xref: /dragonfly/sys/vfs/hammer/hammer_redo.c (revision d9d67b59)
1 /*
2  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * HAMMER redo - REDO record support for the UNDO/REDO FIFO.
37  *
38  * See also hammer_undo.c
39  */
40 
41 #include "hammer.h"
42 
43 RB_GENERATE2(hammer_redo_rb_tree, hammer_inode, rb_redonode,
44 	     hammer_redo_rb_compare, hammer_off_t, redo_fifo_start);
45 
46 /*
47  * HAMMER version 4+ REDO support.
48  *
49  * REDO records are used to improve fsync() performance.  Instead of having
50  * to go through a complete double-flush cycle involving at least two disk
51  * synchronizations the fsync need only flush UNDO/REDO FIFO buffers through
52  * the related REDO records, which is a single synchronization requiring
53  * no track seeking.  If a recovery becomes necessary the recovery code
54  * will generate logical data writes based on the REDO records encountered.
55  * That is, the recovery code will UNDO any partial meta-data/data writes
56  * at the raw disk block level and then REDO the data writes at the logical
57  * level.
58  */
59 int
60 hammer_generate_redo(hammer_transaction_t trans, hammer_inode_t ip,
61 		     hammer_off_t file_off, uint32_t flags,
62 		     void *base, int len)
63 {
64 	hammer_mount_t hmp;
65 	hammer_volume_t root_volume;
66 	hammer_blockmap_t undomap;
67 	hammer_buffer_t buffer = NULL;
68 	hammer_fifo_redo_t redo;
69 	hammer_fifo_tail_t tail;
70 	hammer_off_t next_offset;
71 	int error;
72 	int bytes;
73 	int n;
74 
75 	/*
76 	 * Setup
77 	 */
78 	hmp = trans->hmp;
79 
80 	root_volume = trans->rootvol;
81 	undomap = &hmp->blockmap[HAMMER_ZONE_UNDO_INDEX];
82 
83 	/*
84 	 * No undo recursion when modifying the root volume
85 	 */
86 	hammer_modify_volume_noundo(NULL, root_volume);
87 	hammer_lock_ex(&hmp->undo_lock);
88 
89 	/* undo had better not roll over (loose test) */
90 	if (hammer_undo_space(trans) < len + HAMMER_BUFSIZE*3)
91 		hpanic("insufficient UNDO/REDO FIFO space for redo!");
92 
93 	/*
94 	 * Loop until the undo for the entire range has been laid down.
95 	 * Loop at least once (len might be 0 as a degenerate case).
96 	 */
97 	for (;;) {
98 		/*
99 		 * Fetch the layout offset in the UNDO FIFO, wrap it as
100 		 * necessary.
101 		 */
102 		if (undomap->next_offset == undomap->alloc_offset)
103 			undomap->next_offset = HAMMER_ENCODE_UNDO(0);
104 		next_offset = undomap->next_offset;
105 
106 		/*
107 		 * This is a tail-chasing FIFO, when we hit the start of a new
108 		 * buffer we don't have to read it in.
109 		 */
110 		if ((next_offset & HAMMER_BUFMASK) == 0) {
111 			redo = hammer_bnew(hmp, next_offset, &error, &buffer);
112 			hammer_format_undo(hmp,
113 					   redo, hmp->undo_seqno ^ 0x40000000);
114 		} else {
115 			redo = hammer_bread(hmp, next_offset, &error, &buffer);
116 		}
117 		if (error)
118 			break;
119 		hammer_modify_buffer_noundo(NULL, buffer);
120 
121 		/*
122 		 * Calculate how big a media structure fits up to the next
123 		 * alignment point and how large a data payload we can
124 		 * accomodate.
125 		 *
126 		 * If n calculates to 0 or negative there is no room for
127 		 * anything but a PAD.
128 		 */
129 		bytes = HAMMER_UNDO_ALIGN -
130 			((int)next_offset & HAMMER_UNDO_MASK);
131 		n = bytes -
132 		    (int)sizeof(struct hammer_fifo_redo) -
133 		    (int)sizeof(struct hammer_fifo_tail);
134 
135 		/*
136 		 * If available space is insufficient for any payload
137 		 * we have to lay down a PAD.
138 		 *
139 		 * The minimum PAD is 8 bytes and the head and tail will
140 		 * overlap each other in that case.  PADs do not have
141 		 * sequence numbers or CRCs.
142 		 *
143 		 * A PAD may not start on a boundary.  That is, every
144 		 * 512-byte block in the UNDO/REDO FIFO must begin with
145 		 * a record containing a sequence number.
146 		 */
147 		if (n <= 0) {
148 			KKASSERT(bytes >= sizeof(struct hammer_fifo_tail));
149 			KKASSERT(((int)next_offset & HAMMER_UNDO_MASK) != 0);
150 			tail = (void *)((char *)redo + bytes - sizeof(*tail));
151 			if ((void *)redo != (void *)tail) {
152 				tail->tail_signature = HAMMER_TAIL_SIGNATURE;
153 				tail->tail_type = HAMMER_HEAD_TYPE_PAD;
154 				tail->tail_size = bytes;
155 			}
156 			redo->head.hdr_signature = HAMMER_HEAD_SIGNATURE;
157 			redo->head.hdr_type = HAMMER_HEAD_TYPE_PAD;
158 			redo->head.hdr_size = bytes;
159 			/* NO CRC OR SEQ NO */
160 			undomap->next_offset += bytes;
161 			hammer_modify_buffer_done(buffer);
162 			hammer_stats_redo += bytes;
163 			continue;
164 		}
165 
166 		/*
167 		 * When generating an inode-related REDO record we track
168 		 * the point in the UNDO/REDO FIFO containing the inode's
169 		 * earliest REDO record.  See hammer_generate_redo_sync().
170 		 *
171 		 * redo_fifo_next is cleared when an inode is staged to
172 		 * the backend and then used to determine how to reassign
173 		 * redo_fifo_start after the inode flush completes.
174 		 */
175 		if (ip) {
176 			redo->redo_objid = ip->obj_id;
177 			redo->redo_localization = ip->obj_localization;
178 			if ((ip->flags & HAMMER_INODE_RDIRTY) == 0) {
179 				ip->redo_fifo_start = next_offset;
180 				if (RB_INSERT(hammer_redo_rb_tree,
181 					      &hmp->rb_redo_root, ip)) {
182 					hpanic("cannot insert inode %p on "
183 					      "redo FIFO", ip);
184 				}
185 				ip->flags |= HAMMER_INODE_RDIRTY;
186 			}
187 			if (ip->redo_fifo_next == 0)
188 				ip->redo_fifo_next = next_offset;
189 		} else {
190 			redo->redo_objid = 0;
191 			redo->redo_localization = 0;
192 		}
193 
194 		/*
195 		 * Calculate the actual payload and recalculate the size
196 		 * of the media structure as necessary.  If no data buffer
197 		 * is supplied there is no payload.
198 		 */
199 		if (base == NULL) {
200 			n = 0;
201 		} else if (n > len) {
202 			n = len;
203 		}
204 		bytes = HAMMER_HEAD_DOALIGN(n) +
205 			(int)sizeof(struct hammer_fifo_redo) +
206 			(int)sizeof(struct hammer_fifo_tail);
207 		if (hammer_debug_general & 0x0080) {
208 			hdkprintf("redo %016jx %d %d\n",
209 				(intmax_t)next_offset, bytes, n);
210 		}
211 
212 		redo->head.hdr_signature = HAMMER_HEAD_SIGNATURE;
213 		redo->head.hdr_type = HAMMER_HEAD_TYPE_REDO;
214 		redo->head.hdr_size = bytes;
215 		redo->head.hdr_seq = hmp->undo_seqno++;
216 		redo->head.hdr_crc = 0;
217 		redo->redo_offset = file_off;
218 		redo->redo_flags = flags;
219 
220 		/*
221 		 * Incremental payload.  If no payload we throw the entire
222 		 * len into redo_data_bytes and will not loop.
223 		 */
224 		if (base) {
225 			redo->redo_data_bytes = n;
226 			bcopy(base, redo + 1, n);
227 			len -= n;
228 			base = (char *)base + n;
229 			file_off += n;
230 		} else {
231 			redo->redo_data_bytes = len;
232 			file_off += len;
233 			len = 0;
234 		}
235 
236 		tail = (void *)((char *)redo + bytes - sizeof(*tail));
237 		tail->tail_signature = HAMMER_TAIL_SIGNATURE;
238 		tail->tail_type = HAMMER_HEAD_TYPE_REDO;
239 		tail->tail_size = bytes;
240 
241 		KKASSERT(bytes >= sizeof(redo->head));
242 		hammer_crc_set_fifo_head(hmp->version, &redo->head, bytes);
243 		undomap->next_offset += bytes;
244 		hammer_stats_redo += bytes;
245 
246 		/*
247 		 * Before we finish off the buffer we have to deal with any
248 		 * junk between the end of the media structure we just laid
249 		 * down and the UNDO alignment boundary.  We do this by laying
250 		 * down a dummy PAD.  Even though we will probably overwrite
251 		 * it almost immediately we have to do this so recovery runs
252 		 * can iterate the UNDO space without having to depend on
253 		 * the indices in the volume header.
254 		 *
255 		 * This dummy PAD will be overwritten on the next undo so
256 		 * we do not adjust undomap->next_offset.
257 		 */
258 		bytes = HAMMER_UNDO_ALIGN -
259 			((int)undomap->next_offset & HAMMER_UNDO_MASK);
260 		if (bytes != HAMMER_UNDO_ALIGN) {
261 			KKASSERT(bytes >= sizeof(struct hammer_fifo_tail));
262 			redo = (void *)(tail + 1);
263 			tail = (void *)((char *)redo + bytes - sizeof(*tail));
264 			if ((void *)redo != (void *)tail) {
265 				tail->tail_signature = HAMMER_TAIL_SIGNATURE;
266 				tail->tail_type = HAMMER_HEAD_TYPE_PAD;
267 				tail->tail_size = bytes;
268 			}
269 			redo->head.hdr_signature = HAMMER_HEAD_SIGNATURE;
270 			redo->head.hdr_type = HAMMER_HEAD_TYPE_PAD;
271 			redo->head.hdr_size = bytes;
272 			/* NO CRC OR SEQ NO */
273 		}
274 		hammer_modify_buffer_done(buffer);
275 		if (len == 0)
276 			break;
277 	}
278 	hammer_modify_volume_done(root_volume);
279 	hammer_unlock(&hmp->undo_lock);
280 
281 	if (buffer)
282 		hammer_rel_buffer(buffer, 0);
283 
284 	/*
285 	 * Make sure the nominal undo span contains at least one REDO_SYNC,
286 	 * otherwise the REDO recovery will not be triggered.
287 	 */
288 	if ((hmp->flags & HAMMER_MOUNT_REDO_SYNC) == 0 &&
289 	    flags != HAMMER_REDO_SYNC) {
290 		hammer_generate_redo_sync(trans);
291 	}
292 
293 	return(error);
294 }
295 
296 /*
297  * Generate a REDO SYNC record.  At least one such record must be generated
298  * in the nominal recovery span for the recovery code to be able to run
299  * REDOs outside of the span.
300  *
301  * The SYNC record contains the aggregate earliest UNDO/REDO FIFO offset
302  * for all inodes with active REDOs.  This changes dynamically as inodes
303  * get flushed.
304  *
305  * During recovery stage2 any new flush cycles must specify the original
306  * redo sync offset.  That way a crash will re-run the REDOs, at least
307  * up to the point where the UNDO FIFO does not overwrite the area.
308  */
309 void
310 hammer_generate_redo_sync(hammer_transaction_t trans)
311 {
312 	hammer_mount_t hmp = trans->hmp;
313 	hammer_inode_t ip;
314 	hammer_off_t redo_fifo_start;
315 
316 	if (hmp->flags & HAMMER_MOUNT_REDO_RECOVERY_RUN) {
317 		ip = NULL;
318 		redo_fifo_start = hmp->recover_stage2_offset;
319 	} else {
320 		ip = RB_FIRST(hammer_redo_rb_tree, &hmp->rb_redo_root);
321 		if (ip)
322 			redo_fifo_start = ip->redo_fifo_start;
323 		else
324 			redo_fifo_start = 0;
325 	}
326 	if (redo_fifo_start) {
327 		if (hammer_debug_io & 0x0004) {
328 			hdkprintf("SYNC IP %p %016jx\n",
329 				ip, (intmax_t)redo_fifo_start);
330 		}
331 		hammer_generate_redo(trans, NULL, redo_fifo_start,
332 				     HAMMER_REDO_SYNC, NULL, 0);
333 		trans->hmp->flags |= HAMMER_MOUNT_REDO_SYNC;
334 	}
335 }
336 
337 /*
338  * This is called when an inode is queued to the backend.
339  */
340 void
341 hammer_redo_fifo_start_flush(hammer_inode_t ip)
342 {
343 	ip->redo_fifo_next = 0;
344 }
345 
346 /*
347  * This is called when an inode backend flush is finished.  We have to make
348  * sure that RDIRTY is not set unless dirty bufs are present.  Dirty bufs
349  * can get destroyed through operations such as truncations and leave
350  * us with a stale redo_fifo_next.
351  */
352 void
353 hammer_redo_fifo_end_flush(hammer_inode_t ip)
354 {
355 	hammer_mount_t hmp = ip->hmp;
356 
357 	if (ip->flags & HAMMER_INODE_RDIRTY) {
358 		RB_REMOVE(hammer_redo_rb_tree, &hmp->rb_redo_root, ip);
359 		ip->flags &= ~HAMMER_INODE_RDIRTY;
360 	}
361 	if ((ip->flags & HAMMER_INODE_BUFS) == 0)
362 		ip->redo_fifo_next = 0;
363 	if (ip->redo_fifo_next) {
364 		ip->redo_fifo_start = ip->redo_fifo_next;
365 		if (RB_INSERT(hammer_redo_rb_tree, &hmp->rb_redo_root, ip)) {
366 			hpanic("cannot reinsert inode %p on redo FIFO", ip);
367 		}
368 		ip->flags |= HAMMER_INODE_RDIRTY;
369 	}
370 }
371