xref: /dragonfly/sys/vfs/hammer/hammer_ondisk.c (revision e5e174ad)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.76 2008/08/29 20:19:08 dillon Exp $
35  */
36 /*
37  * Manage HAMMER's on-disk structures.  These routines are primarily
38  * responsible for interfacing with the kernel's I/O subsystem and for
39  * managing in-memory structures.
40  */
41 
42 #include <sys/nlookup.h>
43 #include <sys/buf2.h>
44 
45 #include "hammer.h"
46 
47 static void hammer_free_volume(hammer_volume_t volume);
48 static int hammer_load_volume(hammer_volume_t volume);
49 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
50 static int hammer_load_node(hammer_transaction_t trans,
51 				hammer_node_t node, int isnew);
52 static void _hammer_rel_node(hammer_node_t node, int locked);
53 
54 static int
55 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
56 {
57 	if (vol1->vol_no < vol2->vol_no)
58 		return(-1);
59 	if (vol1->vol_no > vol2->vol_no)
60 		return(1);
61 	return(0);
62 }
63 
64 /*
65  * hammer_buffer structures are indexed via their zoneX_offset, not
66  * their zone2_offset.
67  */
68 static int
69 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
70 {
71 	if (buf1->zoneX_offset < buf2->zoneX_offset)
72 		return(-1);
73 	if (buf1->zoneX_offset > buf2->zoneX_offset)
74 		return(1);
75 	return(0);
76 }
77 
78 static int
79 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
80 {
81 	if (node1->node_offset < node2->node_offset)
82 		return(-1);
83 	if (node1->node_offset > node2->node_offset)
84 		return(1);
85 	return(0);
86 }
87 
88 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
89 	     hammer_vol_rb_compare, int32_t, vol_no);
90 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
91 	     hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
92 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
93 	     hammer_nod_rb_compare, hammer_off_t, node_offset);
94 
95 /************************************************************************
96  *				VOLUMES					*
97  ************************************************************************
98  *
99  * Load a HAMMER volume by name.  Returns 0 on success or a positive error
100  * code on failure.  Volumes must be loaded at mount time or via hammer
101  * volume-add command, hammer_get_volume() will not load a new volume.
102  *
103  * The passed devvp is vref()'d but not locked.  This function consumes the
104  * ref (typically by associating it with the volume structure).
105  *
106  * Calls made to hammer_load_volume() or single-threaded
107  */
108 int
109 hammer_install_volume(hammer_mount_t hmp, const char *volname,
110 		      struct vnode *devvp, void *data)
111 {
112 	struct mount *mp;
113 	hammer_volume_t volume;
114 	hammer_volume_ondisk_t ondisk;
115 	hammer_volume_ondisk_t img;
116 	struct nlookupdata nd;
117 	struct buf *bp = NULL;
118 	int error;
119 	int ronly;
120 	int setmp = 0;
121 	int i;
122 
123 	mp = hmp->mp;
124 	ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
125 
126 	/*
127 	 * Allocate a volume structure
128 	 */
129 	++hammer_count_volumes;
130 	volume = kmalloc(sizeof(*volume), hmp->m_misc, M_WAITOK|M_ZERO);
131 	volume->vol_name = kstrdup(volname, hmp->m_misc);
132 	volume->io.hmp = hmp;	/* bootstrap */
133 	hammer_io_init(&volume->io, volume, HAMMER_STRUCTURE_VOLUME);
134 	volume->io.offset = 0LL;
135 	volume->io.bytes = HAMMER_BUFSIZE;
136 
137 	/*
138 	 * Get the device vnode
139 	 */
140 	if (devvp == NULL) {
141 		error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
142 		if (error == 0)
143 			error = nlookup(&nd);
144 		if (error == 0)
145 			error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
146 		nlookup_done(&nd);
147 	} else {
148 		error = 0;
149 		volume->devvp = devvp;
150 	}
151 
152 	if (error == 0) {
153 		if (vn_isdisk(volume->devvp, &error)) {
154 			error = vfs_mountedon(volume->devvp);
155 		}
156 	}
157 	if (error == 0 && vcount(volume->devvp) > 0)
158 		error = EBUSY;
159 	if (error == 0) {
160 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
161 		error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
162 		if (error == 0) {
163 			error = VOP_OPEN(volume->devvp,
164 					 (ronly ? FREAD : FREAD|FWRITE),
165 					 FSCRED, NULL);
166 		}
167 		vn_unlock(volume->devvp);
168 	}
169 	if (error) {
170 		hammer_free_volume(volume);
171 		return(error);
172 	}
173 	volume->devvp->v_rdev->si_mountpoint = mp;
174 	setmp = 1;
175 
176 	/*
177 	 * Extract the volume number from the volume header and do various
178 	 * sanity checks.
179 	 */
180 	error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
181 	if (error)
182 		goto late_failure;
183 	ondisk = (void *)bp->b_data;
184 
185 	/*
186 	 * Initialize the volume header with data if the data is specified.
187 	 */
188 	if (ronly == 0 && data) {
189 		img = (hammer_volume_ondisk_t)data;
190 		if (ondisk->vol_signature == HAMMER_FSBUF_VOLUME) {
191 			hkprintf("Formatting of valid HAMMER volume "
192 				"%s denied. Erase with dd!\n", volname);
193 			error = EFTYPE;
194 			goto late_failure;
195 		}
196 		bcopy(img, ondisk, sizeof(*img));
197 	}
198 
199 	if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
200 		hkprintf("volume %s has an invalid header\n", volume->vol_name);
201 		for (i = 0; i < (int)sizeof(ondisk->vol_signature); i++) {
202 			kprintf("%02x", ((char*)&ondisk->vol_signature)[i] & 0xFF);
203 			if (i != (int)sizeof(ondisk->vol_signature) - 1)
204 				kprintf(" ");
205 		}
206 		kprintf("\n");
207 		error = EFTYPE;
208 		goto late_failure;
209 	}
210 	volume->vol_no = ondisk->vol_no;
211 	volume->vol_flags = ondisk->vol_flags;
212 	volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
213 				    HAMMER_VOL_BUF_SIZE(ondisk));
214 
215 	if (RB_EMPTY(&hmp->rb_vols_root)) {
216 		hmp->fsid = ondisk->vol_fsid;
217 	} else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
218 		hkprintf("volume %s's fsid does not match other volumes\n",
219 			volume->vol_name);
220 		error = EFTYPE;
221 		goto late_failure;
222 	}
223 
224 	/*
225 	 * Insert the volume structure into the red-black tree.
226 	 */
227 	if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
228 		hkprintf("volume %s has a duplicate vol_no %d\n",
229 			volume->vol_name, volume->vol_no);
230 		error = EEXIST;
231 	}
232 
233 	if (error == 0)
234 		HAMMER_VOLUME_NUMBER_ADD(hmp, volume);
235 
236 	/*
237 	 * Set the root volume .  HAMMER special cases rootvol the structure.
238 	 * We do not hold a ref because this would prevent related I/O
239 	 * from being flushed.
240 	 */
241 	if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
242 		hmp->rootvol = volume;
243 		hmp->nvolumes = ondisk->vol_count;
244 		if (bp) {
245 			brelse(bp);
246 			bp = NULL;
247 		}
248 		hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
249 						HAMMER_BUFFERS_PER_BIGBLOCK;
250 		hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
251 						HAMMER_BUFFERS_PER_BIGBLOCK;
252 	}
253 late_failure:
254 	if (bp)
255 		brelse(bp);
256 	if (error) {
257 		/*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
258 		if (setmp)
259 			volume->devvp->v_rdev->si_mountpoint = NULL;
260 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
261 		VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE, NULL);
262 		vn_unlock(volume->devvp);
263 		hammer_free_volume(volume);
264 	}
265 	return (error);
266 }
267 
268 /*
269  * This is called for each volume when updating the mount point from
270  * read-write to read-only or vise-versa.
271  */
272 int
273 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
274 {
275 	if (volume->devvp) {
276 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
277 		if (volume->io.hmp->ronly) {
278 			/* do not call vinvalbuf */
279 			VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
280 			VOP_CLOSE(volume->devvp, FREAD|FWRITE, NULL);
281 		} else {
282 			/* do not call vinvalbuf */
283 			VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
284 			VOP_CLOSE(volume->devvp, FREAD, NULL);
285 		}
286 		vn_unlock(volume->devvp);
287 	}
288 	return(0);
289 }
290 
291 /*
292  * Unload and free a HAMMER volume.  Must return >= 0 to continue scan
293  * so returns -1 on failure.
294  */
295 int
296 hammer_unload_volume(hammer_volume_t volume, void *data)
297 {
298 	hammer_mount_t hmp = volume->io.hmp;
299 	struct buf *bp = NULL;
300 	hammer_volume_ondisk_t img;
301 	int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
302 	int error;
303 
304 	/*
305 	 * Clear the volume header with data if the data is specified.
306 	 */
307 	if (ronly == 0 && data && volume->devvp) {
308 		img = (hammer_volume_ondisk_t)data;
309 		error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
310 		if (error || bp->b_bcount < sizeof(*img)) {
311 			hmkprintf(hmp, "Failed to read volume header: %d\n", error);
312 			brelse(bp);
313 		} else {
314 			bcopy(img, bp->b_data, sizeof(*img));
315 			error = bwrite(bp);
316 			if (error)
317 				hmkprintf(hmp, "Failed to clear volume header: %d\n",
318 					error);
319 		}
320 	}
321 
322 	/*
323 	 * Clean up the root volume pointer, which is held unlocked in hmp.
324 	 */
325 	if (hmp->rootvol == volume)
326 		hmp->rootvol = NULL;
327 
328 	/*
329 	 * We must not flush a dirty buffer to disk on umount.  It should
330 	 * have already been dealt with by the flusher, or we may be in
331 	 * catastrophic failure.
332 	 */
333 	hammer_io_clear_modify(&volume->io, 1);
334 	volume->io.waitdep = 1;
335 
336 	/*
337 	 * Clean up the persistent ref ioerror might have on the volume
338 	 */
339 	if (volume->io.ioerror)
340 		hammer_io_clear_error_noassert(&volume->io);
341 
342 	/*
343 	 * This should release the bp.  Releasing the volume with flush set
344 	 * implies the interlock is set.
345 	 */
346 	hammer_ref_interlock_true(&volume->io.lock);
347 	hammer_rel_volume(volume, 1);
348 	KKASSERT(volume->io.bp == NULL);
349 
350 	/*
351 	 * There should be no references on the volume.
352 	 */
353 	KKASSERT(hammer_norefs(&volume->io.lock));
354 
355 	volume->ondisk = NULL;
356 	if (volume->devvp) {
357 		if (volume->devvp->v_rdev &&
358 		    volume->devvp->v_rdev->si_mountpoint == hmp->mp) {
359 			volume->devvp->v_rdev->si_mountpoint = NULL;
360 		}
361 		if (ronly) {
362 			/*
363 			 * Make sure we don't sync anything to disk if we
364 			 * are in read-only mode (1) or critically-errored
365 			 * (2).  Note that there may be dirty buffers in
366 			 * normal read-only mode from crash recovery.
367 			 */
368 			vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
369 			vinvalbuf(volume->devvp, 0, 0, 0);
370 			VOP_CLOSE(volume->devvp, FREAD, NULL);
371 			vn_unlock(volume->devvp);
372 		} else {
373 			/*
374 			 * Normal termination, save any dirty buffers
375 			 * (XXX there really shouldn't be any).
376 			 */
377 			vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
378 			vinvalbuf(volume->devvp, V_SAVE, 0, 0);
379 			VOP_CLOSE(volume->devvp, FREAD|FWRITE, NULL);
380 			vn_unlock(volume->devvp);
381 		}
382 	}
383 
384 	/*
385 	 * Destroy the structure
386 	 */
387 	RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
388 	HAMMER_VOLUME_NUMBER_DEL(hmp, volume);
389 	hammer_free_volume(volume);
390 	return(0);
391 }
392 
393 static
394 void
395 hammer_free_volume(hammer_volume_t volume)
396 {
397 	hammer_mount_t hmp = volume->io.hmp;
398 
399 	if (volume->vol_name) {
400 		kfree(volume->vol_name, hmp->m_misc);
401 		volume->vol_name = NULL;
402 	}
403 	if (volume->devvp) {
404 		vrele(volume->devvp);
405 		volume->devvp = NULL;
406 	}
407 	--hammer_count_volumes;
408 	kfree(volume, hmp->m_misc);
409 }
410 
411 /*
412  * Get a HAMMER volume.  The volume must already exist.
413  */
414 hammer_volume_t
415 hammer_get_volume(hammer_mount_t hmp, int32_t vol_no, int *errorp)
416 {
417 	hammer_volume_t volume;
418 
419 	/*
420 	 * Locate the volume structure
421 	 */
422 	volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
423 	if (volume == NULL) {
424 		*errorp = ENOENT;
425 		return(NULL);
426 	}
427 
428 	/*
429 	 * Reference the volume, load/check the data on the 0->1 transition.
430 	 * hammer_load_volume() will dispose of the interlock on return,
431 	 * and also clean up the ref count on error.
432 	 */
433 	if (hammer_ref_interlock(&volume->io.lock)) {
434 		*errorp = hammer_load_volume(volume);
435 		if (*errorp)
436 			volume = NULL;
437 	} else {
438 		KKASSERT(volume->ondisk);
439 		*errorp = 0;
440 	}
441 	return(volume);
442 }
443 
444 int
445 hammer_ref_volume(hammer_volume_t volume)
446 {
447 	int error;
448 
449 	/*
450 	 * Reference the volume and deal with the check condition used to
451 	 * load its ondisk info.
452 	 */
453 	if (hammer_ref_interlock(&volume->io.lock)) {
454 		error = hammer_load_volume(volume);
455 	} else {
456 		KKASSERT(volume->ondisk);
457 		error = 0;
458 	}
459 	return (error);
460 }
461 
462 /*
463  * May be called without fs_token
464  */
465 hammer_volume_t
466 hammer_get_root_volume(hammer_mount_t hmp, int *errorp)
467 {
468 	hammer_volume_t volume;
469 
470 	volume = hmp->rootvol;
471 	KKASSERT(volume != NULL);
472 
473 	/*
474 	 * Reference the volume and deal with the check condition used to
475 	 * load its ondisk info.
476 	 */
477 	if (hammer_ref_interlock(&volume->io.lock)) {
478 		lwkt_gettoken(&volume->io.hmp->fs_token);
479 		*errorp = hammer_load_volume(volume);
480 		lwkt_reltoken(&volume->io.hmp->fs_token);
481 		if (*errorp)
482 			volume = NULL;
483 	} else {
484 		KKASSERT(volume->ondisk);
485 		*errorp = 0;
486 	}
487 	return (volume);
488 }
489 
490 /*
491  * Load a volume's on-disk information.  The volume must be referenced and
492  * the interlock is held on call.  The interlock will be released on return.
493  * The reference will also be released on return if an error occurs.
494  */
495 static int
496 hammer_load_volume(hammer_volume_t volume)
497 {
498 	int error;
499 
500 	if (volume->ondisk == NULL) {
501 		error = hammer_io_read(volume->devvp, &volume->io,
502 				       HAMMER_BUFSIZE);
503 		if (error == 0) {
504 			volume->ondisk = (void *)volume->io.bp->b_data;
505                         hammer_ref_interlock_done(&volume->io.lock);
506 		} else {
507                         hammer_rel_volume(volume, 1);
508 		}
509 	} else {
510 		error = 0;
511 	}
512 	return(error);
513 }
514 
515 /*
516  * Release a previously acquired reference on the volume.
517  *
518  * Volumes are not unloaded from memory during normal operation.
519  *
520  * May be called without fs_token
521  */
522 void
523 hammer_rel_volume(hammer_volume_t volume, int locked)
524 {
525 	struct buf *bp;
526 
527 	if (hammer_rel_interlock(&volume->io.lock, locked)) {
528 		lwkt_gettoken(&volume->io.hmp->fs_token);
529 		volume->ondisk = NULL;
530 		bp = hammer_io_release(&volume->io, locked);
531 		lwkt_reltoken(&volume->io.hmp->fs_token);
532 		hammer_rel_interlock_done(&volume->io.lock, locked);
533 		if (bp)
534 			brelse(bp);
535 	}
536 }
537 
538 int
539 hammer_mountcheck_volumes(hammer_mount_t hmp)
540 {
541 	hammer_volume_t vol;
542 	int i;
543 
544 	HAMMER_VOLUME_NUMBER_FOREACH(hmp, i) {
545 		vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
546 		if (vol == NULL)
547 			return(EINVAL);
548 	}
549 	return(0);
550 }
551 
552 int
553 hammer_get_installed_volumes(hammer_mount_t hmp)
554 {
555 	int i, ret = 0;
556 
557 	HAMMER_VOLUME_NUMBER_FOREACH(hmp, i)
558 		ret++;
559 	return(ret);
560 }
561 
562 /************************************************************************
563  *				BUFFERS					*
564  ************************************************************************
565  *
566  * Manage buffers.  Currently most blockmap-backed zones are direct-mapped
567  * to zone-2 buffer offsets, without a translation stage.  However, the
568  * hammer_buffer structure is indexed by its zoneX_offset, not its
569  * zone2_offset.
570  *
571  * The proper zone must be maintained throughout the code-base all the way
572  * through to the big-block allocator, or routines like hammer_del_buffers()
573  * will not be able to locate all potentially conflicting buffers.
574  */
575 
576 /*
577  * Helper function returns whether a zone offset can be directly translated
578  * to a raw buffer index or not.  Really only the volume and undo zones
579  * can't be directly translated.  Volumes are special-cased and undo zones
580  * shouldn't be aliased accessed in read-only mode.
581  *
582  * This function is ONLY used to detect aliased zones during a read-only
583  * mount.
584  */
585 static __inline int
586 hammer_direct_zone(hammer_off_t buf_offset)
587 {
588 	int zone = HAMMER_ZONE_DECODE(buf_offset);
589 
590 	return(hammer_is_direct_mapped_index(zone));
591 }
592 
593 hammer_buffer_t
594 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
595 		  int bytes, int isnew, int *errorp)
596 {
597 	hammer_buffer_t buffer;
598 	hammer_volume_t volume;
599 	hammer_off_t	zone2_offset;
600 	hammer_io_type_t iotype;
601 	int vol_no;
602 	int zone;
603 
604 	buf_offset &= ~HAMMER_BUFMASK64;
605 again:
606 	/*
607 	 * Shortcut if the buffer is already cached
608 	 */
609 	buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
610 	if (buffer) {
611 		/*
612 		 * Once refed the ondisk field will not be cleared by
613 		 * any other action.  Shortcut the operation if the
614 		 * ondisk structure is valid.
615 		 */
616 found_aliased:
617 		if (hammer_ref_interlock(&buffer->io.lock) == 0) {
618 			hammer_io_advance(&buffer->io);
619 			KKASSERT(buffer->ondisk);
620 			*errorp = 0;
621 			return(buffer);
622 		}
623 
624 		/*
625 		 * 0->1 transition or defered 0->1 transition (CHECK),
626 		 * interlock now held.  Shortcut if ondisk is already
627 		 * assigned.
628 		 */
629 		atomic_add_int(&hammer_count_refedbufs, 1);
630 		if (buffer->ondisk) {
631 			hammer_io_advance(&buffer->io);
632 			hammer_ref_interlock_done(&buffer->io.lock);
633 			*errorp = 0;
634 			return(buffer);
635 		}
636 
637 		/*
638 		 * The buffer is no longer loose if it has a ref, and
639 		 * cannot become loose once it gains a ref.  Loose
640 		 * buffers will never be in a modified state.  This should
641 		 * only occur on the 0->1 transition of refs.
642 		 *
643 		 * lose_root can be modified via a biodone() interrupt
644 		 * so the io_token must be held.
645 		 */
646 		if (buffer->io.mod_root == &hmp->lose_root) {
647 			lwkt_gettoken(&hmp->io_token);
648 			if (buffer->io.mod_root == &hmp->lose_root) {
649 				RB_REMOVE(hammer_mod_rb_tree,
650 					  buffer->io.mod_root, &buffer->io);
651 				buffer->io.mod_root = NULL;
652 				KKASSERT(buffer->io.modified == 0);
653 			}
654 			lwkt_reltoken(&hmp->io_token);
655 		}
656 		goto found;
657 	} else if (hmp->ronly && hammer_direct_zone(buf_offset)) {
658 		/*
659 		 * If this is a read-only mount there could be an alias
660 		 * in the raw-zone.  If there is we use that buffer instead.
661 		 *
662 		 * rw mounts will not have aliases.  Also note when going
663 		 * from ro -> rw the recovered raw buffers are flushed and
664 		 * reclaimed, so again there will not be any aliases once
665 		 * the mount is rw.
666 		 */
667 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
668 				   hammer_xlate_to_zone2(buf_offset));
669 		if (buffer) {
670 			if (hammer_debug_general & 0x0001) {
671 				hkrateprintf(&hmp->kdiag,
672 					    "recovered aliased %016jx\n",
673 					    (intmax_t)buf_offset);
674 			}
675 			goto found_aliased;
676 		}
677 	}
678 
679 	/*
680 	 * What is the buffer class?
681 	 */
682 	zone = HAMMER_ZONE_DECODE(buf_offset);
683 
684 	switch(zone) {
685 	case HAMMER_ZONE_LARGE_DATA_INDEX:
686 	case HAMMER_ZONE_SMALL_DATA_INDEX:
687 		iotype = HAMMER_STRUCTURE_DATA_BUFFER;
688 		break;
689 	case HAMMER_ZONE_UNDO_INDEX:
690 		iotype = HAMMER_STRUCTURE_UNDO_BUFFER;
691 		break;
692 	case HAMMER_ZONE_META_INDEX:
693 	default:
694 		/*
695 		 * NOTE: inode data and directory entries are placed in this
696 		 * zone.  inode atime/mtime is updated in-place and thus
697 		 * buffers containing inodes must be synchronized as
698 		 * meta-buffers, same as buffers containing B-Tree info.
699 		 */
700 		iotype = HAMMER_STRUCTURE_META_BUFFER;
701 		break;
702 	}
703 
704 	/*
705 	 * Handle blockmap offset translations
706 	 */
707 	if (hammer_is_zone2_mapped_index(zone)) {
708 		zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
709 	} else if (zone == HAMMER_ZONE_UNDO_INDEX) {
710 		zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
711 	} else {
712 		/* Must be zone-2 (not 1 or 4 or 15) */
713 		KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
714 		zone2_offset = buf_offset;
715 		*errorp = 0;
716 	}
717 	if (*errorp)
718 		return(NULL);
719 
720 	/*
721 	 * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
722 	 * specifications.
723 	 */
724 	KKASSERT(hammer_is_zone_raw_buffer(zone2_offset));
725 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
726 	volume = hammer_get_volume(hmp, vol_no, errorp);
727 	if (volume == NULL)
728 		return(NULL);
729 
730 	KKASSERT(zone2_offset < volume->maxbuf_off);
731 
732 	/*
733 	 * Allocate a new buffer structure.  We will check for races later.
734 	 */
735 	++hammer_count_buffers;
736 	buffer = kmalloc(sizeof(*buffer), hmp->m_misc,
737 			 M_WAITOK|M_ZERO|M_USE_RESERVE);
738 	buffer->zone2_offset = zone2_offset;
739 	buffer->zoneX_offset = buf_offset;
740 
741 	hammer_io_init(&buffer->io, volume, iotype);
742 	buffer->io.offset = hammer_xlate_to_phys(volume->ondisk, zone2_offset);
743 	buffer->io.bytes = bytes;
744 	TAILQ_INIT(&buffer->node_list);
745 	hammer_ref_interlock_true(&buffer->io.lock);
746 
747 	/*
748 	 * Insert the buffer into the RB tree and handle late collisions.
749 	 */
750 	if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
751 		hammer_rel_volume(volume, 0);
752 		buffer->io.volume = NULL;			/* safety */
753 		if (hammer_rel_interlock(&buffer->io.lock, 1))	/* safety */
754 			hammer_rel_interlock_done(&buffer->io.lock, 1);
755 		--hammer_count_buffers;
756 		kfree(buffer, hmp->m_misc);
757 		goto again;
758 	}
759 	atomic_add_int(&hammer_count_refedbufs, 1);
760 found:
761 
762 	/*
763 	 * The buffer is referenced and interlocked.  Load the buffer
764 	 * if necessary.  hammer_load_buffer() deals with the interlock
765 	 * and, if an error is returned, also deals with the ref.
766 	 */
767 	if (buffer->ondisk == NULL) {
768 		*errorp = hammer_load_buffer(buffer, isnew);
769 		if (*errorp)
770 			buffer = NULL;
771 	} else {
772 		hammer_io_advance(&buffer->io);
773 		hammer_ref_interlock_done(&buffer->io.lock);
774 		*errorp = 0;
775 	}
776 	return(buffer);
777 }
778 
779 /*
780  * This is used by the direct-read code to deal with large-data buffers
781  * created by the reblocker and mirror-write code.  The direct-read code
782  * bypasses the HAMMER buffer subsystem and so any aliased dirty or write-
783  * running hammer buffers must be fully synced to disk before we can issue
784  * the direct-read.
785  *
786  * This code path is not considered critical as only the rebocker and
787  * mirror-write code will create large-data buffers via the HAMMER buffer
788  * subsystem.  They do that because they operate at the B-Tree level and
789  * do not access the vnode/inode structures.
790  */
791 void
792 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
793 {
794 	hammer_buffer_t buffer;
795 	int error;
796 
797 	KKASSERT(hammer_is_zone_large_data(base_offset));
798 
799 	while (bytes > 0) {
800 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
801 				   base_offset);
802 		if (buffer && (buffer->io.modified || buffer->io.running)) {
803 			error = hammer_ref_buffer(buffer);
804 			if (error == 0) {
805 				hammer_io_wait(&buffer->io);
806 				if (buffer->io.modified) {
807 					hammer_io_write_interlock(&buffer->io);
808 					hammer_io_flush(&buffer->io, 0);
809 					hammer_io_done_interlock(&buffer->io);
810 					hammer_io_wait(&buffer->io);
811 				}
812 				hammer_rel_buffer(buffer, 0);
813 			}
814 		}
815 		base_offset += HAMMER_BUFSIZE;
816 		bytes -= HAMMER_BUFSIZE;
817 	}
818 }
819 
820 /*
821  * Destroy all buffers covering the specified zoneX offset range.  This
822  * is called when the related blockmap layer2 entry is freed or when
823  * a direct write bypasses our buffer/buffer-cache subsystem.
824  *
825  * The buffers may be referenced by the caller itself.  Setting reclaim
826  * will cause the buffer to be destroyed when it's ref count reaches zero.
827  *
828  * Return 0 on success, EAGAIN if some buffers could not be destroyed due
829  * to additional references held by other threads, or some other (typically
830  * fatal) error.
831  */
832 int
833 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
834 		   hammer_off_t zone2_offset, int bytes,
835 		   int report_conflicts)
836 {
837 	hammer_buffer_t buffer;
838 	hammer_volume_t volume;
839 	int vol_no;
840 	int error;
841 	int ret_error;
842 
843 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
844 	volume = hammer_get_volume(hmp, vol_no, &ret_error);
845 	KKASSERT(ret_error == 0);
846 
847 	while (bytes > 0) {
848 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
849 				   base_offset);
850 		if (buffer) {
851 			error = hammer_ref_buffer(buffer);
852 			if (hammer_debug_general & 0x20000) {
853 				hkprintf("delbufr %016jx rerr=%d 1ref=%d\n",
854 					(intmax_t)buffer->zoneX_offset,
855 					error,
856 					hammer_oneref(&buffer->io.lock));
857 			}
858 			if (error == 0 && !hammer_oneref(&buffer->io.lock)) {
859 				error = EAGAIN;
860 				hammer_rel_buffer(buffer, 0);
861 			}
862 			if (error == 0) {
863 				KKASSERT(buffer->zone2_offset == zone2_offset);
864 				hammer_io_clear_modify(&buffer->io, 1);
865 				buffer->io.reclaim = 1;
866 				buffer->io.waitdep = 1;
867 				KKASSERT(buffer->io.volume == volume);
868 				hammer_rel_buffer(buffer, 0);
869 			}
870 		} else {
871 			error = hammer_io_inval(volume, zone2_offset);
872 		}
873 		if (error) {
874 			ret_error = error;
875 			if (report_conflicts ||
876 			    (hammer_debug_general & 0x8000)) {
877 				krateprintf(&hmp->kdiag,
878 					"hammer_del_buffers: unable to "
879 					"invalidate %016jx buffer=%p "
880 					"rep=%d lkrefs=%08x\n",
881 					(intmax_t)base_offset,
882 					buffer, report_conflicts,
883 					(buffer ? buffer->io.lock.refs : -1));
884 			}
885 		}
886 		base_offset += HAMMER_BUFSIZE;
887 		zone2_offset += HAMMER_BUFSIZE;
888 		bytes -= HAMMER_BUFSIZE;
889 	}
890 	hammer_rel_volume(volume, 0);
891 	return (ret_error);
892 }
893 
894 /*
895  * Given a referenced and interlocked buffer load/validate the data.
896  *
897  * The buffer interlock will be released on return.  If an error is
898  * returned the buffer reference will also be released (and the buffer
899  * pointer will thus be stale).
900  */
901 static int
902 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
903 {
904 	hammer_volume_t volume;
905 	int error;
906 
907 	/*
908 	 * Load the buffer's on-disk info
909 	 */
910 	volume = buffer->io.volume;
911 
912 	if (hammer_debug_io & 0x0004) {
913 		hdkprintf("load_buffer %016jx %016jx isnew=%d od=%p\n",
914 			(intmax_t)buffer->zoneX_offset,
915 			(intmax_t)buffer->zone2_offset,
916 			isnew, buffer->ondisk);
917 	}
918 
919 	if (buffer->ondisk == NULL) {
920 		/*
921 		 * Issue the read or generate a new buffer.  When reading
922 		 * the limit argument controls any read-ahead clustering
923 		 * hammer_io_read() is allowed to do.
924 		 *
925 		 * We cannot read-ahead in the large-data zone and we cannot
926 		 * cross a big-block boundary as the next big-block might
927 		 * use a different buffer size.
928 		 */
929 		if (isnew) {
930 			error = hammer_io_new(volume->devvp, &buffer->io);
931 		} else if (hammer_is_zone_large_data(buffer->zoneX_offset)) {
932 			error = hammer_io_read(volume->devvp, &buffer->io,
933 					       buffer->io.bytes);
934 		} else {
935 			hammer_off_t limit;
936 
937 			limit = (buffer->zone2_offset +
938 				 HAMMER_BIGBLOCK_MASK64) &
939 				~HAMMER_BIGBLOCK_MASK64;
940 			limit -= buffer->zone2_offset;
941 			error = hammer_io_read(volume->devvp, &buffer->io,
942 					       limit);
943 		}
944 		if (error == 0)
945 			buffer->ondisk = (void *)buffer->io.bp->b_data;
946 	} else if (isnew) {
947 		error = hammer_io_new(volume->devvp, &buffer->io);
948 	} else {
949 		error = 0;
950 	}
951 	if (error == 0) {
952 		hammer_io_advance(&buffer->io);
953 		hammer_ref_interlock_done(&buffer->io.lock);
954 	} else {
955 		hammer_rel_buffer(buffer, 1);
956 	}
957 	return (error);
958 }
959 
960 /*
961  * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
962  * This routine is only called during unmount or when a volume is
963  * removed.
964  *
965  * If data != NULL, it specifies a volume whoose buffers should
966  * be unloaded.
967  */
968 int
969 hammer_unload_buffer(hammer_buffer_t buffer, void *data)
970 {
971 	hammer_volume_t volume = (hammer_volume_t)data;
972 
973 	/*
974 	 * If volume != NULL we are only interested in unloading buffers
975 	 * associated with a particular volume.
976 	 */
977 	if (volume != NULL && volume != buffer->io.volume)
978 		return 0;
979 
980 	/*
981 	 * Clean up the persistent ref ioerror might have on the buffer
982 	 * and acquire a ref.  Expect a 0->1 transition.
983 	 */
984 	if (buffer->io.ioerror) {
985 		hammer_io_clear_error_noassert(&buffer->io);
986 		atomic_add_int(&hammer_count_refedbufs, -1);
987 	}
988 	hammer_ref_interlock_true(&buffer->io.lock);
989 	atomic_add_int(&hammer_count_refedbufs, 1);
990 
991 	/*
992 	 * We must not flush a dirty buffer to disk on umount.  It should
993 	 * have already been dealt with by the flusher, or we may be in
994 	 * catastrophic failure.
995 	 *
996 	 * We must set waitdep to ensure that a running buffer is waited
997 	 * on and released prior to us trying to unload the volume.
998 	 */
999 	hammer_io_clear_modify(&buffer->io, 1);
1000 	hammer_flush_buffer_nodes(buffer);
1001 	buffer->io.waitdep = 1;
1002 	hammer_rel_buffer(buffer, 1);
1003 	return(0);
1004 }
1005 
1006 /*
1007  * Reference a buffer that is either already referenced or via a specially
1008  * handled pointer (aka cursor->buffer).
1009  */
1010 int
1011 hammer_ref_buffer(hammer_buffer_t buffer)
1012 {
1013 	hammer_mount_t hmp;
1014 	int error;
1015 	int locked;
1016 
1017 	/*
1018 	 * Acquire a ref, plus the buffer will be interlocked on the
1019 	 * 0->1 transition.
1020 	 */
1021 	locked = hammer_ref_interlock(&buffer->io.lock);
1022 	hmp = buffer->io.hmp;
1023 
1024 	/*
1025 	 * At this point a biodone() will not touch the buffer other then
1026 	 * incidental bits.  However, lose_root can be modified via
1027 	 * a biodone() interrupt.
1028 	 *
1029 	 * No longer loose.  lose_root requires the io_token.
1030 	 */
1031 	if (buffer->io.mod_root == &hmp->lose_root) {
1032 		lwkt_gettoken(&hmp->io_token);
1033 		if (buffer->io.mod_root == &hmp->lose_root) {
1034 			RB_REMOVE(hammer_mod_rb_tree,
1035 				  buffer->io.mod_root, &buffer->io);
1036 			buffer->io.mod_root = NULL;
1037 		}
1038 		lwkt_reltoken(&hmp->io_token);
1039 	}
1040 
1041 	if (locked) {
1042 		atomic_add_int(&hammer_count_refedbufs, 1);
1043 		error = hammer_load_buffer(buffer, 0);
1044 		/* NOTE: on error the buffer pointer is stale */
1045 	} else {
1046 		error = 0;
1047 	}
1048 	return(error);
1049 }
1050 
1051 /*
1052  * Release a reference on the buffer.  On the 1->0 transition the
1053  * underlying IO will be released but the data reference is left
1054  * cached.
1055  *
1056  * Only destroy the structure itself if the related buffer cache buffer
1057  * was disassociated from it.  This ties the management of the structure
1058  * to the buffer cache subsystem.  buffer->ondisk determines whether the
1059  * embedded io is referenced or not.
1060  */
1061 void
1062 hammer_rel_buffer(hammer_buffer_t buffer, int locked)
1063 {
1064 	hammer_volume_t volume;
1065 	hammer_mount_t hmp;
1066 	struct buf *bp = NULL;
1067 	int freeme = 0;
1068 
1069 	hmp = buffer->io.hmp;
1070 
1071 	if (hammer_rel_interlock(&buffer->io.lock, locked) == 0)
1072 		return;
1073 
1074 	/*
1075 	 * hammer_count_refedbufs accounting.  Decrement if we are in
1076 	 * the error path or if CHECK is clear.
1077 	 *
1078 	 * If we are not in the error path and CHECK is set the caller
1079 	 * probably just did a hammer_ref() and didn't account for it,
1080 	 * so we don't account for the loss here.
1081 	 */
1082 	if (locked || (buffer->io.lock.refs & HAMMER_REFS_CHECK) == 0)
1083 		atomic_add_int(&hammer_count_refedbufs, -1);
1084 
1085 	/*
1086 	 * If the caller locked us or the normal released transitions
1087 	 * from 1->0 (and acquired the lock) attempt to release the
1088 	 * io.  If the called locked us we tell hammer_io_release()
1089 	 * to flush (which would be the unload or failure path).
1090 	 */
1091 	bp = hammer_io_release(&buffer->io, locked);
1092 
1093 	/*
1094 	 * If the buffer has no bp association and no refs we can destroy
1095 	 * it.
1096 	 *
1097 	 * NOTE: It is impossible for any associated B-Tree nodes to have
1098 	 * refs if the buffer has no additional refs.
1099 	 */
1100 	if (buffer->io.bp == NULL && hammer_norefs(&buffer->io.lock)) {
1101 		RB_REMOVE(hammer_buf_rb_tree,
1102 			  &buffer->io.hmp->rb_bufs_root,
1103 			  buffer);
1104 		volume = buffer->io.volume;
1105 		buffer->io.volume = NULL; /* sanity */
1106 		hammer_rel_volume(volume, 0);
1107 		hammer_io_clear_modlist(&buffer->io);
1108 		hammer_flush_buffer_nodes(buffer);
1109 		KKASSERT(TAILQ_EMPTY(&buffer->node_list));
1110 		freeme = 1;
1111 	}
1112 
1113 	/*
1114 	 * Cleanup
1115 	 */
1116 	hammer_rel_interlock_done(&buffer->io.lock, locked);
1117 	if (bp)
1118 		brelse(bp);
1119 	if (freeme) {
1120 		--hammer_count_buffers;
1121 		kfree(buffer, hmp->m_misc);
1122 	}
1123 }
1124 
1125 /*
1126  * Access the filesystem buffer containing the specified hammer offset.
1127  * buf_offset is a conglomeration of the volume number and vol_buf_beg
1128  * relative buffer offset.  It must also have bit 55 set to be valid.
1129  * (see hammer_off_t in hammer_disk.h).
1130  *
1131  * Any prior buffer in *bufferp will be released and replaced by the
1132  * requested buffer.
1133  *
1134  * NOTE: The buffer is indexed via its zoneX_offset but we allow the
1135  * passed cached *bufferp to match against either zoneX or zone2.
1136  */
1137 static __inline
1138 void *
1139 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1140 	     int isnew, int *errorp, hammer_buffer_t *bufferp)
1141 {
1142 	hammer_buffer_t buffer;
1143 	int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1144 
1145 	buf_offset &= ~HAMMER_BUFMASK64;
1146 	KKASSERT(HAMMER_ZONE(buf_offset) != 0);
1147 
1148 	buffer = *bufferp;
1149 	if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1150 			       buffer->zoneX_offset != buf_offset)) {
1151 		if (buffer)
1152 			hammer_rel_buffer(buffer, 0);
1153 		buffer = hammer_get_buffer(hmp, buf_offset, bytes, isnew, errorp);
1154 		*bufferp = buffer;
1155 	} else {
1156 		*errorp = 0;
1157 	}
1158 
1159 	/*
1160 	 * Return a pointer to the buffer data.
1161 	 */
1162 	if (buffer == NULL)
1163 		return(NULL);
1164 	else
1165 		return((char *)buffer->ondisk + xoff);
1166 }
1167 
1168 void *
1169 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
1170 	     int *errorp, hammer_buffer_t *bufferp)
1171 {
1172 	return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, 0, errorp, bufferp));
1173 }
1174 
1175 void *
1176 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1177 	         int *errorp, hammer_buffer_t *bufferp)
1178 {
1179 	bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1180 	return(_hammer_bread(hmp, buf_offset, bytes, 0, errorp, bufferp));
1181 }
1182 
1183 /*
1184  * Access the filesystem buffer containing the specified hammer offset.
1185  * No disk read operation occurs.  The result buffer may contain garbage.
1186  *
1187  * Any prior buffer in *bufferp will be released and replaced by the
1188  * requested buffer.
1189  *
1190  * This function marks the buffer dirty but does not increment its
1191  * modify_refs count.
1192  */
1193 void *
1194 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
1195 	     int *errorp, hammer_buffer_t *bufferp)
1196 {
1197 	return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, 1, errorp, bufferp));
1198 }
1199 
1200 void *
1201 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1202 		int *errorp, hammer_buffer_t *bufferp)
1203 {
1204 	bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1205 	return(_hammer_bread(hmp, buf_offset, bytes, 1, errorp, bufferp));
1206 }
1207 
1208 /************************************************************************
1209  *				NODES					*
1210  ************************************************************************
1211  *
1212  * Manage B-Tree nodes.  B-Tree nodes represent the primary indexing
1213  * method used by the HAMMER filesystem.
1214  *
1215  * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
1216  * associated with its buffer, and will only referenced the buffer while
1217  * the node itself is referenced.
1218  *
1219  * A hammer_node can also be passively associated with other HAMMER
1220  * structures, such as inodes, while retaining 0 references.  These
1221  * associations can be cleared backwards using a pointer-to-pointer in
1222  * the hammer_node.
1223  *
1224  * This allows the HAMMER implementation to cache hammer_nodes long-term
1225  * and short-cut a great deal of the infrastructure's complexity.  In
1226  * most cases a cached node can be reacquired without having to dip into
1227  * the B-Tree.
1228  */
1229 hammer_node_t
1230 hammer_get_node(hammer_transaction_t trans, hammer_off_t node_offset,
1231 		int isnew, int *errorp)
1232 {
1233 	hammer_mount_t hmp = trans->hmp;
1234 	hammer_node_t node;
1235 	int doload;
1236 
1237 	KKASSERT(hammer_is_zone_btree(node_offset));
1238 
1239 	/*
1240 	 * Locate the structure, allocating one if necessary.
1241 	 */
1242 again:
1243 	node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1244 	if (node == NULL) {
1245 		++hammer_count_nodes;
1246 		node = kmalloc(sizeof(*node), hmp->m_misc, M_WAITOK|M_ZERO|M_USE_RESERVE);
1247 		node->node_offset = node_offset;
1248 		node->hmp = hmp;
1249 		TAILQ_INIT(&node->cursor_list);
1250 		TAILQ_INIT(&node->cache_list);
1251 		if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1252 			--hammer_count_nodes;
1253 			kfree(node, hmp->m_misc);
1254 			goto again;
1255 		}
1256 		doload = hammer_ref_interlock_true(&node->lock);
1257 	} else {
1258 		doload = hammer_ref_interlock(&node->lock);
1259 	}
1260 	if (doload) {
1261 		*errorp = hammer_load_node(trans, node, isnew);
1262 		if (*errorp)
1263 			node = NULL;
1264 	} else {
1265 		KKASSERT(node->ondisk);
1266 		*errorp = 0;
1267 		hammer_io_advance(&node->buffer->io);
1268 	}
1269 	return(node);
1270 }
1271 
1272 /*
1273  * Reference an already-referenced node.  0->1 transitions should assert
1274  * so we do not have to deal with hammer_ref() setting CHECK.
1275  */
1276 void
1277 hammer_ref_node(hammer_node_t node)
1278 {
1279 	KKASSERT(hammer_isactive(&node->lock) && node->ondisk != NULL);
1280 	hammer_ref(&node->lock);
1281 }
1282 
1283 /*
1284  * Load a node's on-disk data reference.  Called with the node referenced
1285  * and interlocked.
1286  *
1287  * On return the node interlock will be unlocked.  If a non-zero error code
1288  * is returned the node will also be dereferenced (and the caller's pointer
1289  * will be stale).
1290  */
1291 static int
1292 hammer_load_node(hammer_transaction_t trans, hammer_node_t node, int isnew)
1293 {
1294 	hammer_buffer_t buffer;
1295 	hammer_off_t buf_offset;
1296 	int error;
1297 
1298 	error = 0;
1299 	if (node->ondisk == NULL) {
1300 		/*
1301 		 * This is a little confusing but the jist is that
1302 		 * node->buffer determines whether the node is on
1303 		 * the buffer's node_list and node->ondisk determines
1304 		 * whether the buffer is referenced.
1305 		 *
1306 		 * We could be racing a buffer release, in which case
1307 		 * node->buffer may become NULL while we are blocked
1308 		 * referencing the buffer.
1309 		 */
1310 		if ((buffer = node->buffer) != NULL) {
1311 			error = hammer_ref_buffer(buffer);
1312 			if (error == 0 && node->buffer == NULL) {
1313 				TAILQ_INSERT_TAIL(&buffer->node_list, node, entry);
1314 				node->buffer = buffer;
1315 			}
1316 		} else {
1317 			buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1318 			buffer = hammer_get_buffer(node->hmp, buf_offset,
1319 						   HAMMER_BUFSIZE, 0, &error);
1320 			if (buffer) {
1321 				KKASSERT(error == 0);
1322 				TAILQ_INSERT_TAIL(&buffer->node_list, node, entry);
1323 				node->buffer = buffer;
1324 			}
1325 		}
1326 		if (error)
1327 			goto failed;
1328 		node->ondisk = (void *)((char *)buffer->ondisk +
1329 				        (node->node_offset & HAMMER_BUFMASK));
1330 
1331 		/*
1332 		 * Check CRC.  NOTE: Neither flag is set and the CRC is not
1333 		 * generated on new B-Tree nodes.
1334 		 */
1335 		if (isnew == 0 &&
1336 		    (node->flags & HAMMER_NODE_CRCANY) == 0) {
1337 			if (hammer_crc_test_btree(node->ondisk) == 0) {
1338 				hdkprintf("CRC B-TREE NODE @ %016jx/%lu FAILED\n",
1339 					(intmax_t)node->node_offset,
1340 					sizeof(*node->ondisk));
1341 				if (hammer_debug_critical)
1342 					Debugger("CRC FAILED: B-TREE NODE");
1343 				node->flags |= HAMMER_NODE_CRCBAD;
1344 			} else {
1345 				node->flags |= HAMMER_NODE_CRCGOOD;
1346 			}
1347 		}
1348 	}
1349 	if (node->flags & HAMMER_NODE_CRCBAD) {
1350 		if (trans->flags & HAMMER_TRANSF_CRCDOM)
1351 			error = EDOM;
1352 		else
1353 			error = EIO;
1354 	}
1355 failed:
1356 	if (error) {
1357 		_hammer_rel_node(node, 1);
1358 	} else {
1359 		hammer_ref_interlock_done(&node->lock);
1360 	}
1361 	return (error);
1362 }
1363 
1364 /*
1365  * Safely reference a node, interlock against flushes via the IO subsystem.
1366  */
1367 hammer_node_t
1368 hammer_ref_node_safe(hammer_transaction_t trans, hammer_node_cache_t cache,
1369 		     int *errorp)
1370 {
1371 	hammer_node_t node;
1372 	int doload;
1373 
1374 	node = cache->node;
1375 	if (node != NULL) {
1376 		doload = hammer_ref_interlock(&node->lock);
1377 		if (doload) {
1378 			*errorp = hammer_load_node(trans, node, 0);
1379 			if (*errorp)
1380 				node = NULL;
1381 		} else {
1382 			KKASSERT(node->ondisk);
1383 			if (node->flags & HAMMER_NODE_CRCBAD) {
1384 				if (trans->flags & HAMMER_TRANSF_CRCDOM)
1385 					*errorp = EDOM;
1386 				else
1387 					*errorp = EIO;
1388 				_hammer_rel_node(node, 0);
1389 				node = NULL;
1390 			} else {
1391 				*errorp = 0;
1392 			}
1393 		}
1394 	} else {
1395 		*errorp = ENOENT;
1396 	}
1397 	return(node);
1398 }
1399 
1400 /*
1401  * Release a hammer_node.  On the last release the node dereferences
1402  * its underlying buffer and may or may not be destroyed.
1403  *
1404  * If locked is non-zero the passed node has been interlocked by the
1405  * caller and we are in the failure/unload path, otherwise it has not and
1406  * we are doing a normal release.
1407  *
1408  * This function will dispose of the interlock and the reference.
1409  * On return the node pointer is stale.
1410  */
1411 void
1412 _hammer_rel_node(hammer_node_t node, int locked)
1413 {
1414 	hammer_buffer_t buffer;
1415 
1416 	/*
1417 	 * Deref the node.  If this isn't the 1->0 transition we're basically
1418 	 * done.  If locked is non-zero this function will just deref the
1419 	 * locked node and return 1, otherwise it will deref the locked
1420 	 * node and either lock and return 1 on the 1->0 transition or
1421 	 * not lock and return 0.
1422 	 */
1423 	if (hammer_rel_interlock(&node->lock, locked) == 0)
1424 		return;
1425 
1426 	/*
1427 	 * Either locked was non-zero and we are interlocked, or the
1428 	 * hammer_rel_interlock() call returned non-zero and we are
1429 	 * interlocked.
1430 	 *
1431 	 * The ref-count must still be decremented if locked != 0 so
1432 	 * the cleanup required still varies a bit.
1433 	 *
1434 	 * hammer_flush_node() when called with 1 or 2 will dispose of
1435 	 * the lock and possible ref-count.
1436 	 */
1437 	if (node->ondisk == NULL) {
1438 		hammer_flush_node(node, locked + 1);
1439 		/* node is stale now */
1440 		return;
1441 	}
1442 
1443 	/*
1444 	 * Do not disassociate the node from the buffer if it represents
1445 	 * a modified B-Tree node that still needs its crc to be generated.
1446 	 */
1447 	if (node->flags & HAMMER_NODE_NEEDSCRC) {
1448 		hammer_rel_interlock_done(&node->lock, locked);
1449 		return;
1450 	}
1451 
1452 	/*
1453 	 * Do final cleanups and then either destroy the node and leave it
1454 	 * passively cached.  The buffer reference is removed regardless.
1455 	 */
1456 	buffer = node->buffer;
1457 	node->ondisk = NULL;
1458 
1459 	if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1460 		/*
1461 		 * Normal release.
1462 		 */
1463 		hammer_rel_interlock_done(&node->lock, locked);
1464 	} else {
1465 		/*
1466 		 * Destroy the node.
1467 		 */
1468 		hammer_flush_node(node, locked + 1);
1469 		/* node is stale */
1470 
1471 	}
1472 	hammer_rel_buffer(buffer, 0);
1473 }
1474 
1475 void
1476 hammer_rel_node(hammer_node_t node)
1477 {
1478 	_hammer_rel_node(node, 0);
1479 }
1480 
1481 /*
1482  * Free space on-media associated with a B-Tree node.
1483  */
1484 void
1485 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1486 {
1487 	KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1488 	node->flags |= HAMMER_NODE_DELETED;
1489 	hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1490 }
1491 
1492 /*
1493  * Passively cache a referenced hammer_node.  The caller may release
1494  * the node on return.
1495  */
1496 void
1497 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1498 {
1499 	/*
1500 	 * If the node doesn't exist, or is being deleted, don't cache it!
1501 	 *
1502 	 * The node can only ever be NULL in the I/O failure path.
1503 	 */
1504 	if (node == NULL || (node->flags & HAMMER_NODE_DELETED))
1505 		return;
1506 	if (cache->node == node)
1507 		return;
1508 	while (cache->node)
1509 		hammer_uncache_node(cache);
1510 	if (node->flags & HAMMER_NODE_DELETED)
1511 		return;
1512 	cache->node = node;
1513 	TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1514 }
1515 
1516 void
1517 hammer_uncache_node(hammer_node_cache_t cache)
1518 {
1519 	hammer_node_t node;
1520 
1521 	if ((node = cache->node) != NULL) {
1522 		TAILQ_REMOVE(&node->cache_list, cache, entry);
1523 		cache->node = NULL;
1524 		if (TAILQ_EMPTY(&node->cache_list))
1525 			hammer_flush_node(node, 0);
1526 	}
1527 }
1528 
1529 /*
1530  * Remove a node's cache references and destroy the node if it has no
1531  * other references or backing store.
1532  *
1533  * locked == 0	Normal unlocked operation
1534  * locked == 1	Call hammer_rel_interlock_done(..., 0);
1535  * locked == 2	Call hammer_rel_interlock_done(..., 1);
1536  *
1537  * XXX for now this isn't even close to being MPSAFE so the refs check
1538  *     is sufficient.
1539  */
1540 void
1541 hammer_flush_node(hammer_node_t node, int locked)
1542 {
1543 	hammer_node_cache_t cache;
1544 	hammer_buffer_t buffer;
1545 	hammer_mount_t hmp = node->hmp;
1546 	int dofree;
1547 
1548 	while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1549 		TAILQ_REMOVE(&node->cache_list, cache, entry);
1550 		cache->node = NULL;
1551 	}
1552 
1553 	/*
1554 	 * NOTE: refs is predisposed if another thread is blocking and
1555 	 *	 will be larger than 0 in that case.  We aren't MPSAFE
1556 	 *	 here.
1557 	 */
1558 	if (node->ondisk == NULL && hammer_norefs(&node->lock)) {
1559 		KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1560 		RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1561 		if ((buffer = node->buffer) != NULL) {
1562 			node->buffer = NULL;
1563 			TAILQ_REMOVE(&buffer->node_list, node, entry);
1564 			/* buffer is unreferenced because ondisk is NULL */
1565 		}
1566 		dofree = 1;
1567 	} else {
1568 		dofree = 0;
1569 	}
1570 
1571 	/*
1572 	 * Deal with the interlock if locked == 1 or locked == 2.
1573 	 */
1574 	if (locked)
1575 		hammer_rel_interlock_done(&node->lock, locked - 1);
1576 
1577 	/*
1578 	 * Destroy if requested
1579 	 */
1580 	if (dofree) {
1581 		--hammer_count_nodes;
1582 		kfree(node, hmp->m_misc);
1583 	}
1584 }
1585 
1586 /*
1587  * Flush passively cached B-Tree nodes associated with this buffer.
1588  * This is only called when the buffer is about to be destroyed, so
1589  * none of the nodes should have any references.  The buffer is locked.
1590  *
1591  * We may be interlocked with the buffer.
1592  */
1593 void
1594 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1595 {
1596 	hammer_node_t node;
1597 
1598 	while ((node = TAILQ_FIRST(&buffer->node_list)) != NULL) {
1599 		KKASSERT(node->ondisk == NULL);
1600 		KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1601 
1602 		if (hammer_try_interlock_norefs(&node->lock)) {
1603 			hammer_ref(&node->lock);
1604 			node->flags |= HAMMER_NODE_FLUSH;
1605 			_hammer_rel_node(node, 1);
1606 		} else {
1607 			KKASSERT(node->buffer != NULL);
1608 			buffer = node->buffer;
1609 			node->buffer = NULL;
1610 			TAILQ_REMOVE(&buffer->node_list, node, entry);
1611 			/* buffer is unreferenced because ondisk is NULL */
1612 		}
1613 	}
1614 }
1615 
1616 
1617 /************************************************************************
1618  *				ALLOCATORS				*
1619  ************************************************************************/
1620 
1621 /*
1622  * Allocate a B-Tree node.
1623  */
1624 hammer_node_t
1625 hammer_alloc_btree(hammer_transaction_t trans, hammer_off_t hint, int *errorp)
1626 {
1627 	hammer_buffer_t buffer = NULL;
1628 	hammer_node_t node = NULL;
1629 	hammer_off_t node_offset;
1630 
1631 	node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1632 					    sizeof(struct hammer_node_ondisk),
1633 					    hint, errorp);
1634 	if (*errorp == 0) {
1635 		node = hammer_get_node(trans, node_offset, 1, errorp);
1636 		hammer_modify_node_noundo(trans, node);
1637 		bzero(node->ondisk, sizeof(*node->ondisk));
1638 		hammer_modify_node_done(node);
1639 	}
1640 	if (buffer)
1641 		hammer_rel_buffer(buffer, 0);
1642 	return(node);
1643 }
1644 
1645 /*
1646  * Allocate data.  If the address of a data buffer is supplied then
1647  * any prior non-NULL *data_bufferp will be released and *data_bufferp
1648  * will be set to the related buffer.  The caller must release it when
1649  * finally done.  The initial *data_bufferp should be set to NULL by
1650  * the caller.
1651  *
1652  * The caller is responsible for making hammer_modify*() calls on the
1653  * *data_bufferp.
1654  */
1655 void *
1656 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len,
1657 		  uint16_t rec_type, hammer_off_t *data_offsetp,
1658 		  hammer_buffer_t *data_bufferp,
1659 		  hammer_off_t hint, int *errorp)
1660 {
1661 	void *data;
1662 	int zone;
1663 
1664 	/*
1665 	 * Allocate data directly from blockmap.
1666 	 */
1667 	if (data_len) {
1668 		switch(rec_type) {
1669 		case HAMMER_RECTYPE_INODE:
1670 		case HAMMER_RECTYPE_DIRENTRY:
1671 		case HAMMER_RECTYPE_EXT:
1672 		case HAMMER_RECTYPE_FIX:
1673 		case HAMMER_RECTYPE_PFS:
1674 		case HAMMER_RECTYPE_SNAPSHOT:
1675 		case HAMMER_RECTYPE_CONFIG:
1676 			zone = HAMMER_ZONE_META_INDEX;
1677 			break;
1678 		case HAMMER_RECTYPE_DATA:
1679 		case HAMMER_RECTYPE_DB:
1680 			/*
1681 			 * Only mirror-write comes here.
1682 			 * Regular allocation path uses blockmap reservation.
1683 			 */
1684 			zone = hammer_data_zone_index(data_len);
1685 			if (zone == HAMMER_ZONE_LARGE_DATA_INDEX) {
1686 				/* round up */
1687 				data_len = (data_len + HAMMER_BUFMASK) &
1688 					   ~HAMMER_BUFMASK;
1689 			}
1690 			break;
1691 		default:
1692 			hpanic("rec_type %04x unknown", rec_type);
1693 			zone = HAMMER_ZONE_UNAVAIL_INDEX; /* NOT REACHED */
1694 			break;
1695 		}
1696 		*data_offsetp = hammer_blockmap_alloc(trans, zone, data_len,
1697 						      hint, errorp);
1698 	} else {
1699 		*data_offsetp = 0;
1700 	}
1701 
1702 	data = NULL;
1703 	if (*errorp == 0 && data_bufferp && data_len)
1704 		data = hammer_bread_ext(trans->hmp, *data_offsetp, data_len,
1705 					errorp, data_bufferp);
1706 	return(data);
1707 }
1708 
1709 /*
1710  * Sync dirty buffers to the media and clean-up any loose ends.
1711  *
1712  * These functions do not start the flusher going, they simply
1713  * queue everything up to the flusher.
1714  */
1715 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1716 
1717 struct hammer_sync_info {
1718 	int error;
1719 };
1720 
1721 int
1722 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1723 {
1724 	struct hammer_sync_info info;
1725 
1726 	info.error = 0;
1727 	if (waitfor == MNT_WAIT) {
1728 		vsyncscan(hmp->mp, VMSC_GETVP | VMSC_ONEPASS,
1729 			  hammer_sync_scan2, &info);
1730 	} else {
1731 		vsyncscan(hmp->mp, VMSC_GETVP | VMSC_ONEPASS | VMSC_NOWAIT,
1732 			  hammer_sync_scan2, &info);
1733 	}
1734 	return(info.error);
1735 }
1736 
1737 /*
1738  * Filesystem sync.  If doing a synchronous sync make a second pass on
1739  * the vnodes in case any were already flushing during the first pass,
1740  * and activate the flusher twice (the second time brings the UNDO FIFO's
1741  * start position up to the end position after the first call).
1742  *
1743  * If doing a lazy sync make just one pass on the vnode list, ignoring
1744  * any new vnodes added to the list while the sync is in progress.
1745  */
1746 int
1747 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1748 {
1749 	struct hammer_sync_info info;
1750 	int flags;
1751 
1752 	flags = VMSC_GETVP;
1753 	if (waitfor & MNT_LAZY)
1754 		flags |= VMSC_ONEPASS;
1755 
1756 	info.error = 0;
1757 	vsyncscan(hmp->mp, flags | VMSC_NOWAIT, hammer_sync_scan2, &info);
1758 
1759 	if (info.error == 0 && (waitfor & MNT_WAIT)) {
1760 		vsyncscan(hmp->mp, flags, hammer_sync_scan2, &info);
1761 	}
1762         if (waitfor == MNT_WAIT) {
1763                 hammer_flusher_sync(hmp);
1764                 hammer_flusher_sync(hmp);
1765 	} else {
1766                 hammer_flusher_async(hmp, NULL);
1767                 hammer_flusher_async(hmp, NULL);
1768 	}
1769 	return(info.error);
1770 }
1771 
1772 static int
1773 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1774 {
1775 	struct hammer_sync_info *info = data;
1776 	hammer_inode_t ip;
1777 	int error;
1778 
1779 	ip = VTOI(vp);
1780 	if (ip == NULL)
1781 		return(0);
1782 	if (vp->v_type == VNON || vp->v_type == VBAD) {
1783 		vclrisdirty(vp);
1784 		return(0);
1785 	}
1786 	if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1787 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
1788 		vclrisdirty(vp);
1789 		return(0);
1790 	}
1791 	error = VOP_FSYNC(vp, MNT_NOWAIT, 0);
1792 	if (error)
1793 		info->error = error;
1794 	return(0);
1795 }
1796