xref: /dragonfly/sys/vfs/hammer/hammer_object.c (revision dcd37f7d)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_object.c,v 1.97 2008/09/23 22:28:56 dillon Exp $
35  */
36 
37 #include "hammer.h"
38 
39 static int hammer_mem_lookup(hammer_cursor_t cursor);
40 static void hammer_mem_first(hammer_cursor_t cursor);
41 static int hammer_frontend_trunc_callback(hammer_record_t record,
42 				void *data __unused);
43 static int hammer_bulk_scan_callback(hammer_record_t record, void *data);
44 static int hammer_record_needs_overwrite_delete(hammer_record_t record);
45 static int hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
46 				hammer_btree_leaf_elm_t leaf);
47 static int hammer_cursor_localize_data(hammer_data_ondisk_t data,
48 				hammer_btree_leaf_elm_t leaf);
49 
50 struct rec_trunc_info {
51 	u_int16_t	rec_type;
52 	int64_t		trunc_off;
53 };
54 
55 struct hammer_bulk_info {
56 	hammer_record_t record;
57 	hammer_record_t conflict;
58 };
59 
60 /*
61  * Red-black tree support.  Comparison code for insertion.
62  */
63 static int
64 hammer_rec_rb_compare(hammer_record_t rec1, hammer_record_t rec2)
65 {
66 	if (rec1->leaf.base.rec_type < rec2->leaf.base.rec_type)
67 		return(-1);
68 	if (rec1->leaf.base.rec_type > rec2->leaf.base.rec_type)
69 		return(1);
70 
71 	if (rec1->leaf.base.key < rec2->leaf.base.key)
72 		return(-1);
73 	if (rec1->leaf.base.key > rec2->leaf.base.key)
74 		return(1);
75 
76 	/*
77 	 * For search & insertion purposes records deleted by the
78 	 * frontend or deleted/committed by the backend are silently
79 	 * ignored.  Otherwise pipelined insertions will get messed
80 	 * up.
81 	 *
82 	 * rec1 is greater then rec2 if rec1 is marked deleted.
83 	 * rec1 is less then rec2 if rec2 is marked deleted.
84 	 *
85 	 * Multiple deleted records may be present, do not return 0
86 	 * if both are marked deleted.
87 	 */
88 	if (rec1->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
89 			   HAMMER_RECF_COMMITTED)) {
90 		return(1);
91 	}
92 	if (rec2->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
93 			   HAMMER_RECF_COMMITTED)) {
94 		return(-1);
95 	}
96 
97         return(0);
98 }
99 
100 /*
101  * Basic record comparison code similar to hammer_btree_cmp().
102  *
103  * obj_id is not compared and may not yet be assigned in the record.
104  */
105 static int
106 hammer_rec_cmp(hammer_base_elm_t elm, hammer_record_t rec)
107 {
108 	if (elm->rec_type < rec->leaf.base.rec_type)
109 		return(-3);
110 	if (elm->rec_type > rec->leaf.base.rec_type)
111 		return(3);
112 
113         if (elm->key < rec->leaf.base.key)
114                 return(-2);
115         if (elm->key > rec->leaf.base.key)
116                 return(2);
117 
118 	/*
119 	 * Never match against an item deleted by the frontend
120 	 * or backend, or committed by the backend.
121 	 *
122 	 * elm is less then rec if rec is marked deleted.
123 	 */
124 	if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
125 			  HAMMER_RECF_COMMITTED)) {
126 		return(-1);
127 	}
128         return(0);
129 }
130 
131 /*
132  * Ranged scan to locate overlapping record(s).  This is used by
133  * hammer_ip_get_bulk() to locate an overlapping record.  We have
134  * to use a ranged scan because the keys for data records with the
135  * same file base offset can be different due to differing data_len's.
136  *
137  * NOTE: The base file offset of a data record is (key - data_len), not (key).
138  */
139 static int
140 hammer_rec_overlap_cmp(hammer_record_t rec, void *data)
141 {
142 	struct hammer_bulk_info *info = data;
143 	hammer_btree_leaf_elm_t leaf = &info->record->leaf;
144 
145 	if (rec->leaf.base.rec_type < leaf->base.rec_type)
146 		return(-3);
147 	if (rec->leaf.base.rec_type > leaf->base.rec_type)
148 		return(3);
149 
150 	/*
151 	 * Overlap compare
152 	 */
153 	if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
154 		/* rec_beg >= leaf_end */
155 		if (rec->leaf.base.key - rec->leaf.data_len >= leaf->base.key)
156 			return(2);
157 		/* rec_end <= leaf_beg */
158 		if (rec->leaf.base.key <= leaf->base.key - leaf->data_len)
159 			return(-2);
160 	} else {
161 		if (rec->leaf.base.key < leaf->base.key)
162 			return(-2);
163 		if (rec->leaf.base.key > leaf->base.key)
164 			return(2);
165 	}
166 
167 	/*
168 	 * We have to return 0 at this point, even if DELETED_FE is set,
169 	 * because returning anything else will cause the scan to ignore
170 	 * one of the branches when we really want it to check both.
171 	 */
172         return(0);
173 }
174 
175 /*
176  * RB_SCAN comparison code for hammer_mem_first().  The argument order
177  * is reversed so the comparison result has to be negated.  key_beg and
178  * key_end are both range-inclusive.
179  *
180  * Localized deletions are not cached in-memory.
181  */
182 static
183 int
184 hammer_rec_scan_cmp(hammer_record_t rec, void *data)
185 {
186 	hammer_cursor_t cursor = data;
187 	int r;
188 
189 	r = hammer_rec_cmp(&cursor->key_beg, rec);
190 	if (r > 1)
191 		return(-1);
192 	r = hammer_rec_cmp(&cursor->key_end, rec);
193 	if (r < -1)
194 		return(1);
195 	return(0);
196 }
197 
198 /*
199  * This compare function is used when simply looking up key_beg.
200  */
201 static
202 int
203 hammer_rec_find_cmp(hammer_record_t rec, void *data)
204 {
205 	hammer_cursor_t cursor = data;
206 	int r;
207 
208 	r = hammer_rec_cmp(&cursor->key_beg, rec);
209 	if (r > 1)
210 		return(-1);
211 	if (r < -1)
212 		return(1);
213 	return(0);
214 }
215 
216 /*
217  * Locate blocks within the truncation range.  Partial blocks do not count.
218  */
219 static
220 int
221 hammer_rec_trunc_cmp(hammer_record_t rec, void *data)
222 {
223 	struct rec_trunc_info *info = data;
224 
225 	if (rec->leaf.base.rec_type < info->rec_type)
226 		return(-1);
227 	if (rec->leaf.base.rec_type > info->rec_type)
228 		return(1);
229 
230 	switch(rec->leaf.base.rec_type) {
231 	case HAMMER_RECTYPE_DB:
232 		/*
233 		 * DB record key is not beyond the truncation point, retain.
234 		 */
235 		if (rec->leaf.base.key < info->trunc_off)
236 			return(-1);
237 		break;
238 	case HAMMER_RECTYPE_DATA:
239 		/*
240 		 * DATA record offset start is not beyond the truncation point,
241 		 * retain.
242 		 */
243 		if (rec->leaf.base.key - rec->leaf.data_len < info->trunc_off)
244 			return(-1);
245 		break;
246 	default:
247 		panic("hammer_rec_trunc_cmp: unexpected record type");
248 	}
249 
250 	/*
251 	 * The record start is >= the truncation point, return match,
252 	 * the record should be destroyed.
253 	 */
254 	return(0);
255 }
256 
257 RB_GENERATE(hammer_rec_rb_tree, hammer_record, rb_node, hammer_rec_rb_compare);
258 
259 /*
260  * Allocate a record for the caller to finish filling in.  The record is
261  * returned referenced.
262  */
263 hammer_record_t
264 hammer_alloc_mem_record(hammer_inode_t ip, int data_len)
265 {
266 	hammer_record_t record;
267 	hammer_mount_t hmp;
268 
269 	hmp = ip->hmp;
270 	++hammer_count_records;
271 	record = kmalloc(sizeof(*record), hmp->m_misc,
272 			 M_WAITOK | M_ZERO | M_USE_RESERVE);
273 	record->flush_state = HAMMER_FST_IDLE;
274 	record->ip = ip;
275 	record->leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
276 	record->leaf.data_len = data_len;
277 	hammer_ref(&record->lock);
278 
279 	if (data_len) {
280 		record->data = kmalloc(data_len, hmp->m_misc, M_WAITOK | M_ZERO);
281 		record->flags |= HAMMER_RECF_ALLOCDATA;
282 		++hammer_count_record_datas;
283 	}
284 
285 	return (record);
286 }
287 
288 void
289 hammer_wait_mem_record_ident(hammer_record_t record, const char *ident)
290 {
291 	while (record->flush_state == HAMMER_FST_FLUSH) {
292 		record->flags |= HAMMER_RECF_WANTED;
293 		tsleep(record, 0, ident, 0);
294 	}
295 }
296 
297 /*
298  * Called from the backend, hammer_inode.c, after a record has been
299  * flushed to disk.  The record has been exclusively locked by the
300  * caller and interlocked with BE.
301  *
302  * We clean up the state, unlock, and release the record (the record
303  * was referenced by the fact that it was in the HAMMER_FST_FLUSH state).
304  */
305 void
306 hammer_flush_record_done(hammer_record_t record, int error)
307 {
308 	hammer_inode_t target_ip;
309 
310 	KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
311 	KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
312 
313 	/*
314 	 * If an error occured, the backend was unable to sync the
315 	 * record to its media.  Leave the record intact.
316 	 */
317 	if (error) {
318 		hammer_critical_error(record->ip->hmp, record->ip, error,
319 				      "while flushing record");
320 	}
321 
322 	--record->flush_group->refs;
323 	record->flush_group = NULL;
324 
325 	/*
326 	 * Adjust the flush state and dependancy based on success or
327 	 * failure.
328 	 */
329 	if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
330 		if ((target_ip = record->target_ip) != NULL) {
331 			TAILQ_REMOVE(&target_ip->target_list, record,
332 				     target_entry);
333 			record->target_ip = NULL;
334 			hammer_test_inode(target_ip);
335 		}
336 		record->flush_state = HAMMER_FST_IDLE;
337 	} else {
338 		if (record->target_ip) {
339 			record->flush_state = HAMMER_FST_SETUP;
340 			hammer_test_inode(record->ip);
341 			hammer_test_inode(record->target_ip);
342 		} else {
343 			record->flush_state = HAMMER_FST_IDLE;
344 		}
345 	}
346 	record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
347 
348 	/*
349 	 * Cleanup
350 	 */
351 	if (record->flags & HAMMER_RECF_WANTED) {
352 		record->flags &= ~HAMMER_RECF_WANTED;
353 		wakeup(record);
354 	}
355 	hammer_rel_mem_record(record);
356 }
357 
358 /*
359  * Release a memory record.  Records marked for deletion are immediately
360  * removed from the RB-Tree but otherwise left intact until the last ref
361  * goes away.
362  */
363 void
364 hammer_rel_mem_record(struct hammer_record *record)
365 {
366 	hammer_mount_t hmp;
367 	hammer_reserve_t resv;
368 	hammer_inode_t ip;
369 	hammer_inode_t target_ip;
370 	int diddrop;
371 
372 	hammer_rel(&record->lock);
373 
374 	if (hammer_norefs(&record->lock)) {
375 		/*
376 		 * Upon release of the last reference wakeup any waiters.
377 		 * The record structure may get destroyed so callers will
378 		 * loop up and do a relookup.
379 		 *
380 		 * WARNING!  Record must be removed from RB-TREE before we
381 		 * might possibly block.  hammer_test_inode() can block!
382 		 */
383 		ip = record->ip;
384 		hmp = ip->hmp;
385 
386 		/*
387 		 * Upon release of the last reference a record marked deleted
388 		 * by the front or backend, or committed by the backend,
389 		 * is destroyed.
390 		 */
391 		if (record->flags & (HAMMER_RECF_DELETED_FE |
392 				     HAMMER_RECF_DELETED_BE |
393 				     HAMMER_RECF_COMMITTED)) {
394 			KKASSERT(hammer_isactive(&ip->lock) > 0);
395 			KKASSERT(record->flush_state != HAMMER_FST_FLUSH);
396 
397 			/*
398 			 * target_ip may have zero refs, we have to ref it
399 			 * to prevent it from being ripped out from under
400 			 * us.
401 			 */
402 			if ((target_ip = record->target_ip) != NULL) {
403 				TAILQ_REMOVE(&target_ip->target_list,
404 					     record, target_entry);
405 				record->target_ip = NULL;
406 				hammer_ref(&target_ip->lock);
407 			}
408 
409 			/*
410 			 * Remove the record from the B-Tree
411 			 */
412 			if (record->flags & HAMMER_RECF_ONRBTREE) {
413 				RB_REMOVE(hammer_rec_rb_tree,
414 					  &record->ip->rec_tree,
415 					  record);
416 				record->flags &= ~HAMMER_RECF_ONRBTREE;
417 				KKASSERT(ip->rsv_recs > 0);
418 				diddrop = 1;
419 			} else {
420 				diddrop = 0;
421 			}
422 
423 			/*
424 			 * We must wait for any direct-IO to complete before
425 			 * we can destroy the record because the bio may
426 			 * have a reference to it.
427 			 */
428 			if (record->flags &
429 			   (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL)) {
430 				hammer_io_direct_wait(record);
431 			}
432 
433 			/*
434 			 * Account for the completion after the direct IO
435 			 * has completed.
436 			 */
437 			if (diddrop) {
438 				--hmp->rsv_recs;
439 				--ip->rsv_recs;
440 				hmp->rsv_databytes -= record->leaf.data_len;
441 
442 				if (RB_EMPTY(&record->ip->rec_tree)) {
443 					record->ip->flags &= ~HAMMER_INODE_XDIRTY;
444 					record->ip->sync_flags &= ~HAMMER_INODE_XDIRTY;
445 					hammer_test_inode(record->ip);
446 				}
447 				if (ip->rsv_recs == hammer_limit_inode_recs - 1)
448 					wakeup(&ip->rsv_recs);
449 			}
450 
451 			/*
452 			 * Do this test after removing record from the B-Tree.
453 			 */
454 			if (target_ip) {
455 				hammer_test_inode(target_ip);
456 				hammer_rel_inode(target_ip, 0);
457 			}
458 
459 			if (record->flags & HAMMER_RECF_ALLOCDATA) {
460 				--hammer_count_record_datas;
461 				kfree(record->data, hmp->m_misc);
462 				record->flags &= ~HAMMER_RECF_ALLOCDATA;
463 			}
464 
465 			/*
466 			 * Release the reservation.
467 			 *
468 			 * If the record was not committed we can theoretically
469 			 * undo the reservation.  However, doing so might
470 			 * create weird edge cases with the ordering of
471 			 * direct writes because the related buffer cache
472 			 * elements are per-vnode.  So we don't try.
473 			 */
474 			if ((resv = record->resv) != NULL) {
475 				/* XXX undo leaf.data_offset,leaf.data_len */
476 				hammer_blockmap_reserve_complete(hmp, resv);
477 				record->resv = NULL;
478 			}
479 			record->data = NULL;
480 			--hammer_count_records;
481 			kfree(record, hmp->m_misc);
482 		}
483 	}
484 }
485 
486 /*
487  * Record visibility depends on whether the record is being accessed by
488  * the backend or the frontend.  Backend tests ignore the frontend delete
489  * flag.  Frontend tests do NOT ignore the backend delete/commit flags and
490  * must also check for commit races.
491  *
492  * Return non-zero if the record is visible, zero if it isn't or if it is
493  * deleted.  Returns 0 if the record has been comitted (unless the special
494  * delete-visibility flag is set).  A committed record must be located
495  * via the media B-Tree.  Returns non-zero if the record is good.
496  *
497  * If HAMMER_CURSOR_DELETE_VISIBILITY is set we allow deleted memory
498  * records to be returned.  This is so pending deletions are detected
499  * when using an iterator to locate an unused hash key, or when we need
500  * to locate historical records on-disk to destroy.
501  */
502 static __inline
503 int
504 hammer_ip_iterate_mem_good(hammer_cursor_t cursor, hammer_record_t record)
505 {
506 	if (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY)
507 		return(1);
508 	if (cursor->flags & HAMMER_CURSOR_BACKEND) {
509 		if (record->flags & (HAMMER_RECF_DELETED_BE |
510 				     HAMMER_RECF_COMMITTED)) {
511 			return(0);
512 		}
513 	} else {
514 		if (record->flags & (HAMMER_RECF_DELETED_FE |
515 				     HAMMER_RECF_DELETED_BE |
516 				     HAMMER_RECF_COMMITTED)) {
517 			return(0);
518 		}
519 	}
520 	return(1);
521 }
522 
523 /*
524  * This callback is used as part of the RB_SCAN function for in-memory
525  * records.  We terminate it (return -1) as soon as we get a match.
526  *
527  * This routine is used by frontend code.
528  *
529  * The primary compare code does not account for ASOF lookups.  This
530  * code handles that case as well as a few others.
531  */
532 static
533 int
534 hammer_rec_scan_callback(hammer_record_t rec, void *data)
535 {
536 	hammer_cursor_t cursor = data;
537 
538 	/*
539 	 * We terminate on success, so this should be NULL on entry.
540 	 */
541 	KKASSERT(cursor->iprec == NULL);
542 
543 	/*
544 	 * Skip if the record was marked deleted or committed.
545 	 */
546 	if (hammer_ip_iterate_mem_good(cursor, rec) == 0)
547 		return(0);
548 
549 	/*
550 	 * Skip if not visible due to our as-of TID
551 	 */
552         if (cursor->flags & HAMMER_CURSOR_ASOF) {
553                 if (cursor->asof < rec->leaf.base.create_tid)
554                         return(0);
555                 if (rec->leaf.base.delete_tid &&
556 		    cursor->asof >= rec->leaf.base.delete_tid) {
557                         return(0);
558 		}
559         }
560 
561 	/*
562 	 * ref the record.  The record is protected from backend B-Tree
563 	 * interactions by virtue of the cursor's IP lock.
564 	 */
565 	hammer_ref(&rec->lock);
566 
567 	/*
568 	 * The record may have been deleted or committed while we
569 	 * were blocked.  XXX remove?
570 	 */
571 	if (hammer_ip_iterate_mem_good(cursor, rec) == 0) {
572 		hammer_rel_mem_record(rec);
573 		return(0);
574 	}
575 
576 	/*
577 	 * Set the matching record and stop the scan.
578 	 */
579 	cursor->iprec = rec;
580 	return(-1);
581 }
582 
583 
584 /*
585  * Lookup an in-memory record given the key specified in the cursor.  Works
586  * just like hammer_btree_lookup() but operates on an inode's in-memory
587  * record list.
588  *
589  * The lookup must fail if the record is marked for deferred deletion.
590  *
591  * The API for mem/btree_lookup() does not mess with the ATE/EOF bits.
592  */
593 static
594 int
595 hammer_mem_lookup(hammer_cursor_t cursor)
596 {
597 	KKASSERT(cursor->ip);
598 	if (cursor->iprec) {
599 		hammer_rel_mem_record(cursor->iprec);
600 		cursor->iprec = NULL;
601 	}
602 	hammer_rec_rb_tree_RB_SCAN(&cursor->ip->rec_tree, hammer_rec_find_cmp,
603 				   hammer_rec_scan_callback, cursor);
604 
605 	return (cursor->iprec ? 0 : ENOENT);
606 }
607 
608 /*
609  * hammer_mem_first() - locate the first in-memory record matching the
610  * cursor within the bounds of the key range.
611  *
612  * WARNING!  API is slightly different from btree_first().  hammer_mem_first()
613  * will set ATEMEM the same as MEMEOF, and does not return any error.
614  */
615 static
616 void
617 hammer_mem_first(hammer_cursor_t cursor)
618 {
619 	hammer_inode_t ip;
620 
621 	ip = cursor->ip;
622 	KKASSERT(ip != NULL);
623 
624 	if (cursor->iprec) {
625 		hammer_rel_mem_record(cursor->iprec);
626 		cursor->iprec = NULL;
627 	}
628 	hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_scan_cmp,
629 				   hammer_rec_scan_callback, cursor);
630 
631 	if (cursor->iprec)
632 		cursor->flags &= ~(HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM);
633 	else
634 		cursor->flags |= HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM;
635 }
636 
637 /************************************************************************
638  *		     HAMMER IN-MEMORY RECORD FUNCTIONS			*
639  ************************************************************************
640  *
641  * These functions manipulate in-memory records.  Such records typically
642  * exist prior to being committed to disk or indexed via the on-disk B-Tree.
643  */
644 
645 /*
646  * Add a directory entry (dip,ncp) which references inode (ip).
647  *
648  * Note that the low 32 bits of the namekey are set temporarily to create
649  * a unique in-memory record, and may be modified a second time when the
650  * record is synchronized to disk.  In particular, the low 32 bits cannot be
651  * all 0's when synching to disk, which is not handled here.
652  *
653  * NOTE: bytes does not include any terminating \0 on name, and name might
654  * not be terminated.
655  */
656 int
657 hammer_ip_add_directory(struct hammer_transaction *trans,
658 		     struct hammer_inode *dip, const char *name, int bytes,
659 		     struct hammer_inode *ip)
660 {
661 	struct hammer_cursor cursor;
662 	hammer_record_t record;
663 	int error;
664 	u_int32_t max_iterations;
665 
666 	record = hammer_alloc_mem_record(dip, HAMMER_ENTRY_SIZE(bytes));
667 
668 	record->type = HAMMER_MEM_RECORD_ADD;
669 	record->leaf.base.localization = dip->obj_localization +
670 					 hammer_dir_localization(dip);
671 	record->leaf.base.obj_id = dip->obj_id;
672 	record->leaf.base.key = hammer_directory_namekey(dip, name, bytes,
673 							 &max_iterations);
674 	record->leaf.base.rec_type = HAMMER_RECTYPE_DIRENTRY;
675 	record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
676 	record->data->entry.obj_id = ip->obj_id;
677 	record->data->entry.localization = ip->obj_localization;
678 	bcopy(name, record->data->entry.name, bytes);
679 
680 	++ip->ino_data.nlinks;
681 	ip->ino_data.ctime = trans->time;
682 	hammer_modify_inode(trans, ip, HAMMER_INODE_DDIRTY);
683 
684 	/*
685 	 * Find an unused namekey.  Both the in-memory record tree and
686 	 * the B-Tree are checked.  We do not want historically deleted
687 	 * names to create a collision as our iteration space may be limited,
688 	 * and since create_tid wouldn't match anyway an ASOF search
689 	 * must be used to locate collisions.
690 	 *
691 	 * delete-visibility is set so pending deletions do not give us
692 	 * a false-negative on our ability to use an iterator.
693 	 *
694 	 * The iterator must not rollover the key.  Directory keys only
695 	 * use the positive key space.
696 	 */
697 	hammer_init_cursor(trans, &cursor, &dip->cache[1], dip);
698 	cursor.key_beg = record->leaf.base;
699 	cursor.flags |= HAMMER_CURSOR_ASOF;
700 	cursor.flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
701 	cursor.asof = ip->obj_asof;
702 
703 	while (hammer_ip_lookup(&cursor) == 0) {
704 		++record->leaf.base.key;
705 		KKASSERT(record->leaf.base.key > 0);
706 		cursor.key_beg.key = record->leaf.base.key;
707 		if (--max_iterations == 0) {
708 			hammer_rel_mem_record(record);
709 			error = ENOSPC;
710 			goto failed;
711 		}
712 	}
713 
714 	/*
715 	 * The target inode and the directory entry are bound together.
716 	 */
717 	record->target_ip = ip;
718 	record->flush_state = HAMMER_FST_SETUP;
719 	TAILQ_INSERT_TAIL(&ip->target_list, record, target_entry);
720 
721 	/*
722 	 * The inode now has a dependancy and must be taken out of the idle
723 	 * state.  An inode not in an idle state is given an extra reference.
724 	 *
725 	 * When transitioning to a SETUP state flag for an automatic reflush
726 	 * when the dependancies are disposed of if someone is waiting on
727 	 * the inode.
728 	 */
729 	if (ip->flush_state == HAMMER_FST_IDLE) {
730 		hammer_ref(&ip->lock);
731 		ip->flush_state = HAMMER_FST_SETUP;
732 		if (ip->flags & HAMMER_INODE_FLUSHW)
733 			ip->flags |= HAMMER_INODE_REFLUSH;
734 	}
735 	error = hammer_mem_add(record);
736 	if (error == 0) {
737 		dip->ino_data.mtime = trans->time;
738 		hammer_modify_inode(trans, dip, HAMMER_INODE_MTIME);
739 	}
740 failed:
741 	hammer_done_cursor(&cursor);
742 	return(error);
743 }
744 
745 /*
746  * Delete the directory entry and update the inode link count.  The
747  * cursor must be seeked to the directory entry record being deleted.
748  *
749  * The related inode should be share-locked by the caller.  The caller is
750  * on the frontend.  It could also be NULL indicating that the directory
751  * entry being removed has no related inode.
752  *
753  * This function can return EDEADLK requiring the caller to terminate
754  * the cursor, any locks, wait on the returned record, and retry.
755  */
756 int
757 hammer_ip_del_directory(struct hammer_transaction *trans,
758 		     hammer_cursor_t cursor, struct hammer_inode *dip,
759 		     struct hammer_inode *ip)
760 {
761 	hammer_record_t record;
762 	int error;
763 
764 	if (hammer_cursor_inmem(cursor)) {
765 		/*
766 		 * In-memory (unsynchronized) records can simply be freed.
767 		 *
768 		 * Even though the HAMMER_RECF_DELETED_FE flag is ignored
769 		 * by the backend, we must still avoid races against the
770 		 * backend potentially syncing the record to the media.
771 		 *
772 		 * We cannot call hammer_ip_delete_record(), that routine may
773 		 * only be called from the backend.
774 		 */
775 		record = cursor->iprec;
776 		if (record->flags & (HAMMER_RECF_INTERLOCK_BE |
777 				     HAMMER_RECF_DELETED_BE |
778 				     HAMMER_RECF_COMMITTED)) {
779 			KKASSERT(cursor->deadlk_rec == NULL);
780 			hammer_ref(&record->lock);
781 			cursor->deadlk_rec = record;
782 			error = EDEADLK;
783 		} else {
784 			KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
785 			record->flags |= HAMMER_RECF_DELETED_FE;
786 			error = 0;
787 		}
788 	} else {
789 		/*
790 		 * If the record is on-disk we have to queue the deletion by
791 		 * the record's key.  This also causes lookups to skip the
792 		 * record (lookups for the purposes of finding an unused
793 		 * directory key do not skip the record).
794 		 */
795 		KKASSERT(dip->flags &
796 			 (HAMMER_INODE_ONDISK | HAMMER_INODE_DONDISK));
797 		record = hammer_alloc_mem_record(dip, 0);
798 		record->type = HAMMER_MEM_RECORD_DEL;
799 		record->leaf.base = cursor->leaf->base;
800 		KKASSERT(dip->obj_id == record->leaf.base.obj_id);
801 
802 		/*
803 		 * ip may be NULL, indicating the deletion of a directory
804 		 * entry which has no related inode.
805 		 */
806 		record->target_ip = ip;
807 		if (ip) {
808 			record->flush_state = HAMMER_FST_SETUP;
809 			TAILQ_INSERT_TAIL(&ip->target_list, record,
810 					  target_entry);
811 		} else {
812 			record->flush_state = HAMMER_FST_IDLE;
813 		}
814 
815 		/*
816 		 * The inode now has a dependancy and must be taken out of
817 		 * the idle state.  An inode not in an idle state is given
818 		 * an extra reference.
819 		 *
820 		 * When transitioning to a SETUP state flag for an automatic
821 		 * reflush when the dependancies are disposed of if someone
822 		 * is waiting on the inode.
823 		 */
824 		if (ip && ip->flush_state == HAMMER_FST_IDLE) {
825 			hammer_ref(&ip->lock);
826 			ip->flush_state = HAMMER_FST_SETUP;
827 			if (ip->flags & HAMMER_INODE_FLUSHW)
828 				ip->flags |= HAMMER_INODE_REFLUSH;
829 		}
830 
831 		error = hammer_mem_add(record);
832 	}
833 
834 	/*
835 	 * One less link.  The file may still be open in the OS even after
836 	 * all links have gone away.
837 	 *
838 	 * We have to terminate the cursor before syncing the inode to
839 	 * avoid deadlocking against ourselves.  XXX this may no longer
840 	 * be true.
841 	 *
842 	 * If nlinks drops to zero and the vnode is inactive (or there is
843 	 * no vnode), call hammer_inode_unloadable_check() to zonk the
844 	 * inode.  If we don't do this here the inode will not be destroyed
845 	 * on-media until we unmount.
846 	 */
847 	if (error == 0) {
848 		if (ip) {
849 			--ip->ino_data.nlinks;	/* do before we might block */
850 			ip->ino_data.ctime = trans->time;
851 		}
852 		dip->ino_data.mtime = trans->time;
853 		hammer_modify_inode(trans, dip, HAMMER_INODE_MTIME);
854 		if (ip) {
855 			hammer_modify_inode(trans, ip, HAMMER_INODE_DDIRTY);
856 			if (ip->ino_data.nlinks == 0 &&
857 			    (ip->vp == NULL || (ip->vp->v_flag & VINACTIVE))) {
858 				hammer_done_cursor(cursor);
859 				hammer_inode_unloadable_check(ip, 1);
860 				hammer_flush_inode(ip, 0);
861 			}
862 		}
863 
864 	}
865 	return(error);
866 }
867 
868 /*
869  * Add a record to an inode.
870  *
871  * The caller must allocate the record with hammer_alloc_mem_record(ip) and
872  * initialize the following additional fields:
873  *
874  * The related inode should be share-locked by the caller.  The caller is
875  * on the frontend.
876  *
877  * record->rec.entry.base.base.key
878  * record->rec.entry.base.base.rec_type
879  * record->rec.entry.base.base.data_len
880  * record->data		(a copy will be kmalloc'd if it cannot be embedded)
881  */
882 int
883 hammer_ip_add_record(struct hammer_transaction *trans, hammer_record_t record)
884 {
885 	hammer_inode_t ip = record->ip;
886 	int error;
887 
888 	KKASSERT(record->leaf.base.localization != 0);
889 	record->leaf.base.obj_id = ip->obj_id;
890 	record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
891 	error = hammer_mem_add(record);
892 	return(error);
893 }
894 
895 /*
896  * Locate a pre-existing bulk record in memory.  The caller wishes to
897  * replace the record with a new one.  The existing record may have a
898  * different length (and thus a different key) so we have to use an
899  * overlap check function.
900  */
901 static hammer_record_t
902 hammer_ip_get_bulk(hammer_record_t record)
903 {
904 	struct hammer_bulk_info info;
905 	hammer_inode_t ip = record->ip;
906 
907 	info.record = record;
908 	info.conflict = NULL;
909 	hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_overlap_cmp,
910 				   hammer_bulk_scan_callback, &info);
911 
912 	return(info.conflict);	/* may be NULL */
913 }
914 
915 /*
916  * Take records vetted by overlap_cmp.  The first non-deleted record
917  * (if any) stops the scan.
918  */
919 static int
920 hammer_bulk_scan_callback(hammer_record_t record, void *data)
921 {
922 	struct hammer_bulk_info *info = data;
923 
924 	if (record->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
925 			     HAMMER_RECF_COMMITTED)) {
926 		return(0);
927 	}
928 	hammer_ref(&record->lock);
929 	info->conflict = record;
930 	return(-1);			/* stop scan */
931 }
932 
933 /*
934  * Reserve blockmap space placemarked with an in-memory record.
935  *
936  * This routine is called by the frontend in order to be able to directly
937  * flush a buffer cache buffer.  The frontend has locked the related buffer
938  * cache buffers and we should be able to manipulate any overlapping
939  * in-memory records.
940  *
941  * The caller is responsible for adding the returned record and deleting
942  * the returned conflicting record (if any), typically by calling
943  * hammer_ip_replace_bulk() (via hammer_io_direct_write()).
944  */
945 hammer_record_t
946 hammer_ip_add_bulk(hammer_inode_t ip, off_t file_offset, void *data, int bytes,
947 		   int *errorp)
948 {
949 	hammer_record_t record;
950 	int zone;
951 
952 	/*
953 	 * Create a record to cover the direct write.  The record cannot
954 	 * be added to the in-memory RB tree here as it might conflict
955 	 * with an existing memory record.  See hammer_io_direct_write().
956 	 *
957 	 * The backend is responsible for finalizing the space reserved in
958 	 * this record.
959 	 *
960 	 * XXX bytes not aligned, depend on the reservation code to
961 	 * align the reservation.
962 	 */
963 	record = hammer_alloc_mem_record(ip, 0);
964 	zone = (bytes >= HAMMER_BUFSIZE) ? HAMMER_ZONE_LARGE_DATA_INDEX :
965 					   HAMMER_ZONE_SMALL_DATA_INDEX;
966 	record->resv = hammer_blockmap_reserve(ip->hmp, zone, bytes,
967 					       &record->leaf.data_offset,
968 					       errorp);
969 	if (record->resv == NULL) {
970 		kprintf("hammer_ip_add_bulk: reservation failed\n");
971 		hammer_rel_mem_record(record);
972 		return(NULL);
973 	}
974 	record->type = HAMMER_MEM_RECORD_DATA;
975 	record->leaf.base.rec_type = HAMMER_RECTYPE_DATA;
976 	record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
977 	record->leaf.base.obj_id = ip->obj_id;
978 	record->leaf.base.key = file_offset + bytes;
979 	record->leaf.base.localization = ip->obj_localization +
980 					 HAMMER_LOCALIZE_MISC;
981 	record->leaf.data_len = bytes;
982 	hammer_crc_set_leaf(data, &record->leaf);
983 	KKASSERT(*errorp == 0);
984 
985 	return(record);
986 }
987 
988 /*
989  * Called by hammer_io_direct_write() prior to any possible completion
990  * of the BIO to emplace the memory record associated with the I/O and
991  * to replace any prior memory record which might still be active.
992  *
993  * Setting the FE deleted flag on the old record (if any) avoids any RB
994  * tree insertion conflict, amoung other things.
995  *
996  * This has to be done prior to the caller completing any related buffer
997  * cache I/O or a reinstantiation of the buffer may load data from the
998  * old media location instead of the new media location.  The holding
999  * of the locked buffer cache buffer serves to interlock the record
1000  * replacement operation.
1001  */
1002 void
1003 hammer_ip_replace_bulk(hammer_mount_t hmp, hammer_record_t record)
1004 {
1005 	hammer_record_t conflict;
1006 	int error;
1007 
1008 	while ((conflict = hammer_ip_get_bulk(record)) != NULL) {
1009 		if ((conflict->flags & HAMMER_RECF_INTERLOCK_BE) == 0) {
1010 			conflict->flags |= HAMMER_RECF_DELETED_FE;
1011 			break;
1012 		}
1013 		conflict->flags |= HAMMER_RECF_WANTED;
1014 		tsleep(conflict, 0, "hmrrc3", 0);
1015 		hammer_rel_mem_record(conflict);
1016 	}
1017 	error = hammer_mem_add(record);
1018 	if (conflict)
1019 		hammer_rel_mem_record(conflict);
1020 	KKASSERT(error == 0);
1021 }
1022 
1023 /*
1024  * Frontend truncation code.  Scan in-memory records only.  On-disk records
1025  * and records in a flushing state are handled by the backend.  The vnops
1026  * setattr code will handle the block containing the truncation point.
1027  *
1028  * Partial blocks are not deleted.
1029  *
1030  * This code is only called on regular files.
1031  */
1032 int
1033 hammer_ip_frontend_trunc(struct hammer_inode *ip, off_t file_size)
1034 {
1035 	struct rec_trunc_info info;
1036 
1037 	switch(ip->ino_data.obj_type) {
1038 	case HAMMER_OBJTYPE_REGFILE:
1039 		info.rec_type = HAMMER_RECTYPE_DATA;
1040 		break;
1041 	case HAMMER_OBJTYPE_DBFILE:
1042 		info.rec_type = HAMMER_RECTYPE_DB;
1043 		break;
1044 	default:
1045 		return(EINVAL);
1046 	}
1047 	info.trunc_off = file_size;
1048 	hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_trunc_cmp,
1049 				   hammer_frontend_trunc_callback, &info);
1050 	return(0);
1051 }
1052 
1053 /*
1054  * Scan callback for frontend records to destroy during a truncation.
1055  * We must ensure that DELETED_FE is set on the record or the frontend
1056  * will get confused in future read() calls.
1057  *
1058  * NOTE: DELETED_FE cannot be set while the record interlock (BE) is held.
1059  *	 In this rare case we must wait for the interlock to be cleared.
1060  *
1061  * NOTE: This function is only called on regular files.  There are further
1062  *	 restrictions to the setting of DELETED_FE on directory records
1063  *	 undergoing a flush due to sensitive inode link count calculations.
1064  */
1065 static int
1066 hammer_frontend_trunc_callback(hammer_record_t record, void *data __unused)
1067 {
1068 	if (record->flags & HAMMER_RECF_DELETED_FE)
1069 		return(0);
1070 #if 0
1071 	if (record->flush_state == HAMMER_FST_FLUSH)
1072 		return(0);
1073 #endif
1074 	hammer_ref(&record->lock);
1075 	while (record->flags & HAMMER_RECF_INTERLOCK_BE)
1076 		hammer_wait_mem_record_ident(record, "hmmtrr");
1077 	record->flags |= HAMMER_RECF_DELETED_FE;
1078 	hammer_rel_mem_record(record);
1079 	return(0);
1080 }
1081 
1082 /*
1083  * Return 1 if the caller must check for and delete existing records
1084  * before writing out a new data record.
1085  *
1086  * Return 0 if the caller can just insert the record into the B-Tree without
1087  * checking.
1088  */
1089 static int
1090 hammer_record_needs_overwrite_delete(hammer_record_t record)
1091 {
1092 	hammer_inode_t ip = record->ip;
1093 	int64_t file_offset;
1094 	int r;
1095 
1096 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE)
1097 		file_offset = record->leaf.base.key;
1098 	else
1099 		file_offset = record->leaf.base.key - record->leaf.data_len;
1100 	r = (file_offset < ip->save_trunc_off);
1101 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1102 		if (ip->save_trunc_off <= record->leaf.base.key)
1103 			ip->save_trunc_off = record->leaf.base.key + 1;
1104 	} else {
1105 		if (ip->save_trunc_off < record->leaf.base.key)
1106 			ip->save_trunc_off = record->leaf.base.key;
1107 	}
1108 	return(r);
1109 }
1110 
1111 /*
1112  * Backend code.  Sync a record to the media.
1113  */
1114 int
1115 hammer_ip_sync_record_cursor(hammer_cursor_t cursor, hammer_record_t record)
1116 {
1117 	hammer_transaction_t trans = cursor->trans;
1118 	int64_t file_offset;
1119 	int bytes;
1120 	void *bdata;
1121 	int error;
1122 	int doprop;
1123 
1124 	KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1125 	KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
1126 	KKASSERT(record->leaf.base.localization != 0);
1127 
1128 	/*
1129 	 * Any direct-write related to the record must complete before we
1130 	 * can sync the record to the on-disk media.
1131 	 */
1132 	if (record->flags & (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL))
1133 		hammer_io_direct_wait(record);
1134 
1135 	/*
1136 	 * If this is a bulk-data record placemarker there may be an existing
1137 	 * record on-disk, indicating a data overwrite.  If there is the
1138 	 * on-disk record must be deleted before we can insert our new record.
1139 	 *
1140 	 * We've synthesized this record and do not know what the create_tid
1141 	 * on-disk is, nor how much data it represents.
1142 	 *
1143 	 * Keep in mind that (key) for data records is (base_offset + len),
1144 	 * not (base_offset).  Also, we only want to get rid of on-disk
1145 	 * records since we are trying to sync our in-memory record, call
1146 	 * hammer_ip_delete_range() with truncating set to 1 to make sure
1147 	 * it skips in-memory records.
1148 	 *
1149 	 * It is ok for the lookup to return ENOENT.
1150 	 *
1151 	 * NOTE OPTIMIZATION: sync_trunc_off is used to determine if we have
1152 	 * to call hammer_ip_delete_range() or not.  This also means we must
1153 	 * update sync_trunc_off() as we write.
1154 	 */
1155 	if (record->type == HAMMER_MEM_RECORD_DATA &&
1156 	    hammer_record_needs_overwrite_delete(record)) {
1157 		file_offset = record->leaf.base.key - record->leaf.data_len;
1158 		bytes = (record->leaf.data_len + HAMMER_BUFMASK) &
1159 			~HAMMER_BUFMASK;
1160 		KKASSERT((file_offset & HAMMER_BUFMASK) == 0);
1161 		error = hammer_ip_delete_range(
1162 				cursor, record->ip,
1163 				file_offset, file_offset + bytes - 1,
1164 				1);
1165 		if (error && error != ENOENT)
1166 			goto done;
1167 	}
1168 
1169 	/*
1170 	 * If this is a general record there may be an on-disk version
1171 	 * that must be deleted before we can insert the new record.
1172 	 */
1173 	if (record->type == HAMMER_MEM_RECORD_GENERAL) {
1174 		error = hammer_delete_general(cursor, record->ip,
1175 					      &record->leaf);
1176 		if (error && error != ENOENT)
1177 			goto done;
1178 	}
1179 
1180 	/*
1181 	 * Setup the cursor.
1182 	 */
1183 	hammer_normalize_cursor(cursor);
1184 	cursor->key_beg = record->leaf.base;
1185 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1186 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1187 	cursor->flags &= ~HAMMER_CURSOR_INSERT;
1188 
1189 	/*
1190 	 * Records can wind up on-media before the inode itself is on-media.
1191 	 * Flag the case.
1192 	 */
1193 	record->ip->flags |= HAMMER_INODE_DONDISK;
1194 
1195 	/*
1196 	 * If we are deleting a directory entry an exact match must be
1197 	 * found on-disk.
1198 	 */
1199 	if (record->type == HAMMER_MEM_RECORD_DEL) {
1200 		error = hammer_btree_lookup(cursor);
1201 		if (error == 0) {
1202 			KKASSERT(cursor->iprec == NULL);
1203 			error = hammer_ip_delete_record(cursor, record->ip,
1204 							trans->tid);
1205 			if (error == 0) {
1206 				record->flags |= HAMMER_RECF_DELETED_BE |
1207 						 HAMMER_RECF_COMMITTED;
1208 				++record->ip->rec_generation;
1209 			}
1210 		}
1211 		goto done;
1212 	}
1213 
1214 	/*
1215 	 * We are inserting.
1216 	 *
1217 	 * Issue a lookup to position the cursor and locate the insertion
1218 	 * point.  The target key should not exist.  If we are creating a
1219 	 * directory entry we may have to iterate the low 32 bits of the
1220 	 * key to find an unused key.
1221 	 */
1222 	hammer_sync_lock_sh(trans);
1223 	cursor->flags |= HAMMER_CURSOR_INSERT;
1224 	error = hammer_btree_lookup(cursor);
1225 	if (hammer_debug_inode)
1226 		kprintf("DOINSERT LOOKUP %d\n", error);
1227 	if (error == 0) {
1228 		kprintf("hammer_ip_sync_record: duplicate rec "
1229 			"at (%016llx)\n", (long long)record->leaf.base.key);
1230 		if (hammer_debug_critical)
1231 			Debugger("duplicate record1");
1232 		error = EIO;
1233 	}
1234 #if 0
1235 	if (record->type == HAMMER_MEM_RECORD_DATA)
1236 		kprintf("sync_record  %016llx ---------------- %016llx %d\n",
1237 			record->leaf.base.key - record->leaf.data_len,
1238 			record->leaf.data_offset, error);
1239 #endif
1240 
1241 	if (error != ENOENT)
1242 		goto done_unlock;
1243 
1244 	/*
1245 	 * Allocate the record and data.  The result buffers will be
1246 	 * marked as being modified and further calls to
1247 	 * hammer_modify_buffer() will result in unneeded UNDO records.
1248 	 *
1249 	 * Support zero-fill records (data == NULL and data_len != 0)
1250 	 */
1251 	if (record->type == HAMMER_MEM_RECORD_DATA) {
1252 		/*
1253 		 * The data portion of a bulk-data record has already been
1254 		 * committed to disk, we need only adjust the layer2
1255 		 * statistics in the same transaction as our B-Tree insert.
1256 		 */
1257 		KKASSERT(record->leaf.data_offset != 0);
1258 		error = hammer_blockmap_finalize(trans,
1259 						 record->resv,
1260 						 record->leaf.data_offset,
1261 						 record->leaf.data_len);
1262 	} else if (record->data && record->leaf.data_len) {
1263 		/*
1264 		 * Wholely cached record, with data.  Allocate the data.
1265 		 */
1266 		bdata = hammer_alloc_data(trans, record->leaf.data_len,
1267 					  record->leaf.base.rec_type,
1268 					  &record->leaf.data_offset,
1269 					  &cursor->data_buffer,
1270 					  0, &error);
1271 		if (bdata == NULL)
1272 			goto done_unlock;
1273 		hammer_crc_set_leaf(record->data, &record->leaf);
1274 		hammer_modify_buffer(trans, cursor->data_buffer, NULL, 0);
1275 		bcopy(record->data, bdata, record->leaf.data_len);
1276 		hammer_modify_buffer_done(cursor->data_buffer);
1277 	} else {
1278 		/*
1279 		 * Wholely cached record, without data.
1280 		 */
1281 		record->leaf.data_offset = 0;
1282 		record->leaf.data_crc = 0;
1283 	}
1284 
1285 	error = hammer_btree_insert(cursor, &record->leaf, &doprop);
1286 	if (hammer_debug_inode && error) {
1287 		kprintf("BTREE INSERT error %d @ %016llx:%d key %016llx\n",
1288 			error,
1289 			(long long)cursor->node->node_offset,
1290 			cursor->index,
1291 			(long long)record->leaf.base.key);
1292 	}
1293 
1294 	/*
1295 	 * Our record is on-disk and we normally mark the in-memory version
1296 	 * as having been committed (and not BE-deleted).
1297 	 *
1298 	 * If the record represented a directory deletion but we had to
1299 	 * sync a valid directory entry to disk due to dependancies,
1300 	 * we must convert the record to a covering delete so the
1301 	 * frontend does not have visibility on the synced entry.
1302 	 *
1303 	 * WARNING: cursor's leaf pointer may have changed after do_propagation
1304 	 *	    returns!
1305 	 */
1306 	if (error == 0) {
1307 		if (doprop) {
1308 			hammer_btree_do_propagation(cursor,
1309 						    record->ip->pfsm,
1310 						    &record->leaf);
1311 		}
1312 		if (record->flags & HAMMER_RECF_CONVERT_DELETE) {
1313 			/*
1314 			 * Must convert deleted directory entry add
1315 			 * to a directory entry delete.
1316 			 */
1317 			KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
1318 			record->flags &= ~HAMMER_RECF_DELETED_FE;
1319 			record->type = HAMMER_MEM_RECORD_DEL;
1320 			KKASSERT(record->ip->obj_id == record->leaf.base.obj_id);
1321 			KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1322 			record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1323 			KKASSERT((record->flags & (HAMMER_RECF_COMMITTED |
1324 						 HAMMER_RECF_DELETED_BE)) == 0);
1325 			/* converted record is not yet committed */
1326 			/* hammer_flush_record_done takes care of the rest */
1327 		} else {
1328 			/*
1329 			 * Everything went fine and we are now done with
1330 			 * this record.
1331 			 */
1332 			record->flags |= HAMMER_RECF_COMMITTED;
1333 			++record->ip->rec_generation;
1334 		}
1335 	} else {
1336 		if (record->leaf.data_offset) {
1337 			hammer_blockmap_free(trans, record->leaf.data_offset,
1338 					     record->leaf.data_len);
1339 		}
1340 	}
1341 done_unlock:
1342 	hammer_sync_unlock(trans);
1343 done:
1344 	return(error);
1345 }
1346 
1347 /*
1348  * Add the record to the inode's rec_tree.  The low 32 bits of a directory
1349  * entry's key is used to deal with hash collisions in the upper 32 bits.
1350  * A unique 64 bit key is generated in-memory and may be regenerated a
1351  * second time when the directory record is flushed to the on-disk B-Tree.
1352  *
1353  * A referenced record is passed to this function.  This function
1354  * eats the reference.  If an error occurs the record will be deleted.
1355  *
1356  * A copy of the temporary record->data pointer provided by the caller
1357  * will be made.
1358  */
1359 int
1360 hammer_mem_add(hammer_record_t record)
1361 {
1362 	hammer_mount_t hmp = record->ip->hmp;
1363 
1364 	/*
1365 	 * Make a private copy of record->data
1366 	 */
1367 	if (record->data)
1368 		KKASSERT(record->flags & HAMMER_RECF_ALLOCDATA);
1369 
1370 	/*
1371 	 * Insert into the RB tree.  A unique key should have already
1372 	 * been selected if this is a directory entry.
1373 	 */
1374 	if (RB_INSERT(hammer_rec_rb_tree, &record->ip->rec_tree, record)) {
1375 		record->flags |= HAMMER_RECF_DELETED_FE;
1376 		hammer_rel_mem_record(record);
1377 		return (EEXIST);
1378 	}
1379 	++hmp->count_newrecords;
1380 	++hmp->rsv_recs;
1381 	++record->ip->rsv_recs;
1382 	record->ip->hmp->rsv_databytes += record->leaf.data_len;
1383 	record->flags |= HAMMER_RECF_ONRBTREE;
1384 	hammer_modify_inode(NULL, record->ip, HAMMER_INODE_XDIRTY);
1385 	hammer_rel_mem_record(record);
1386 	return(0);
1387 }
1388 
1389 /************************************************************************
1390  *		     HAMMER INODE MERGED-RECORD FUNCTIONS		*
1391  ************************************************************************
1392  *
1393  * These functions augment the B-Tree scanning functions in hammer_btree.c
1394  * by merging in-memory records with on-disk records.
1395  */
1396 
1397 /*
1398  * Locate a particular record either in-memory or on-disk.
1399  *
1400  * NOTE: This is basically a standalone routine, hammer_ip_next() may
1401  * NOT be called to iterate results.
1402  */
1403 int
1404 hammer_ip_lookup(hammer_cursor_t cursor)
1405 {
1406 	int error;
1407 
1408 	/*
1409 	 * If the element is in-memory return it without searching the
1410 	 * on-disk B-Tree
1411 	 */
1412 	KKASSERT(cursor->ip);
1413 	error = hammer_mem_lookup(cursor);
1414 	if (error == 0) {
1415 		cursor->leaf = &cursor->iprec->leaf;
1416 		return(error);
1417 	}
1418 	if (error != ENOENT)
1419 		return(error);
1420 
1421 	/*
1422 	 * If the inode has on-disk components search the on-disk B-Tree.
1423 	 */
1424 	if ((cursor->ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) == 0)
1425 		return(error);
1426 	error = hammer_btree_lookup(cursor);
1427 	if (error == 0)
1428 		error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1429 	return(error);
1430 }
1431 
1432 /*
1433  * Helper for hammer_ip_first()/hammer_ip_next()
1434  *
1435  * NOTE: Both ATEDISK and DISKEOF will be set the same.  This sets up
1436  * hammer_ip_first() for calling hammer_ip_next(), and sets up the re-seek
1437  * state if hammer_ip_next() needs to re-seek.
1438  */
1439 static __inline
1440 int
1441 _hammer_ip_seek_btree(hammer_cursor_t cursor)
1442 {
1443 	hammer_inode_t ip = cursor->ip;
1444 	int error;
1445 
1446 	if (ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) {
1447 		error = hammer_btree_lookup(cursor);
1448 		if (error == ENOENT || error == EDEADLK) {
1449 			if (hammer_debug_general & 0x2000) {
1450 				kprintf("error %d node %p %016llx index %d\n",
1451 					error, cursor->node,
1452 					(long long)cursor->node->node_offset,
1453 					cursor->index);
1454 			}
1455 			cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1456 			error = hammer_btree_iterate(cursor);
1457 		}
1458 		if (error == 0) {
1459 			cursor->flags &= ~(HAMMER_CURSOR_DISKEOF |
1460 					   HAMMER_CURSOR_ATEDISK);
1461 		} else {
1462 			cursor->flags |= HAMMER_CURSOR_DISKEOF |
1463 					 HAMMER_CURSOR_ATEDISK;
1464 			if (error == ENOENT)
1465 				error = 0;
1466 		}
1467 	} else {
1468 		cursor->flags |= HAMMER_CURSOR_DISKEOF | HAMMER_CURSOR_ATEDISK;
1469 		error = 0;
1470 	}
1471 	return(error);
1472 }
1473 
1474 /*
1475  * Helper for hammer_ip_next()
1476  *
1477  * The caller has determined that the media cursor is further along than the
1478  * memory cursor and must be reseeked after a generation number change.
1479  */
1480 static
1481 int
1482 _hammer_ip_reseek(hammer_cursor_t cursor)
1483 {
1484 	struct hammer_base_elm save;
1485 	hammer_btree_elm_t elm;
1486 	int error;
1487 	int r;
1488 	int again = 0;
1489 
1490 	/*
1491 	 * Do the re-seek.
1492 	 */
1493 	kprintf("HAMMER: Debug: re-seeked during scan @ino=%016llx\n",
1494 		(long long)cursor->ip->obj_id);
1495 	save = cursor->key_beg;
1496 	cursor->key_beg = cursor->iprec->leaf.base;
1497 	error = _hammer_ip_seek_btree(cursor);
1498 	KKASSERT(error == 0);
1499 	cursor->key_beg = save;
1500 
1501 	/*
1502 	 * If the memory record was previous returned to
1503 	 * the caller and the media record matches
1504 	 * (-1/+1: only create_tid differs), then iterate
1505 	 * the media record to avoid a double result.
1506 	 */
1507 	if ((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0 &&
1508 	    (cursor->flags & HAMMER_CURSOR_LASTWASMEM)) {
1509 		elm = &cursor->node->ondisk->elms[cursor->index];
1510 		r = hammer_btree_cmp(&elm->base,
1511 				     &cursor->iprec->leaf.base);
1512 		if (cursor->flags & HAMMER_CURSOR_ASOF) {
1513 			if (r >= -1 && r <= 1) {
1514 				kprintf("HAMMER: Debug: iterated after "
1515 					"re-seek (asof r=%d)\n", r);
1516 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
1517 				again = 1;
1518 			}
1519 		} else {
1520 			if (r == 0) {
1521 				kprintf("HAMMER: Debug: iterated after "
1522 					"re-seek\n");
1523 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
1524 				again = 1;
1525 			}
1526 		}
1527 	}
1528 	return(again);
1529 }
1530 
1531 /*
1532  * Locate the first record within the cursor's key_beg/key_end range,
1533  * restricted to a particular inode.  0 is returned on success, ENOENT
1534  * if no records matched the requested range, or some other error.
1535  *
1536  * When 0 is returned hammer_ip_next() may be used to iterate additional
1537  * records within the requested range.
1538  *
1539  * This function can return EDEADLK, requiring the caller to terminate
1540  * the cursor and try again.
1541  */
1542 
1543 int
1544 hammer_ip_first(hammer_cursor_t cursor)
1545 {
1546 	hammer_inode_t ip __debugvar = cursor->ip;
1547 	int error;
1548 
1549 	KKASSERT(ip != NULL);
1550 
1551 	/*
1552 	 * Clean up fields and setup for merged scan
1553 	 */
1554 	cursor->flags &= ~HAMMER_CURSOR_RETEST;
1555 
1556 	/*
1557 	 * Search the in-memory record list (Red-Black tree).  Unlike the
1558 	 * B-Tree search, mem_first checks for records in the range.
1559 	 *
1560 	 * This function will setup both ATEMEM and MEMEOF properly for
1561 	 * the ip iteration.  ATEMEM will be set if MEMEOF is set.
1562 	 */
1563 	hammer_mem_first(cursor);
1564 
1565 	/*
1566 	 * Detect generation changes during blockages, including
1567 	 * blockages which occur on the initial btree search.
1568 	 */
1569 	cursor->rec_generation = cursor->ip->rec_generation;
1570 
1571 	/*
1572 	 * Initial search and result
1573 	 */
1574 	error = _hammer_ip_seek_btree(cursor);
1575 	if (error == 0)
1576 		error = hammer_ip_next(cursor);
1577 
1578 	return (error);
1579 }
1580 
1581 /*
1582  * Retrieve the next record in a merged iteration within the bounds of the
1583  * cursor.  This call may be made multiple times after the cursor has been
1584  * initially searched with hammer_ip_first().
1585  *
1586  * There are numerous special cases in this code to deal with races between
1587  * in-memory records and on-media records.
1588  *
1589  * 0 is returned on success, ENOENT if no further records match the
1590  * requested range, or some other error code is returned.
1591  */
1592 int
1593 hammer_ip_next(hammer_cursor_t cursor)
1594 {
1595 	hammer_btree_elm_t elm;
1596 	hammer_record_t rec;
1597 	hammer_record_t tmprec;
1598 	int error;
1599 	int r;
1600 
1601 again:
1602 	/*
1603 	 * Get the next on-disk record
1604 	 *
1605 	 * NOTE: If we deleted the last on-disk record we had scanned
1606 	 * 	 ATEDISK will be clear and RETEST will be set, forcing
1607 	 *	 a call to iterate.  The fact that ATEDISK is clear causes
1608 	 *	 iterate to re-test the 'current' element.  If ATEDISK is
1609 	 *	 set, iterate will skip the 'current' element.
1610 	 */
1611 	error = 0;
1612 	if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
1613 		if (cursor->flags & (HAMMER_CURSOR_ATEDISK |
1614 				     HAMMER_CURSOR_RETEST)) {
1615 			error = hammer_btree_iterate(cursor);
1616 			cursor->flags &= ~HAMMER_CURSOR_RETEST;
1617 			if (error == 0) {
1618 				cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1619 				hammer_cache_node(&cursor->ip->cache[1],
1620 						  cursor->node);
1621 			} else if (error == ENOENT) {
1622 				cursor->flags |= HAMMER_CURSOR_DISKEOF |
1623 						 HAMMER_CURSOR_ATEDISK;
1624 				error = 0;
1625 			}
1626 		}
1627 	}
1628 
1629 	/*
1630 	 * If the generation changed the backend has deleted or committed
1631 	 * one or more memory records since our last check.
1632 	 *
1633 	 * When this case occurs if the disk cursor is > current memory record
1634 	 * or the disk cursor is at EOF, we must re-seek the disk-cursor.
1635 	 * Since the cursor is ahead it must have not yet been eaten (if
1636 	 * not at eof anyway). (XXX data offset case?)
1637 	 *
1638 	 * NOTE: we are not doing a full check here.  That will be handled
1639 	 * later on.
1640 	 *
1641 	 * If we have exhausted all memory records we do not have to do any
1642 	 * further seeks.
1643 	 */
1644 	while (cursor->rec_generation != cursor->ip->rec_generation &&
1645 	       error == 0
1646 	) {
1647 		kprintf("HAMMER: Debug: generation changed during scan @ino=%016llx\n", (long long)cursor->ip->obj_id);
1648 		cursor->rec_generation = cursor->ip->rec_generation;
1649 		if (cursor->flags & HAMMER_CURSOR_MEMEOF)
1650 			break;
1651 		if (cursor->flags & HAMMER_CURSOR_DISKEOF) {
1652 			r = 1;
1653 		} else {
1654 			KKASSERT((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0);
1655 			elm = &cursor->node->ondisk->elms[cursor->index];
1656 			r = hammer_btree_cmp(&elm->base,
1657 					     &cursor->iprec->leaf.base);
1658 		}
1659 
1660 		/*
1661 		 * Do we re-seek the media cursor?
1662 		 */
1663 		if (r > 0) {
1664 			if (_hammer_ip_reseek(cursor))
1665 				goto again;
1666 		}
1667 	}
1668 
1669 	/*
1670 	 * We can now safely get the next in-memory record.  We cannot
1671 	 * block here.
1672 	 *
1673 	 * hammer_rec_scan_cmp:  Is the record still in our general range,
1674 	 *			 (non-inclusive of snapshot exclusions)?
1675 	 * hammer_rec_scan_callback: Is the record in our snapshot?
1676 	 */
1677 	tmprec = NULL;
1678 	if ((cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1679 		/*
1680 		 * If the current memory record was eaten then get the next
1681 		 * one.  Stale records are skipped.
1682 		 */
1683 		if (cursor->flags & HAMMER_CURSOR_ATEMEM) {
1684 			tmprec = cursor->iprec;
1685 			cursor->iprec = NULL;
1686 			rec = hammer_rec_rb_tree_RB_NEXT(tmprec);
1687 			while (rec) {
1688 				if (hammer_rec_scan_cmp(rec, cursor) != 0)
1689 					break;
1690 				if (hammer_rec_scan_callback(rec, cursor) != 0)
1691 					break;
1692 				rec = hammer_rec_rb_tree_RB_NEXT(rec);
1693 			}
1694 			if (cursor->iprec) {
1695 				KKASSERT(cursor->iprec == rec);
1696 				cursor->flags &= ~HAMMER_CURSOR_ATEMEM;
1697 			} else {
1698 				cursor->flags |= HAMMER_CURSOR_MEMEOF;
1699 			}
1700 			cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1701 		}
1702 	}
1703 
1704 	/*
1705 	 * MEMORY RECORD VALIDITY TEST
1706 	 *
1707 	 * (We still can't block, which is why tmprec is being held so
1708 	 * long).
1709 	 *
1710 	 * If the memory record is no longer valid we skip it.  It may
1711 	 * have been deleted by the frontend.  If it was deleted or
1712 	 * committed by the backend the generation change re-seeked the
1713 	 * disk cursor and the record will be present there.
1714 	 */
1715 	if (error == 0 && (cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1716 		KKASSERT(cursor->iprec);
1717 		KKASSERT((cursor->flags & HAMMER_CURSOR_ATEMEM) == 0);
1718 		if (!hammer_ip_iterate_mem_good(cursor, cursor->iprec)) {
1719 			cursor->flags |= HAMMER_CURSOR_ATEMEM;
1720 			if (tmprec)
1721 				hammer_rel_mem_record(tmprec);
1722 			goto again;
1723 		}
1724 	}
1725 	if (tmprec)
1726 		hammer_rel_mem_record(tmprec);
1727 
1728 	/*
1729 	 * Extract either the disk or memory record depending on their
1730 	 * relative position.
1731 	 */
1732 	error = 0;
1733 	switch(cursor->flags & (HAMMER_CURSOR_ATEDISK | HAMMER_CURSOR_ATEMEM)) {
1734 	case 0:
1735 		/*
1736 		 * Both entries valid.   Compare the entries and nominally
1737 		 * return the first one in the sort order.  Numerous cases
1738 		 * require special attention, however.
1739 		 */
1740 		elm = &cursor->node->ondisk->elms[cursor->index];
1741 		r = hammer_btree_cmp(&elm->base, &cursor->iprec->leaf.base);
1742 
1743 		/*
1744 		 * If the two entries differ only by their key (-2/2) or
1745 		 * create_tid (-1/1), and are DATA records, we may have a
1746 		 * nominal match.  We have to calculate the base file
1747 		 * offset of the data.
1748 		 */
1749 		if (r <= 2 && r >= -2 && r != 0 &&
1750 		    cursor->ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE &&
1751 		    cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1752 			int64_t base1 = elm->leaf.base.key - elm->leaf.data_len;
1753 			int64_t base2 = cursor->iprec->leaf.base.key -
1754 					cursor->iprec->leaf.data_len;
1755 			if (base1 == base2)
1756 				r = 0;
1757 		}
1758 
1759 		if (r < 0) {
1760 			error = hammer_btree_extract(cursor,
1761 						     HAMMER_CURSOR_GET_LEAF);
1762 			cursor->flags |= HAMMER_CURSOR_ATEDISK;
1763 			cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1764 			break;
1765 		}
1766 
1767 		/*
1768 		 * If the entries match exactly the memory entry is either
1769 		 * an on-disk directory entry deletion or a bulk data
1770 		 * overwrite.  If it is a directory entry deletion we eat
1771 		 * both entries.
1772 		 *
1773 		 * For the bulk-data overwrite case it is possible to have
1774 		 * visibility into both, which simply means the syncer
1775 		 * hasn't gotten around to doing the delete+insert sequence
1776 		 * on the B-Tree.  Use the memory entry and throw away the
1777 		 * on-disk entry.
1778 		 *
1779 		 * If the in-memory record is not either of these we
1780 		 * probably caught the syncer while it was syncing it to
1781 		 * the media.  Since we hold a shared lock on the cursor,
1782 		 * the in-memory record had better be marked deleted at
1783 		 * this point.
1784 		 */
1785 		if (r == 0) {
1786 			if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL) {
1787 				if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1788 					cursor->flags |= HAMMER_CURSOR_ATEDISK;
1789 					cursor->flags |= HAMMER_CURSOR_ATEMEM;
1790 					goto again;
1791 				}
1792 			} else if (cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1793 				if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1794 					cursor->flags |= HAMMER_CURSOR_ATEDISK;
1795 				}
1796 				/* fall through to memory entry */
1797 			} else {
1798 				panic("hammer_ip_next: duplicate mem/b-tree entry %p %d %08x", cursor->iprec, cursor->iprec->type, cursor->iprec->flags);
1799 				cursor->flags |= HAMMER_CURSOR_ATEMEM;
1800 				goto again;
1801 			}
1802 		}
1803 		/* fall through to the memory entry */
1804 	case HAMMER_CURSOR_ATEDISK:
1805 		/*
1806 		 * Only the memory entry is valid.
1807 		 */
1808 		cursor->leaf = &cursor->iprec->leaf;
1809 		cursor->flags |= HAMMER_CURSOR_ATEMEM;
1810 		cursor->flags |= HAMMER_CURSOR_LASTWASMEM;
1811 
1812 		/*
1813 		 * If the memory entry is an on-disk deletion we should have
1814 		 * also had found a B-Tree record.  If the backend beat us
1815 		 * to it it would have interlocked the cursor and we should
1816 		 * have seen the in-memory record marked DELETED_FE.
1817 		 */
1818 		if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL &&
1819 		    (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1820 			panic("hammer_ip_next: del-on-disk with no b-tree entry iprec %p flags %08x", cursor->iprec, cursor->iprec->flags);
1821 		}
1822 		break;
1823 	case HAMMER_CURSOR_ATEMEM:
1824 		/*
1825 		 * Only the disk entry is valid
1826 		 */
1827 		error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1828 		cursor->flags |= HAMMER_CURSOR_ATEDISK;
1829 		cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1830 		break;
1831 	default:
1832 		/*
1833 		 * Neither entry is valid
1834 		 *
1835 		 * XXX error not set properly
1836 		 */
1837 		cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1838 		cursor->leaf = NULL;
1839 		error = ENOENT;
1840 		break;
1841 	}
1842 	return(error);
1843 }
1844 
1845 /*
1846  * Resolve the cursor->data pointer for the current cursor position in
1847  * a merged iteration.
1848  */
1849 int
1850 hammer_ip_resolve_data(hammer_cursor_t cursor)
1851 {
1852 	hammer_record_t record;
1853 	int error;
1854 
1855 	if (hammer_cursor_inmem(cursor)) {
1856 		/*
1857 		 * The data associated with an in-memory record is usually
1858 		 * kmalloced, but reserve-ahead data records will have an
1859 		 * on-disk reference.
1860 		 *
1861 		 * NOTE: Reserve-ahead data records must be handled in the
1862 		 * context of the related high level buffer cache buffer
1863 		 * to interlock against async writes.
1864 		 */
1865 		record = cursor->iprec;
1866 		cursor->data = record->data;
1867 		error = 0;
1868 		if (cursor->data == NULL) {
1869 			KKASSERT(record->leaf.base.rec_type ==
1870 				 HAMMER_RECTYPE_DATA);
1871 			cursor->data = hammer_bread_ext(cursor->trans->hmp,
1872 						    record->leaf.data_offset,
1873 						    record->leaf.data_len,
1874 						    &error,
1875 						    &cursor->data_buffer);
1876 		}
1877 	} else {
1878 		cursor->leaf = &cursor->node->ondisk->elms[cursor->index].leaf;
1879 		error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_DATA);
1880 	}
1881 	return(error);
1882 }
1883 
1884 /*
1885  * Backend truncation / record replacement - delete records in range.
1886  *
1887  * Delete all records within the specified range for inode ip.  In-memory
1888  * records still associated with the frontend are ignored.
1889  *
1890  * If truncating is non-zero in-memory records associated with the back-end
1891  * are ignored.  If truncating is > 1 we can return EWOULDBLOCK.
1892  *
1893  * NOTES:
1894  *
1895  *	* An unaligned range will cause new records to be added to cover
1896  *        the edge cases. (XXX not implemented yet).
1897  *
1898  *	* Replacement via reservations (see hammer_ip_sync_record_cursor())
1899  *        also do not deal with unaligned ranges.
1900  *
1901  *	* ran_end is inclusive (e.g. 0,1023 instead of 0,1024).
1902  *
1903  *	* Record keys for regular file data have to be special-cased since
1904  * 	  they indicate the end of the range (key = base + bytes).
1905  *
1906  *	* This function may be asked to delete ridiculously huge ranges, for
1907  *	  example if someone truncates or removes a 1TB regular file.  We
1908  *	  must be very careful on restarts and we may have to stop w/
1909  *	  EWOULDBLOCK to avoid blowing out the buffer cache.
1910  */
1911 int
1912 hammer_ip_delete_range(hammer_cursor_t cursor, hammer_inode_t ip,
1913 		       int64_t ran_beg, int64_t ran_end, int truncating)
1914 {
1915 	hammer_transaction_t trans = cursor->trans;
1916 	hammer_btree_leaf_elm_t leaf;
1917 	int error;
1918 	int64_t off;
1919 	int64_t tmp64;
1920 
1921 #if 0
1922 	kprintf("delete_range %p %016llx-%016llx\n", ip, ran_beg, ran_end);
1923 #endif
1924 
1925 	KKASSERT(trans->type == HAMMER_TRANS_FLS);
1926 retry:
1927 	hammer_normalize_cursor(cursor);
1928 	cursor->key_beg.localization = ip->obj_localization +
1929 				       HAMMER_LOCALIZE_MISC;
1930 	cursor->key_beg.obj_id = ip->obj_id;
1931 	cursor->key_beg.create_tid = 0;
1932 	cursor->key_beg.delete_tid = 0;
1933 	cursor->key_beg.obj_type = 0;
1934 
1935 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1936 		cursor->key_beg.key = ran_beg;
1937 		cursor->key_beg.rec_type = HAMMER_RECTYPE_DB;
1938 	} else {
1939 		/*
1940 		 * The key in the B-Tree is (base+bytes), so the first possible
1941 		 * matching key is ran_beg + 1.
1942 		 */
1943 		cursor->key_beg.key = ran_beg + 1;
1944 		cursor->key_beg.rec_type = HAMMER_RECTYPE_DATA;
1945 	}
1946 
1947 	cursor->key_end = cursor->key_beg;
1948 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1949 		cursor->key_end.key = ran_end;
1950 	} else {
1951 		tmp64 = ran_end + MAXPHYS + 1;	/* work around GCC-4 bug */
1952 		if (tmp64 < ran_end)
1953 			cursor->key_end.key = 0x7FFFFFFFFFFFFFFFLL;
1954 		else
1955 			cursor->key_end.key = ran_end + MAXPHYS + 1;
1956 	}
1957 
1958 	cursor->asof = ip->obj_asof;
1959 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1960 	cursor->flags |= HAMMER_CURSOR_ASOF;
1961 	cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
1962 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1963 	cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE;
1964 
1965 	error = hammer_ip_first(cursor);
1966 
1967 	/*
1968 	 * Iterate through matching records and mark them as deleted.
1969 	 */
1970 	while (error == 0) {
1971 		leaf = cursor->leaf;
1972 
1973 		KKASSERT(leaf->base.delete_tid == 0);
1974 		KKASSERT(leaf->base.obj_id == ip->obj_id);
1975 
1976 		/*
1977 		 * There may be overlap cases for regular file data.  Also
1978 		 * remember the key for a regular file record is (base + len),
1979 		 * NOT (base).
1980 		 *
1981 		 * Note that do to duplicates (mem & media) allowed by
1982 		 * DELETE_VISIBILITY, off can wind up less then ran_beg.
1983 		 */
1984 		if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
1985 			off = leaf->base.key - leaf->data_len;
1986 			/*
1987 			 * Check the left edge case.  We currently do not
1988 			 * split existing records.
1989 			 */
1990 			if (off < ran_beg && leaf->base.key > ran_beg) {
1991 				panic("hammer left edge case %016llx %d\n",
1992 					(long long)leaf->base.key,
1993 					leaf->data_len);
1994 			}
1995 
1996 			/*
1997 			 * Check the right edge case.  Note that the
1998 			 * record can be completely out of bounds, which
1999 			 * terminates the search.
2000 			 *
2001 			 * base->key is exclusive of the right edge while
2002 			 * ran_end is inclusive of the right edge.  The
2003 			 * (key - data_len) left boundary is inclusive.
2004 			 *
2005 			 * XXX theory-check this test at some point, are
2006 			 * we missing a + 1 somewhere?  Note that ran_end
2007 			 * could overflow.
2008 			 */
2009 			if (leaf->base.key - 1 > ran_end) {
2010 				if (leaf->base.key - leaf->data_len > ran_end)
2011 					break;
2012 				panic("hammer right edge case\n");
2013 			}
2014 		} else {
2015 			off = leaf->base.key;
2016 		}
2017 
2018 		/*
2019 		 * Delete the record.  When truncating we do not delete
2020 		 * in-memory (data) records because they represent data
2021 		 * written after the truncation.
2022 		 *
2023 		 * This will also physically destroy the B-Tree entry and
2024 		 * data if the retention policy dictates.  The function
2025 		 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
2026 		 * to retest the new 'current' element.
2027 		 */
2028 		if (truncating == 0 || hammer_cursor_ondisk(cursor)) {
2029 			error = hammer_ip_delete_record(cursor, ip, trans->tid);
2030 			/*
2031 			 * If we have built up too many meta-buffers we risk
2032 			 * deadlocking the kernel and must stop.  This can
2033 			 * occur when deleting ridiculously huge files.
2034 			 * sync_trunc_off is updated so the next cycle does
2035 			 * not re-iterate records we have already deleted.
2036 			 *
2037 			 * This is only done with formal truncations.
2038 			 */
2039 			if (truncating > 1 && error == 0 &&
2040 			    hammer_flusher_meta_limit(ip->hmp)) {
2041 				ip->sync_trunc_off = off;
2042 				error = EWOULDBLOCK;
2043 			}
2044 		}
2045 		if (error)
2046 			break;
2047 		ran_beg = off;	/* for restart */
2048 		error = hammer_ip_next(cursor);
2049 	}
2050 	if (cursor->node)
2051 		hammer_cache_node(&ip->cache[1], cursor->node);
2052 
2053 	if (error == EDEADLK) {
2054 		hammer_done_cursor(cursor);
2055 		error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2056 		if (error == 0)
2057 			goto retry;
2058 	}
2059 	if (error == ENOENT)
2060 		error = 0;
2061 	return(error);
2062 }
2063 
2064 /*
2065  * This backend function deletes the specified record on-disk, similar to
2066  * delete_range but for a specific record.  Unlike the exact deletions
2067  * used when deleting a directory entry this function uses an ASOF search
2068  * like delete_range.
2069  *
2070  * This function may be called with ip->obj_asof set for a slave snapshot,
2071  * so don't use it.  We always delete non-historical records only.
2072  */
2073 static int
2074 hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
2075 		      hammer_btree_leaf_elm_t leaf)
2076 {
2077 	hammer_transaction_t trans = cursor->trans;
2078 	int error;
2079 
2080 	KKASSERT(trans->type == HAMMER_TRANS_FLS);
2081 retry:
2082 	hammer_normalize_cursor(cursor);
2083 	cursor->key_beg = leaf->base;
2084 	cursor->asof = HAMMER_MAX_TID;
2085 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
2086 	cursor->flags |= HAMMER_CURSOR_ASOF;
2087 	cursor->flags |= HAMMER_CURSOR_BACKEND;
2088 	cursor->flags &= ~HAMMER_CURSOR_INSERT;
2089 
2090 	error = hammer_btree_lookup(cursor);
2091 	if (error == 0) {
2092 		error = hammer_ip_delete_record(cursor, ip, trans->tid);
2093 	}
2094 	if (error == EDEADLK) {
2095 		hammer_done_cursor(cursor);
2096 		error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2097 		if (error == 0)
2098 			goto retry;
2099 	}
2100 	return(error);
2101 }
2102 
2103 /*
2104  * This function deletes remaining auxillary records when an inode is
2105  * being deleted.  This function explicitly does not delete the
2106  * inode record, directory entry, data, or db records.  Those must be
2107  * properly disposed of prior to this call.
2108  */
2109 int
2110 hammer_ip_delete_clean(hammer_cursor_t cursor, hammer_inode_t ip, int *countp)
2111 {
2112 	hammer_transaction_t trans = cursor->trans;
2113 	hammer_btree_leaf_elm_t leaf;
2114 	int error;
2115 
2116 	KKASSERT(trans->type == HAMMER_TRANS_FLS);
2117 retry:
2118 	hammer_normalize_cursor(cursor);
2119 	cursor->key_beg.localization = ip->obj_localization +
2120 				       HAMMER_LOCALIZE_MISC;
2121 	cursor->key_beg.obj_id = ip->obj_id;
2122 	cursor->key_beg.create_tid = 0;
2123 	cursor->key_beg.delete_tid = 0;
2124 	cursor->key_beg.obj_type = 0;
2125 	cursor->key_beg.rec_type = HAMMER_RECTYPE_CLEAN_START;
2126 	cursor->key_beg.key = HAMMER_MIN_KEY;
2127 
2128 	cursor->key_end = cursor->key_beg;
2129 	cursor->key_end.rec_type = HAMMER_RECTYPE_MAX;
2130 	cursor->key_end.key = HAMMER_MAX_KEY;
2131 
2132 	cursor->asof = ip->obj_asof;
2133 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
2134 	cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2135 	cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
2136 	cursor->flags |= HAMMER_CURSOR_BACKEND;
2137 
2138 	error = hammer_ip_first(cursor);
2139 
2140 	/*
2141 	 * Iterate through matching records and mark them as deleted.
2142 	 */
2143 	while (error == 0) {
2144 		leaf = cursor->leaf;
2145 
2146 		KKASSERT(leaf->base.delete_tid == 0);
2147 
2148 		/*
2149 		 * Mark the record and B-Tree entry as deleted.  This will
2150 		 * also physically delete the B-Tree entry, record, and
2151 		 * data if the retention policy dictates.  The function
2152 		 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
2153 		 * to retest the new 'current' element.
2154 		 *
2155 		 * Directory entries (and delete-on-disk directory entries)
2156 		 * must be synced and cannot be deleted.
2157 		 */
2158 		error = hammer_ip_delete_record(cursor, ip, trans->tid);
2159 		++*countp;
2160 		if (error)
2161 			break;
2162 		error = hammer_ip_next(cursor);
2163 	}
2164 	if (cursor->node)
2165 		hammer_cache_node(&ip->cache[1], cursor->node);
2166 	if (error == EDEADLK) {
2167 		hammer_done_cursor(cursor);
2168 		error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2169 		if (error == 0)
2170 			goto retry;
2171 	}
2172 	if (error == ENOENT)
2173 		error = 0;
2174 	return(error);
2175 }
2176 
2177 /*
2178  * Delete the record at the current cursor.  On success the cursor will
2179  * be positioned appropriately for an iteration but may no longer be at
2180  * a leaf node.
2181  *
2182  * This routine is only called from the backend.
2183  *
2184  * NOTE: This can return EDEADLK, requiring the caller to terminate the
2185  * cursor and retry.
2186  */
2187 int
2188 hammer_ip_delete_record(hammer_cursor_t cursor, hammer_inode_t ip,
2189 			hammer_tid_t tid)
2190 {
2191 	hammer_record_t iprec;
2192 	hammer_mount_t hmp;
2193 	int error;
2194 
2195 	KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
2196 	KKASSERT(tid != 0);
2197 	hmp = cursor->node->hmp;
2198 
2199 	/*
2200 	 * In-memory (unsynchronized) records can simply be freed.  This
2201 	 * only occurs in range iterations since all other records are
2202 	 * individually synchronized.  Thus there should be no confusion with
2203 	 * the interlock.
2204 	 *
2205 	 * An in-memory record may be deleted before being committed to disk,
2206 	 * but could have been accessed in the mean time.  The reservation
2207 	 * code will deal with the case.
2208 	 */
2209 	if (hammer_cursor_inmem(cursor)) {
2210 		iprec = cursor->iprec;
2211 		KKASSERT((iprec->flags & HAMMER_RECF_INTERLOCK_BE) ==0);
2212 		iprec->flags |= HAMMER_RECF_DELETED_FE;
2213 		iprec->flags |= HAMMER_RECF_DELETED_BE;
2214 		KKASSERT(iprec->ip == ip);
2215 		++ip->rec_generation;
2216 		return(0);
2217 	}
2218 
2219 	/*
2220 	 * On-disk records are marked as deleted by updating their delete_tid.
2221 	 * This does not effect their position in the B-Tree (which is based
2222 	 * on their create_tid).
2223 	 *
2224 	 * Frontend B-Tree operations track inodes so we tell
2225 	 * hammer_delete_at_cursor() not to.
2226 	 */
2227 	error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
2228 
2229 	if (error == 0) {
2230 		error = hammer_delete_at_cursor(
2231 				cursor,
2232 				HAMMER_DELETE_ADJUST | hammer_nohistory(ip),
2233 				cursor->trans->tid,
2234 				cursor->trans->time32,
2235 				0, NULL);
2236 	}
2237 	return(error);
2238 }
2239 
2240 /*
2241  * Used to write a generic record w/optional data to the media b-tree
2242  * when no inode context is available.  Used by the mirroring and
2243  * snapshot code.
2244  *
2245  * Caller must set cursor->key_beg to leaf->base.  The cursor must be
2246  * flagged for backend operation and not flagged ASOF (since we are
2247  * doing an insertion).
2248  *
2249  * This function will acquire the appropriate sync lock and will set
2250  * the cursor insertion flag for the operation, do the btree lookup,
2251  * and the insertion, and clear the insertion flag and sync lock before
2252  * returning.  The cursor state will be such that the caller can continue
2253  * scanning (used by the mirroring code).
2254  *
2255  * mode: HAMMER_CREATE_MODE_UMIRROR	copyin data, check crc
2256  *	 HAMMER_CREATE_MODE_SYS		bcopy data, generate crc
2257  *
2258  * NOTE: EDEADLK can be returned.  The caller must do deadlock handling and
2259  *		  retry.
2260  *
2261  *	 EALREADY can be returned if the record already exists (WARNING,
2262  *	 	  because ASOF cannot be used no check is made for illegal
2263  *		  duplicates).
2264  *
2265  * NOTE: Do not use the function for normal inode-related records as this
2266  *	 functions goes directly to the media and is not integrated with
2267  *	 in-memory records.
2268  */
2269 int
2270 hammer_create_at_cursor(hammer_cursor_t cursor, hammer_btree_leaf_elm_t leaf,
2271 			void *udata, int mode)
2272 {
2273 	hammer_transaction_t trans;
2274 	hammer_buffer_t data_buffer;
2275 	hammer_off_t ndata_offset;
2276 	hammer_tid_t high_tid;
2277 	void *ndata;
2278 	int error;
2279 	int doprop;
2280 
2281 	trans = cursor->trans;
2282 	data_buffer = NULL;
2283 	ndata_offset = 0;
2284 	doprop = 0;
2285 
2286 	KKASSERT((cursor->flags &
2287 		  (HAMMER_CURSOR_BACKEND | HAMMER_CURSOR_ASOF)) ==
2288 		  (HAMMER_CURSOR_BACKEND));
2289 
2290 	hammer_sync_lock_sh(trans);
2291 
2292 	if (leaf->data_len) {
2293 		ndata = hammer_alloc_data(trans, leaf->data_len,
2294 					  leaf->base.rec_type,
2295 					  &ndata_offset, &data_buffer,
2296 					  0, &error);
2297 		if (ndata == NULL) {
2298 			hammer_sync_unlock(trans);
2299 			return (error);
2300 		}
2301 		leaf->data_offset = ndata_offset;
2302 		hammer_modify_buffer(trans, data_buffer, NULL, 0);
2303 
2304 		switch(mode) {
2305 		case HAMMER_CREATE_MODE_UMIRROR:
2306 			error = copyin(udata, ndata, leaf->data_len);
2307 			if (error == 0) {
2308 				if (hammer_crc_test_leaf(ndata, leaf) == 0) {
2309 					kprintf("data crc mismatch on pipe\n");
2310 					error = EINVAL;
2311 				} else {
2312 					error = hammer_cursor_localize_data(
2313 							ndata, leaf);
2314 				}
2315 			}
2316 			break;
2317 		case HAMMER_CREATE_MODE_SYS:
2318 			bcopy(udata, ndata, leaf->data_len);
2319 			error = 0;
2320 			hammer_crc_set_leaf(ndata, leaf);
2321 			break;
2322 		default:
2323 			panic("hammer: hammer_create_at_cursor: bad mode %d",
2324 				mode);
2325 			break; /* NOT REACHED */
2326 		}
2327 		hammer_modify_buffer_done(data_buffer);
2328 	} else {
2329 		leaf->data_offset = 0;
2330 		error = 0;
2331 		ndata = NULL;
2332 	}
2333 	if (error)
2334 		goto failed;
2335 
2336 	/*
2337 	 * Do the insertion.  This can fail with a EDEADLK or EALREADY
2338 	 */
2339 	cursor->flags |= HAMMER_CURSOR_INSERT;
2340 	error = hammer_btree_lookup(cursor);
2341 	if (error != ENOENT) {
2342 		if (error == 0)
2343 			error = EALREADY;
2344 		goto failed;
2345 	}
2346 	error = hammer_btree_insert(cursor, leaf, &doprop);
2347 
2348 	/*
2349 	 * Cursor is left on current element, we want to skip it now.
2350 	 * (in case the caller is scanning)
2351 	 */
2352 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
2353 	cursor->flags &= ~HAMMER_CURSOR_INSERT;
2354 
2355 	/*
2356 	 * If the insertion happens to be creating (and not just replacing)
2357 	 * an inode we have to track it.
2358 	 */
2359 	if (error == 0 &&
2360 	    leaf->base.rec_type == HAMMER_RECTYPE_INODE &&
2361 	    leaf->base.delete_tid == 0) {
2362 		hammer_modify_volume_field(trans, trans->rootvol,
2363 					   vol0_stat_inodes);
2364 		++trans->hmp->rootvol->ondisk->vol0_stat_inodes;
2365 		hammer_modify_volume_done(trans->rootvol);
2366 	}
2367 
2368 	/*
2369 	 * vol0_next_tid must track the highest TID stored in the filesystem.
2370 	 * We do not need to generate undo for this update.
2371 	 */
2372 	high_tid = leaf->base.create_tid;
2373 	if (high_tid < leaf->base.delete_tid)
2374 		high_tid = leaf->base.delete_tid;
2375 	if (trans->rootvol->ondisk->vol0_next_tid < high_tid) {
2376 		hammer_modify_volume(trans, trans->rootvol, NULL, 0);
2377 		trans->rootvol->ondisk->vol0_next_tid = high_tid;
2378 		hammer_modify_volume_done(trans->rootvol);
2379 	}
2380 
2381 	/*
2382 	 * WARNING!  cursor's leaf pointer may have changed after
2383 	 * 	     do_propagation returns.
2384 	 */
2385 	if (error == 0 && doprop)
2386 		hammer_btree_do_propagation(cursor, NULL, leaf);
2387 
2388 failed:
2389 	/*
2390 	 * Cleanup
2391 	 */
2392 	if (error && leaf->data_offset) {
2393 		hammer_blockmap_free(trans, leaf->data_offset, leaf->data_len);
2394 
2395 	}
2396 	hammer_sync_unlock(trans);
2397 	if (data_buffer)
2398 		hammer_rel_buffer(data_buffer, 0);
2399 	return (error);
2400 }
2401 
2402 /*
2403  * Delete the B-Tree element at the current cursor and do any necessary
2404  * mirror propagation.
2405  *
2406  * The cursor must be properly positioned for an iteration on return but
2407  * may be pointing at an internal element.
2408  *
2409  * An element can be un-deleted by passing a delete_tid of 0 with
2410  * HAMMER_DELETE_ADJUST.
2411  */
2412 int
2413 hammer_delete_at_cursor(hammer_cursor_t cursor, int delete_flags,
2414 			hammer_tid_t delete_tid, u_int32_t delete_ts,
2415 			int track, int64_t *stat_bytes)
2416 {
2417 	struct hammer_btree_leaf_elm save_leaf;
2418 	hammer_transaction_t trans;
2419 	hammer_btree_leaf_elm_t leaf;
2420 	hammer_node_t node;
2421 	hammer_btree_elm_t elm;
2422 	hammer_off_t data_offset;
2423 	int32_t data_len;
2424 	u_int16_t rec_type;
2425 	int error;
2426 	int icount;
2427 	int doprop;
2428 
2429 	error = hammer_cursor_upgrade(cursor);
2430 	if (error)
2431 		return(error);
2432 
2433 	trans = cursor->trans;
2434 	node = cursor->node;
2435 	elm = &node->ondisk->elms[cursor->index];
2436 	leaf = &elm->leaf;
2437 	KKASSERT(elm->base.btype == HAMMER_BTREE_TYPE_RECORD);
2438 
2439 	hammer_sync_lock_sh(trans);
2440 	doprop = 0;
2441 	icount = 0;
2442 
2443 	/*
2444 	 * Adjust the delete_tid.  Update the mirror_tid propagation field
2445 	 * as well.  delete_tid can be 0 (undelete -- used by mirroring).
2446 	 */
2447 	if (delete_flags & HAMMER_DELETE_ADJUST) {
2448 		if (elm->base.rec_type == HAMMER_RECTYPE_INODE) {
2449 			if (elm->leaf.base.delete_tid == 0 && delete_tid)
2450 				icount = -1;
2451 			if (elm->leaf.base.delete_tid && delete_tid == 0)
2452 				icount = 1;
2453 		}
2454 
2455 		hammer_modify_node(trans, node, elm, sizeof(*elm));
2456 		elm->leaf.base.delete_tid = delete_tid;
2457 		elm->leaf.delete_ts = delete_ts;
2458 		hammer_modify_node_done(node);
2459 
2460 		if (elm->leaf.base.delete_tid > node->ondisk->mirror_tid) {
2461 			hammer_modify_node_field(trans, node, mirror_tid);
2462 			node->ondisk->mirror_tid = elm->leaf.base.delete_tid;
2463 			hammer_modify_node_done(node);
2464 			doprop = 1;
2465 			if (hammer_debug_general & 0x0002) {
2466 				kprintf("delete_at_cursor: propagate %016llx"
2467 					" @%016llx\n",
2468 					(long long)elm->leaf.base.delete_tid,
2469 					(long long)node->node_offset);
2470 			}
2471 		}
2472 
2473 		/*
2474 		 * Adjust for the iteration.  We have deleted the current
2475 		 * element and want to clear ATEDISK so the iteration does
2476 		 * not skip the element after, which now becomes the current
2477 		 * element.  This element must be re-tested if doing an
2478 		 * iteration, which is handled by the RETEST flag.
2479 		 */
2480 		if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2481 			cursor->flags |= HAMMER_CURSOR_RETEST;
2482 			cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2483 		}
2484 
2485 		/*
2486 		 * An on-disk record cannot have the same delete_tid
2487 		 * as its create_tid.  In a chain of record updates
2488 		 * this could result in a duplicate record.
2489 		 */
2490 		KKASSERT(elm->leaf.base.delete_tid !=
2491 			 elm->leaf.base.create_tid);
2492 	}
2493 
2494 	/*
2495 	 * Destroy the B-Tree element if asked (typically if a nohistory
2496 	 * file or mount, or when called by the pruning code).
2497 	 *
2498 	 * Adjust the ATEDISK flag to properly support iterations.
2499 	 */
2500 	if (delete_flags & HAMMER_DELETE_DESTROY) {
2501 		data_offset = elm->leaf.data_offset;
2502 		data_len = elm->leaf.data_len;
2503 		rec_type = elm->leaf.base.rec_type;
2504 		if (doprop) {
2505 			save_leaf = elm->leaf;
2506 			leaf = &save_leaf;
2507 		}
2508 		if (elm->base.rec_type == HAMMER_RECTYPE_INODE &&
2509 		    elm->leaf.base.delete_tid == 0) {
2510 			icount = -1;
2511 		}
2512 
2513 		error = hammer_btree_delete(cursor);
2514 		if (error == 0) {
2515 			/*
2516 			 * The deletion moves the next element (if any) to
2517 			 * the current element position.  We must clear
2518 			 * ATEDISK so this element is not skipped and we
2519 			 * must set RETEST to force any iteration to re-test
2520 			 * the element.
2521 			 */
2522 			if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2523 				cursor->flags |= HAMMER_CURSOR_RETEST;
2524 				cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2525 			}
2526 		}
2527 		if (error == 0) {
2528 			switch(data_offset & HAMMER_OFF_ZONE_MASK) {
2529 			case HAMMER_ZONE_LARGE_DATA:
2530 			case HAMMER_ZONE_SMALL_DATA:
2531 			case HAMMER_ZONE_META:
2532 				hammer_blockmap_free(trans,
2533 						     data_offset, data_len);
2534 				break;
2535 			default:
2536 				break;
2537 			}
2538 		}
2539 	}
2540 
2541 	/*
2542 	 * Track inode count and next_tid.  This is used by the mirroring
2543 	 * and PFS code.  icount can be negative, zero, or positive.
2544 	 */
2545 	if (error == 0 && track) {
2546 		if (icount) {
2547 			hammer_modify_volume_field(trans, trans->rootvol,
2548 						   vol0_stat_inodes);
2549 			trans->rootvol->ondisk->vol0_stat_inodes += icount;
2550 			hammer_modify_volume_done(trans->rootvol);
2551 		}
2552 		if (trans->rootvol->ondisk->vol0_next_tid < delete_tid) {
2553 			hammer_modify_volume(trans, trans->rootvol, NULL, 0);
2554 			trans->rootvol->ondisk->vol0_next_tid = delete_tid;
2555 			hammer_modify_volume_done(trans->rootvol);
2556 		}
2557 	}
2558 
2559 	/*
2560 	 * mirror_tid propagation occurs if the node's mirror_tid had to be
2561 	 * updated while adjusting the delete_tid.
2562 	 *
2563 	 * This occurs when deleting even in nohistory mode, but does not
2564 	 * occur when pruning an already-deleted node.
2565 	 *
2566 	 * cursor->ip is NULL when called from the pruning, mirroring,
2567 	 * and pfs code.  If non-NULL propagation will be conditionalized
2568 	 * on whether the PFS is in no-history mode or not.
2569 	 *
2570 	 * WARNING: cursor's leaf pointer may have changed after do_propagation
2571 	 *	    returns!
2572 	 */
2573 	if (doprop) {
2574 		if (cursor->ip)
2575 			hammer_btree_do_propagation(cursor, cursor->ip->pfsm, leaf);
2576 		else
2577 			hammer_btree_do_propagation(cursor, NULL, leaf);
2578 	}
2579 	hammer_sync_unlock(trans);
2580 	return (error);
2581 }
2582 
2583 /*
2584  * Determine whether we can remove a directory.  This routine checks whether
2585  * a directory is empty or not and enforces flush connectivity.
2586  *
2587  * Flush connectivity requires that we block if the target directory is
2588  * currently flushing, otherwise it may not end up in the same flush group.
2589  *
2590  * Returns 0 on success, ENOTEMPTY or EDEADLK (or other errors) on failure.
2591  */
2592 int
2593 hammer_ip_check_directory_empty(hammer_transaction_t trans, hammer_inode_t ip)
2594 {
2595 	struct hammer_cursor cursor;
2596 	int error;
2597 
2598 	/*
2599 	 * Check directory empty
2600 	 */
2601 	hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2602 
2603 	cursor.key_beg.localization = ip->obj_localization +
2604 				      hammer_dir_localization(ip);
2605 	cursor.key_beg.obj_id = ip->obj_id;
2606 	cursor.key_beg.create_tid = 0;
2607 	cursor.key_beg.delete_tid = 0;
2608 	cursor.key_beg.obj_type = 0;
2609 	cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE + 1;
2610 	cursor.key_beg.key = HAMMER_MIN_KEY;
2611 
2612 	cursor.key_end = cursor.key_beg;
2613 	cursor.key_end.rec_type = 0xFFFF;
2614 	cursor.key_end.key = HAMMER_MAX_KEY;
2615 
2616 	cursor.asof = ip->obj_asof;
2617 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2618 
2619 	error = hammer_ip_first(&cursor);
2620 	if (error == ENOENT)
2621 		error = 0;
2622 	else if (error == 0)
2623 		error = ENOTEMPTY;
2624 	hammer_done_cursor(&cursor);
2625 	return(error);
2626 }
2627 
2628 /*
2629  * Localize the data payload.  Directory entries may need their
2630  * localization adjusted.
2631  */
2632 static
2633 int
2634 hammer_cursor_localize_data(hammer_data_ondisk_t data,
2635 			    hammer_btree_leaf_elm_t leaf)
2636 {
2637 	u_int32_t localization;
2638 
2639 	if (leaf->base.rec_type == HAMMER_RECTYPE_DIRENTRY) {
2640 		localization = leaf->base.localization &
2641 			       HAMMER_LOCALIZE_PSEUDOFS_MASK;
2642 		if (data->entry.localization != localization) {
2643 			data->entry.localization = localization;
2644 			hammer_crc_set_leaf(data, leaf);
2645 		}
2646 	}
2647 	return(0);
2648 }
2649