xref: /dragonfly/sys/vfs/hammer/hammer_redo.c (revision 7d462af5)
1 /*
2  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * HAMMER redo - REDO record support for the UNDO/REDO FIFO.
37  *
38  * See also hammer_undo.c
39  */
40 
41 #include "hammer.h"
42 
43 RB_GENERATE2(hammer_redo_rb_tree, hammer_inode, rb_redonode,
44 	     hammer_redo_rb_compare, hammer_off_t, redo_fifo_start);
45 
46 /*
47  * HAMMER version 4+ REDO support.
48  *
49  * REDO records are used to improve fsync() performance.  Instead of having
50  * to go through a complete double-flush cycle involving at least two disk
51  * synchronizations the fsync need only flush UNDO/REDO FIFO buffers through
52  * the related REDO records, which is a single synchronization requiring
53  * no track seeking.  If a recovery becomes necessary the recovery code
54  * will generate logical data writes based on the REDO records encountered.
55  * That is, the recovery code will UNDO any partial meta-data/data writes
56  * at the raw disk block level and then REDO the data writes at the logical
57  * level.
58  */
59 int
60 hammer_generate_redo(hammer_transaction_t trans, hammer_inode_t ip,
61 		     hammer_off_t file_off, uint32_t flags,
62 		     void *base, int len)
63 {
64 	hammer_mount_t hmp;
65 	hammer_volume_t root_volume;
66 	hammer_blockmap_t undomap;
67 	hammer_buffer_t buffer = NULL;
68 	hammer_fifo_redo_t redo;
69 	hammer_fifo_tail_t tail;
70 	hammer_off_t next_offset;
71 	int error;
72 	int bytes;
73 	int n;
74 
75 	/*
76 	 * Setup
77 	 */
78 	hmp = trans->hmp;
79 
80 	root_volume = trans->rootvol;
81 	undomap = &hmp->blockmap[HAMMER_ZONE_UNDO_INDEX];
82 
83 	/*
84 	 * No undo recursion when modifying the root volume
85 	 */
86 	hammer_modify_volume_noundo(NULL, root_volume);
87 	hammer_lock_ex(&hmp->undo_lock);
88 
89 	/* undo had better not roll over (loose test) */
90 	if (hammer_undo_space(trans) < len + HAMMER_BUFSIZE*3)
91 		hpanic("insufficient UNDO/REDO FIFO space for redo!");
92 
93 	/*
94 	 * Loop until the undo for the entire range has been laid down.
95 	 * Loop at least once (len might be 0 as a degenerate case).
96 	 */
97 	for (;;) {
98 		/*
99 		 * Fetch the layout offset in the UNDO FIFO, wrap it as
100 		 * necessary.
101 		 */
102 		if (undomap->next_offset == undomap->alloc_offset)
103 			undomap->next_offset = HAMMER_ENCODE_UNDO(0);
104 		next_offset = undomap->next_offset;
105 
106 		/*
107 		 * This is a tail-chasing FIFO, when we hit the start of a new
108 		 * buffer we don't have to read it in.
109 		 */
110 		if ((next_offset & HAMMER_BUFMASK) == 0) {
111 			redo = hammer_bnew(hmp, next_offset, &error, &buffer);
112 			hammer_format_undo(redo, hmp->undo_seqno ^ 0x40000000);
113 		} else {
114 			redo = hammer_bread(hmp, next_offset, &error, &buffer);
115 		}
116 		if (error)
117 			break;
118 		hammer_modify_buffer_noundo(NULL, buffer);
119 
120 		/*
121 		 * Calculate how big a media structure fits up to the next
122 		 * alignment point and how large a data payload we can
123 		 * accomodate.
124 		 *
125 		 * If n calculates to 0 or negative there is no room for
126 		 * anything but a PAD.
127 		 */
128 		bytes = HAMMER_UNDO_ALIGN -
129 			((int)next_offset & HAMMER_UNDO_MASK);
130 		n = bytes -
131 		    (int)sizeof(struct hammer_fifo_redo) -
132 		    (int)sizeof(struct hammer_fifo_tail);
133 
134 		/*
135 		 * If available space is insufficient for any payload
136 		 * we have to lay down a PAD.
137 		 *
138 		 * The minimum PAD is 8 bytes and the head and tail will
139 		 * overlap each other in that case.  PADs do not have
140 		 * sequence numbers or CRCs.
141 		 *
142 		 * A PAD may not start on a boundary.  That is, every
143 		 * 512-byte block in the UNDO/REDO FIFO must begin with
144 		 * a record containing a sequence number.
145 		 */
146 		if (n <= 0) {
147 			KKASSERT(bytes >= sizeof(struct hammer_fifo_tail));
148 			KKASSERT(((int)next_offset & HAMMER_UNDO_MASK) != 0);
149 			tail = (void *)((char *)redo + bytes - sizeof(*tail));
150 			if ((void *)redo != (void *)tail) {
151 				tail->tail_signature = HAMMER_TAIL_SIGNATURE;
152 				tail->tail_type = HAMMER_HEAD_TYPE_PAD;
153 				tail->tail_size = bytes;
154 			}
155 			redo->head.hdr_signature = HAMMER_HEAD_SIGNATURE;
156 			redo->head.hdr_type = HAMMER_HEAD_TYPE_PAD;
157 			redo->head.hdr_size = bytes;
158 			/* NO CRC OR SEQ NO */
159 			undomap->next_offset += bytes;
160 			hammer_modify_buffer_done(buffer);
161 			hammer_stats_redo += bytes;
162 			continue;
163 		}
164 
165 		/*
166 		 * When generating an inode-related REDO record we track
167 		 * the point in the UNDO/REDO FIFO containing the inode's
168 		 * earliest REDO record.  See hammer_generate_redo_sync().
169 		 *
170 		 * redo_fifo_next is cleared when an inode is staged to
171 		 * the backend and then used to determine how to reassign
172 		 * redo_fifo_start after the inode flush completes.
173 		 */
174 		if (ip) {
175 			redo->redo_objid = ip->obj_id;
176 			redo->redo_localization = ip->obj_localization;
177 			if ((ip->flags & HAMMER_INODE_RDIRTY) == 0) {
178 				ip->redo_fifo_start = next_offset;
179 				if (RB_INSERT(hammer_redo_rb_tree,
180 					      &hmp->rb_redo_root, ip)) {
181 					hpanic("cannot insert inode %p on "
182 					      "redo FIFO", ip);
183 				}
184 				ip->flags |= HAMMER_INODE_RDIRTY;
185 			}
186 			if (ip->redo_fifo_next == 0)
187 				ip->redo_fifo_next = next_offset;
188 		} else {
189 			redo->redo_objid = 0;
190 			redo->redo_localization = 0;
191 		}
192 
193 		/*
194 		 * Calculate the actual payload and recalculate the size
195 		 * of the media structure as necessary.  If no data buffer
196 		 * is supplied there is no payload.
197 		 */
198 		if (base == NULL) {
199 			n = 0;
200 		} else if (n > len) {
201 			n = len;
202 		}
203 		bytes = ((n + HAMMER_HEAD_ALIGN_MASK) &
204 			 ~HAMMER_HEAD_ALIGN_MASK) +
205 			(int)sizeof(struct hammer_fifo_redo) +
206 			(int)sizeof(struct hammer_fifo_tail);
207 		if (hammer_debug_general & 0x0080) {
208 			hdkprintf("redo %016jx %d %d\n",
209 				(intmax_t)next_offset, bytes, n);
210 		}
211 
212 		redo->head.hdr_signature = HAMMER_HEAD_SIGNATURE;
213 		redo->head.hdr_type = HAMMER_HEAD_TYPE_REDO;
214 		redo->head.hdr_size = bytes;
215 		redo->head.hdr_seq = hmp->undo_seqno++;
216 		redo->head.hdr_crc = 0;
217 		redo->redo_mtime = trans->time;
218 		redo->redo_offset = file_off;
219 		redo->redo_flags = flags;
220 
221 		/*
222 		 * Incremental payload.  If no payload we throw the entire
223 		 * len into redo_data_bytes and will not loop.
224 		 */
225 		if (base) {
226 			redo->redo_data_bytes = n;
227 			bcopy(base, redo + 1, n);
228 			len -= n;
229 			base = (char *)base + n;
230 			file_off += n;
231 		} else {
232 			redo->redo_data_bytes = len;
233 			file_off += len;
234 			len = 0;
235 		}
236 
237 		tail = (void *)((char *)redo + bytes - sizeof(*tail));
238 		tail->tail_signature = HAMMER_TAIL_SIGNATURE;
239 		tail->tail_type = HAMMER_HEAD_TYPE_REDO;
240 		tail->tail_size = bytes;
241 
242 		KKASSERT(bytes >= sizeof(redo->head));
243 		hammer_crc_set_fifo_head(&redo->head, bytes);
244 		undomap->next_offset += bytes;
245 		hammer_stats_redo += bytes;
246 
247 		/*
248 		 * Before we finish off the buffer we have to deal with any
249 		 * junk between the end of the media structure we just laid
250 		 * down and the UNDO alignment boundary.  We do this by laying
251 		 * down a dummy PAD.  Even though we will probably overwrite
252 		 * it almost immediately we have to do this so recovery runs
253 		 * can iterate the UNDO space without having to depend on
254 		 * the indices in the volume header.
255 		 *
256 		 * This dummy PAD will be overwritten on the next undo so
257 		 * we do not adjust undomap->next_offset.
258 		 */
259 		bytes = HAMMER_UNDO_ALIGN -
260 			((int)undomap->next_offset & HAMMER_UNDO_MASK);
261 		if (bytes != HAMMER_UNDO_ALIGN) {
262 			KKASSERT(bytes >= sizeof(struct hammer_fifo_tail));
263 			redo = (void *)(tail + 1);
264 			tail = (void *)((char *)redo + bytes - sizeof(*tail));
265 			if ((void *)redo != (void *)tail) {
266 				tail->tail_signature = HAMMER_TAIL_SIGNATURE;
267 				tail->tail_type = HAMMER_HEAD_TYPE_PAD;
268 				tail->tail_size = bytes;
269 			}
270 			redo->head.hdr_signature = HAMMER_HEAD_SIGNATURE;
271 			redo->head.hdr_type = HAMMER_HEAD_TYPE_PAD;
272 			redo->head.hdr_size = bytes;
273 			/* NO CRC OR SEQ NO */
274 		}
275 		hammer_modify_buffer_done(buffer);
276 		if (len == 0)
277 			break;
278 	}
279 	hammer_modify_volume_done(root_volume);
280 	hammer_unlock(&hmp->undo_lock);
281 
282 	if (buffer)
283 		hammer_rel_buffer(buffer, 0);
284 
285 	/*
286 	 * Make sure the nominal undo span contains at least one REDO_SYNC,
287 	 * otherwise the REDO recovery will not be triggered.
288 	 */
289 	if ((hmp->flags & HAMMER_MOUNT_REDO_SYNC) == 0 &&
290 	    flags != HAMMER_REDO_SYNC) {
291 		hammer_generate_redo_sync(trans);
292 	}
293 
294 	return(error);
295 }
296 
297 /*
298  * Generate a REDO SYNC record.  At least one such record must be generated
299  * in the nominal recovery span for the recovery code to be able to run
300  * REDOs outside of the span.
301  *
302  * The SYNC record contains the aggregate earliest UNDO/REDO FIFO offset
303  * for all inodes with active REDOs.  This changes dynamically as inodes
304  * get flushed.
305  *
306  * During recovery stage2 any new flush cycles must specify the original
307  * redo sync offset.  That way a crash will re-run the REDOs, at least
308  * up to the point where the UNDO FIFO does not overwrite the area.
309  */
310 void
311 hammer_generate_redo_sync(hammer_transaction_t trans)
312 {
313 	hammer_mount_t hmp = trans->hmp;
314 	hammer_inode_t ip;
315 	hammer_off_t redo_fifo_start;
316 
317 	if (hmp->flags & HAMMER_MOUNT_REDO_RECOVERY_RUN) {
318 		ip = NULL;
319 		redo_fifo_start = hmp->recover_stage2_offset;
320 	} else {
321 		ip = RB_FIRST(hammer_redo_rb_tree, &hmp->rb_redo_root);
322 		if (ip)
323 			redo_fifo_start = ip->redo_fifo_start;
324 		else
325 			redo_fifo_start = 0;
326 	}
327 	if (redo_fifo_start) {
328 		if (hammer_debug_io & 0x0004) {
329 			hdkprintf("SYNC IP %p %016jx\n",
330 				ip, (intmax_t)redo_fifo_start);
331 		}
332 		hammer_generate_redo(trans, NULL, redo_fifo_start,
333 				     HAMMER_REDO_SYNC, NULL, 0);
334 		trans->hmp->flags |= HAMMER_MOUNT_REDO_SYNC;
335 	}
336 }
337 
338 /*
339  * This is called when an inode is queued to the backend.
340  */
341 void
342 hammer_redo_fifo_start_flush(hammer_inode_t ip)
343 {
344 	ip->redo_fifo_next = 0;
345 }
346 
347 /*
348  * This is called when an inode backend flush is finished.  We have to make
349  * sure that RDIRTY is not set unless dirty bufs are present.  Dirty bufs
350  * can get destroyed through operations such as truncations and leave
351  * us with a stale redo_fifo_next.
352  */
353 void
354 hammer_redo_fifo_end_flush(hammer_inode_t ip)
355 {
356 	hammer_mount_t hmp = ip->hmp;
357 
358 	if (ip->flags & HAMMER_INODE_RDIRTY) {
359 		RB_REMOVE(hammer_redo_rb_tree, &hmp->rb_redo_root, ip);
360 		ip->flags &= ~HAMMER_INODE_RDIRTY;
361 	}
362 	if ((ip->flags & HAMMER_INODE_BUFS) == 0)
363 		ip->redo_fifo_next = 0;
364 	if (ip->redo_fifo_next) {
365 		ip->redo_fifo_start = ip->redo_fifo_next;
366 		if (RB_INSERT(hammer_redo_rb_tree, &hmp->rb_redo_root, ip)) {
367 			hpanic("cannot reinsert inode %p on redo FIFO", ip);
368 		}
369 		ip->flags |= HAMMER_INODE_RDIRTY;
370 	}
371 }
372