xref: /dragonfly/sys/vfs/hammer/hammer_ondisk.c (revision 0db87cb7)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.76 2008/08/29 20:19:08 dillon Exp $
35  */
36 /*
37  * Manage HAMMER's on-disk structures.  These routines are primarily
38  * responsible for interfacing with the kernel's I/O subsystem and for
39  * managing in-memory structures.
40  */
41 
42 #include <sys/nlookup.h>
43 #include <sys/buf2.h>
44 
45 #include "hammer.h"
46 
47 static void hammer_free_volume(hammer_volume_t volume);
48 static int hammer_load_volume(hammer_volume_t volume);
49 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
50 static int hammer_load_node(hammer_transaction_t trans,
51 				hammer_node_t node, int isnew);
52 static void _hammer_rel_node(hammer_node_t node, int locked);
53 
54 static int
55 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
56 {
57 	if (vol1->vol_no < vol2->vol_no)
58 		return(-1);
59 	if (vol1->vol_no > vol2->vol_no)
60 		return(1);
61 	return(0);
62 }
63 
64 /*
65  * hammer_buffer structures are indexed via their zoneX_offset, not
66  * their zone2_offset.
67  */
68 static int
69 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
70 {
71 	if (buf1->zoneX_offset < buf2->zoneX_offset)
72 		return(-1);
73 	if (buf1->zoneX_offset > buf2->zoneX_offset)
74 		return(1);
75 	return(0);
76 }
77 
78 static int
79 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
80 {
81 	if (node1->node_offset < node2->node_offset)
82 		return(-1);
83 	if (node1->node_offset > node2->node_offset)
84 		return(1);
85 	return(0);
86 }
87 
88 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
89 	     hammer_vol_rb_compare, int32_t, vol_no);
90 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
91 	     hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
92 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
93 	     hammer_nod_rb_compare, hammer_off_t, node_offset);
94 
95 /************************************************************************
96  *				VOLUMES					*
97  ************************************************************************
98  *
99  * Load a HAMMER volume by name.  Returns 0 on success or a positive error
100  * code on failure.  Volumes must be loaded at mount time or via hammer
101  * volume-add command, hammer_get_volume() will not load a new volume.
102  *
103  * The passed devvp is vref()'d but not locked.  This function consumes the
104  * ref (typically by associating it with the volume structure).
105  *
106  * Calls made to hammer_load_volume() or single-threaded
107  */
108 int
109 hammer_install_volume(hammer_mount_t hmp, const char *volname,
110 		      struct vnode *devvp, void *data)
111 {
112 	struct mount *mp;
113 	hammer_volume_t volume;
114 	struct hammer_volume_ondisk *ondisk;
115 	struct hammer_volume_ondisk *img;
116 	struct nlookupdata nd;
117 	struct buf *bp = NULL;
118 	int error;
119 	int ronly;
120 	int setmp = 0;
121 	int i;
122 
123 	mp = hmp->mp;
124 	ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
125 
126 	/*
127 	 * Allocate a volume structure
128 	 */
129 	++hammer_count_volumes;
130 	volume = kmalloc(sizeof(*volume), hmp->m_misc, M_WAITOK|M_ZERO);
131 	volume->vol_name = kstrdup(volname, hmp->m_misc);
132 	volume->io.hmp = hmp;	/* bootstrap */
133 	hammer_io_init(&volume->io, volume, HAMMER_STRUCTURE_VOLUME);
134 	volume->io.offset = 0LL;
135 	volume->io.bytes = HAMMER_BUFSIZE;
136 
137 	/*
138 	 * Get the device vnode
139 	 */
140 	if (devvp == NULL) {
141 		error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
142 		if (error == 0)
143 			error = nlookup(&nd);
144 		if (error == 0)
145 			error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
146 		nlookup_done(&nd);
147 	} else {
148 		error = 0;
149 		volume->devvp = devvp;
150 	}
151 
152 	if (error == 0) {
153 		if (vn_isdisk(volume->devvp, &error)) {
154 			error = vfs_mountedon(volume->devvp);
155 		}
156 	}
157 	if (error == 0 && vcount(volume->devvp) > 0)
158 		error = EBUSY;
159 	if (error == 0) {
160 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
161 		error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
162 		if (error == 0) {
163 			error = VOP_OPEN(volume->devvp,
164 					 (ronly ? FREAD : FREAD|FWRITE),
165 					 FSCRED, NULL);
166 		}
167 		vn_unlock(volume->devvp);
168 	}
169 	if (error) {
170 		hammer_free_volume(volume);
171 		return(error);
172 	}
173 	volume->devvp->v_rdev->si_mountpoint = mp;
174 	setmp = 1;
175 
176 	/*
177 	 * Extract the volume number from the volume header and do various
178 	 * sanity checks.
179 	 */
180 	error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
181 	if (error)
182 		goto late_failure;
183 	ondisk = (void *)bp->b_data;
184 
185 	/*
186 	 * Initialize the volume header with data if the data is specified.
187 	 */
188 	if (ronly == 0 && data) {
189 		img = (struct hammer_volume_ondisk *)data;
190 		if (ondisk->vol_signature == HAMMER_FSBUF_VOLUME) {
191 			hkprintf("Formatting of valid HAMMER volume "
192 				"%s denied. Erase with dd!\n", volname);
193 			error = EFTYPE;
194 			goto late_failure;
195 		}
196 		bcopy(img, ondisk, sizeof(*img));
197 	}
198 
199 	if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
200 		hkprintf("volume %s has an invalid header\n",
201 			volume->vol_name);
202 		for (i = 0; i < (int)sizeof(ondisk->vol_signature); i++) {
203 			kprintf("%02x", ((char*)&ondisk->vol_signature)[i] & 0xFF);
204 			if (i != (int)sizeof(ondisk->vol_signature) - 1)
205 				kprintf(" ");
206 		}
207 		kprintf("\n");
208 		error = EFTYPE;
209 		goto late_failure;
210 	}
211 	volume->vol_no = ondisk->vol_no;
212 	volume->buffer_base = ondisk->vol_buf_beg;
213 	volume->vol_flags = ondisk->vol_flags;
214 	volume->nblocks = ondisk->vol_nblocks;
215 	volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
216 				    ondisk->vol_buf_end - ondisk->vol_buf_beg);
217 	volume->maxraw_off = ondisk->vol_buf_end;
218 
219 	if (RB_EMPTY(&hmp->rb_vols_root)) {
220 		hmp->fsid = ondisk->vol_fsid;
221 	} else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
222 		hkprintf("volume %s's fsid does not match other volumes\n",
223 			volume->vol_name);
224 		error = EFTYPE;
225 		goto late_failure;
226 	}
227 
228 	/*
229 	 * Insert the volume structure into the red-black tree.
230 	 */
231 	if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
232 		hkprintf("volume %s has a duplicate vol_no %d\n",
233 			volume->vol_name, volume->vol_no);
234 		error = EEXIST;
235 	}
236 
237 	if (error == 0)
238 		HAMMER_VOLUME_NUMBER_ADD(hmp, volume);
239 
240 	/*
241 	 * Set the root volume .  HAMMER special cases rootvol the structure.
242 	 * We do not hold a ref because this would prevent related I/O
243 	 * from being flushed.
244 	 */
245 	if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
246 		hmp->rootvol = volume;
247 		hmp->nvolumes = ondisk->vol_count;
248 		if (bp) {
249 			brelse(bp);
250 			bp = NULL;
251 		}
252 		hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
253 						HAMMER_BUFFERS_PER_BIGBLOCK;
254 		hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
255 						HAMMER_BUFFERS_PER_BIGBLOCK;
256 	}
257 late_failure:
258 	if (bp)
259 		brelse(bp);
260 	if (error) {
261 		/*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
262 		if (setmp)
263 			volume->devvp->v_rdev->si_mountpoint = NULL;
264 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
265 		VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE, NULL);
266 		vn_unlock(volume->devvp);
267 		hammer_free_volume(volume);
268 	}
269 	return (error);
270 }
271 
272 /*
273  * This is called for each volume when updating the mount point from
274  * read-write to read-only or vise-versa.
275  */
276 int
277 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
278 {
279 	if (volume->devvp) {
280 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
281 		if (volume->io.hmp->ronly) {
282 			/* do not call vinvalbuf */
283 			VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
284 			VOP_CLOSE(volume->devvp, FREAD|FWRITE, NULL);
285 		} else {
286 			/* do not call vinvalbuf */
287 			VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
288 			VOP_CLOSE(volume->devvp, FREAD, NULL);
289 		}
290 		vn_unlock(volume->devvp);
291 	}
292 	return(0);
293 }
294 
295 /*
296  * Unload and free a HAMMER volume.  Must return >= 0 to continue scan
297  * so returns -1 on failure.
298  */
299 int
300 hammer_unload_volume(hammer_volume_t volume, void *data)
301 {
302 	hammer_mount_t hmp = volume->io.hmp;
303 	struct buf *bp = NULL;
304 	struct hammer_volume_ondisk *img;
305 	int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
306 	int error;
307 
308 	/*
309 	 * Clear the volume header with data if the data is specified.
310 	 */
311 	if (ronly == 0 && data && volume->devvp) {
312 		img = (struct hammer_volume_ondisk *)data;
313 		error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
314 		if (error || bp->b_bcount < sizeof(*img)) {
315 			hmkprintf(hmp, "Failed to read volume header: %d\n", error);
316 			brelse(bp);
317 		} else {
318 			bcopy(img, bp->b_data, sizeof(*img));
319 			error = bwrite(bp);
320 			if (error)
321 				hmkprintf(hmp, "Failed to clear volume header: %d\n",
322 					error);
323 		}
324 	}
325 
326 	/*
327 	 * Clean up the root volume pointer, which is held unlocked in hmp.
328 	 */
329 	if (hmp->rootvol == volume)
330 		hmp->rootvol = NULL;
331 
332 	/*
333 	 * We must not flush a dirty buffer to disk on umount.  It should
334 	 * have already been dealt with by the flusher, or we may be in
335 	 * catastrophic failure.
336 	 */
337 	hammer_io_clear_modify(&volume->io, 1);
338 	volume->io.waitdep = 1;
339 
340 	/*
341 	 * Clean up the persistent ref ioerror might have on the volume
342 	 */
343 	if (volume->io.ioerror)
344 		hammer_io_clear_error_noassert(&volume->io);
345 
346 	/*
347 	 * This should release the bp.  Releasing the volume with flush set
348 	 * implies the interlock is set.
349 	 */
350 	hammer_ref_interlock_true(&volume->io.lock);
351 	hammer_rel_volume(volume, 1);
352 	KKASSERT(volume->io.bp == NULL);
353 
354 	/*
355 	 * There should be no references on the volume.
356 	 */
357 	KKASSERT(hammer_norefs(&volume->io.lock));
358 
359 	volume->ondisk = NULL;
360 	if (volume->devvp) {
361 		if (volume->devvp->v_rdev &&
362 		    volume->devvp->v_rdev->si_mountpoint == hmp->mp) {
363 			volume->devvp->v_rdev->si_mountpoint = NULL;
364 		}
365 		if (ronly) {
366 			/*
367 			 * Make sure we don't sync anything to disk if we
368 			 * are in read-only mode (1) or critically-errored
369 			 * (2).  Note that there may be dirty buffers in
370 			 * normal read-only mode from crash recovery.
371 			 */
372 			vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
373 			vinvalbuf(volume->devvp, 0, 0, 0);
374 			VOP_CLOSE(volume->devvp, FREAD, NULL);
375 			vn_unlock(volume->devvp);
376 		} else {
377 			/*
378 			 * Normal termination, save any dirty buffers
379 			 * (XXX there really shouldn't be any).
380 			 */
381 			vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
382 			vinvalbuf(volume->devvp, V_SAVE, 0, 0);
383 			VOP_CLOSE(volume->devvp, FREAD|FWRITE, NULL);
384 			vn_unlock(volume->devvp);
385 		}
386 	}
387 
388 	/*
389 	 * Destroy the structure
390 	 */
391 	RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
392 	HAMMER_VOLUME_NUMBER_DEL(hmp, volume);
393 	hammer_free_volume(volume);
394 	return(0);
395 }
396 
397 static
398 void
399 hammer_free_volume(hammer_volume_t volume)
400 {
401 	hammer_mount_t hmp = volume->io.hmp;
402 
403 	if (volume->vol_name) {
404 		kfree(volume->vol_name, hmp->m_misc);
405 		volume->vol_name = NULL;
406 	}
407 	if (volume->devvp) {
408 		vrele(volume->devvp);
409 		volume->devvp = NULL;
410 	}
411 	--hammer_count_volumes;
412 	kfree(volume, hmp->m_misc);
413 }
414 
415 /*
416  * Get a HAMMER volume.  The volume must already exist.
417  */
418 hammer_volume_t
419 hammer_get_volume(hammer_mount_t hmp, int32_t vol_no, int *errorp)
420 {
421 	struct hammer_volume *volume;
422 
423 	/*
424 	 * Locate the volume structure
425 	 */
426 	volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
427 	if (volume == NULL) {
428 		*errorp = ENOENT;
429 		return(NULL);
430 	}
431 
432 	/*
433 	 * Reference the volume, load/check the data on the 0->1 transition.
434 	 * hammer_load_volume() will dispose of the interlock on return,
435 	 * and also clean up the ref count on error.
436 	 */
437 	if (hammer_ref_interlock(&volume->io.lock)) {
438 		*errorp = hammer_load_volume(volume);
439 		if (*errorp)
440 			volume = NULL;
441 	} else {
442 		KKASSERT(volume->ondisk);
443 		*errorp = 0;
444 	}
445 	return(volume);
446 }
447 
448 int
449 hammer_ref_volume(hammer_volume_t volume)
450 {
451 	int error;
452 
453 	/*
454 	 * Reference the volume and deal with the check condition used to
455 	 * load its ondisk info.
456 	 */
457 	if (hammer_ref_interlock(&volume->io.lock)) {
458 		error = hammer_load_volume(volume);
459 	} else {
460 		KKASSERT(volume->ondisk);
461 		error = 0;
462 	}
463 	return (error);
464 }
465 
466 /*
467  * May be called without fs_token
468  */
469 hammer_volume_t
470 hammer_get_root_volume(hammer_mount_t hmp, int *errorp)
471 {
472 	hammer_volume_t volume;
473 
474 	volume = hmp->rootvol;
475 	KKASSERT(volume != NULL);
476 
477 	/*
478 	 * Reference the volume and deal with the check condition used to
479 	 * load its ondisk info.
480 	 */
481 	if (hammer_ref_interlock(&volume->io.lock)) {
482 		lwkt_gettoken(&volume->io.hmp->fs_token);
483 		*errorp = hammer_load_volume(volume);
484 		lwkt_reltoken(&volume->io.hmp->fs_token);
485 		if (*errorp)
486 			volume = NULL;
487 	} else {
488 		KKASSERT(volume->ondisk);
489 		*errorp = 0;
490 	}
491 	return (volume);
492 }
493 
494 /*
495  * Load a volume's on-disk information.  The volume must be referenced and
496  * the interlock is held on call.  The interlock will be released on return.
497  * The reference will also be released on return if an error occurs.
498  */
499 static int
500 hammer_load_volume(hammer_volume_t volume)
501 {
502 	int error;
503 
504 	if (volume->ondisk == NULL) {
505 		error = hammer_io_read(volume->devvp, &volume->io,
506 				       HAMMER_BUFSIZE);
507 		if (error == 0) {
508 			volume->ondisk = (void *)volume->io.bp->b_data;
509                         hammer_ref_interlock_done(&volume->io.lock);
510 		} else {
511                         hammer_rel_volume(volume, 1);
512 		}
513 	} else {
514 		error = 0;
515 	}
516 	return(error);
517 }
518 
519 /*
520  * Release a previously acquired reference on the volume.
521  *
522  * Volumes are not unloaded from memory during normal operation.
523  *
524  * May be called without fs_token
525  */
526 void
527 hammer_rel_volume(hammer_volume_t volume, int locked)
528 {
529 	struct buf *bp;
530 
531 	if (hammer_rel_interlock(&volume->io.lock, locked)) {
532 		lwkt_gettoken(&volume->io.hmp->fs_token);
533 		volume->ondisk = NULL;
534 		bp = hammer_io_release(&volume->io, locked);
535 		lwkt_reltoken(&volume->io.hmp->fs_token);
536 		hammer_rel_interlock_done(&volume->io.lock, locked);
537 		if (bp)
538 			brelse(bp);
539 	}
540 }
541 
542 int
543 hammer_mountcheck_volumes(hammer_mount_t hmp)
544 {
545 	hammer_volume_t vol;
546 	int i;
547 
548 	HAMMER_VOLUME_NUMBER_FOREACH(hmp, i) {
549 		vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
550 		if (vol == NULL)
551 			return(EINVAL);
552 	}
553 	return(0);
554 }
555 
556 int
557 hammer_get_installed_volumes(hammer_mount_t hmp)
558 {
559 	int i, ret = 0;
560 
561 	HAMMER_VOLUME_NUMBER_FOREACH(hmp, i)
562 		ret++;
563 	return(ret);
564 }
565 
566 /************************************************************************
567  *				BUFFERS					*
568  ************************************************************************
569  *
570  * Manage buffers.  Currently most blockmap-backed zones are direct-mapped
571  * to zone-2 buffer offsets, without a translation stage.  However, the
572  * hammer_buffer structure is indexed by its zoneX_offset, not its
573  * zone2_offset.
574  *
575  * The proper zone must be maintained throughout the code-base all the way
576  * through to the big-block allocator, or routines like hammer_del_buffers()
577  * will not be able to locate all potentially conflicting buffers.
578  */
579 
580 /*
581  * Helper function returns whether a zone offset can be directly translated
582  * to a raw buffer index or not.  Really only the volume and undo zones
583  * can't be directly translated.  Volumes are special-cased and undo zones
584  * shouldn't be aliased accessed in read-only mode.
585  *
586  * This function is ONLY used to detect aliased zones during a read-only
587  * mount.
588  */
589 static __inline int
590 hammer_direct_zone(hammer_off_t buf_offset)
591 {
592 	switch(HAMMER_ZONE_DECODE(buf_offset)) {
593 	case HAMMER_ZONE_RAW_BUFFER_INDEX:
594 	case HAMMER_ZONE_FREEMAP_INDEX:
595 	case HAMMER_ZONE_BTREE_INDEX:
596 	case HAMMER_ZONE_META_INDEX:
597 	case HAMMER_ZONE_LARGE_DATA_INDEX:
598 	case HAMMER_ZONE_SMALL_DATA_INDEX:
599 		return(1);
600 	default:
601 		return(0);
602 	}
603 	/* NOT REACHED */
604 }
605 
606 hammer_buffer_t
607 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
608 		  int bytes, int isnew, int *errorp)
609 {
610 	hammer_buffer_t buffer;
611 	hammer_volume_t volume;
612 	hammer_off_t	zone2_offset;
613 	hammer_io_type_t iotype;
614 	int vol_no;
615 	int zone;
616 
617 	buf_offset &= ~HAMMER_BUFMASK64;
618 again:
619 	/*
620 	 * Shortcut if the buffer is already cached
621 	 */
622 	buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
623 	if (buffer) {
624 		/*
625 		 * Once refed the ondisk field will not be cleared by
626 		 * any other action.  Shortcut the operation if the
627 		 * ondisk structure is valid.
628 		 */
629 found_aliased:
630 		if (hammer_ref_interlock(&buffer->io.lock) == 0) {
631 			hammer_io_advance(&buffer->io);
632 			KKASSERT(buffer->ondisk);
633 			*errorp = 0;
634 			return(buffer);
635 		}
636 
637 		/*
638 		 * 0->1 transition or defered 0->1 transition (CHECK),
639 		 * interlock now held.  Shortcut if ondisk is already
640 		 * assigned.
641 		 */
642 		atomic_add_int(&hammer_count_refedbufs, 1);
643 		if (buffer->ondisk) {
644 			hammer_io_advance(&buffer->io);
645 			hammer_ref_interlock_done(&buffer->io.lock);
646 			*errorp = 0;
647 			return(buffer);
648 		}
649 
650 		/*
651 		 * The buffer is no longer loose if it has a ref, and
652 		 * cannot become loose once it gains a ref.  Loose
653 		 * buffers will never be in a modified state.  This should
654 		 * only occur on the 0->1 transition of refs.
655 		 *
656 		 * lose_root can be modified via a biodone() interrupt
657 		 * so the io_token must be held.
658 		 */
659 		if (buffer->io.mod_root == &hmp->lose_root) {
660 			lwkt_gettoken(&hmp->io_token);
661 			if (buffer->io.mod_root == &hmp->lose_root) {
662 				RB_REMOVE(hammer_mod_rb_tree,
663 					  buffer->io.mod_root, &buffer->io);
664 				buffer->io.mod_root = NULL;
665 				KKASSERT(buffer->io.modified == 0);
666 			}
667 			lwkt_reltoken(&hmp->io_token);
668 		}
669 		goto found;
670 	} else if (hmp->ronly && hammer_direct_zone(buf_offset)) {
671 		/*
672 		 * If this is a read-only mount there could be an alias
673 		 * in the raw-zone.  If there is we use that buffer instead.
674 		 *
675 		 * rw mounts will not have aliases.  Also note when going
676 		 * from ro -> rw the recovered raw buffers are flushed and
677 		 * reclaimed, so again there will not be any aliases once
678 		 * the mount is rw.
679 		 */
680 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
681 				   hammer_xlate_to_zone2(buf_offset));
682 		if (buffer) {
683 			if (hammer_debug_general & 0x0001) {
684 				hkrateprintf(&hmp->kdiag,
685 					    "recovered aliased %016jx\n",
686 					    (intmax_t)buf_offset);
687 			}
688 			goto found_aliased;
689 		}
690 	}
691 
692 	/*
693 	 * What is the buffer class?
694 	 */
695 	zone = HAMMER_ZONE_DECODE(buf_offset);
696 
697 	switch(zone) {
698 	case HAMMER_ZONE_LARGE_DATA_INDEX:
699 	case HAMMER_ZONE_SMALL_DATA_INDEX:
700 		iotype = HAMMER_STRUCTURE_DATA_BUFFER;
701 		break;
702 	case HAMMER_ZONE_UNDO_INDEX:
703 		iotype = HAMMER_STRUCTURE_UNDO_BUFFER;
704 		break;
705 	case HAMMER_ZONE_META_INDEX:
706 	default:
707 		/*
708 		 * NOTE: inode data and directory entries are placed in this
709 		 * zone.  inode atime/mtime is updated in-place and thus
710 		 * buffers containing inodes must be synchronized as
711 		 * meta-buffers, same as buffers containing B-Tree info.
712 		 */
713 		iotype = HAMMER_STRUCTURE_META_BUFFER;
714 		break;
715 	}
716 
717 	/*
718 	 * Handle blockmap offset translations
719 	 */
720 	if (zone >= HAMMER_ZONE2_MAPPED_INDEX) {
721 		zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
722 	} else if (zone == HAMMER_ZONE_UNDO_INDEX) {
723 		zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
724 	} else {
725 		KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
726 		zone2_offset = buf_offset;
727 		*errorp = 0;
728 	}
729 	if (*errorp)
730 		return(NULL);
731 
732 	/*
733 	 * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
734 	 * specifications.
735 	 */
736 	KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
737 		 HAMMER_ZONE_RAW_BUFFER);
738 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
739 	volume = hammer_get_volume(hmp, vol_no, errorp);
740 	if (volume == NULL)
741 		return(NULL);
742 
743 	KKASSERT(zone2_offset < volume->maxbuf_off);
744 
745 	/*
746 	 * Allocate a new buffer structure.  We will check for races later.
747 	 */
748 	++hammer_count_buffers;
749 	buffer = kmalloc(sizeof(*buffer), hmp->m_misc,
750 			 M_WAITOK|M_ZERO|M_USE_RESERVE);
751 	buffer->zone2_offset = zone2_offset;
752 	buffer->zoneX_offset = buf_offset;
753 
754 	hammer_io_init(&buffer->io, volume, iotype);
755 	buffer->io.offset = volume->ondisk->vol_buf_beg +
756 			    (zone2_offset & HAMMER_OFF_SHORT_MASK);
757 	buffer->io.bytes = bytes;
758 	TAILQ_INIT(&buffer->clist);
759 	hammer_ref_interlock_true(&buffer->io.lock);
760 
761 	/*
762 	 * Insert the buffer into the RB tree and handle late collisions.
763 	 */
764 	if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
765 		hammer_rel_volume(volume, 0);
766 		buffer->io.volume = NULL;			/* safety */
767 		if (hammer_rel_interlock(&buffer->io.lock, 1))	/* safety */
768 			hammer_rel_interlock_done(&buffer->io.lock, 1);
769 		--hammer_count_buffers;
770 		kfree(buffer, hmp->m_misc);
771 		goto again;
772 	}
773 	atomic_add_int(&hammer_count_refedbufs, 1);
774 found:
775 
776 	/*
777 	 * The buffer is referenced and interlocked.  Load the buffer
778 	 * if necessary.  hammer_load_buffer() deals with the interlock
779 	 * and, if an error is returned, also deals with the ref.
780 	 */
781 	if (buffer->ondisk == NULL) {
782 		*errorp = hammer_load_buffer(buffer, isnew);
783 		if (*errorp)
784 			buffer = NULL;
785 	} else {
786 		hammer_io_advance(&buffer->io);
787 		hammer_ref_interlock_done(&buffer->io.lock);
788 		*errorp = 0;
789 	}
790 	return(buffer);
791 }
792 
793 /*
794  * This is used by the direct-read code to deal with large-data buffers
795  * created by the reblocker and mirror-write code.  The direct-read code
796  * bypasses the HAMMER buffer subsystem and so any aliased dirty or write-
797  * running hammer buffers must be fully synced to disk before we can issue
798  * the direct-read.
799  *
800  * This code path is not considered critical as only the rebocker and
801  * mirror-write code will create large-data buffers via the HAMMER buffer
802  * subsystem.  They do that because they operate at the B-Tree level and
803  * do not access the vnode/inode structures.
804  */
805 void
806 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
807 {
808 	hammer_buffer_t buffer;
809 	int error;
810 
811 	KKASSERT((base_offset & HAMMER_OFF_ZONE_MASK) ==
812 		 HAMMER_ZONE_LARGE_DATA);
813 
814 	while (bytes > 0) {
815 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
816 				   base_offset);
817 		if (buffer && (buffer->io.modified || buffer->io.running)) {
818 			error = hammer_ref_buffer(buffer);
819 			if (error == 0) {
820 				hammer_io_wait(&buffer->io);
821 				if (buffer->io.modified) {
822 					hammer_io_write_interlock(&buffer->io);
823 					hammer_io_flush(&buffer->io, 0);
824 					hammer_io_done_interlock(&buffer->io);
825 					hammer_io_wait(&buffer->io);
826 				}
827 				hammer_rel_buffer(buffer, 0);
828 			}
829 		}
830 		base_offset += HAMMER_BUFSIZE;
831 		bytes -= HAMMER_BUFSIZE;
832 	}
833 }
834 
835 /*
836  * Destroy all buffers covering the specified zoneX offset range.  This
837  * is called when the related blockmap layer2 entry is freed or when
838  * a direct write bypasses our buffer/buffer-cache subsystem.
839  *
840  * The buffers may be referenced by the caller itself.  Setting reclaim
841  * will cause the buffer to be destroyed when it's ref count reaches zero.
842  *
843  * Return 0 on success, EAGAIN if some buffers could not be destroyed due
844  * to additional references held by other threads, or some other (typically
845  * fatal) error.
846  */
847 int
848 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
849 		   hammer_off_t zone2_offset, int bytes,
850 		   int report_conflicts)
851 {
852 	hammer_buffer_t buffer;
853 	hammer_volume_t volume;
854 	int vol_no;
855 	int error;
856 	int ret_error;
857 
858 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
859 	volume = hammer_get_volume(hmp, vol_no, &ret_error);
860 	KKASSERT(ret_error == 0);
861 
862 	while (bytes > 0) {
863 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
864 				   base_offset);
865 		if (buffer) {
866 			error = hammer_ref_buffer(buffer);
867 			if (hammer_debug_general & 0x20000) {
868 				hkprintf("delbufr %016jx rerr=%d 1ref=%d\n",
869 					(intmax_t)buffer->zoneX_offset,
870 					error,
871 					hammer_oneref(&buffer->io.lock));
872 			}
873 			if (error == 0 && !hammer_oneref(&buffer->io.lock)) {
874 				error = EAGAIN;
875 				hammer_rel_buffer(buffer, 0);
876 			}
877 			if (error == 0) {
878 				KKASSERT(buffer->zone2_offset == zone2_offset);
879 				hammer_io_clear_modify(&buffer->io, 1);
880 				buffer->io.reclaim = 1;
881 				buffer->io.waitdep = 1;
882 				KKASSERT(buffer->io.volume == volume);
883 				hammer_rel_buffer(buffer, 0);
884 			}
885 		} else {
886 			error = hammer_io_inval(volume, zone2_offset);
887 		}
888 		if (error) {
889 			ret_error = error;
890 			if (report_conflicts ||
891 			    (hammer_debug_general & 0x8000)) {
892 				krateprintf(&hmp->kdiag,
893 					"hammer_del_buffers: unable to "
894 					"invalidate %016llx buffer=%p "
895 					"rep=%d lkrefs=%08x\n",
896 					(long long)base_offset,
897 					buffer, report_conflicts,
898 					(buffer ? buffer->io.lock.refs : -1));
899 			}
900 		}
901 		base_offset += HAMMER_BUFSIZE;
902 		zone2_offset += HAMMER_BUFSIZE;
903 		bytes -= HAMMER_BUFSIZE;
904 	}
905 	hammer_rel_volume(volume, 0);
906 	return (ret_error);
907 }
908 
909 /*
910  * Given a referenced and interlocked buffer load/validate the data.
911  *
912  * The buffer interlock will be released on return.  If an error is
913  * returned the buffer reference will also be released (and the buffer
914  * pointer will thus be stale).
915  */
916 static int
917 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
918 {
919 	hammer_volume_t volume;
920 	int error;
921 
922 	/*
923 	 * Load the buffer's on-disk info
924 	 */
925 	volume = buffer->io.volume;
926 
927 	if (hammer_debug_io & 0x0004) {
928 		hdkprintf("load_buffer %016llx %016llx isnew=%d od=%p\n",
929 			(long long)buffer->zoneX_offset,
930 			(long long)buffer->zone2_offset,
931 			isnew, buffer->ondisk);
932 	}
933 
934 	if (buffer->ondisk == NULL) {
935 		/*
936 		 * Issue the read or generate a new buffer.  When reading
937 		 * the limit argument controls any read-ahead clustering
938 		 * hammer_io_read() is allowed to do.
939 		 *
940 		 * We cannot read-ahead in the large-data zone and we cannot
941 		 * cross a big-block boundary as the next big-block might
942 		 * use a different buffer size.
943 		 */
944 		if (isnew) {
945 			error = hammer_io_new(volume->devvp, &buffer->io);
946 		} else if ((buffer->zoneX_offset & HAMMER_OFF_ZONE_MASK) ==
947 			   HAMMER_ZONE_LARGE_DATA) {
948 			error = hammer_io_read(volume->devvp, &buffer->io,
949 					       buffer->io.bytes);
950 		} else {
951 			hammer_off_t limit;
952 
953 			limit = (buffer->zone2_offset +
954 				 HAMMER_BIGBLOCK_MASK64) &
955 				~HAMMER_BIGBLOCK_MASK64;
956 			limit -= buffer->zone2_offset;
957 			error = hammer_io_read(volume->devvp, &buffer->io,
958 					       limit);
959 		}
960 		if (error == 0)
961 			buffer->ondisk = (void *)buffer->io.bp->b_data;
962 	} else if (isnew) {
963 		error = hammer_io_new(volume->devvp, &buffer->io);
964 	} else {
965 		error = 0;
966 	}
967 	if (error == 0) {
968 		hammer_io_advance(&buffer->io);
969 		hammer_ref_interlock_done(&buffer->io.lock);
970 	} else {
971 		hammer_rel_buffer(buffer, 1);
972 	}
973 	return (error);
974 }
975 
976 /*
977  * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
978  * This routine is only called during unmount or when a volume is
979  * removed.
980  *
981  * If data != NULL, it specifies a volume whoose buffers should
982  * be unloaded.
983  */
984 int
985 hammer_unload_buffer(hammer_buffer_t buffer, void *data)
986 {
987 	struct hammer_volume *volume = (struct hammer_volume *) data;
988 
989 	/*
990 	 * If volume != NULL we are only interested in unloading buffers
991 	 * associated with a particular volume.
992 	 */
993 	if (volume != NULL && volume != buffer->io.volume)
994 		return 0;
995 
996 	/*
997 	 * Clean up the persistent ref ioerror might have on the buffer
998 	 * and acquire a ref.  Expect a 0->1 transition.
999 	 */
1000 	if (buffer->io.ioerror) {
1001 		hammer_io_clear_error_noassert(&buffer->io);
1002 		atomic_add_int(&hammer_count_refedbufs, -1);
1003 	}
1004 	hammer_ref_interlock_true(&buffer->io.lock);
1005 	atomic_add_int(&hammer_count_refedbufs, 1);
1006 
1007 	/*
1008 	 * We must not flush a dirty buffer to disk on umount.  It should
1009 	 * have already been dealt with by the flusher, or we may be in
1010 	 * catastrophic failure.
1011 	 *
1012 	 * We must set waitdep to ensure that a running buffer is waited
1013 	 * on and released prior to us trying to unload the volume.
1014 	 */
1015 	hammer_io_clear_modify(&buffer->io, 1);
1016 	hammer_flush_buffer_nodes(buffer);
1017 	buffer->io.waitdep = 1;
1018 	hammer_rel_buffer(buffer, 1);
1019 	return(0);
1020 }
1021 
1022 /*
1023  * Reference a buffer that is either already referenced or via a specially
1024  * handled pointer (aka cursor->buffer).
1025  */
1026 int
1027 hammer_ref_buffer(hammer_buffer_t buffer)
1028 {
1029 	hammer_mount_t hmp;
1030 	int error;
1031 	int locked;
1032 
1033 	/*
1034 	 * Acquire a ref, plus the buffer will be interlocked on the
1035 	 * 0->1 transition.
1036 	 */
1037 	locked = hammer_ref_interlock(&buffer->io.lock);
1038 	hmp = buffer->io.hmp;
1039 
1040 	/*
1041 	 * At this point a biodone() will not touch the buffer other then
1042 	 * incidental bits.  However, lose_root can be modified via
1043 	 * a biodone() interrupt.
1044 	 *
1045 	 * No longer loose.  lose_root requires the io_token.
1046 	 */
1047 	if (buffer->io.mod_root == &hmp->lose_root) {
1048 		lwkt_gettoken(&hmp->io_token);
1049 		if (buffer->io.mod_root == &hmp->lose_root) {
1050 			RB_REMOVE(hammer_mod_rb_tree,
1051 				  buffer->io.mod_root, &buffer->io);
1052 			buffer->io.mod_root = NULL;
1053 		}
1054 		lwkt_reltoken(&hmp->io_token);
1055 	}
1056 
1057 	if (locked) {
1058 		atomic_add_int(&hammer_count_refedbufs, 1);
1059 		error = hammer_load_buffer(buffer, 0);
1060 		/* NOTE: on error the buffer pointer is stale */
1061 	} else {
1062 		error = 0;
1063 	}
1064 	return(error);
1065 }
1066 
1067 /*
1068  * Release a reference on the buffer.  On the 1->0 transition the
1069  * underlying IO will be released but the data reference is left
1070  * cached.
1071  *
1072  * Only destroy the structure itself if the related buffer cache buffer
1073  * was disassociated from it.  This ties the management of the structure
1074  * to the buffer cache subsystem.  buffer->ondisk determines whether the
1075  * embedded io is referenced or not.
1076  */
1077 void
1078 hammer_rel_buffer(hammer_buffer_t buffer, int locked)
1079 {
1080 	hammer_volume_t volume;
1081 	hammer_mount_t hmp;
1082 	struct buf *bp = NULL;
1083 	int freeme = 0;
1084 
1085 	hmp = buffer->io.hmp;
1086 
1087 	if (hammer_rel_interlock(&buffer->io.lock, locked) == 0)
1088 		return;
1089 
1090 	/*
1091 	 * hammer_count_refedbufs accounting.  Decrement if we are in
1092 	 * the error path or if CHECK is clear.
1093 	 *
1094 	 * If we are not in the error path and CHECK is set the caller
1095 	 * probably just did a hammer_ref() and didn't account for it,
1096 	 * so we don't account for the loss here.
1097 	 */
1098 	if (locked || (buffer->io.lock.refs & HAMMER_REFS_CHECK) == 0)
1099 		atomic_add_int(&hammer_count_refedbufs, -1);
1100 
1101 	/*
1102 	 * If the caller locked us or the normal released transitions
1103 	 * from 1->0 (and acquired the lock) attempt to release the
1104 	 * io.  If the called locked us we tell hammer_io_release()
1105 	 * to flush (which would be the unload or failure path).
1106 	 */
1107 	bp = hammer_io_release(&buffer->io, locked);
1108 
1109 	/*
1110 	 * If the buffer has no bp association and no refs we can destroy
1111 	 * it.
1112 	 *
1113 	 * NOTE: It is impossible for any associated B-Tree nodes to have
1114 	 * refs if the buffer has no additional refs.
1115 	 */
1116 	if (buffer->io.bp == NULL && hammer_norefs(&buffer->io.lock)) {
1117 		RB_REMOVE(hammer_buf_rb_tree,
1118 			  &buffer->io.hmp->rb_bufs_root,
1119 			  buffer);
1120 		volume = buffer->io.volume;
1121 		buffer->io.volume = NULL; /* sanity */
1122 		hammer_rel_volume(volume, 0);
1123 		hammer_io_clear_modlist(&buffer->io);
1124 		hammer_flush_buffer_nodes(buffer);
1125 		KKASSERT(TAILQ_EMPTY(&buffer->clist));
1126 		freeme = 1;
1127 	}
1128 
1129 	/*
1130 	 * Cleanup
1131 	 */
1132 	hammer_rel_interlock_done(&buffer->io.lock, locked);
1133 	if (bp)
1134 		brelse(bp);
1135 	if (freeme) {
1136 		--hammer_count_buffers;
1137 		kfree(buffer, hmp->m_misc);
1138 	}
1139 }
1140 
1141 /*
1142  * Access the filesystem buffer containing the specified hammer offset.
1143  * buf_offset is a conglomeration of the volume number and vol_buf_beg
1144  * relative buffer offset.  It must also have bit 55 set to be valid.
1145  * (see hammer_off_t in hammer_disk.h).
1146  *
1147  * Any prior buffer in *bufferp will be released and replaced by the
1148  * requested buffer.
1149  *
1150  * NOTE: The buffer is indexed via its zoneX_offset but we allow the
1151  * passed cached *bufferp to match against either zoneX or zone2.
1152  */
1153 static __inline
1154 void *
1155 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1156 	     int *errorp, struct hammer_buffer **bufferp)
1157 {
1158 	hammer_buffer_t buffer;
1159 	int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1160 
1161 	buf_offset &= ~HAMMER_BUFMASK64;
1162 	KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) != 0);
1163 
1164 	buffer = *bufferp;
1165 	if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1166 			       buffer->zoneX_offset != buf_offset)) {
1167 		if (buffer)
1168 			hammer_rel_buffer(buffer, 0);
1169 		buffer = hammer_get_buffer(hmp, buf_offset, bytes, 0, errorp);
1170 		*bufferp = buffer;
1171 	} else {
1172 		*errorp = 0;
1173 	}
1174 
1175 	/*
1176 	 * Return a pointer to the buffer data.
1177 	 */
1178 	if (buffer == NULL)
1179 		return(NULL);
1180 	else
1181 		return((char *)buffer->ondisk + xoff);
1182 }
1183 
1184 void *
1185 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
1186 	     int *errorp, struct hammer_buffer **bufferp)
1187 {
1188 	return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1189 }
1190 
1191 void *
1192 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1193 	         int *errorp, struct hammer_buffer **bufferp)
1194 {
1195 	bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1196 	return(_hammer_bread(hmp, buf_offset, bytes, errorp, bufferp));
1197 }
1198 
1199 /*
1200  * Access the filesystem buffer containing the specified hammer offset.
1201  * No disk read operation occurs.  The result buffer may contain garbage.
1202  *
1203  * Any prior buffer in *bufferp will be released and replaced by the
1204  * requested buffer.
1205  *
1206  * This function marks the buffer dirty but does not increment its
1207  * modify_refs count.
1208  */
1209 static __inline
1210 void *
1211 _hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1212 	     int *errorp, struct hammer_buffer **bufferp)
1213 {
1214 	hammer_buffer_t buffer;
1215 	int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1216 
1217 	buf_offset &= ~HAMMER_BUFMASK64;
1218 	KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) != 0);
1219 
1220 	buffer = *bufferp;
1221 	if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1222 			       buffer->zoneX_offset != buf_offset)) {
1223 		if (buffer)
1224 			hammer_rel_buffer(buffer, 0);
1225 		buffer = hammer_get_buffer(hmp, buf_offset, bytes, 1, errorp);
1226 		*bufferp = buffer;
1227 	} else {
1228 		*errorp = 0;
1229 	}
1230 
1231 	/*
1232 	 * Return a pointer to the buffer data.
1233 	 */
1234 	if (buffer == NULL)
1235 		return(NULL);
1236 	else
1237 		return((char *)buffer->ondisk + xoff);
1238 }
1239 
1240 void *
1241 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
1242 	     int *errorp, struct hammer_buffer **bufferp)
1243 {
1244 	return(_hammer_bnew(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1245 }
1246 
1247 void *
1248 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1249 		int *errorp, struct hammer_buffer **bufferp)
1250 {
1251 	bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1252 	return(_hammer_bnew(hmp, buf_offset, bytes, errorp, bufferp));
1253 }
1254 
1255 /************************************************************************
1256  *				NODES					*
1257  ************************************************************************
1258  *
1259  * Manage B-Tree nodes.  B-Tree nodes represent the primary indexing
1260  * method used by the HAMMER filesystem.
1261  *
1262  * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
1263  * associated with its buffer, and will only referenced the buffer while
1264  * the node itself is referenced.
1265  *
1266  * A hammer_node can also be passively associated with other HAMMER
1267  * structures, such as inodes, while retaining 0 references.  These
1268  * associations can be cleared backwards using a pointer-to-pointer in
1269  * the hammer_node.
1270  *
1271  * This allows the HAMMER implementation to cache hammer_nodes long-term
1272  * and short-cut a great deal of the infrastructure's complexity.  In
1273  * most cases a cached node can be reacquired without having to dip into
1274  * the B-Tree.
1275  */
1276 hammer_node_t
1277 hammer_get_node(hammer_transaction_t trans, hammer_off_t node_offset,
1278 		int isnew, int *errorp)
1279 {
1280 	hammer_mount_t hmp = trans->hmp;
1281 	hammer_node_t node;
1282 	int doload;
1283 
1284 	KKASSERT((node_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_BTREE);
1285 
1286 	/*
1287 	 * Locate the structure, allocating one if necessary.
1288 	 */
1289 again:
1290 	node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1291 	if (node == NULL) {
1292 		++hammer_count_nodes;
1293 		node = kmalloc(sizeof(*node), hmp->m_misc, M_WAITOK|M_ZERO|M_USE_RESERVE);
1294 		node->node_offset = node_offset;
1295 		node->hmp = hmp;
1296 		TAILQ_INIT(&node->cursor_list);
1297 		TAILQ_INIT(&node->cache_list);
1298 		if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1299 			--hammer_count_nodes;
1300 			kfree(node, hmp->m_misc);
1301 			goto again;
1302 		}
1303 		doload = hammer_ref_interlock_true(&node->lock);
1304 	} else {
1305 		doload = hammer_ref_interlock(&node->lock);
1306 	}
1307 	if (doload) {
1308 		*errorp = hammer_load_node(trans, node, isnew);
1309 		trans->flags |= HAMMER_TRANSF_DIDIO;
1310 		if (*errorp)
1311 			node = NULL;
1312 	} else {
1313 		KKASSERT(node->ondisk);
1314 		*errorp = 0;
1315 		hammer_io_advance(&node->buffer->io);
1316 	}
1317 	return(node);
1318 }
1319 
1320 /*
1321  * Reference an already-referenced node.  0->1 transitions should assert
1322  * so we do not have to deal with hammer_ref() setting CHECK.
1323  */
1324 void
1325 hammer_ref_node(hammer_node_t node)
1326 {
1327 	KKASSERT(hammer_isactive(&node->lock) && node->ondisk != NULL);
1328 	hammer_ref(&node->lock);
1329 }
1330 
1331 /*
1332  * Load a node's on-disk data reference.  Called with the node referenced
1333  * and interlocked.
1334  *
1335  * On return the node interlock will be unlocked.  If a non-zero error code
1336  * is returned the node will also be dereferenced (and the caller's pointer
1337  * will be stale).
1338  */
1339 static int
1340 hammer_load_node(hammer_transaction_t trans, hammer_node_t node, int isnew)
1341 {
1342 	hammer_buffer_t buffer;
1343 	hammer_off_t buf_offset;
1344 	int error;
1345 
1346 	error = 0;
1347 	if (node->ondisk == NULL) {
1348 		/*
1349 		 * This is a little confusing but the jist is that
1350 		 * node->buffer determines whether the node is on
1351 		 * the buffer's clist and node->ondisk determines
1352 		 * whether the buffer is referenced.
1353 		 *
1354 		 * We could be racing a buffer release, in which case
1355 		 * node->buffer may become NULL while we are blocked
1356 		 * referencing the buffer.
1357 		 */
1358 		if ((buffer = node->buffer) != NULL) {
1359 			error = hammer_ref_buffer(buffer);
1360 			if (error == 0 && node->buffer == NULL) {
1361 				TAILQ_INSERT_TAIL(&buffer->clist, node, entry);
1362 				node->buffer = buffer;
1363 			}
1364 		} else {
1365 			buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1366 			buffer = hammer_get_buffer(node->hmp, buf_offset,
1367 						   HAMMER_BUFSIZE, 0, &error);
1368 			if (buffer) {
1369 				KKASSERT(error == 0);
1370 				TAILQ_INSERT_TAIL(&buffer->clist, node, entry);
1371 				node->buffer = buffer;
1372 			}
1373 		}
1374 		if (error)
1375 			goto failed;
1376 		node->ondisk = (void *)((char *)buffer->ondisk +
1377 				        (node->node_offset & HAMMER_BUFMASK));
1378 
1379 		/*
1380 		 * Check CRC.  NOTE: Neither flag is set and the CRC is not
1381 		 * generated on new B-Tree nodes.
1382 		 */
1383 		if (isnew == 0 &&
1384 		    (node->flags & HAMMER_NODE_CRCANY) == 0) {
1385 			if (hammer_crc_test_btree(node->ondisk) == 0) {
1386 				hdkprintf("CRC B-TREE NODE @ %016llx/%lu FAILED\n",
1387 					(long long)node->node_offset,
1388 					sizeof(*node->ondisk));
1389 				if (hammer_debug_critical)
1390 					Debugger("CRC FAILED: B-TREE NODE");
1391 				node->flags |= HAMMER_NODE_CRCBAD;
1392 			} else {
1393 				node->flags |= HAMMER_NODE_CRCGOOD;
1394 			}
1395 		}
1396 	}
1397 	if (node->flags & HAMMER_NODE_CRCBAD) {
1398 		if (trans->flags & HAMMER_TRANSF_CRCDOM)
1399 			error = EDOM;
1400 		else
1401 			error = EIO;
1402 	}
1403 failed:
1404 	if (error) {
1405 		_hammer_rel_node(node, 1);
1406 	} else {
1407 		hammer_ref_interlock_done(&node->lock);
1408 	}
1409 	return (error);
1410 }
1411 
1412 /*
1413  * Safely reference a node, interlock against flushes via the IO subsystem.
1414  */
1415 hammer_node_t
1416 hammer_ref_node_safe(hammer_transaction_t trans, hammer_node_cache_t cache,
1417 		     int *errorp)
1418 {
1419 	hammer_node_t node;
1420 	int doload;
1421 
1422 	node = cache->node;
1423 	if (node != NULL) {
1424 		doload = hammer_ref_interlock(&node->lock);
1425 		if (doload) {
1426 			*errorp = hammer_load_node(trans, node, 0);
1427 			if (*errorp)
1428 				node = NULL;
1429 		} else {
1430 			KKASSERT(node->ondisk);
1431 			if (node->flags & HAMMER_NODE_CRCBAD) {
1432 				if (trans->flags & HAMMER_TRANSF_CRCDOM)
1433 					*errorp = EDOM;
1434 				else
1435 					*errorp = EIO;
1436 				_hammer_rel_node(node, 0);
1437 				node = NULL;
1438 			} else {
1439 				*errorp = 0;
1440 			}
1441 		}
1442 	} else {
1443 		*errorp = ENOENT;
1444 	}
1445 	return(node);
1446 }
1447 
1448 /*
1449  * Release a hammer_node.  On the last release the node dereferences
1450  * its underlying buffer and may or may not be destroyed.
1451  *
1452  * If locked is non-zero the passed node has been interlocked by the
1453  * caller and we are in the failure/unload path, otherwise it has not and
1454  * we are doing a normal release.
1455  *
1456  * This function will dispose of the interlock and the reference.
1457  * On return the node pointer is stale.
1458  */
1459 void
1460 _hammer_rel_node(hammer_node_t node, int locked)
1461 {
1462 	hammer_buffer_t buffer;
1463 
1464 	/*
1465 	 * Deref the node.  If this isn't the 1->0 transition we're basically
1466 	 * done.  If locked is non-zero this function will just deref the
1467 	 * locked node and return 1, otherwise it will deref the locked
1468 	 * node and either lock and return 1 on the 1->0 transition or
1469 	 * not lock and return 0.
1470 	 */
1471 	if (hammer_rel_interlock(&node->lock, locked) == 0)
1472 		return;
1473 
1474 	/*
1475 	 * Either locked was non-zero and we are interlocked, or the
1476 	 * hammer_rel_interlock() call returned non-zero and we are
1477 	 * interlocked.
1478 	 *
1479 	 * The ref-count must still be decremented if locked != 0 so
1480 	 * the cleanup required still varies a bit.
1481 	 *
1482 	 * hammer_flush_node() when called with 1 or 2 will dispose of
1483 	 * the lock and possible ref-count.
1484 	 */
1485 	if (node->ondisk == NULL) {
1486 		hammer_flush_node(node, locked + 1);
1487 		/* node is stale now */
1488 		return;
1489 	}
1490 
1491 	/*
1492 	 * Do not disassociate the node from the buffer if it represents
1493 	 * a modified B-Tree node that still needs its crc to be generated.
1494 	 */
1495 	if (node->flags & HAMMER_NODE_NEEDSCRC) {
1496 		hammer_rel_interlock_done(&node->lock, locked);
1497 		return;
1498 	}
1499 
1500 	/*
1501 	 * Do final cleanups and then either destroy the node and leave it
1502 	 * passively cached.  The buffer reference is removed regardless.
1503 	 */
1504 	buffer = node->buffer;
1505 	node->ondisk = NULL;
1506 
1507 	if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1508 		/*
1509 		 * Normal release.
1510 		 */
1511 		hammer_rel_interlock_done(&node->lock, locked);
1512 	} else {
1513 		/*
1514 		 * Destroy the node.
1515 		 */
1516 		hammer_flush_node(node, locked + 1);
1517 		/* node is stale */
1518 
1519 	}
1520 	hammer_rel_buffer(buffer, 0);
1521 }
1522 
1523 void
1524 hammer_rel_node(hammer_node_t node)
1525 {
1526 	_hammer_rel_node(node, 0);
1527 }
1528 
1529 /*
1530  * Free space on-media associated with a B-Tree node.
1531  */
1532 void
1533 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1534 {
1535 	KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1536 	node->flags |= HAMMER_NODE_DELETED;
1537 	hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1538 }
1539 
1540 /*
1541  * Passively cache a referenced hammer_node.  The caller may release
1542  * the node on return.
1543  */
1544 void
1545 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1546 {
1547 	/*
1548 	 * If the node doesn't exist, or is being deleted, don't cache it!
1549 	 *
1550 	 * The node can only ever be NULL in the I/O failure path.
1551 	 */
1552 	if (node == NULL || (node->flags & HAMMER_NODE_DELETED))
1553 		return;
1554 	if (cache->node == node)
1555 		return;
1556 	while (cache->node)
1557 		hammer_uncache_node(cache);
1558 	if (node->flags & HAMMER_NODE_DELETED)
1559 		return;
1560 	cache->node = node;
1561 	TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1562 }
1563 
1564 void
1565 hammer_uncache_node(hammer_node_cache_t cache)
1566 {
1567 	hammer_node_t node;
1568 
1569 	if ((node = cache->node) != NULL) {
1570 		TAILQ_REMOVE(&node->cache_list, cache, entry);
1571 		cache->node = NULL;
1572 		if (TAILQ_EMPTY(&node->cache_list))
1573 			hammer_flush_node(node, 0);
1574 	}
1575 }
1576 
1577 /*
1578  * Remove a node's cache references and destroy the node if it has no
1579  * other references or backing store.
1580  *
1581  * locked == 0	Normal unlocked operation
1582  * locked == 1	Call hammer_rel_interlock_done(..., 0);
1583  * locked == 2	Call hammer_rel_interlock_done(..., 1);
1584  *
1585  * XXX for now this isn't even close to being MPSAFE so the refs check
1586  *     is sufficient.
1587  */
1588 void
1589 hammer_flush_node(hammer_node_t node, int locked)
1590 {
1591 	hammer_node_cache_t cache;
1592 	hammer_buffer_t buffer;
1593 	hammer_mount_t hmp = node->hmp;
1594 	int dofree;
1595 
1596 	while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1597 		TAILQ_REMOVE(&node->cache_list, cache, entry);
1598 		cache->node = NULL;
1599 	}
1600 
1601 	/*
1602 	 * NOTE: refs is predisposed if another thread is blocking and
1603 	 *	 will be larger than 0 in that case.  We aren't MPSAFE
1604 	 *	 here.
1605 	 */
1606 	if (node->ondisk == NULL && hammer_norefs(&node->lock)) {
1607 		KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1608 		RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1609 		if ((buffer = node->buffer) != NULL) {
1610 			node->buffer = NULL;
1611 			TAILQ_REMOVE(&buffer->clist, node, entry);
1612 			/* buffer is unreferenced because ondisk is NULL */
1613 		}
1614 		dofree = 1;
1615 	} else {
1616 		dofree = 0;
1617 	}
1618 
1619 	/*
1620 	 * Deal with the interlock if locked == 1 or locked == 2.
1621 	 */
1622 	if (locked)
1623 		hammer_rel_interlock_done(&node->lock, locked - 1);
1624 
1625 	/*
1626 	 * Destroy if requested
1627 	 */
1628 	if (dofree) {
1629 		--hammer_count_nodes;
1630 		kfree(node, hmp->m_misc);
1631 	}
1632 }
1633 
1634 /*
1635  * Flush passively cached B-Tree nodes associated with this buffer.
1636  * This is only called when the buffer is about to be destroyed, so
1637  * none of the nodes should have any references.  The buffer is locked.
1638  *
1639  * We may be interlocked with the buffer.
1640  */
1641 void
1642 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1643 {
1644 	hammer_node_t node;
1645 
1646 	while ((node = TAILQ_FIRST(&buffer->clist)) != NULL) {
1647 		KKASSERT(node->ondisk == NULL);
1648 		KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1649 
1650 		if (hammer_try_interlock_norefs(&node->lock)) {
1651 			hammer_ref(&node->lock);
1652 			node->flags |= HAMMER_NODE_FLUSH;
1653 			_hammer_rel_node(node, 1);
1654 		} else {
1655 			KKASSERT(node->buffer != NULL);
1656 			buffer = node->buffer;
1657 			node->buffer = NULL;
1658 			TAILQ_REMOVE(&buffer->clist, node, entry);
1659 			/* buffer is unreferenced because ondisk is NULL */
1660 		}
1661 	}
1662 }
1663 
1664 
1665 /************************************************************************
1666  *				ALLOCATORS				*
1667  ************************************************************************/
1668 
1669 /*
1670  * Allocate a B-Tree node.
1671  */
1672 hammer_node_t
1673 hammer_alloc_btree(hammer_transaction_t trans, hammer_off_t hint, int *errorp)
1674 {
1675 	hammer_buffer_t buffer = NULL;
1676 	hammer_node_t node = NULL;
1677 	hammer_off_t node_offset;
1678 
1679 	node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1680 					    sizeof(struct hammer_node_ondisk),
1681 					    hint, errorp);
1682 	if (*errorp == 0) {
1683 		node = hammer_get_node(trans, node_offset, 1, errorp);
1684 		hammer_modify_node_noundo(trans, node);
1685 		bzero(node->ondisk, sizeof(*node->ondisk));
1686 		hammer_modify_node_done(node);
1687 	}
1688 	if (buffer)
1689 		hammer_rel_buffer(buffer, 0);
1690 	return(node);
1691 }
1692 
1693 /*
1694  * Allocate data.  If the address of a data buffer is supplied then
1695  * any prior non-NULL *data_bufferp will be released and *data_bufferp
1696  * will be set to the related buffer.  The caller must release it when
1697  * finally done.  The initial *data_bufferp should be set to NULL by
1698  * the caller.
1699  *
1700  * The caller is responsible for making hammer_modify*() calls on the
1701  * *data_bufferp.
1702  */
1703 void *
1704 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len,
1705 		  u_int16_t rec_type, hammer_off_t *data_offsetp,
1706 		  struct hammer_buffer **data_bufferp,
1707 		  hammer_off_t hint, int *errorp)
1708 {
1709 	void *data;
1710 	int zone;
1711 
1712 	/*
1713 	 * Allocate data
1714 	 */
1715 	if (data_len) {
1716 		switch(rec_type) {
1717 		case HAMMER_RECTYPE_INODE:
1718 		case HAMMER_RECTYPE_DIRENTRY:
1719 		case HAMMER_RECTYPE_EXT:
1720 		case HAMMER_RECTYPE_FIX:
1721 		case HAMMER_RECTYPE_PFS:
1722 		case HAMMER_RECTYPE_SNAPSHOT:
1723 		case HAMMER_RECTYPE_CONFIG:
1724 			zone = HAMMER_ZONE_META_INDEX;
1725 			break;
1726 		case HAMMER_RECTYPE_DATA:
1727 		case HAMMER_RECTYPE_DB:
1728 			/*
1729 			 * Only mirror-write comes here.
1730 			 */
1731 			zone = hammer_data_zone_index(data_len);
1732 			if (zone == HAMMER_ZONE_LARGE_DATA_INDEX) {
1733 				/* round up */
1734 				data_len = (data_len + HAMMER_BUFMASK) &
1735 					   ~HAMMER_BUFMASK;
1736 			}
1737 			break;
1738 		default:
1739 			hpanic("rec_type %04x unknown", rec_type);
1740 			zone = 0;	/* NOT REACHED */
1741 			break;
1742 		}
1743 		*data_offsetp = hammer_blockmap_alloc(trans, zone, data_len,
1744 						      hint, errorp);
1745 	} else {
1746 		*data_offsetp = 0;
1747 	}
1748 	if (*errorp == 0 && data_bufferp) {
1749 		if (data_len) {
1750 			data = hammer_bread_ext(trans->hmp, *data_offsetp,
1751 						data_len, errorp, data_bufferp);
1752 		} else {
1753 			data = NULL;
1754 		}
1755 	} else {
1756 		data = NULL;
1757 	}
1758 	return(data);
1759 }
1760 
1761 /*
1762  * Sync dirty buffers to the media and clean-up any loose ends.
1763  *
1764  * These functions do not start the flusher going, they simply
1765  * queue everything up to the flusher.
1766  */
1767 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1768 
1769 int
1770 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1771 {
1772 	struct hammer_sync_info info;
1773 
1774 	info.error = 0;
1775 	info.waitfor = waitfor;
1776 	if (waitfor == MNT_WAIT) {
1777 		vsyncscan(hmp->mp, VMSC_GETVP | VMSC_ONEPASS,
1778 			  hammer_sync_scan2, &info);
1779 	} else {
1780 		vsyncscan(hmp->mp, VMSC_GETVP | VMSC_ONEPASS | VMSC_NOWAIT,
1781 			  hammer_sync_scan2, &info);
1782 	}
1783 	return(info.error);
1784 }
1785 
1786 /*
1787  * Filesystem sync.  If doing a synchronous sync make a second pass on
1788  * the vnodes in case any were already flushing during the first pass,
1789  * and activate the flusher twice (the second time brings the UNDO FIFO's
1790  * start position up to the end position after the first call).
1791  *
1792  * If doing a lazy sync make just one pass on the vnode list, ignoring
1793  * any new vnodes added to the list while the sync is in progress.
1794  */
1795 int
1796 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1797 {
1798 	struct hammer_sync_info info;
1799 	int flags;
1800 
1801 	flags = VMSC_GETVP;
1802 	if (waitfor & MNT_LAZY)
1803 		flags |= VMSC_ONEPASS;
1804 
1805 	info.error = 0;
1806 	info.waitfor = MNT_NOWAIT;
1807 	vsyncscan(hmp->mp, flags | VMSC_NOWAIT, hammer_sync_scan2, &info);
1808 
1809 	if (info.error == 0 && (waitfor & MNT_WAIT)) {
1810 		info.waitfor = waitfor;
1811 		vsyncscan(hmp->mp, flags, hammer_sync_scan2, &info);
1812 	}
1813         if (waitfor == MNT_WAIT) {
1814                 hammer_flusher_sync(hmp);
1815                 hammer_flusher_sync(hmp);
1816 	} else {
1817                 hammer_flusher_async(hmp, NULL);
1818                 hammer_flusher_async(hmp, NULL);
1819 	}
1820 	return(info.error);
1821 }
1822 
1823 static int
1824 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1825 {
1826 	struct hammer_sync_info *info = data;
1827 	struct hammer_inode *ip;
1828 	int error;
1829 
1830 	ip = VTOI(vp);
1831 	if (ip == NULL)
1832 		return(0);
1833 	if (vp->v_type == VNON || vp->v_type == VBAD) {
1834 		vclrisdirty(vp);
1835 		return(0);
1836 	}
1837 	if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1838 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
1839 		vclrisdirty(vp);
1840 		return(0);
1841 	}
1842 	error = VOP_FSYNC(vp, MNT_NOWAIT, 0);
1843 	if (error)
1844 		info->error = error;
1845 	return(0);
1846 }
1847