xref: /dragonfly/sys/vfs/hammer/hammer_ondisk.c (revision 52f9f0d9)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.76 2008/08/29 20:19:08 dillon Exp $
35  */
36 /*
37  * Manage HAMMER's on-disk structures.  These routines are primarily
38  * responsible for interfacing with the kernel's I/O subsystem and for
39  * managing in-memory structures.
40  */
41 
42 #include "hammer.h"
43 #include <sys/fcntl.h>
44 #include <sys/nlookup.h>
45 #include <sys/buf.h>
46 
47 #include <sys/buf2.h>
48 
49 static void hammer_free_volume(hammer_volume_t volume);
50 static int hammer_load_volume(hammer_volume_t volume);
51 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
52 static int hammer_load_node(hammer_transaction_t trans,
53 				hammer_node_t node, int isnew);
54 static void _hammer_rel_node(hammer_node_t node, int locked);
55 
56 static int
57 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
58 {
59 	if (vol1->vol_no < vol2->vol_no)
60 		return(-1);
61 	if (vol1->vol_no > vol2->vol_no)
62 		return(1);
63 	return(0);
64 }
65 
66 /*
67  * hammer_buffer structures are indexed via their zoneX_offset, not
68  * their zone2_offset.
69  */
70 static int
71 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
72 {
73 	if (buf1->zoneX_offset < buf2->zoneX_offset)
74 		return(-1);
75 	if (buf1->zoneX_offset > buf2->zoneX_offset)
76 		return(1);
77 	return(0);
78 }
79 
80 static int
81 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
82 {
83 	if (node1->node_offset < node2->node_offset)
84 		return(-1);
85 	if (node1->node_offset > node2->node_offset)
86 		return(1);
87 	return(0);
88 }
89 
90 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
91 	     hammer_vol_rb_compare, int32_t, vol_no);
92 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
93 	     hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
94 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
95 	     hammer_nod_rb_compare, hammer_off_t, node_offset);
96 
97 /************************************************************************
98  *				VOLUMES					*
99  ************************************************************************
100  *
101  * Load a HAMMER volume by name.  Returns 0 on success or a positive error
102  * code on failure.  Volumes must be loaded at mount time, get_volume() will
103  * not load a new volume.
104  *
105  * The passed devvp is vref()'d but not locked.  This function consumes the
106  * ref (typically by associating it with the volume structure).
107  *
108  * Calls made to hammer_load_volume() or single-threaded
109  */
110 int
111 hammer_install_volume(struct hammer_mount *hmp, const char *volname,
112 		      struct vnode *devvp)
113 {
114 	struct mount *mp;
115 	hammer_volume_t volume;
116 	struct hammer_volume_ondisk *ondisk;
117 	struct nlookupdata nd;
118 	struct buf *bp = NULL;
119 	int error;
120 	int ronly;
121 	int setmp = 0;
122 
123 	mp = hmp->mp;
124 	ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
125 
126 	/*
127 	 * Allocate a volume structure
128 	 */
129 	++hammer_count_volumes;
130 	volume = kmalloc(sizeof(*volume), hmp->m_misc, M_WAITOK|M_ZERO);
131 	volume->vol_name = kstrdup(volname, hmp->m_misc);
132 	volume->io.hmp = hmp;	/* bootstrap */
133 	hammer_io_init(&volume->io, volume, HAMMER_STRUCTURE_VOLUME);
134 	volume->io.offset = 0LL;
135 	volume->io.bytes = HAMMER_BUFSIZE;
136 
137 	/*
138 	 * Get the device vnode
139 	 */
140 	if (devvp == NULL) {
141 		error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
142 		if (error == 0)
143 			error = nlookup(&nd);
144 		if (error == 0)
145 			error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
146 		nlookup_done(&nd);
147 	} else {
148 		error = 0;
149 		volume->devvp = devvp;
150 	}
151 
152 	if (error == 0) {
153 		if (vn_isdisk(volume->devvp, &error)) {
154 			error = vfs_mountedon(volume->devvp);
155 		}
156 	}
157 	if (error == 0 && vcount(volume->devvp) > 0)
158 		error = EBUSY;
159 	if (error == 0) {
160 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
161 		error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
162 		if (error == 0) {
163 			error = VOP_OPEN(volume->devvp,
164 					 (ronly ? FREAD : FREAD|FWRITE),
165 					 FSCRED, NULL);
166 		}
167 		vn_unlock(volume->devvp);
168 	}
169 	if (error) {
170 		hammer_free_volume(volume);
171 		return(error);
172 	}
173 	volume->devvp->v_rdev->si_mountpoint = mp;
174 	setmp = 1;
175 
176 	/*
177 	 * Extract the volume number from the volume header and do various
178 	 * sanity checks.
179 	 */
180 	error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
181 	if (error)
182 		goto late_failure;
183 	ondisk = (void *)bp->b_data;
184 	if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
185 		kprintf("hammer_mount: volume %s has an invalid header\n",
186 			volume->vol_name);
187 		error = EFTYPE;
188 		goto late_failure;
189 	}
190 	volume->vol_no = ondisk->vol_no;
191 	volume->buffer_base = ondisk->vol_buf_beg;
192 	volume->vol_flags = ondisk->vol_flags;
193 	volume->nblocks = ondisk->vol_nblocks;
194 	volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
195 				    ondisk->vol_buf_end - ondisk->vol_buf_beg);
196 	volume->maxraw_off = ondisk->vol_buf_end;
197 
198 	if (RB_EMPTY(&hmp->rb_vols_root)) {
199 		hmp->fsid = ondisk->vol_fsid;
200 	} else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
201 		kprintf("hammer_mount: volume %s's fsid does not match "
202 			"other volumes\n", volume->vol_name);
203 		error = EFTYPE;
204 		goto late_failure;
205 	}
206 
207 	/*
208 	 * Insert the volume structure into the red-black tree.
209 	 */
210 	if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
211 		kprintf("hammer_mount: volume %s has a duplicate vol_no %d\n",
212 			volume->vol_name, volume->vol_no);
213 		error = EEXIST;
214 	}
215 
216 	/*
217 	 * Set the root volume .  HAMMER special cases rootvol the structure.
218 	 * We do not hold a ref because this would prevent related I/O
219 	 * from being flushed.
220 	 */
221 	if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
222 		hmp->rootvol = volume;
223 		hmp->nvolumes = ondisk->vol_count;
224 		if (bp) {
225 			brelse(bp);
226 			bp = NULL;
227 		}
228 		hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
229 			(HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
230 		hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
231 			(HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
232 	}
233 late_failure:
234 	if (bp)
235 		brelse(bp);
236 	if (error) {
237 		/*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
238 		if (setmp)
239 			volume->devvp->v_rdev->si_mountpoint = NULL;
240 		VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE);
241 		hammer_free_volume(volume);
242 	}
243 	return (error);
244 }
245 
246 /*
247  * This is called for each volume when updating the mount point from
248  * read-write to read-only or vise-versa.
249  */
250 int
251 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
252 {
253 	if (volume->devvp) {
254 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
255 		if (volume->io.hmp->ronly) {
256 			/* do not call vinvalbuf */
257 			VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
258 			VOP_CLOSE(volume->devvp, FREAD|FWRITE);
259 		} else {
260 			/* do not call vinvalbuf */
261 			VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
262 			VOP_CLOSE(volume->devvp, FREAD);
263 		}
264 		vn_unlock(volume->devvp);
265 	}
266 	return(0);
267 }
268 
269 /*
270  * Unload and free a HAMMER volume.  Must return >= 0 to continue scan
271  * so returns -1 on failure.
272  */
273 int
274 hammer_unload_volume(hammer_volume_t volume, void *data __unused)
275 {
276 	hammer_mount_t hmp = volume->io.hmp;
277 	int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
278 
279 	/*
280 	 * Clean up the root volume pointer, which is held unlocked in hmp.
281 	 */
282 	if (hmp->rootvol == volume)
283 		hmp->rootvol = NULL;
284 
285 	/*
286 	 * We must not flush a dirty buffer to disk on umount.  It should
287 	 * have already been dealt with by the flusher, or we may be in
288 	 * catastrophic failure.
289 	 */
290 	hammer_io_clear_modify(&volume->io, 1);
291 	volume->io.waitdep = 1;
292 
293 	/*
294 	 * Clean up the persistent ref ioerror might have on the volume
295 	 */
296 	if (volume->io.ioerror)
297 		hammer_io_clear_error_noassert(&volume->io);
298 
299 	/*
300 	 * This should release the bp.  Releasing the volume with flush set
301 	 * implies the interlock is set.
302 	 */
303 	hammer_ref_interlock_true(&volume->io.lock);
304 	hammer_rel_volume(volume, 1);
305 	KKASSERT(volume->io.bp == NULL);
306 
307 	/*
308 	 * There should be no references on the volume, no clusters, and
309 	 * no super-clusters.
310 	 */
311 	KKASSERT(hammer_norefs(&volume->io.lock));
312 
313 	volume->ondisk = NULL;
314 	if (volume->devvp) {
315 		if (volume->devvp->v_rdev &&
316 		    volume->devvp->v_rdev->si_mountpoint == hmp->mp
317 		) {
318 			volume->devvp->v_rdev->si_mountpoint = NULL;
319 		}
320 		if (ronly) {
321 			/*
322 			 * Make sure we don't sync anything to disk if we
323 			 * are in read-only mode (1) or critically-errored
324 			 * (2).  Note that there may be dirty buffers in
325 			 * normal read-only mode from crash recovery.
326 			 */
327 			vinvalbuf(volume->devvp, 0, 0, 0);
328 			VOP_CLOSE(volume->devvp, FREAD);
329 		} else {
330 			/*
331 			 * Normal termination, save any dirty buffers
332 			 * (XXX there really shouldn't be any).
333 			 */
334 			vinvalbuf(volume->devvp, V_SAVE, 0, 0);
335 			VOP_CLOSE(volume->devvp, FREAD|FWRITE);
336 		}
337 	}
338 
339 	/*
340 	 * Destroy the structure
341 	 */
342 	RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
343 	hammer_free_volume(volume);
344 	return(0);
345 }
346 
347 static
348 void
349 hammer_free_volume(hammer_volume_t volume)
350 {
351 	hammer_mount_t hmp = volume->io.hmp;
352 
353 	if (volume->vol_name) {
354 		kfree(volume->vol_name, hmp->m_misc);
355 		volume->vol_name = NULL;
356 	}
357 	if (volume->devvp) {
358 		vrele(volume->devvp);
359 		volume->devvp = NULL;
360 	}
361 	--hammer_count_volumes;
362 	kfree(volume, hmp->m_misc);
363 }
364 
365 /*
366  * Get a HAMMER volume.  The volume must already exist.
367  */
368 hammer_volume_t
369 hammer_get_volume(struct hammer_mount *hmp, int32_t vol_no, int *errorp)
370 {
371 	struct hammer_volume *volume;
372 
373 	/*
374 	 * Locate the volume structure
375 	 */
376 	volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
377 	if (volume == NULL) {
378 		*errorp = ENOENT;
379 		return(NULL);
380 	}
381 
382 	/*
383 	 * Reference the volume, load/check the data on the 0->1 transition.
384 	 * hammer_load_volume() will dispose of the interlock on return,
385 	 * and also clean up the ref count on error.
386 	 */
387 	if (hammer_ref_interlock(&volume->io.lock)) {
388 		*errorp = hammer_load_volume(volume);
389 		if (*errorp)
390 			volume = NULL;
391 	} else {
392 		KKASSERT(volume->ondisk);
393 		*errorp = 0;
394 	}
395 	return(volume);
396 }
397 
398 int
399 hammer_ref_volume(hammer_volume_t volume)
400 {
401 	int error;
402 
403 	/*
404 	 * Reference the volume and deal with the check condition used to
405 	 * load its ondisk info.
406 	 */
407 	if (hammer_ref_interlock(&volume->io.lock)) {
408 		error = hammer_load_volume(volume);
409 	} else {
410 		KKASSERT(volume->ondisk);
411 		error = 0;
412 	}
413 	return (error);
414 }
415 
416 hammer_volume_t
417 hammer_get_root_volume(struct hammer_mount *hmp, int *errorp)
418 {
419 	hammer_volume_t volume;
420 
421 	volume = hmp->rootvol;
422 	KKASSERT(volume != NULL);
423 
424 	/*
425 	 * Reference the volume and deal with the check condition used to
426 	 * load its ondisk info.
427 	 */
428 	if (hammer_ref_interlock(&volume->io.lock)) {
429 		*errorp = hammer_load_volume(volume);
430 		if (*errorp)
431 			volume = NULL;
432 	} else {
433 		KKASSERT(volume->ondisk);
434 		*errorp = 0;
435 	}
436 	return (volume);
437 }
438 
439 /*
440  * Load a volume's on-disk information.  The volume must be referenced and
441  * the interlock is held on call.  The interlock will be released on return.
442  * The reference will also be released on return if an error occurs.
443  */
444 static int
445 hammer_load_volume(hammer_volume_t volume)
446 {
447 	int error;
448 
449 	if (volume->ondisk == NULL) {
450 		error = hammer_io_read(volume->devvp, &volume->io,
451 				       HAMMER_BUFSIZE);
452 		if (error == 0) {
453 			volume->ondisk = (void *)volume->io.bp->b_data;
454                         hammer_ref_interlock_done(&volume->io.lock);
455 		} else {
456                         hammer_rel_volume(volume, 1);
457 		}
458 	} else {
459 		error = 0;
460 	}
461 	return(error);
462 }
463 
464 /*
465  * Release a previously acquired reference on the volume.
466  *
467  * Volumes are not unloaded from memory during normal operation.
468  */
469 void
470 hammer_rel_volume(hammer_volume_t volume, int locked)
471 {
472 	struct buf *bp;
473 
474 	if (hammer_rel_interlock(&volume->io.lock, locked)) {
475 		volume->ondisk = NULL;
476 		bp = hammer_io_release(&volume->io, locked);
477 		hammer_rel_interlock_done(&volume->io.lock, locked);
478 		if (bp)
479 			brelse(bp);
480 	}
481 }
482 
483 int
484 hammer_mountcheck_volumes(struct hammer_mount *hmp)
485 {
486 	hammer_volume_t vol;
487 	int i;
488 
489 	for (i = 0; i < hmp->nvolumes; ++i) {
490 		vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
491 		if (vol == NULL)
492 			return(EINVAL);
493 	}
494 	return(0);
495 }
496 
497 /************************************************************************
498  *				BUFFERS					*
499  ************************************************************************
500  *
501  * Manage buffers.  Currently most blockmap-backed zones are direct-mapped
502  * to zone-2 buffer offsets, without a translation stage.  However, the
503  * hammer_buffer structure is indexed by its zoneX_offset, not its
504  * zone2_offset.
505  *
506  * The proper zone must be maintained throughout the code-base all the way
507  * through to the big-block allocator, or routines like hammer_del_buffers()
508  * will not be able to locate all potentially conflicting buffers.
509  */
510 
511 /*
512  * Helper function returns whether a zone offset can be directly translated
513  * to a raw buffer index or not.  Really only the volume and undo zones
514  * can't be directly translated.  Volumes are special-cased and undo zones
515  * shouldn't be aliased accessed in read-only mode.
516  *
517  * This function is ONLY used to detect aliased zones during a read-only
518  * mount.
519  */
520 static __inline int
521 hammer_direct_zone(hammer_off_t buf_offset)
522 {
523 	switch(HAMMER_ZONE_DECODE(buf_offset)) {
524 	case HAMMER_ZONE_RAW_BUFFER_INDEX:
525 	case HAMMER_ZONE_FREEMAP_INDEX:
526 	case HAMMER_ZONE_BTREE_INDEX:
527 	case HAMMER_ZONE_META_INDEX:
528 	case HAMMER_ZONE_LARGE_DATA_INDEX:
529 	case HAMMER_ZONE_SMALL_DATA_INDEX:
530 		return(1);
531 	default:
532 		return(0);
533 	}
534 	/* NOT REACHED */
535 }
536 
537 hammer_buffer_t
538 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
539 		  int bytes, int isnew, int *errorp)
540 {
541 	hammer_buffer_t buffer;
542 	hammer_volume_t volume;
543 	hammer_off_t	zone2_offset;
544 	hammer_io_type_t iotype;
545 	int vol_no;
546 	int zone;
547 
548 	buf_offset &= ~HAMMER_BUFMASK64;
549 again:
550 	/*
551 	 * Shortcut if the buffer is already cached
552 	 */
553 	buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
554 	if (buffer) {
555 		/*
556 		 * Once refed the ondisk field will not be cleared by
557 		 * any other action.  Shortcut the operation if the
558 		 * ondisk structure is valid.
559 		 */
560 found_aliased:
561 		if (hammer_ref_interlock(&buffer->io.lock) == 0) {
562 			hammer_io_advance(&buffer->io);
563 			KKASSERT(buffer->ondisk);
564 			*errorp = 0;
565 			return(buffer);
566 		}
567 
568 		/*
569 		 * 0->1 transition or defered 0->1 transition (CHECK),
570 		 * interlock now held.  Shortcut if ondisk is already
571 		 * assigned.
572 		 */
573 		atomic_add_int(&hammer_count_refedbufs, 1);
574 		if (buffer->ondisk) {
575 			hammer_io_advance(&buffer->io);
576 			hammer_ref_interlock_done(&buffer->io.lock);
577 			*errorp = 0;
578 			return(buffer);
579 		}
580 
581 		/*
582 		 * The buffer is no longer loose if it has a ref, and
583 		 * cannot become loose once it gains a ref.  Loose
584 		 * buffers will never be in a modified state.  This should
585 		 * only occur on the 0->1 transition of refs.
586 		 *
587 		 * lose_list can be modified via a biodone() interrupt
588 		 * so the io_token must be held.
589 		 */
590 		if (buffer->io.mod_root == &hmp->lose_root) {
591 			lwkt_gettoken(&hmp->io_token);
592 			if (buffer->io.mod_root == &hmp->lose_root) {
593 				RB_REMOVE(hammer_mod_rb_tree,
594 					  buffer->io.mod_root, &buffer->io);
595 				buffer->io.mod_root = NULL;
596 				KKASSERT(buffer->io.modified == 0);
597 			}
598 			lwkt_reltoken(&hmp->io_token);
599 		}
600 		goto found;
601 	} else if (hmp->ronly && hammer_direct_zone(buf_offset)) {
602 		/*
603 		 * If this is a read-only mount there could be an alias
604 		 * in the raw-zone.  If there is we use that buffer instead.
605 		 *
606 		 * rw mounts will not have aliases.  Also note when going
607 		 * from ro -> rw the recovered raw buffers are flushed and
608 		 * reclaimed, so again there will not be any aliases once
609 		 * the mount is rw.
610 		 */
611 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
612 				   (buf_offset & ~HAMMER_OFF_ZONE_MASK) |
613 				   HAMMER_ZONE_RAW_BUFFER);
614 		if (buffer) {
615 			kprintf("HAMMER: recovered aliased %016jx\n",
616 				(intmax_t)buf_offset);
617 			goto found_aliased;
618 		}
619 	}
620 
621 	/*
622 	 * What is the buffer class?
623 	 */
624 	zone = HAMMER_ZONE_DECODE(buf_offset);
625 
626 	switch(zone) {
627 	case HAMMER_ZONE_LARGE_DATA_INDEX:
628 	case HAMMER_ZONE_SMALL_DATA_INDEX:
629 		iotype = HAMMER_STRUCTURE_DATA_BUFFER;
630 		break;
631 	case HAMMER_ZONE_UNDO_INDEX:
632 		iotype = HAMMER_STRUCTURE_UNDO_BUFFER;
633 		break;
634 	case HAMMER_ZONE_META_INDEX:
635 	default:
636 		/*
637 		 * NOTE: inode data and directory entries are placed in this
638 		 * zone.  inode atime/mtime is updated in-place and thus
639 		 * buffers containing inodes must be synchronized as
640 		 * meta-buffers, same as buffers containing B-Tree info.
641 		 */
642 		iotype = HAMMER_STRUCTURE_META_BUFFER;
643 		break;
644 	}
645 
646 	/*
647 	 * Handle blockmap offset translations
648 	 */
649 	if (zone >= HAMMER_ZONE_BTREE_INDEX) {
650 		zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
651 	} else if (zone == HAMMER_ZONE_UNDO_INDEX) {
652 		zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
653 	} else {
654 		KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
655 		zone2_offset = buf_offset;
656 		*errorp = 0;
657 	}
658 	if (*errorp)
659 		return(NULL);
660 
661 	/*
662 	 * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
663 	 * specifications.
664 	 */
665 	KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
666 		 HAMMER_ZONE_RAW_BUFFER);
667 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
668 	volume = hammer_get_volume(hmp, vol_no, errorp);
669 	if (volume == NULL)
670 		return(NULL);
671 
672 	KKASSERT(zone2_offset < volume->maxbuf_off);
673 
674 	/*
675 	 * Allocate a new buffer structure.  We will check for races later.
676 	 */
677 	++hammer_count_buffers;
678 	buffer = kmalloc(sizeof(*buffer), hmp->m_misc,
679 			 M_WAITOK|M_ZERO|M_USE_RESERVE);
680 	buffer->zone2_offset = zone2_offset;
681 	buffer->zoneX_offset = buf_offset;
682 
683 	hammer_io_init(&buffer->io, volume, iotype);
684 	buffer->io.offset = volume->ondisk->vol_buf_beg +
685 			    (zone2_offset & HAMMER_OFF_SHORT_MASK);
686 	buffer->io.bytes = bytes;
687 	TAILQ_INIT(&buffer->clist);
688 	hammer_ref_interlock_true(&buffer->io.lock);
689 
690 	/*
691 	 * Insert the buffer into the RB tree and handle late collisions.
692 	 */
693 	if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
694 		hammer_rel_volume(volume, 0);
695 		buffer->io.volume = NULL;			/* safety */
696 		if (hammer_rel_interlock(&buffer->io.lock, 1))	/* safety */
697 			hammer_rel_interlock_done(&buffer->io.lock, 1);
698 		--hammer_count_buffers;
699 		kfree(buffer, hmp->m_misc);
700 		goto again;
701 	}
702 	atomic_add_int(&hammer_count_refedbufs, 1);
703 found:
704 
705 	/*
706 	 * The buffer is referenced and interlocked.  Load the buffer
707 	 * if necessary.  hammer_load_buffer() deals with the interlock
708 	 * and, if an error is returned, also deals with the ref.
709 	 */
710 	if (buffer->ondisk == NULL) {
711 		*errorp = hammer_load_buffer(buffer, isnew);
712 		if (*errorp)
713 			buffer = NULL;
714 	} else {
715 		hammer_io_advance(&buffer->io);
716 		hammer_ref_interlock_done(&buffer->io.lock);
717 		*errorp = 0;
718 	}
719 	return(buffer);
720 }
721 
722 /*
723  * This is used by the direct-read code to deal with large-data buffers
724  * created by the reblocker and mirror-write code.  The direct-read code
725  * bypasses the HAMMER buffer subsystem and so any aliased dirty or write-
726  * running hammer buffers must be fully synced to disk before we can issue
727  * the direct-read.
728  *
729  * This code path is not considered critical as only the rebocker and
730  * mirror-write code will create large-data buffers via the HAMMER buffer
731  * subsystem.  They do that because they operate at the B-Tree level and
732  * do not access the vnode/inode structures.
733  */
734 void
735 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
736 {
737 	hammer_buffer_t buffer;
738 	int error;
739 
740 	KKASSERT((base_offset & HAMMER_OFF_ZONE_MASK) ==
741 		 HAMMER_ZONE_LARGE_DATA);
742 
743 	while (bytes > 0) {
744 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
745 				   base_offset);
746 		if (buffer && (buffer->io.modified || buffer->io.running)) {
747 			error = hammer_ref_buffer(buffer);
748 			if (error == 0) {
749 				hammer_io_wait(&buffer->io);
750 				if (buffer->io.modified) {
751 					hammer_io_write_interlock(&buffer->io);
752 					hammer_io_flush(&buffer->io, 0);
753 					hammer_io_done_interlock(&buffer->io);
754 					hammer_io_wait(&buffer->io);
755 				}
756 				hammer_rel_buffer(buffer, 0);
757 			}
758 		}
759 		base_offset += HAMMER_BUFSIZE;
760 		bytes -= HAMMER_BUFSIZE;
761 	}
762 }
763 
764 /*
765  * Destroy all buffers covering the specified zoneX offset range.  This
766  * is called when the related blockmap layer2 entry is freed or when
767  * a direct write bypasses our buffer/buffer-cache subsystem.
768  *
769  * The buffers may be referenced by the caller itself.  Setting reclaim
770  * will cause the buffer to be destroyed when it's ref count reaches zero.
771  *
772  * Return 0 on success, EAGAIN if some buffers could not be destroyed due
773  * to additional references held by other threads, or some other (typically
774  * fatal) error.
775  */
776 int
777 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
778 		   hammer_off_t zone2_offset, int bytes,
779 		   int report_conflicts)
780 {
781 	hammer_buffer_t buffer;
782 	hammer_volume_t volume;
783 	int vol_no;
784 	int error;
785 	int ret_error;
786 
787 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
788 	volume = hammer_get_volume(hmp, vol_no, &ret_error);
789 	KKASSERT(ret_error == 0);
790 
791 	while (bytes > 0) {
792 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
793 				   base_offset);
794 		if (buffer) {
795 			error = hammer_ref_buffer(buffer);
796 			if (hammer_debug_general & 0x20000) {
797 				kprintf("hammer: delbufr %016jx "
798 					"rerr=%d 1ref=%d\n",
799 					(intmax_t)buffer->zoneX_offset,
800 					error,
801 					hammer_oneref(&buffer->io.lock));
802 			}
803 			if (error == 0 && !hammer_oneref(&buffer->io.lock)) {
804 				error = EAGAIN;
805 				hammer_rel_buffer(buffer, 0);
806 			}
807 			if (error == 0) {
808 				KKASSERT(buffer->zone2_offset == zone2_offset);
809 				hammer_io_clear_modify(&buffer->io, 1);
810 				buffer->io.reclaim = 1;
811 				buffer->io.waitdep = 1;
812 				KKASSERT(buffer->io.volume == volume);
813 				hammer_rel_buffer(buffer, 0);
814 			}
815 		} else {
816 			error = hammer_io_inval(volume, zone2_offset);
817 		}
818 		if (error) {
819 			ret_error = error;
820 			if (report_conflicts ||
821 			    (hammer_debug_general & 0x8000)) {
822 				kprintf("hammer_del_buffers: unable to "
823 					"invalidate %016llx buffer=%p rep=%d\n",
824 					(long long)base_offset,
825 					buffer, report_conflicts);
826 			}
827 		}
828 		base_offset += HAMMER_BUFSIZE;
829 		zone2_offset += HAMMER_BUFSIZE;
830 		bytes -= HAMMER_BUFSIZE;
831 	}
832 	hammer_rel_volume(volume, 0);
833 	return (ret_error);
834 }
835 
836 /*
837  * Given a referenced and interlocked buffer load/validate the data.
838  *
839  * The buffer interlock will be released on return.  If an error is
840  * returned the buffer reference will also be released (and the buffer
841  * pointer will thus be stale).
842  */
843 static int
844 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
845 {
846 	hammer_volume_t volume;
847 	int error;
848 
849 	/*
850 	 * Load the buffer's on-disk info
851 	 */
852 	volume = buffer->io.volume;
853 
854 	if (hammer_debug_io & 0x0004) {
855 		kprintf("load_buffer %016llx %016llx isnew=%d od=%p\n",
856 			(long long)buffer->zoneX_offset,
857 			(long long)buffer->zone2_offset,
858 			isnew, buffer->ondisk);
859 	}
860 
861 	if (buffer->ondisk == NULL) {
862 		/*
863 		 * Issue the read or generate a new buffer.  When reading
864 		 * the limit argument controls any read-ahead clustering
865 		 * hammer_io_read() is allowed to do.
866 		 *
867 		 * We cannot read-ahead in the large-data zone and we cannot
868 		 * cross a largeblock boundary as the next largeblock might
869 		 * use a different buffer size.
870 		 */
871 		if (isnew) {
872 			error = hammer_io_new(volume->devvp, &buffer->io);
873 		} else if ((buffer->zoneX_offset & HAMMER_OFF_ZONE_MASK) ==
874 			   HAMMER_ZONE_LARGE_DATA) {
875 			error = hammer_io_read(volume->devvp, &buffer->io,
876 					       buffer->io.bytes);
877 		} else {
878 			hammer_off_t limit;
879 
880 			limit = (buffer->zone2_offset +
881 				 HAMMER_LARGEBLOCK_MASK64) &
882 				~HAMMER_LARGEBLOCK_MASK64;
883 			limit -= buffer->zone2_offset;
884 			error = hammer_io_read(volume->devvp, &buffer->io,
885 					       limit);
886 		}
887 		if (error == 0)
888 			buffer->ondisk = (void *)buffer->io.bp->b_data;
889 	} else if (isnew) {
890 		error = hammer_io_new(volume->devvp, &buffer->io);
891 	} else {
892 		error = 0;
893 	}
894 	if (error == 0) {
895 		hammer_io_advance(&buffer->io);
896 		hammer_ref_interlock_done(&buffer->io.lock);
897 	} else {
898 		hammer_rel_buffer(buffer, 1);
899 	}
900 	return (error);
901 }
902 
903 /*
904  * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
905  * This routine is only called during unmount or when a volume is
906  * removed.
907  *
908  * If data != NULL, it specifies a volume whoose buffers should
909  * be unloaded.
910  */
911 int
912 hammer_unload_buffer(hammer_buffer_t buffer, void *data)
913 {
914 	struct hammer_volume *volume = (struct hammer_volume *) data;
915 
916 	/*
917 	 * If volume != NULL we are only interested in unloading buffers
918 	 * associated with a particular volume.
919 	 */
920 	if (volume != NULL && volume != buffer->io.volume)
921 		return 0;
922 
923 	/*
924 	 * Clean up the persistent ref ioerror might have on the buffer
925 	 * and acquire a ref.  Expect a 0->1 transition.
926 	 */
927 	if (buffer->io.ioerror) {
928 		hammer_io_clear_error_noassert(&buffer->io);
929 		atomic_add_int(&hammer_count_refedbufs, -1);
930 	}
931 	hammer_ref_interlock_true(&buffer->io.lock);
932 	atomic_add_int(&hammer_count_refedbufs, 1);
933 
934 	/*
935 	 * We must not flush a dirty buffer to disk on umount.  It should
936 	 * have already been dealt with by the flusher, or we may be in
937 	 * catastrophic failure.
938 	 *
939 	 * We must set waitdep to ensure that a running buffer is waited
940 	 * on and released prior to us trying to unload the volume.
941 	 */
942 	hammer_io_clear_modify(&buffer->io, 1);
943 	hammer_flush_buffer_nodes(buffer);
944 	buffer->io.waitdep = 1;
945 	hammer_rel_buffer(buffer, 1);
946 	return(0);
947 }
948 
949 /*
950  * Reference a buffer that is either already referenced or via a specially
951  * handled pointer (aka cursor->buffer).
952  */
953 int
954 hammer_ref_buffer(hammer_buffer_t buffer)
955 {
956 	hammer_mount_t hmp;
957 	int error;
958 	int locked;
959 
960 	/*
961 	 * Acquire a ref, plus the buffer will be interlocked on the
962 	 * 0->1 transition.
963 	 */
964 	locked = hammer_ref_interlock(&buffer->io.lock);
965 	hmp = buffer->io.hmp;
966 
967 	/*
968 	 * At this point a biodone() will not touch the buffer other then
969 	 * incidental bits.  However, lose_list can be modified via
970 	 * a biodone() interrupt.
971 	 *
972 	 * No longer loose.  lose_list requires the io_token.
973 	 */
974 	if (buffer->io.mod_root == &hmp->lose_root) {
975 		lwkt_gettoken(&hmp->io_token);
976 		if (buffer->io.mod_root == &hmp->lose_root) {
977 			RB_REMOVE(hammer_mod_rb_tree,
978 				  buffer->io.mod_root, &buffer->io);
979 			buffer->io.mod_root = NULL;
980 		}
981 		lwkt_reltoken(&hmp->io_token);
982 	}
983 
984 	if (locked) {
985 		atomic_add_int(&hammer_count_refedbufs, 1);
986 		error = hammer_load_buffer(buffer, 0);
987 		/* NOTE: on error the buffer pointer is stale */
988 	} else {
989 		error = 0;
990 	}
991 	return(error);
992 }
993 
994 /*
995  * Release a reference on the buffer.  On the 1->0 transition the
996  * underlying IO will be released but the data reference is left
997  * cached.
998  *
999  * Only destroy the structure itself if the related buffer cache buffer
1000  * was disassociated from it.  This ties the management of the structure
1001  * to the buffer cache subsystem.  buffer->ondisk determines whether the
1002  * embedded io is referenced or not.
1003  */
1004 void
1005 hammer_rel_buffer(hammer_buffer_t buffer, int locked)
1006 {
1007 	hammer_volume_t volume;
1008 	hammer_mount_t hmp;
1009 	struct buf *bp = NULL;
1010 	int freeme = 0;
1011 
1012 	hmp = buffer->io.hmp;
1013 
1014 	if (hammer_rel_interlock(&buffer->io.lock, locked) == 0)
1015 		return;
1016 
1017 	/*
1018 	 * hammer_count_refedbufs accounting.  Decrement if we are in
1019 	 * the error path or if CHECK is clear.
1020 	 *
1021 	 * If we are not in the error path and CHECK is set the caller
1022 	 * probably just did a hammer_ref() and didn't account for it,
1023 	 * so we don't account for the loss here.
1024 	 */
1025 	if (locked || (buffer->io.lock.refs & HAMMER_REFS_CHECK) == 0)
1026 		atomic_add_int(&hammer_count_refedbufs, -1);
1027 
1028 	/*
1029 	 * If the caller locked us or the normal released transitions
1030 	 * from 1->0 (and acquired the lock) attempt to release the
1031 	 * io.  If the called locked us we tell hammer_io_release()
1032 	 * to flush (which would be the unload or failure path).
1033 	 */
1034 	bp = hammer_io_release(&buffer->io, locked);
1035 
1036 	/*
1037 	 * If the buffer has no bp association and no refs we can destroy
1038 	 * it.
1039 	 *
1040 	 * NOTE: It is impossible for any associated B-Tree nodes to have
1041 	 * refs if the buffer has no additional refs.
1042 	 */
1043 	if (buffer->io.bp == NULL && hammer_norefs(&buffer->io.lock)) {
1044 		RB_REMOVE(hammer_buf_rb_tree,
1045 			  &buffer->io.hmp->rb_bufs_root,
1046 			  buffer);
1047 		volume = buffer->io.volume;
1048 		buffer->io.volume = NULL; /* sanity */
1049 		hammer_rel_volume(volume, 0);
1050 		hammer_io_clear_modlist(&buffer->io);
1051 		hammer_flush_buffer_nodes(buffer);
1052 		KKASSERT(TAILQ_EMPTY(&buffer->clist));
1053 		freeme = 1;
1054 	}
1055 
1056 	/*
1057 	 * Cleanup
1058 	 */
1059 	hammer_rel_interlock_done(&buffer->io.lock, locked);
1060 	if (bp)
1061 		brelse(bp);
1062 	if (freeme) {
1063 		--hammer_count_buffers;
1064 		kfree(buffer, hmp->m_misc);
1065 	}
1066 }
1067 
1068 /*
1069  * Access the filesystem buffer containing the specified hammer offset.
1070  * buf_offset is a conglomeration of the volume number and vol_buf_beg
1071  * relative buffer offset.  It must also have bit 55 set to be valid.
1072  * (see hammer_off_t in hammer_disk.h).
1073  *
1074  * Any prior buffer in *bufferp will be released and replaced by the
1075  * requested buffer.
1076  *
1077  * NOTE: The buffer is indexed via its zoneX_offset but we allow the
1078  * passed cached *bufferp to match against either zoneX or zone2.
1079  */
1080 static __inline
1081 void *
1082 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1083 	     int *errorp, struct hammer_buffer **bufferp)
1084 {
1085 	hammer_buffer_t buffer;
1086 	int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1087 
1088 	buf_offset &= ~HAMMER_BUFMASK64;
1089 	KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) != 0);
1090 
1091 	buffer = *bufferp;
1092 	if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1093 			       buffer->zoneX_offset != buf_offset)) {
1094 		if (buffer)
1095 			hammer_rel_buffer(buffer, 0);
1096 		buffer = hammer_get_buffer(hmp, buf_offset, bytes, 0, errorp);
1097 		*bufferp = buffer;
1098 	} else {
1099 		*errorp = 0;
1100 	}
1101 
1102 	/*
1103 	 * Return a pointer to the buffer data.
1104 	 */
1105 	if (buffer == NULL)
1106 		return(NULL);
1107 	else
1108 		return((char *)buffer->ondisk + xoff);
1109 }
1110 
1111 void *
1112 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
1113 	     int *errorp, struct hammer_buffer **bufferp)
1114 {
1115 	return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1116 }
1117 
1118 void *
1119 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1120 	         int *errorp, struct hammer_buffer **bufferp)
1121 {
1122 	bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1123 	return(_hammer_bread(hmp, buf_offset, bytes, errorp, bufferp));
1124 }
1125 
1126 /*
1127  * Access the filesystem buffer containing the specified hammer offset.
1128  * No disk read operation occurs.  The result buffer may contain garbage.
1129  *
1130  * Any prior buffer in *bufferp will be released and replaced by the
1131  * requested buffer.
1132  *
1133  * This function marks the buffer dirty but does not increment its
1134  * modify_refs count.
1135  */
1136 static __inline
1137 void *
1138 _hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1139 	     int *errorp, struct hammer_buffer **bufferp)
1140 {
1141 	hammer_buffer_t buffer;
1142 	int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1143 
1144 	buf_offset &= ~HAMMER_BUFMASK64;
1145 
1146 	buffer = *bufferp;
1147 	if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1148 			       buffer->zoneX_offset != buf_offset)) {
1149 		if (buffer)
1150 			hammer_rel_buffer(buffer, 0);
1151 		buffer = hammer_get_buffer(hmp, buf_offset, bytes, 1, errorp);
1152 		*bufferp = buffer;
1153 	} else {
1154 		*errorp = 0;
1155 	}
1156 
1157 	/*
1158 	 * Return a pointer to the buffer data.
1159 	 */
1160 	if (buffer == NULL)
1161 		return(NULL);
1162 	else
1163 		return((char *)buffer->ondisk + xoff);
1164 }
1165 
1166 void *
1167 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
1168 	     int *errorp, struct hammer_buffer **bufferp)
1169 {
1170 	return(_hammer_bnew(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1171 }
1172 
1173 void *
1174 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1175 		int *errorp, struct hammer_buffer **bufferp)
1176 {
1177 	bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1178 	return(_hammer_bnew(hmp, buf_offset, bytes, errorp, bufferp));
1179 }
1180 
1181 /************************************************************************
1182  *				NODES					*
1183  ************************************************************************
1184  *
1185  * Manage B-Tree nodes.  B-Tree nodes represent the primary indexing
1186  * method used by the HAMMER filesystem.
1187  *
1188  * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
1189  * associated with its buffer, and will only referenced the buffer while
1190  * the node itself is referenced.
1191  *
1192  * A hammer_node can also be passively associated with other HAMMER
1193  * structures, such as inodes, while retaining 0 references.  These
1194  * associations can be cleared backwards using a pointer-to-pointer in
1195  * the hammer_node.
1196  *
1197  * This allows the HAMMER implementation to cache hammer_nodes long-term
1198  * and short-cut a great deal of the infrastructure's complexity.  In
1199  * most cases a cached node can be reacquired without having to dip into
1200  * either the buffer or cluster management code.
1201  *
1202  * The caller must pass a referenced cluster on call and will retain
1203  * ownership of the reference on return.  The node will acquire its own
1204  * additional references, if necessary.
1205  */
1206 hammer_node_t
1207 hammer_get_node(hammer_transaction_t trans, hammer_off_t node_offset,
1208 		int isnew, int *errorp)
1209 {
1210 	hammer_mount_t hmp = trans->hmp;
1211 	hammer_node_t node;
1212 	int doload;
1213 
1214 	KKASSERT((node_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_BTREE);
1215 
1216 	/*
1217 	 * Locate the structure, allocating one if necessary.
1218 	 */
1219 again:
1220 	node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1221 	if (node == NULL) {
1222 		++hammer_count_nodes;
1223 		node = kmalloc(sizeof(*node), hmp->m_misc, M_WAITOK|M_ZERO|M_USE_RESERVE);
1224 		node->node_offset = node_offset;
1225 		node->hmp = hmp;
1226 		TAILQ_INIT(&node->cursor_list);
1227 		TAILQ_INIT(&node->cache_list);
1228 		if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1229 			--hammer_count_nodes;
1230 			kfree(node, hmp->m_misc);
1231 			goto again;
1232 		}
1233 		doload = hammer_ref_interlock_true(&node->lock);
1234 	} else {
1235 		doload = hammer_ref_interlock(&node->lock);
1236 	}
1237 	if (doload) {
1238 		*errorp = hammer_load_node(trans, node, isnew);
1239 		trans->flags |= HAMMER_TRANSF_DIDIO;
1240 		if (*errorp)
1241 			node = NULL;
1242 	} else {
1243 		KKASSERT(node->ondisk);
1244 		*errorp = 0;
1245 		hammer_io_advance(&node->buffer->io);
1246 	}
1247 	return(node);
1248 }
1249 
1250 /*
1251  * Reference an already-referenced node.  0->1 transitions should assert
1252  * so we do not have to deal with hammer_ref() setting CHECK.
1253  */
1254 void
1255 hammer_ref_node(hammer_node_t node)
1256 {
1257 	KKASSERT(hammer_isactive(&node->lock) && node->ondisk != NULL);
1258 	hammer_ref(&node->lock);
1259 }
1260 
1261 /*
1262  * Load a node's on-disk data reference.  Called with the node referenced
1263  * and interlocked.
1264  *
1265  * On return the node interlock will be unlocked.  If a non-zero error code
1266  * is returned the node will also be dereferenced (and the caller's pointer
1267  * will be stale).
1268  */
1269 static int
1270 hammer_load_node(hammer_transaction_t trans, hammer_node_t node, int isnew)
1271 {
1272 	hammer_buffer_t buffer;
1273 	hammer_off_t buf_offset;
1274 	int error;
1275 
1276 	error = 0;
1277 	if (node->ondisk == NULL) {
1278 		/*
1279 		 * This is a little confusing but the jist is that
1280 		 * node->buffer determines whether the node is on
1281 		 * the buffer's clist and node->ondisk determines
1282 		 * whether the buffer is referenced.
1283 		 *
1284 		 * We could be racing a buffer release, in which case
1285 		 * node->buffer may become NULL while we are blocked
1286 		 * referencing the buffer.
1287 		 */
1288 		if ((buffer = node->buffer) != NULL) {
1289 			error = hammer_ref_buffer(buffer);
1290 			if (error == 0 && node->buffer == NULL) {
1291 				TAILQ_INSERT_TAIL(&buffer->clist,
1292 						  node, entry);
1293 				node->buffer = buffer;
1294 			}
1295 		} else {
1296 			buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1297 			buffer = hammer_get_buffer(node->hmp, buf_offset,
1298 						   HAMMER_BUFSIZE, 0, &error);
1299 			if (buffer) {
1300 				KKASSERT(error == 0);
1301 				TAILQ_INSERT_TAIL(&buffer->clist,
1302 						  node, entry);
1303 				node->buffer = buffer;
1304 			}
1305 		}
1306 		if (error)
1307 			goto failed;
1308 		node->ondisk = (void *)((char *)buffer->ondisk +
1309 				        (node->node_offset & HAMMER_BUFMASK));
1310 
1311 		/*
1312 		 * Check CRC.  NOTE: Neither flag is set and the CRC is not
1313 		 * generated on new B-Tree nodes.
1314 		 */
1315 		if (isnew == 0 &&
1316 		    (node->flags & HAMMER_NODE_CRCANY) == 0) {
1317 			if (hammer_crc_test_btree(node->ondisk) == 0) {
1318 				if (hammer_debug_critical)
1319 					Debugger("CRC FAILED: B-TREE NODE");
1320 				node->flags |= HAMMER_NODE_CRCBAD;
1321 			} else {
1322 				node->flags |= HAMMER_NODE_CRCGOOD;
1323 			}
1324 		}
1325 	}
1326 	if (node->flags & HAMMER_NODE_CRCBAD) {
1327 		if (trans->flags & HAMMER_TRANSF_CRCDOM)
1328 			error = EDOM;
1329 		else
1330 			error = EIO;
1331 	}
1332 failed:
1333 	if (error) {
1334 		_hammer_rel_node(node, 1);
1335 	} else {
1336 		hammer_ref_interlock_done(&node->lock);
1337 	}
1338 	return (error);
1339 }
1340 
1341 /*
1342  * Safely reference a node, interlock against flushes via the IO subsystem.
1343  */
1344 hammer_node_t
1345 hammer_ref_node_safe(hammer_transaction_t trans, hammer_node_cache_t cache,
1346 		     int *errorp)
1347 {
1348 	hammer_node_t node;
1349 	int doload;
1350 
1351 	node = cache->node;
1352 	if (node != NULL) {
1353 		doload = hammer_ref_interlock(&node->lock);
1354 		if (doload) {
1355 			*errorp = hammer_load_node(trans, node, 0);
1356 			if (*errorp)
1357 				node = NULL;
1358 		} else {
1359 			KKASSERT(node->ondisk);
1360 			if (node->flags & HAMMER_NODE_CRCBAD) {
1361 				if (trans->flags & HAMMER_TRANSF_CRCDOM)
1362 					*errorp = EDOM;
1363 				else
1364 					*errorp = EIO;
1365 				_hammer_rel_node(node, 0);
1366 				node = NULL;
1367 			} else {
1368 				*errorp = 0;
1369 			}
1370 		}
1371 	} else {
1372 		*errorp = ENOENT;
1373 	}
1374 	return(node);
1375 }
1376 
1377 /*
1378  * Release a hammer_node.  On the last release the node dereferences
1379  * its underlying buffer and may or may not be destroyed.
1380  *
1381  * If locked is non-zero the passed node has been interlocked by the
1382  * caller and we are in the failure/unload path, otherwise it has not and
1383  * we are doing a normal release.
1384  *
1385  * This function will dispose of the interlock and the reference.
1386  * On return the node pointer is stale.
1387  */
1388 void
1389 _hammer_rel_node(hammer_node_t node, int locked)
1390 {
1391 	hammer_buffer_t buffer;
1392 
1393 	/*
1394 	 * Deref the node.  If this isn't the 1->0 transition we're basically
1395 	 * done.  If locked is non-zero this function will just deref the
1396 	 * locked node and return TRUE, otherwise it will deref the locked
1397 	 * node and either lock and return TRUE on the 1->0 transition or
1398 	 * not lock and return FALSE.
1399 	 */
1400 	if (hammer_rel_interlock(&node->lock, locked) == 0)
1401 		return;
1402 
1403 	/*
1404 	 * Either locked was non-zero and we are interlocked, or the
1405 	 * hammer_rel_interlock() call returned non-zero and we are
1406 	 * interlocked.
1407 	 *
1408 	 * The ref-count must still be decremented if locked != 0 so
1409 	 * the cleanup required still varies a bit.
1410 	 *
1411 	 * hammer_flush_node() when called with 1 or 2 will dispose of
1412 	 * the lock and possible ref-count.
1413 	 */
1414 	if (node->ondisk == NULL) {
1415 		hammer_flush_node(node, locked + 1);
1416 		/* node is stale now */
1417 		return;
1418 	}
1419 
1420 	/*
1421 	 * Do not disassociate the node from the buffer if it represents
1422 	 * a modified B-Tree node that still needs its crc to be generated.
1423 	 */
1424 	if (node->flags & HAMMER_NODE_NEEDSCRC) {
1425 		hammer_rel_interlock_done(&node->lock, locked);
1426 		return;
1427 	}
1428 
1429 	/*
1430 	 * Do final cleanups and then either destroy the node and leave it
1431 	 * passively cached.  The buffer reference is removed regardless.
1432 	 */
1433 	buffer = node->buffer;
1434 	node->ondisk = NULL;
1435 
1436 	if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1437 		/*
1438 		 * Normal release.
1439 		 */
1440 		hammer_rel_interlock_done(&node->lock, locked);
1441 	} else {
1442 		/*
1443 		 * Destroy the node.
1444 		 */
1445 		hammer_flush_node(node, locked + 1);
1446 		/* node is stale */
1447 
1448 	}
1449 	hammer_rel_buffer(buffer, 0);
1450 }
1451 
1452 void
1453 hammer_rel_node(hammer_node_t node)
1454 {
1455 	_hammer_rel_node(node, 0);
1456 }
1457 
1458 /*
1459  * Free space on-media associated with a B-Tree node.
1460  */
1461 void
1462 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1463 {
1464 	KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1465 	node->flags |= HAMMER_NODE_DELETED;
1466 	hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1467 }
1468 
1469 /*
1470  * Passively cache a referenced hammer_node.  The caller may release
1471  * the node on return.
1472  */
1473 void
1474 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1475 {
1476 	/*
1477 	 * If the node doesn't exist, or is being deleted, don't cache it!
1478 	 *
1479 	 * The node can only ever be NULL in the I/O failure path.
1480 	 */
1481 	if (node == NULL || (node->flags & HAMMER_NODE_DELETED))
1482 		return;
1483 	if (cache->node == node)
1484 		return;
1485 	while (cache->node)
1486 		hammer_uncache_node(cache);
1487 	if (node->flags & HAMMER_NODE_DELETED)
1488 		return;
1489 	cache->node = node;
1490 	TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1491 }
1492 
1493 void
1494 hammer_uncache_node(hammer_node_cache_t cache)
1495 {
1496 	hammer_node_t node;
1497 
1498 	if ((node = cache->node) != NULL) {
1499 		TAILQ_REMOVE(&node->cache_list, cache, entry);
1500 		cache->node = NULL;
1501 		if (TAILQ_EMPTY(&node->cache_list))
1502 			hammer_flush_node(node, 0);
1503 	}
1504 }
1505 
1506 /*
1507  * Remove a node's cache references and destroy the node if it has no
1508  * other references or backing store.
1509  *
1510  * locked == 0	Normal unlocked operation
1511  * locked == 1	Call hammer_rel_interlock_done(..., 0);
1512  * locked == 2	Call hammer_rel_interlock_done(..., 1);
1513  *
1514  * XXX for now this isn't even close to being MPSAFE so the refs check
1515  *     is sufficient.
1516  */
1517 void
1518 hammer_flush_node(hammer_node_t node, int locked)
1519 {
1520 	hammer_node_cache_t cache;
1521 	hammer_buffer_t buffer;
1522 	hammer_mount_t hmp = node->hmp;
1523 	int dofree;
1524 
1525 	while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1526 		TAILQ_REMOVE(&node->cache_list, cache, entry);
1527 		cache->node = NULL;
1528 	}
1529 
1530 	/*
1531 	 * NOTE: refs is predisposed if another thread is blocking and
1532 	 *	 will be larger than 0 in that case.  We aren't MPSAFE
1533 	 *	 here.
1534 	 */
1535 	if (node->ondisk == NULL && hammer_norefs(&node->lock)) {
1536 		KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1537 		RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1538 		if ((buffer = node->buffer) != NULL) {
1539 			node->buffer = NULL;
1540 			TAILQ_REMOVE(&buffer->clist, node, entry);
1541 			/* buffer is unreferenced because ondisk is NULL */
1542 		}
1543 		dofree = 1;
1544 	} else {
1545 		dofree = 0;
1546 	}
1547 
1548 	/*
1549 	 * Deal with the interlock if locked == 1 or locked == 2.
1550 	 */
1551 	if (locked)
1552 		hammer_rel_interlock_done(&node->lock, locked - 1);
1553 
1554 	/*
1555 	 * Destroy if requested
1556 	 */
1557 	if (dofree) {
1558 		--hammer_count_nodes;
1559 		kfree(node, hmp->m_misc);
1560 	}
1561 }
1562 
1563 /*
1564  * Flush passively cached B-Tree nodes associated with this buffer.
1565  * This is only called when the buffer is about to be destroyed, so
1566  * none of the nodes should have any references.  The buffer is locked.
1567  *
1568  * We may be interlocked with the buffer.
1569  */
1570 void
1571 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1572 {
1573 	hammer_node_t node;
1574 
1575 	while ((node = TAILQ_FIRST(&buffer->clist)) != NULL) {
1576 		KKASSERT(node->ondisk == NULL);
1577 		KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1578 
1579 		if (hammer_try_interlock_norefs(&node->lock)) {
1580 			hammer_ref(&node->lock);
1581 			node->flags |= HAMMER_NODE_FLUSH;
1582 			_hammer_rel_node(node, 1);
1583 		} else {
1584 			KKASSERT(node->buffer != NULL);
1585 			buffer = node->buffer;
1586 			node->buffer = NULL;
1587 			TAILQ_REMOVE(&buffer->clist, node, entry);
1588 			/* buffer is unreferenced because ondisk is NULL */
1589 		}
1590 	}
1591 }
1592 
1593 
1594 /************************************************************************
1595  *				ALLOCATORS				*
1596  ************************************************************************/
1597 
1598 /*
1599  * Allocate a B-Tree node.
1600  */
1601 hammer_node_t
1602 hammer_alloc_btree(hammer_transaction_t trans, hammer_off_t hint, int *errorp)
1603 {
1604 	hammer_buffer_t buffer = NULL;
1605 	hammer_node_t node = NULL;
1606 	hammer_off_t node_offset;
1607 
1608 	node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1609 					    sizeof(struct hammer_node_ondisk),
1610 					    hint, errorp);
1611 	if (*errorp == 0) {
1612 		node = hammer_get_node(trans, node_offset, 1, errorp);
1613 		hammer_modify_node_noundo(trans, node);
1614 		bzero(node->ondisk, sizeof(*node->ondisk));
1615 		hammer_modify_node_done(node);
1616 	}
1617 	if (buffer)
1618 		hammer_rel_buffer(buffer, 0);
1619 	return(node);
1620 }
1621 
1622 /*
1623  * Allocate data.  If the address of a data buffer is supplied then
1624  * any prior non-NULL *data_bufferp will be released and *data_bufferp
1625  * will be set to the related buffer.  The caller must release it when
1626  * finally done.  The initial *data_bufferp should be set to NULL by
1627  * the caller.
1628  *
1629  * The caller is responsible for making hammer_modify*() calls on the
1630  * *data_bufferp.
1631  */
1632 void *
1633 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len,
1634 		  u_int16_t rec_type, hammer_off_t *data_offsetp,
1635 		  struct hammer_buffer **data_bufferp,
1636 		  hammer_off_t hint, int *errorp)
1637 {
1638 	void *data;
1639 	int zone;
1640 
1641 	/*
1642 	 * Allocate data
1643 	 */
1644 	if (data_len) {
1645 		switch(rec_type) {
1646 		case HAMMER_RECTYPE_INODE:
1647 		case HAMMER_RECTYPE_DIRENTRY:
1648 		case HAMMER_RECTYPE_EXT:
1649 		case HAMMER_RECTYPE_FIX:
1650 		case HAMMER_RECTYPE_PFS:
1651 		case HAMMER_RECTYPE_SNAPSHOT:
1652 		case HAMMER_RECTYPE_CONFIG:
1653 			zone = HAMMER_ZONE_META_INDEX;
1654 			break;
1655 		case HAMMER_RECTYPE_DATA:
1656 		case HAMMER_RECTYPE_DB:
1657 			if (data_len <= HAMMER_BUFSIZE / 2) {
1658 				zone = HAMMER_ZONE_SMALL_DATA_INDEX;
1659 			} else {
1660 				data_len = (data_len + HAMMER_BUFMASK) &
1661 					   ~HAMMER_BUFMASK;
1662 				zone = HAMMER_ZONE_LARGE_DATA_INDEX;
1663 			}
1664 			break;
1665 		default:
1666 			panic("hammer_alloc_data: rec_type %04x unknown",
1667 			      rec_type);
1668 			zone = 0;	/* NOT REACHED */
1669 			break;
1670 		}
1671 		*data_offsetp = hammer_blockmap_alloc(trans, zone, data_len,
1672 						      hint, errorp);
1673 	} else {
1674 		*data_offsetp = 0;
1675 	}
1676 	if (*errorp == 0 && data_bufferp) {
1677 		if (data_len) {
1678 			data = hammer_bread_ext(trans->hmp, *data_offsetp,
1679 						data_len, errorp, data_bufferp);
1680 		} else {
1681 			data = NULL;
1682 		}
1683 	} else {
1684 		data = NULL;
1685 	}
1686 	return(data);
1687 }
1688 
1689 /*
1690  * Sync dirty buffers to the media and clean-up any loose ends.
1691  *
1692  * These functions do not start the flusher going, they simply
1693  * queue everything up to the flusher.
1694  */
1695 static int hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data);
1696 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1697 
1698 int
1699 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1700 {
1701 	struct hammer_sync_info info;
1702 
1703 	info.error = 0;
1704 	info.waitfor = waitfor;
1705 	if (waitfor == MNT_WAIT) {
1706 		vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS,
1707 			      hammer_sync_scan1, hammer_sync_scan2, &info);
1708 	} else {
1709 		vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS|VMSC_NOWAIT,
1710 			      hammer_sync_scan1, hammer_sync_scan2, &info);
1711 	}
1712 	return(info.error);
1713 }
1714 
1715 /*
1716  * Filesystem sync.  If doing a synchronous sync make a second pass on
1717  * the vnodes in case any were already flushing during the first pass,
1718  * and activate the flusher twice (the second time brings the UNDO FIFO's
1719  * start position up to the end position after the first call).
1720  *
1721  * If doing a lazy sync make just one pass on the vnode list, ignoring
1722  * any new vnodes added to the list while the sync is in progress.
1723  */
1724 int
1725 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1726 {
1727 	struct hammer_sync_info info;
1728 	int flags;
1729 
1730 	flags = VMSC_GETVP;
1731 	if (waitfor & MNT_LAZY)
1732 		flags |= VMSC_ONEPASS;
1733 
1734 	info.error = 0;
1735 	info.waitfor = MNT_NOWAIT;
1736 	vmntvnodescan(hmp->mp, flags | VMSC_NOWAIT,
1737 		      hammer_sync_scan1, hammer_sync_scan2, &info);
1738 
1739 	if (info.error == 0 && (waitfor & MNT_WAIT)) {
1740 		info.waitfor = waitfor;
1741 		vmntvnodescan(hmp->mp, flags,
1742 			      hammer_sync_scan1, hammer_sync_scan2, &info);
1743 	}
1744         if (waitfor == MNT_WAIT) {
1745                 hammer_flusher_sync(hmp);
1746                 hammer_flusher_sync(hmp);
1747 	} else {
1748                 hammer_flusher_async(hmp, NULL);
1749                 hammer_flusher_async(hmp, NULL);
1750 	}
1751 	return(info.error);
1752 }
1753 
1754 static int
1755 hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data)
1756 {
1757 	struct hammer_inode *ip;
1758 
1759 	ip = VTOI(vp);
1760 	if (vp->v_type == VNON || ip == NULL ||
1761 	    ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1762 	     RB_EMPTY(&vp->v_rbdirty_tree))) {
1763 		return(-1);
1764 	}
1765 	return(0);
1766 }
1767 
1768 static int
1769 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1770 {
1771 	struct hammer_sync_info *info = data;
1772 	struct hammer_inode *ip;
1773 	int error;
1774 
1775 	ip = VTOI(vp);
1776 	if (vp->v_type == VNON || vp->v_type == VBAD ||
1777 	    ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1778 	     RB_EMPTY(&vp->v_rbdirty_tree))) {
1779 		return(0);
1780 	}
1781 	error = VOP_FSYNC(vp, MNT_NOWAIT, 0);
1782 	if (error)
1783 		info->error = error;
1784 	return(0);
1785 }
1786 
1787