xref: /dragonfly/sys/vfs/hammer/hammer_ondisk.c (revision 10cbe914)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.76 2008/08/29 20:19:08 dillon Exp $
35  */
36 /*
37  * Manage HAMMER's on-disk structures.  These routines are primarily
38  * responsible for interfacing with the kernel's I/O subsystem and for
39  * managing in-memory structures.
40  */
41 
42 #include "hammer.h"
43 #include <sys/fcntl.h>
44 #include <sys/nlookup.h>
45 #include <sys/buf.h>
46 #include <sys/buf2.h>
47 
48 static void hammer_free_volume(hammer_volume_t volume);
49 static int hammer_load_volume(hammer_volume_t volume);
50 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
51 static int hammer_load_node(hammer_transaction_t trans,
52 				hammer_node_t node, int isnew);
53 static void _hammer_rel_node(hammer_node_t node, int locked);
54 
55 static int
56 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
57 {
58 	if (vol1->vol_no < vol2->vol_no)
59 		return(-1);
60 	if (vol1->vol_no > vol2->vol_no)
61 		return(1);
62 	return(0);
63 }
64 
65 /*
66  * hammer_buffer structures are indexed via their zoneX_offset, not
67  * their zone2_offset.
68  */
69 static int
70 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
71 {
72 	if (buf1->zoneX_offset < buf2->zoneX_offset)
73 		return(-1);
74 	if (buf1->zoneX_offset > buf2->zoneX_offset)
75 		return(1);
76 	return(0);
77 }
78 
79 static int
80 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
81 {
82 	if (node1->node_offset < node2->node_offset)
83 		return(-1);
84 	if (node1->node_offset > node2->node_offset)
85 		return(1);
86 	return(0);
87 }
88 
89 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
90 	     hammer_vol_rb_compare, int32_t, vol_no);
91 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
92 	     hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
93 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
94 	     hammer_nod_rb_compare, hammer_off_t, node_offset);
95 
96 /************************************************************************
97  *				VOLUMES					*
98  ************************************************************************
99  *
100  * Load a HAMMER volume by name.  Returns 0 on success or a positive error
101  * code on failure.  Volumes must be loaded at mount time, get_volume() will
102  * not load a new volume.
103  *
104  * Calls made to hammer_load_volume() or single-threaded
105  */
106 int
107 hammer_install_volume(struct hammer_mount *hmp, const char *volname,
108 		      struct vnode *devvp)
109 {
110 	struct mount *mp;
111 	hammer_volume_t volume;
112 	struct hammer_volume_ondisk *ondisk;
113 	struct nlookupdata nd;
114 	struct buf *bp = NULL;
115 	int error;
116 	int ronly;
117 	int setmp = 0;
118 
119 	mp = hmp->mp;
120 	ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
121 
122 	/*
123 	 * Allocate a volume structure
124 	 */
125 	++hammer_count_volumes;
126 	volume = kmalloc(sizeof(*volume), hmp->m_misc, M_WAITOK|M_ZERO);
127 	volume->vol_name = kstrdup(volname, hmp->m_misc);
128 	volume->io.hmp = hmp;	/* bootstrap */
129 	hammer_io_init(&volume->io, volume, HAMMER_STRUCTURE_VOLUME);
130 	volume->io.offset = 0LL;
131 	volume->io.bytes = HAMMER_BUFSIZE;
132 
133 	/*
134 	 * Get the device vnode
135 	 */
136 	if (devvp == NULL) {
137 		error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
138 		if (error == 0)
139 			error = nlookup(&nd);
140 		if (error == 0)
141 			error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
142 		nlookup_done(&nd);
143 	} else {
144 		error = 0;
145 		volume->devvp = devvp;
146 	}
147 
148 	if (error == 0) {
149 		if (vn_isdisk(volume->devvp, &error)) {
150 			error = vfs_mountedon(volume->devvp);
151 		}
152 	}
153 	if (error == 0 && vcount(volume->devvp) > 0)
154 		error = EBUSY;
155 	if (error == 0) {
156 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
157 		error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
158 		if (error == 0) {
159 			error = VOP_OPEN(volume->devvp,
160 					 (ronly ? FREAD : FREAD|FWRITE),
161 					 FSCRED, NULL);
162 		}
163 		vn_unlock(volume->devvp);
164 	}
165 	if (error) {
166 		hammer_free_volume(volume);
167 		return(error);
168 	}
169 	volume->devvp->v_rdev->si_mountpoint = mp;
170 	setmp = 1;
171 
172 	/*
173 	 * Extract the volume number from the volume header and do various
174 	 * sanity checks.
175 	 */
176 	error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
177 	if (error)
178 		goto late_failure;
179 	ondisk = (void *)bp->b_data;
180 	if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
181 		kprintf("hammer_mount: volume %s has an invalid header\n",
182 			volume->vol_name);
183 		error = EFTYPE;
184 		goto late_failure;
185 	}
186 	volume->vol_no = ondisk->vol_no;
187 	volume->buffer_base = ondisk->vol_buf_beg;
188 	volume->vol_flags = ondisk->vol_flags;
189 	volume->nblocks = ondisk->vol_nblocks;
190 	volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
191 				    ondisk->vol_buf_end - ondisk->vol_buf_beg);
192 	volume->maxraw_off = ondisk->vol_buf_end;
193 
194 	if (RB_EMPTY(&hmp->rb_vols_root)) {
195 		hmp->fsid = ondisk->vol_fsid;
196 	} else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
197 		kprintf("hammer_mount: volume %s's fsid does not match "
198 			"other volumes\n", volume->vol_name);
199 		error = EFTYPE;
200 		goto late_failure;
201 	}
202 
203 	/*
204 	 * Insert the volume structure into the red-black tree.
205 	 */
206 	if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
207 		kprintf("hammer_mount: volume %s has a duplicate vol_no %d\n",
208 			volume->vol_name, volume->vol_no);
209 		error = EEXIST;
210 	}
211 
212 	/*
213 	 * Set the root volume .  HAMMER special cases rootvol the structure.
214 	 * We do not hold a ref because this would prevent related I/O
215 	 * from being flushed.
216 	 */
217 	if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
218 		hmp->rootvol = volume;
219 		hmp->nvolumes = ondisk->vol_count;
220 		if (bp) {
221 			brelse(bp);
222 			bp = NULL;
223 		}
224 		hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
225 			(HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
226 		hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
227 			(HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
228 	}
229 late_failure:
230 	if (bp)
231 		brelse(bp);
232 	if (error) {
233 		/*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
234 		if (setmp)
235 			volume->devvp->v_rdev->si_mountpoint = NULL;
236 		VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE);
237 		hammer_free_volume(volume);
238 	}
239 	return (error);
240 }
241 
242 /*
243  * This is called for each volume when updating the mount point from
244  * read-write to read-only or vise-versa.
245  */
246 int
247 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
248 {
249 	if (volume->devvp) {
250 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
251 		if (volume->io.hmp->ronly) {
252 			/* do not call vinvalbuf */
253 			VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
254 			VOP_CLOSE(volume->devvp, FREAD|FWRITE);
255 		} else {
256 			/* do not call vinvalbuf */
257 			VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
258 			VOP_CLOSE(volume->devvp, FREAD);
259 		}
260 		vn_unlock(volume->devvp);
261 	}
262 	return(0);
263 }
264 
265 /*
266  * Unload and free a HAMMER volume.  Must return >= 0 to continue scan
267  * so returns -1 on failure.
268  */
269 int
270 hammer_unload_volume(hammer_volume_t volume, void *data __unused)
271 {
272 	hammer_mount_t hmp = volume->io.hmp;
273 	int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
274 
275 	/*
276 	 * Clean up the root volume pointer, which is held unlocked in hmp.
277 	 */
278 	if (hmp->rootvol == volume)
279 		hmp->rootvol = NULL;
280 
281 	/*
282 	 * We must not flush a dirty buffer to disk on umount.  It should
283 	 * have already been dealt with by the flusher, or we may be in
284 	 * catastrophic failure.
285 	 */
286 	hammer_io_clear_modify(&volume->io, 1);
287 	volume->io.waitdep = 1;
288 
289 	/*
290 	 * Clean up the persistent ref ioerror might have on the volume
291 	 */
292 	if (volume->io.ioerror)
293 		hammer_io_clear_error_noassert(&volume->io);
294 
295 	/*
296 	 * This should release the bp.  Releasing the volume with flush set
297 	 * implies the interlock is set.
298 	 */
299 	hammer_ref_interlock_true(&volume->io.lock);
300 	hammer_rel_volume(volume, 1);
301 	KKASSERT(volume->io.bp == NULL);
302 
303 	/*
304 	 * There should be no references on the volume, no clusters, and
305 	 * no super-clusters.
306 	 */
307 	KKASSERT(hammer_norefs(&volume->io.lock));
308 
309 	volume->ondisk = NULL;
310 	if (volume->devvp) {
311 		if (volume->devvp->v_rdev &&
312 		    volume->devvp->v_rdev->si_mountpoint == hmp->mp
313 		) {
314 			volume->devvp->v_rdev->si_mountpoint = NULL;
315 		}
316 		if (ronly) {
317 			/*
318 			 * Make sure we don't sync anything to disk if we
319 			 * are in read-only mode (1) or critically-errored
320 			 * (2).  Note that there may be dirty buffers in
321 			 * normal read-only mode from crash recovery.
322 			 */
323 			vinvalbuf(volume->devvp, 0, 0, 0);
324 			VOP_CLOSE(volume->devvp, FREAD);
325 		} else {
326 			/*
327 			 * Normal termination, save any dirty buffers
328 			 * (XXX there really shouldn't be any).
329 			 */
330 			vinvalbuf(volume->devvp, V_SAVE, 0, 0);
331 			VOP_CLOSE(volume->devvp, FREAD|FWRITE);
332 		}
333 	}
334 
335 	/*
336 	 * Destroy the structure
337 	 */
338 	RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
339 	hammer_free_volume(volume);
340 	return(0);
341 }
342 
343 static
344 void
345 hammer_free_volume(hammer_volume_t volume)
346 {
347 	hammer_mount_t hmp = volume->io.hmp;
348 
349 	if (volume->vol_name) {
350 		kfree(volume->vol_name, hmp->m_misc);
351 		volume->vol_name = NULL;
352 	}
353 	if (volume->devvp) {
354 		vrele(volume->devvp);
355 		volume->devvp = NULL;
356 	}
357 	--hammer_count_volumes;
358 	kfree(volume, hmp->m_misc);
359 }
360 
361 /*
362  * Get a HAMMER volume.  The volume must already exist.
363  */
364 hammer_volume_t
365 hammer_get_volume(struct hammer_mount *hmp, int32_t vol_no, int *errorp)
366 {
367 	struct hammer_volume *volume;
368 
369 	/*
370 	 * Locate the volume structure
371 	 */
372 	volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
373 	if (volume == NULL) {
374 		*errorp = ENOENT;
375 		return(NULL);
376 	}
377 
378 	/*
379 	 * Reference the volume, load/check the data on the 0->1 transition.
380 	 * hammer_load_volume() will dispose of the interlock on return,
381 	 * and also clean up the ref count on error.
382 	 */
383 	if (hammer_ref_interlock(&volume->io.lock)) {
384 		*errorp = hammer_load_volume(volume);
385 		if (*errorp)
386 			volume = NULL;
387 	} else {
388 		KKASSERT(volume->ondisk);
389 		*errorp = 0;
390 	}
391 	return(volume);
392 }
393 
394 int
395 hammer_ref_volume(hammer_volume_t volume)
396 {
397 	int error;
398 
399 	/*
400 	 * Reference the volume and deal with the check condition used to
401 	 * load its ondisk info.
402 	 */
403 	if (hammer_ref_interlock(&volume->io.lock)) {
404 		error = hammer_load_volume(volume);
405 	} else {
406 		KKASSERT(volume->ondisk);
407 		error = 0;
408 	}
409 	return (error);
410 }
411 
412 hammer_volume_t
413 hammer_get_root_volume(struct hammer_mount *hmp, int *errorp)
414 {
415 	hammer_volume_t volume;
416 
417 	volume = hmp->rootvol;
418 	KKASSERT(volume != NULL);
419 
420 	/*
421 	 * Reference the volume and deal with the check condition used to
422 	 * load its ondisk info.
423 	 */
424 	if (hammer_ref_interlock(&volume->io.lock)) {
425 		*errorp = hammer_load_volume(volume);
426 		if (*errorp)
427 			volume = NULL;
428 	} else {
429 		KKASSERT(volume->ondisk);
430 		*errorp = 0;
431 	}
432 	return (volume);
433 }
434 
435 /*
436  * Load a volume's on-disk information.  The volume must be referenced and
437  * the interlock is held on call.  The interlock will be released on return.
438  * The reference will also be released on return if an error occurs.
439  */
440 static int
441 hammer_load_volume(hammer_volume_t volume)
442 {
443 	int error;
444 
445 	if (volume->ondisk == NULL) {
446 		error = hammer_io_read(volume->devvp, &volume->io,
447 				       HAMMER_BUFSIZE);
448 		if (error == 0) {
449 			volume->ondisk = (void *)volume->io.bp->b_data;
450                         hammer_ref_interlock_done(&volume->io.lock);
451 		} else {
452                         hammer_rel_volume(volume, 1);
453 		}
454 	} else {
455 		error = 0;
456 	}
457 	return(error);
458 }
459 
460 /*
461  * Release a previously acquired reference on the volume.
462  *
463  * Volumes are not unloaded from memory during normal operation.
464  */
465 void
466 hammer_rel_volume(hammer_volume_t volume, int locked)
467 {
468 	struct buf *bp;
469 
470 	if (hammer_rel_interlock(&volume->io.lock, locked)) {
471 		volume->ondisk = NULL;
472 		bp = hammer_io_release(&volume->io, locked);
473 		hammer_rel_interlock_done(&volume->io.lock, locked);
474 		if (bp)
475 			brelse(bp);
476 	}
477 }
478 
479 int
480 hammer_mountcheck_volumes(struct hammer_mount *hmp)
481 {
482 	hammer_volume_t vol;
483 	int i;
484 
485 	for (i = 0; i < hmp->nvolumes; ++i) {
486 		vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
487 		if (vol == NULL)
488 			return(EINVAL);
489 	}
490 	return(0);
491 }
492 
493 /************************************************************************
494  *				BUFFERS					*
495  ************************************************************************
496  *
497  * Manage buffers.  Currently most blockmap-backed zones are direct-mapped
498  * to zone-2 buffer offsets, without a translation stage.  However, the
499  * hammer_buffer structure is indexed by its zoneX_offset, not its
500  * zone2_offset.
501  *
502  * The proper zone must be maintained throughout the code-base all the way
503  * through to the big-block allocator, or routines like hammer_del_buffers()
504  * will not be able to locate all potentially conflicting buffers.
505  */
506 
507 /*
508  * Helper function returns whether a zone offset can be directly translated
509  * to a raw buffer index or not.  Really only the volume and undo zones
510  * can't be directly translated.  Volumes are special-cased and undo zones
511  * shouldn't be aliased accessed in read-only mode.
512  *
513  * This function is ONLY used to detect aliased zones during a read-only
514  * mount.
515  */
516 static __inline int
517 hammer_direct_zone(hammer_off_t buf_offset)
518 {
519 	switch(HAMMER_ZONE_DECODE(buf_offset)) {
520 	case HAMMER_ZONE_RAW_BUFFER_INDEX:
521 	case HAMMER_ZONE_FREEMAP_INDEX:
522 	case HAMMER_ZONE_BTREE_INDEX:
523 	case HAMMER_ZONE_META_INDEX:
524 	case HAMMER_ZONE_LARGE_DATA_INDEX:
525 	case HAMMER_ZONE_SMALL_DATA_INDEX:
526 		return(1);
527 	default:
528 		return(0);
529 	}
530 	/* NOT REACHED */
531 }
532 
533 hammer_buffer_t
534 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
535 		  int bytes, int isnew, int *errorp)
536 {
537 	hammer_buffer_t buffer;
538 	hammer_volume_t volume;
539 	hammer_off_t	zone2_offset;
540 	hammer_io_type_t iotype;
541 	int vol_no;
542 	int zone;
543 
544 	buf_offset &= ~HAMMER_BUFMASK64;
545 again:
546 	/*
547 	 * Shortcut if the buffer is already cached
548 	 */
549 	buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
550 	if (buffer) {
551 		/*
552 		 * Once refed the ondisk field will not be cleared by
553 		 * any other action.  Shortcut the operation if the
554 		 * ondisk structure is valid.
555 		 */
556 found_aliased:
557 		if (hammer_ref_interlock(&buffer->io.lock) == 0) {
558 			hammer_io_advance(&buffer->io);
559 			KKASSERT(buffer->ondisk);
560 			*errorp = 0;
561 			return(buffer);
562 		}
563 
564 		/*
565 		 * 0->1 transition or defered 0->1 transition (CHECK),
566 		 * interlock now held.  Shortcut if ondisk is already
567 		 * assigned.
568 		 */
569 		++hammer_count_refedbufs;
570 		if (buffer->ondisk) {
571 			hammer_io_advance(&buffer->io);
572 			hammer_ref_interlock_done(&buffer->io.lock);
573 			*errorp = 0;
574 			return(buffer);
575 		}
576 
577 		/*
578 		 * The buffer is no longer loose if it has a ref, and
579 		 * cannot become loose once it gains a ref.  Loose
580 		 * buffers will never be in a modified state.  This should
581 		 * only occur on the 0->1 transition of refs.
582 		 *
583 		 * lose_list can be modified via a biodone() interrupt
584 		 * so the io_token must be held.
585 		 */
586 		if (buffer->io.mod_list == &hmp->lose_list) {
587 			lwkt_gettoken(&hmp->io_token);
588 			if (buffer->io.mod_list == &hmp->lose_list) {
589 				TAILQ_REMOVE(buffer->io.mod_list, &buffer->io,
590 					     mod_entry);
591 				buffer->io.mod_list = NULL;
592 				KKASSERT(buffer->io.modified == 0);
593 			}
594 			lwkt_reltoken(&hmp->io_token);
595 		}
596 		goto found;
597 	} else if (hmp->ronly && hammer_direct_zone(buf_offset)) {
598 		/*
599 		 * If this is a read-only mount there could be an alias
600 		 * in the raw-zone.  If there is we use that buffer instead.
601 		 *
602 		 * rw mounts will not have aliases.  Also note when going
603 		 * from ro -> rw the recovered raw buffers are flushed and
604 		 * reclaimed, so again there will not be any aliases once
605 		 * the mount is rw.
606 		 */
607 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
608 				   (buf_offset & ~HAMMER_OFF_ZONE_MASK) |
609 				   HAMMER_ZONE_RAW_BUFFER);
610 		if (buffer) {
611 			kprintf("HAMMER: recovered aliased %016jx\n",
612 				(intmax_t)buf_offset);
613 			goto found_aliased;
614 		}
615 	}
616 
617 	/*
618 	 * What is the buffer class?
619 	 */
620 	zone = HAMMER_ZONE_DECODE(buf_offset);
621 
622 	switch(zone) {
623 	case HAMMER_ZONE_LARGE_DATA_INDEX:
624 	case HAMMER_ZONE_SMALL_DATA_INDEX:
625 		iotype = HAMMER_STRUCTURE_DATA_BUFFER;
626 		break;
627 	case HAMMER_ZONE_UNDO_INDEX:
628 		iotype = HAMMER_STRUCTURE_UNDO_BUFFER;
629 		break;
630 	case HAMMER_ZONE_META_INDEX:
631 	default:
632 		/*
633 		 * NOTE: inode data and directory entries are placed in this
634 		 * zone.  inode atime/mtime is updated in-place and thus
635 		 * buffers containing inodes must be synchronized as
636 		 * meta-buffers, same as buffers containing B-Tree info.
637 		 */
638 		iotype = HAMMER_STRUCTURE_META_BUFFER;
639 		break;
640 	}
641 
642 	/*
643 	 * Handle blockmap offset translations
644 	 */
645 	if (zone >= HAMMER_ZONE_BTREE_INDEX) {
646 		zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
647 	} else if (zone == HAMMER_ZONE_UNDO_INDEX) {
648 		zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
649 	} else {
650 		KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
651 		zone2_offset = buf_offset;
652 		*errorp = 0;
653 	}
654 	if (*errorp)
655 		return(NULL);
656 
657 	/*
658 	 * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
659 	 * specifications.
660 	 */
661 	KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
662 		 HAMMER_ZONE_RAW_BUFFER);
663 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
664 	volume = hammer_get_volume(hmp, vol_no, errorp);
665 	if (volume == NULL)
666 		return(NULL);
667 
668 	KKASSERT(zone2_offset < volume->maxbuf_off);
669 
670 	/*
671 	 * Allocate a new buffer structure.  We will check for races later.
672 	 */
673 	++hammer_count_buffers;
674 	buffer = kmalloc(sizeof(*buffer), hmp->m_misc,
675 			 M_WAITOK|M_ZERO|M_USE_RESERVE);
676 	buffer->zone2_offset = zone2_offset;
677 	buffer->zoneX_offset = buf_offset;
678 
679 	hammer_io_init(&buffer->io, volume, iotype);
680 	buffer->io.offset = volume->ondisk->vol_buf_beg +
681 			    (zone2_offset & HAMMER_OFF_SHORT_MASK);
682 	buffer->io.bytes = bytes;
683 	TAILQ_INIT(&buffer->clist);
684 	hammer_ref_interlock_true(&buffer->io.lock);
685 
686 	/*
687 	 * Insert the buffer into the RB tree and handle late collisions.
688 	 */
689 	if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
690 		hammer_rel_volume(volume, 0);
691 		buffer->io.volume = NULL;			/* safety */
692 		if (hammer_rel_interlock(&buffer->io.lock, 1))	/* safety */
693 			hammer_rel_interlock_done(&buffer->io.lock, 1);
694 		--hammer_count_buffers;
695 		kfree(buffer, hmp->m_misc);
696 		goto again;
697 	}
698 	++hammer_count_refedbufs;
699 found:
700 
701 	/*
702 	 * The buffer is referenced and interlocked.  Load the buffer
703 	 * if necessary.  hammer_load_buffer() deals with the interlock
704 	 * and, if an error is returned, also deals with the ref.
705 	 */
706 	if (buffer->ondisk == NULL) {
707 		*errorp = hammer_load_buffer(buffer, isnew);
708 		if (*errorp)
709 			buffer = NULL;
710 	} else {
711 		hammer_io_advance(&buffer->io);
712 		hammer_ref_interlock_done(&buffer->io.lock);
713 		*errorp = 0;
714 	}
715 	return(buffer);
716 }
717 
718 /*
719  * This is used by the direct-read code to deal with large-data buffers
720  * created by the reblocker and mirror-write code.  The direct-read code
721  * bypasses the HAMMER buffer subsystem and so any aliased dirty or write-
722  * running hammer buffers must be fully synced to disk before we can issue
723  * the direct-read.
724  *
725  * This code path is not considered critical as only the rebocker and
726  * mirror-write code will create large-data buffers via the HAMMER buffer
727  * subsystem.  They do that because they operate at the B-Tree level and
728  * do not access the vnode/inode structures.
729  */
730 void
731 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
732 {
733 	hammer_buffer_t buffer;
734 	int error;
735 
736 	KKASSERT((base_offset & HAMMER_OFF_ZONE_MASK) ==
737 		 HAMMER_ZONE_LARGE_DATA);
738 
739 	while (bytes > 0) {
740 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
741 				   base_offset);
742 		if (buffer && (buffer->io.modified || buffer->io.running)) {
743 			error = hammer_ref_buffer(buffer);
744 			if (error == 0) {
745 				hammer_io_wait(&buffer->io);
746 				if (buffer->io.modified) {
747 					hammer_io_write_interlock(&buffer->io);
748 					hammer_io_flush(&buffer->io, 0);
749 					hammer_io_done_interlock(&buffer->io);
750 					hammer_io_wait(&buffer->io);
751 				}
752 				hammer_rel_buffer(buffer, 0);
753 			}
754 		}
755 		base_offset += HAMMER_BUFSIZE;
756 		bytes -= HAMMER_BUFSIZE;
757 	}
758 }
759 
760 /*
761  * Destroy all buffers covering the specified zoneX offset range.  This
762  * is called when the related blockmap layer2 entry is freed or when
763  * a direct write bypasses our buffer/buffer-cache subsystem.
764  *
765  * The buffers may be referenced by the caller itself.  Setting reclaim
766  * will cause the buffer to be destroyed when it's ref count reaches zero.
767  *
768  * Return 0 on success, EAGAIN if some buffers could not be destroyed due
769  * to additional references held by other threads, or some other (typically
770  * fatal) error.
771  */
772 int
773 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
774 		   hammer_off_t zone2_offset, int bytes,
775 		   int report_conflicts)
776 {
777 	hammer_buffer_t buffer;
778 	hammer_volume_t volume;
779 	int vol_no;
780 	int error;
781 	int ret_error;
782 
783 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
784 	volume = hammer_get_volume(hmp, vol_no, &ret_error);
785 	KKASSERT(ret_error == 0);
786 
787 	while (bytes > 0) {
788 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
789 				   base_offset);
790 		if (buffer) {
791 			error = hammer_ref_buffer(buffer);
792 			if (hammer_debug_general & 0x20000) {
793 				kprintf("hammer: delbufr %016jx "
794 					"rerr=%d 1ref=%d\n",
795 					(intmax_t)buffer->zoneX_offset,
796 					error,
797 					hammer_oneref(&buffer->io.lock));
798 			}
799 			if (error == 0 && !hammer_oneref(&buffer->io.lock)) {
800 				error = EAGAIN;
801 				hammer_rel_buffer(buffer, 0);
802 			}
803 			if (error == 0) {
804 				KKASSERT(buffer->zone2_offset == zone2_offset);
805 				hammer_io_clear_modify(&buffer->io, 1);
806 				buffer->io.reclaim = 1;
807 				buffer->io.waitdep = 1;
808 				KKASSERT(buffer->io.volume == volume);
809 				hammer_rel_buffer(buffer, 0);
810 			}
811 		} else {
812 			error = hammer_io_inval(volume, zone2_offset);
813 		}
814 		if (error) {
815 			ret_error = error;
816 			if (report_conflicts ||
817 			    (hammer_debug_general & 0x8000)) {
818 				kprintf("hammer_del_buffers: unable to "
819 					"invalidate %016llx buffer=%p rep=%d\n",
820 					(long long)base_offset,
821 					buffer, report_conflicts);
822 			}
823 		}
824 		base_offset += HAMMER_BUFSIZE;
825 		zone2_offset += HAMMER_BUFSIZE;
826 		bytes -= HAMMER_BUFSIZE;
827 	}
828 	hammer_rel_volume(volume, 0);
829 	return (ret_error);
830 }
831 
832 /*
833  * Given a referenced and interlocked buffer load/validate the data.
834  *
835  * The buffer interlock will be released on return.  If an error is
836  * returned the buffer reference will also be released (and the buffer
837  * pointer will thus be stale).
838  */
839 static int
840 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
841 {
842 	hammer_volume_t volume;
843 	int error;
844 
845 	/*
846 	 * Load the buffer's on-disk info
847 	 */
848 	volume = buffer->io.volume;
849 
850 	if (hammer_debug_io & 0x0004) {
851 		kprintf("load_buffer %016llx %016llx isnew=%d od=%p\n",
852 			(long long)buffer->zoneX_offset,
853 			(long long)buffer->zone2_offset,
854 			isnew, buffer->ondisk);
855 	}
856 
857 	if (buffer->ondisk == NULL) {
858 		/*
859 		 * Issue the read or generate a new buffer.  When reading
860 		 * the limit argument controls any read-ahead clustering
861 		 * hammer_io_read() is allowed to do.
862 		 *
863 		 * We cannot read-ahead in the large-data zone and we cannot
864 		 * cross a largeblock boundary as the next largeblock might
865 		 * use a different buffer size.
866 		 */
867 		if (isnew) {
868 			error = hammer_io_new(volume->devvp, &buffer->io);
869 		} else if ((buffer->zoneX_offset & HAMMER_OFF_ZONE_MASK) ==
870 			   HAMMER_ZONE_LARGE_DATA) {
871 			error = hammer_io_read(volume->devvp, &buffer->io,
872 					       buffer->io.bytes);
873 		} else {
874 			hammer_off_t limit;
875 
876 			limit = (buffer->zone2_offset +
877 				 HAMMER_LARGEBLOCK_MASK64) &
878 				~HAMMER_LARGEBLOCK_MASK64;
879 			limit -= buffer->zone2_offset;
880 			error = hammer_io_read(volume->devvp, &buffer->io,
881 					       limit);
882 		}
883 		if (error == 0)
884 			buffer->ondisk = (void *)buffer->io.bp->b_data;
885 	} else if (isnew) {
886 		error = hammer_io_new(volume->devvp, &buffer->io);
887 	} else {
888 		error = 0;
889 	}
890 	if (error == 0) {
891 		hammer_io_advance(&buffer->io);
892 		hammer_ref_interlock_done(&buffer->io.lock);
893 	} else {
894 		hammer_rel_buffer(buffer, 1);
895 	}
896 	return (error);
897 }
898 
899 /*
900  * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
901  * This routine is only called during unmount or when a volume is
902  * removed.
903  *
904  * If data != NULL, it specifies a volume whoose buffers should
905  * be unloaded.
906  */
907 int
908 hammer_unload_buffer(hammer_buffer_t buffer, void *data)
909 {
910 	struct hammer_volume *volume = (struct hammer_volume *) data;
911 
912 	/*
913 	 * If volume != NULL we are only interested in unloading buffers
914 	 * associated with a particular volume.
915 	 */
916 	if (volume != NULL && volume != buffer->io.volume)
917 		return 0;
918 
919 	/*
920 	 * Clean up the persistent ref ioerror might have on the buffer
921 	 * and acquire a ref.  Expect a 0->1 transition.
922 	 */
923 	if (buffer->io.ioerror) {
924 		hammer_io_clear_error_noassert(&buffer->io);
925 		--hammer_count_refedbufs;
926 	}
927 	hammer_ref_interlock_true(&buffer->io.lock);
928 	++hammer_count_refedbufs;
929 
930 	/*
931 	 * We must not flush a dirty buffer to disk on umount.  It should
932 	 * have already been dealt with by the flusher, or we may be in
933 	 * catastrophic failure.
934 	 *
935 	 * We must set waitdep to ensure that a running buffer is waited
936 	 * on and released prior to us trying to unload the volume.
937 	 */
938 	hammer_io_clear_modify(&buffer->io, 1);
939 	hammer_flush_buffer_nodes(buffer);
940 	buffer->io.waitdep = 1;
941 	hammer_rel_buffer(buffer, 1);
942 	return(0);
943 }
944 
945 /*
946  * Reference a buffer that is either already referenced or via a specially
947  * handled pointer (aka cursor->buffer).
948  */
949 int
950 hammer_ref_buffer(hammer_buffer_t buffer)
951 {
952 	hammer_mount_t hmp;
953 	int error;
954 	int locked;
955 
956 	/*
957 	 * Acquire a ref, plus the buffer will be interlocked on the
958 	 * 0->1 transition.
959 	 */
960 	locked = hammer_ref_interlock(&buffer->io.lock);
961 	hmp = buffer->io.hmp;
962 
963 	/*
964 	 * At this point a biodone() will not touch the buffer other then
965 	 * incidental bits.  However, lose_list can be modified via
966 	 * a biodone() interrupt.
967 	 *
968 	 * No longer loose.  lose_list requires the io_token.
969 	 */
970 	if (buffer->io.mod_list == &hmp->lose_list) {
971 		lwkt_gettoken(&hmp->io_token);
972 		if (buffer->io.mod_list == &hmp->lose_list) {
973 			TAILQ_REMOVE(buffer->io.mod_list, &buffer->io,
974 				     mod_entry);
975 			buffer->io.mod_list = NULL;
976 		}
977 		lwkt_reltoken(&hmp->io_token);
978 	}
979 
980 	if (locked) {
981 		++hammer_count_refedbufs;
982 		error = hammer_load_buffer(buffer, 0);
983 		/* NOTE: on error the buffer pointer is stale */
984 	} else {
985 		error = 0;
986 	}
987 	return(error);
988 }
989 
990 /*
991  * Release a reference on the buffer.  On the 1->0 transition the
992  * underlying IO will be released but the data reference is left
993  * cached.
994  *
995  * Only destroy the structure itself if the related buffer cache buffer
996  * was disassociated from it.  This ties the management of the structure
997  * to the buffer cache subsystem.  buffer->ondisk determines whether the
998  * embedded io is referenced or not.
999  */
1000 void
1001 hammer_rel_buffer(hammer_buffer_t buffer, int locked)
1002 {
1003 	hammer_volume_t volume;
1004 	hammer_mount_t hmp;
1005 	struct buf *bp = NULL;
1006 	int freeme = 0;
1007 
1008 	hmp = buffer->io.hmp;
1009 
1010 	if (hammer_rel_interlock(&buffer->io.lock, locked) == 0)
1011 		return;
1012 
1013 	/*
1014 	 * hammer_count_refedbufs accounting.  Decrement if we are in
1015 	 * the error path or if CHECK is clear.
1016 	 *
1017 	 * If we are not in the error path and CHECK is set the caller
1018 	 * probably just did a hammer_ref() and didn't account for it,
1019 	 * so we don't account for the loss here.
1020 	 */
1021 	if (locked || (buffer->io.lock.refs & HAMMER_REFS_CHECK) == 0)
1022 		--hammer_count_refedbufs;
1023 
1024 	/*
1025 	 * If the caller locked us or the normal released transitions
1026 	 * from 1->0 (and acquired the lock) attempt to release the
1027 	 * io.  If the called locked us we tell hammer_io_release()
1028 	 * to flush (which would be the unload or failure path).
1029 	 */
1030 	bp = hammer_io_release(&buffer->io, locked);
1031 
1032 	/*
1033 	 * If the buffer has no bp association and no refs we can destroy
1034 	 * it.
1035 	 *
1036 	 * NOTE: It is impossible for any associated B-Tree nodes to have
1037 	 * refs if the buffer has no additional refs.
1038 	 */
1039 	if (buffer->io.bp == NULL && hammer_norefs(&buffer->io.lock)) {
1040 		RB_REMOVE(hammer_buf_rb_tree,
1041 			  &buffer->io.hmp->rb_bufs_root,
1042 			  buffer);
1043 		volume = buffer->io.volume;
1044 		buffer->io.volume = NULL; /* sanity */
1045 		hammer_rel_volume(volume, 0);
1046 		hammer_io_clear_modlist(&buffer->io);
1047 		hammer_flush_buffer_nodes(buffer);
1048 		KKASSERT(TAILQ_EMPTY(&buffer->clist));
1049 		freeme = 1;
1050 	}
1051 
1052 	/*
1053 	 * Cleanup
1054 	 */
1055 	hammer_rel_interlock_done(&buffer->io.lock, locked);
1056 	if (bp)
1057 		brelse(bp);
1058 	if (freeme) {
1059 		--hammer_count_buffers;
1060 		kfree(buffer, hmp->m_misc);
1061 	}
1062 }
1063 
1064 /*
1065  * Access the filesystem buffer containing the specified hammer offset.
1066  * buf_offset is a conglomeration of the volume number and vol_buf_beg
1067  * relative buffer offset.  It must also have bit 55 set to be valid.
1068  * (see hammer_off_t in hammer_disk.h).
1069  *
1070  * Any prior buffer in *bufferp will be released and replaced by the
1071  * requested buffer.
1072  *
1073  * NOTE: The buffer is indexed via its zoneX_offset but we allow the
1074  * passed cached *bufferp to match against either zoneX or zone2.
1075  */
1076 static __inline
1077 void *
1078 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1079 	     int *errorp, struct hammer_buffer **bufferp)
1080 {
1081 	hammer_buffer_t buffer;
1082 	int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1083 
1084 	buf_offset &= ~HAMMER_BUFMASK64;
1085 	KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) != 0);
1086 
1087 	buffer = *bufferp;
1088 	if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1089 			       buffer->zoneX_offset != buf_offset)) {
1090 		if (buffer)
1091 			hammer_rel_buffer(buffer, 0);
1092 		buffer = hammer_get_buffer(hmp, buf_offset, bytes, 0, errorp);
1093 		*bufferp = buffer;
1094 	} else {
1095 		*errorp = 0;
1096 	}
1097 
1098 	/*
1099 	 * Return a pointer to the buffer data.
1100 	 */
1101 	if (buffer == NULL)
1102 		return(NULL);
1103 	else
1104 		return((char *)buffer->ondisk + xoff);
1105 }
1106 
1107 void *
1108 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
1109 	     int *errorp, struct hammer_buffer **bufferp)
1110 {
1111 	return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1112 }
1113 
1114 void *
1115 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1116 	         int *errorp, struct hammer_buffer **bufferp)
1117 {
1118 	bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1119 	return(_hammer_bread(hmp, buf_offset, bytes, errorp, bufferp));
1120 }
1121 
1122 /*
1123  * Access the filesystem buffer containing the specified hammer offset.
1124  * No disk read operation occurs.  The result buffer may contain garbage.
1125  *
1126  * Any prior buffer in *bufferp will be released and replaced by the
1127  * requested buffer.
1128  *
1129  * This function marks the buffer dirty but does not increment its
1130  * modify_refs count.
1131  */
1132 static __inline
1133 void *
1134 _hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1135 	     int *errorp, struct hammer_buffer **bufferp)
1136 {
1137 	hammer_buffer_t buffer;
1138 	int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1139 
1140 	buf_offset &= ~HAMMER_BUFMASK64;
1141 
1142 	buffer = *bufferp;
1143 	if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1144 			       buffer->zoneX_offset != buf_offset)) {
1145 		if (buffer)
1146 			hammer_rel_buffer(buffer, 0);
1147 		buffer = hammer_get_buffer(hmp, buf_offset, bytes, 1, errorp);
1148 		*bufferp = buffer;
1149 	} else {
1150 		*errorp = 0;
1151 	}
1152 
1153 	/*
1154 	 * Return a pointer to the buffer data.
1155 	 */
1156 	if (buffer == NULL)
1157 		return(NULL);
1158 	else
1159 		return((char *)buffer->ondisk + xoff);
1160 }
1161 
1162 void *
1163 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
1164 	     int *errorp, struct hammer_buffer **bufferp)
1165 {
1166 	return(_hammer_bnew(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1167 }
1168 
1169 void *
1170 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1171 		int *errorp, struct hammer_buffer **bufferp)
1172 {
1173 	bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1174 	return(_hammer_bnew(hmp, buf_offset, bytes, errorp, bufferp));
1175 }
1176 
1177 /************************************************************************
1178  *				NODES					*
1179  ************************************************************************
1180  *
1181  * Manage B-Tree nodes.  B-Tree nodes represent the primary indexing
1182  * method used by the HAMMER filesystem.
1183  *
1184  * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
1185  * associated with its buffer, and will only referenced the buffer while
1186  * the node itself is referenced.
1187  *
1188  * A hammer_node can also be passively associated with other HAMMER
1189  * structures, such as inodes, while retaining 0 references.  These
1190  * associations can be cleared backwards using a pointer-to-pointer in
1191  * the hammer_node.
1192  *
1193  * This allows the HAMMER implementation to cache hammer_nodes long-term
1194  * and short-cut a great deal of the infrastructure's complexity.  In
1195  * most cases a cached node can be reacquired without having to dip into
1196  * either the buffer or cluster management code.
1197  *
1198  * The caller must pass a referenced cluster on call and will retain
1199  * ownership of the reference on return.  The node will acquire its own
1200  * additional references, if necessary.
1201  */
1202 hammer_node_t
1203 hammer_get_node(hammer_transaction_t trans, hammer_off_t node_offset,
1204 		int isnew, int *errorp)
1205 {
1206 	hammer_mount_t hmp = trans->hmp;
1207 	hammer_node_t node;
1208 	int doload;
1209 
1210 	KKASSERT((node_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_BTREE);
1211 
1212 	/*
1213 	 * Locate the structure, allocating one if necessary.
1214 	 */
1215 again:
1216 	node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1217 	if (node == NULL) {
1218 		++hammer_count_nodes;
1219 		node = kmalloc(sizeof(*node), hmp->m_misc, M_WAITOK|M_ZERO|M_USE_RESERVE);
1220 		node->node_offset = node_offset;
1221 		node->hmp = hmp;
1222 		TAILQ_INIT(&node->cursor_list);
1223 		TAILQ_INIT(&node->cache_list);
1224 		if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1225 			--hammer_count_nodes;
1226 			kfree(node, hmp->m_misc);
1227 			goto again;
1228 		}
1229 		doload = hammer_ref_interlock_true(&node->lock);
1230 	} else {
1231 		doload = hammer_ref_interlock(&node->lock);
1232 	}
1233 	if (doload) {
1234 		*errorp = hammer_load_node(trans, node, isnew);
1235 		trans->flags |= HAMMER_TRANSF_DIDIO;
1236 		if (*errorp)
1237 			node = NULL;
1238 	} else {
1239 		KKASSERT(node->ondisk);
1240 		*errorp = 0;
1241 		hammer_io_advance(&node->buffer->io);
1242 	}
1243 	return(node);
1244 }
1245 
1246 /*
1247  * Reference an already-referenced node.  0->1 transitions should assert
1248  * so we do not have to deal with hammer_ref() setting CHECK.
1249  */
1250 void
1251 hammer_ref_node(hammer_node_t node)
1252 {
1253 	KKASSERT(hammer_isactive(&node->lock) && node->ondisk != NULL);
1254 	hammer_ref(&node->lock);
1255 }
1256 
1257 /*
1258  * Load a node's on-disk data reference.  Called with the node referenced
1259  * and interlocked.
1260  *
1261  * On return the node interlock will be unlocked.  If a non-zero error code
1262  * is returned the node will also be dereferenced (and the caller's pointer
1263  * will be stale).
1264  */
1265 static int
1266 hammer_load_node(hammer_transaction_t trans, hammer_node_t node, int isnew)
1267 {
1268 	hammer_buffer_t buffer;
1269 	hammer_off_t buf_offset;
1270 	int error;
1271 
1272 	error = 0;
1273 	if (node->ondisk == NULL) {
1274 		/*
1275 		 * This is a little confusing but the jist is that
1276 		 * node->buffer determines whether the node is on
1277 		 * the buffer's clist and node->ondisk determines
1278 		 * whether the buffer is referenced.
1279 		 *
1280 		 * We could be racing a buffer release, in which case
1281 		 * node->buffer may become NULL while we are blocked
1282 		 * referencing the buffer.
1283 		 */
1284 		if ((buffer = node->buffer) != NULL) {
1285 			error = hammer_ref_buffer(buffer);
1286 			if (error == 0 && node->buffer == NULL) {
1287 				TAILQ_INSERT_TAIL(&buffer->clist,
1288 						  node, entry);
1289 				node->buffer = buffer;
1290 			}
1291 		} else {
1292 			buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1293 			buffer = hammer_get_buffer(node->hmp, buf_offset,
1294 						   HAMMER_BUFSIZE, 0, &error);
1295 			if (buffer) {
1296 				KKASSERT(error == 0);
1297 				TAILQ_INSERT_TAIL(&buffer->clist,
1298 						  node, entry);
1299 				node->buffer = buffer;
1300 			}
1301 		}
1302 		if (error)
1303 			goto failed;
1304 		node->ondisk = (void *)((char *)buffer->ondisk +
1305 				        (node->node_offset & HAMMER_BUFMASK));
1306 
1307 		/*
1308 		 * Check CRC.  NOTE: Neither flag is set and the CRC is not
1309 		 * generated on new B-Tree nodes.
1310 		 */
1311 		if (isnew == 0 &&
1312 		    (node->flags & HAMMER_NODE_CRCANY) == 0) {
1313 			if (hammer_crc_test_btree(node->ondisk) == 0) {
1314 				if (hammer_debug_critical)
1315 					Debugger("CRC FAILED: B-TREE NODE");
1316 				node->flags |= HAMMER_NODE_CRCBAD;
1317 			} else {
1318 				node->flags |= HAMMER_NODE_CRCGOOD;
1319 			}
1320 		}
1321 	}
1322 	if (node->flags & HAMMER_NODE_CRCBAD) {
1323 		if (trans->flags & HAMMER_TRANSF_CRCDOM)
1324 			error = EDOM;
1325 		else
1326 			error = EIO;
1327 	}
1328 failed:
1329 	if (error) {
1330 		_hammer_rel_node(node, 1);
1331 	} else {
1332 		hammer_ref_interlock_done(&node->lock);
1333 	}
1334 	return (error);
1335 }
1336 
1337 /*
1338  * Safely reference a node, interlock against flushes via the IO subsystem.
1339  */
1340 hammer_node_t
1341 hammer_ref_node_safe(hammer_transaction_t trans, hammer_node_cache_t cache,
1342 		     int *errorp)
1343 {
1344 	hammer_node_t node;
1345 	int doload;
1346 
1347 	node = cache->node;
1348 	if (node != NULL) {
1349 		doload = hammer_ref_interlock(&node->lock);
1350 		if (doload) {
1351 			*errorp = hammer_load_node(trans, node, 0);
1352 			if (*errorp)
1353 				node = NULL;
1354 		} else {
1355 			KKASSERT(node->ondisk);
1356 			if (node->flags & HAMMER_NODE_CRCBAD) {
1357 				if (trans->flags & HAMMER_TRANSF_CRCDOM)
1358 					*errorp = EDOM;
1359 				else
1360 					*errorp = EIO;
1361 				_hammer_rel_node(node, 0);
1362 				node = NULL;
1363 			} else {
1364 				*errorp = 0;
1365 			}
1366 		}
1367 	} else {
1368 		*errorp = ENOENT;
1369 	}
1370 	return(node);
1371 }
1372 
1373 /*
1374  * Release a hammer_node.  On the last release the node dereferences
1375  * its underlying buffer and may or may not be destroyed.
1376  *
1377  * If locked is non-zero the passed node has been interlocked by the
1378  * caller and we are in the failure/unload path, otherwise it has not and
1379  * we are doing a normal release.
1380  *
1381  * This function will dispose of the interlock and the reference.
1382  * On return the node pointer is stale.
1383  */
1384 void
1385 _hammer_rel_node(hammer_node_t node, int locked)
1386 {
1387 	hammer_buffer_t buffer;
1388 
1389 	/*
1390 	 * Deref the node.  If this isn't the 1->0 transition we're basically
1391 	 * done.  If locked is non-zero this function will just deref the
1392 	 * locked node and return TRUE, otherwise it will deref the locked
1393 	 * node and either lock and return TRUE on the 1->0 transition or
1394 	 * not lock and return FALSE.
1395 	 */
1396 	if (hammer_rel_interlock(&node->lock, locked) == 0)
1397 		return;
1398 
1399 	/*
1400 	 * Either locked was non-zero and we are interlocked, or the
1401 	 * hammer_rel_interlock() call returned non-zero and we are
1402 	 * interlocked.
1403 	 *
1404 	 * The ref-count must still be decremented if locked != 0 so
1405 	 * the cleanup required still varies a bit.
1406 	 *
1407 	 * hammer_flush_node() when called with 1 or 2 will dispose of
1408 	 * the lock and possible ref-count.
1409 	 */
1410 	if (node->ondisk == NULL) {
1411 		hammer_flush_node(node, locked + 1);
1412 		/* node is stale now */
1413 		return;
1414 	}
1415 
1416 	/*
1417 	 * Do not disassociate the node from the buffer if it represents
1418 	 * a modified B-Tree node that still needs its crc to be generated.
1419 	 */
1420 	if (node->flags & HAMMER_NODE_NEEDSCRC) {
1421 		hammer_rel_interlock_done(&node->lock, locked);
1422 		return;
1423 	}
1424 
1425 	/*
1426 	 * Do final cleanups and then either destroy the node and leave it
1427 	 * passively cached.  The buffer reference is removed regardless.
1428 	 */
1429 	buffer = node->buffer;
1430 	node->ondisk = NULL;
1431 
1432 	if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1433 		/*
1434 		 * Normal release.
1435 		 */
1436 		hammer_rel_interlock_done(&node->lock, locked);
1437 	} else {
1438 		/*
1439 		 * Destroy the node.
1440 		 */
1441 		hammer_flush_node(node, locked + 1);
1442 		/* node is stale */
1443 
1444 	}
1445 	hammer_rel_buffer(buffer, 0);
1446 }
1447 
1448 void
1449 hammer_rel_node(hammer_node_t node)
1450 {
1451 	_hammer_rel_node(node, 0);
1452 }
1453 
1454 /*
1455  * Free space on-media associated with a B-Tree node.
1456  */
1457 void
1458 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1459 {
1460 	KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1461 	node->flags |= HAMMER_NODE_DELETED;
1462 	hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1463 }
1464 
1465 /*
1466  * Passively cache a referenced hammer_node.  The caller may release
1467  * the node on return.
1468  */
1469 void
1470 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1471 {
1472 	/*
1473 	 * If the node doesn't exist, or is being deleted, don't cache it!
1474 	 *
1475 	 * The node can only ever be NULL in the I/O failure path.
1476 	 */
1477 	if (node == NULL || (node->flags & HAMMER_NODE_DELETED))
1478 		return;
1479 	if (cache->node == node)
1480 		return;
1481 	while (cache->node)
1482 		hammer_uncache_node(cache);
1483 	if (node->flags & HAMMER_NODE_DELETED)
1484 		return;
1485 	cache->node = node;
1486 	TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1487 }
1488 
1489 void
1490 hammer_uncache_node(hammer_node_cache_t cache)
1491 {
1492 	hammer_node_t node;
1493 
1494 	if ((node = cache->node) != NULL) {
1495 		TAILQ_REMOVE(&node->cache_list, cache, entry);
1496 		cache->node = NULL;
1497 		if (TAILQ_EMPTY(&node->cache_list))
1498 			hammer_flush_node(node, 0);
1499 	}
1500 }
1501 
1502 /*
1503  * Remove a node's cache references and destroy the node if it has no
1504  * other references or backing store.
1505  *
1506  * locked == 0	Normal unlocked operation
1507  * locked == 1	Call hammer_rel_interlock_done(..., 0);
1508  * locked == 2	Call hammer_rel_interlock_done(..., 1);
1509  *
1510  * XXX for now this isn't even close to being MPSAFE so the refs check
1511  *     is sufficient.
1512  */
1513 void
1514 hammer_flush_node(hammer_node_t node, int locked)
1515 {
1516 	hammer_node_cache_t cache;
1517 	hammer_buffer_t buffer;
1518 	hammer_mount_t hmp = node->hmp;
1519 	int dofree;
1520 
1521 	while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1522 		TAILQ_REMOVE(&node->cache_list, cache, entry);
1523 		cache->node = NULL;
1524 	}
1525 
1526 	/*
1527 	 * NOTE: refs is predisposed if another thread is blocking and
1528 	 *	 will be larger than 0 in that case.  We aren't MPSAFE
1529 	 *	 here.
1530 	 */
1531 	if (node->ondisk == NULL && hammer_norefs(&node->lock)) {
1532 		KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1533 		RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1534 		if ((buffer = node->buffer) != NULL) {
1535 			node->buffer = NULL;
1536 			TAILQ_REMOVE(&buffer->clist, node, entry);
1537 			/* buffer is unreferenced because ondisk is NULL */
1538 		}
1539 		dofree = 1;
1540 	} else {
1541 		dofree = 0;
1542 	}
1543 
1544 	/*
1545 	 * Deal with the interlock if locked == 1 or locked == 2.
1546 	 */
1547 	if (locked)
1548 		hammer_rel_interlock_done(&node->lock, locked - 1);
1549 
1550 	/*
1551 	 * Destroy if requested
1552 	 */
1553 	if (dofree) {
1554 		--hammer_count_nodes;
1555 		kfree(node, hmp->m_misc);
1556 	}
1557 }
1558 
1559 /*
1560  * Flush passively cached B-Tree nodes associated with this buffer.
1561  * This is only called when the buffer is about to be destroyed, so
1562  * none of the nodes should have any references.  The buffer is locked.
1563  *
1564  * We may be interlocked with the buffer.
1565  */
1566 void
1567 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1568 {
1569 	hammer_node_t node;
1570 
1571 	while ((node = TAILQ_FIRST(&buffer->clist)) != NULL) {
1572 		KKASSERT(node->ondisk == NULL);
1573 		KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1574 
1575 		if (hammer_try_interlock_norefs(&node->lock)) {
1576 			hammer_ref(&node->lock);
1577 			node->flags |= HAMMER_NODE_FLUSH;
1578 			_hammer_rel_node(node, 1);
1579 		} else {
1580 			KKASSERT(node->buffer != NULL);
1581 			buffer = node->buffer;
1582 			node->buffer = NULL;
1583 			TAILQ_REMOVE(&buffer->clist, node, entry);
1584 			/* buffer is unreferenced because ondisk is NULL */
1585 		}
1586 	}
1587 }
1588 
1589 
1590 /************************************************************************
1591  *				ALLOCATORS				*
1592  ************************************************************************/
1593 
1594 /*
1595  * Allocate a B-Tree node.
1596  */
1597 hammer_node_t
1598 hammer_alloc_btree(hammer_transaction_t trans, hammer_off_t hint, int *errorp)
1599 {
1600 	hammer_buffer_t buffer = NULL;
1601 	hammer_node_t node = NULL;
1602 	hammer_off_t node_offset;
1603 
1604 	node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1605 					    sizeof(struct hammer_node_ondisk),
1606 					    hint, errorp);
1607 	if (*errorp == 0) {
1608 		node = hammer_get_node(trans, node_offset, 1, errorp);
1609 		hammer_modify_node_noundo(trans, node);
1610 		bzero(node->ondisk, sizeof(*node->ondisk));
1611 		hammer_modify_node_done(node);
1612 	}
1613 	if (buffer)
1614 		hammer_rel_buffer(buffer, 0);
1615 	return(node);
1616 }
1617 
1618 /*
1619  * Allocate data.  If the address of a data buffer is supplied then
1620  * any prior non-NULL *data_bufferp will be released and *data_bufferp
1621  * will be set to the related buffer.  The caller must release it when
1622  * finally done.  The initial *data_bufferp should be set to NULL by
1623  * the caller.
1624  *
1625  * The caller is responsible for making hammer_modify*() calls on the
1626  * *data_bufferp.
1627  */
1628 void *
1629 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len,
1630 		  u_int16_t rec_type, hammer_off_t *data_offsetp,
1631 		  struct hammer_buffer **data_bufferp,
1632 		  hammer_off_t hint, int *errorp)
1633 {
1634 	void *data;
1635 	int zone;
1636 
1637 	/*
1638 	 * Allocate data
1639 	 */
1640 	if (data_len) {
1641 		switch(rec_type) {
1642 		case HAMMER_RECTYPE_INODE:
1643 		case HAMMER_RECTYPE_DIRENTRY:
1644 		case HAMMER_RECTYPE_EXT:
1645 		case HAMMER_RECTYPE_FIX:
1646 		case HAMMER_RECTYPE_PFS:
1647 		case HAMMER_RECTYPE_SNAPSHOT:
1648 		case HAMMER_RECTYPE_CONFIG:
1649 			zone = HAMMER_ZONE_META_INDEX;
1650 			break;
1651 		case HAMMER_RECTYPE_DATA:
1652 		case HAMMER_RECTYPE_DB:
1653 			if (data_len <= HAMMER_BUFSIZE / 2) {
1654 				zone = HAMMER_ZONE_SMALL_DATA_INDEX;
1655 			} else {
1656 				data_len = (data_len + HAMMER_BUFMASK) &
1657 					   ~HAMMER_BUFMASK;
1658 				zone = HAMMER_ZONE_LARGE_DATA_INDEX;
1659 			}
1660 			break;
1661 		default:
1662 			panic("hammer_alloc_data: rec_type %04x unknown",
1663 			      rec_type);
1664 			zone = 0;	/* NOT REACHED */
1665 			break;
1666 		}
1667 		*data_offsetp = hammer_blockmap_alloc(trans, zone, data_len,
1668 						      hint, errorp);
1669 	} else {
1670 		*data_offsetp = 0;
1671 	}
1672 	if (*errorp == 0 && data_bufferp) {
1673 		if (data_len) {
1674 			data = hammer_bread_ext(trans->hmp, *data_offsetp,
1675 						data_len, errorp, data_bufferp);
1676 		} else {
1677 			data = NULL;
1678 		}
1679 	} else {
1680 		data = NULL;
1681 	}
1682 	return(data);
1683 }
1684 
1685 /*
1686  * Sync dirty buffers to the media and clean-up any loose ends.
1687  *
1688  * These functions do not start the flusher going, they simply
1689  * queue everything up to the flusher.
1690  */
1691 static int hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data);
1692 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1693 
1694 int
1695 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1696 {
1697 	struct hammer_sync_info info;
1698 
1699 	info.error = 0;
1700 	info.waitfor = waitfor;
1701 	if (waitfor == MNT_WAIT) {
1702 		vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS,
1703 			      hammer_sync_scan1, hammer_sync_scan2, &info);
1704 	} else {
1705 		vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS|VMSC_NOWAIT,
1706 			      hammer_sync_scan1, hammer_sync_scan2, &info);
1707 	}
1708 	return(info.error);
1709 }
1710 
1711 /*
1712  * Filesystem sync.  If doing a synchronous sync make a second pass on
1713  * the vnodes in case any were already flushing during the first pass,
1714  * and activate the flusher twice (the second time brings the UNDO FIFO's
1715  * start position up to the end position after the first call).
1716  */
1717 int
1718 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1719 {
1720 	struct hammer_sync_info info;
1721 
1722 	info.error = 0;
1723 	info.waitfor = MNT_NOWAIT;
1724 	vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_NOWAIT,
1725 		      hammer_sync_scan1, hammer_sync_scan2, &info);
1726 	if (info.error == 0 && waitfor == MNT_WAIT) {
1727 		info.waitfor = waitfor;
1728 		vmntvnodescan(hmp->mp, VMSC_GETVP,
1729 			      hammer_sync_scan1, hammer_sync_scan2, &info);
1730 	}
1731         if (waitfor == MNT_WAIT) {
1732                 hammer_flusher_sync(hmp);
1733                 hammer_flusher_sync(hmp);
1734 	} else {
1735                 hammer_flusher_async(hmp, NULL);
1736                 hammer_flusher_async(hmp, NULL);
1737 	}
1738 	return(info.error);
1739 }
1740 
1741 static int
1742 hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data)
1743 {
1744 	struct hammer_inode *ip;
1745 
1746 	ip = VTOI(vp);
1747 	if (vp->v_type == VNON || ip == NULL ||
1748 	    ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1749 	     RB_EMPTY(&vp->v_rbdirty_tree))) {
1750 		return(-1);
1751 	}
1752 	return(0);
1753 }
1754 
1755 static int
1756 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1757 {
1758 	struct hammer_sync_info *info = data;
1759 	struct hammer_inode *ip;
1760 	int error;
1761 
1762 	ip = VTOI(vp);
1763 	if (vp->v_type == VNON || vp->v_type == VBAD ||
1764 	    ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1765 	     RB_EMPTY(&vp->v_rbdirty_tree))) {
1766 		return(0);
1767 	}
1768 	error = VOP_FSYNC(vp, MNT_NOWAIT, 0);
1769 	if (error)
1770 		info->error = error;
1771 	return(0);
1772 }
1773 
1774