xref: /dragonfly/sys/vfs/hammer/hammer_vnops.c (revision b990a6be)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/mountctl.h>
36 #include <sys/namecache.h>
37 #include <sys/buf2.h>
38 #include <vfs/fifofs/fifo.h>
39 
40 #include "hammer.h"
41 
42 /*
43  * USERFS VNOPS
44  */
45 static int hammer_vop_fsync(struct vop_fsync_args *);
46 static int hammer_vop_read(struct vop_read_args *);
47 static int hammer_vop_write(struct vop_write_args *);
48 static int hammer_vop_access(struct vop_access_args *);
49 static int hammer_vop_advlock(struct vop_advlock_args *);
50 static int hammer_vop_close(struct vop_close_args *);
51 static int hammer_vop_ncreate(struct vop_ncreate_args *);
52 static int hammer_vop_getattr(struct vop_getattr_args *);
53 static int hammer_vop_nresolve(struct vop_nresolve_args *);
54 static int hammer_vop_nlookupdotdot(struct vop_nlookupdotdot_args *);
55 static int hammer_vop_nlink(struct vop_nlink_args *);
56 static int hammer_vop_nmkdir(struct vop_nmkdir_args *);
57 static int hammer_vop_nmknod(struct vop_nmknod_args *);
58 static int hammer_vop_open(struct vop_open_args *);
59 static int hammer_vop_print(struct vop_print_args *);
60 static int hammer_vop_readdir(struct vop_readdir_args *);
61 static int hammer_vop_readlink(struct vop_readlink_args *);
62 static int hammer_vop_nremove(struct vop_nremove_args *);
63 static int hammer_vop_nrename(struct vop_nrename_args *);
64 static int hammer_vop_nrmdir(struct vop_nrmdir_args *);
65 static int hammer_vop_markatime(struct vop_markatime_args *);
66 static int hammer_vop_setattr(struct vop_setattr_args *);
67 static int hammer_vop_strategy(struct vop_strategy_args *);
68 static int hammer_vop_bmap(struct vop_bmap_args *ap);
69 static int hammer_vop_nsymlink(struct vop_nsymlink_args *);
70 static int hammer_vop_nwhiteout(struct vop_nwhiteout_args *);
71 static int hammer_vop_ioctl(struct vop_ioctl_args *);
72 static int hammer_vop_mountctl(struct vop_mountctl_args *);
73 static int hammer_vop_kqfilter (struct vop_kqfilter_args *);
74 
75 static int hammer_vop_fifoclose (struct vop_close_args *);
76 static int hammer_vop_fiforead (struct vop_read_args *);
77 static int hammer_vop_fifowrite (struct vop_write_args *);
78 static int hammer_vop_fifokqfilter (struct vop_kqfilter_args *);
79 
80 struct vop_ops hammer_vnode_vops = {
81 	.vop_default =		vop_defaultop,
82 	.vop_fsync =		hammer_vop_fsync,
83 	.vop_getpages =		vop_stdgetpages,
84 	.vop_putpages =		vop_stdputpages,
85 	.vop_read =		hammer_vop_read,
86 	.vop_write =		hammer_vop_write,
87 	.vop_access =		hammer_vop_access,
88 	.vop_advlock =		hammer_vop_advlock,
89 	.vop_close =		hammer_vop_close,
90 	.vop_ncreate =		hammer_vop_ncreate,
91 	.vop_getattr =		hammer_vop_getattr,
92 	.vop_inactive =		hammer_vop_inactive,
93 	.vop_reclaim =		hammer_vop_reclaim,
94 	.vop_nresolve =		hammer_vop_nresolve,
95 	.vop_nlookupdotdot =	hammer_vop_nlookupdotdot,
96 	.vop_nlink =		hammer_vop_nlink,
97 	.vop_nmkdir =		hammer_vop_nmkdir,
98 	.vop_nmknod =		hammer_vop_nmknod,
99 	.vop_open =		hammer_vop_open,
100 	.vop_pathconf =		vop_stdpathconf,
101 	.vop_print =		hammer_vop_print,
102 	.vop_readdir =		hammer_vop_readdir,
103 	.vop_readlink =		hammer_vop_readlink,
104 	.vop_nremove =		hammer_vop_nremove,
105 	.vop_nrename =		hammer_vop_nrename,
106 	.vop_nrmdir =		hammer_vop_nrmdir,
107 	.vop_markatime =	hammer_vop_markatime,
108 	.vop_setattr =		hammer_vop_setattr,
109 	.vop_bmap =		hammer_vop_bmap,
110 	.vop_strategy =		hammer_vop_strategy,
111 	.vop_nsymlink =		hammer_vop_nsymlink,
112 	.vop_nwhiteout =	hammer_vop_nwhiteout,
113 	.vop_ioctl =		hammer_vop_ioctl,
114 	.vop_mountctl =		hammer_vop_mountctl,
115 	.vop_kqfilter =		hammer_vop_kqfilter
116 };
117 
118 struct vop_ops hammer_spec_vops = {
119 	.vop_default =		vop_defaultop,
120 	.vop_fsync =		hammer_vop_fsync,
121 	.vop_read =		vop_stdnoread,
122 	.vop_write =		vop_stdnowrite,
123 	.vop_access =		hammer_vop_access,
124 	.vop_close =		hammer_vop_close,
125 	.vop_markatime =	hammer_vop_markatime,
126 	.vop_getattr =		hammer_vop_getattr,
127 	.vop_inactive =		hammer_vop_inactive,
128 	.vop_reclaim =		hammer_vop_reclaim,
129 	.vop_setattr =		hammer_vop_setattr
130 };
131 
132 struct vop_ops hammer_fifo_vops = {
133 	.vop_default =		fifo_vnoperate,
134 	.vop_fsync =		hammer_vop_fsync,
135 	.vop_read =		hammer_vop_fiforead,
136 	.vop_write =		hammer_vop_fifowrite,
137 	.vop_access =		hammer_vop_access,
138 	.vop_close =		hammer_vop_fifoclose,
139 	.vop_markatime =	hammer_vop_markatime,
140 	.vop_getattr =		hammer_vop_getattr,
141 	.vop_inactive =		hammer_vop_inactive,
142 	.vop_reclaim =		hammer_vop_reclaim,
143 	.vop_setattr =		hammer_vop_setattr,
144 	.vop_kqfilter =		hammer_vop_fifokqfilter
145 };
146 
147 static __inline
148 void
149 hammer_knote(struct vnode *vp, int flags)
150 {
151 	if (flags)
152 		KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, flags);
153 }
154 
155 static int hammer_dounlink(hammer_transaction_t trans, struct nchandle *nch,
156 			   struct vnode *dvp, struct ucred *cred,
157 			   int flags, int isdir);
158 static int hammer_vop_strategy_read(struct vop_strategy_args *ap);
159 static int hammer_vop_strategy_write(struct vop_strategy_args *ap);
160 
161 /*
162  * hammer_vop_fsync { vp, waitfor }
163  *
164  * fsync() an inode to disk and wait for it to be completely committed
165  * such that the information would not be undone if a crash occured after
166  * return.
167  *
168  * NOTE: HAMMER's fsync()'s are going to remain expensive until we implement
169  *	 a REDO log.  A sysctl is provided to relax HAMMER's fsync()
170  *	 operation.
171  *
172  *	 Ultimately the combination of a REDO log and use of fast storage
173  *	 to front-end cluster caches will make fsync fast, but it aint
174  *	 here yet.  And, in anycase, we need real transactional
175  *	 all-or-nothing features which are not restricted to a single file.
176  */
177 static
178 int
179 hammer_vop_fsync(struct vop_fsync_args *ap)
180 {
181 	hammer_inode_t ip = VTOI(ap->a_vp);
182 	hammer_mount_t hmp = ip->hmp;
183 	int waitfor = ap->a_waitfor;
184 	int mode;
185 
186 	lwkt_gettoken(&hmp->fs_token);
187 
188 	/*
189 	 * Fsync rule relaxation (default is either full synchronous flush
190 	 * or REDO semantics with synchronous flush).
191 	 */
192 	if (ap->a_flags & VOP_FSYNC_SYSCALL) {
193 		switch(hammer_fsync_mode) {
194 		case 0:
195 mode0:
196 			/* no REDO, full synchronous flush */
197 			goto skip;
198 		case 1:
199 mode1:
200 			/* no REDO, full asynchronous flush */
201 			if (waitfor == MNT_WAIT)
202 				waitfor = MNT_NOWAIT;
203 			goto skip;
204 		case 2:
205 			/* REDO semantics, synchronous flush */
206 			if (hmp->version < HAMMER_VOL_VERSION_FOUR)
207 				goto mode0;
208 			mode = HAMMER_FLUSH_UNDOS_AUTO;
209 			break;
210 		case 3:
211 			/* REDO semantics, relaxed asynchronous flush */
212 			if (hmp->version < HAMMER_VOL_VERSION_FOUR)
213 				goto mode1;
214 			mode = HAMMER_FLUSH_UNDOS_RELAXED;
215 			if (waitfor == MNT_WAIT)
216 				waitfor = MNT_NOWAIT;
217 			break;
218 		case 4:
219 			/* ignore the fsync() system call */
220 			lwkt_reltoken(&hmp->fs_token);
221 			return(0);
222 		default:
223 			/* we have to do something */
224 			mode = HAMMER_FLUSH_UNDOS_RELAXED;
225 			if (waitfor == MNT_WAIT)
226 				waitfor = MNT_NOWAIT;
227 			break;
228 		}
229 
230 		/*
231 		 * Fast fsync only needs to flush the UNDO/REDO fifo if
232 		 * HAMMER_INODE_REDO is non-zero and the only modifications
233 		 * made to the file are write or write-extends.
234 		 */
235 		if ((ip->flags & HAMMER_INODE_REDO) &&
236 		    (ip->flags & HAMMER_INODE_MODMASK_NOREDO) == 0) {
237 			++hammer_count_fsyncs;
238 			hammer_flusher_flush_undos(hmp, mode);
239 			ip->redo_count = 0;
240 			if (ip->vp && (ip->flags & HAMMER_INODE_MODMASK) == 0)
241 				vclrisdirty(ip->vp);
242 			lwkt_reltoken(&hmp->fs_token);
243 			return(0);
244 		}
245 
246 		/*
247 		 * REDO is enabled by fsync(), the idea being we really only
248 		 * want to lay down REDO records when programs are using
249 		 * fsync() heavily.  The first fsync() on the file starts
250 		 * the gravy train going and later fsync()s keep it hot by
251 		 * resetting the redo_count.
252 		 *
253 		 * We weren't running REDOs before now so we have to fall
254 		 * through and do a full fsync of what we have.
255 		 */
256 		if (hmp->version >= HAMMER_VOL_VERSION_FOUR &&
257 		    (hmp->flags & HAMMER_MOUNT_REDO_RECOVERY_RUN) == 0) {
258 			ip->flags |= HAMMER_INODE_REDO;
259 			ip->redo_count = 0;
260 		}
261 	}
262 skip:
263 
264 	/*
265 	 * Do a full flush sequence.
266 	 *
267 	 * Attempt to release the vnode while waiting for the inode to
268 	 * finish flushing.  This can really mess up inactive->reclaim
269 	 * sequences so only do it if the vnode is active.
270 	 *
271 	 * WARNING! The VX lock functions must be used.  vn_lock() will
272 	 *	    fail when this is part of a VOP_RECLAIM sequence.
273 	 */
274 	++hammer_count_fsyncs;
275 	vfsync(ap->a_vp, waitfor, 1, NULL, NULL);
276 	hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
277 	if (waitfor == MNT_WAIT) {
278 		int dorelock;
279 
280 		if ((ap->a_vp->v_flag & VRECLAIMED) == 0) {
281 			vx_unlock(ap->a_vp);
282 			dorelock = 1;
283 		} else {
284 			dorelock = 0;
285 		}
286 		hammer_wait_inode(ip);
287 		if (dorelock)
288 			vx_lock(ap->a_vp);
289 	}
290 	if (ip->vp && (ip->flags & HAMMER_INODE_MODMASK) == 0)
291 		vclrisdirty(ip->vp);
292 	lwkt_reltoken(&hmp->fs_token);
293 	return (ip->error);
294 }
295 
296 /*
297  * hammer_vop_read { vp, uio, ioflag, cred }
298  *
299  * MPSAFE (for the cache safe does not require fs_token)
300  */
301 static
302 int
303 hammer_vop_read(struct vop_read_args *ap)
304 {
305 	struct hammer_transaction trans;
306 	hammer_inode_t ip;
307 	hammer_mount_t hmp;
308 	off_t offset;
309 	struct buf *bp;
310 	struct uio *uio;
311 	int error;
312 	int n;
313 	int seqcount;
314 	int ioseqcount;
315 	int blksize;
316 	int bigread;
317 	int got_trans;
318 	size_t resid;
319 
320 	if (ap->a_vp->v_type != VREG)
321 		return (EINVAL);
322 	ip = VTOI(ap->a_vp);
323 	hmp = ip->hmp;
324 	error = 0;
325 	got_trans = 0;
326 	uio = ap->a_uio;
327 
328 	/*
329 	 * Attempt to shortcut directly to the VM object using lwbufs.
330 	 * This is much faster than instantiating buffer cache buffers.
331 	 */
332 	resid = uio->uio_resid;
333 	error = vop_helper_read_shortcut(ap);
334 	hammer_stats_file_read += resid - uio->uio_resid;
335 	if (error)
336 		return (error);
337 	if (uio->uio_resid == 0)
338 		goto finished;
339 
340 	/*
341 	 * Allow the UIO's size to override the sequential heuristic.
342 	 */
343 	blksize = hammer_blocksize(uio->uio_offset);
344 	seqcount = (uio->uio_resid + (MAXBSIZE - 1)) / MAXBSIZE;
345 	ioseqcount = (ap->a_ioflag >> 16);
346 	if (seqcount < ioseqcount)
347 		seqcount = ioseqcount;
348 
349 	/*
350 	 * If reading or writing a huge amount of data we have to break
351 	 * atomicy and allow the operation to be interrupted by a signal
352 	 * or it can DOS the machine.
353 	 */
354 	bigread = (uio->uio_resid > 100 * 1024 * 1024);
355 
356 	/*
357 	 * Access the data typically in HAMMER_BUFSIZE blocks via the
358 	 * buffer cache, but HAMMER may use a variable block size based
359 	 * on the offset.
360 	 *
361 	 * XXX Temporary hack, delay the start transaction while we remain
362 	 *     MPSAFE.  NOTE: ino_data.size cannot change while vnode is
363 	 *     locked-shared.
364 	 */
365 	while (uio->uio_resid > 0 && uio->uio_offset < ip->ino_data.size) {
366 		int64_t base_offset;
367 		int64_t file_limit;
368 
369 		blksize = hammer_blocksize(uio->uio_offset);
370 		offset = (int)uio->uio_offset & (blksize - 1);
371 		base_offset = uio->uio_offset - offset;
372 
373 		if (bigread && (error = hammer_signal_check(ip->hmp)) != 0)
374 			break;
375 
376 		/*
377 		 * MPSAFE
378 		 */
379 		bp = getblk(ap->a_vp, base_offset, blksize, 0, 0);
380 		if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
381 			bp->b_flags &= ~B_AGE;
382 			error = 0;
383 			goto skip;
384 		}
385 		if (ap->a_ioflag & IO_NRDELAY) {
386 			bqrelse(bp);
387 			return (EWOULDBLOCK);
388 		}
389 
390 		/*
391 		 * MPUNSAFE
392 		 */
393 		if (got_trans == 0) {
394 			hammer_start_transaction(&trans, ip->hmp);
395 			got_trans = 1;
396 		}
397 
398 		/*
399 		 * NOTE: A valid bp has already been acquired, but was not
400 		 *	 B_CACHE.
401 		 */
402 		if (hammer_cluster_enable) {
403 			/*
404 			 * Use file_limit to prevent cluster_read() from
405 			 * creating buffers of the wrong block size past
406 			 * the demarc.
407 			 */
408 			file_limit = ip->ino_data.size;
409 			if (base_offset < HAMMER_XDEMARC &&
410 			    file_limit > HAMMER_XDEMARC) {
411 				file_limit = HAMMER_XDEMARC;
412 			}
413 			error = cluster_readx(ap->a_vp,
414 					     file_limit, base_offset,
415 					     blksize, B_NOTMETA,
416 					     uio->uio_resid,
417 					     seqcount * MAXBSIZE,
418 					     &bp);
419 		} else {
420 			error = breadnx(ap->a_vp, base_offset,
421 					blksize, B_NOTMETA,
422 					NULL, NULL, 0, &bp);
423 		}
424 		if (error) {
425 			brelse(bp);
426 			break;
427 		}
428 skip:
429 		if ((hammer_debug_io & 0x0001) && (bp->b_flags & B_IOISSUED)) {
430 			hdkprintf("zone2_offset %016jx read file %016jx@%016jx\n",
431 				(intmax_t)bp->b_bio2.bio_offset,
432 				(intmax_t)ip->obj_id,
433 				(intmax_t)bp->b_loffset);
434 		}
435 		bp->b_flags &= ~B_IOISSUED;
436 		if (blksize == HAMMER_XBUFSIZE)
437 			bp->b_flags |= B_CLUSTEROK;
438 
439 		n = blksize - offset;
440 		if (n > uio->uio_resid)
441 			n = uio->uio_resid;
442 		if (n > ip->ino_data.size - uio->uio_offset)
443 			n = (int)(ip->ino_data.size - uio->uio_offset);
444 
445 		/*
446 		 * Set B_AGE, data has a lower priority than meta-data.
447 		 *
448 		 * Use a hold/unlock/drop sequence to run the uiomove
449 		 * with the buffer unlocked, avoiding deadlocks against
450 		 * read()s on mmap()'d spaces.
451 		 */
452 		bp->b_flags |= B_AGE;
453 		error = uiomovebp(bp, (char *)bp->b_data + offset, n, uio);
454 		bqrelse(bp);
455 
456 		if (error)
457 			break;
458 		hammer_stats_file_read += n;
459 	}
460 
461 finished:
462 
463 	/*
464 	 * Try to update the atime with just the inode lock for maximum
465 	 * concurrency.  If we can't shortcut it we have to get the full
466 	 * blown transaction.
467 	 */
468 	if (got_trans == 0 && hammer_update_atime_quick(ip) < 0) {
469 		hammer_start_transaction(&trans, ip->hmp);
470 		got_trans = 1;
471 	}
472 
473 	if (got_trans) {
474 		if ((ip->flags & HAMMER_INODE_RO) == 0 &&
475 		    (ip->hmp->mp->mnt_flag & MNT_NOATIME) == 0) {
476 			lwkt_gettoken(&hmp->fs_token);
477 			ip->ino_data.atime = trans.time;
478 			hammer_modify_inode(&trans, ip, HAMMER_INODE_ATIME);
479 			hammer_done_transaction(&trans);
480 			lwkt_reltoken(&hmp->fs_token);
481 		} else {
482 			hammer_done_transaction(&trans);
483 		}
484 	}
485 	return (error);
486 }
487 
488 /*
489  * hammer_vop_write { vp, uio, ioflag, cred }
490  */
491 static
492 int
493 hammer_vop_write(struct vop_write_args *ap)
494 {
495 	struct hammer_transaction trans;
496 	hammer_inode_t ip;
497 	hammer_mount_t hmp;
498 	thread_t td;
499 	struct uio *uio;
500 	int offset;
501 	off_t base_offset;
502 	int64_t cluster_eof;
503 	struct buf *bp;
504 	int kflags;
505 	int error;
506 	int n;
507 	int flags;
508 	int seqcount;
509 	int bigwrite;
510 
511 	if (ap->a_vp->v_type != VREG)
512 		return (EINVAL);
513 	ip = VTOI(ap->a_vp);
514 	hmp = ip->hmp;
515 	error = 0;
516 	kflags = 0;
517 	seqcount = ap->a_ioflag >> 16;
518 
519 	if (ip->flags & HAMMER_INODE_RO)
520 		return (EROFS);
521 
522 	/*
523 	 * Create a transaction to cover the operations we perform.
524 	 */
525 	hammer_start_transaction(&trans, hmp);
526 	uio = ap->a_uio;
527 
528 	/*
529 	 * Check append mode
530 	 */
531 	if (ap->a_ioflag & IO_APPEND)
532 		uio->uio_offset = ip->ino_data.size;
533 
534 	/*
535 	 * Check for illegal write offsets.  Valid range is 0...2^63-1.
536 	 *
537 	 * NOTE: the base_off assignment is required to work around what
538 	 * I consider to be a GCC-4 optimization bug.
539 	 */
540 	if (uio->uio_offset < 0) {
541 		hammer_done_transaction(&trans);
542 		return (EFBIG);
543 	}
544 	base_offset = uio->uio_offset + uio->uio_resid;	/* work around gcc-4 */
545 	if (uio->uio_resid > 0 && base_offset <= uio->uio_offset) {
546 		hammer_done_transaction(&trans);
547 		return (EFBIG);
548 	}
549 
550 	if (uio->uio_resid > 0 && (td = uio->uio_td) != NULL && td->td_proc &&
551 	    base_offset > td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
552 		hammer_done_transaction(&trans);
553 		lwpsignal(td->td_proc, td->td_lwp, SIGXFSZ);
554 		return (EFBIG);
555 	}
556 
557 	/*
558 	 * If reading or writing a huge amount of data we have to break
559 	 * atomicy and allow the operation to be interrupted by a signal
560 	 * or it can DOS the machine.
561 	 *
562 	 * Preset redo_count so we stop generating REDOs earlier if the
563 	 * limit is exceeded.
564 	 *
565 	 * redo_count is heuristical, SMP races are ok
566 	 */
567 	bigwrite = (uio->uio_resid > 100 * 1024 * 1024);
568 	if ((ip->flags & HAMMER_INODE_REDO) &&
569 	    ip->redo_count < hammer_limit_redo) {
570 		ip->redo_count += uio->uio_resid;
571 	}
572 
573 	/*
574 	 * Access the data typically in HAMMER_BUFSIZE blocks via the
575 	 * buffer cache, but HAMMER may use a variable block size based
576 	 * on the offset.
577 	 */
578 	while (uio->uio_resid > 0) {
579 		int fixsize = 0;
580 		int blksize;
581 		int blkmask;
582 		int trivial;
583 		int endofblk;
584 		off_t nsize;
585 
586 		if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_WRITE)) != 0)
587 			break;
588 		if (bigwrite && (error = hammer_signal_check(hmp)) != 0)
589 			break;
590 
591 		blksize = hammer_blocksize(uio->uio_offset);
592 
593 		/*
594 		 * Control the number of pending records associated with
595 		 * this inode.  If too many have accumulated start a
596 		 * flush.  Try to maintain a pipeline with the flusher.
597 		 *
598 		 * NOTE: It is possible for other sources to grow the
599 		 *	 records but not necessarily issue another flush,
600 		 *	 so use a timeout and ensure that a re-flush occurs.
601 		 */
602 		if (ip->rsv_recs >= hammer_limit_inode_recs) {
603 			lwkt_gettoken(&hmp->fs_token);
604 			hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
605 			while (ip->rsv_recs >= hammer_limit_inode_recs * 2) {
606 				ip->flags |= HAMMER_INODE_RECSW;
607 				tsleep(&ip->rsv_recs, 0, "hmrwww", hz);
608 				hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
609 			}
610 			lwkt_reltoken(&hmp->fs_token);
611 		}
612 
613 		/*
614 		 * Do not allow HAMMER to blow out the buffer cache.  Very
615 		 * large UIOs can lockout other processes due to bwillwrite()
616 		 * mechanics.
617 		 *
618 		 * The hammer inode is not locked during these operations.
619 		 * The vnode is locked which can interfere with the pageout
620 		 * daemon for non-UIO_NOCOPY writes but should not interfere
621 		 * with the buffer cache.  Even so, we cannot afford to
622 		 * allow the pageout daemon to build up too many dirty buffer
623 		 * cache buffers.
624 		 *
625 		 * Only call this if we aren't being recursively called from
626 		 * a virtual disk device (vn), else we may deadlock.
627 		 */
628 		if ((ap->a_ioflag & IO_RECURSE) == 0)
629 			bwillwrite(blksize);
630 
631 		/*
632 		 * Calculate the blocksize at the current offset and figure
633 		 * out how much we can actually write.
634 		 */
635 		blkmask = blksize - 1;
636 		offset = (int)uio->uio_offset & blkmask;
637 		base_offset = uio->uio_offset & ~(int64_t)blkmask;
638 		n = blksize - offset;
639 		if (n > uio->uio_resid) {
640 			n = uio->uio_resid;
641 			endofblk = 0;
642 		} else {
643 			endofblk = 1;
644 		}
645 		nsize = uio->uio_offset + n;
646 		if (nsize > ip->ino_data.size) {
647 			if (uio->uio_offset > ip->ino_data.size)
648 				trivial = 0;
649 			else
650 				trivial = 1;
651 			nvextendbuf(ap->a_vp,
652 				    ip->ino_data.size,
653 				    nsize,
654 				    hammer_blocksize(ip->ino_data.size),
655 				    hammer_blocksize(nsize),
656 				    hammer_blockoff(ip->ino_data.size),
657 				    hammer_blockoff(nsize),
658 				    trivial);
659 			fixsize = 1;
660 			kflags |= NOTE_EXTEND;
661 		}
662 
663 		if (uio->uio_segflg == UIO_NOCOPY) {
664 			/*
665 			 * Issuing a write with the same data backing the
666 			 * buffer.  Instantiate the buffer to collect the
667 			 * backing vm pages, then read-in any missing bits.
668 			 *
669 			 * This case is used by vop_stdputpages().
670 			 */
671 			bp = getblk(ap->a_vp, base_offset,
672 				    blksize, GETBLK_BHEAVY, 0);
673 			if ((bp->b_flags & B_CACHE) == 0) {
674 				bqrelse(bp);
675 				error = bread(ap->a_vp, base_offset,
676 					      blksize, &bp);
677 			}
678 		} else if (offset == 0 && uio->uio_resid >= blksize) {
679 			/*
680 			 * Even though we are entirely overwriting the buffer
681 			 * we may still have to zero it out to avoid a
682 			 * mmap/write visibility issue.
683 			 */
684 			bp = getblk(ap->a_vp, base_offset, blksize, GETBLK_BHEAVY, 0);
685 			if ((bp->b_flags & B_CACHE) == 0)
686 				vfs_bio_clrbuf(bp);
687 		} else if (base_offset >= ip->ino_data.size) {
688 			/*
689 			 * If the base offset of the buffer is beyond the
690 			 * file EOF, we don't have to issue a read.
691 			 */
692 			bp = getblk(ap->a_vp, base_offset,
693 				    blksize, GETBLK_BHEAVY, 0);
694 			vfs_bio_clrbuf(bp);
695 		} else {
696 			/*
697 			 * Partial overwrite, read in any missing bits then
698 			 * replace the portion being written.
699 			 */
700 			error = bread(ap->a_vp, base_offset, blksize, &bp);
701 			if (error == 0)
702 				bheavy(bp);
703 		}
704 		if (error == 0)
705 			error = uiomovebp(bp, bp->b_data + offset, n, uio);
706 
707 		lwkt_gettoken(&hmp->fs_token);
708 
709 		/*
710 		 * Generate REDO records if enabled and redo_count will not
711 		 * exceeded the limit.
712 		 *
713 		 * If redo_count exceeds the limit we stop generating records
714 		 * and clear HAMMER_INODE_REDO.  This will cause the next
715 		 * fsync() to do a full meta-data sync instead of just an
716 		 * UNDO/REDO fifo update.
717 		 *
718 		 * When clearing HAMMER_INODE_REDO any pre-existing REDOs
719 		 * will still be tracked.  The tracks will be terminated
720 		 * when the related meta-data (including possible data
721 		 * modifications which are not tracked via REDO) is
722 		 * flushed.
723 		 */
724 		if ((ip->flags & HAMMER_INODE_REDO) && error == 0) {
725 			if (ip->redo_count < hammer_limit_redo) {
726 				bp->b_flags |= B_VFSFLAG1;
727 				error = hammer_generate_redo(&trans, ip,
728 						     base_offset + offset,
729 						     HAMMER_REDO_WRITE,
730 						     bp->b_data + offset,
731 						     (size_t)n);
732 			} else {
733 				ip->flags &= ~HAMMER_INODE_REDO;
734 			}
735 		}
736 
737 		/*
738 		 * If we screwed up we have to undo any VM size changes we
739 		 * made.
740 		 */
741 		if (error) {
742 			brelse(bp);
743 			if (fixsize) {
744 				nvtruncbuf(ap->a_vp, ip->ino_data.size,
745 					  hammer_blocksize(ip->ino_data.size),
746 					  hammer_blockoff(ip->ino_data.size),
747 					  0);
748 			}
749 			lwkt_reltoken(&hmp->fs_token);
750 			break;
751 		}
752 		kflags |= NOTE_WRITE;
753 		hammer_stats_file_write += n;
754 		if (blksize == HAMMER_XBUFSIZE)
755 			bp->b_flags |= B_CLUSTEROK;
756 		if (ip->ino_data.size < uio->uio_offset) {
757 			ip->ino_data.size = uio->uio_offset;
758 			flags = HAMMER_INODE_SDIRTY;
759 		} else {
760 			flags = 0;
761 		}
762 		ip->ino_data.mtime = trans.time;
763 		flags |= HAMMER_INODE_MTIME | HAMMER_INODE_BUFS;
764 		hammer_modify_inode(&trans, ip, flags);
765 
766 		/*
767 		 * Once we dirty the buffer any cached zone-X offset
768 		 * becomes invalid.  HAMMER NOTE: no-history mode cannot
769 		 * allow overwriting over the same data sector unless
770 		 * we provide UNDOs for the old data, which we don't.
771 		 */
772 		bp->b_bio2.bio_offset = NOOFFSET;
773 
774 		lwkt_reltoken(&hmp->fs_token);
775 
776 		/*
777 		 * Final buffer disposition.
778 		 *
779 		 * Because meta-data updates are deferred, HAMMER is
780 		 * especially sensitive to excessive bdwrite()s because
781 		 * the I/O stream is not broken up by disk reads.  So the
782 		 * buffer cache simply cannot keep up.
783 		 *
784 		 * WARNING!  blksize is variable.  cluster_write() is
785 		 *	     expected to not blow up if it encounters
786 		 *	     buffers that do not match the passed blksize.
787 		 *
788 		 * NOTE!  Hammer shouldn't need to bawrite()/cluster_write().
789 		 *	  The ip->rsv_recs check should burst-flush the data.
790 		 *	  If we queue it immediately the buf could be left
791 		 *	  locked on the device queue for a very long time.
792 		 *
793 		 *	  However, failing to flush a dirty buffer out when
794 		 *        issued from the pageout daemon can result in a low
795 		 *        memory deadlock against bio_page_alloc(), so we
796 		 *	  have to bawrite() on IO_ASYNC as well.
797 		 *
798 		 * NOTE!  To avoid degenerate stalls due to mismatched block
799 		 *	  sizes we only honor IO_DIRECT on the write which
800 		 *	  abuts the end of the buffer.  However, we must
801 		 *	  honor IO_SYNC in case someone is silly enough to
802 		 *	  configure a HAMMER file as swap, or when HAMMER
803 		 *	  is serving NFS (for commits).  Ick ick.
804 		 */
805 		bp->b_flags |= B_AGE;
806 		if (blksize == HAMMER_XBUFSIZE)
807 			bp->b_flags |= B_CLUSTEROK;
808 
809 		if (ap->a_ioflag & IO_SYNC) {
810 			bwrite(bp);
811 		} else if ((ap->a_ioflag & IO_DIRECT) && endofblk) {
812 			bawrite(bp);
813 		} else if (ap->a_ioflag & IO_ASYNC) {
814 			bawrite(bp);
815 		} else if (hammer_cluster_enable &&
816 			   !(ap->a_vp->v_mount->mnt_flag & MNT_NOCLUSTERW)) {
817 			if (base_offset < HAMMER_XDEMARC)
818 				cluster_eof = hammer_blockdemarc(base_offset,
819 							 ip->ino_data.size);
820 			else
821 				cluster_eof = ip->ino_data.size;
822 			cluster_write(bp, cluster_eof, blksize, seqcount);
823 		} else {
824 			bdwrite(bp);
825 		}
826 	}
827 	hammer_done_transaction(&trans);
828 	hammer_knote(ap->a_vp, kflags);
829 
830 	return (error);
831 }
832 
833 /*
834  * hammer_vop_access { vp, mode, cred }
835  *
836  * MPSAFE - does not require fs_token
837  */
838 static
839 int
840 hammer_vop_access(struct vop_access_args *ap)
841 {
842 	hammer_inode_t ip = VTOI(ap->a_vp);
843 	uid_t uid;
844 	gid_t gid;
845 	int error;
846 
847 	uid = hammer_to_unix_xid(&ip->ino_data.uid);
848 	gid = hammer_to_unix_xid(&ip->ino_data.gid);
849 
850 	error = vop_helper_access(ap, uid, gid, ip->ino_data.mode,
851 				  ip->ino_data.uflags);
852 	return (error);
853 }
854 
855 /*
856  * hammer_vop_advlock { vp, id, op, fl, flags }
857  *
858  * MPSAFE - does not require fs_token
859  */
860 static
861 int
862 hammer_vop_advlock(struct vop_advlock_args *ap)
863 {
864 	hammer_inode_t ip = VTOI(ap->a_vp);
865 
866 	return (lf_advlock(ap, &ip->advlock, ip->ino_data.size));
867 }
868 
869 /*
870  * hammer_vop_close { vp, fflag }
871  *
872  * We can only sync-on-close for normal closes.  XXX disabled for now.
873  */
874 static
875 int
876 hammer_vop_close(struct vop_close_args *ap)
877 {
878 #if 0
879 	struct vnode *vp = ap->a_vp;
880 	hammer_inode_t ip = VTOI(vp);
881 	int waitfor;
882 	if (ip->flags & (HAMMER_INODE_CLOSESYNC|HAMMER_INODE_CLOSEASYNC)) {
883 		if (vn_islocked(vp) == LK_EXCLUSIVE &&
884 		    (vp->v_flag & (VINACTIVE|VRECLAIMED)) == 0) {
885 			if (ip->flags & HAMMER_INODE_CLOSESYNC)
886 				waitfor = MNT_WAIT;
887 			else
888 				waitfor = MNT_NOWAIT;
889 			ip->flags &= ~(HAMMER_INODE_CLOSESYNC |
890 				       HAMMER_INODE_CLOSEASYNC);
891 			VOP_FSYNC(vp, MNT_NOWAIT, waitfor);
892 		}
893 	}
894 #endif
895 	return (vop_stdclose(ap));
896 }
897 
898 /*
899  * hammer_vop_ncreate { nch, dvp, vpp, cred, vap }
900  *
901  * The operating system has already ensured that the directory entry
902  * does not exist and done all appropriate namespace locking.
903  */
904 static
905 int
906 hammer_vop_ncreate(struct vop_ncreate_args *ap)
907 {
908 	struct hammer_transaction trans;
909 	hammer_inode_t dip;
910 	hammer_inode_t nip;
911 	struct nchandle *nch;
912 	hammer_mount_t hmp;
913 	int error;
914 
915 	nch = ap->a_nch;
916 	dip = VTOI(ap->a_dvp);
917 	hmp = dip->hmp;
918 
919 	if (dip->flags & HAMMER_INODE_RO)
920 		return (EROFS);
921 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
922 		return (error);
923 
924 	/*
925 	 * Create a transaction to cover the operations we perform.
926 	 */
927 	lwkt_gettoken(&hmp->fs_token);
928 	hammer_start_transaction(&trans, hmp);
929 
930 	/*
931 	 * Create a new filesystem object of the requested type.  The
932 	 * returned inode will be referenced and shared-locked to prevent
933 	 * it from being moved to the flusher.
934 	 */
935 	error = hammer_create_inode(&trans, ap->a_vap, ap->a_cred,
936 				    dip, nch->ncp->nc_name, nch->ncp->nc_nlen,
937 				    NULL, &nip);
938 	if (error) {
939 		hkprintf("hammer_create_inode error %d\n", error);
940 		hammer_done_transaction(&trans);
941 		*ap->a_vpp = NULL;
942 		lwkt_reltoken(&hmp->fs_token);
943 		return (error);
944 	}
945 
946 	/*
947 	 * Add the new filesystem object to the directory.  This will also
948 	 * bump the inode's link count.
949 	 */
950 	error = hammer_ip_add_direntry(&trans, dip,
951 					nch->ncp->nc_name, nch->ncp->nc_nlen,
952 					nip);
953 	if (error)
954 		hkprintf("hammer_ip_add_direntry error %d\n", error);
955 
956 	/*
957 	 * Finish up.
958 	 */
959 	if (error) {
960 		hammer_rel_inode(nip, 0);
961 		hammer_done_transaction(&trans);
962 		*ap->a_vpp = NULL;
963 	} else {
964 		error = hammer_get_vnode(nip, ap->a_vpp);
965 		hammer_done_transaction(&trans);
966 		hammer_rel_inode(nip, 0);
967 		if (error == 0) {
968 			cache_setunresolved(ap->a_nch);
969 			cache_setvp(ap->a_nch, *ap->a_vpp);
970 		}
971 		hammer_knote(ap->a_dvp, NOTE_WRITE);
972 	}
973 	lwkt_reltoken(&hmp->fs_token);
974 	return (error);
975 }
976 
977 /*
978  * hammer_vop_getattr { vp, vap }
979  *
980  * Retrieve an inode's attribute information.  When accessing inodes
981  * historically we fake the atime field to ensure consistent results.
982  * The atime field is stored in the B-Tree element and allowed to be
983  * updated without cycling the element.
984  *
985  * MPSAFE - does not require fs_token
986  */
987 static
988 int
989 hammer_vop_getattr(struct vop_getattr_args *ap)
990 {
991 	hammer_inode_t ip = VTOI(ap->a_vp);
992 	struct vattr *vap = ap->a_vap;
993 
994 	/*
995 	 * We want the fsid to be different when accessing a filesystem
996 	 * with different as-of's so programs like diff don't think
997 	 * the files are the same.
998 	 *
999 	 * We also want the fsid to be the same when comparing snapshots,
1000 	 * or when comparing mirrors (which might be backed by different
1001 	 * physical devices).  HAMMER fsids are based on the PFS's
1002 	 * shared_uuid field.
1003 	 *
1004 	 * XXX there is a chance of collision here.  The va_fsid reported
1005 	 * by stat is different from the more involved fsid used in the
1006 	 * mount structure.
1007 	 */
1008 	hammer_lock_sh(&ip->lock);
1009 	vap->va_fsid = ip->pfsm->fsid_udev ^ (uint32_t)ip->obj_asof ^
1010 		       (uint32_t)(ip->obj_asof >> 32);
1011 
1012 	vap->va_fileid = ip->ino_leaf.base.obj_id;
1013 	vap->va_mode = ip->ino_data.mode;
1014 	vap->va_nlink = ip->ino_data.nlinks;
1015 	vap->va_uid = hammer_to_unix_xid(&ip->ino_data.uid);
1016 	vap->va_gid = hammer_to_unix_xid(&ip->ino_data.gid);
1017 	vap->va_rmajor = 0;
1018 	vap->va_rminor = 0;
1019 	vap->va_size = ip->ino_data.size;
1020 
1021 	/*
1022 	 * Special case for @@PFS softlinks.  The actual size of the
1023 	 * expanded softlink is "@@0x%016llx:%05d" == 26 bytes.
1024 	 * or for MAX_TID is    "@@-1:%05d" == 10 bytes.
1025 	 *
1026 	 * Note that userspace hammer command does not allow users to
1027 	 * create a @@PFS softlink under an existing other PFS (id!=0)
1028 	 * so the ip localization here for @@PFS softlink is always 0.
1029 	 */
1030 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_SOFTLINK &&
1031 	    ip->ino_data.size == 10 &&
1032 	    ip->obj_asof == HAMMER_MAX_TID &&
1033 	    ip->obj_localization == HAMMER_DEF_LOCALIZATION &&
1034 	    strncmp(ip->ino_data.ext.symlink, "@@PFS", 5) == 0) {
1035 		if (hammer_is_pfs_slave(&ip->pfsm->pfsd))
1036 			vap->va_size = 26;
1037 		else
1038 			vap->va_size = 10;
1039 	}
1040 
1041 	/*
1042 	 * We must provide a consistent atime and mtime for snapshots
1043 	 * so people can do a 'tar cf - ... | md5' on them and get
1044 	 * consistent results.
1045 	 */
1046 	if (ip->flags & HAMMER_INODE_RO) {
1047 		hammer_time_to_timespec(ip->ino_data.ctime, &vap->va_atime);
1048 		hammer_time_to_timespec(ip->ino_data.ctime, &vap->va_mtime);
1049 	} else {
1050 		hammer_time_to_timespec(ip->ino_data.atime, &vap->va_atime);
1051 		hammer_time_to_timespec(ip->ino_data.mtime, &vap->va_mtime);
1052 	}
1053 	hammer_time_to_timespec(ip->ino_data.ctime, &vap->va_ctime);
1054 	vap->va_flags = ip->ino_data.uflags;
1055 	vap->va_gen = 1;	/* hammer inums are unique for all time */
1056 	vap->va_blocksize = HAMMER_BUFSIZE;
1057 	if (ip->ino_data.size >= HAMMER_XDEMARC) {
1058 		vap->va_bytes = HAMMER_XBUFSIZE64_DOALIGN(ip->ino_data.size);
1059 	} else if (ip->ino_data.size > HAMMER_HBUFSIZE) {
1060 		vap->va_bytes = HAMMER_BUFSIZE64_DOALIGN(ip->ino_data.size);
1061 	} else {
1062 		vap->va_bytes = HAMMER_DATA_DOALIGN(ip->ino_data.size);
1063 	}
1064 
1065 	vap->va_type = hammer_get_vnode_type(ip->ino_data.obj_type);
1066 	vap->va_filerev = 0;	/* XXX */
1067 	vap->va_uid_uuid = ip->ino_data.uid;
1068 	vap->va_gid_uuid = ip->ino_data.gid;
1069 	vap->va_fsid_uuid = ip->hmp->fsid;
1070 	vap->va_vaflags = VA_UID_UUID_VALID | VA_GID_UUID_VALID |
1071 			  VA_FSID_UUID_VALID;
1072 
1073 	switch (ip->ino_data.obj_type) {
1074 	case HAMMER_OBJTYPE_CDEV:
1075 	case HAMMER_OBJTYPE_BDEV:
1076 		vap->va_rmajor = ip->ino_data.rmajor;
1077 		vap->va_rminor = ip->ino_data.rminor;
1078 		break;
1079 	default:
1080 		break;
1081 	}
1082 	hammer_unlock(&ip->lock);
1083 	return(0);
1084 }
1085 
1086 /*
1087  * hammer_vop_nresolve { nch, dvp, cred }
1088  *
1089  * Locate the requested directory entry.
1090  */
1091 static
1092 int
1093 hammer_vop_nresolve(struct vop_nresolve_args *ap)
1094 {
1095 	struct hammer_transaction trans;
1096 	struct namecache *ncp;
1097 	hammer_mount_t hmp;
1098 	hammer_inode_t dip;
1099 	hammer_inode_t ip;
1100 	hammer_tid_t asof;
1101 	struct hammer_cursor cursor;
1102 	struct vnode *vp;
1103 	int64_t namekey;
1104 	int error;
1105 	int i;
1106 	int nlen;
1107 	int flags;
1108 	int ispfs;
1109 	int64_t obj_id;
1110 	uint32_t localization;
1111 	uint32_t max_iterations;
1112 
1113 	/*
1114 	 * Misc initialization, plus handle as-of name extensions.  Look for
1115 	 * the '@@' extension.  Note that as-of files and directories cannot
1116 	 * be modified.
1117 	 */
1118 	dip = VTOI(ap->a_dvp);
1119 	ncp = ap->a_nch->ncp;
1120 	asof = dip->obj_asof;
1121 	localization = dip->obj_localization;	/* for code consistency */
1122 	nlen = ncp->nc_nlen;
1123 	flags = dip->flags & HAMMER_INODE_RO;
1124 	ispfs = 0;
1125 	hmp = dip->hmp;
1126 
1127 	lwkt_gettoken(&hmp->fs_token);
1128 	hammer_simple_transaction(&trans, hmp);
1129 
1130 	for (i = 0; i < nlen; ++i) {
1131 		if (ncp->nc_name[i] == '@' && ncp->nc_name[i+1] == '@') {
1132 			error = hammer_str_to_tid(ncp->nc_name + i + 2,
1133 						  &ispfs, &asof, &localization);
1134 			if (error != 0) {
1135 				i = nlen;
1136 				break;
1137 			}
1138 			if (asof != HAMMER_MAX_TID)
1139 				flags |= HAMMER_INODE_RO;
1140 			break;
1141 		}
1142 	}
1143 	nlen = i;
1144 
1145 	/*
1146 	 * If this is a PFS we dive into the PFS root inode
1147 	 */
1148 	if (ispfs && nlen == 0) {
1149 		ip = hammer_get_inode(&trans, dip, HAMMER_OBJID_ROOT,
1150 				      asof, localization,
1151 				      flags, &error);
1152 		if (error == 0) {
1153 			error = hammer_get_vnode(ip, &vp);
1154 			hammer_rel_inode(ip, 0);
1155 		} else {
1156 			vp = NULL;
1157 		}
1158 		if (error == 0) {
1159 			vn_unlock(vp);
1160 			cache_setvp(ap->a_nch, vp);
1161 			vrele(vp);
1162 		}
1163 		goto done;
1164 	}
1165 
1166 	/*
1167 	 * If there is no path component the time extension is relative to dip.
1168 	 * e.g. "fubar/@@<snapshot>"
1169 	 *
1170 	 * "." is handled by the kernel, but ".@@<snapshot>" is not.
1171 	 * e.g. "fubar/.@@<snapshot>"
1172 	 *
1173 	 * ".." is handled by the kernel.  We do not currently handle
1174 	 * "..@<snapshot>".
1175 	 */
1176 	if (nlen == 0 || (nlen == 1 && ncp->nc_name[0] == '.')) {
1177 		ip = hammer_get_inode(&trans, dip, dip->obj_id,
1178 				      asof, dip->obj_localization,
1179 				      flags, &error);
1180 		if (error == 0) {
1181 			error = hammer_get_vnode(ip, &vp);
1182 			hammer_rel_inode(ip, 0);
1183 		} else {
1184 			vp = NULL;
1185 		}
1186 		if (error == 0) {
1187 			vn_unlock(vp);
1188 			cache_setvp(ap->a_nch, vp);
1189 			vrele(vp);
1190 		}
1191 		goto done;
1192 	}
1193 
1194 	/*
1195 	 * Calculate the namekey and setup the key range for the scan.  This
1196 	 * works kinda like a chained hash table where the lower 32 bits
1197 	 * of the namekey synthesize the chain.
1198 	 *
1199 	 * The key range is inclusive of both key_beg and key_end.
1200 	 */
1201 	namekey = hammer_direntry_namekey(dip, ncp->nc_name, nlen,
1202 					   &max_iterations);
1203 
1204 	error = hammer_init_cursor(&trans, &cursor, &dip->cache[1], dip);
1205 	cursor.key_beg.localization = dip->obj_localization |
1206 				      hammer_dir_localization(dip);
1207         cursor.key_beg.obj_id = dip->obj_id;
1208 	cursor.key_beg.key = namekey;
1209         cursor.key_beg.create_tid = 0;
1210         cursor.key_beg.delete_tid = 0;
1211         cursor.key_beg.rec_type = HAMMER_RECTYPE_DIRENTRY;
1212         cursor.key_beg.obj_type = 0;
1213 
1214 	cursor.key_end = cursor.key_beg;
1215 	cursor.key_end.key += max_iterations;
1216 	cursor.asof = asof;
1217 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
1218 
1219 	/*
1220 	 * Scan all matching records (the chain), locate the one matching
1221 	 * the requested path component.
1222 	 *
1223 	 * The hammer_ip_*() functions merge in-memory records with on-disk
1224 	 * records for the purposes of the search.
1225 	 */
1226 	obj_id = 0;
1227 	localization = HAMMER_DEF_LOCALIZATION;
1228 
1229 	if (error == 0) {
1230 		error = hammer_ip_first(&cursor);
1231 		while (error == 0) {
1232 			error = hammer_ip_resolve_data(&cursor);
1233 			if (error)
1234 				break;
1235 			if (nlen == cursor.leaf->data_len - HAMMER_ENTRY_NAME_OFF &&
1236 			    bcmp(ncp->nc_name, cursor.data->entry.name, nlen) == 0) {
1237 				obj_id = cursor.data->entry.obj_id;
1238 				localization = cursor.data->entry.localization;
1239 				break;
1240 			}
1241 			error = hammer_ip_next(&cursor);
1242 		}
1243 	}
1244 	hammer_done_cursor(&cursor);
1245 
1246 	/*
1247 	 * Lookup the obj_id.  This should always succeed.  If it does not
1248 	 * the filesystem may be damaged and we return a dummy inode.
1249 	 */
1250 	if (error == 0) {
1251 		ip = hammer_get_inode(&trans, dip, obj_id,
1252 				      asof, localization,
1253 				      flags, &error);
1254 		if (error == ENOENT) {
1255 			hkprintf("WARNING: Missing inode for dirent \"%s\"\n"
1256 				"\tobj_id = %016jx, asof=%016jx, lo=%08x\n",
1257 				ncp->nc_name,
1258 				(intmax_t)obj_id, (intmax_t)asof,
1259 				localization);
1260 			error = 0;
1261 			ip = hammer_get_dummy_inode(&trans, dip, obj_id,
1262 						    asof, localization,
1263 						    flags, &error);
1264 		}
1265 		if (error == 0) {
1266 			error = hammer_get_vnode(ip, &vp);
1267 			hammer_rel_inode(ip, 0);
1268 		} else {
1269 			vp = NULL;
1270 		}
1271 		if (error == 0) {
1272 			vn_unlock(vp);
1273 			cache_setvp(ap->a_nch, vp);
1274 			vrele(vp);
1275 		}
1276 	} else if (error == ENOENT) {
1277 		cache_setvp(ap->a_nch, NULL);
1278 	}
1279 done:
1280 	hammer_done_transaction(&trans);
1281 	lwkt_reltoken(&hmp->fs_token);
1282 	return (error);
1283 }
1284 
1285 /*
1286  * hammer_vop_nlookupdotdot { dvp, vpp, cred }
1287  *
1288  * Locate the parent directory of a directory vnode.
1289  *
1290  * dvp is referenced but not locked.  *vpp must be returned referenced and
1291  * locked.  A parent_obj_id of 0 indicates that we are at the root.
1292  *
1293  * NOTE: as-of sequences are not linked into the directory structure.  If
1294  * we are at the root with a different asof then the mount point, reload
1295  * the same directory with the mount point's asof.   I'm not sure what this
1296  * will do to NFS.  We encode ASOF stamps in NFS file handles so it might not
1297  * get confused, but it hasn't been tested.
1298  */
1299 static
1300 int
1301 hammer_vop_nlookupdotdot(struct vop_nlookupdotdot_args *ap)
1302 {
1303 	struct hammer_transaction trans;
1304 	hammer_inode_t dip;
1305 	hammer_inode_t ip;
1306 	hammer_mount_t hmp;
1307 	int64_t parent_obj_id;
1308 	uint32_t parent_obj_localization;
1309 	hammer_tid_t asof;
1310 	int error;
1311 
1312 	dip = VTOI(ap->a_dvp);
1313 	asof = dip->obj_asof;
1314 	hmp = dip->hmp;
1315 
1316 	/*
1317 	 * Whos are parent?  This could be the root of a pseudo-filesystem
1318 	 * whos parent is in another localization domain.
1319 	 */
1320 	lwkt_gettoken(&hmp->fs_token);
1321 	parent_obj_id = dip->ino_data.parent_obj_id;
1322 	if (dip->obj_id == HAMMER_OBJID_ROOT)
1323 		parent_obj_localization = HAMMER_DEF_LOCALIZATION;
1324 	else
1325 		parent_obj_localization = dip->obj_localization;
1326 
1327 	/*
1328 	 * It's probably a PFS root when dip->ino_data.parent_obj_id is 0.
1329 	 */
1330 	if (parent_obj_id == 0) {
1331 		if (dip->obj_id == HAMMER_OBJID_ROOT &&
1332 		   asof != hmp->asof) {
1333 			parent_obj_id = dip->obj_id;
1334 			asof = hmp->asof;
1335 			*ap->a_fakename = kmalloc(19, M_TEMP, M_WAITOK);
1336 			ksnprintf(*ap->a_fakename, 19, "0x%016jx",
1337 				  (intmax_t)dip->obj_asof);
1338 		} else {
1339 			*ap->a_vpp = NULL;
1340 			lwkt_reltoken(&hmp->fs_token);
1341 			return ENOENT;
1342 		}
1343 	}
1344 
1345 	hammer_simple_transaction(&trans, hmp);
1346 
1347 	ip = hammer_get_inode(&trans, dip, parent_obj_id,
1348 			      asof, parent_obj_localization,
1349 			      dip->flags, &error);
1350 	if (ip) {
1351 		error = hammer_get_vnode(ip, ap->a_vpp);
1352 		hammer_rel_inode(ip, 0);
1353 	} else {
1354 		*ap->a_vpp = NULL;
1355 	}
1356 	hammer_done_transaction(&trans);
1357 	lwkt_reltoken(&hmp->fs_token);
1358 	return (error);
1359 }
1360 
1361 /*
1362  * hammer_vop_nlink { nch, dvp, vp, cred }
1363  */
1364 static
1365 int
1366 hammer_vop_nlink(struct vop_nlink_args *ap)
1367 {
1368 	struct hammer_transaction trans;
1369 	hammer_inode_t dip;
1370 	hammer_inode_t ip;
1371 	struct nchandle *nch;
1372 	hammer_mount_t hmp;
1373 	int error;
1374 
1375 	if (ap->a_dvp->v_mount != ap->a_vp->v_mount)
1376 		return(EXDEV);
1377 
1378 	nch = ap->a_nch;
1379 	dip = VTOI(ap->a_dvp);
1380 	ip = VTOI(ap->a_vp);
1381 	hmp = dip->hmp;
1382 
1383 	if (dip->obj_localization != ip->obj_localization)
1384 		return(EXDEV);
1385 
1386 	if (dip->flags & HAMMER_INODE_RO)
1387 		return (EROFS);
1388 	if (ip->flags & HAMMER_INODE_RO)
1389 		return (EROFS);
1390 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
1391 		return (error);
1392 
1393 	/*
1394 	 * Create a transaction to cover the operations we perform.
1395 	 */
1396 	lwkt_gettoken(&hmp->fs_token);
1397 	hammer_start_transaction(&trans, hmp);
1398 
1399 	/*
1400 	 * Add the filesystem object to the directory.  Note that neither
1401 	 * dip nor ip are referenced or locked, but their vnodes are
1402 	 * referenced.  This function will bump the inode's link count.
1403 	 */
1404 	error = hammer_ip_add_direntry(&trans, dip,
1405 					nch->ncp->nc_name, nch->ncp->nc_nlen,
1406 					ip);
1407 
1408 	/*
1409 	 * Finish up.
1410 	 */
1411 	if (error == 0) {
1412 		cache_setunresolved(nch);
1413 		cache_setvp(nch, ap->a_vp);
1414 	}
1415 	hammer_done_transaction(&trans);
1416 	hammer_knote(ap->a_vp, NOTE_LINK);
1417 	hammer_knote(ap->a_dvp, NOTE_WRITE);
1418 	lwkt_reltoken(&hmp->fs_token);
1419 	return (error);
1420 }
1421 
1422 /*
1423  * hammer_vop_nmkdir { nch, dvp, vpp, cred, vap }
1424  *
1425  * The operating system has already ensured that the directory entry
1426  * does not exist and done all appropriate namespace locking.
1427  */
1428 static
1429 int
1430 hammer_vop_nmkdir(struct vop_nmkdir_args *ap)
1431 {
1432 	struct hammer_transaction trans;
1433 	hammer_inode_t dip;
1434 	hammer_inode_t nip;
1435 	struct nchandle *nch;
1436 	hammer_mount_t hmp;
1437 	int error;
1438 
1439 	nch = ap->a_nch;
1440 	dip = VTOI(ap->a_dvp);
1441 	hmp = dip->hmp;
1442 
1443 	if (dip->flags & HAMMER_INODE_RO)
1444 		return (EROFS);
1445 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
1446 		return (error);
1447 
1448 	/*
1449 	 * Create a transaction to cover the operations we perform.
1450 	 */
1451 	lwkt_gettoken(&hmp->fs_token);
1452 	hammer_start_transaction(&trans, hmp);
1453 
1454 	/*
1455 	 * Create a new filesystem object of the requested type.  The
1456 	 * returned inode will be referenced but not locked.
1457 	 */
1458 	error = hammer_create_inode(&trans, ap->a_vap, ap->a_cred,
1459 				    dip, nch->ncp->nc_name, nch->ncp->nc_nlen,
1460 				    NULL, &nip);
1461 	if (error) {
1462 		hammer_done_transaction(&trans);
1463 		*ap->a_vpp = NULL;
1464 		lwkt_reltoken(&hmp->fs_token);
1465 		return (error);
1466 	}
1467 	/*
1468 	 * Add the new filesystem object to the directory.  This will also
1469 	 * bump the inode's link count.
1470 	 */
1471 	error = hammer_ip_add_direntry(&trans, dip,
1472 					nch->ncp->nc_name, nch->ncp->nc_nlen,
1473 					nip);
1474 	if (error)
1475 		hkprintf("hammer_mkdir (add) error %d\n", error);
1476 
1477 	/*
1478 	 * Finish up.
1479 	 */
1480 	if (error) {
1481 		hammer_rel_inode(nip, 0);
1482 		*ap->a_vpp = NULL;
1483 	} else {
1484 		error = hammer_get_vnode(nip, ap->a_vpp);
1485 		hammer_rel_inode(nip, 0);
1486 		if (error == 0) {
1487 			cache_setunresolved(ap->a_nch);
1488 			cache_setvp(ap->a_nch, *ap->a_vpp);
1489 		}
1490 	}
1491 	hammer_done_transaction(&trans);
1492 	if (error == 0)
1493 		hammer_knote(ap->a_dvp, NOTE_WRITE | NOTE_LINK);
1494 	lwkt_reltoken(&hmp->fs_token);
1495 	return (error);
1496 }
1497 
1498 /*
1499  * hammer_vop_nmknod { nch, dvp, vpp, cred, vap }
1500  *
1501  * The operating system has already ensured that the directory entry
1502  * does not exist and done all appropriate namespace locking.
1503  */
1504 static
1505 int
1506 hammer_vop_nmknod(struct vop_nmknod_args *ap)
1507 {
1508 	struct hammer_transaction trans;
1509 	hammer_inode_t dip;
1510 	hammer_inode_t nip;
1511 	struct nchandle *nch;
1512 	hammer_mount_t hmp;
1513 	int error;
1514 
1515 	nch = ap->a_nch;
1516 	dip = VTOI(ap->a_dvp);
1517 	hmp = dip->hmp;
1518 
1519 	if (dip->flags & HAMMER_INODE_RO)
1520 		return (EROFS);
1521 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
1522 		return (error);
1523 
1524 	/*
1525 	 * Create a transaction to cover the operations we perform.
1526 	 */
1527 	lwkt_gettoken(&hmp->fs_token);
1528 	hammer_start_transaction(&trans, hmp);
1529 
1530 	/*
1531 	 * Create a new filesystem object of the requested type.  The
1532 	 * returned inode will be referenced but not locked.
1533 	 *
1534 	 * If mknod specifies a directory a pseudo-fs is created.
1535 	 */
1536 	error = hammer_create_inode(&trans, ap->a_vap, ap->a_cred,
1537 				    dip, nch->ncp->nc_name, nch->ncp->nc_nlen,
1538 				    NULL, &nip);
1539 	if (error) {
1540 		hammer_done_transaction(&trans);
1541 		*ap->a_vpp = NULL;
1542 		lwkt_reltoken(&hmp->fs_token);
1543 		return (error);
1544 	}
1545 
1546 	/*
1547 	 * Add the new filesystem object to the directory.  This will also
1548 	 * bump the inode's link count.
1549 	 */
1550 	error = hammer_ip_add_direntry(&trans, dip,
1551 					nch->ncp->nc_name, nch->ncp->nc_nlen,
1552 					nip);
1553 
1554 	/*
1555 	 * Finish up.
1556 	 */
1557 	if (error) {
1558 		hammer_rel_inode(nip, 0);
1559 		*ap->a_vpp = NULL;
1560 	} else {
1561 		error = hammer_get_vnode(nip, ap->a_vpp);
1562 		hammer_rel_inode(nip, 0);
1563 		if (error == 0) {
1564 			cache_setunresolved(ap->a_nch);
1565 			cache_setvp(ap->a_nch, *ap->a_vpp);
1566 		}
1567 	}
1568 	hammer_done_transaction(&trans);
1569 	if (error == 0)
1570 		hammer_knote(ap->a_dvp, NOTE_WRITE);
1571 	lwkt_reltoken(&hmp->fs_token);
1572 	return (error);
1573 }
1574 
1575 /*
1576  * hammer_vop_open { vp, mode, cred, fp }
1577  *
1578  * MPSAFE (does not require fs_token)
1579  */
1580 static
1581 int
1582 hammer_vop_open(struct vop_open_args *ap)
1583 {
1584 	hammer_inode_t ip;
1585 
1586 	ip = VTOI(ap->a_vp);
1587 
1588 	if ((ap->a_mode & FWRITE) && (ip->flags & HAMMER_INODE_RO))
1589 		return (EROFS);
1590 	return(vop_stdopen(ap));
1591 }
1592 
1593 /*
1594  * hammer_vop_print { vp }
1595  */
1596 static
1597 int
1598 hammer_vop_print(struct vop_print_args *ap)
1599 {
1600 	return EOPNOTSUPP;
1601 }
1602 
1603 /*
1604  * hammer_vop_readdir { vp, uio, cred, *eofflag, *ncookies, off_t **cookies }
1605  */
1606 static
1607 int
1608 hammer_vop_readdir(struct vop_readdir_args *ap)
1609 {
1610 	struct hammer_transaction trans;
1611 	struct hammer_cursor cursor;
1612 	hammer_inode_t ip;
1613 	hammer_mount_t hmp;
1614 	struct uio *uio;
1615 	hammer_base_elm_t base;
1616 	int error;
1617 	int cookie_index;
1618 	int ncookies;
1619 	off_t *cookies;
1620 	off_t saveoff;
1621 	int r;
1622 	int dtype;
1623 
1624 	ip = VTOI(ap->a_vp);
1625 	uio = ap->a_uio;
1626 	saveoff = uio->uio_offset;
1627 	hmp = ip->hmp;
1628 
1629 	if (ap->a_ncookies) {
1630 		ncookies = uio->uio_resid / 16 + 1;
1631 		if (ncookies > 1024)
1632 			ncookies = 1024;
1633 		cookies = kmalloc(ncookies * sizeof(off_t), M_TEMP, M_WAITOK);
1634 		cookie_index = 0;
1635 	} else {
1636 		ncookies = -1;
1637 		cookies = NULL;
1638 		cookie_index = 0;
1639 	}
1640 
1641 	lwkt_gettoken(&hmp->fs_token);
1642 	hammer_simple_transaction(&trans, hmp);
1643 
1644 	/*
1645 	 * Handle artificial entries
1646 	 *
1647 	 * It should be noted that the minimum value for a directory
1648 	 * hash key on-media is 0x0000000100000000, so we can use anything
1649 	 * less then that to represent our 'special' key space.
1650 	 */
1651 	error = 0;
1652 	if (saveoff == 0) {
1653 		r = vop_write_dirent(&error, uio, ip->obj_id, DT_DIR, 1, ".");
1654 		if (r)
1655 			goto done;
1656 		if (cookies)
1657 			cookies[cookie_index] = saveoff;
1658 		++saveoff;
1659 		++cookie_index;
1660 		if (cookie_index == ncookies)
1661 			goto done;
1662 	}
1663 	if (saveoff == 1) {
1664 		if (ip->ino_data.parent_obj_id) {
1665 			r = vop_write_dirent(&error, uio,
1666 					     ip->ino_data.parent_obj_id,
1667 					     DT_DIR, 2, "..");
1668 		} else {
1669 			r = vop_write_dirent(&error, uio,
1670 					     ip->obj_id, DT_DIR, 2, "..");
1671 		}
1672 		if (r)
1673 			goto done;
1674 		if (cookies)
1675 			cookies[cookie_index] = saveoff;
1676 		++saveoff;
1677 		++cookie_index;
1678 		if (cookie_index == ncookies)
1679 			goto done;
1680 	}
1681 
1682 	/*
1683 	 * Key range (begin and end inclusive) to scan.  Directory keys
1684 	 * directly translate to a 64 bit 'seek' position.
1685 	 */
1686 	hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
1687 	cursor.key_beg.localization = ip->obj_localization |
1688 				      hammer_dir_localization(ip);
1689 	cursor.key_beg.obj_id = ip->obj_id;
1690 	cursor.key_beg.create_tid = 0;
1691 	cursor.key_beg.delete_tid = 0;
1692         cursor.key_beg.rec_type = HAMMER_RECTYPE_DIRENTRY;
1693 	cursor.key_beg.obj_type = 0;
1694 	cursor.key_beg.key = saveoff;
1695 
1696 	cursor.key_end = cursor.key_beg;
1697 	cursor.key_end.key = HAMMER_MAX_KEY;
1698 	cursor.asof = ip->obj_asof;
1699 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
1700 
1701 	error = hammer_ip_first(&cursor);
1702 
1703 	while (error == 0) {
1704 		error = hammer_ip_resolve_data(&cursor);
1705 		if (error)
1706 			break;
1707 		base = &cursor.leaf->base;
1708 		saveoff = base->key;
1709 		KKASSERT(cursor.leaf->data_len > HAMMER_ENTRY_NAME_OFF);
1710 
1711 		if (base->obj_id != ip->obj_id)
1712 			hpanic("bad record at %p", cursor.node);
1713 
1714 		dtype = hammer_get_dtype(cursor.leaf->base.obj_type);
1715 		r = vop_write_dirent(
1716 			     &error, uio, cursor.data->entry.obj_id,
1717 			     dtype,
1718 			     cursor.leaf->data_len - HAMMER_ENTRY_NAME_OFF ,
1719 			     (void *)cursor.data->entry.name);
1720 		if (r)
1721 			break;
1722 		++saveoff;
1723 		if (cookies)
1724 			cookies[cookie_index] = base->key;
1725 		++cookie_index;
1726 		if (cookie_index == ncookies)
1727 			break;
1728 		error = hammer_ip_next(&cursor);
1729 	}
1730 	hammer_done_cursor(&cursor);
1731 
1732 done:
1733 	hammer_done_transaction(&trans);
1734 
1735 	if (ap->a_eofflag)
1736 		*ap->a_eofflag = (error == ENOENT);
1737 	uio->uio_offset = saveoff;
1738 	if (error && cookie_index == 0) {
1739 		if (error == ENOENT)
1740 			error = 0;
1741 		if (cookies) {
1742 			kfree(cookies, M_TEMP);
1743 			*ap->a_ncookies = 0;
1744 			*ap->a_cookies = NULL;
1745 		}
1746 	} else {
1747 		if (error == ENOENT)
1748 			error = 0;
1749 		if (cookies) {
1750 			*ap->a_ncookies = cookie_index;
1751 			*ap->a_cookies = cookies;
1752 		}
1753 	}
1754 	lwkt_reltoken(&hmp->fs_token);
1755 	return(error);
1756 }
1757 
1758 /*
1759  * hammer_vop_readlink { vp, uio, cred }
1760  */
1761 static
1762 int
1763 hammer_vop_readlink(struct vop_readlink_args *ap)
1764 {
1765 	struct hammer_transaction trans;
1766 	struct hammer_cursor cursor;
1767 	hammer_inode_t ip;
1768 	hammer_mount_t hmp;
1769 	char buf[32];
1770 	uint32_t localization;
1771 	hammer_pseudofs_inmem_t pfsm;
1772 	int error;
1773 
1774 	ip = VTOI(ap->a_vp);
1775 	hmp = ip->hmp;
1776 
1777 	lwkt_gettoken(&hmp->fs_token);
1778 
1779 	/*
1780 	 * Shortcut if the symlink data was stuffed into ino_data.
1781 	 *
1782 	 * Also expand special "@@PFS%05d" softlinks (expansion only
1783 	 * occurs for non-historical (current) accesses made from the
1784 	 * primary filesystem).
1785 	 *
1786 	 * Note that userspace hammer command does not allow users to
1787 	 * create a @@PFS softlink under an existing other PFS (id!=0)
1788 	 * so the ip localization here for @@PFS softlink is always 0.
1789 	 */
1790 	if (ip->ino_data.size <= HAMMER_INODE_BASESYMLEN) {
1791 		char *ptr;
1792 		int bytes;
1793 
1794 		ptr = ip->ino_data.ext.symlink;
1795 		bytes = (int)ip->ino_data.size;
1796 		if (bytes == 10 &&
1797 		    ip->obj_asof == HAMMER_MAX_TID &&
1798 		    ip->obj_localization == HAMMER_DEF_LOCALIZATION &&
1799 		    strncmp(ptr, "@@PFS", 5) == 0) {
1800 			hammer_simple_transaction(&trans, hmp);
1801 			bcopy(ptr + 5, buf, 5);
1802 			buf[5] = 0;
1803 			localization = pfs_to_lo(strtoul(buf, NULL, 10));
1804 			pfsm = hammer_load_pseudofs(&trans, localization,
1805 						    &error);
1806 			if (error == 0) {
1807 				if (hammer_is_pfs_slave(&pfsm->pfsd)) {
1808 					/* vap->va_size == 26 */
1809 					ksnprintf(buf, sizeof(buf),
1810 						  "@@0x%016jx:%05d",
1811 						  (intmax_t)pfsm->pfsd.sync_end_tid,
1812 						  lo_to_pfs(localization));
1813 				} else {
1814 					/* vap->va_size == 10 */
1815 					ksnprintf(buf, sizeof(buf),
1816 						  "@@-1:%05d",
1817 						  lo_to_pfs(localization));
1818 				}
1819 				ptr = buf;
1820 				bytes = strlen(buf);
1821 			}
1822 			if (pfsm)
1823 				hammer_rel_pseudofs(hmp, pfsm);
1824 			hammer_done_transaction(&trans);
1825 		}
1826 		error = uiomove(ptr, bytes, ap->a_uio);
1827 		lwkt_reltoken(&hmp->fs_token);
1828 		return(error);
1829 	}
1830 
1831 	/*
1832 	 * Long version
1833 	 */
1834 	hammer_simple_transaction(&trans, hmp);
1835 	hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
1836 
1837 	/*
1838 	 * Key range (begin and end inclusive) to scan.  Directory keys
1839 	 * directly translate to a 64 bit 'seek' position.
1840 	 */
1841 	cursor.key_beg.localization = ip->obj_localization |
1842 				      HAMMER_LOCALIZE_MISC;
1843 	cursor.key_beg.obj_id = ip->obj_id;
1844 	cursor.key_beg.create_tid = 0;
1845 	cursor.key_beg.delete_tid = 0;
1846         cursor.key_beg.rec_type = HAMMER_RECTYPE_FIX;
1847 	cursor.key_beg.obj_type = 0;
1848 	cursor.key_beg.key = HAMMER_FIXKEY_SYMLINK;
1849 	cursor.asof = ip->obj_asof;
1850 	cursor.flags |= HAMMER_CURSOR_ASOF;
1851 
1852 	error = hammer_ip_lookup(&cursor);
1853 	if (error == 0) {
1854 		error = hammer_ip_resolve_data(&cursor);
1855 		if (error == 0) {
1856 			KKASSERT(cursor.leaf->data_len >=
1857 				 HAMMER_SYMLINK_NAME_OFF);
1858 			error = uiomove(cursor.data->symlink.name,
1859 					cursor.leaf->data_len -
1860 						HAMMER_SYMLINK_NAME_OFF,
1861 					ap->a_uio);
1862 		}
1863 	}
1864 	hammer_done_cursor(&cursor);
1865 	hammer_done_transaction(&trans);
1866 	lwkt_reltoken(&hmp->fs_token);
1867 	return(error);
1868 }
1869 
1870 /*
1871  * hammer_vop_nremove { nch, dvp, cred }
1872  */
1873 static
1874 int
1875 hammer_vop_nremove(struct vop_nremove_args *ap)
1876 {
1877 	struct hammer_transaction trans;
1878 	hammer_inode_t dip;
1879 	hammer_mount_t hmp;
1880 	int error;
1881 
1882 	dip = VTOI(ap->a_dvp);
1883 	hmp = dip->hmp;
1884 
1885 	if (hammer_nohistory(dip) == 0 &&
1886 	    (error = hammer_checkspace(hmp, HAMMER_CHKSPC_REMOVE)) != 0) {
1887 		return (error);
1888 	}
1889 
1890 	lwkt_gettoken(&hmp->fs_token);
1891 	hammer_start_transaction(&trans, hmp);
1892 	error = hammer_dounlink(&trans, ap->a_nch, ap->a_dvp, ap->a_cred, 0, 0);
1893 	hammer_done_transaction(&trans);
1894 	if (error == 0)
1895 		hammer_knote(ap->a_dvp, NOTE_WRITE);
1896 	lwkt_reltoken(&hmp->fs_token);
1897 	return (error);
1898 }
1899 
1900 /*
1901  * hammer_vop_nrename { fnch, tnch, fdvp, tdvp, cred }
1902  */
1903 static
1904 int
1905 hammer_vop_nrename(struct vop_nrename_args *ap)
1906 {
1907 	struct hammer_transaction trans;
1908 	struct namecache *fncp;
1909 	struct namecache *tncp;
1910 	hammer_inode_t fdip;
1911 	hammer_inode_t tdip;
1912 	hammer_inode_t ip;
1913 	hammer_mount_t hmp;
1914 	struct hammer_cursor cursor;
1915 	int64_t namekey;
1916 	uint32_t max_iterations;
1917 	int nlen, error;
1918 
1919 	if (ap->a_fdvp->v_mount != ap->a_tdvp->v_mount)
1920 		return(EXDEV);
1921 	if (ap->a_fdvp->v_mount != ap->a_fnch->ncp->nc_vp->v_mount)
1922 		return(EXDEV);
1923 
1924 	fdip = VTOI(ap->a_fdvp);
1925 	tdip = VTOI(ap->a_tdvp);
1926 	fncp = ap->a_fnch->ncp;
1927 	tncp = ap->a_tnch->ncp;
1928 	ip = VTOI(fncp->nc_vp);
1929 	KKASSERT(ip != NULL);
1930 
1931 	hmp = ip->hmp;
1932 
1933 	if (fdip->obj_localization != tdip->obj_localization)
1934 		return(EXDEV);
1935 	if (fdip->obj_localization != ip->obj_localization)
1936 		return(EXDEV);
1937 
1938 	if (fdip->flags & HAMMER_INODE_RO)
1939 		return (EROFS);
1940 	if (tdip->flags & HAMMER_INODE_RO)
1941 		return (EROFS);
1942 	if (ip->flags & HAMMER_INODE_RO)
1943 		return (EROFS);
1944 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
1945 		return (error);
1946 
1947 	lwkt_gettoken(&hmp->fs_token);
1948 	hammer_start_transaction(&trans, hmp);
1949 
1950 	/*
1951 	 * Remove tncp from the target directory and then link ip as
1952 	 * tncp. XXX pass trans to dounlink
1953 	 *
1954 	 * Force the inode sync-time to match the transaction so it is
1955 	 * in-sync with the creation of the target directory entry.
1956 	 */
1957 	error = hammer_dounlink(&trans, ap->a_tnch, ap->a_tdvp,
1958 				ap->a_cred, 0, -1);
1959 	if (error == 0 || error == ENOENT) {
1960 		error = hammer_ip_add_direntry(&trans, tdip,
1961 						tncp->nc_name, tncp->nc_nlen,
1962 						ip);
1963 		if (error == 0) {
1964 			ip->ino_data.parent_obj_id = tdip->obj_id;
1965 			ip->ino_data.ctime = trans.time;
1966 			hammer_modify_inode(&trans, ip, HAMMER_INODE_DDIRTY);
1967 		}
1968 	}
1969 	if (error)
1970 		goto failed; /* XXX */
1971 
1972 	/*
1973 	 * Locate the record in the originating directory and remove it.
1974 	 *
1975 	 * Calculate the namekey and setup the key range for the scan.  This
1976 	 * works kinda like a chained hash table where the lower 32 bits
1977 	 * of the namekey synthesize the chain.
1978 	 *
1979 	 * The key range is inclusive of both key_beg and key_end.
1980 	 */
1981 	namekey = hammer_direntry_namekey(fdip, fncp->nc_name, fncp->nc_nlen,
1982 					   &max_iterations);
1983 retry:
1984 	hammer_init_cursor(&trans, &cursor, &fdip->cache[1], fdip);
1985 	cursor.key_beg.localization = fdip->obj_localization |
1986 				      hammer_dir_localization(fdip);
1987         cursor.key_beg.obj_id = fdip->obj_id;
1988 	cursor.key_beg.key = namekey;
1989         cursor.key_beg.create_tid = 0;
1990         cursor.key_beg.delete_tid = 0;
1991         cursor.key_beg.rec_type = HAMMER_RECTYPE_DIRENTRY;
1992         cursor.key_beg.obj_type = 0;
1993 
1994 	cursor.key_end = cursor.key_beg;
1995 	cursor.key_end.key += max_iterations;
1996 	cursor.asof = fdip->obj_asof;
1997 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
1998 
1999 	/*
2000 	 * Scan all matching records (the chain), locate the one matching
2001 	 * the requested path component.
2002 	 *
2003 	 * The hammer_ip_*() functions merge in-memory records with on-disk
2004 	 * records for the purposes of the search.
2005 	 */
2006 	error = hammer_ip_first(&cursor);
2007 	while (error == 0) {
2008 		if (hammer_ip_resolve_data(&cursor) != 0)
2009 			break;
2010 		nlen = cursor.leaf->data_len - HAMMER_ENTRY_NAME_OFF;
2011 		KKASSERT(nlen > 0);
2012 		if (fncp->nc_nlen == nlen &&
2013 		    bcmp(fncp->nc_name, cursor.data->entry.name, nlen) == 0) {
2014 			break;
2015 		}
2016 		error = hammer_ip_next(&cursor);
2017 	}
2018 
2019 	/*
2020 	 * If all is ok we have to get the inode so we can adjust nlinks.
2021 	 *
2022 	 * WARNING: hammer_ip_del_direntry() may have to terminate the
2023 	 * cursor to avoid a recursion.  It's ok to call hammer_done_cursor()
2024 	 * twice.
2025 	 */
2026 	if (error == 0)
2027 		error = hammer_ip_del_direntry(&trans, &cursor, fdip, ip);
2028 
2029 	/*
2030 	 * XXX A deadlock here will break rename's atomicy for the purposes
2031 	 * of crash recovery.
2032 	 */
2033 	if (error == EDEADLK) {
2034 		hammer_done_cursor(&cursor);
2035 		goto retry;
2036 	}
2037 
2038 	/*
2039 	 * Cleanup and tell the kernel that the rename succeeded.
2040 	 *
2041 	 * NOTE: ip->vp, if non-NULL, cannot be directly referenced
2042 	 *	 without formally acquiring the vp since the vp might
2043 	 *	 have zero refs on it, or in the middle of a reclaim,
2044 	 *	 etc.
2045 	 */
2046         hammer_done_cursor(&cursor);
2047 	if (error == 0) {
2048 		cache_rename(ap->a_fnch, ap->a_tnch);
2049 		hammer_knote(ap->a_fdvp, NOTE_WRITE);
2050 		hammer_knote(ap->a_tdvp, NOTE_WRITE);
2051 		while (ip->vp) {
2052 			struct vnode *vp;
2053 
2054 			error = hammer_get_vnode(ip, &vp);
2055 			if (error == 0 && vp) {
2056 				vn_unlock(vp);
2057 				hammer_knote(ip->vp, NOTE_RENAME);
2058 				vrele(vp);
2059 				break;
2060 			}
2061 			hdkprintf("ip/vp race2 avoided\n");
2062 		}
2063 	}
2064 
2065 failed:
2066 	hammer_done_transaction(&trans);
2067 	lwkt_reltoken(&hmp->fs_token);
2068 	return (error);
2069 }
2070 
2071 /*
2072  * hammer_vop_nrmdir { nch, dvp, cred }
2073  */
2074 static
2075 int
2076 hammer_vop_nrmdir(struct vop_nrmdir_args *ap)
2077 {
2078 	struct hammer_transaction trans;
2079 	hammer_inode_t dip;
2080 	hammer_mount_t hmp;
2081 	int error;
2082 
2083 	dip = VTOI(ap->a_dvp);
2084 	hmp = dip->hmp;
2085 
2086 	if (hammer_nohistory(dip) == 0 &&
2087 	    (error = hammer_checkspace(hmp, HAMMER_CHKSPC_REMOVE)) != 0) {
2088 		return (error);
2089 	}
2090 
2091 	lwkt_gettoken(&hmp->fs_token);
2092 	hammer_start_transaction(&trans, hmp);
2093 	error = hammer_dounlink(&trans, ap->a_nch, ap->a_dvp, ap->a_cred, 0, 1);
2094 	hammer_done_transaction(&trans);
2095 	if (error == 0)
2096 		hammer_knote(ap->a_dvp, NOTE_WRITE | NOTE_LINK);
2097 	lwkt_reltoken(&hmp->fs_token);
2098 	return (error);
2099 }
2100 
2101 /*
2102  * hammer_vop_markatime { vp, cred }
2103  */
2104 static
2105 int
2106 hammer_vop_markatime(struct vop_markatime_args *ap)
2107 {
2108 	struct hammer_transaction trans;
2109 	hammer_inode_t ip;
2110 	hammer_mount_t hmp;
2111 
2112 	ip = VTOI(ap->a_vp);
2113 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
2114 		return (EROFS);
2115 	if (ip->flags & HAMMER_INODE_RO)
2116 		return (EROFS);
2117 	hmp = ip->hmp;
2118 	if (hmp->mp->mnt_flag & MNT_NOATIME)
2119 		return (0);
2120 	lwkt_gettoken(&hmp->fs_token);
2121 	hammer_start_transaction(&trans, hmp);
2122 
2123 	ip->ino_data.atime = trans.time;
2124 	hammer_modify_inode(&trans, ip, HAMMER_INODE_ATIME);
2125 	hammer_done_transaction(&trans);
2126 	hammer_knote(ap->a_vp, NOTE_ATTRIB);
2127 	lwkt_reltoken(&hmp->fs_token);
2128 	return (0);
2129 }
2130 
2131 /*
2132  * hammer_vop_setattr { vp, vap, cred }
2133  */
2134 static
2135 int
2136 hammer_vop_setattr(struct vop_setattr_args *ap)
2137 {
2138 	struct hammer_transaction trans;
2139 	hammer_inode_t ip;
2140 	struct vattr *vap;
2141 	hammer_mount_t hmp;
2142 	int modflags;
2143 	int error;
2144 	int truncating;
2145 	int blksize;
2146 	int kflags;
2147 #if 0
2148 	int64_t aligned_size;
2149 #endif
2150 	uint32_t flags;
2151 
2152 	vap = ap->a_vap;
2153 	ip = ap->a_vp->v_data;
2154 	modflags = 0;
2155 	kflags = 0;
2156 	hmp = ip->hmp;
2157 
2158 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
2159 		return(EROFS);
2160 	if (ip->flags & HAMMER_INODE_RO)
2161 		return (EROFS);
2162 	if (hammer_nohistory(ip) == 0 &&
2163 	    (error = hammer_checkspace(hmp, HAMMER_CHKSPC_REMOVE)) != 0) {
2164 		return (error);
2165 	}
2166 
2167 	lwkt_gettoken(&hmp->fs_token);
2168 	hammer_start_transaction(&trans, hmp);
2169 	error = 0;
2170 
2171 	if (vap->va_flags != VNOVAL) {
2172 		flags = ip->ino_data.uflags;
2173 		error = vop_helper_setattr_flags(&flags, vap->va_flags,
2174 					 hammer_to_unix_xid(&ip->ino_data.uid),
2175 					 ap->a_cred);
2176 		if (error == 0) {
2177 			if (ip->ino_data.uflags != flags) {
2178 				ip->ino_data.uflags = flags;
2179 				ip->ino_data.ctime = trans.time;
2180 				modflags |= HAMMER_INODE_DDIRTY;
2181 				kflags |= NOTE_ATTRIB;
2182 			}
2183 			if (ip->ino_data.uflags & (IMMUTABLE | APPEND)) {
2184 				error = 0;
2185 				goto done;
2186 			}
2187 		}
2188 		goto done;
2189 	}
2190 	if (ip->ino_data.uflags & (IMMUTABLE | APPEND)) {
2191 		error = EPERM;
2192 		goto done;
2193 	}
2194 	if (vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL) {
2195 		mode_t cur_mode = ip->ino_data.mode;
2196 		uid_t cur_uid = hammer_to_unix_xid(&ip->ino_data.uid);
2197 		gid_t cur_gid = hammer_to_unix_xid(&ip->ino_data.gid);
2198 		hammer_uuid_t uuid_uid;
2199 		hammer_uuid_t uuid_gid;
2200 
2201 		error = vop_helper_chown(ap->a_vp, vap->va_uid, vap->va_gid,
2202 					 ap->a_cred,
2203 					 &cur_uid, &cur_gid, &cur_mode);
2204 		if (error == 0) {
2205 			hammer_guid_to_uuid(&uuid_uid, cur_uid);
2206 			hammer_guid_to_uuid(&uuid_gid, cur_gid);
2207 			if (kuuid_compare(&uuid_uid, &ip->ino_data.uid) ||
2208 			    kuuid_compare(&uuid_gid, &ip->ino_data.gid) ||
2209 			    ip->ino_data.mode != cur_mode) {
2210 				ip->ino_data.uid = uuid_uid;
2211 				ip->ino_data.gid = uuid_gid;
2212 				ip->ino_data.mode = cur_mode;
2213 				ip->ino_data.ctime = trans.time;
2214 				modflags |= HAMMER_INODE_DDIRTY;
2215 			}
2216 			kflags |= NOTE_ATTRIB;
2217 		}
2218 	}
2219 	while (vap->va_size != VNOVAL && ip->ino_data.size != vap->va_size) {
2220 		switch(ap->a_vp->v_type) {
2221 		case VREG:
2222 			if (vap->va_size == ip->ino_data.size)
2223 				break;
2224 
2225 			/*
2226 			 * Log the operation if in fast-fsync mode or if
2227 			 * there are unterminated redo write records present.
2228 			 *
2229 			 * The second check is needed so the recovery code
2230 			 * properly truncates write redos even if nominal
2231 			 * REDO operations is turned off due to excessive
2232 			 * writes, because the related records might be
2233 			 * destroyed and never lay down a TERM_WRITE.
2234 			 */
2235 			if ((ip->flags & HAMMER_INODE_REDO) ||
2236 			    (ip->flags & HAMMER_INODE_RDIRTY)) {
2237 				error = hammer_generate_redo(&trans, ip,
2238 							     vap->va_size,
2239 							     HAMMER_REDO_TRUNC,
2240 							     NULL, 0);
2241 			}
2242 			blksize = hammer_blocksize(vap->va_size);
2243 
2244 			/*
2245 			 * XXX break atomicy, we can deadlock the backend
2246 			 * if we do not release the lock.  Probably not a
2247 			 * big deal here.
2248 			 */
2249 			if (vap->va_size < ip->ino_data.size) {
2250 				nvtruncbuf(ap->a_vp, vap->va_size,
2251 					   blksize,
2252 					   hammer_blockoff(vap->va_size),
2253 					   0);
2254 				truncating = 1;
2255 				kflags |= NOTE_WRITE;
2256 			} else {
2257 				nvextendbuf(ap->a_vp,
2258 					    ip->ino_data.size,
2259 					    vap->va_size,
2260 					    hammer_blocksize(ip->ino_data.size),
2261 					    hammer_blocksize(vap->va_size),
2262 					    hammer_blockoff(ip->ino_data.size),
2263 					    hammer_blockoff(vap->va_size),
2264 					    0);
2265 				truncating = 0;
2266 				kflags |= NOTE_WRITE | NOTE_EXTEND;
2267 			}
2268 			ip->ino_data.size = vap->va_size;
2269 			ip->ino_data.mtime = trans.time;
2270 			/* XXX safe to use SDIRTY instead of DDIRTY here? */
2271 			modflags |= HAMMER_INODE_MTIME | HAMMER_INODE_DDIRTY;
2272 
2273 			/*
2274 			 * On-media truncation is cached in the inode until
2275 			 * the inode is synchronized.  We must immediately
2276 			 * handle any frontend records.
2277 			 */
2278 			if (truncating) {
2279 				hammer_ip_frontend_trunc(ip, vap->va_size);
2280 				if ((ip->flags & HAMMER_INODE_TRUNCATED) == 0) {
2281 					ip->flags |= HAMMER_INODE_TRUNCATED;
2282 					ip->trunc_off = vap->va_size;
2283 					hammer_inode_dirty(ip);
2284 				} else if (ip->trunc_off > vap->va_size) {
2285 					ip->trunc_off = vap->va_size;
2286 				}
2287 			}
2288 
2289 #if 0
2290 			/*
2291 			 * When truncating, nvtruncbuf() may have cleaned out
2292 			 * a portion of the last block on-disk in the buffer
2293 			 * cache.  We must clean out any frontend records
2294 			 * for blocks beyond the new last block.
2295 			 */
2296 			aligned_size = (vap->va_size + (blksize - 1)) &
2297 				       ~(int64_t)(blksize - 1);
2298 			if (truncating && vap->va_size < aligned_size) {
2299 				aligned_size -= blksize;
2300 				hammer_ip_frontend_trunc(ip, aligned_size);
2301 			}
2302 #endif
2303 			break;
2304 		case VDATABASE:
2305 			if ((ip->flags & HAMMER_INODE_TRUNCATED) == 0) {
2306 				ip->flags |= HAMMER_INODE_TRUNCATED;
2307 				ip->trunc_off = vap->va_size;
2308 				hammer_inode_dirty(ip);
2309 			} else if (ip->trunc_off > vap->va_size) {
2310 				ip->trunc_off = vap->va_size;
2311 			}
2312 			hammer_ip_frontend_trunc(ip, vap->va_size);
2313 			ip->ino_data.size = vap->va_size;
2314 			ip->ino_data.mtime = trans.time;
2315 			modflags |= HAMMER_INODE_MTIME | HAMMER_INODE_DDIRTY;
2316 			kflags |= NOTE_ATTRIB;
2317 			break;
2318 		default:
2319 			error = EINVAL;
2320 			goto done;
2321 		}
2322 		break;
2323 	}
2324 	if (vap->va_atime.tv_sec != VNOVAL) {
2325 		ip->ino_data.atime = hammer_timespec_to_time(&vap->va_atime);
2326 		modflags |= HAMMER_INODE_ATIME;
2327 		kflags |= NOTE_ATTRIB;
2328 	}
2329 	if (vap->va_mtime.tv_sec != VNOVAL) {
2330 		ip->ino_data.mtime = hammer_timespec_to_time(&vap->va_mtime);
2331 		modflags |= HAMMER_INODE_MTIME;
2332 		kflags |= NOTE_ATTRIB;
2333 	}
2334 	if (vap->va_mode != (mode_t)VNOVAL) {
2335 		mode_t   cur_mode = ip->ino_data.mode;
2336 		uid_t cur_uid = hammer_to_unix_xid(&ip->ino_data.uid);
2337 		gid_t cur_gid = hammer_to_unix_xid(&ip->ino_data.gid);
2338 
2339 		error = vop_helper_chmod(ap->a_vp, vap->va_mode, ap->a_cred,
2340 					 cur_uid, cur_gid, &cur_mode);
2341 		if (error == 0 && ip->ino_data.mode != cur_mode) {
2342 			ip->ino_data.mode = cur_mode;
2343 			ip->ino_data.ctime = trans.time;
2344 			modflags |= HAMMER_INODE_DDIRTY;
2345 			kflags |= NOTE_ATTRIB;
2346 		}
2347 	}
2348 done:
2349 	if (error == 0)
2350 		hammer_modify_inode(&trans, ip, modflags);
2351 	hammer_done_transaction(&trans);
2352 	hammer_knote(ap->a_vp, kflags);
2353 	lwkt_reltoken(&hmp->fs_token);
2354 	return (error);
2355 }
2356 
2357 /*
2358  * hammer_vop_nsymlink { nch, dvp, vpp, cred, vap, target }
2359  */
2360 static
2361 int
2362 hammer_vop_nsymlink(struct vop_nsymlink_args *ap)
2363 {
2364 	struct hammer_transaction trans;
2365 	hammer_inode_t dip;
2366 	hammer_inode_t nip;
2367 	hammer_record_t record;
2368 	struct nchandle *nch;
2369 	hammer_mount_t hmp;
2370 	int error;
2371 	int bytes;
2372 
2373 	ap->a_vap->va_type = VLNK;
2374 
2375 	nch = ap->a_nch;
2376 	dip = VTOI(ap->a_dvp);
2377 	hmp = dip->hmp;
2378 
2379 	if (dip->flags & HAMMER_INODE_RO)
2380 		return (EROFS);
2381 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
2382 		return (error);
2383 
2384 	/*
2385 	 * Create a transaction to cover the operations we perform.
2386 	 */
2387 	lwkt_gettoken(&hmp->fs_token);
2388 	hammer_start_transaction(&trans, hmp);
2389 
2390 	/*
2391 	 * Create a new filesystem object of the requested type.  The
2392 	 * returned inode will be referenced but not locked.
2393 	 */
2394 
2395 	error = hammer_create_inode(&trans, ap->a_vap, ap->a_cred,
2396 				    dip, nch->ncp->nc_name, nch->ncp->nc_nlen,
2397 				    NULL, &nip);
2398 	if (error) {
2399 		hammer_done_transaction(&trans);
2400 		*ap->a_vpp = NULL;
2401 		lwkt_reltoken(&hmp->fs_token);
2402 		return (error);
2403 	}
2404 
2405 	/*
2406 	 * Add a record representing the symlink.  symlink stores the link
2407 	 * as pure data, not a string, and is no \0 terminated.
2408 	 */
2409 	if (error == 0) {
2410 		bytes = strlen(ap->a_target);
2411 
2412 		if (bytes <= HAMMER_INODE_BASESYMLEN) {
2413 			bcopy(ap->a_target, nip->ino_data.ext.symlink, bytes);
2414 		} else {
2415 			record = hammer_alloc_mem_record(nip, bytes);
2416 			record->type = HAMMER_MEM_RECORD_GENERAL;
2417 
2418 			record->leaf.base.localization = nip->obj_localization |
2419 							 HAMMER_LOCALIZE_MISC;
2420 			record->leaf.base.key = HAMMER_FIXKEY_SYMLINK;
2421 			record->leaf.base.rec_type = HAMMER_RECTYPE_FIX;
2422 			record->leaf.data_len = bytes;
2423 			KKASSERT(HAMMER_SYMLINK_NAME_OFF == 0);
2424 			bcopy(ap->a_target, record->data->symlink.name, bytes);
2425 			error = hammer_ip_add_record(&trans, record);
2426 		}
2427 
2428 		/*
2429 		 * Set the file size to the length of the link.
2430 		 */
2431 		if (error == 0) {
2432 			nip->ino_data.size = bytes;
2433 			hammer_modify_inode(&trans, nip, HAMMER_INODE_DDIRTY);
2434 		}
2435 	}
2436 	if (error == 0)
2437 		error = hammer_ip_add_direntry(&trans, dip, nch->ncp->nc_name,
2438 						nch->ncp->nc_nlen, nip);
2439 
2440 	/*
2441 	 * Finish up.
2442 	 */
2443 	if (error) {
2444 		hammer_rel_inode(nip, 0);
2445 		*ap->a_vpp = NULL;
2446 	} else {
2447 		error = hammer_get_vnode(nip, ap->a_vpp);
2448 		hammer_rel_inode(nip, 0);
2449 		if (error == 0) {
2450 			cache_setunresolved(ap->a_nch);
2451 			cache_setvp(ap->a_nch, *ap->a_vpp);
2452 			hammer_knote(ap->a_dvp, NOTE_WRITE);
2453 		}
2454 	}
2455 	hammer_done_transaction(&trans);
2456 	lwkt_reltoken(&hmp->fs_token);
2457 	return (error);
2458 }
2459 
2460 /*
2461  * hammer_vop_nwhiteout { nch, dvp, cred, flags }
2462  */
2463 static
2464 int
2465 hammer_vop_nwhiteout(struct vop_nwhiteout_args *ap)
2466 {
2467 	struct hammer_transaction trans;
2468 	hammer_inode_t dip;
2469 	hammer_mount_t hmp;
2470 	int error;
2471 
2472 	dip = VTOI(ap->a_dvp);
2473 	hmp = dip->hmp;
2474 
2475 	if (hammer_nohistory(dip) == 0 &&
2476 	    (error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0) {
2477 		return (error);
2478 	}
2479 
2480 	lwkt_gettoken(&hmp->fs_token);
2481 	hammer_start_transaction(&trans, hmp);
2482 	error = hammer_dounlink(&trans, ap->a_nch, ap->a_dvp,
2483 				ap->a_cred, ap->a_flags, -1);
2484 	hammer_done_transaction(&trans);
2485 	lwkt_reltoken(&hmp->fs_token);
2486 
2487 	return (error);
2488 }
2489 
2490 /*
2491  * hammer_vop_ioctl { vp, command, data, fflag, cred }
2492  */
2493 static
2494 int
2495 hammer_vop_ioctl(struct vop_ioctl_args *ap)
2496 {
2497 	hammer_inode_t ip = ap->a_vp->v_data;
2498 	hammer_mount_t hmp = ip->hmp;
2499 	int error;
2500 
2501 	lwkt_gettoken(&hmp->fs_token);
2502 	error = hammer_ioctl(ip, ap->a_command, ap->a_data,
2503 			     ap->a_fflag, ap->a_cred);
2504 	lwkt_reltoken(&hmp->fs_token);
2505 	return (error);
2506 }
2507 
2508 static
2509 int
2510 hammer_vop_mountctl(struct vop_mountctl_args *ap)
2511 {
2512 	static const struct mountctl_opt extraopt[] = {
2513 		{ HMNT_NOHISTORY,	"nohistory" },
2514 		{ HMNT_MASTERID,	"master" },
2515 		{ HMNT_NOMIRROR,	"nomirror" },
2516 		{ 0, NULL}
2517 
2518 	};
2519 	hammer_mount_t hmp;
2520 	struct mount *mp;
2521 	int usedbytes;
2522 	int error;
2523 
2524 	error = 0;
2525 	usedbytes = 0;
2526 	mp = ap->a_head.a_ops->head.vv_mount;
2527 	KKASSERT(mp->mnt_data != NULL);
2528 	hmp = (hammer_mount_t)mp->mnt_data;
2529 
2530 	lwkt_gettoken(&hmp->fs_token);
2531 
2532 	switch(ap->a_op) {
2533 	case MOUNTCTL_SET_EXPORT:
2534 		if (ap->a_ctllen != sizeof(struct export_args))
2535 			error = EINVAL;
2536 		else
2537 			error = hammer_vfs_export(mp, ap->a_op,
2538 				      (const struct export_args *)ap->a_ctl);
2539 		break;
2540 	case MOUNTCTL_MOUNTFLAGS:
2541 		/*
2542 		 * Call standard mountctl VOP function
2543 		 * so we get user mount flags.
2544 		 */
2545 		error = vop_stdmountctl(ap);
2546 		if (error)
2547 			break;
2548 
2549 		usedbytes = *ap->a_res;
2550 
2551 		if (usedbytes > 0 && usedbytes < ap->a_buflen) {
2552 			usedbytes += vfs_flagstostr(hmp->hflags, extraopt,
2553 						    ap->a_buf,
2554 						    ap->a_buflen - usedbytes,
2555 						    &error);
2556 		}
2557 
2558 		*ap->a_res += usedbytes;
2559 		break;
2560 	default:
2561 		error = vop_stdmountctl(ap);
2562 		break;
2563 	}
2564 	lwkt_reltoken(&hmp->fs_token);
2565 	return(error);
2566 }
2567 
2568 /*
2569  * hammer_vop_strategy { vp, bio }
2570  *
2571  * Strategy call, used for regular file read & write only.  Note that the
2572  * bp may represent a cluster.
2573  *
2574  * To simplify operation and allow better optimizations in the future,
2575  * this code does not make any assumptions with regards to buffer alignment
2576  * or size.
2577  */
2578 static
2579 int
2580 hammer_vop_strategy(struct vop_strategy_args *ap)
2581 {
2582 	struct buf *bp;
2583 	int error;
2584 
2585 	bp = ap->a_bio->bio_buf;
2586 
2587 	switch(bp->b_cmd) {
2588 	case BUF_CMD_READ:
2589 		error = hammer_vop_strategy_read(ap);
2590 		break;
2591 	case BUF_CMD_WRITE:
2592 		error = hammer_vop_strategy_write(ap);
2593 		break;
2594 	default:
2595 		bp->b_error = error = EINVAL;
2596 		bp->b_flags |= B_ERROR;
2597 		biodone(ap->a_bio);
2598 		break;
2599 	}
2600 
2601 	/* hammer_dump_dedup_cache(((hammer_inode_t)ap->a_vp->v_data)->hmp); */
2602 
2603 	return (error);
2604 }
2605 
2606 /*
2607  * Read from a regular file.  Iterate the related records and fill in the
2608  * BIO/BUF.  Gaps are zero-filled.
2609  *
2610  * The support code in hammer_object.c should be used to deal with mixed
2611  * in-memory and on-disk records.
2612  *
2613  * NOTE: Can be called from the cluster code with an oversized buf.
2614  *
2615  * XXX atime update
2616  */
2617 static
2618 int
2619 hammer_vop_strategy_read(struct vop_strategy_args *ap)
2620 {
2621 	struct hammer_transaction trans;
2622 	hammer_inode_t ip;
2623 	hammer_inode_t dip;
2624 	hammer_mount_t hmp;
2625 	struct hammer_cursor cursor;
2626 	hammer_base_elm_t base;
2627 	hammer_off_t disk_offset;
2628 	struct bio *bio;
2629 	struct bio *nbio;
2630 	struct buf *bp;
2631 	int64_t rec_offset;
2632 	int64_t ran_end;
2633 	int64_t tmp64;
2634 	int error;
2635 	int boff;
2636 	int roff;
2637 	int n;
2638 	int isdedupable;
2639 
2640 	bio = ap->a_bio;
2641 	bp = bio->bio_buf;
2642 	ip = ap->a_vp->v_data;
2643 	hmp = ip->hmp;
2644 
2645 	/*
2646 	 * The zone-2 disk offset may have been set by the cluster code via
2647 	 * a BMAP operation, or else should be NOOFFSET.
2648 	 *
2649 	 * Checking the high bits for a match against zone-2 should suffice.
2650 	 *
2651 	 * In cases where a lot of data duplication is present it may be
2652 	 * more beneficial to drop through and doubule-buffer through the
2653 	 * device.
2654 	 */
2655 	nbio = push_bio(bio);
2656 	if (hammer_is_zone_large_data(nbio->bio_offset)) {
2657 		if (hammer_double_buffer == 0) {
2658 			lwkt_gettoken(&hmp->fs_token);
2659 			error = hammer_io_direct_read(hmp, nbio, NULL);
2660 			lwkt_reltoken(&hmp->fs_token);
2661 			return (error);
2662 		}
2663 
2664 		/*
2665 		 * Try to shortcut requests for double_buffer mode too.
2666 		 * Since this mode runs through the device buffer cache
2667 		 * only compatible buffer sizes (meaning those generated
2668 		 * by normal filesystem buffers) are legal.
2669 		 */
2670 		if (hammer_live_dedup == 0 && (bp->b_flags & B_PAGING) == 0) {
2671 			lwkt_gettoken(&hmp->fs_token);
2672 			error = hammer_io_indirect_read(hmp, nbio, NULL);
2673 			lwkt_reltoken(&hmp->fs_token);
2674 			return (error);
2675 		}
2676 	}
2677 
2678 	/*
2679 	 * Well, that sucked.  Do it the hard way.  If all the stars are
2680 	 * aligned we may still be able to issue a direct-read.
2681 	 */
2682 	lwkt_gettoken(&hmp->fs_token);
2683 	hammer_simple_transaction(&trans, hmp);
2684 	hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
2685 
2686 	/*
2687 	 * Key range (begin and end inclusive) to scan.  Note that the key's
2688 	 * stored in the actual records represent BASE+LEN, not BASE.  The
2689 	 * first record containing bio_offset will have a key > bio_offset.
2690 	 */
2691 	cursor.key_beg.localization = ip->obj_localization |
2692 				      HAMMER_LOCALIZE_MISC;
2693 	cursor.key_beg.obj_id = ip->obj_id;
2694 	cursor.key_beg.create_tid = 0;
2695 	cursor.key_beg.delete_tid = 0;
2696 	cursor.key_beg.obj_type = 0;
2697 	cursor.key_beg.key = bio->bio_offset + 1;
2698 	cursor.asof = ip->obj_asof;
2699 	cursor.flags |= HAMMER_CURSOR_ASOF;
2700 
2701 	cursor.key_end = cursor.key_beg;
2702 	KKASSERT(ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE);
2703 #if 0
2704 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
2705 		cursor.key_beg.rec_type = HAMMER_RECTYPE_DB;
2706 		cursor.key_end.rec_type = HAMMER_RECTYPE_DB;
2707 		cursor.key_end.key = HAMMER_MAX_KEY;
2708 	} else
2709 #endif
2710 	{
2711 		ran_end = bio->bio_offset + bp->b_bufsize;
2712 		cursor.key_beg.rec_type = HAMMER_RECTYPE_DATA;
2713 		cursor.key_end.rec_type = HAMMER_RECTYPE_DATA;
2714 		tmp64 = ran_end + MAXPHYS + 1;	/* work-around GCC-4 bug */
2715 		if (tmp64 < ran_end)
2716 			cursor.key_end.key = HAMMER_MAX_KEY;
2717 		else
2718 			cursor.key_end.key = ran_end + MAXPHYS + 1;
2719 	}
2720 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE;
2721 
2722 	/*
2723 	 * Set NOSWAPCACHE for cursor data extraction if double buffering
2724 	 * is disabled or (if the file is not marked cacheable via chflags
2725 	 * and vm.swapcache_use_chflags is enabled).
2726 	 */
2727 	if (hammer_double_buffer == 0 ||
2728 	    ((ap->a_vp->v_flag & VSWAPCACHE) == 0 &&
2729 	     vm_swapcache_use_chflags)) {
2730 		cursor.flags |= HAMMER_CURSOR_NOSWAPCACHE;
2731 	}
2732 
2733 	error = hammer_ip_first(&cursor);
2734 	boff = 0;
2735 
2736 	while (error == 0) {
2737 		/*
2738 		 * Get the base file offset of the record.  The key for
2739 		 * data records is (base + bytes) rather then (base).
2740 		 */
2741 		base = &cursor.leaf->base;
2742 		rec_offset = base->key - cursor.leaf->data_len;
2743 
2744 		/*
2745 		 * Calculate the gap, if any, and zero-fill it.
2746 		 *
2747 		 * n is the offset of the start of the record verses our
2748 		 * current seek offset in the bio.
2749 		 */
2750 		n = (int)(rec_offset - (bio->bio_offset + boff));
2751 		if (n > 0) {
2752 			if (n > bp->b_bufsize - boff)
2753 				n = bp->b_bufsize - boff;
2754 			bzero((char *)bp->b_data + boff, n);
2755 			boff += n;
2756 			n = 0;
2757 		}
2758 
2759 		/*
2760 		 * Calculate the data offset in the record and the number
2761 		 * of bytes we can copy.
2762 		 *
2763 		 * There are two degenerate cases.  First, boff may already
2764 		 * be at bp->b_bufsize.  Secondly, the data offset within
2765 		 * the record may exceed the record's size.
2766 		 */
2767 		roff = -n;
2768 		rec_offset += roff;
2769 		n = cursor.leaf->data_len - roff;
2770 		if (n <= 0) {
2771 			hdkprintf("bad n=%d roff=%d\n", n, roff);
2772 			n = 0;
2773 		} else if (n > bp->b_bufsize - boff) {
2774 			n = bp->b_bufsize - boff;
2775 		}
2776 
2777 		/*
2778 		 * Deal with cached truncations.  This cool bit of code
2779 		 * allows truncate()/ftruncate() to avoid having to sync
2780 		 * the file.
2781 		 *
2782 		 * If the frontend is truncated then all backend records are
2783 		 * subject to the frontend's truncation.
2784 		 *
2785 		 * If the backend is truncated then backend records on-disk
2786 		 * (but not in-memory) are subject to the backend's
2787 		 * truncation.  In-memory records owned by the backend
2788 		 * represent data written after the truncation point on the
2789 		 * backend and must not be truncated.
2790 		 *
2791 		 * Truncate operations deal with frontend buffer cache
2792 		 * buffers and frontend-owned in-memory records synchronously.
2793 		 */
2794 		if (ip->flags & HAMMER_INODE_TRUNCATED) {
2795 			if (hammer_cursor_ondisk(&cursor)/* ||
2796 			    cursor.iprec->flush_state == HAMMER_FST_FLUSH*/) {
2797 				if (ip->trunc_off <= rec_offset)
2798 					n = 0;
2799 				else if (ip->trunc_off < rec_offset + n)
2800 					n = (int)(ip->trunc_off - rec_offset);
2801 			}
2802 		}
2803 		if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2804 			if (hammer_cursor_ondisk(&cursor)) {
2805 				if (ip->sync_trunc_off <= rec_offset)
2806 					n = 0;
2807 				else if (ip->sync_trunc_off < rec_offset + n)
2808 					n = (int)(ip->sync_trunc_off - rec_offset);
2809 			}
2810 		}
2811 
2812 		/*
2813 		 * Try to issue a direct read into our bio if possible,
2814 		 * otherwise resolve the element data into a hammer_buffer
2815 		 * and copy.
2816 		 *
2817 		 * The buffer on-disk should be zerod past any real
2818 		 * truncation point, but may not be for any synthesized
2819 		 * truncation point from above.
2820 		 *
2821 		 * NOTE: disk_offset is only valid if the cursor data is
2822 		 *	 on-disk.
2823 		 */
2824 		disk_offset = cursor.leaf->data_offset + roff;
2825 		isdedupable = (boff == 0 && n == bp->b_bufsize &&
2826 			       hammer_cursor_ondisk(&cursor) &&
2827 			       ((int)disk_offset & HAMMER_BUFMASK) == 0);
2828 
2829 		if (isdedupable && hammer_double_buffer == 0) {
2830 			/*
2831 			 * Direct read case
2832 			 */
2833 			KKASSERT(hammer_is_zone_large_data(disk_offset));
2834 			nbio->bio_offset = disk_offset;
2835 			error = hammer_io_direct_read(hmp, nbio, cursor.leaf);
2836 			if (hammer_live_dedup && error == 0)
2837 				hammer_dedup_cache_add(ip, cursor.leaf);
2838 			goto done;
2839 		} else if (isdedupable) {
2840 			/*
2841 			 * Async I/O case for reading from backing store
2842 			 * and copying the data to the filesystem buffer.
2843 			 * live-dedup has to verify the data anyway if it
2844 			 * gets a hit later so we can just add the entry
2845 			 * now.
2846 			 */
2847 			KKASSERT(hammer_is_zone_large_data(disk_offset));
2848 			nbio->bio_offset = disk_offset;
2849 			if (hammer_live_dedup)
2850 				hammer_dedup_cache_add(ip, cursor.leaf);
2851 			error = hammer_io_indirect_read(hmp, nbio, cursor.leaf);
2852 			goto done;
2853 		} else if (n) {
2854 			error = hammer_ip_resolve_data(&cursor);
2855 			if (error == 0) {
2856 				if (hammer_live_dedup && isdedupable)
2857 					hammer_dedup_cache_add(ip, cursor.leaf);
2858 				bcopy((char *)cursor.data + roff,
2859 				      (char *)bp->b_data + boff, n);
2860 			}
2861 		}
2862 		if (error)
2863 			break;
2864 
2865 		/*
2866 		 * We have to be sure that the only elements added to the
2867 		 * dedup cache are those which are already on-media.
2868 		 */
2869 		if (hammer_live_dedup && hammer_cursor_ondisk(&cursor))
2870 			hammer_dedup_cache_add(ip, cursor.leaf);
2871 
2872 		/*
2873 		 * Iterate until we have filled the request.
2874 		 */
2875 		boff += n;
2876 		if (boff == bp->b_bufsize)
2877 			break;
2878 		error = hammer_ip_next(&cursor);
2879 	}
2880 
2881 	/*
2882 	 * There may have been a gap after the last record
2883 	 */
2884 	if (error == ENOENT)
2885 		error = 0;
2886 	if (error == 0 && boff != bp->b_bufsize) {
2887 		KKASSERT(boff < bp->b_bufsize);
2888 		bzero((char *)bp->b_data + boff, bp->b_bufsize - boff);
2889 		/* boff = bp->b_bufsize; */
2890 	}
2891 
2892 	/*
2893 	 * Disallow swapcache operation on the vnode buffer if double
2894 	 * buffering is enabled, the swapcache will get the data via
2895 	 * the block device buffer.
2896 	 */
2897 	if (hammer_double_buffer)
2898 		bp->b_flags |= B_NOTMETA;
2899 
2900 	/*
2901 	 * Cleanup
2902 	 */
2903 	bp->b_resid = 0;
2904 	bp->b_error = error;
2905 	if (error)
2906 		bp->b_flags |= B_ERROR;
2907 	biodone(ap->a_bio);
2908 
2909 done:
2910 	/*
2911 	 * Cache the b-tree node for the last data read in cache[1].
2912 	 *
2913 	 * If we hit the file EOF then also cache the node in the
2914 	 * governing directory's cache[3], it will be used to initialize
2915 	 * the new inode's cache[1] for any inodes looked up via the directory.
2916 	 *
2917 	 * This doesn't reduce disk accesses since the B-Tree chain is
2918 	 * likely cached, but it does reduce cpu overhead when looking
2919 	 * up file offsets for cpdup/tar/cpio style iterations.
2920 	 */
2921 	if (cursor.node)
2922 		hammer_cache_node(&ip->cache[1], cursor.node);
2923 	if (ran_end >= ip->ino_data.size) {
2924 		dip = hammer_find_inode(&trans, ip->ino_data.parent_obj_id,
2925 					ip->obj_asof, ip->obj_localization);
2926 		if (dip) {
2927 			hammer_cache_node(&dip->cache[3], cursor.node);
2928 			hammer_rel_inode(dip, 0);
2929 		}
2930 	}
2931 	hammer_done_cursor(&cursor);
2932 	hammer_done_transaction(&trans);
2933 	lwkt_reltoken(&hmp->fs_token);
2934 	return(error);
2935 }
2936 
2937 /*
2938  * BMAP operation - used to support cluster_read() only.
2939  *
2940  * (struct vnode *vp, off_t loffset, off_t *doffsetp, int *runp, int *runb)
2941  *
2942  * This routine may return EOPNOTSUPP if the opration is not supported for
2943  * the specified offset.  The contents of the pointer arguments do not
2944  * need to be initialized in that case.
2945  *
2946  * If a disk address is available and properly aligned return 0 with
2947  * *doffsetp set to the zone-2 address, and *runp / *runb set appropriately
2948  * to the run-length relative to that offset.  Callers may assume that
2949  * *doffsetp is valid if 0 is returned, even if *runp is not sufficiently
2950  * large, so return EOPNOTSUPP if it is not sufficiently large.
2951  */
2952 static
2953 int
2954 hammer_vop_bmap(struct vop_bmap_args *ap)
2955 {
2956 	struct hammer_transaction trans;
2957 	hammer_inode_t ip;
2958 	hammer_mount_t hmp;
2959 	struct hammer_cursor cursor;
2960 	hammer_base_elm_t base;
2961 	int64_t rec_offset;
2962 	int64_t ran_end;
2963 	int64_t tmp64;
2964 	int64_t base_offset;
2965 	int64_t base_disk_offset;
2966 	int64_t last_offset;
2967 	hammer_off_t last_disk_offset;
2968 	hammer_off_t disk_offset;
2969 	int	rec_len;
2970 	int	error;
2971 	int	blksize;
2972 
2973 	ip = ap->a_vp->v_data;
2974 	hmp = ip->hmp;
2975 
2976 	/*
2977 	 * We can only BMAP regular files.  We can't BMAP database files,
2978 	 * directories, etc.
2979 	 */
2980 	if (ip->ino_data.obj_type != HAMMER_OBJTYPE_REGFILE)
2981 		return(EOPNOTSUPP);
2982 
2983 	/*
2984 	 * bmap is typically called with runp/runb both NULL when used
2985 	 * for writing.  We do not support BMAP for writing atm.
2986 	 */
2987 	if (ap->a_cmd != BUF_CMD_READ)
2988 		return(EOPNOTSUPP);
2989 
2990 	/*
2991 	 * Scan the B-Tree to acquire blockmap addresses, then translate
2992 	 * to raw addresses.
2993 	 */
2994 	lwkt_gettoken(&hmp->fs_token);
2995 	hammer_simple_transaction(&trans, hmp);
2996 
2997 	hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
2998 
2999 	/*
3000 	 * Key range (begin and end inclusive) to scan.  Note that the key's
3001 	 * stored in the actual records represent BASE+LEN, not BASE.  The
3002 	 * first record containing bio_offset will have a key > bio_offset.
3003 	 */
3004 	cursor.key_beg.localization = ip->obj_localization |
3005 				      HAMMER_LOCALIZE_MISC;
3006 	cursor.key_beg.obj_id = ip->obj_id;
3007 	cursor.key_beg.create_tid = 0;
3008 	cursor.key_beg.delete_tid = 0;
3009 	cursor.key_beg.obj_type = 0;
3010 	if (ap->a_runb)
3011 		cursor.key_beg.key = ap->a_loffset - MAXPHYS + 1;
3012 	else
3013 		cursor.key_beg.key = ap->a_loffset + 1;
3014 	if (cursor.key_beg.key < 0)
3015 		cursor.key_beg.key = 0;
3016 	cursor.asof = ip->obj_asof;
3017 	cursor.flags |= HAMMER_CURSOR_ASOF;
3018 
3019 	cursor.key_end = cursor.key_beg;
3020 	KKASSERT(ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE);
3021 
3022 	ran_end = ap->a_loffset + MAXPHYS;
3023 	cursor.key_beg.rec_type = HAMMER_RECTYPE_DATA;
3024 	cursor.key_end.rec_type = HAMMER_RECTYPE_DATA;
3025 	tmp64 = ran_end + MAXPHYS + 1;	/* work-around GCC-4 bug */
3026 	if (tmp64 < ran_end)
3027 		cursor.key_end.key = HAMMER_MAX_KEY;
3028 	else
3029 		cursor.key_end.key = ran_end + MAXPHYS + 1;
3030 
3031 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE;
3032 
3033 	error = hammer_ip_first(&cursor);
3034 	base_offset = last_offset = 0;
3035 	base_disk_offset = last_disk_offset = 0;
3036 
3037 	while (error == 0) {
3038 		/*
3039 		 * Get the base file offset of the record.  The key for
3040 		 * data records is (base + bytes) rather then (base).
3041 		 *
3042 		 * NOTE: rec_offset + rec_len may exceed the end-of-file.
3043 		 * The extra bytes should be zero on-disk and the BMAP op
3044 		 * should still be ok.
3045 		 */
3046 		base = &cursor.leaf->base;
3047 		rec_offset = base->key - cursor.leaf->data_len;
3048 		rec_len    = cursor.leaf->data_len;
3049 
3050 		/*
3051 		 * Incorporate any cached truncation.
3052 		 *
3053 		 * NOTE: Modifications to rec_len based on synthesized
3054 		 * truncation points remove the guarantee that any extended
3055 		 * data on disk is zero (since the truncations may not have
3056 		 * taken place on-media yet).
3057 		 */
3058 		if (ip->flags & HAMMER_INODE_TRUNCATED) {
3059 			if (hammer_cursor_ondisk(&cursor) ||
3060 			    cursor.iprec->flush_state == HAMMER_FST_FLUSH) {
3061 				if (ip->trunc_off <= rec_offset)
3062 					rec_len = 0;
3063 				else if (ip->trunc_off < rec_offset + rec_len)
3064 					rec_len = (int)(ip->trunc_off - rec_offset);
3065 			}
3066 		}
3067 		if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
3068 			if (hammer_cursor_ondisk(&cursor)) {
3069 				if (ip->sync_trunc_off <= rec_offset)
3070 					rec_len = 0;
3071 				else if (ip->sync_trunc_off < rec_offset + rec_len)
3072 					rec_len = (int)(ip->sync_trunc_off - rec_offset);
3073 			}
3074 		}
3075 
3076 		/*
3077 		 * Accumulate information.  If we have hit a discontiguous
3078 		 * block reset base_offset unless we are already beyond the
3079 		 * requested offset.  If we are, that's it, we stop.
3080 		 */
3081 		if (error)
3082 			break;
3083 		if (hammer_cursor_ondisk(&cursor)) {
3084 			disk_offset = cursor.leaf->data_offset;
3085 			if (rec_offset != last_offset ||
3086 			    disk_offset != last_disk_offset) {
3087 				if (rec_offset > ap->a_loffset)
3088 					break;
3089 				base_offset = rec_offset;
3090 				base_disk_offset = disk_offset;
3091 			}
3092 			last_offset = rec_offset + rec_len;
3093 			last_disk_offset = disk_offset + rec_len;
3094 
3095 			if (hammer_live_dedup)
3096 				hammer_dedup_cache_add(ip, cursor.leaf);
3097 		}
3098 
3099 		error = hammer_ip_next(&cursor);
3100 	}
3101 
3102 	if (cursor.node)
3103 		hammer_cache_node(&ip->cache[1], cursor.node);
3104 
3105 	hammer_done_cursor(&cursor);
3106 	hammer_done_transaction(&trans);
3107 	lwkt_reltoken(&hmp->fs_token);
3108 
3109 	/*
3110 	 * If we couldn't find any records or the records we did find were
3111 	 * all behind the requested offset, return failure.  A forward
3112 	 * truncation can leave a hole w/ no on-disk records.
3113 	 */
3114 	if (last_offset == 0 || last_offset < ap->a_loffset)
3115 		return (EOPNOTSUPP);
3116 
3117 	/*
3118 	 * Figure out the block size at the requested offset and adjust
3119 	 * our limits so the cluster_read() does not create inappropriately
3120 	 * sized buffer cache buffers.
3121 	 */
3122 	blksize = hammer_blocksize(ap->a_loffset);
3123 	if (hammer_blocksize(base_offset) != blksize) {
3124 		base_offset = hammer_blockdemarc(base_offset, ap->a_loffset);
3125 	}
3126 	if (last_offset != ap->a_loffset &&
3127 	    hammer_blocksize(last_offset - 1) != blksize) {
3128 		last_offset = hammer_blockdemarc(ap->a_loffset,
3129 						 last_offset - 1);
3130 	}
3131 
3132 	/*
3133 	 * Returning EOPNOTSUPP simply prevents the direct-IO optimization
3134 	 * from occuring.
3135 	 */
3136 	disk_offset = base_disk_offset + (ap->a_loffset - base_offset);
3137 
3138 	if (!hammer_is_zone_large_data(disk_offset)) {
3139 		/*
3140 		 * Only large-data zones can be direct-IOd
3141 		 */
3142 		error = EOPNOTSUPP;
3143 	} else if ((disk_offset & HAMMER_BUFMASK) ||
3144 		   (last_offset - ap->a_loffset) < blksize) {
3145 		/*
3146 		 * doffsetp is not aligned or the forward run size does
3147 		 * not cover a whole buffer, disallow the direct I/O.
3148 		 */
3149 		error = EOPNOTSUPP;
3150 	} else {
3151 		/*
3152 		 * We're good.
3153 		 */
3154 		*ap->a_doffsetp = disk_offset;
3155 		if (ap->a_runb) {
3156 			*ap->a_runb = ap->a_loffset - base_offset;
3157 			KKASSERT(*ap->a_runb >= 0);
3158 		}
3159 		if (ap->a_runp) {
3160 			*ap->a_runp = last_offset - ap->a_loffset;
3161 			KKASSERT(*ap->a_runp >= 0);
3162 		}
3163 		error = 0;
3164 	}
3165 	return(error);
3166 }
3167 
3168 /*
3169  * Write to a regular file.   Because this is a strategy call the OS is
3170  * trying to actually get data onto the media.
3171  */
3172 static
3173 int
3174 hammer_vop_strategy_write(struct vop_strategy_args *ap)
3175 {
3176 	hammer_record_t record;
3177 	hammer_mount_t hmp;
3178 	hammer_inode_t ip;
3179 	struct bio *bio;
3180 	struct buf *bp;
3181 	int blksize __debugvar;
3182 	int bytes;
3183 	int error;
3184 
3185 	bio = ap->a_bio;
3186 	bp = bio->bio_buf;
3187 	ip = ap->a_vp->v_data;
3188 	hmp = ip->hmp;
3189 
3190 	blksize = hammer_blocksize(bio->bio_offset);
3191 	KKASSERT(bp->b_bufsize == blksize);
3192 
3193 	if (ip->flags & HAMMER_INODE_RO) {
3194 		bp->b_error = EROFS;
3195 		bp->b_flags |= B_ERROR;
3196 		biodone(ap->a_bio);
3197 		return(EROFS);
3198 	}
3199 
3200 	lwkt_gettoken(&hmp->fs_token);
3201 
3202 	/*
3203 	 * Disallow swapcache operation on the vnode buffer if double
3204 	 * buffering is enabled, the swapcache will get the data via
3205 	 * the block device buffer.
3206 	 */
3207 	if (hammer_double_buffer)
3208 		bp->b_flags |= B_NOTMETA;
3209 
3210 	/*
3211 	 * Interlock with inode destruction (no in-kernel or directory
3212 	 * topology visibility).  If we queue new IO while trying to
3213 	 * destroy the inode we can deadlock the vtrunc call in
3214 	 * hammer_inode_unloadable_check().
3215 	 *
3216 	 * Besides, there's no point flushing a bp associated with an
3217 	 * inode that is being destroyed on-media and has no kernel
3218 	 * references.
3219 	 */
3220 	if ((ip->flags | ip->sync_flags) &
3221 	    (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) {
3222 		bp->b_resid = 0;
3223 		biodone(ap->a_bio);
3224 		lwkt_reltoken(&hmp->fs_token);
3225 		return(0);
3226 	}
3227 
3228 	/*
3229 	 * Reserve space and issue a direct-write from the front-end.
3230 	 * NOTE: The direct_io code will hammer_bread/bcopy smaller
3231 	 * allocations.
3232 	 *
3233 	 * An in-memory record will be installed to reference the storage
3234 	 * until the flusher can get to it.
3235 	 *
3236 	 * Since we own the high level bio the front-end will not try to
3237 	 * do a direct-read until the write completes.
3238 	 *
3239 	 * NOTE: The only time we do not reserve a full-sized buffers
3240 	 * worth of data is if the file is small.  We do not try to
3241 	 * allocate a fragment (from the small-data zone) at the end of
3242 	 * an otherwise large file as this can lead to wildly separated
3243 	 * data.
3244 	 */
3245 	KKASSERT((bio->bio_offset & HAMMER_BUFMASK) == 0);
3246 	KKASSERT(bio->bio_offset < ip->ino_data.size);
3247 	if (bio->bio_offset || ip->ino_data.size > HAMMER_HBUFSIZE)
3248 		bytes = bp->b_bufsize;
3249 	else
3250 		bytes = HAMMER_DATA_DOALIGN_WITH(int, ip->ino_data.size);
3251 
3252 	record = hammer_ip_add_bulk(ip, bio->bio_offset, bp->b_data,
3253 				    bytes, &error);
3254 
3255 	/*
3256 	 * B_VFSFLAG1 indicates that a REDO_WRITE entry was generated
3257 	 * in hammer_vop_write().  We must flag the record so the proper
3258 	 * REDO_TERM_WRITE entry is generated during the flush.
3259 	 */
3260 	if (record) {
3261 		if (bp->b_flags & B_VFSFLAG1) {
3262 			record->flags |= HAMMER_RECF_REDO;
3263 			bp->b_flags &= ~B_VFSFLAG1;
3264 		}
3265 		if (record->flags & HAMMER_RECF_DEDUPED) {
3266 			bp->b_resid = 0;
3267 			hammer_ip_replace_bulk(hmp, record);
3268 			biodone(ap->a_bio);
3269 		} else {
3270 			hammer_io_direct_write(hmp, bio, record);
3271 		}
3272 		if (ip->rsv_recs > 1 && hmp->rsv_recs > hammer_limit_recs)
3273 			hammer_flush_inode(ip, 0);
3274 	} else {
3275 		bp->b_bio2.bio_offset = NOOFFSET;
3276 		bp->b_error = error;
3277 		bp->b_flags |= B_ERROR;
3278 		biodone(ap->a_bio);
3279 	}
3280 	lwkt_reltoken(&hmp->fs_token);
3281 	return(error);
3282 }
3283 
3284 /*
3285  * dounlink - disconnect a directory entry
3286  *
3287  * XXX whiteout support not really in yet
3288  */
3289 static int
3290 hammer_dounlink(hammer_transaction_t trans, struct nchandle *nch,
3291 		struct vnode *dvp, struct ucred *cred,
3292 		int flags, int isdir)
3293 {
3294 	struct namecache *ncp;
3295 	hammer_inode_t dip;
3296 	hammer_inode_t ip;
3297 	hammer_mount_t hmp;
3298 	struct hammer_cursor cursor;
3299 	int64_t namekey;
3300 	uint32_t max_iterations;
3301 	int nlen, error;
3302 
3303 	/*
3304 	 * Calculate the namekey and setup the key range for the scan.  This
3305 	 * works kinda like a chained hash table where the lower 32 bits
3306 	 * of the namekey synthesize the chain.
3307 	 *
3308 	 * The key range is inclusive of both key_beg and key_end.
3309 	 */
3310 	dip = VTOI(dvp);
3311 	ncp = nch->ncp;
3312 	hmp = dip->hmp;
3313 
3314 	if (dip->flags & HAMMER_INODE_RO)
3315 		return (EROFS);
3316 
3317 	namekey = hammer_direntry_namekey(dip, ncp->nc_name, ncp->nc_nlen,
3318 					   &max_iterations);
3319 retry:
3320 	hammer_init_cursor(trans, &cursor, &dip->cache[1], dip);
3321 	cursor.key_beg.localization = dip->obj_localization |
3322 				      hammer_dir_localization(dip);
3323         cursor.key_beg.obj_id = dip->obj_id;
3324 	cursor.key_beg.key = namekey;
3325         cursor.key_beg.create_tid = 0;
3326         cursor.key_beg.delete_tid = 0;
3327         cursor.key_beg.rec_type = HAMMER_RECTYPE_DIRENTRY;
3328         cursor.key_beg.obj_type = 0;
3329 
3330 	cursor.key_end = cursor.key_beg;
3331 	cursor.key_end.key += max_iterations;
3332 	cursor.asof = dip->obj_asof;
3333 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
3334 
3335 	/*
3336 	 * Scan all matching records (the chain), locate the one matching
3337 	 * the requested path component.  info->last_error contains the
3338 	 * error code on search termination and could be 0, ENOENT, or
3339 	 * something else.
3340 	 *
3341 	 * The hammer_ip_*() functions merge in-memory records with on-disk
3342 	 * records for the purposes of the search.
3343 	 */
3344 	error = hammer_ip_first(&cursor);
3345 
3346 	while (error == 0) {
3347 		error = hammer_ip_resolve_data(&cursor);
3348 		if (error)
3349 			break;
3350 		nlen = cursor.leaf->data_len - HAMMER_ENTRY_NAME_OFF;
3351 		KKASSERT(nlen > 0);
3352 		if (ncp->nc_nlen == nlen &&
3353 		    bcmp(ncp->nc_name, cursor.data->entry.name, nlen) == 0) {
3354 			break;
3355 		}
3356 		error = hammer_ip_next(&cursor);
3357 	}
3358 
3359 	/*
3360 	 * If all is ok we have to get the inode so we can adjust nlinks.
3361 	 * To avoid a deadlock with the flusher we must release the inode
3362 	 * lock on the directory when acquiring the inode for the entry.
3363 	 *
3364 	 * If the target is a directory, it must be empty.
3365 	 */
3366 	if (error == 0) {
3367 		hammer_unlock(&cursor.ip->lock);
3368 		ip = hammer_get_inode(trans, dip, cursor.data->entry.obj_id,
3369 				      hmp->asof,
3370 				      cursor.data->entry.localization,
3371 				      0, &error);
3372 		hammer_lock_sh(&cursor.ip->lock);
3373 		if (error == ENOENT) {
3374 			hkprintf("WARNING: Removing dirent w/missing inode "
3375 				"\"%s\"\n"
3376 				"\tobj_id = %016jx\n",
3377 				ncp->nc_name,
3378 				(intmax_t)cursor.data->entry.obj_id);
3379 			error = 0;
3380 		}
3381 
3382 		/*
3383 		 * If isdir >= 0 we validate that the entry is or is not a
3384 		 * directory.  If isdir < 0 we don't care.
3385 		 */
3386 		if (error == 0 && isdir >= 0 && ip) {
3387 			if (isdir &&
3388 			    ip->ino_data.obj_type != HAMMER_OBJTYPE_DIRECTORY) {
3389 				error = ENOTDIR;
3390 			} else if (isdir == 0 &&
3391 			    ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
3392 				error = EISDIR;
3393 			}
3394 		}
3395 
3396 		/*
3397 		 * If we are trying to remove a directory the directory must
3398 		 * be empty.
3399 		 *
3400 		 * The check directory code can loop and deadlock/retry.  Our
3401 		 * own cursor's node locks must be released to avoid a 3-way
3402 		 * deadlock with the flusher if the check directory code
3403 		 * blocks.
3404 		 *
3405 		 * If any changes whatsoever have been made to the cursor
3406 		 * set EDEADLK and retry.
3407 		 *
3408 		 * WARNING: See warnings in hammer_unlock_cursor()
3409 		 *	    function.
3410 		 */
3411 		if (error == 0 && ip && ip->ino_data.obj_type ==
3412 				        HAMMER_OBJTYPE_DIRECTORY) {
3413 			hammer_unlock_cursor(&cursor);
3414 			error = hammer_ip_check_directory_empty(trans, ip);
3415 			hammer_lock_cursor(&cursor);
3416 			if (cursor.flags & HAMMER_CURSOR_RETEST) {
3417 				hkprintf("Warning: avoided deadlock "
3418 					"on rmdir '%s'\n",
3419 					ncp->nc_name);
3420 				error = EDEADLK;
3421 			}
3422 		}
3423 
3424 		/*
3425 		 * Delete the directory entry.
3426 		 *
3427 		 * WARNING: hammer_ip_del_direntry() may have to terminate
3428 		 * the cursor to avoid a deadlock.  It is ok to call
3429 		 * hammer_done_cursor() twice.
3430 		 */
3431 		if (error == 0) {
3432 			error = hammer_ip_del_direntry(trans, &cursor,
3433 							dip, ip);
3434 		}
3435 		hammer_done_cursor(&cursor);
3436 		if (error == 0) {
3437 			/*
3438 			 * Tell the namecache that we are now unlinked.
3439 			 */
3440 			cache_unlink(nch);
3441 
3442 			/*
3443 			 * NOTE: ip->vp, if non-NULL, cannot be directly
3444 			 *	 referenced without formally acquiring the
3445 			 *	 vp since the vp might have zero refs on it,
3446 			 *	 or in the middle of a reclaim, etc.
3447 			 *
3448 			 * NOTE: The cache_setunresolved() can rip the vp
3449 			 *	 out from under us since the vp may not have
3450 			 *	 any refs, in which case ip->vp will be NULL
3451 			 *	 from the outset.
3452 			 */
3453 			while (ip && ip->vp) {
3454 				struct vnode *vp;
3455 
3456 				error = hammer_get_vnode(ip, &vp);
3457 				if (error == 0 && vp) {
3458 					vn_unlock(vp);
3459 					hammer_knote(ip->vp, NOTE_DELETE);
3460 #if 0
3461 					/*
3462 					 * Don't do this, it can deadlock
3463 					 * on concurrent rm's of hardlinks.
3464 					 * Shouldn't be needed any more.
3465 					 */
3466 					cache_inval_vp(ip->vp, CINV_DESTROY);
3467 #endif
3468 					vrele(vp);
3469 					break;
3470 				}
3471 				hdkprintf("ip/vp race1 avoided\n");
3472 			}
3473 		}
3474 		if (ip)
3475 			hammer_rel_inode(ip, 0);
3476 	} else {
3477 		hammer_done_cursor(&cursor);
3478 	}
3479 	if (error == EDEADLK)
3480 		goto retry;
3481 
3482 	return (error);
3483 }
3484 
3485 /************************************************************************
3486  *			    FIFO AND SPECFS OPS				*
3487  ************************************************************************
3488  *
3489  */
3490 static int
3491 hammer_vop_fifoclose (struct vop_close_args *ap)
3492 {
3493 	/* XXX update itimes */
3494 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3495 }
3496 
3497 static int
3498 hammer_vop_fiforead (struct vop_read_args *ap)
3499 {
3500 	int error;
3501 
3502 	error = VOCALL(&fifo_vnode_vops, &ap->a_head);
3503 	/* XXX update access time */
3504 	return (error);
3505 }
3506 
3507 static int
3508 hammer_vop_fifowrite (struct vop_write_args *ap)
3509 {
3510 	int error;
3511 
3512 	error = VOCALL(&fifo_vnode_vops, &ap->a_head);
3513 	/* XXX update access time */
3514 	return (error);
3515 }
3516 
3517 static
3518 int
3519 hammer_vop_fifokqfilter(struct vop_kqfilter_args *ap)
3520 {
3521 	int error;
3522 
3523 	error = VOCALL(&fifo_vnode_vops, &ap->a_head);
3524 	if (error)
3525 		error = hammer_vop_kqfilter(ap);
3526 	return(error);
3527 }
3528 
3529 /************************************************************************
3530  *			    KQFILTER OPS				*
3531  ************************************************************************
3532  *
3533  */
3534 static void filt_hammerdetach(struct knote *kn);
3535 static int filt_hammerread(struct knote *kn, long hint);
3536 static int filt_hammerwrite(struct knote *kn, long hint);
3537 static int filt_hammervnode(struct knote *kn, long hint);
3538 
3539 static struct filterops hammerread_filtops =
3540 	{ FILTEROP_ISFD | FILTEROP_MPSAFE,
3541 	  NULL, filt_hammerdetach, filt_hammerread };
3542 static struct filterops hammerwrite_filtops =
3543 	{ FILTEROP_ISFD | FILTEROP_MPSAFE,
3544 	  NULL, filt_hammerdetach, filt_hammerwrite };
3545 static struct filterops hammervnode_filtops =
3546 	{ FILTEROP_ISFD | FILTEROP_MPSAFE,
3547 	  NULL, filt_hammerdetach, filt_hammervnode };
3548 
3549 static
3550 int
3551 hammer_vop_kqfilter(struct vop_kqfilter_args *ap)
3552 {
3553 	struct vnode *vp = ap->a_vp;
3554 	struct knote *kn = ap->a_kn;
3555 
3556 	switch (kn->kn_filter) {
3557 	case EVFILT_READ:
3558 		kn->kn_fop = &hammerread_filtops;
3559 		break;
3560 	case EVFILT_WRITE:
3561 		kn->kn_fop = &hammerwrite_filtops;
3562 		break;
3563 	case EVFILT_VNODE:
3564 		kn->kn_fop = &hammervnode_filtops;
3565 		break;
3566 	default:
3567 		return (EOPNOTSUPP);
3568 	}
3569 
3570 	kn->kn_hook = (caddr_t)vp;
3571 
3572 	knote_insert(&vp->v_pollinfo.vpi_kqinfo.ki_note, kn);
3573 
3574 	return(0);
3575 }
3576 
3577 static void
3578 filt_hammerdetach(struct knote *kn)
3579 {
3580 	struct vnode *vp = (void *)kn->kn_hook;
3581 
3582 	knote_remove(&vp->v_pollinfo.vpi_kqinfo.ki_note, kn);
3583 }
3584 
3585 static int
3586 filt_hammerread(struct knote *kn, long hint)
3587 {
3588 	struct vnode *vp = (void *)kn->kn_hook;
3589 	hammer_inode_t ip = VTOI(vp);
3590 	hammer_mount_t hmp = ip->hmp;
3591 	off_t off;
3592 
3593 	if (hint == NOTE_REVOKE) {
3594 		kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
3595 		return(1);
3596 	}
3597 	lwkt_gettoken(&hmp->fs_token);	/* XXX use per-ip-token */
3598 	off = ip->ino_data.size - kn->kn_fp->f_offset;
3599 	kn->kn_data = (off < INTPTR_MAX) ? off : INTPTR_MAX;
3600 	lwkt_reltoken(&hmp->fs_token);
3601 	if (kn->kn_sfflags & NOTE_OLDAPI)
3602 		return(1);
3603 	return (kn->kn_data != 0);
3604 }
3605 
3606 static int
3607 filt_hammerwrite(struct knote *kn, long hint)
3608 {
3609 	if (hint == NOTE_REVOKE)
3610 		kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
3611 	kn->kn_data = 0;
3612 	return (1);
3613 }
3614 
3615 static int
3616 filt_hammervnode(struct knote *kn, long hint)
3617 {
3618 	if (kn->kn_sfflags & hint)
3619 		kn->kn_fflags |= hint;
3620 	if (hint == NOTE_REVOKE) {
3621 		kn->kn_flags |= (EV_EOF | EV_NODATA);
3622 		return (1);
3623 	}
3624 	return (kn->kn_fflags != 0);
3625 }
3626 
3627