xref: /dragonfly/sys/vfs/hammer/hammer_ondisk.c (revision ffe53622)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.76 2008/08/29 20:19:08 dillon Exp $
35  */
36 /*
37  * Manage HAMMER's on-disk structures.  These routines are primarily
38  * responsible for interfacing with the kernel's I/O subsystem and for
39  * managing in-memory structures.
40  */
41 
42 #include <sys/nlookup.h>
43 #include <sys/buf2.h>
44 
45 #include "hammer.h"
46 
47 static void hammer_free_volume(hammer_volume_t volume);
48 static int hammer_load_volume(hammer_volume_t volume);
49 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
50 static int hammer_load_node(hammer_transaction_t trans,
51 				hammer_node_t node, int isnew);
52 static void _hammer_rel_node(hammer_node_t node, int locked);
53 
54 static int
55 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
56 {
57 	if (vol1->vol_no < vol2->vol_no)
58 		return(-1);
59 	if (vol1->vol_no > vol2->vol_no)
60 		return(1);
61 	return(0);
62 }
63 
64 /*
65  * hammer_buffer structures are indexed via their zoneX_offset, not
66  * their zone2_offset.
67  */
68 static int
69 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
70 {
71 	if (buf1->zoneX_offset < buf2->zoneX_offset)
72 		return(-1);
73 	if (buf1->zoneX_offset > buf2->zoneX_offset)
74 		return(1);
75 	return(0);
76 }
77 
78 static int
79 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
80 {
81 	if (node1->node_offset < node2->node_offset)
82 		return(-1);
83 	if (node1->node_offset > node2->node_offset)
84 		return(1);
85 	return(0);
86 }
87 
88 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
89 	     hammer_vol_rb_compare, int32_t, vol_no);
90 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
91 	     hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
92 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
93 	     hammer_nod_rb_compare, hammer_off_t, node_offset);
94 
95 /************************************************************************
96  *				VOLUMES					*
97  ************************************************************************
98  *
99  * Load a HAMMER volume by name.  Returns 0 on success or a positive error
100  * code on failure.  Volumes must be loaded at mount time or via hammer
101  * volume-add command, hammer_get_volume() will not load a new volume.
102  *
103  * The passed devvp is vref()'d but not locked.  This function consumes the
104  * ref (typically by associating it with the volume structure).
105  *
106  * Calls made to hammer_load_volume() or single-threaded
107  */
108 int
109 hammer_install_volume(hammer_mount_t hmp, const char *volname,
110 		      struct vnode *devvp, void *data)
111 {
112 	struct mount *mp;
113 	hammer_volume_t volume;
114 	hammer_volume_ondisk_t ondisk;
115 	hammer_volume_ondisk_t img;
116 	struct nlookupdata nd;
117 	struct buf *bp = NULL;
118 	int error;
119 	int ronly;
120 	int setmp = 0;
121 	int i;
122 
123 	mp = hmp->mp;
124 	ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
125 
126 	/*
127 	 * Allocate a volume structure
128 	 */
129 	++hammer_count_volumes;
130 	volume = kmalloc(sizeof(*volume), hmp->m_misc, M_WAITOK|M_ZERO);
131 	volume->vol_name = kstrdup(volname, hmp->m_misc);
132 	volume->io.hmp = hmp;	/* bootstrap */
133 	hammer_io_init(&volume->io, volume, HAMMER_IOTYPE_VOLUME);
134 	volume->io.offset = 0LL;
135 	volume->io.bytes = HAMMER_BUFSIZE;
136 
137 	/*
138 	 * Get the device vnode
139 	 */
140 	if (devvp == NULL) {
141 		error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
142 		if (error == 0)
143 			error = nlookup(&nd);
144 		if (error == 0)
145 			error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
146 		nlookup_done(&nd);
147 	} else {
148 		error = 0;
149 		volume->devvp = devvp;
150 	}
151 
152 	if (error == 0) {
153 		if (vn_isdisk(volume->devvp, &error)) {
154 			error = vfs_mountedon(volume->devvp);
155 		}
156 	}
157 	if (error == 0 && vcount(volume->devvp) > 0)
158 		error = EBUSY;
159 	if (error == 0) {
160 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
161 		error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
162 		if (error == 0) {
163 			error = VOP_OPEN(volume->devvp,
164 					 (ronly ? FREAD : FREAD|FWRITE),
165 					 FSCRED, NULL);
166 		}
167 		vn_unlock(volume->devvp);
168 	}
169 	if (error) {
170 		hammer_free_volume(volume);
171 		return(error);
172 	}
173 	volume->devvp->v_rdev->si_mountpoint = mp;
174 	setmp = 1;
175 
176 	/*
177 	 * Extract the volume number from the volume header and do various
178 	 * sanity checks.
179 	 */
180 	error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
181 	if (error)
182 		goto late_failure;
183 	ondisk = (void *)bp->b_data;
184 
185 	/*
186 	 * Initialize the volume header with data if the data is specified.
187 	 */
188 	if (ronly == 0 && data) {
189 		img = (hammer_volume_ondisk_t)data;
190 		if (ondisk->vol_signature == HAMMER_FSBUF_VOLUME) {
191 			hkprintf("Formatting of valid HAMMER volume %s denied. "
192 				"Erase with hammer strip or dd!\n", volname);
193 			error = EFTYPE;
194 			goto late_failure;
195 		}
196 		bcopy(img, ondisk, sizeof(*img));
197 	}
198 
199 	if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
200 		hkprintf("volume %s has an invalid header\n", volume->vol_name);
201 		for (i = 0; i < (int)sizeof(ondisk->vol_signature); i++) {
202 			kprintf("%02x", ((char*)&ondisk->vol_signature)[i] & 0xFF);
203 			if (i != (int)sizeof(ondisk->vol_signature) - 1)
204 				kprintf(" ");
205 		}
206 		kprintf("\n");
207 		error = EFTYPE;
208 		goto late_failure;
209 	}
210 	volume->vol_no = ondisk->vol_no;
211 	volume->vol_flags = ondisk->vol_flags;
212 	volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
213 				    HAMMER_VOL_BUF_SIZE(ondisk));
214 
215 	if (RB_EMPTY(&hmp->rb_vols_root)) {
216 		hmp->fsid = ondisk->vol_fsid;
217 	} else if (kuuid_compare(&hmp->fsid, &ondisk->vol_fsid)) {
218 		hkprintf("volume %s's fsid does not match other volumes\n",
219 			volume->vol_name);
220 		error = EFTYPE;
221 		goto late_failure;
222 	}
223 
224 	/*
225 	 * Insert the volume structure into the red-black tree.
226 	 */
227 	if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
228 		hkprintf("volume %s has a duplicate vol_no %d\n",
229 			volume->vol_name, volume->vol_no);
230 		error = EEXIST;
231 	}
232 
233 	if (error == 0)
234 		hammer_volume_number_add(hmp, volume);
235 
236 	/*
237 	 * Set the root volume .  HAMMER special cases rootvol the structure.
238 	 * We do not hold a ref because this would prevent related I/O
239 	 * from being flushed.
240 	 */
241 	if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
242 		if (ondisk->vol_rootvol != HAMMER_ROOT_VOLNO) {
243 			hkprintf("volume %s has invalid root vol_no %d\n",
244 				volume->vol_name, ondisk->vol_rootvol);
245 			error = EINVAL;
246 			goto late_failure;
247 		}
248 		hmp->rootvol = volume;
249 		hmp->nvolumes = ondisk->vol_count;
250 		if (bp) {
251 			brelse(bp);
252 			bp = NULL;
253 		}
254 		hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
255 						HAMMER_BUFFERS_PER_BIGBLOCK;
256 		hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
257 						HAMMER_BUFFERS_PER_BIGBLOCK;
258 	}
259 late_failure:
260 	if (bp)
261 		brelse(bp);
262 	if (error) {
263 		/*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
264 		if (setmp)
265 			volume->devvp->v_rdev->si_mountpoint = NULL;
266 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
267 		VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE, NULL);
268 		vn_unlock(volume->devvp);
269 		hammer_free_volume(volume);
270 	}
271 	return (error);
272 }
273 
274 /*
275  * This is called for each volume when updating the mount point from
276  * read-write to read-only or vise-versa.
277  */
278 int
279 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
280 {
281 	if (volume->devvp) {
282 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
283 		if (volume->io.hmp->ronly) {
284 			/* do not call vinvalbuf */
285 			VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
286 			VOP_CLOSE(volume->devvp, FREAD|FWRITE, NULL);
287 		} else {
288 			/* do not call vinvalbuf */
289 			VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
290 			VOP_CLOSE(volume->devvp, FREAD, NULL);
291 		}
292 		vn_unlock(volume->devvp);
293 	}
294 	return(0);
295 }
296 
297 /*
298  * Unload and free a HAMMER volume.  Must return >= 0 to continue scan
299  * so returns -1 on failure.
300  */
301 int
302 hammer_unload_volume(hammer_volume_t volume, void *data)
303 {
304 	hammer_mount_t hmp = volume->io.hmp;
305 	struct buf *bp = NULL;
306 	hammer_volume_ondisk_t img;
307 	int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
308 	int error;
309 
310 	/*
311 	 * Clear the volume header with data if the data is specified.
312 	 */
313 	if (ronly == 0 && data && volume->devvp) {
314 		img = (hammer_volume_ondisk_t)data;
315 		error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
316 		if (error || bp->b_bcount < sizeof(*img)) {
317 			hmkprintf(hmp, "Failed to read volume header: %d\n", error);
318 			brelse(bp);
319 		} else {
320 			bcopy(img, bp->b_data, sizeof(*img));
321 			error = bwrite(bp);
322 			if (error)
323 				hmkprintf(hmp, "Failed to clear volume header: %d\n",
324 					error);
325 		}
326 	}
327 
328 	/*
329 	 * Clean up the root volume pointer, which is held unlocked in hmp.
330 	 */
331 	if (hmp->rootvol == volume)
332 		hmp->rootvol = NULL;
333 
334 	/*
335 	 * We must not flush a dirty buffer to disk on umount.  It should
336 	 * have already been dealt with by the flusher, or we may be in
337 	 * catastrophic failure.
338 	 */
339 	hammer_io_clear_modify(&volume->io, 1);
340 	volume->io.waitdep = 1;
341 
342 	/*
343 	 * Clean up the persistent ref ioerror might have on the volume
344 	 */
345 	if (volume->io.ioerror)
346 		hammer_io_clear_error_noassert(&volume->io);
347 
348 	/*
349 	 * This should release the bp.  Releasing the volume with flush set
350 	 * implies the interlock is set.
351 	 */
352 	hammer_ref_interlock_true(&volume->io.lock);
353 	hammer_rel_volume(volume, 1);
354 	KKASSERT(volume->io.bp == NULL);
355 
356 	/*
357 	 * There should be no references on the volume.
358 	 */
359 	KKASSERT(hammer_norefs(&volume->io.lock));
360 
361 	volume->ondisk = NULL;
362 	if (volume->devvp) {
363 		if (volume->devvp->v_rdev &&
364 		    volume->devvp->v_rdev->si_mountpoint == hmp->mp) {
365 			volume->devvp->v_rdev->si_mountpoint = NULL;
366 		}
367 		if (ronly) {
368 			/*
369 			 * Make sure we don't sync anything to disk if we
370 			 * are in read-only mode (1) or critically-errored
371 			 * (2).  Note that there may be dirty buffers in
372 			 * normal read-only mode from crash recovery.
373 			 */
374 			vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
375 			vinvalbuf(volume->devvp, 0, 0, 0);
376 			VOP_CLOSE(volume->devvp, FREAD, NULL);
377 			vn_unlock(volume->devvp);
378 		} else {
379 			/*
380 			 * Normal termination, save any dirty buffers
381 			 * (XXX there really shouldn't be any).
382 			 */
383 			vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
384 			vinvalbuf(volume->devvp, V_SAVE, 0, 0);
385 			VOP_CLOSE(volume->devvp, FREAD|FWRITE, NULL);
386 			vn_unlock(volume->devvp);
387 		}
388 	}
389 
390 	/*
391 	 * Destroy the structure
392 	 */
393 	RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
394 	hammer_volume_number_del(hmp, volume);
395 	hammer_free_volume(volume);
396 	return(0);
397 }
398 
399 static
400 void
401 hammer_free_volume(hammer_volume_t volume)
402 {
403 	hammer_mount_t hmp = volume->io.hmp;
404 
405 	if (volume->vol_name) {
406 		kfree(volume->vol_name, hmp->m_misc);
407 		volume->vol_name = NULL;
408 	}
409 	if (volume->devvp) {
410 		vrele(volume->devvp);
411 		volume->devvp = NULL;
412 	}
413 	--hammer_count_volumes;
414 	kfree(volume, hmp->m_misc);
415 }
416 
417 /*
418  * Get a HAMMER volume.  The volume must already exist.
419  */
420 hammer_volume_t
421 hammer_get_volume(hammer_mount_t hmp, int32_t vol_no, int *errorp)
422 {
423 	hammer_volume_t volume;
424 
425 	/*
426 	 * Locate the volume structure
427 	 */
428 	volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
429 	if (volume == NULL) {
430 		*errorp = ENOENT;
431 		return(NULL);
432 	}
433 
434 	/*
435 	 * Reference the volume, load/check the data on the 0->1 transition.
436 	 * hammer_load_volume() will dispose of the interlock on return,
437 	 * and also clean up the ref count on error.
438 	 */
439 	if (hammer_ref_interlock(&volume->io.lock)) {
440 		*errorp = hammer_load_volume(volume);
441 		if (*errorp)
442 			volume = NULL;
443 	} else {
444 		KKASSERT(volume->ondisk);
445 		*errorp = 0;
446 	}
447 	return(volume);
448 }
449 
450 int
451 hammer_ref_volume(hammer_volume_t volume)
452 {
453 	int error;
454 
455 	/*
456 	 * Reference the volume and deal with the check condition used to
457 	 * load its ondisk info.
458 	 */
459 	if (hammer_ref_interlock(&volume->io.lock)) {
460 		error = hammer_load_volume(volume);
461 	} else {
462 		KKASSERT(volume->ondisk);
463 		error = 0;
464 	}
465 	return (error);
466 }
467 
468 /*
469  * May be called without fs_token
470  */
471 hammer_volume_t
472 hammer_get_root_volume(hammer_mount_t hmp, int *errorp)
473 {
474 	hammer_volume_t volume;
475 
476 	volume = hmp->rootvol;
477 	KKASSERT(volume != NULL);
478 
479 	/*
480 	 * Reference the volume and deal with the check condition used to
481 	 * load its ondisk info.
482 	 */
483 	if (hammer_ref_interlock(&volume->io.lock)) {
484 		lwkt_gettoken(&volume->io.hmp->fs_token);
485 		*errorp = hammer_load_volume(volume);
486 		lwkt_reltoken(&volume->io.hmp->fs_token);
487 		if (*errorp)
488 			volume = NULL;
489 	} else {
490 		KKASSERT(volume->ondisk);
491 		*errorp = 0;
492 	}
493 	return (volume);
494 }
495 
496 /*
497  * Load a volume's on-disk information.  The volume must be referenced and
498  * the interlock is held on call.  The interlock will be released on return.
499  * The reference will also be released on return if an error occurs.
500  */
501 static int
502 hammer_load_volume(hammer_volume_t volume)
503 {
504 	int error;
505 
506 	if (volume->ondisk == NULL) {
507 		error = hammer_io_read(volume->devvp, &volume->io,
508 				       HAMMER_BUFSIZE);
509 		if (error == 0) {
510 			volume->ondisk = (void *)volume->io.bp->b_data;
511                         hammer_ref_interlock_done(&volume->io.lock);
512 		} else {
513                         hammer_rel_volume(volume, 1);
514 		}
515 	} else {
516 		error = 0;
517 	}
518 	return(error);
519 }
520 
521 /*
522  * Release a previously acquired reference on the volume.
523  *
524  * Volumes are not unloaded from memory during normal operation.
525  *
526  * May be called without fs_token
527  */
528 void
529 hammer_rel_volume(hammer_volume_t volume, int locked)
530 {
531 	struct buf *bp;
532 
533 	if (hammer_rel_interlock(&volume->io.lock, locked)) {
534 		lwkt_gettoken(&volume->io.hmp->fs_token);
535 		volume->ondisk = NULL;
536 		bp = hammer_io_release(&volume->io, locked);
537 		lwkt_reltoken(&volume->io.hmp->fs_token);
538 		hammer_rel_interlock_done(&volume->io.lock, locked);
539 		if (bp)
540 			brelse(bp);
541 	}
542 }
543 
544 int
545 hammer_mountcheck_volumes(hammer_mount_t hmp)
546 {
547 	hammer_volume_t vol;
548 	int i;
549 
550 	HAMMER_VOLUME_NUMBER_FOREACH(hmp, i) {
551 		vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
552 		if (vol == NULL)
553 			return(EINVAL);
554 	}
555 	return(0);
556 }
557 
558 int
559 hammer_get_installed_volumes(hammer_mount_t hmp)
560 {
561 	int i, ret = 0;
562 
563 	HAMMER_VOLUME_NUMBER_FOREACH(hmp, i)
564 		ret++;
565 	return(ret);
566 }
567 
568 /************************************************************************
569  *				BUFFERS					*
570  ************************************************************************
571  *
572  * Manage buffers.  Currently most blockmap-backed zones are direct-mapped
573  * to zone-2 buffer offsets, without a translation stage.  However, the
574  * hammer_buffer structure is indexed by its zoneX_offset, not its
575  * zone2_offset.
576  *
577  * The proper zone must be maintained throughout the code-base all the way
578  * through to the big-block allocator, or routines like hammer_del_buffers()
579  * will not be able to locate all potentially conflicting buffers.
580  */
581 
582 /*
583  * Helper function returns whether a zone offset can be directly translated
584  * to a raw buffer index or not.  Really only the volume and undo zones
585  * can't be directly translated.  Volumes are special-cased and undo zones
586  * shouldn't be aliased accessed in read-only mode.
587  *
588  * This function is ONLY used to detect aliased zones during a read-only
589  * mount.
590  */
591 static __inline int
592 hammer_direct_zone(hammer_off_t buf_offset)
593 {
594 	return(hammer_is_zone_direct_xlated(buf_offset));
595 }
596 
597 hammer_buffer_t
598 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
599 		  int bytes, int isnew, int *errorp)
600 {
601 	hammer_buffer_t buffer;
602 	hammer_volume_t volume;
603 	hammer_off_t	zone2_offset;
604 	int vol_no;
605 	int zone;
606 
607 	buf_offset &= ~HAMMER_BUFMASK64;
608 again:
609 	/*
610 	 * Shortcut if the buffer is already cached
611 	 */
612 	buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
613 	if (buffer) {
614 		/*
615 		 * Once refed the ondisk field will not be cleared by
616 		 * any other action.  Shortcut the operation if the
617 		 * ondisk structure is valid.
618 		 */
619 found_aliased:
620 		if (hammer_ref_interlock(&buffer->io.lock) == 0) {
621 			hammer_io_advance(&buffer->io);
622 			KKASSERT(buffer->ondisk);
623 			*errorp = 0;
624 			return(buffer);
625 		}
626 
627 		/*
628 		 * 0->1 transition or defered 0->1 transition (CHECK),
629 		 * interlock now held.  Shortcut if ondisk is already
630 		 * assigned.
631 		 */
632 		atomic_add_int(&hammer_count_refedbufs, 1);
633 		if (buffer->ondisk) {
634 			hammer_io_advance(&buffer->io);
635 			hammer_ref_interlock_done(&buffer->io.lock);
636 			*errorp = 0;
637 			return(buffer);
638 		}
639 
640 		/*
641 		 * The buffer is no longer loose if it has a ref, and
642 		 * cannot become loose once it gains a ref.  Loose
643 		 * buffers will never be in a modified state.  This should
644 		 * only occur on the 0->1 transition of refs.
645 		 *
646 		 * lose_root can be modified via a biodone() interrupt
647 		 * so the io_token must be held.
648 		 */
649 		if (buffer->io.mod_root == &hmp->lose_root) {
650 			lwkt_gettoken(&hmp->io_token);
651 			if (buffer->io.mod_root == &hmp->lose_root) {
652 				RB_REMOVE(hammer_mod_rb_tree,
653 					  buffer->io.mod_root, &buffer->io);
654 				buffer->io.mod_root = NULL;
655 				KKASSERT(buffer->io.modified == 0);
656 			}
657 			lwkt_reltoken(&hmp->io_token);
658 		}
659 		goto found;
660 	} else if (hmp->ronly && hammer_direct_zone(buf_offset)) {
661 		/*
662 		 * If this is a read-only mount there could be an alias
663 		 * in the raw-zone.  If there is we use that buffer instead.
664 		 *
665 		 * rw mounts will not have aliases.  Also note when going
666 		 * from ro -> rw the recovered raw buffers are flushed and
667 		 * reclaimed, so again there will not be any aliases once
668 		 * the mount is rw.
669 		 */
670 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
671 				   hammer_xlate_to_zone2(buf_offset));
672 		if (buffer) {
673 			if (hammer_debug_general & 0x0001) {
674 				hkrateprintf(&hmp->kdiag,
675 					    "recovered aliased %016jx\n",
676 					    (intmax_t)buf_offset);
677 			}
678 			goto found_aliased;
679 		}
680 	}
681 
682 	/*
683 	 * Handle blockmap offset translations
684 	 */
685 	zone = HAMMER_ZONE_DECODE(buf_offset);
686 	if (hammer_is_index_record(zone)) {
687 		zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
688 	} else if (zone == HAMMER_ZONE_UNDO_INDEX) {
689 		zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
690 	} else {
691 		/* Must be zone-2 (not 1 or 4 or 15) */
692 		KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
693 		zone2_offset = buf_offset;
694 		*errorp = 0;
695 	}
696 	if (*errorp)
697 		return(NULL);
698 
699 	/*
700 	 * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
701 	 * specifications.
702 	 */
703 	KKASSERT(hammer_is_zone_raw_buffer(zone2_offset));
704 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
705 	volume = hammer_get_volume(hmp, vol_no, errorp);
706 	if (volume == NULL)
707 		return(NULL);
708 
709 	KKASSERT(zone2_offset < volume->maxbuf_off);
710 
711 	/*
712 	 * Allocate a new buffer structure.  We will check for races later.
713 	 */
714 	++hammer_count_buffers;
715 	buffer = kmalloc(sizeof(*buffer), hmp->m_misc,
716 			 M_WAITOK|M_ZERO|M_USE_RESERVE);
717 	buffer->zone2_offset = zone2_offset;
718 	buffer->zoneX_offset = buf_offset;
719 
720 	hammer_io_init(&buffer->io, volume, hammer_zone_to_iotype(zone));
721 	buffer->io.offset = hammer_xlate_to_phys(volume->ondisk, zone2_offset);
722 	buffer->io.bytes = bytes;
723 	TAILQ_INIT(&buffer->node_list);
724 	hammer_ref_interlock_true(&buffer->io.lock);
725 
726 	/*
727 	 * Insert the buffer into the RB tree and handle late collisions.
728 	 */
729 	if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
730 		hammer_rel_volume(volume, 0);
731 		buffer->io.volume = NULL;			/* safety */
732 		if (hammer_rel_interlock(&buffer->io.lock, 1))	/* safety */
733 			hammer_rel_interlock_done(&buffer->io.lock, 1);
734 		--hammer_count_buffers;
735 		kfree(buffer, hmp->m_misc);
736 		goto again;
737 	}
738 	atomic_add_int(&hammer_count_refedbufs, 1);
739 found:
740 
741 	/*
742 	 * The buffer is referenced and interlocked.  Load the buffer
743 	 * if necessary.  hammer_load_buffer() deals with the interlock
744 	 * and, if an error is returned, also deals with the ref.
745 	 */
746 	if (buffer->ondisk == NULL) {
747 		*errorp = hammer_load_buffer(buffer, isnew);
748 		if (*errorp)
749 			buffer = NULL;
750 	} else {
751 		hammer_io_advance(&buffer->io);
752 		hammer_ref_interlock_done(&buffer->io.lock);
753 		*errorp = 0;
754 	}
755 	return(buffer);
756 }
757 
758 /*
759  * This is used by the direct-read code to deal with large-data buffers
760  * created by the reblocker and mirror-write code.  The direct-read code
761  * bypasses the HAMMER buffer subsystem and so any aliased dirty or write-
762  * running hammer buffers must be fully synced to disk before we can issue
763  * the direct-read.
764  *
765  * This code path is not considered critical as only the rebocker and
766  * mirror-write code will create large-data buffers via the HAMMER buffer
767  * subsystem.  They do that because they operate at the B-Tree level and
768  * do not access the vnode/inode structures.
769  */
770 void
771 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
772 {
773 	hammer_buffer_t buffer;
774 	int error;
775 
776 	KKASSERT(hammer_is_zone_large_data(base_offset));
777 
778 	while (bytes > 0) {
779 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
780 				   base_offset);
781 		if (buffer && (buffer->io.modified || buffer->io.running)) {
782 			error = hammer_ref_buffer(buffer);
783 			if (error == 0) {
784 				hammer_io_wait(&buffer->io);
785 				if (buffer->io.modified) {
786 					hammer_io_write_interlock(&buffer->io);
787 					hammer_io_flush(&buffer->io, 0);
788 					hammer_io_done_interlock(&buffer->io);
789 					hammer_io_wait(&buffer->io);
790 				}
791 				hammer_rel_buffer(buffer, 0);
792 			}
793 		}
794 		base_offset += HAMMER_BUFSIZE;
795 		bytes -= HAMMER_BUFSIZE;
796 	}
797 }
798 
799 /*
800  * Destroy all buffers covering the specified zoneX offset range.  This
801  * is called when the related blockmap layer2 entry is freed or when
802  * a direct write bypasses our buffer/buffer-cache subsystem.
803  *
804  * The buffers may be referenced by the caller itself.  Setting reclaim
805  * will cause the buffer to be destroyed when it's ref count reaches zero.
806  *
807  * Return 0 on success, EAGAIN if some buffers could not be destroyed due
808  * to additional references held by other threads, or some other (typically
809  * fatal) error.
810  */
811 int
812 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
813 		   hammer_off_t zone2_offset, int bytes,
814 		   int report_conflicts)
815 {
816 	hammer_buffer_t buffer;
817 	hammer_volume_t volume;
818 	int vol_no;
819 	int error;
820 	int ret_error;
821 
822 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
823 	volume = hammer_get_volume(hmp, vol_no, &ret_error);
824 	KKASSERT(ret_error == 0);
825 
826 	while (bytes > 0) {
827 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
828 				   base_offset);
829 		if (buffer) {
830 			error = hammer_ref_buffer(buffer);
831 			if (hammer_debug_general & 0x20000) {
832 				hkprintf("delbufr %016jx rerr=%d 1ref=%d\n",
833 					(intmax_t)buffer->zoneX_offset,
834 					error,
835 					hammer_oneref(&buffer->io.lock));
836 			}
837 			if (error == 0 && !hammer_oneref(&buffer->io.lock)) {
838 				error = EAGAIN;
839 				hammer_rel_buffer(buffer, 0);
840 			}
841 			if (error == 0) {
842 				KKASSERT(buffer->zone2_offset == zone2_offset);
843 				hammer_io_clear_modify(&buffer->io, 1);
844 				buffer->io.reclaim = 1;
845 				buffer->io.waitdep = 1;
846 				KKASSERT(buffer->io.volume == volume);
847 				hammer_rel_buffer(buffer, 0);
848 			}
849 		} else {
850 			error = hammer_io_inval(volume, zone2_offset);
851 		}
852 		if (error) {
853 			ret_error = error;
854 			if (report_conflicts ||
855 			    (hammer_debug_general & 0x8000)) {
856 				krateprintf(&hmp->kdiag,
857 					"hammer_del_buffers: unable to "
858 					"invalidate %016jx buffer=%p "
859 					"rep=%d lkrefs=%08x\n",
860 					(intmax_t)base_offset,
861 					buffer, report_conflicts,
862 					(buffer ? buffer->io.lock.refs : -1));
863 			}
864 		}
865 		base_offset += HAMMER_BUFSIZE;
866 		zone2_offset += HAMMER_BUFSIZE;
867 		bytes -= HAMMER_BUFSIZE;
868 	}
869 	hammer_rel_volume(volume, 0);
870 	return (ret_error);
871 }
872 
873 /*
874  * Given a referenced and interlocked buffer load/validate the data.
875  *
876  * The buffer interlock will be released on return.  If an error is
877  * returned the buffer reference will also be released (and the buffer
878  * pointer will thus be stale).
879  */
880 static int
881 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
882 {
883 	hammer_volume_t volume;
884 	int error;
885 
886 	/*
887 	 * Load the buffer's on-disk info
888 	 */
889 	volume = buffer->io.volume;
890 
891 	if (hammer_debug_io & 0x0004) {
892 		hdkprintf("load_buffer %016jx %016jx isnew=%d od=%p\n",
893 			(intmax_t)buffer->zoneX_offset,
894 			(intmax_t)buffer->zone2_offset,
895 			isnew, buffer->ondisk);
896 	}
897 
898 	if (buffer->ondisk == NULL) {
899 		/*
900 		 * Issue the read or generate a new buffer.  When reading
901 		 * the limit argument controls any read-ahead clustering
902 		 * hammer_io_read() is allowed to do.
903 		 *
904 		 * We cannot read-ahead in the large-data zone and we cannot
905 		 * cross a big-block boundary as the next big-block might
906 		 * use a different buffer size.
907 		 */
908 		if (isnew) {
909 			error = hammer_io_new(volume->devvp, &buffer->io);
910 		} else if (hammer_is_zone_large_data(buffer->zoneX_offset)) {
911 			error = hammer_io_read(volume->devvp, &buffer->io,
912 					       buffer->io.bytes);
913 		} else {
914 			hammer_off_t limit;
915 
916 			limit = HAMMER_BIGBLOCK_DOALIGN(buffer->zone2_offset);
917 			limit -= buffer->zone2_offset;
918 			error = hammer_io_read(volume->devvp, &buffer->io,
919 					       limit);
920 		}
921 		if (error == 0)
922 			buffer->ondisk = (void *)buffer->io.bp->b_data;
923 	} else if (isnew) {
924 		error = hammer_io_new(volume->devvp, &buffer->io);
925 	} else {
926 		error = 0;
927 	}
928 	if (error == 0) {
929 		hammer_io_advance(&buffer->io);
930 		hammer_ref_interlock_done(&buffer->io.lock);
931 	} else {
932 		hammer_rel_buffer(buffer, 1);
933 	}
934 	return (error);
935 }
936 
937 /*
938  * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
939  * This routine is only called during unmount or when a volume is
940  * removed.
941  *
942  * If data != NULL, it specifies a volume whoose buffers should
943  * be unloaded.
944  */
945 int
946 hammer_unload_buffer(hammer_buffer_t buffer, void *data)
947 {
948 	hammer_volume_t volume = (hammer_volume_t)data;
949 
950 	/*
951 	 * If volume != NULL we are only interested in unloading buffers
952 	 * associated with a particular volume.
953 	 */
954 	if (volume != NULL && volume != buffer->io.volume)
955 		return 0;
956 
957 	/*
958 	 * Clean up the persistent ref ioerror might have on the buffer
959 	 * and acquire a ref.  Expect a 0->1 transition.
960 	 */
961 	if (buffer->io.ioerror) {
962 		hammer_io_clear_error_noassert(&buffer->io);
963 		atomic_add_int(&hammer_count_refedbufs, -1);
964 	}
965 	hammer_ref_interlock_true(&buffer->io.lock);
966 	atomic_add_int(&hammer_count_refedbufs, 1);
967 
968 	/*
969 	 * We must not flush a dirty buffer to disk on umount.  It should
970 	 * have already been dealt with by the flusher, or we may be in
971 	 * catastrophic failure.
972 	 *
973 	 * We must set waitdep to ensure that a running buffer is waited
974 	 * on and released prior to us trying to unload the volume.
975 	 */
976 	hammer_io_clear_modify(&buffer->io, 1);
977 	hammer_flush_buffer_nodes(buffer);
978 	buffer->io.waitdep = 1;
979 	hammer_rel_buffer(buffer, 1);
980 	return(0);
981 }
982 
983 /*
984  * Reference a buffer that is either already referenced or via a specially
985  * handled pointer (aka cursor->buffer).
986  */
987 int
988 hammer_ref_buffer(hammer_buffer_t buffer)
989 {
990 	hammer_mount_t hmp;
991 	int error;
992 	int locked;
993 
994 	/*
995 	 * Acquire a ref, plus the buffer will be interlocked on the
996 	 * 0->1 transition.
997 	 */
998 	locked = hammer_ref_interlock(&buffer->io.lock);
999 	hmp = buffer->io.hmp;
1000 
1001 	/*
1002 	 * At this point a biodone() will not touch the buffer other then
1003 	 * incidental bits.  However, lose_root can be modified via
1004 	 * a biodone() interrupt.
1005 	 *
1006 	 * No longer loose.  lose_root requires the io_token.
1007 	 */
1008 	if (buffer->io.mod_root == &hmp->lose_root) {
1009 		lwkt_gettoken(&hmp->io_token);
1010 		if (buffer->io.mod_root == &hmp->lose_root) {
1011 			RB_REMOVE(hammer_mod_rb_tree,
1012 				  buffer->io.mod_root, &buffer->io);
1013 			buffer->io.mod_root = NULL;
1014 		}
1015 		lwkt_reltoken(&hmp->io_token);
1016 	}
1017 
1018 	if (locked) {
1019 		atomic_add_int(&hammer_count_refedbufs, 1);
1020 		error = hammer_load_buffer(buffer, 0);
1021 		/* NOTE: on error the buffer pointer is stale */
1022 	} else {
1023 		error = 0;
1024 	}
1025 	return(error);
1026 }
1027 
1028 /*
1029  * Release a reference on the buffer.  On the 1->0 transition the
1030  * underlying IO will be released but the data reference is left
1031  * cached.
1032  *
1033  * Only destroy the structure itself if the related buffer cache buffer
1034  * was disassociated from it.  This ties the management of the structure
1035  * to the buffer cache subsystem.  buffer->ondisk determines whether the
1036  * embedded io is referenced or not.
1037  */
1038 void
1039 hammer_rel_buffer(hammer_buffer_t buffer, int locked)
1040 {
1041 	hammer_volume_t volume;
1042 	hammer_mount_t hmp;
1043 	struct buf *bp = NULL;
1044 	int freeme = 0;
1045 
1046 	hmp = buffer->io.hmp;
1047 
1048 	if (hammer_rel_interlock(&buffer->io.lock, locked) == 0)
1049 		return;
1050 
1051 	/*
1052 	 * hammer_count_refedbufs accounting.  Decrement if we are in
1053 	 * the error path or if CHECK is clear.
1054 	 *
1055 	 * If we are not in the error path and CHECK is set the caller
1056 	 * probably just did a hammer_ref() and didn't account for it,
1057 	 * so we don't account for the loss here.
1058 	 */
1059 	if (locked || (buffer->io.lock.refs & HAMMER_REFS_CHECK) == 0)
1060 		atomic_add_int(&hammer_count_refedbufs, -1);
1061 
1062 	/*
1063 	 * If the caller locked us or the normal released transitions
1064 	 * from 1->0 (and acquired the lock) attempt to release the
1065 	 * io.  If the called locked us we tell hammer_io_release()
1066 	 * to flush (which would be the unload or failure path).
1067 	 */
1068 	bp = hammer_io_release(&buffer->io, locked);
1069 
1070 	/*
1071 	 * If the buffer has no bp association and no refs we can destroy
1072 	 * it.
1073 	 *
1074 	 * NOTE: It is impossible for any associated B-Tree nodes to have
1075 	 * refs if the buffer has no additional refs.
1076 	 */
1077 	if (buffer->io.bp == NULL && hammer_norefs(&buffer->io.lock)) {
1078 		RB_REMOVE(hammer_buf_rb_tree,
1079 			  &buffer->io.hmp->rb_bufs_root,
1080 			  buffer);
1081 		volume = buffer->io.volume;
1082 		buffer->io.volume = NULL; /* sanity */
1083 		hammer_rel_volume(volume, 0);
1084 		hammer_io_clear_modlist(&buffer->io);
1085 		hammer_flush_buffer_nodes(buffer);
1086 		KKASSERT(TAILQ_EMPTY(&buffer->node_list));
1087 		freeme = 1;
1088 	}
1089 
1090 	/*
1091 	 * Cleanup
1092 	 */
1093 	hammer_rel_interlock_done(&buffer->io.lock, locked);
1094 	if (bp)
1095 		brelse(bp);
1096 	if (freeme) {
1097 		--hammer_count_buffers;
1098 		kfree(buffer, hmp->m_misc);
1099 	}
1100 }
1101 
1102 /*
1103  * Access the filesystem buffer containing the specified hammer offset.
1104  * buf_offset is a conglomeration of the volume number and vol_buf_beg
1105  * relative buffer offset.  It must also have bit 55 set to be valid.
1106  * (see hammer_off_t in hammer_disk.h).
1107  *
1108  * Any prior buffer in *bufferp will be released and replaced by the
1109  * requested buffer.
1110  *
1111  * NOTE: The buffer is indexed via its zoneX_offset but we allow the
1112  * passed cached *bufferp to match against either zoneX or zone2.
1113  */
1114 static __inline
1115 void *
1116 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1117 	     int isnew, int *errorp, hammer_buffer_t *bufferp)
1118 {
1119 	hammer_buffer_t buffer;
1120 	int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1121 
1122 	buf_offset &= ~HAMMER_BUFMASK64;
1123 	KKASSERT(HAMMER_ZONE(buf_offset) != 0);
1124 
1125 	buffer = *bufferp;
1126 	if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1127 			       buffer->zoneX_offset != buf_offset)) {
1128 		if (buffer)
1129 			hammer_rel_buffer(buffer, 0);
1130 		buffer = hammer_get_buffer(hmp, buf_offset, bytes, isnew, errorp);
1131 		*bufferp = buffer;
1132 	} else {
1133 		*errorp = 0;
1134 	}
1135 
1136 	/*
1137 	 * Return a pointer to the buffer data.
1138 	 */
1139 	if (buffer == NULL)
1140 		return(NULL);
1141 	else
1142 		return((char *)buffer->ondisk + xoff);
1143 }
1144 
1145 void *
1146 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
1147 	     int *errorp, hammer_buffer_t *bufferp)
1148 {
1149 	return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, 0, errorp, bufferp));
1150 }
1151 
1152 void *
1153 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1154 	         int *errorp, hammer_buffer_t *bufferp)
1155 {
1156 	bytes = HAMMER_BUFSIZE_DOALIGN(bytes);
1157 	return(_hammer_bread(hmp, buf_offset, bytes, 0, errorp, bufferp));
1158 }
1159 
1160 /*
1161  * Access the filesystem buffer containing the specified hammer offset.
1162  * No disk read operation occurs.  The result buffer may contain garbage.
1163  *
1164  * Any prior buffer in *bufferp will be released and replaced by the
1165  * requested buffer.
1166  *
1167  * This function marks the buffer dirty but does not increment its
1168  * modify_refs count.
1169  */
1170 void *
1171 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
1172 	     int *errorp, hammer_buffer_t *bufferp)
1173 {
1174 	return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, 1, errorp, bufferp));
1175 }
1176 
1177 void *
1178 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1179 		int *errorp, hammer_buffer_t *bufferp)
1180 {
1181 	bytes = HAMMER_BUFSIZE_DOALIGN(bytes);
1182 	return(_hammer_bread(hmp, buf_offset, bytes, 1, errorp, bufferp));
1183 }
1184 
1185 /************************************************************************
1186  *				NODES					*
1187  ************************************************************************
1188  *
1189  * Manage B-Tree nodes.  B-Tree nodes represent the primary indexing
1190  * method used by the HAMMER filesystem.
1191  *
1192  * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
1193  * associated with its buffer, and will only referenced the buffer while
1194  * the node itself is referenced.
1195  *
1196  * A hammer_node can also be passively associated with other HAMMER
1197  * structures, such as inodes, while retaining 0 references.  These
1198  * associations can be cleared backwards using a pointer-to-pointer in
1199  * the hammer_node.
1200  *
1201  * This allows the HAMMER implementation to cache hammer_nodes long-term
1202  * and short-cut a great deal of the infrastructure's complexity.  In
1203  * most cases a cached node can be reacquired without having to dip into
1204  * the B-Tree.
1205  */
1206 hammer_node_t
1207 hammer_get_node(hammer_transaction_t trans, hammer_off_t node_offset,
1208 		int isnew, int *errorp)
1209 {
1210 	hammer_mount_t hmp = trans->hmp;
1211 	hammer_node_t node;
1212 	int doload;
1213 
1214 	KKASSERT(hammer_is_zone_btree(node_offset));
1215 
1216 	/*
1217 	 * Locate the structure, allocating one if necessary.
1218 	 */
1219 again:
1220 	node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1221 	if (node == NULL) {
1222 		++hammer_count_nodes;
1223 		node = kmalloc(sizeof(*node), hmp->m_misc, M_WAITOK|M_ZERO|M_USE_RESERVE);
1224 		node->node_offset = node_offset;
1225 		node->hmp = hmp;
1226 		TAILQ_INIT(&node->cursor_list);
1227 		TAILQ_INIT(&node->cache_list);
1228 		if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1229 			--hammer_count_nodes;
1230 			kfree(node, hmp->m_misc);
1231 			goto again;
1232 		}
1233 		doload = hammer_ref_interlock_true(&node->lock);
1234 	} else {
1235 		doload = hammer_ref_interlock(&node->lock);
1236 	}
1237 	if (doload) {
1238 		*errorp = hammer_load_node(trans, node, isnew);
1239 		if (*errorp)
1240 			node = NULL;
1241 	} else {
1242 		KKASSERT(node->ondisk);
1243 		*errorp = 0;
1244 		hammer_io_advance(&node->buffer->io);
1245 	}
1246 	return(node);
1247 }
1248 
1249 /*
1250  * Reference an already-referenced node.  0->1 transitions should assert
1251  * so we do not have to deal with hammer_ref() setting CHECK.
1252  */
1253 void
1254 hammer_ref_node(hammer_node_t node)
1255 {
1256 	KKASSERT(hammer_isactive(&node->lock) && node->ondisk != NULL);
1257 	hammer_ref(&node->lock);
1258 }
1259 
1260 /*
1261  * Load a node's on-disk data reference.  Called with the node referenced
1262  * and interlocked.
1263  *
1264  * On return the node interlock will be unlocked.  If a non-zero error code
1265  * is returned the node will also be dereferenced (and the caller's pointer
1266  * will be stale).
1267  */
1268 static int
1269 hammer_load_node(hammer_transaction_t trans, hammer_node_t node, int isnew)
1270 {
1271 	hammer_buffer_t buffer;
1272 	hammer_off_t buf_offset;
1273 	hammer_mount_t hmp = trans->hmp;
1274 	int error;
1275 
1276 	error = 0;
1277 	if (node->ondisk == NULL) {
1278 		/*
1279 		 * This is a little confusing but the jist is that
1280 		 * node->buffer determines whether the node is on
1281 		 * the buffer's node_list and node->ondisk determines
1282 		 * whether the buffer is referenced.
1283 		 *
1284 		 * We could be racing a buffer release, in which case
1285 		 * node->buffer may become NULL while we are blocked
1286 		 * referencing the buffer.
1287 		 */
1288 		if ((buffer = node->buffer) != NULL) {
1289 			error = hammer_ref_buffer(buffer);
1290 			if (error == 0 && node->buffer == NULL) {
1291 				TAILQ_INSERT_TAIL(&buffer->node_list, node, entry);
1292 				node->buffer = buffer;
1293 			}
1294 		} else {
1295 			buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1296 			buffer = hammer_get_buffer(node->hmp, buf_offset,
1297 						   HAMMER_BUFSIZE, 0, &error);
1298 			if (buffer) {
1299 				KKASSERT(error == 0);
1300 				TAILQ_INSERT_TAIL(&buffer->node_list, node, entry);
1301 				node->buffer = buffer;
1302 			}
1303 		}
1304 		if (error)
1305 			goto failed;
1306 		node->ondisk = (void *)((char *)buffer->ondisk +
1307 				        (node->node_offset & HAMMER_BUFMASK));
1308 
1309 		/*
1310 		 * Check CRC.  NOTE: Neither flag is set and the CRC is not
1311 		 * generated on new B-Tree nodes.
1312 		 */
1313 		if (isnew == 0 &&
1314 		    (node->flags & HAMMER_NODE_CRCANY) == 0) {
1315 			if (hammer_crc_test_btree(hmp->version, node->ondisk) == 0) {
1316 				hdkprintf("CRC B-TREE NODE @ %016jx/%lu FAILED\n",
1317 					(intmax_t)node->node_offset,
1318 					sizeof(*node->ondisk));
1319 				if (hammer_debug_critical)
1320 					Debugger("CRC FAILED: B-TREE NODE");
1321 				node->flags |= HAMMER_NODE_CRCBAD;
1322 			} else {
1323 				node->flags |= HAMMER_NODE_CRCGOOD;
1324 			}
1325 		}
1326 	}
1327 	if (node->flags & HAMMER_NODE_CRCBAD) {
1328 		if (trans->flags & HAMMER_TRANSF_CRCDOM)
1329 			error = EDOM;
1330 		else
1331 			error = EIO;
1332 	}
1333 failed:
1334 	if (error) {
1335 		_hammer_rel_node(node, 1);
1336 	} else {
1337 		hammer_ref_interlock_done(&node->lock);
1338 	}
1339 	return (error);
1340 }
1341 
1342 /*
1343  * Safely reference a node, interlock against flushes via the IO subsystem.
1344  */
1345 hammer_node_t
1346 hammer_ref_node_safe(hammer_transaction_t trans, hammer_node_cache_t cache,
1347 		     int *errorp)
1348 {
1349 	hammer_node_t node;
1350 	int doload;
1351 
1352 	node = cache->node;
1353 	if (node != NULL) {
1354 		doload = hammer_ref_interlock(&node->lock);
1355 		if (doload) {
1356 			*errorp = hammer_load_node(trans, node, 0);
1357 			if (*errorp)
1358 				node = NULL;
1359 		} else {
1360 			KKASSERT(node->ondisk);
1361 			if (node->flags & HAMMER_NODE_CRCBAD) {
1362 				if (trans->flags & HAMMER_TRANSF_CRCDOM)
1363 					*errorp = EDOM;
1364 				else
1365 					*errorp = EIO;
1366 				_hammer_rel_node(node, 0);
1367 				node = NULL;
1368 			} else {
1369 				*errorp = 0;
1370 			}
1371 		}
1372 	} else {
1373 		*errorp = ENOENT;
1374 	}
1375 	return(node);
1376 }
1377 
1378 /*
1379  * Release a hammer_node.  On the last release the node dereferences
1380  * its underlying buffer and may or may not be destroyed.
1381  *
1382  * If locked is non-zero the passed node has been interlocked by the
1383  * caller and we are in the failure/unload path, otherwise it has not and
1384  * we are doing a normal release.
1385  *
1386  * This function will dispose of the interlock and the reference.
1387  * On return the node pointer is stale.
1388  */
1389 void
1390 _hammer_rel_node(hammer_node_t node, int locked)
1391 {
1392 	hammer_buffer_t buffer;
1393 
1394 	/*
1395 	 * Deref the node.  If this isn't the 1->0 transition we're basically
1396 	 * done.  If locked is non-zero this function will just deref the
1397 	 * locked node and return 1, otherwise it will deref the locked
1398 	 * node and either lock and return 1 on the 1->0 transition or
1399 	 * not lock and return 0.
1400 	 */
1401 	if (hammer_rel_interlock(&node->lock, locked) == 0)
1402 		return;
1403 
1404 	/*
1405 	 * Either locked was non-zero and we are interlocked, or the
1406 	 * hammer_rel_interlock() call returned non-zero and we are
1407 	 * interlocked.
1408 	 *
1409 	 * The ref-count must still be decremented if locked != 0 so
1410 	 * the cleanup required still varies a bit.
1411 	 *
1412 	 * hammer_flush_node() when called with 1 or 2 will dispose of
1413 	 * the lock and possible ref-count.
1414 	 */
1415 	if (node->ondisk == NULL) {
1416 		hammer_flush_node(node, locked + 1);
1417 		/* node is stale now */
1418 		return;
1419 	}
1420 
1421 	/*
1422 	 * Do not disassociate the node from the buffer if it represents
1423 	 * a modified B-Tree node that still needs its crc to be generated.
1424 	 */
1425 	if (node->flags & HAMMER_NODE_NEEDSCRC) {
1426 		hammer_rel_interlock_done(&node->lock, locked);
1427 		return;
1428 	}
1429 
1430 	/*
1431 	 * Do final cleanups and then either destroy the node and leave it
1432 	 * passively cached.  The buffer reference is removed regardless.
1433 	 */
1434 	buffer = node->buffer;
1435 	node->ondisk = NULL;
1436 
1437 	if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1438 		/*
1439 		 * Normal release.
1440 		 */
1441 		hammer_rel_interlock_done(&node->lock, locked);
1442 	} else {
1443 		/*
1444 		 * Destroy the node.
1445 		 */
1446 		hammer_flush_node(node, locked + 1);
1447 		/* node is stale */
1448 
1449 	}
1450 	hammer_rel_buffer(buffer, 0);
1451 }
1452 
1453 void
1454 hammer_rel_node(hammer_node_t node)
1455 {
1456 	_hammer_rel_node(node, 0);
1457 }
1458 
1459 /*
1460  * Free space on-media associated with a B-Tree node.
1461  */
1462 void
1463 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1464 {
1465 	KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1466 	node->flags |= HAMMER_NODE_DELETED;
1467 	hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1468 }
1469 
1470 /*
1471  * Passively cache a referenced hammer_node.  The caller may release
1472  * the node on return.
1473  */
1474 void
1475 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1476 {
1477 	/*
1478 	 * If the node doesn't exist, or is being deleted, don't cache it!
1479 	 *
1480 	 * The node can only ever be NULL in the I/O failure path.
1481 	 */
1482 	if (node == NULL || (node->flags & HAMMER_NODE_DELETED))
1483 		return;
1484 	if (cache->node == node)
1485 		return;
1486 	while (cache->node)
1487 		hammer_uncache_node(cache);
1488 	if (node->flags & HAMMER_NODE_DELETED)
1489 		return;
1490 	cache->node = node;
1491 	TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1492 }
1493 
1494 void
1495 hammer_uncache_node(hammer_node_cache_t cache)
1496 {
1497 	hammer_node_t node;
1498 
1499 	if ((node = cache->node) != NULL) {
1500 		TAILQ_REMOVE(&node->cache_list, cache, entry);
1501 		cache->node = NULL;
1502 		if (TAILQ_EMPTY(&node->cache_list))
1503 			hammer_flush_node(node, 0);
1504 	}
1505 }
1506 
1507 /*
1508  * Remove a node's cache references and destroy the node if it has no
1509  * other references or backing store.
1510  *
1511  * locked == 0	Normal unlocked operation
1512  * locked == 1	Call hammer_rel_interlock_done(..., 0);
1513  * locked == 2	Call hammer_rel_interlock_done(..., 1);
1514  *
1515  * XXX for now this isn't even close to being MPSAFE so the refs check
1516  *     is sufficient.
1517  */
1518 void
1519 hammer_flush_node(hammer_node_t node, int locked)
1520 {
1521 	hammer_node_cache_t cache;
1522 	hammer_buffer_t buffer;
1523 	hammer_mount_t hmp = node->hmp;
1524 	int dofree;
1525 
1526 	while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1527 		TAILQ_REMOVE(&node->cache_list, cache, entry);
1528 		cache->node = NULL;
1529 	}
1530 
1531 	/*
1532 	 * NOTE: refs is predisposed if another thread is blocking and
1533 	 *	 will be larger than 0 in that case.  We aren't MPSAFE
1534 	 *	 here.
1535 	 */
1536 	if (node->ondisk == NULL && hammer_norefs(&node->lock)) {
1537 		KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1538 		RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1539 		if ((buffer = node->buffer) != NULL) {
1540 			node->buffer = NULL;
1541 			TAILQ_REMOVE(&buffer->node_list, node, entry);
1542 			/* buffer is unreferenced because ondisk is NULL */
1543 		}
1544 		dofree = 1;
1545 	} else {
1546 		dofree = 0;
1547 	}
1548 
1549 	/*
1550 	 * Deal with the interlock if locked == 1 or locked == 2.
1551 	 */
1552 	if (locked)
1553 		hammer_rel_interlock_done(&node->lock, locked - 1);
1554 
1555 	/*
1556 	 * Destroy if requested
1557 	 */
1558 	if (dofree) {
1559 		--hammer_count_nodes;
1560 		kfree(node, hmp->m_misc);
1561 	}
1562 }
1563 
1564 /*
1565  * Flush passively cached B-Tree nodes associated with this buffer.
1566  * This is only called when the buffer is about to be destroyed, so
1567  * none of the nodes should have any references.  The buffer is locked.
1568  *
1569  * We may be interlocked with the buffer.
1570  */
1571 void
1572 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1573 {
1574 	hammer_node_t node;
1575 
1576 	while ((node = TAILQ_FIRST(&buffer->node_list)) != NULL) {
1577 		KKASSERT(node->ondisk == NULL);
1578 		KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1579 
1580 		if (hammer_try_interlock_norefs(&node->lock)) {
1581 			hammer_ref(&node->lock);
1582 			node->flags |= HAMMER_NODE_FLUSH;
1583 			_hammer_rel_node(node, 1);
1584 		} else {
1585 			KKASSERT(node->buffer != NULL);
1586 			buffer = node->buffer;
1587 			node->buffer = NULL;
1588 			TAILQ_REMOVE(&buffer->node_list, node, entry);
1589 			/* buffer is unreferenced because ondisk is NULL */
1590 		}
1591 	}
1592 }
1593 
1594 
1595 /************************************************************************
1596  *				ALLOCATORS				*
1597  ************************************************************************/
1598 
1599 /*
1600  * Allocate a B-Tree node.
1601  */
1602 hammer_node_t
1603 hammer_alloc_btree(hammer_transaction_t trans, hammer_off_t hint, int *errorp)
1604 {
1605 	hammer_buffer_t buffer = NULL;
1606 	hammer_node_t node = NULL;
1607 	hammer_off_t node_offset;
1608 
1609 	node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1610 					    sizeof(struct hammer_node_ondisk),
1611 					    hint, errorp);
1612 	if (*errorp == 0) {
1613 		node = hammer_get_node(trans, node_offset, 1, errorp);
1614 		hammer_modify_node_noundo(trans, node);
1615 		bzero(node->ondisk, sizeof(*node->ondisk));
1616 		hammer_modify_node_done(node);
1617 	}
1618 	if (buffer)
1619 		hammer_rel_buffer(buffer, 0);
1620 	return(node);
1621 }
1622 
1623 /*
1624  * Allocate data.  If the address of a data buffer is supplied then
1625  * any prior non-NULL *data_bufferp will be released and *data_bufferp
1626  * will be set to the related buffer.  The caller must release it when
1627  * finally done.  The initial *data_bufferp should be set to NULL by
1628  * the caller.
1629  *
1630  * The caller is responsible for making hammer_modify*() calls on the
1631  * *data_bufferp.
1632  */
1633 void *
1634 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len,
1635 		  uint16_t rec_type, hammer_off_t *data_offsetp,
1636 		  hammer_buffer_t *data_bufferp,
1637 		  hammer_off_t hint, int *errorp)
1638 {
1639 	void *data;
1640 	int zone;
1641 
1642 	/*
1643 	 * Allocate data directly from blockmap.
1644 	 */
1645 	if (data_len) {
1646 		switch(rec_type) {
1647 		case HAMMER_RECTYPE_INODE:
1648 		case HAMMER_RECTYPE_DIRENTRY:
1649 		case HAMMER_RECTYPE_EXT:
1650 		case HAMMER_RECTYPE_FIX:
1651 		case HAMMER_RECTYPE_PFS:
1652 		case HAMMER_RECTYPE_SNAPSHOT:
1653 		case HAMMER_RECTYPE_CONFIG:
1654 			zone = HAMMER_ZONE_META_INDEX;
1655 			break;
1656 		case HAMMER_RECTYPE_DATA:
1657 		case HAMMER_RECTYPE_DB:
1658 			/*
1659 			 * Only mirror-write comes here.
1660 			 * Regular allocation path uses blockmap reservation.
1661 			 */
1662 			zone = hammer_data_zone_index(data_len);
1663 			if (zone == HAMMER_ZONE_LARGE_DATA_INDEX) {
1664 				/* round up */
1665 				data_len = HAMMER_BUFSIZE_DOALIGN(data_len);
1666 			}
1667 			break;
1668 		default:
1669 			hpanic("rec_type %04x unknown", rec_type);
1670 			zone = HAMMER_ZONE_UNAVAIL_INDEX; /* NOT REACHED */
1671 			break;
1672 		}
1673 		*data_offsetp = hammer_blockmap_alloc(trans, zone, data_len,
1674 						      hint, errorp);
1675 	} else {
1676 		*data_offsetp = 0;
1677 	}
1678 
1679 	data = NULL;
1680 	if (*errorp == 0 && data_bufferp && data_len)
1681 		data = hammer_bread_ext(trans->hmp, *data_offsetp, data_len,
1682 					errorp, data_bufferp);
1683 	return(data);
1684 }
1685 
1686 /*
1687  * Sync dirty buffers to the media and clean-up any loose ends.
1688  *
1689  * These functions do not start the flusher going, they simply
1690  * queue everything up to the flusher.
1691  */
1692 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1693 
1694 struct hammer_sync_info {
1695 	int error;
1696 };
1697 
1698 int
1699 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1700 {
1701 	struct hammer_sync_info info;
1702 
1703 	info.error = 0;
1704 	if (waitfor == MNT_WAIT) {
1705 		vsyncscan(hmp->mp, VMSC_GETVP | VMSC_ONEPASS,
1706 			  hammer_sync_scan2, &info);
1707 	} else {
1708 		vsyncscan(hmp->mp, VMSC_GETVP | VMSC_ONEPASS | VMSC_NOWAIT,
1709 			  hammer_sync_scan2, &info);
1710 	}
1711 	return(info.error);
1712 }
1713 
1714 /*
1715  * Filesystem sync.  If doing a synchronous sync make a second pass on
1716  * the vnodes in case any were already flushing during the first pass,
1717  * and activate the flusher twice (the second time brings the UNDO FIFO's
1718  * start position up to the end position after the first call).
1719  *
1720  * If doing a lazy sync make just one pass on the vnode list, ignoring
1721  * any new vnodes added to the list while the sync is in progress.
1722  */
1723 int
1724 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1725 {
1726 	struct hammer_sync_info info;
1727 	int flags;
1728 
1729 	flags = VMSC_GETVP;
1730 	if (waitfor & MNT_LAZY)
1731 		flags |= VMSC_ONEPASS;
1732 
1733 	info.error = 0;
1734 	vsyncscan(hmp->mp, flags | VMSC_NOWAIT, hammer_sync_scan2, &info);
1735 
1736 	if (info.error == 0 && (waitfor & MNT_WAIT)) {
1737 		vsyncscan(hmp->mp, flags, hammer_sync_scan2, &info);
1738 	}
1739         if (waitfor == MNT_WAIT) {
1740                 hammer_flusher_sync(hmp);
1741                 hammer_flusher_sync(hmp);
1742 	} else {
1743                 hammer_flusher_async(hmp, NULL);
1744                 hammer_flusher_async(hmp, NULL);
1745 	}
1746 	return(info.error);
1747 }
1748 
1749 static int
1750 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1751 {
1752 	struct hammer_sync_info *info = data;
1753 	hammer_inode_t ip;
1754 	int error;
1755 
1756 	ip = VTOI(vp);
1757 	if (ip == NULL)
1758 		return(0);
1759 	if (vp->v_type == VNON || vp->v_type == VBAD) {
1760 		vclrisdirty(vp);
1761 		return(0);
1762 	}
1763 	if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1764 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
1765 		vclrisdirty(vp);
1766 		return(0);
1767 	}
1768 	error = VOP_FSYNC(vp, MNT_NOWAIT, 0);
1769 	if (error)
1770 		info->error = error;
1771 	return(0);
1772 }
1773