xref: /dragonfly/sys/vfs/hammer/hammer_ondisk.c (revision 99dd49c5)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.76 2008/08/29 20:19:08 dillon Exp $
35  */
36 /*
37  * Manage HAMMER's on-disk structures.  These routines are primarily
38  * responsible for interfacing with the kernel's I/O subsystem and for
39  * managing in-memory structures.
40  */
41 
42 #include "hammer.h"
43 #include <sys/fcntl.h>
44 #include <sys/nlookup.h>
45 #include <sys/buf.h>
46 #include <sys/buf2.h>
47 
48 static void hammer_free_volume(hammer_volume_t volume);
49 static int hammer_load_volume(hammer_volume_t volume);
50 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
51 static int hammer_load_node(hammer_node_t node, int isnew);
52 
53 static int
54 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
55 {
56 	if (vol1->vol_no < vol2->vol_no)
57 		return(-1);
58 	if (vol1->vol_no > vol2->vol_no)
59 		return(1);
60 	return(0);
61 }
62 
63 /*
64  * hammer_buffer structures are indexed via their zoneX_offset, not
65  * their zone2_offset.
66  */
67 static int
68 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
69 {
70 	if (buf1->zoneX_offset < buf2->zoneX_offset)
71 		return(-1);
72 	if (buf1->zoneX_offset > buf2->zoneX_offset)
73 		return(1);
74 	return(0);
75 }
76 
77 static int
78 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
79 {
80 	if (node1->node_offset < node2->node_offset)
81 		return(-1);
82 	if (node1->node_offset > node2->node_offset)
83 		return(1);
84 	return(0);
85 }
86 
87 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
88 	     hammer_vol_rb_compare, int32_t, vol_no);
89 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
90 	     hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
91 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
92 	     hammer_nod_rb_compare, hammer_off_t, node_offset);
93 
94 /************************************************************************
95  *				VOLUMES					*
96  ************************************************************************
97  *
98  * Load a HAMMER volume by name.  Returns 0 on success or a positive error
99  * code on failure.  Volumes must be loaded at mount time, get_volume() will
100  * not load a new volume.
101  *
102  * Calls made to hammer_load_volume() or single-threaded
103  */
104 int
105 hammer_install_volume(struct hammer_mount *hmp, const char *volname,
106 		      struct vnode *devvp)
107 {
108 	struct mount *mp;
109 	hammer_volume_t volume;
110 	struct hammer_volume_ondisk *ondisk;
111 	struct nlookupdata nd;
112 	struct buf *bp = NULL;
113 	int error;
114 	int ronly;
115 	int setmp = 0;
116 
117 	mp = hmp->mp;
118 	ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
119 
120 	/*
121 	 * Allocate a volume structure
122 	 */
123 	++hammer_count_volumes;
124 	volume = kmalloc(sizeof(*volume), hmp->m_misc, M_WAITOK|M_ZERO);
125 	volume->vol_name = kstrdup(volname, hmp->m_misc);
126 	volume->io.hmp = hmp;	/* bootstrap */
127 	hammer_io_init(&volume->io, volume, HAMMER_STRUCTURE_VOLUME);
128 	volume->io.offset = 0LL;
129 	volume->io.bytes = HAMMER_BUFSIZE;
130 
131 	/*
132 	 * Get the device vnode
133 	 */
134 	if (devvp == NULL) {
135 		error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
136 		if (error == 0)
137 			error = nlookup(&nd);
138 		if (error == 0)
139 			error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
140 		nlookup_done(&nd);
141 	} else {
142 		error = 0;
143 		volume->devvp = devvp;
144 	}
145 
146 	if (error == 0) {
147 		if (vn_isdisk(volume->devvp, &error)) {
148 			error = vfs_mountedon(volume->devvp);
149 		}
150 	}
151 	if (error == 0 &&
152 	    count_udev(volume->devvp->v_umajor, volume->devvp->v_uminor) > 0) {
153 		error = EBUSY;
154 	}
155 	if (error == 0) {
156 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
157 		error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
158 		if (error == 0) {
159 			error = VOP_OPEN(volume->devvp,
160 					 (ronly ? FREAD : FREAD|FWRITE),
161 					 FSCRED, NULL);
162 		}
163 		vn_unlock(volume->devvp);
164 	}
165 	if (error) {
166 		hammer_free_volume(volume);
167 		return(error);
168 	}
169 	volume->devvp->v_rdev->si_mountpoint = mp;
170 	setmp = 1;
171 
172 	/*
173 	 * Extract the volume number from the volume header and do various
174 	 * sanity checks.
175 	 */
176 	error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
177 	if (error)
178 		goto late_failure;
179 	ondisk = (void *)bp->b_data;
180 	if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
181 		kprintf("hammer_mount: volume %s has an invalid header\n",
182 			volume->vol_name);
183 		error = EFTYPE;
184 		goto late_failure;
185 	}
186 	volume->vol_no = ondisk->vol_no;
187 	volume->buffer_base = ondisk->vol_buf_beg;
188 	volume->vol_flags = ondisk->vol_flags;
189 	volume->nblocks = ondisk->vol_nblocks;
190 	volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
191 				    ondisk->vol_buf_end - ondisk->vol_buf_beg);
192 	volume->maxraw_off = ondisk->vol_buf_end;
193 
194 	if (RB_EMPTY(&hmp->rb_vols_root)) {
195 		hmp->fsid = ondisk->vol_fsid;
196 	} else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
197 		kprintf("hammer_mount: volume %s's fsid does not match "
198 			"other volumes\n", volume->vol_name);
199 		error = EFTYPE;
200 		goto late_failure;
201 	}
202 
203 	/*
204 	 * Insert the volume structure into the red-black tree.
205 	 */
206 	if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
207 		kprintf("hammer_mount: volume %s has a duplicate vol_no %d\n",
208 			volume->vol_name, volume->vol_no);
209 		error = EEXIST;
210 	}
211 
212 	/*
213 	 * Set the root volume .  HAMMER special cases rootvol the structure.
214 	 * We do not hold a ref because this would prevent related I/O
215 	 * from being flushed.
216 	 */
217 	if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
218 		hmp->rootvol = volume;
219 		hmp->nvolumes = ondisk->vol_count;
220 		if (bp) {
221 			brelse(bp);
222 			bp = NULL;
223 		}
224 		hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
225 			(HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
226 		hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
227 			(HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
228 	}
229 late_failure:
230 	if (bp)
231 		brelse(bp);
232 	if (error) {
233 		/*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
234 		if (setmp)
235 			volume->devvp->v_rdev->si_mountpoint = NULL;
236 		VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE);
237 		hammer_free_volume(volume);
238 	}
239 	return (error);
240 }
241 
242 /*
243  * This is called for each volume when updating the mount point from
244  * read-write to read-only or vise-versa.
245  */
246 int
247 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
248 {
249 	if (volume->devvp) {
250 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
251 		if (volume->io.hmp->ronly) {
252 			/* do not call vinvalbuf */
253 			VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
254 			VOP_CLOSE(volume->devvp, FREAD|FWRITE);
255 		} else {
256 			/* do not call vinvalbuf */
257 			VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
258 			VOP_CLOSE(volume->devvp, FREAD);
259 		}
260 		vn_unlock(volume->devvp);
261 	}
262 	return(0);
263 }
264 
265 /*
266  * Unload and free a HAMMER volume.  Must return >= 0 to continue scan
267  * so returns -1 on failure.
268  */
269 int
270 hammer_unload_volume(hammer_volume_t volume, void *data __unused)
271 {
272 	hammer_mount_t hmp = volume->io.hmp;
273 	int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
274 	struct buf *bp;
275 
276 	/*
277 	 * Clean up the root volume pointer, which is held unlocked in hmp.
278 	 */
279 	if (hmp->rootvol == volume)
280 		hmp->rootvol = NULL;
281 
282 	/*
283 	 * We must not flush a dirty buffer to disk on umount.  It should
284 	 * have already been dealt with by the flusher, or we may be in
285 	 * catastrophic failure.
286 	 */
287 	hammer_io_clear_modify(&volume->io, 1);
288 	volume->io.waitdep = 1;
289 	bp = hammer_io_release(&volume->io, 1);
290 
291 	/*
292 	 * Clean up the persistent ref ioerror might have on the volume
293 	 */
294 	if (volume->io.ioerror) {
295 		volume->io.ioerror = 0;
296 		hammer_unref(&volume->io.lock);
297 	}
298 
299 	/*
300 	 * There should be no references on the volume, no clusters, and
301 	 * no super-clusters.
302 	 */
303 	KKASSERT(volume->io.lock.refs == 0);
304 	if (bp)
305 		brelse(bp);
306 
307 	volume->ondisk = NULL;
308 	if (volume->devvp) {
309 		if (volume->devvp->v_rdev &&
310 		    volume->devvp->v_rdev->si_mountpoint == hmp->mp
311 		) {
312 			volume->devvp->v_rdev->si_mountpoint = NULL;
313 		}
314 		if (ronly) {
315 			/*
316 			 * Make sure we don't sync anything to disk if we
317 			 * are in read-only mode (1) or critically-errored
318 			 * (2).  Note that there may be dirty buffers in
319 			 * normal read-only mode from crash recovery.
320 			 */
321 			vinvalbuf(volume->devvp, 0, 0, 0);
322 			VOP_CLOSE(volume->devvp, FREAD);
323 		} else {
324 			/*
325 			 * Normal termination, save any dirty buffers
326 			 * (XXX there really shouldn't be any).
327 			 */
328 			vinvalbuf(volume->devvp, V_SAVE, 0, 0);
329 			VOP_CLOSE(volume->devvp, FREAD|FWRITE);
330 		}
331 	}
332 
333 	/*
334 	 * Destroy the structure
335 	 */
336 	RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
337 	hammer_free_volume(volume);
338 	return(0);
339 }
340 
341 static
342 void
343 hammer_free_volume(hammer_volume_t volume)
344 {
345 	hammer_mount_t hmp = volume->io.hmp;
346 
347 	if (volume->vol_name) {
348 		kfree(volume->vol_name, hmp->m_misc);
349 		volume->vol_name = NULL;
350 	}
351 	if (volume->devvp) {
352 		vrele(volume->devvp);
353 		volume->devvp = NULL;
354 	}
355 	--hammer_count_volumes;
356 	kfree(volume, hmp->m_misc);
357 }
358 
359 /*
360  * Get a HAMMER volume.  The volume must already exist.
361  */
362 hammer_volume_t
363 hammer_get_volume(struct hammer_mount *hmp, int32_t vol_no, int *errorp)
364 {
365 	struct hammer_volume *volume;
366 
367 	/*
368 	 * Locate the volume structure
369 	 */
370 	volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
371 	if (volume == NULL) {
372 		*errorp = ENOENT;
373 		return(NULL);
374 	}
375 	hammer_ref(&volume->io.lock);
376 
377 	/*
378 	 * Deal with on-disk info
379 	 */
380 	if (volume->ondisk == NULL || volume->io.loading) {
381 		*errorp = hammer_load_volume(volume);
382 		if (*errorp) {
383 			hammer_rel_volume(volume, 1);
384 			volume = NULL;
385 		}
386 	} else {
387 		*errorp = 0;
388 	}
389 	return(volume);
390 }
391 
392 int
393 hammer_ref_volume(hammer_volume_t volume)
394 {
395 	int error;
396 
397 	hammer_ref(&volume->io.lock);
398 
399 	/*
400 	 * Deal with on-disk info
401 	 */
402 	if (volume->ondisk == NULL || volume->io.loading) {
403 		error = hammer_load_volume(volume);
404 		if (error)
405 			hammer_rel_volume(volume, 1);
406 	} else {
407 		error = 0;
408 	}
409 	return (error);
410 }
411 
412 hammer_volume_t
413 hammer_get_root_volume(struct hammer_mount *hmp, int *errorp)
414 {
415 	hammer_volume_t volume;
416 
417 	volume = hmp->rootvol;
418 	KKASSERT(volume != NULL);
419 	hammer_ref(&volume->io.lock);
420 
421 	/*
422 	 * Deal with on-disk info
423 	 */
424 	if (volume->ondisk == NULL || volume->io.loading) {
425 		*errorp = hammer_load_volume(volume);
426 		if (*errorp) {
427 			hammer_rel_volume(volume, 1);
428 			volume = NULL;
429 		}
430 	} else {
431 		*errorp = 0;
432 	}
433 	return (volume);
434 }
435 
436 /*
437  * Load a volume's on-disk information.  The volume must be referenced and
438  * not locked.  We temporarily acquire an exclusive lock to interlock
439  * against releases or multiple get's.
440  */
441 static int
442 hammer_load_volume(hammer_volume_t volume)
443 {
444 	int error;
445 
446 	++volume->io.loading;
447 	hammer_lock_ex(&volume->io.lock);
448 
449 	if (volume->ondisk == NULL) {
450 		error = hammer_io_read(volume->devvp, &volume->io,
451 				       volume->maxraw_off);
452 		if (error == 0)
453 			volume->ondisk = (void *)volume->io.bp->b_data;
454 	} else {
455 		error = 0;
456 	}
457 	--volume->io.loading;
458 	hammer_unlock(&volume->io.lock);
459 	return(error);
460 }
461 
462 /*
463  * Release a volume.  Call hammer_io_release on the last reference.  We have
464  * to acquire an exclusive lock to interlock against volume->ondisk tests
465  * in hammer_load_volume(), and hammer_io_release() also expects an exclusive
466  * lock to be held.
467  *
468  * Volumes are not unloaded from memory during normal operation.
469  */
470 void
471 hammer_rel_volume(hammer_volume_t volume, int flush)
472 {
473 	struct buf *bp = NULL;
474 
475 	crit_enter();
476 	if (volume->io.lock.refs == 1) {
477 		++volume->io.loading;
478 		hammer_lock_ex(&volume->io.lock);
479 		if (volume->io.lock.refs == 1) {
480 			volume->ondisk = NULL;
481 			bp = hammer_io_release(&volume->io, flush);
482 		}
483 		--volume->io.loading;
484 		hammer_unlock(&volume->io.lock);
485 	}
486 	hammer_unref(&volume->io.lock);
487 	if (bp)
488 		brelse(bp);
489 	crit_exit();
490 }
491 
492 int
493 hammer_mountcheck_volumes(struct hammer_mount *hmp)
494 {
495 	hammer_volume_t vol;
496 	int i;
497 
498 	for (i = 0; i < hmp->nvolumes; ++i) {
499 		vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
500 		if (vol == NULL)
501 			return(EINVAL);
502 	}
503 	return(0);
504 }
505 
506 /************************************************************************
507  *				BUFFERS					*
508  ************************************************************************
509  *
510  * Manage buffers.  Currently all blockmap-backed zones are direct-mapped
511  * to zone-2 buffer offsets, without a translation stage.  However, the
512  * hammer_buffer structure is indexed by its zoneX_offset, not its
513  * zone2_offset.
514  *
515  * The proper zone must be maintained throughout the code-base all the way
516  * through to the big-block allocator, or routines like hammer_del_buffers()
517  * will not be able to locate all potentially conflicting buffers.
518  */
519 hammer_buffer_t
520 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
521 		  int bytes, int isnew, int *errorp)
522 {
523 	hammer_buffer_t buffer;
524 	hammer_volume_t volume;
525 	hammer_off_t	zone2_offset;
526 	hammer_io_type_t iotype;
527 	int vol_no;
528 	int zone;
529 
530 	buf_offset &= ~HAMMER_BUFMASK64;
531 again:
532 	/*
533 	 * Shortcut if the buffer is already cached
534 	 */
535 	buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
536 	if (buffer) {
537 		if (buffer->io.lock.refs == 0)
538 			++hammer_count_refedbufs;
539 		hammer_ref(&buffer->io.lock);
540 
541 		/*
542 		 * Once refed the ondisk field will not be cleared by
543 		 * any other action.
544 		 */
545 		if (buffer->ondisk && buffer->io.loading == 0) {
546 			*errorp = 0;
547 			return(buffer);
548 		}
549 
550 		/*
551 		 * The buffer is no longer loose if it has a ref, and
552 		 * cannot become loose once it gains a ref.  Loose
553 		 * buffers will never be in a modified state.  This should
554 		 * only occur on the 0->1 transition of refs.
555 		 *
556 		 * lose_list can be modified via a biodone() interrupt.
557 		 */
558 		if (buffer->io.mod_list == &hmp->lose_list) {
559 			crit_enter();	/* biodone race against list */
560 			TAILQ_REMOVE(buffer->io.mod_list, &buffer->io,
561 				     mod_entry);
562 			crit_exit();
563 			buffer->io.mod_list = NULL;
564 			KKASSERT(buffer->io.modified == 0);
565 		}
566 		goto found;
567 	}
568 
569 	/*
570 	 * What is the buffer class?
571 	 */
572 	zone = HAMMER_ZONE_DECODE(buf_offset);
573 
574 	switch(zone) {
575 	case HAMMER_ZONE_LARGE_DATA_INDEX:
576 	case HAMMER_ZONE_SMALL_DATA_INDEX:
577 		iotype = HAMMER_STRUCTURE_DATA_BUFFER;
578 		break;
579 	case HAMMER_ZONE_UNDO_INDEX:
580 		iotype = HAMMER_STRUCTURE_UNDO_BUFFER;
581 		break;
582 	case HAMMER_ZONE_META_INDEX:
583 	default:
584 		/*
585 		 * NOTE: inode data and directory entries are placed in this
586 		 * zone.  inode atime/mtime is updated in-place and thus
587 		 * buffers containing inodes must be synchronized as
588 		 * meta-buffers, same as buffers containing B-Tree info.
589 		 */
590 		iotype = HAMMER_STRUCTURE_META_BUFFER;
591 		break;
592 	}
593 
594 	/*
595 	 * Handle blockmap offset translations
596 	 */
597 	if (zone >= HAMMER_ZONE_BTREE_INDEX) {
598 		zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
599 	} else if (zone == HAMMER_ZONE_UNDO_INDEX) {
600 		zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
601 	} else {
602 		KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
603 		zone2_offset = buf_offset;
604 		*errorp = 0;
605 	}
606 	if (*errorp)
607 		return(NULL);
608 
609 	/*
610 	 * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
611 	 * specifications.
612 	 */
613 	KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
614 		 HAMMER_ZONE_RAW_BUFFER);
615 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
616 	volume = hammer_get_volume(hmp, vol_no, errorp);
617 	if (volume == NULL)
618 		return(NULL);
619 
620 	KKASSERT(zone2_offset < volume->maxbuf_off);
621 
622 	/*
623 	 * Allocate a new buffer structure.  We will check for races later.
624 	 */
625 	++hammer_count_buffers;
626 	buffer = kmalloc(sizeof(*buffer), hmp->m_misc,
627 			 M_WAITOK|M_ZERO|M_USE_RESERVE);
628 	buffer->zone2_offset = zone2_offset;
629 	buffer->zoneX_offset = buf_offset;
630 
631 	hammer_io_init(&buffer->io, volume, iotype);
632 	buffer->io.offset = volume->ondisk->vol_buf_beg +
633 			    (zone2_offset & HAMMER_OFF_SHORT_MASK);
634 	buffer->io.bytes = bytes;
635 	TAILQ_INIT(&buffer->clist);
636 	hammer_ref(&buffer->io.lock);
637 
638 	/*
639 	 * Insert the buffer into the RB tree and handle late collisions.
640 	 */
641 	if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
642 		hammer_unref(&buffer->io.lock);	/* safety */
643 		--hammer_count_buffers;
644 		hammer_rel_volume(volume, 0);
645 		buffer->io.volume = NULL;	/* safety */
646 		kfree(buffer, hmp->m_misc);
647 		goto again;
648 	}
649 	++hammer_count_refedbufs;
650 found:
651 
652 	/*
653 	 * Deal with on-disk info and loading races.
654 	 */
655 	if (buffer->ondisk == NULL || buffer->io.loading) {
656 		*errorp = hammer_load_buffer(buffer, isnew);
657 		if (*errorp) {
658 			hammer_rel_buffer(buffer, 1);
659 			buffer = NULL;
660 		}
661 	} else {
662 		*errorp = 0;
663 	}
664 	return(buffer);
665 }
666 
667 /*
668  * This is used by the direct-read code to deal with large-data buffers
669  * created by the reblocker and mirror-write code.  The direct-read code
670  * bypasses the HAMMER buffer subsystem and so any aliased dirty or write-
671  * running hammer buffers must be fully synced to disk before we can issue
672  * the direct-read.
673  *
674  * This code path is not considered critical as only the rebocker and
675  * mirror-write code will create large-data buffers via the HAMMER buffer
676  * subsystem.  They do that because they operate at the B-Tree level and
677  * do not access the vnode/inode structures.
678  */
679 void
680 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
681 {
682 	hammer_buffer_t buffer;
683 	int error;
684 
685 	KKASSERT((base_offset & HAMMER_OFF_ZONE_MASK) ==
686 		 HAMMER_ZONE_LARGE_DATA);
687 
688 	while (bytes > 0) {
689 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
690 				   base_offset);
691 		if (buffer && (buffer->io.modified || buffer->io.running)) {
692 			error = hammer_ref_buffer(buffer);
693 			if (error == 0) {
694 				hammer_io_wait(&buffer->io);
695 				if (buffer->io.modified) {
696 					hammer_io_write_interlock(&buffer->io);
697 					hammer_io_flush(&buffer->io);
698 					hammer_io_done_interlock(&buffer->io);
699 					hammer_io_wait(&buffer->io);
700 				}
701 				hammer_rel_buffer(buffer, 0);
702 			}
703 		}
704 		base_offset += HAMMER_BUFSIZE;
705 		bytes -= HAMMER_BUFSIZE;
706 	}
707 }
708 
709 /*
710  * Destroy all buffers covering the specified zoneX offset range.  This
711  * is called when the related blockmap layer2 entry is freed or when
712  * a direct write bypasses our buffer/buffer-cache subsystem.
713  *
714  * The buffers may be referenced by the caller itself.  Setting reclaim
715  * will cause the buffer to be destroyed when it's ref count reaches zero.
716  *
717  * Return 0 on success, EAGAIN if some buffers could not be destroyed due
718  * to additional references held by other threads, or some other (typically
719  * fatal) error.
720  */
721 int
722 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
723 		   hammer_off_t zone2_offset, int bytes,
724 		   int report_conflicts)
725 {
726 	hammer_buffer_t buffer;
727 	hammer_volume_t volume;
728 	int vol_no;
729 	int error;
730 	int ret_error;
731 
732 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
733 	volume = hammer_get_volume(hmp, vol_no, &ret_error);
734 	KKASSERT(ret_error == 0);
735 
736 	while (bytes > 0) {
737 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
738 				   base_offset);
739 		if (buffer) {
740 			error = hammer_ref_buffer(buffer);
741 			if (error == 0 && buffer->io.lock.refs != 1) {
742 				error = EAGAIN;
743 				hammer_rel_buffer(buffer, 0);
744 			}
745 			if (error == 0) {
746 				KKASSERT(buffer->zone2_offset == zone2_offset);
747 				hammer_io_clear_modify(&buffer->io, 1);
748 				buffer->io.reclaim = 1;
749 				buffer->io.waitdep = 1;
750 				KKASSERT(buffer->io.volume == volume);
751 				hammer_rel_buffer(buffer, 0);
752 			}
753 		} else {
754 			error = hammer_io_inval(volume, zone2_offset);
755 		}
756 		if (error) {
757 			ret_error = error;
758 			if (report_conflicts || (hammer_debug_general & 0x8000))
759 				kprintf("hammer_del_buffers: unable to invalidate %016llx buffer=%p rep=%d\n", base_offset, buffer, report_conflicts);
760 		}
761 		base_offset += HAMMER_BUFSIZE;
762 		zone2_offset += HAMMER_BUFSIZE;
763 		bytes -= HAMMER_BUFSIZE;
764 	}
765 	hammer_rel_volume(volume, 0);
766 	return (ret_error);
767 }
768 
769 static int
770 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
771 {
772 	hammer_volume_t volume;
773 	int error;
774 
775 	/*
776 	 * Load the buffer's on-disk info
777 	 */
778 	volume = buffer->io.volume;
779 	++buffer->io.loading;
780 	hammer_lock_ex(&buffer->io.lock);
781 
782 	if (hammer_debug_io & 0x0001) {
783 		kprintf("load_buffer %016llx %016llx isnew=%d od=%p\n",
784 			buffer->zoneX_offset, buffer->zone2_offset, isnew,
785 			buffer->ondisk);
786 	}
787 
788 	if (buffer->ondisk == NULL) {
789 		if (isnew) {
790 			error = hammer_io_new(volume->devvp, &buffer->io);
791 		} else {
792 			error = hammer_io_read(volume->devvp, &buffer->io,
793 					       volume->maxraw_off);
794 		}
795 		if (error == 0)
796 			buffer->ondisk = (void *)buffer->io.bp->b_data;
797 	} else if (isnew) {
798 		error = hammer_io_new(volume->devvp, &buffer->io);
799 	} else {
800 		error = 0;
801 	}
802 	--buffer->io.loading;
803 	hammer_unlock(&buffer->io.lock);
804 	return (error);
805 }
806 
807 /*
808  * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
809  * This routine is only called during unmount.
810  */
811 int
812 hammer_unload_buffer(hammer_buffer_t buffer, void *data __unused)
813 {
814 	/*
815 	 * Clean up the persistent ref ioerror might have on the buffer
816 	 * and acquire a ref (steal ioerror's if we can).
817 	 */
818 	if (buffer->io.ioerror) {
819 		buffer->io.ioerror = 0;
820 	} else {
821 		if (buffer->io.lock.refs == 0)
822 			++hammer_count_refedbufs;
823 		hammer_ref(&buffer->io.lock);
824 	}
825 
826 	/*
827 	 * We must not flush a dirty buffer to disk on umount.  It should
828 	 * have already been dealt with by the flusher, or we may be in
829 	 * catastrophic failure.
830 	 */
831 	hammer_io_clear_modify(&buffer->io, 1);
832 	hammer_flush_buffer_nodes(buffer);
833 	KKASSERT(buffer->io.lock.refs == 1);
834 	hammer_rel_buffer(buffer, 2);
835 	return(0);
836 }
837 
838 /*
839  * Reference a buffer that is either already referenced or via a specially
840  * handled pointer (aka cursor->buffer).
841  */
842 int
843 hammer_ref_buffer(hammer_buffer_t buffer)
844 {
845 	int error;
846 
847 	if (buffer->io.lock.refs == 0)
848 		++hammer_count_refedbufs;
849 	hammer_ref(&buffer->io.lock);
850 
851 	/*
852 	 * At this point a biodone() will not touch the buffer other then
853 	 * incidental bits.  However, lose_list can be modified via
854 	 * a biodone() interrupt.
855 	 *
856 	 * No longer loose
857 	 */
858 	if (buffer->io.mod_list == &buffer->io.hmp->lose_list) {
859 		crit_enter();
860 		TAILQ_REMOVE(buffer->io.mod_list, &buffer->io, mod_entry);
861 		buffer->io.mod_list = NULL;
862 		crit_exit();
863 	}
864 
865 	if (buffer->ondisk == NULL || buffer->io.loading) {
866 		error = hammer_load_buffer(buffer, 0);
867 		if (error) {
868 			hammer_rel_buffer(buffer, 1);
869 			/*
870 			 * NOTE: buffer pointer can become stale after
871 			 * the above release.
872 			 */
873 		}
874 	} else {
875 		error = 0;
876 	}
877 	return(error);
878 }
879 
880 /*
881  * Release a buffer.  We have to deal with several places where
882  * another thread can ref the buffer.
883  *
884  * Only destroy the structure itself if the related buffer cache buffer
885  * was disassociated from it.  This ties the management of the structure
886  * to the buffer cache subsystem.  buffer->ondisk determines whether the
887  * embedded io is referenced or not.
888  */
889 void
890 hammer_rel_buffer(hammer_buffer_t buffer, int flush)
891 {
892 	hammer_volume_t volume;
893 	hammer_mount_t hmp;
894 	struct buf *bp = NULL;
895 	int freeme = 0;
896 
897 	hmp = buffer->io.hmp;
898 
899 	crit_enter();
900 	if (buffer->io.lock.refs == 1) {
901 		++buffer->io.loading;	/* force interlock check */
902 		hammer_lock_ex(&buffer->io.lock);
903 		if (buffer->io.lock.refs == 1) {
904 			bp = hammer_io_release(&buffer->io, flush);
905 
906 			if (buffer->io.lock.refs == 1)
907 				--hammer_count_refedbufs;
908 
909 			if (buffer->io.bp == NULL &&
910 			    buffer->io.lock.refs == 1) {
911 				/*
912 				 * Final cleanup
913 				 *
914 				 * NOTE: It is impossible for any associated
915 				 * B-Tree nodes to have refs if the buffer
916 				 * has no additional refs.
917 				 */
918 				RB_REMOVE(hammer_buf_rb_tree,
919 					  &buffer->io.hmp->rb_bufs_root,
920 					  buffer);
921 				volume = buffer->io.volume;
922 				buffer->io.volume = NULL; /* sanity */
923 				hammer_rel_volume(volume, 0);
924 				hammer_io_clear_modlist(&buffer->io);
925 				hammer_flush_buffer_nodes(buffer);
926 				KKASSERT(TAILQ_EMPTY(&buffer->clist));
927 				freeme = 1;
928 			}
929 		}
930 		--buffer->io.loading;
931 		hammer_unlock(&buffer->io.lock);
932 	}
933 	hammer_unref(&buffer->io.lock);
934 	crit_exit();
935 	if (bp)
936 		brelse(bp);
937 	if (freeme) {
938 		--hammer_count_buffers;
939 		kfree(buffer, hmp->m_misc);
940 	}
941 }
942 
943 /*
944  * Access the filesystem buffer containing the specified hammer offset.
945  * buf_offset is a conglomeration of the volume number and vol_buf_beg
946  * relative buffer offset.  It must also have bit 55 set to be valid.
947  * (see hammer_off_t in hammer_disk.h).
948  *
949  * Any prior buffer in *bufferp will be released and replaced by the
950  * requested buffer.
951  *
952  * NOTE: The buffer is indexed via its zoneX_offset but we allow the
953  * passed cached *bufferp to match against either zoneX or zone2.
954  */
955 static __inline
956 void *
957 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
958 	     int *errorp, struct hammer_buffer **bufferp)
959 {
960 	hammer_buffer_t buffer;
961 	int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
962 
963 	buf_offset &= ~HAMMER_BUFMASK64;
964 	KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) != 0);
965 
966 	buffer = *bufferp;
967 	if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
968 			       buffer->zoneX_offset != buf_offset)) {
969 		if (buffer)
970 			hammer_rel_buffer(buffer, 0);
971 		buffer = hammer_get_buffer(hmp, buf_offset, bytes, 0, errorp);
972 		*bufferp = buffer;
973 	} else {
974 		*errorp = 0;
975 	}
976 
977 	/*
978 	 * Return a pointer to the buffer data.
979 	 */
980 	if (buffer == NULL)
981 		return(NULL);
982 	else
983 		return((char *)buffer->ondisk + xoff);
984 }
985 
986 void *
987 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
988 	     int *errorp, struct hammer_buffer **bufferp)
989 {
990 	return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
991 }
992 
993 void *
994 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
995 	         int *errorp, struct hammer_buffer **bufferp)
996 {
997 	bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
998 	return(_hammer_bread(hmp, buf_offset, bytes, errorp, bufferp));
999 }
1000 
1001 /*
1002  * Access the filesystem buffer containing the specified hammer offset.
1003  * No disk read operation occurs.  The result buffer may contain garbage.
1004  *
1005  * Any prior buffer in *bufferp will be released and replaced by the
1006  * requested buffer.
1007  *
1008  * This function marks the buffer dirty but does not increment its
1009  * modify_refs count.
1010  */
1011 static __inline
1012 void *
1013 _hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1014 	     int *errorp, struct hammer_buffer **bufferp)
1015 {
1016 	hammer_buffer_t buffer;
1017 	int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1018 
1019 	buf_offset &= ~HAMMER_BUFMASK64;
1020 
1021 	buffer = *bufferp;
1022 	if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1023 			       buffer->zoneX_offset != buf_offset)) {
1024 		if (buffer)
1025 			hammer_rel_buffer(buffer, 0);
1026 		buffer = hammer_get_buffer(hmp, buf_offset, bytes, 1, errorp);
1027 		*bufferp = buffer;
1028 	} else {
1029 		*errorp = 0;
1030 	}
1031 
1032 	/*
1033 	 * Return a pointer to the buffer data.
1034 	 */
1035 	if (buffer == NULL)
1036 		return(NULL);
1037 	else
1038 		return((char *)buffer->ondisk + xoff);
1039 }
1040 
1041 void *
1042 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
1043 	     int *errorp, struct hammer_buffer **bufferp)
1044 {
1045 	return(_hammer_bnew(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1046 }
1047 
1048 void *
1049 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1050 		int *errorp, struct hammer_buffer **bufferp)
1051 {
1052 	bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1053 	return(_hammer_bnew(hmp, buf_offset, bytes, errorp, bufferp));
1054 }
1055 
1056 /************************************************************************
1057  *				NODES					*
1058  ************************************************************************
1059  *
1060  * Manage B-Tree nodes.  B-Tree nodes represent the primary indexing
1061  * method used by the HAMMER filesystem.
1062  *
1063  * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
1064  * associated with its buffer, and will only referenced the buffer while
1065  * the node itself is referenced.
1066  *
1067  * A hammer_node can also be passively associated with other HAMMER
1068  * structures, such as inodes, while retaining 0 references.  These
1069  * associations can be cleared backwards using a pointer-to-pointer in
1070  * the hammer_node.
1071  *
1072  * This allows the HAMMER implementation to cache hammer_nodes long-term
1073  * and short-cut a great deal of the infrastructure's complexity.  In
1074  * most cases a cached node can be reacquired without having to dip into
1075  * either the buffer or cluster management code.
1076  *
1077  * The caller must pass a referenced cluster on call and will retain
1078  * ownership of the reference on return.  The node will acquire its own
1079  * additional references, if necessary.
1080  */
1081 hammer_node_t
1082 hammer_get_node(hammer_transaction_t trans, hammer_off_t node_offset,
1083 		int isnew, int *errorp)
1084 {
1085 	hammer_mount_t hmp = trans->hmp;
1086 	hammer_node_t node;
1087 
1088 	KKASSERT((node_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_BTREE);
1089 
1090 	/*
1091 	 * Locate the structure, allocating one if necessary.
1092 	 */
1093 again:
1094 	node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1095 	if (node == NULL) {
1096 		++hammer_count_nodes;
1097 		node = kmalloc(sizeof(*node), hmp->m_misc, M_WAITOK|M_ZERO|M_USE_RESERVE);
1098 		node->node_offset = node_offset;
1099 		node->hmp = hmp;
1100 		TAILQ_INIT(&node->cursor_list);
1101 		TAILQ_INIT(&node->cache_list);
1102 		if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1103 			--hammer_count_nodes;
1104 			kfree(node, hmp->m_misc);
1105 			goto again;
1106 		}
1107 	}
1108 	hammer_ref(&node->lock);
1109 	if (node->ondisk) {
1110 		*errorp = 0;
1111 	} else {
1112 		*errorp = hammer_load_node(node, isnew);
1113 		trans->flags |= HAMMER_TRANSF_DIDIO;
1114 	}
1115 	if (*errorp) {
1116 		hammer_rel_node(node);
1117 		node = NULL;
1118 	}
1119 	return(node);
1120 }
1121 
1122 /*
1123  * Reference an already-referenced node.
1124  */
1125 void
1126 hammer_ref_node(hammer_node_t node)
1127 {
1128 	KKASSERT(node->lock.refs > 0 && node->ondisk != NULL);
1129 	hammer_ref(&node->lock);
1130 }
1131 
1132 /*
1133  * Load a node's on-disk data reference.
1134  */
1135 static int
1136 hammer_load_node(hammer_node_t node, int isnew)
1137 {
1138 	hammer_buffer_t buffer;
1139 	hammer_off_t buf_offset;
1140 	int error;
1141 
1142 	error = 0;
1143 	++node->loading;
1144 	hammer_lock_ex(&node->lock);
1145 	if (node->ondisk == NULL) {
1146 		/*
1147 		 * This is a little confusing but the jist is that
1148 		 * node->buffer determines whether the node is on
1149 		 * the buffer's clist and node->ondisk determines
1150 		 * whether the buffer is referenced.
1151 		 *
1152 		 * We could be racing a buffer release, in which case
1153 		 * node->buffer may become NULL while we are blocked
1154 		 * referencing the buffer.
1155 		 */
1156 		if ((buffer = node->buffer) != NULL) {
1157 			error = hammer_ref_buffer(buffer);
1158 			if (error == 0 && node->buffer == NULL) {
1159 				TAILQ_INSERT_TAIL(&buffer->clist,
1160 						  node, entry);
1161 				node->buffer = buffer;
1162 			}
1163 		} else {
1164 			buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1165 			buffer = hammer_get_buffer(node->hmp, buf_offset,
1166 						   HAMMER_BUFSIZE, 0, &error);
1167 			if (buffer) {
1168 				KKASSERT(error == 0);
1169 				TAILQ_INSERT_TAIL(&buffer->clist,
1170 						  node, entry);
1171 				node->buffer = buffer;
1172 			}
1173 		}
1174 		if (error)
1175 			goto failed;
1176 		node->ondisk = (void *)((char *)buffer->ondisk +
1177 				        (node->node_offset & HAMMER_BUFMASK));
1178 		if (isnew == 0 &&
1179 		    (node->flags & HAMMER_NODE_CRCGOOD) == 0) {
1180 			if (hammer_crc_test_btree(node->ondisk) == 0)
1181 				Debugger("CRC FAILED: B-TREE NODE");
1182 			node->flags |= HAMMER_NODE_CRCGOOD;
1183 		}
1184 	}
1185 failed:
1186 	--node->loading;
1187 	hammer_unlock(&node->lock);
1188 	return (error);
1189 }
1190 
1191 /*
1192  * Safely reference a node, interlock against flushes via the IO subsystem.
1193  */
1194 hammer_node_t
1195 hammer_ref_node_safe(struct hammer_mount *hmp, hammer_node_cache_t cache,
1196 		     int *errorp)
1197 {
1198 	hammer_node_t node;
1199 
1200 	node = cache->node;
1201 	if (node != NULL) {
1202 		hammer_ref(&node->lock);
1203 		if (node->ondisk)
1204 			*errorp = 0;
1205 		else
1206 			*errorp = hammer_load_node(node, 0);
1207 		if (*errorp) {
1208 			hammer_rel_node(node);
1209 			node = NULL;
1210 		}
1211 	} else {
1212 		*errorp = ENOENT;
1213 	}
1214 	return(node);
1215 }
1216 
1217 /*
1218  * Release a hammer_node.  On the last release the node dereferences
1219  * its underlying buffer and may or may not be destroyed.
1220  */
1221 void
1222 hammer_rel_node(hammer_node_t node)
1223 {
1224 	hammer_buffer_t buffer;
1225 
1226 	/*
1227 	 * If this isn't the last ref just decrement the ref count and
1228 	 * return.
1229 	 */
1230 	if (node->lock.refs > 1) {
1231 		hammer_unref(&node->lock);
1232 		return;
1233 	}
1234 
1235 	/*
1236 	 * If there is no ondisk info or no buffer the node failed to load,
1237 	 * remove the last reference and destroy the node.
1238 	 */
1239 	if (node->ondisk == NULL) {
1240 		hammer_unref(&node->lock);
1241 		hammer_flush_node(node);
1242 		/* node is stale now */
1243 		return;
1244 	}
1245 
1246 	/*
1247 	 * Do not disassociate the node from the buffer if it represents
1248 	 * a modified B-Tree node that still needs its crc to be generated.
1249 	 */
1250 	if (node->flags & HAMMER_NODE_NEEDSCRC)
1251 		return;
1252 
1253 	/*
1254 	 * Do final cleanups and then either destroy the node and leave it
1255 	 * passively cached.  The buffer reference is removed regardless.
1256 	 */
1257 	buffer = node->buffer;
1258 	node->ondisk = NULL;
1259 
1260 	if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1261 		hammer_unref(&node->lock);
1262 		hammer_rel_buffer(buffer, 0);
1263 		return;
1264 	}
1265 
1266 	/*
1267 	 * Destroy the node.
1268 	 */
1269 	hammer_unref(&node->lock);
1270 	hammer_flush_node(node);
1271 	/* node is stale */
1272 	hammer_rel_buffer(buffer, 0);
1273 }
1274 
1275 /*
1276  * Free space on-media associated with a B-Tree node.
1277  */
1278 void
1279 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1280 {
1281 	KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1282 	node->flags |= HAMMER_NODE_DELETED;
1283 	hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1284 }
1285 
1286 /*
1287  * Passively cache a referenced hammer_node.  The caller may release
1288  * the node on return.
1289  */
1290 void
1291 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1292 {
1293 	/*
1294 	 * If the node doesn't exist, or is being deleted, don't cache it!
1295 	 *
1296 	 * The node can only ever be NULL in the I/O failure path.
1297 	 */
1298 	if (node == NULL || (node->flags & HAMMER_NODE_DELETED))
1299 		return;
1300 	if (cache->node == node)
1301 		return;
1302 	while (cache->node)
1303 		hammer_uncache_node(cache);
1304 	if (node->flags & HAMMER_NODE_DELETED)
1305 		return;
1306 	cache->node = node;
1307 	TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1308 }
1309 
1310 void
1311 hammer_uncache_node(hammer_node_cache_t cache)
1312 {
1313 	hammer_node_t node;
1314 
1315 	if ((node = cache->node) != NULL) {
1316 		TAILQ_REMOVE(&node->cache_list, cache, entry);
1317 		cache->node = NULL;
1318 		if (TAILQ_EMPTY(&node->cache_list))
1319 			hammer_flush_node(node);
1320 	}
1321 }
1322 
1323 /*
1324  * Remove a node's cache references and destroy the node if it has no
1325  * other references or backing store.
1326  */
1327 void
1328 hammer_flush_node(hammer_node_t node)
1329 {
1330 	hammer_node_cache_t cache;
1331 	hammer_buffer_t buffer;
1332 	hammer_mount_t hmp = node->hmp;
1333 
1334 	while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1335 		TAILQ_REMOVE(&node->cache_list, cache, entry);
1336 		cache->node = NULL;
1337 	}
1338 	if (node->lock.refs == 0 && node->ondisk == NULL) {
1339 		KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1340 		RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1341 		if ((buffer = node->buffer) != NULL) {
1342 			node->buffer = NULL;
1343 			TAILQ_REMOVE(&buffer->clist, node, entry);
1344 			/* buffer is unreferenced because ondisk is NULL */
1345 		}
1346 		--hammer_count_nodes;
1347 		kfree(node, hmp->m_misc);
1348 	}
1349 }
1350 
1351 /*
1352  * Flush passively cached B-Tree nodes associated with this buffer.
1353  * This is only called when the buffer is about to be destroyed, so
1354  * none of the nodes should have any references.  The buffer is locked.
1355  *
1356  * We may be interlocked with the buffer.
1357  */
1358 void
1359 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1360 {
1361 	hammer_node_t node;
1362 
1363 	while ((node = TAILQ_FIRST(&buffer->clist)) != NULL) {
1364 		KKASSERT(node->ondisk == NULL);
1365 		KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1366 
1367 		if (node->lock.refs == 0) {
1368 			hammer_ref(&node->lock);
1369 			node->flags |= HAMMER_NODE_FLUSH;
1370 			hammer_rel_node(node);
1371 		} else {
1372 			KKASSERT(node->loading != 0);
1373 			KKASSERT(node->buffer != NULL);
1374 			buffer = node->buffer;
1375 			node->buffer = NULL;
1376 			TAILQ_REMOVE(&buffer->clist, node, entry);
1377 			/* buffer is unreferenced because ondisk is NULL */
1378 		}
1379 	}
1380 }
1381 
1382 
1383 /************************************************************************
1384  *				ALLOCATORS				*
1385  ************************************************************************/
1386 
1387 /*
1388  * Allocate a B-Tree node.
1389  */
1390 hammer_node_t
1391 hammer_alloc_btree(hammer_transaction_t trans, int *errorp)
1392 {
1393 	hammer_buffer_t buffer = NULL;
1394 	hammer_node_t node = NULL;
1395 	hammer_off_t node_offset;
1396 
1397 	node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1398 					    sizeof(struct hammer_node_ondisk),
1399 					    errorp);
1400 	if (*errorp == 0) {
1401 		node = hammer_get_node(trans, node_offset, 1, errorp);
1402 		hammer_modify_node_noundo(trans, node);
1403 		bzero(node->ondisk, sizeof(*node->ondisk));
1404 		hammer_modify_node_done(node);
1405 	}
1406 	if (buffer)
1407 		hammer_rel_buffer(buffer, 0);
1408 	return(node);
1409 }
1410 
1411 /*
1412  * Allocate data.  If the address of a data buffer is supplied then
1413  * any prior non-NULL *data_bufferp will be released and *data_bufferp
1414  * will be set to the related buffer.  The caller must release it when
1415  * finally done.  The initial *data_bufferp should be set to NULL by
1416  * the caller.
1417  *
1418  * The caller is responsible for making hammer_modify*() calls on the
1419  * *data_bufferp.
1420  */
1421 void *
1422 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len,
1423 		  u_int16_t rec_type, hammer_off_t *data_offsetp,
1424 		  struct hammer_buffer **data_bufferp, int *errorp)
1425 {
1426 	void *data;
1427 	int zone;
1428 
1429 	/*
1430 	 * Allocate data
1431 	 */
1432 	if (data_len) {
1433 		switch(rec_type) {
1434 		case HAMMER_RECTYPE_INODE:
1435 		case HAMMER_RECTYPE_DIRENTRY:
1436 		case HAMMER_RECTYPE_EXT:
1437 		case HAMMER_RECTYPE_FIX:
1438 		case HAMMER_RECTYPE_PFS:
1439 			zone = HAMMER_ZONE_META_INDEX;
1440 			break;
1441 		case HAMMER_RECTYPE_DATA:
1442 		case HAMMER_RECTYPE_DB:
1443 			if (data_len <= HAMMER_BUFSIZE / 2) {
1444 				zone = HAMMER_ZONE_SMALL_DATA_INDEX;
1445 			} else {
1446 				data_len = (data_len + HAMMER_BUFMASK) &
1447 					   ~HAMMER_BUFMASK;
1448 				zone = HAMMER_ZONE_LARGE_DATA_INDEX;
1449 			}
1450 			break;
1451 		default:
1452 			panic("hammer_alloc_data: rec_type %04x unknown",
1453 			      rec_type);
1454 			zone = 0;	/* NOT REACHED */
1455 			break;
1456 		}
1457 		*data_offsetp = hammer_blockmap_alloc(trans, zone,
1458 						      data_len, errorp);
1459 	} else {
1460 		*data_offsetp = 0;
1461 	}
1462 	if (*errorp == 0 && data_bufferp) {
1463 		if (data_len) {
1464 			data = hammer_bread_ext(trans->hmp, *data_offsetp,
1465 						data_len, errorp, data_bufferp);
1466 		} else {
1467 			data = NULL;
1468 		}
1469 	} else {
1470 		data = NULL;
1471 	}
1472 	return(data);
1473 }
1474 
1475 /*
1476  * Sync dirty buffers to the media and clean-up any loose ends.
1477  *
1478  * These functions do not start the flusher going, they simply
1479  * queue everything up to the flusher.
1480  */
1481 static int hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data);
1482 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1483 
1484 int
1485 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1486 {
1487 	struct hammer_sync_info info;
1488 
1489 	info.error = 0;
1490 	info.waitfor = waitfor;
1491 	if (waitfor == MNT_WAIT) {
1492 		vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS,
1493 			      hammer_sync_scan1, hammer_sync_scan2, &info);
1494 	} else {
1495 		vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS|VMSC_NOWAIT,
1496 			      hammer_sync_scan1, hammer_sync_scan2, &info);
1497 	}
1498 	return(info.error);
1499 }
1500 
1501 /*
1502  * Filesystem sync.  If doing a synchronous sync make a second pass on
1503  * the vnodes in case any were already flushing during the first pass,
1504  * and activate the flusher twice (the second time brings the UNDO FIFO's
1505  * start position up to the end position after the first call).
1506  */
1507 int
1508 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1509 {
1510 	struct hammer_sync_info info;
1511 
1512 	info.error = 0;
1513 	info.waitfor = MNT_NOWAIT;
1514 	vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_NOWAIT,
1515 		      hammer_sync_scan1, hammer_sync_scan2, &info);
1516 	if (info.error == 0 && waitfor == MNT_WAIT) {
1517 		info.waitfor = waitfor;
1518 		vmntvnodescan(hmp->mp, VMSC_GETVP,
1519 			      hammer_sync_scan1, hammer_sync_scan2, &info);
1520 	}
1521         if (waitfor == MNT_WAIT) {
1522                 hammer_flusher_sync(hmp);
1523                 hammer_flusher_sync(hmp);
1524 	} else {
1525                 hammer_flusher_async(hmp, NULL);
1526                 hammer_flusher_async(hmp, NULL);
1527 	}
1528 	return(info.error);
1529 }
1530 
1531 static int
1532 hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data)
1533 {
1534 	struct hammer_inode *ip;
1535 
1536 	ip = VTOI(vp);
1537 	if (vp->v_type == VNON || ip == NULL ||
1538 	    ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1539 	     RB_EMPTY(&vp->v_rbdirty_tree))) {
1540 		return(-1);
1541 	}
1542 	return(0);
1543 }
1544 
1545 static int
1546 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1547 {
1548 	struct hammer_sync_info *info = data;
1549 	struct hammer_inode *ip;
1550 	int error;
1551 
1552 	ip = VTOI(vp);
1553 	if (vp->v_type == VNON || vp->v_type == VBAD ||
1554 	    ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1555 	     RB_EMPTY(&vp->v_rbdirty_tree))) {
1556 		return(0);
1557 	}
1558 	error = VOP_FSYNC(vp, MNT_NOWAIT);
1559 	if (error)
1560 		info->error = error;
1561 	return(0);
1562 }
1563 
1564