAMMER_CURSOR_ASOF)) ==
2324 		  (HAMMER_CURSOR_BACKEND));
2325 
2326 	hammer_sync_lock_sh(trans);
2327 
2328 	if (leaf->data_len) {
2329 		ndata = hammer_alloc_data(trans, leaf->data_len,
2330 					  leaf->base.rec_type,
2331 					  &ndata_offset, &data_buffer,
2332 					  0, &error);
2333 		if (ndata == NULL) {
2334 			hammer_sync_unlock(trans);
2335 			return (error);
2336 		}
2337 		leaf->data_offset = ndata_offset;
2338 		hammer_modify_buffer_noundo(trans, data_buffer);
2339 
2340 		switch(mode) {
2341 		case HAMMER_CREATE_MODE_UMIRROR:
2342 			error = copyin(udata, ndata, leaf->data_len);
2343 			if (error == 0) {
2344 				if (hammer_crc_test_leaf(ndata, leaf) == 0) {
2345 					hdkprintf("CRC DATA @ %016llx/%d MISMATCH ON PIPE\n",
2346 						(long long)ndata_offset,
2347 						leaf->data_len);
2348 					error = EINVAL;
2349 				} else {
2350 					error = hammer_cursor_localize_data(
2351 							ndata, leaf);
2352 				}
2353 			}
2354 			break;
2355 		case HAMMER_CREATE_MODE_SYS:
2356 			bcopy(udata, ndata, leaf->data_len);
2357 			error = 0;
2358 			hammer_crc_set_leaf(ndata, leaf);
2359 			break;
2360 		default:
2361 			hpanic("bad mode %d", mode);
2362 			break; /* NOT REACHED */
2363 		}
2364 		hammer_modify_buffer_done(data_buffer);
2365 	} else {
2366 		leaf->data_offset = 0;
2367 		error = 0;
2368 		ndata = NULL;
2369 	}
2370 	if (error)
2371 		goto failed;
2372 
2373 	/*
2374 	 * Do the insertion.  This can fail with a EDEADLK or EALREADY
2375 	 */
2376 	cursor->flags |= HAMMER_CURSOR_INSERT;
2377 	error = hammer_btree_lookup(cursor);
2378 	if (error != ENOENT) {
2379 		if (error == 0)
2380 			error = EALREADY;
2381 		goto failed;
2382 	}
2383 	error = hammer_btree_insert(cursor, leaf, &doprop);
2384 
2385 	/*
2386 	 * Cursor is left on current element, we want to skip it now.
2387 	 * (in case the caller is scanning)
2388 	 */
2389 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
2390 	cursor->flags &= ~HAMMER_CURSOR_INSERT;
2391 
2392 	/*
2393 	 * If the insertion happens to be creating (and not just replacing)
2394 	 * an inode we have to track it.
2395 	 */
2396 	if (error == 0 &&
2397 	    leaf->base.rec_type == HAMMER_RECTYPE_INODE &&
2398 	    leaf->base.delete_tid == 0) {
2399 		hammer_modify_volume_field(trans, trans->rootvol,
2400 					   vol0_stat_inodes);
2401 		++trans->hmp->rootvol->ondisk->vol0_stat_inodes;
2402 		hammer_modify_volume_done(trans->rootvol);
2403 	}
2404 
2405 	/*
2406 	 * vol0_next_tid must track the highest TID stored in the filesystem.
2407 	 * We do not need to generate undo for this update.
2408 	 */
2409 	high_tid = leaf->base.create_tid;
2410 	if (high_tid < leaf->base.delete_tid)
2411 		high_tid = leaf->base.delete_tid;
2412 	if (trans->rootvol->ondisk->vol0_next_tid < high_tid) {
2413 		hammer_modify_volume_noundo(trans, trans->rootvol);
2414 		trans->rootvol->ondisk->vol0_next_tid = high_tid;
2415 		hammer_modify_volume_done(trans->rootvol);
2416 	}
2417 
2418 	/*
2419 	 * WARNING!  cursor's leaf pointer may have changed after
2420 	 * 	     do_propagation returns.
2421 	 */
2422 	if (error == 0 && doprop)
2423 		hammer_btree_do_propagation(cursor, NULL, leaf);
2424 
2425 failed:
2426 	/*
2427 	 * Cleanup
2428 	 */
2429 	if (error && leaf->data_offset) {
2430 		hammer_blockmap_free(trans, leaf->data_offset, leaf->data_len);
2431 
2432 	}
2433 	hammer_sync_unlock(trans);
2434 	if (data_buffer)
2435 		hammer_rel_buffer(data_buffer, 0);
2436 	return (error);
2437 }
2438 
2439 /*
2440  * Delete the B-Tree element at the current cursor and do any necessary
2441  * mirror propagation.
2442  *
2443  * The cursor must be properly positioned for an iteration on return but
2444  * may be pointing at an internal element.
2445  *
2446  * An element can be un-deleted by passing a delete_tid of 0 with
2447  * HAMMER_DELETE_ADJUST.
2448  *
2449  * This function will store the number of bytes deleted in *stat_bytes
2450  * if stat_bytes is not NULL.
2451  */
2452 int
2453 hammer_delete_at_cursor(hammer_cursor_t cursor, int delete_flags,
2454 			hammer_tid_t delete_tid, u_int32_t delete_ts,
2455 			int track, int64_t *stat_bytes)
2456 {
2457 	struct hammer_btree_leaf_elm save_leaf;
2458 	hammer_transaction_t trans;
2459 	hammer_btree_leaf_elm_t leaf;
2460 	hammer_node_t node;
2461 	hammer_btree_elm_t elm;
2462 	hammer_off_t data_offset;
2463 	int32_t data_len;
2464 	int64_t bytes;
2465 	int ndelete;
2466 	int error;
2467 	int icount;
2468 	int doprop;
2469 
2470 	error = hammer_cursor_upgrade(cursor);
2471 	if (error)
2472 		return(error);
2473 
2474 	trans = cursor->trans;
2475 	node = cursor->node;
2476 	elm = &node->ondisk->elms[cursor->index];
2477 	leaf = &elm->leaf;
2478 	KKASSERT(elm->base.btype == HAMMER_BTREE_TYPE_RECORD);
2479 
2480 	hammer_sync_lock_sh(trans);
2481 	bytes = 0;
2482 	doprop = 0;
2483 	icount = 0;
2484 
2485 	/*
2486 	 * Adjust the delete_tid.  Update the mirror_tid propagation field
2487 	 * as well.  delete_tid can be 0 (undelete -- used by mirroring).
2488 	 */
2489 	if (delete_flags & HAMMER_DELETE_ADJUST) {
2490 		if (elm->base.rec_type == HAMMER_RECTYPE_INODE) {
2491 			if (elm->leaf.base.delete_tid == 0 && delete_tid)
2492 				icount = -1;
2493 			if (elm->leaf.base.delete_tid && delete_tid == 0)
2494 				icount = 1;
2495 		}
2496 
2497 		hammer_modify_node(trans, node, elm, sizeof(*elm));
2498 		elm->leaf.base.delete_tid = delete_tid;
2499 		elm->leaf.delete_ts = delete_ts;
2500 		hammer_modify_node_done(node);
2501 
2502 		if (elm->leaf.base.delete_tid > node->ondisk->mirror_tid) {
2503 			hammer_modify_node_field(trans, node, mirror_tid);
2504 			node->ondisk->mirror_tid = elm->leaf.base.delete_tid;
2505 			hammer_modify_node_done(node);
2506 			doprop = 1;
2507 			if (hammer_debug_general & 0x0002) {
2508 				hdkprintf("propagate %016llx @%016llx\n",
2509 					(long long)elm->leaf.base.delete_tid,
2510 					(long long)node->node_offset);
2511 			}
2512 		}
2513 
2514 		/*
2515 		 * Adjust for the iteration.  We have deleted the current
2516 		 * element and want to clear ATEDISK so the iteration does
2517 		 * not skip the element after, which now becomes the current
2518 		 * element.  This element must be re-tested if doing an
2519 		 * iteration, which is handled by the RETEST flag.
2520 		 */
2521 		if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2522 			cursor->flags |= HAMMER_CURSOR_RETEST;
2523 			cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2524 		}
2525 
2526 		/*
2527 		 * An on-disk record cannot have the same delete_tid
2528 		 * as its create_tid.  In a chain of record updates
2529 		 * this could result in a duplicate record.
2530 		 */
2531 		KKASSERT(elm->leaf.base.delete_tid !=
2532 			 elm->leaf.base.create_tid);
2533 	}
2534 
2535 	/*
2536 	 * Destroy the B-Tree element if asked (typically if a nohistory
2537 	 * file or mount, or when called by the pruning code).
2538 	 *
2539 	 * Adjust the ATEDISK flag to properly support iterations.
2540 	 */
2541 	if (delete_flags & HAMMER_DELETE_DESTROY) {
2542 		data_offset = elm->leaf.data_offset;
2543 		data_len = elm->leaf.data_len;
2544 		if (doprop) {
2545 			save_leaf = elm->leaf;
2546 			leaf = &save_leaf;
2547 		}
2548 		if (elm->base.rec_type == HAMMER_RECTYPE_INODE &&
2549 		    elm->leaf.base.delete_tid == 0) {
2550 			icount = -1;
2551 		}
2552 
2553 		error = hammer_btree_delete(cursor, &ndelete);
2554 		if (error == 0) {
2555 			/*
2556 			 * The deletion moves the next element (if any) to
2557 			 * the current element position.  We must clear
2558 			 * ATEDISK so this element is not skipped and we
2559 			 * must set RETEST to force any iteration to re-test
2560 			 * the element.
2561 			 */
2562 			if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2563 				cursor->flags |= HAMMER_CURSOR_RETEST;
2564 				cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2565 			}
2566 			bytes += (ndelete * sizeof(struct hammer_node_ondisk));
2567 
2568 			switch(data_offset & HAMMER_OFF_ZONE_MASK) {
2569 			case HAMMER_ZONE_LARGE_DATA:
2570 			case HAMMER_ZONE_SMALL_DATA:
2571 			case HAMMER_ZONE_META:
2572 				hammer_blockmap_free(trans,
2573 						     data_offset, data_len);
2574 				bytes += data_len;
2575 				break;
2576 			default:
2577 				break;
2578 			}
2579 		}
2580 	}
2581 
2582 	/*
2583 	 * Track inode count and next_tid.  This is used by the mirroring
2584 	 * and PFS code.  icount can be negative, zero, or positive.
2585 	 */
2586 	if (error == 0 && track) {
2587 		if (icount) {
2588 			hammer_modify_volume_field(trans, trans->rootvol,
2589 						   vol0_stat_inodes);
2590 			trans->rootvol->ondisk->vol0_stat_inodes += icount;
2591 			hammer_modify_volume_done(trans->rootvol);
2592 		}
2593 		if (trans->rootvol->ondisk->vol0_next_tid < delete_tid) {
2594 			hammer_modify_volume_noundo(trans, trans->rootvol);
2595 			trans->rootvol->ondisk->vol0_next_tid = delete_tid;
2596 			hammer_modify_volume_done(trans->rootvol);
2597 		}
2598 	}
2599 
2600 	/*
2601 	 * mirror_tid propagation occurs if the node's mirror_tid had to be
2602 	 * updated while adjusting the delete_tid.
2603 	 *
2604 	 * This occurs when deleting even in nohistory mode, but does not
2605 	 * occur when pruning an already-deleted node.
2606 	 *
2607 	 * cursor->ip is NULL when called from the pruning, mirroring,
2608 	 * and pfs code.  If non-NULL propagation will be conditionalized
2609 	 * on whether the PFS is in no-history mode or not.
2610 	 *
2611 	 * WARNING: cursor's leaf pointer may have changed after do_propagation
2612 	 *	    returns!
2613 	 */
2614 	if (doprop) {
2615 		if (cursor->ip)
2616 			hammer_btree_do_propagation(cursor, cursor->ip->pfsm, leaf);
2617 		else
2618 			hammer_btree_do_propagation(cursor, NULL, leaf);
2619 	}
2620 	if (stat_bytes)
2621 		*stat_bytes = bytes;
2622 	hammer_sync_unlock(trans);
2623 	return (error);
2624 }
2625 
2626 /*
2627  * Determine whether we can remove a directory.  This routine checks whether
2628  * a directory is empty or not and enforces flush connectivity.
2629  *
2630  * Flush connectivity requires that we block if the target directory is
2631  * currently flushing, otherwise it may not end up in the same flush group.
2632  *
2633  * Returns 0 on success, ENOTEMPTY or EDEADLK (or other errors) on failure.
2634  */
2635 int
2636 hammer_ip_check_directory_empty(hammer_transaction_t trans, hammer_inode_t ip)
2637 {
2638 	struct hammer_cursor cursor;
2639 	int error;
2640 
2641 	/*
2642 	 * Check directory empty
2643 	 */
2644 	hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2645 
2646 	cursor.key_beg.localization = ip->obj_localization +
2647 				      hammer_dir_localization(ip);
2648 	cursor.key_beg.obj_id = ip->obj_id;
2649 	cursor.key_beg.create_tid = 0;
2650 	cursor.key_beg.delete_tid = 0;
2651 	cursor.key_beg.obj_type = 0;
2652 	cursor.key_beg.rec_type = HAMMER_RECTYPE_ENTRY_START;
2653 	cursor.key_beg.key = HAMMER_MIN_KEY;
2654 
2655 	cursor.key_end = cursor.key_beg;
2656 	cursor.key_end.rec_type = HAMMER_RECTYPE_MAX;
2657 	cursor.key_end.key = HAMMER_MAX_KEY;
2658 
2659 	cursor.asof = ip->obj_asof;
2660 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2661 
2662 	error = hammer_ip_first(&cursor);
2663 	if (error == ENOENT)
2664 		error = 0;
2665 	else if (error == 0)
2666 		error = ENOTEMPTY;
2667 	hammer_done_cursor(&cursor);
2668 	return(error);
2669 }
2670 
2671 /*
2672  * Localize the data payload.  Directory entries may need their
2673  * localization adjusted.
2674  */
2675 static
2676 int
2677 hammer_cursor_localize_data(hammer_data_ondisk_t data,
2678 			    hammer_btree_leaf_elm_t leaf)
2679 {
2680 	u_int32_t localization;
2681 
2682 	if (leaf->base.rec_type == HAMMER_RECTYPE_DIRENTRY) {
2683 		localization = leaf->base.localization &
2684 			       HAMMER_LOCALIZE_PSEUDOFS_MASK;
2685 		if (data->entry.localization != localization) {
2686 			data->entry.localization = localization;
2687 			hammer_crc_set_leaf(data, leaf);
2688 		}
2689 	}
2690 	return(0);
2691 }
2692