xref: /dragonfly/sys/vfs/hammer/hammer_vnops.c (revision e98bdfd3)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/mountctl.h>
36 #include <sys/namecache.h>
37 #include <sys/buf2.h>
38 #include <vfs/fifofs/fifo.h>
39 
40 #include "hammer.h"
41 
42 /*
43  * USERFS VNOPS
44  */
45 static int hammer_vop_fsync(struct vop_fsync_args *);
46 static int hammer_vop_read(struct vop_read_args *);
47 static int hammer_vop_write(struct vop_write_args *);
48 static int hammer_vop_access(struct vop_access_args *);
49 static int hammer_vop_advlock(struct vop_advlock_args *);
50 static int hammer_vop_close(struct vop_close_args *);
51 static int hammer_vop_ncreate(struct vop_ncreate_args *);
52 static int hammer_vop_getattr(struct vop_getattr_args *);
53 static int hammer_vop_nresolve(struct vop_nresolve_args *);
54 static int hammer_vop_nlookupdotdot(struct vop_nlookupdotdot_args *);
55 static int hammer_vop_nlink(struct vop_nlink_args *);
56 static int hammer_vop_nmkdir(struct vop_nmkdir_args *);
57 static int hammer_vop_nmknod(struct vop_nmknod_args *);
58 static int hammer_vop_open(struct vop_open_args *);
59 static int hammer_vop_print(struct vop_print_args *);
60 static int hammer_vop_readdir(struct vop_readdir_args *);
61 static int hammer_vop_readlink(struct vop_readlink_args *);
62 static int hammer_vop_nremove(struct vop_nremove_args *);
63 static int hammer_vop_nrename(struct vop_nrename_args *);
64 static int hammer_vop_nrmdir(struct vop_nrmdir_args *);
65 static int hammer_vop_markatime(struct vop_markatime_args *);
66 static int hammer_vop_setattr(struct vop_setattr_args *);
67 static int hammer_vop_strategy(struct vop_strategy_args *);
68 static int hammer_vop_bmap(struct vop_bmap_args *ap);
69 static int hammer_vop_nsymlink(struct vop_nsymlink_args *);
70 static int hammer_vop_nwhiteout(struct vop_nwhiteout_args *);
71 static int hammer_vop_ioctl(struct vop_ioctl_args *);
72 static int hammer_vop_mountctl(struct vop_mountctl_args *);
73 static int hammer_vop_kqfilter (struct vop_kqfilter_args *);
74 
75 static int hammer_vop_fifoclose (struct vop_close_args *);
76 static int hammer_vop_fiforead (struct vop_read_args *);
77 static int hammer_vop_fifowrite (struct vop_write_args *);
78 static int hammer_vop_fifokqfilter (struct vop_kqfilter_args *);
79 
80 struct vop_ops hammer_vnode_vops = {
81 	.vop_default =		vop_defaultop,
82 	.vop_fsync =		hammer_vop_fsync,
83 	.vop_getpages =		vop_stdgetpages,
84 	.vop_putpages =		vop_stdputpages,
85 	.vop_read =		hammer_vop_read,
86 	.vop_write =		hammer_vop_write,
87 	.vop_access =		hammer_vop_access,
88 	.vop_advlock =		hammer_vop_advlock,
89 	.vop_close =		hammer_vop_close,
90 	.vop_ncreate =		hammer_vop_ncreate,
91 	.vop_getattr =		hammer_vop_getattr,
92 	.vop_inactive =		hammer_vop_inactive,
93 	.vop_reclaim =		hammer_vop_reclaim,
94 	.vop_nresolve =		hammer_vop_nresolve,
95 	.vop_nlookupdotdot =	hammer_vop_nlookupdotdot,
96 	.vop_nlink =		hammer_vop_nlink,
97 	.vop_nmkdir =		hammer_vop_nmkdir,
98 	.vop_nmknod =		hammer_vop_nmknod,
99 	.vop_open =		hammer_vop_open,
100 	.vop_pathconf =		vop_stdpathconf,
101 	.vop_print =		hammer_vop_print,
102 	.vop_readdir =		hammer_vop_readdir,
103 	.vop_readlink =		hammer_vop_readlink,
104 	.vop_nremove =		hammer_vop_nremove,
105 	.vop_nrename =		hammer_vop_nrename,
106 	.vop_nrmdir =		hammer_vop_nrmdir,
107 	.vop_markatime =	hammer_vop_markatime,
108 	.vop_setattr =		hammer_vop_setattr,
109 	.vop_bmap =		hammer_vop_bmap,
110 	.vop_strategy =		hammer_vop_strategy,
111 	.vop_nsymlink =		hammer_vop_nsymlink,
112 	.vop_nwhiteout =	hammer_vop_nwhiteout,
113 	.vop_ioctl =		hammer_vop_ioctl,
114 	.vop_mountctl =		hammer_vop_mountctl,
115 	.vop_kqfilter =		hammer_vop_kqfilter
116 };
117 
118 struct vop_ops hammer_spec_vops = {
119 	.vop_default =		vop_defaultop,
120 	.vop_fsync =		hammer_vop_fsync,
121 	.vop_read =		vop_stdnoread,
122 	.vop_write =		vop_stdnowrite,
123 	.vop_access =		hammer_vop_access,
124 	.vop_close =		hammer_vop_close,
125 	.vop_markatime =	hammer_vop_markatime,
126 	.vop_getattr =		hammer_vop_getattr,
127 	.vop_inactive =		hammer_vop_inactive,
128 	.vop_reclaim =		hammer_vop_reclaim,
129 	.vop_setattr =		hammer_vop_setattr
130 };
131 
132 struct vop_ops hammer_fifo_vops = {
133 	.vop_default =		fifo_vnoperate,
134 	.vop_fsync =		hammer_vop_fsync,
135 	.vop_read =		hammer_vop_fiforead,
136 	.vop_write =		hammer_vop_fifowrite,
137 	.vop_access =		hammer_vop_access,
138 	.vop_close =		hammer_vop_fifoclose,
139 	.vop_markatime =	hammer_vop_markatime,
140 	.vop_getattr =		hammer_vop_getattr,
141 	.vop_inactive =		hammer_vop_inactive,
142 	.vop_reclaim =		hammer_vop_reclaim,
143 	.vop_setattr =		hammer_vop_setattr,
144 	.vop_kqfilter =		hammer_vop_fifokqfilter
145 };
146 
147 static __inline
148 void
149 hammer_knote(struct vnode *vp, int flags)
150 {
151 	if (flags)
152 		KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, flags);
153 }
154 
155 static int hammer_dounlink(hammer_transaction_t trans, struct nchandle *nch,
156 			   struct vnode *dvp, struct ucred *cred,
157 			   int flags, int isdir);
158 static int hammer_vop_strategy_read(struct vop_strategy_args *ap);
159 static int hammer_vop_strategy_write(struct vop_strategy_args *ap);
160 
161 /*
162  * hammer_vop_fsync { vp, waitfor }
163  *
164  * fsync() an inode to disk and wait for it to be completely committed
165  * such that the information would not be undone if a crash occured after
166  * return.
167  *
168  * NOTE: HAMMER's fsync()'s are going to remain expensive until we implement
169  *	 a REDO log.  A sysctl is provided to relax HAMMER's fsync()
170  *	 operation.
171  *
172  *	 Ultimately the combination of a REDO log and use of fast storage
173  *	 to front-end cluster caches will make fsync fast, but it aint
174  *	 here yet.  And, in anycase, we need real transactional
175  *	 all-or-nothing features which are not restricted to a single file.
176  */
177 static
178 int
179 hammer_vop_fsync(struct vop_fsync_args *ap)
180 {
181 	hammer_inode_t ip = VTOI(ap->a_vp);
182 	hammer_mount_t hmp = ip->hmp;
183 	int waitfor = ap->a_waitfor;
184 	int mode;
185 
186 	lwkt_gettoken(&hmp->fs_token);
187 
188 	/*
189 	 * Fsync rule relaxation (default is either full synchronous flush
190 	 * or REDO semantics with synchronous flush).
191 	 */
192 	if (ap->a_flags & VOP_FSYNC_SYSCALL) {
193 		switch(hammer_fsync_mode) {
194 		case 0:
195 mode0:
196 			/* no REDO, full synchronous flush */
197 			goto skip;
198 		case 1:
199 mode1:
200 			/* no REDO, full asynchronous flush */
201 			if (waitfor == MNT_WAIT)
202 				waitfor = MNT_NOWAIT;
203 			goto skip;
204 		case 2:
205 			/* REDO semantics, synchronous flush */
206 			if (hmp->version < HAMMER_VOL_VERSION_FOUR)
207 				goto mode0;
208 			mode = HAMMER_FLUSH_UNDOS_AUTO;
209 			break;
210 		case 3:
211 			/* REDO semantics, relaxed asynchronous flush */
212 			if (hmp->version < HAMMER_VOL_VERSION_FOUR)
213 				goto mode1;
214 			mode = HAMMER_FLUSH_UNDOS_RELAXED;
215 			if (waitfor == MNT_WAIT)
216 				waitfor = MNT_NOWAIT;
217 			break;
218 		case 4:
219 			/* ignore the fsync() system call */
220 			lwkt_reltoken(&hmp->fs_token);
221 			return(0);
222 		default:
223 			/* we have to do something */
224 			mode = HAMMER_FLUSH_UNDOS_RELAXED;
225 			if (waitfor == MNT_WAIT)
226 				waitfor = MNT_NOWAIT;
227 			break;
228 		}
229 
230 		/*
231 		 * Fast fsync only needs to flush the UNDO/REDO fifo if
232 		 * HAMMER_INODE_REDO is non-zero and the only modifications
233 		 * made to the file are write or write-extends.
234 		 */
235 		if ((ip->flags & HAMMER_INODE_REDO) &&
236 		    (ip->flags & HAMMER_INODE_MODMASK_NOREDO) == 0) {
237 			++hammer_count_fsyncs;
238 			hammer_flusher_flush_undos(hmp, mode);
239 			ip->redo_count = 0;
240 			if (ip->vp && (ip->flags & HAMMER_INODE_MODMASK) == 0)
241 				vclrisdirty(ip->vp);
242 			lwkt_reltoken(&hmp->fs_token);
243 			return(0);
244 		}
245 
246 		/*
247 		 * REDO is enabled by fsync(), the idea being we really only
248 		 * want to lay down REDO records when programs are using
249 		 * fsync() heavily.  The first fsync() on the file starts
250 		 * the gravy train going and later fsync()s keep it hot by
251 		 * resetting the redo_count.
252 		 *
253 		 * We weren't running REDOs before now so we have to fall
254 		 * through and do a full fsync of what we have.
255 		 */
256 		if (hmp->version >= HAMMER_VOL_VERSION_FOUR &&
257 		    (hmp->flags & HAMMER_MOUNT_REDO_RECOVERY_RUN) == 0) {
258 			ip->flags |= HAMMER_INODE_REDO;
259 			ip->redo_count = 0;
260 		}
261 	}
262 skip:
263 
264 	/*
265 	 * Do a full flush sequence.
266 	 *
267 	 * Attempt to release the vnode while waiting for the inode to
268 	 * finish flushing.  This can really mess up inactive->reclaim
269 	 * sequences so only do it if the vnode is active.
270 	 *
271 	 * WARNING! The VX lock functions must be used.  vn_lock() will
272 	 *	    fail when this is part of a VOP_RECLAIM sequence.
273 	 */
274 	++hammer_count_fsyncs;
275 	vfsync(ap->a_vp, waitfor, 1, NULL, NULL);
276 	hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
277 	if (waitfor == MNT_WAIT) {
278 		int dorelock;
279 
280 		if ((ap->a_vp->v_flag & VRECLAIMED) == 0) {
281 			vx_unlock(ap->a_vp);
282 			dorelock = 1;
283 		} else {
284 			dorelock = 0;
285 		}
286 		hammer_wait_inode(ip);
287 		if (dorelock)
288 			vx_lock(ap->a_vp);
289 	}
290 	if (ip->vp && (ip->flags & HAMMER_INODE_MODMASK) == 0)
291 		vclrisdirty(ip->vp);
292 	lwkt_reltoken(&hmp->fs_token);
293 	return (ip->error);
294 }
295 
296 /*
297  * hammer_vop_read { vp, uio, ioflag, cred }
298  *
299  * MPSAFE (for the cache safe does not require fs_token)
300  */
301 static
302 int
303 hammer_vop_read(struct vop_read_args *ap)
304 {
305 	struct hammer_transaction trans;
306 	hammer_inode_t ip;
307 	hammer_mount_t hmp;
308 	off_t offset;
309 	struct buf *bp;
310 	struct uio *uio;
311 	int error;
312 	int n;
313 	int seqcount;
314 	int ioseqcount;
315 	int blksize;
316 	int bigread;
317 	int got_trans;
318 	size_t resid;
319 
320 	if (ap->a_vp->v_type != VREG)
321 		return (EINVAL);
322 	ip = VTOI(ap->a_vp);
323 	hmp = ip->hmp;
324 	error = 0;
325 	got_trans = 0;
326 	uio = ap->a_uio;
327 
328 	/*
329 	 * Attempt to shortcut directly to the VM object using lwbufs.
330 	 * This is much faster than instantiating buffer cache buffers.
331 	 */
332 	resid = uio->uio_resid;
333 	error = vop_helper_read_shortcut(ap);
334 	hammer_stats_file_read += resid - uio->uio_resid;
335 	if (error)
336 		return (error);
337 	if (uio->uio_resid == 0)
338 		goto finished;
339 
340 	/*
341 	 * Allow the UIO's size to override the sequential heuristic.
342 	 */
343 	blksize = hammer_blocksize(uio->uio_offset);
344 	seqcount = (uio->uio_resid + (BKVASIZE - 1)) / BKVASIZE;
345 	ioseqcount = (ap->a_ioflag >> 16);
346 	if (seqcount < ioseqcount)
347 		seqcount = ioseqcount;
348 
349 	/*
350 	 * If reading or writing a huge amount of data we have to break
351 	 * atomicy and allow the operation to be interrupted by a signal
352 	 * or it can DOS the machine.
353 	 */
354 	bigread = (uio->uio_resid > 100 * 1024 * 1024);
355 
356 	/*
357 	 * Access the data typically in HAMMER_BUFSIZE blocks via the
358 	 * buffer cache, but HAMMER may use a variable block size based
359 	 * on the offset.
360 	 *
361 	 * XXX Temporary hack, delay the start transaction while we remain
362 	 *     MPSAFE.  NOTE: ino_data.size cannot change while vnode is
363 	 *     locked-shared.
364 	 */
365 	while (uio->uio_resid > 0 && uio->uio_offset < ip->ino_data.size) {
366 		int64_t base_offset;
367 		int64_t file_limit;
368 
369 		blksize = hammer_blocksize(uio->uio_offset);
370 		offset = (int)uio->uio_offset & (blksize - 1);
371 		base_offset = uio->uio_offset - offset;
372 
373 		if (bigread && (error = hammer_signal_check(ip->hmp)) != 0)
374 			break;
375 
376 		/*
377 		 * MPSAFE
378 		 */
379 		bp = getblk(ap->a_vp, base_offset, blksize, 0, 0);
380 		if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
381 			bp->b_flags &= ~B_AGE;
382 			error = 0;
383 			goto skip;
384 		}
385 		if (ap->a_ioflag & IO_NRDELAY) {
386 			bqrelse(bp);
387 			return (EWOULDBLOCK);
388 		}
389 
390 		/*
391 		 * MPUNSAFE
392 		 */
393 		if (got_trans == 0) {
394 			hammer_start_transaction(&trans, ip->hmp);
395 			got_trans = 1;
396 		}
397 
398 		/*
399 		 * NOTE: A valid bp has already been acquired, but was not
400 		 *	 B_CACHE.
401 		 */
402 		if (hammer_cluster_enable) {
403 			/*
404 			 * Use file_limit to prevent cluster_read() from
405 			 * creating buffers of the wrong block size past
406 			 * the demarc.
407 			 */
408 			file_limit = ip->ino_data.size;
409 			if (base_offset < HAMMER_XDEMARC &&
410 			    file_limit > HAMMER_XDEMARC) {
411 				file_limit = HAMMER_XDEMARC;
412 			}
413 			error = cluster_readx(ap->a_vp,
414 					     file_limit, base_offset,
415 					     blksize, uio->uio_resid,
416 					     seqcount * BKVASIZE, &bp);
417 		} else {
418 			error = breadnx(ap->a_vp, base_offset, blksize,
419 					NULL, NULL, 0, &bp);
420 		}
421 		if (error) {
422 			brelse(bp);
423 			break;
424 		}
425 skip:
426 		if ((hammer_debug_io & 0x0001) && (bp->b_flags & B_IODEBUG)) {
427 			hdkprintf("zone2_offset %016jx read file %016jx@%016jx\n",
428 				(intmax_t)bp->b_bio2.bio_offset,
429 				(intmax_t)ip->obj_id,
430 				(intmax_t)bp->b_loffset);
431 		}
432 		bp->b_flags &= ~B_IODEBUG;
433 		if (blksize == HAMMER_XBUFSIZE)
434 			bp->b_flags |= B_CLUSTEROK;
435 
436 		n = blksize - offset;
437 		if (n > uio->uio_resid)
438 			n = uio->uio_resid;
439 		if (n > ip->ino_data.size - uio->uio_offset)
440 			n = (int)(ip->ino_data.size - uio->uio_offset);
441 
442 		/*
443 		 * Set B_AGE, data has a lower priority than meta-data.
444 		 *
445 		 * Use a hold/unlock/drop sequence to run the uiomove
446 		 * with the buffer unlocked, avoiding deadlocks against
447 		 * read()s on mmap()'d spaces.
448 		 */
449 		bp->b_flags |= B_AGE;
450 		error = uiomovebp(bp, (char *)bp->b_data + offset, n, uio);
451 		bqrelse(bp);
452 
453 		if (error)
454 			break;
455 		hammer_stats_file_read += n;
456 	}
457 
458 finished:
459 
460 	/*
461 	 * Try to update the atime with just the inode lock for maximum
462 	 * concurrency.  If we can't shortcut it we have to get the full
463 	 * blown transaction.
464 	 */
465 	if (got_trans == 0 && hammer_update_atime_quick(ip) < 0) {
466 		hammer_start_transaction(&trans, ip->hmp);
467 		got_trans = 1;
468 	}
469 
470 	if (got_trans) {
471 		if ((ip->flags & HAMMER_INODE_RO) == 0 &&
472 		    (ip->hmp->mp->mnt_flag & MNT_NOATIME) == 0) {
473 			lwkt_gettoken(&hmp->fs_token);
474 			ip->ino_data.atime = trans.time;
475 			hammer_modify_inode(&trans, ip, HAMMER_INODE_ATIME);
476 			hammer_done_transaction(&trans);
477 			lwkt_reltoken(&hmp->fs_token);
478 		} else {
479 			hammer_done_transaction(&trans);
480 		}
481 	}
482 	return (error);
483 }
484 
485 /*
486  * hammer_vop_write { vp, uio, ioflag, cred }
487  */
488 static
489 int
490 hammer_vop_write(struct vop_write_args *ap)
491 {
492 	struct hammer_transaction trans;
493 	struct hammer_inode *ip;
494 	hammer_mount_t hmp;
495 	thread_t td;
496 	struct uio *uio;
497 	int offset;
498 	off_t base_offset;
499 	int64_t cluster_eof;
500 	struct buf *bp;
501 	int kflags;
502 	int error;
503 	int n;
504 	int flags;
505 	int seqcount;
506 	int bigwrite;
507 
508 	if (ap->a_vp->v_type != VREG)
509 		return (EINVAL);
510 	ip = VTOI(ap->a_vp);
511 	hmp = ip->hmp;
512 	error = 0;
513 	kflags = 0;
514 	seqcount = ap->a_ioflag >> 16;
515 
516 	if (ip->flags & HAMMER_INODE_RO)
517 		return (EROFS);
518 
519 	/*
520 	 * Create a transaction to cover the operations we perform.
521 	 */
522 	hammer_start_transaction(&trans, hmp);
523 	uio = ap->a_uio;
524 
525 	/*
526 	 * Check append mode
527 	 */
528 	if (ap->a_ioflag & IO_APPEND)
529 		uio->uio_offset = ip->ino_data.size;
530 
531 	/*
532 	 * Check for illegal write offsets.  Valid range is 0...2^63-1.
533 	 *
534 	 * NOTE: the base_off assignment is required to work around what
535 	 * I consider to be a GCC-4 optimization bug.
536 	 */
537 	if (uio->uio_offset < 0) {
538 		hammer_done_transaction(&trans);
539 		return (EFBIG);
540 	}
541 	base_offset = uio->uio_offset + uio->uio_resid;	/* work around gcc-4 */
542 	if (uio->uio_resid > 0 && base_offset <= uio->uio_offset) {
543 		hammer_done_transaction(&trans);
544 		return (EFBIG);
545 	}
546 
547 	if (uio->uio_resid > 0 && (td = uio->uio_td) != NULL && td->td_proc &&
548 	    base_offset > td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
549 		hammer_done_transaction(&trans);
550 		lwpsignal(td->td_proc, td->td_lwp, SIGXFSZ);
551 		return (EFBIG);
552 	}
553 
554 	/*
555 	 * If reading or writing a huge amount of data we have to break
556 	 * atomicy and allow the operation to be interrupted by a signal
557 	 * or it can DOS the machine.
558 	 *
559 	 * Preset redo_count so we stop generating REDOs earlier if the
560 	 * limit is exceeded.
561 	 *
562 	 * redo_count is heuristical, SMP races are ok
563 	 */
564 	bigwrite = (uio->uio_resid > 100 * 1024 * 1024);
565 	if ((ip->flags & HAMMER_INODE_REDO) &&
566 	    ip->redo_count < hammer_limit_redo) {
567 		ip->redo_count += uio->uio_resid;
568 	}
569 
570 	/*
571 	 * Access the data typically in HAMMER_BUFSIZE blocks via the
572 	 * buffer cache, but HAMMER may use a variable block size based
573 	 * on the offset.
574 	 */
575 	while (uio->uio_resid > 0) {
576 		int fixsize = 0;
577 		int blksize;
578 		int blkmask;
579 		int trivial;
580 		int endofblk;
581 		off_t nsize;
582 
583 		if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_WRITE)) != 0)
584 			break;
585 		if (bigwrite && (error = hammer_signal_check(hmp)) != 0)
586 			break;
587 
588 		blksize = hammer_blocksize(uio->uio_offset);
589 
590 		/*
591 		 * Control the number of pending records associated with
592 		 * this inode.  If too many have accumulated start a
593 		 * flush.  Try to maintain a pipeline with the flusher.
594 		 *
595 		 * NOTE: It is possible for other sources to grow the
596 		 *	 records but not necessarily issue another flush,
597 		 *	 so use a timeout and ensure that a re-flush occurs.
598 		 */
599 		if (ip->rsv_recs >= hammer_limit_inode_recs) {
600 			lwkt_gettoken(&hmp->fs_token);
601 			hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
602 			while (ip->rsv_recs >= hammer_limit_inode_recs * 2) {
603 				ip->flags |= HAMMER_INODE_RECSW;
604 				tsleep(&ip->rsv_recs, 0, "hmrwww", hz);
605 				hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
606 			}
607 			lwkt_reltoken(&hmp->fs_token);
608 		}
609 
610 		/*
611 		 * Do not allow HAMMER to blow out the buffer cache.  Very
612 		 * large UIOs can lockout other processes due to bwillwrite()
613 		 * mechanics.
614 		 *
615 		 * The hammer inode is not locked during these operations.
616 		 * The vnode is locked which can interfere with the pageout
617 		 * daemon for non-UIO_NOCOPY writes but should not interfere
618 		 * with the buffer cache.  Even so, we cannot afford to
619 		 * allow the pageout daemon to build up too many dirty buffer
620 		 * cache buffers.
621 		 *
622 		 * Only call this if we aren't being recursively called from
623 		 * a virtual disk device (vn), else we may deadlock.
624 		 */
625 		if ((ap->a_ioflag & IO_RECURSE) == 0)
626 			bwillwrite(blksize);
627 
628 		/*
629 		 * Calculate the blocksize at the current offset and figure
630 		 * out how much we can actually write.
631 		 */
632 		blkmask = blksize - 1;
633 		offset = (int)uio->uio_offset & blkmask;
634 		base_offset = uio->uio_offset & ~(int64_t)blkmask;
635 		n = blksize - offset;
636 		if (n > uio->uio_resid) {
637 			n = uio->uio_resid;
638 			endofblk = 0;
639 		} else {
640 			endofblk = 1;
641 		}
642 		nsize = uio->uio_offset + n;
643 		if (nsize > ip->ino_data.size) {
644 			if (uio->uio_offset > ip->ino_data.size)
645 				trivial = 0;
646 			else
647 				trivial = 1;
648 			nvextendbuf(ap->a_vp,
649 				    ip->ino_data.size,
650 				    nsize,
651 				    hammer_blocksize(ip->ino_data.size),
652 				    hammer_blocksize(nsize),
653 				    hammer_blockoff(ip->ino_data.size),
654 				    hammer_blockoff(nsize),
655 				    trivial);
656 			fixsize = 1;
657 			kflags |= NOTE_EXTEND;
658 		}
659 
660 		if (uio->uio_segflg == UIO_NOCOPY) {
661 			/*
662 			 * Issuing a write with the same data backing the
663 			 * buffer.  Instantiate the buffer to collect the
664 			 * backing vm pages, then read-in any missing bits.
665 			 *
666 			 * This case is used by vop_stdputpages().
667 			 */
668 			bp = getblk(ap->a_vp, base_offset,
669 				    blksize, GETBLK_BHEAVY, 0);
670 			if ((bp->b_flags & B_CACHE) == 0) {
671 				bqrelse(bp);
672 				error = bread(ap->a_vp, base_offset,
673 					      blksize, &bp);
674 			}
675 		} else if (offset == 0 && uio->uio_resid >= blksize) {
676 			/*
677 			 * Even though we are entirely overwriting the buffer
678 			 * we may still have to zero it out to avoid a
679 			 * mmap/write visibility issue.
680 			 */
681 			bp = getblk(ap->a_vp, base_offset, blksize, GETBLK_BHEAVY, 0);
682 			if ((bp->b_flags & B_CACHE) == 0)
683 				vfs_bio_clrbuf(bp);
684 		} else if (base_offset >= ip->ino_data.size) {
685 			/*
686 			 * If the base offset of the buffer is beyond the
687 			 * file EOF, we don't have to issue a read.
688 			 */
689 			bp = getblk(ap->a_vp, base_offset,
690 				    blksize, GETBLK_BHEAVY, 0);
691 			vfs_bio_clrbuf(bp);
692 		} else {
693 			/*
694 			 * Partial overwrite, read in any missing bits then
695 			 * replace the portion being written.
696 			 */
697 			error = bread(ap->a_vp, base_offset, blksize, &bp);
698 			if (error == 0)
699 				bheavy(bp);
700 		}
701 		if (error == 0)
702 			error = uiomovebp(bp, bp->b_data + offset, n, uio);
703 
704 		lwkt_gettoken(&hmp->fs_token);
705 
706 		/*
707 		 * Generate REDO records if enabled and redo_count will not
708 		 * exceeded the limit.
709 		 *
710 		 * If redo_count exceeds the limit we stop generating records
711 		 * and clear HAMMER_INODE_REDO.  This will cause the next
712 		 * fsync() to do a full meta-data sync instead of just an
713 		 * UNDO/REDO fifo update.
714 		 *
715 		 * When clearing HAMMER_INODE_REDO any pre-existing REDOs
716 		 * will still be tracked.  The tracks will be terminated
717 		 * when the related meta-data (including possible data
718 		 * modifications which are not tracked via REDO) is
719 		 * flushed.
720 		 */
721 		if ((ip->flags & HAMMER_INODE_REDO) && error == 0) {
722 			if (ip->redo_count < hammer_limit_redo) {
723 				bp->b_flags |= B_VFSFLAG1;
724 				error = hammer_generate_redo(&trans, ip,
725 						     base_offset + offset,
726 						     HAMMER_REDO_WRITE,
727 						     bp->b_data + offset,
728 						     (size_t)n);
729 			} else {
730 				ip->flags &= ~HAMMER_INODE_REDO;
731 			}
732 		}
733 
734 		/*
735 		 * If we screwed up we have to undo any VM size changes we
736 		 * made.
737 		 */
738 		if (error) {
739 			brelse(bp);
740 			if (fixsize) {
741 				nvtruncbuf(ap->a_vp, ip->ino_data.size,
742 					  hammer_blocksize(ip->ino_data.size),
743 					  hammer_blockoff(ip->ino_data.size),
744 					  0);
745 			}
746 			lwkt_reltoken(&hmp->fs_token);
747 			break;
748 		}
749 		kflags |= NOTE_WRITE;
750 		hammer_stats_file_write += n;
751 		if (blksize == HAMMER_XBUFSIZE)
752 			bp->b_flags |= B_CLUSTEROK;
753 		if (ip->ino_data.size < uio->uio_offset) {
754 			ip->ino_data.size = uio->uio_offset;
755 			flags = HAMMER_INODE_SDIRTY;
756 		} else {
757 			flags = 0;
758 		}
759 		ip->ino_data.mtime = trans.time;
760 		flags |= HAMMER_INODE_MTIME | HAMMER_INODE_BUFS;
761 		hammer_modify_inode(&trans, ip, flags);
762 
763 		/*
764 		 * Once we dirty the buffer any cached zone-X offset
765 		 * becomes invalid.  HAMMER NOTE: no-history mode cannot
766 		 * allow overwriting over the same data sector unless
767 		 * we provide UNDOs for the old data, which we don't.
768 		 */
769 		bp->b_bio2.bio_offset = NOOFFSET;
770 
771 		lwkt_reltoken(&hmp->fs_token);
772 
773 		/*
774 		 * Final buffer disposition.
775 		 *
776 		 * Because meta-data updates are deferred, HAMMER is
777 		 * especially sensitive to excessive bdwrite()s because
778 		 * the I/O stream is not broken up by disk reads.  So the
779 		 * buffer cache simply cannot keep up.
780 		 *
781 		 * WARNING!  blksize is variable.  cluster_write() is
782 		 *	     expected to not blow up if it encounters
783 		 *	     buffers that do not match the passed blksize.
784 		 *
785 		 * NOTE!  Hammer shouldn't need to bawrite()/cluster_write().
786 		 *	  The ip->rsv_recs check should burst-flush the data.
787 		 *	  If we queue it immediately the buf could be left
788 		 *	  locked on the device queue for a very long time.
789 		 *
790 		 *	  However, failing to flush a dirty buffer out when
791 		 *        issued from the pageout daemon can result in a low
792 		 *        memory deadlock against bio_page_alloc(), so we
793 		 *	  have to bawrite() on IO_ASYNC as well.
794 		 *
795 		 * NOTE!  To avoid degenerate stalls due to mismatched block
796 		 *	  sizes we only honor IO_DIRECT on the write which
797 		 *	  abuts the end of the buffer.  However, we must
798 		 *	  honor IO_SYNC in case someone is silly enough to
799 		 *	  configure a HAMMER file as swap, or when HAMMER
800 		 *	  is serving NFS (for commits).  Ick ick.
801 		 */
802 		bp->b_flags |= B_AGE;
803 		if (blksize == HAMMER_XBUFSIZE)
804 			bp->b_flags |= B_CLUSTEROK;
805 
806 		if (ap->a_ioflag & IO_SYNC) {
807 			bwrite(bp);
808 		} else if ((ap->a_ioflag & IO_DIRECT) && endofblk) {
809 			bawrite(bp);
810 		} else if (ap->a_ioflag & IO_ASYNC) {
811 			bawrite(bp);
812 		} else if (hammer_cluster_enable &&
813 			   !(ap->a_vp->v_mount->mnt_flag & MNT_NOCLUSTERW)) {
814 			if (base_offset < HAMMER_XDEMARC)
815 				cluster_eof = hammer_blockdemarc(base_offset,
816 							 ip->ino_data.size);
817 			else
818 				cluster_eof = ip->ino_data.size;
819 			cluster_write(bp, cluster_eof, blksize, seqcount);
820 		} else {
821 			bdwrite(bp);
822 		}
823 	}
824 	hammer_done_transaction(&trans);
825 	hammer_knote(ap->a_vp, kflags);
826 
827 	return (error);
828 }
829 
830 /*
831  * hammer_vop_access { vp, mode, cred }
832  *
833  * MPSAFE - does not require fs_token
834  */
835 static
836 int
837 hammer_vop_access(struct vop_access_args *ap)
838 {
839 	struct hammer_inode *ip = VTOI(ap->a_vp);
840 	uid_t uid;
841 	gid_t gid;
842 	int error;
843 
844 	++hammer_stats_file_iopsr;
845 	uid = hammer_to_unix_xid(&ip->ino_data.uid);
846 	gid = hammer_to_unix_xid(&ip->ino_data.gid);
847 
848 	error = vop_helper_access(ap, uid, gid, ip->ino_data.mode,
849 				  ip->ino_data.uflags);
850 	return (error);
851 }
852 
853 /*
854  * hammer_vop_advlock { vp, id, op, fl, flags }
855  *
856  * MPSAFE - does not require fs_token
857  */
858 static
859 int
860 hammer_vop_advlock(struct vop_advlock_args *ap)
861 {
862 	hammer_inode_t ip = VTOI(ap->a_vp);
863 
864 	return (lf_advlock(ap, &ip->advlock, ip->ino_data.size));
865 }
866 
867 /*
868  * hammer_vop_close { vp, fflag }
869  *
870  * We can only sync-on-close for normal closes.  XXX disabled for now.
871  */
872 static
873 int
874 hammer_vop_close(struct vop_close_args *ap)
875 {
876 #if 0
877 	struct vnode *vp = ap->a_vp;
878 	hammer_inode_t ip = VTOI(vp);
879 	int waitfor;
880 	if (ip->flags & (HAMMER_INODE_CLOSESYNC|HAMMER_INODE_CLOSEASYNC)) {
881 		if (vn_islocked(vp) == LK_EXCLUSIVE &&
882 		    (vp->v_flag & (VINACTIVE|VRECLAIMED)) == 0) {
883 			if (ip->flags & HAMMER_INODE_CLOSESYNC)
884 				waitfor = MNT_WAIT;
885 			else
886 				waitfor = MNT_NOWAIT;
887 			ip->flags &= ~(HAMMER_INODE_CLOSESYNC |
888 				       HAMMER_INODE_CLOSEASYNC);
889 			VOP_FSYNC(vp, MNT_NOWAIT, waitfor);
890 		}
891 	}
892 #endif
893 	return (vop_stdclose(ap));
894 }
895 
896 /*
897  * hammer_vop_ncreate { nch, dvp, vpp, cred, vap }
898  *
899  * The operating system has already ensured that the directory entry
900  * does not exist and done all appropriate namespace locking.
901  */
902 static
903 int
904 hammer_vop_ncreate(struct vop_ncreate_args *ap)
905 {
906 	struct hammer_transaction trans;
907 	struct hammer_inode *dip;
908 	struct hammer_inode *nip;
909 	struct nchandle *nch;
910 	hammer_mount_t hmp;
911 	int error;
912 
913 	nch = ap->a_nch;
914 	dip = VTOI(ap->a_dvp);
915 	hmp = dip->hmp;
916 
917 	if (dip->flags & HAMMER_INODE_RO)
918 		return (EROFS);
919 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
920 		return (error);
921 
922 	/*
923 	 * Create a transaction to cover the operations we perform.
924 	 */
925 	lwkt_gettoken(&hmp->fs_token);
926 	hammer_start_transaction(&trans, hmp);
927 	++hammer_stats_file_iopsw;
928 
929 	/*
930 	 * Create a new filesystem object of the requested type.  The
931 	 * returned inode will be referenced and shared-locked to prevent
932 	 * it from being moved to the flusher.
933 	 */
934 	error = hammer_create_inode(&trans, ap->a_vap, ap->a_cred,
935 				    dip, nch->ncp->nc_name, nch->ncp->nc_nlen,
936 				    NULL, &nip);
937 	if (error) {
938 		hkprintf("hammer_create_inode error %d\n", error);
939 		hammer_done_transaction(&trans);
940 		*ap->a_vpp = NULL;
941 		lwkt_reltoken(&hmp->fs_token);
942 		return (error);
943 	}
944 
945 	/*
946 	 * Add the new filesystem object to the directory.  This will also
947 	 * bump the inode's link count.
948 	 */
949 	error = hammer_ip_add_direntry(&trans, dip,
950 					nch->ncp->nc_name, nch->ncp->nc_nlen,
951 					nip);
952 	if (error)
953 		hkprintf("hammer_ip_add_direntry error %d\n", error);
954 
955 	/*
956 	 * Finish up.
957 	 */
958 	if (error) {
959 		hammer_rel_inode(nip, 0);
960 		hammer_done_transaction(&trans);
961 		*ap->a_vpp = NULL;
962 	} else {
963 		error = hammer_get_vnode(nip, ap->a_vpp);
964 		hammer_done_transaction(&trans);
965 		hammer_rel_inode(nip, 0);
966 		if (error == 0) {
967 			cache_setunresolved(ap->a_nch);
968 			cache_setvp(ap->a_nch, *ap->a_vpp);
969 		}
970 		hammer_knote(ap->a_dvp, NOTE_WRITE);
971 	}
972 	lwkt_reltoken(&hmp->fs_token);
973 	return (error);
974 }
975 
976 /*
977  * hammer_vop_getattr { vp, vap }
978  *
979  * Retrieve an inode's attribute information.  When accessing inodes
980  * historically we fake the atime field to ensure consistent results.
981  * The atime field is stored in the B-Tree element and allowed to be
982  * updated without cycling the element.
983  *
984  * MPSAFE - does not require fs_token
985  */
986 static
987 int
988 hammer_vop_getattr(struct vop_getattr_args *ap)
989 {
990 	struct hammer_inode *ip = VTOI(ap->a_vp);
991 	struct vattr *vap = ap->a_vap;
992 
993 	/*
994 	 * We want the fsid to be different when accessing a filesystem
995 	 * with different as-of's so programs like diff don't think
996 	 * the files are the same.
997 	 *
998 	 * We also want the fsid to be the same when comparing snapshots,
999 	 * or when comparing mirrors (which might be backed by different
1000 	 * physical devices).  HAMMER fsids are based on the PFS's
1001 	 * shared_uuid field.
1002 	 *
1003 	 * XXX there is a chance of collision here.  The va_fsid reported
1004 	 * by stat is different from the more involved fsid used in the
1005 	 * mount structure.
1006 	 */
1007 	++hammer_stats_file_iopsr;
1008 	hammer_lock_sh(&ip->lock);
1009 	vap->va_fsid = ip->pfsm->fsid_udev ^ (uint32_t)ip->obj_asof ^
1010 		       (uint32_t)(ip->obj_asof >> 32);
1011 
1012 	vap->va_fileid = ip->ino_leaf.base.obj_id;
1013 	vap->va_mode = ip->ino_data.mode;
1014 	vap->va_nlink = ip->ino_data.nlinks;
1015 	vap->va_uid = hammer_to_unix_xid(&ip->ino_data.uid);
1016 	vap->va_gid = hammer_to_unix_xid(&ip->ino_data.gid);
1017 	vap->va_rmajor = 0;
1018 	vap->va_rminor = 0;
1019 	vap->va_size = ip->ino_data.size;
1020 
1021 	/*
1022 	 * Special case for @@PFS softlinks.  The actual size of the
1023 	 * expanded softlink is "@@0x%016llx:%05d" == 26 bytes.
1024 	 * or for MAX_TID is    "@@-1:%05d" == 10 bytes.
1025 	 *
1026 	 * Note that userspace hammer command does not allow users to
1027 	 * create a @@PFS softlink under an existing other PFS (id!=0)
1028 	 * so the ip localization here for @@PFS softlink is always 0.
1029 	 */
1030 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_SOFTLINK &&
1031 	    ip->ino_data.size == 10 &&
1032 	    ip->obj_asof == HAMMER_MAX_TID &&
1033 	    ip->obj_localization == HAMMER_DEF_LOCALIZATION &&
1034 	    strncmp(ip->ino_data.ext.symlink, "@@PFS", 5) == 0) {
1035 		if (hammer_is_pfs_slave(&ip->pfsm->pfsd))
1036 			vap->va_size = 26;
1037 		else
1038 			vap->va_size = 10;
1039 	}
1040 
1041 	/*
1042 	 * We must provide a consistent atime and mtime for snapshots
1043 	 * so people can do a 'tar cf - ... | md5' on them and get
1044 	 * consistent results.
1045 	 */
1046 	if (ip->flags & HAMMER_INODE_RO) {
1047 		hammer_time_to_timespec(ip->ino_data.ctime, &vap->va_atime);
1048 		hammer_time_to_timespec(ip->ino_data.ctime, &vap->va_mtime);
1049 	} else {
1050 		hammer_time_to_timespec(ip->ino_data.atime, &vap->va_atime);
1051 		hammer_time_to_timespec(ip->ino_data.mtime, &vap->va_mtime);
1052 	}
1053 	hammer_time_to_timespec(ip->ino_data.ctime, &vap->va_ctime);
1054 	vap->va_flags = ip->ino_data.uflags;
1055 	vap->va_gen = 1;	/* hammer inums are unique for all time */
1056 	vap->va_blocksize = HAMMER_BUFSIZE;
1057 	if (ip->ino_data.size >= HAMMER_XDEMARC) {
1058 		vap->va_bytes = (ip->ino_data.size + HAMMER_XBUFMASK64) &
1059 				~HAMMER_XBUFMASK64;
1060 	} else if (ip->ino_data.size > HAMMER_HBUFSIZE) {
1061 		vap->va_bytes = (ip->ino_data.size + HAMMER_BUFMASK64) &
1062 				~HAMMER_BUFMASK64;
1063 	} else {
1064 		vap->va_bytes = (ip->ino_data.size + 15) & ~15;
1065 	}
1066 
1067 	vap->va_type = hammer_get_vnode_type(ip->ino_data.obj_type);
1068 	vap->va_filerev = 0;	/* XXX */
1069 	vap->va_uid_uuid = ip->ino_data.uid;
1070 	vap->va_gid_uuid = ip->ino_data.gid;
1071 	vap->va_fsid_uuid = ip->hmp->fsid;
1072 	vap->va_vaflags = VA_UID_UUID_VALID | VA_GID_UUID_VALID |
1073 			  VA_FSID_UUID_VALID;
1074 
1075 	switch (ip->ino_data.obj_type) {
1076 	case HAMMER_OBJTYPE_CDEV:
1077 	case HAMMER_OBJTYPE_BDEV:
1078 		vap->va_rmajor = ip->ino_data.rmajor;
1079 		vap->va_rminor = ip->ino_data.rminor;
1080 		break;
1081 	default:
1082 		break;
1083 	}
1084 	hammer_unlock(&ip->lock);
1085 	return(0);
1086 }
1087 
1088 /*
1089  * hammer_vop_nresolve { nch, dvp, cred }
1090  *
1091  * Locate the requested directory entry.
1092  */
1093 static
1094 int
1095 hammer_vop_nresolve(struct vop_nresolve_args *ap)
1096 {
1097 	struct hammer_transaction trans;
1098 	struct namecache *ncp;
1099 	hammer_mount_t hmp;
1100 	hammer_inode_t dip;
1101 	hammer_inode_t ip;
1102 	hammer_tid_t asof;
1103 	struct hammer_cursor cursor;
1104 	struct vnode *vp;
1105 	int64_t namekey;
1106 	int error;
1107 	int i;
1108 	int nlen;
1109 	int flags;
1110 	int ispfs;
1111 	int64_t obj_id;
1112 	uint32_t localization;
1113 	uint32_t max_iterations;
1114 
1115 	/*
1116 	 * Misc initialization, plus handle as-of name extensions.  Look for
1117 	 * the '@@' extension.  Note that as-of files and directories cannot
1118 	 * be modified.
1119 	 */
1120 	dip = VTOI(ap->a_dvp);
1121 	ncp = ap->a_nch->ncp;
1122 	asof = dip->obj_asof;
1123 	localization = dip->obj_localization;	/* for code consistency */
1124 	nlen = ncp->nc_nlen;
1125 	flags = dip->flags & HAMMER_INODE_RO;
1126 	ispfs = 0;
1127 	hmp = dip->hmp;
1128 
1129 	lwkt_gettoken(&hmp->fs_token);
1130 	hammer_simple_transaction(&trans, hmp);
1131 	++hammer_stats_file_iopsr;
1132 
1133 	for (i = 0; i < nlen; ++i) {
1134 		if (ncp->nc_name[i] == '@' && ncp->nc_name[i+1] == '@') {
1135 			error = hammer_str_to_tid(ncp->nc_name + i + 2,
1136 						  &ispfs, &asof, &localization);
1137 			if (error != 0) {
1138 				i = nlen;
1139 				break;
1140 			}
1141 			if (asof != HAMMER_MAX_TID)
1142 				flags |= HAMMER_INODE_RO;
1143 			break;
1144 		}
1145 	}
1146 	nlen = i;
1147 
1148 	/*
1149 	 * If this is a PFS softlink we dive into the PFS
1150 	 */
1151 	if (ispfs && nlen == 0) {
1152 		ip = hammer_get_inode(&trans, dip, HAMMER_OBJID_ROOT,
1153 				      asof, localization,
1154 				      flags, &error);
1155 		if (error == 0) {
1156 			error = hammer_get_vnode(ip, &vp);
1157 			hammer_rel_inode(ip, 0);
1158 		} else {
1159 			vp = NULL;
1160 		}
1161 		if (error == 0) {
1162 			vn_unlock(vp);
1163 			cache_setvp(ap->a_nch, vp);
1164 			vrele(vp);
1165 		}
1166 		goto done;
1167 	}
1168 
1169 	/*
1170 	 * If there is no path component the time extension is relative to dip.
1171 	 * e.g. "fubar/@@<snapshot>"
1172 	 *
1173 	 * "." is handled by the kernel, but ".@@<snapshot>" is not.
1174 	 * e.g. "fubar/.@@<snapshot>"
1175 	 *
1176 	 * ".." is handled by the kernel.  We do not currently handle
1177 	 * "..@<snapshot>".
1178 	 */
1179 	if (nlen == 0 || (nlen == 1 && ncp->nc_name[0] == '.')) {
1180 		ip = hammer_get_inode(&trans, dip, dip->obj_id,
1181 				      asof, dip->obj_localization,
1182 				      flags, &error);
1183 		if (error == 0) {
1184 			error = hammer_get_vnode(ip, &vp);
1185 			hammer_rel_inode(ip, 0);
1186 		} else {
1187 			vp = NULL;
1188 		}
1189 		if (error == 0) {
1190 			vn_unlock(vp);
1191 			cache_setvp(ap->a_nch, vp);
1192 			vrele(vp);
1193 		}
1194 		goto done;
1195 	}
1196 
1197 	/*
1198 	 * Calculate the namekey and setup the key range for the scan.  This
1199 	 * works kinda like a chained hash table where the lower 32 bits
1200 	 * of the namekey synthesize the chain.
1201 	 *
1202 	 * The key range is inclusive of both key_beg and key_end.
1203 	 */
1204 	namekey = hammer_direntry_namekey(dip, ncp->nc_name, nlen,
1205 					   &max_iterations);
1206 
1207 	error = hammer_init_cursor(&trans, &cursor, &dip->cache[1], dip);
1208 	cursor.key_beg.localization = dip->obj_localization |
1209 				      hammer_dir_localization(dip);
1210         cursor.key_beg.obj_id = dip->obj_id;
1211 	cursor.key_beg.key = namekey;
1212         cursor.key_beg.create_tid = 0;
1213         cursor.key_beg.delete_tid = 0;
1214         cursor.key_beg.rec_type = HAMMER_RECTYPE_DIRENTRY;
1215         cursor.key_beg.obj_type = 0;
1216 
1217 	cursor.key_end = cursor.key_beg;
1218 	cursor.key_end.key += max_iterations;
1219 	cursor.asof = asof;
1220 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
1221 
1222 	/*
1223 	 * Scan all matching records (the chain), locate the one matching
1224 	 * the requested path component.
1225 	 *
1226 	 * The hammer_ip_*() functions merge in-memory records with on-disk
1227 	 * records for the purposes of the search.
1228 	 */
1229 	obj_id = 0;
1230 	localization = HAMMER_DEF_LOCALIZATION;
1231 
1232 	if (error == 0) {
1233 		error = hammer_ip_first(&cursor);
1234 		while (error == 0) {
1235 			error = hammer_ip_resolve_data(&cursor);
1236 			if (error)
1237 				break;
1238 			if (nlen == cursor.leaf->data_len - HAMMER_ENTRY_NAME_OFF &&
1239 			    bcmp(ncp->nc_name, cursor.data->entry.name, nlen) == 0) {
1240 				obj_id = cursor.data->entry.obj_id;
1241 				localization = cursor.data->entry.localization;
1242 				break;
1243 			}
1244 			error = hammer_ip_next(&cursor);
1245 		}
1246 	}
1247 	hammer_done_cursor(&cursor);
1248 
1249 	/*
1250 	 * Lookup the obj_id.  This should always succeed.  If it does not
1251 	 * the filesystem may be damaged and we return a dummy inode.
1252 	 */
1253 	if (error == 0) {
1254 		ip = hammer_get_inode(&trans, dip, obj_id,
1255 				      asof, localization,
1256 				      flags, &error);
1257 		if (error == ENOENT) {
1258 			hkprintf("WARNING: Missing inode for dirent \"%s\"\n"
1259 				"\tobj_id = %016jx, asof=%016jx, lo=%08x\n",
1260 				ncp->nc_name,
1261 				(intmax_t)obj_id, (intmax_t)asof,
1262 				localization);
1263 			error = 0;
1264 			ip = hammer_get_dummy_inode(&trans, dip, obj_id,
1265 						    asof, localization,
1266 						    flags, &error);
1267 		}
1268 		if (error == 0) {
1269 			error = hammer_get_vnode(ip, &vp);
1270 			hammer_rel_inode(ip, 0);
1271 		} else {
1272 			vp = NULL;
1273 		}
1274 		if (error == 0) {
1275 			vn_unlock(vp);
1276 			cache_setvp(ap->a_nch, vp);
1277 			vrele(vp);
1278 		}
1279 	} else if (error == ENOENT) {
1280 		cache_setvp(ap->a_nch, NULL);
1281 	}
1282 done:
1283 	hammer_done_transaction(&trans);
1284 	lwkt_reltoken(&hmp->fs_token);
1285 	return (error);
1286 }
1287 
1288 /*
1289  * hammer_vop_nlookupdotdot { dvp, vpp, cred }
1290  *
1291  * Locate the parent directory of a directory vnode.
1292  *
1293  * dvp is referenced but not locked.  *vpp must be returned referenced and
1294  * locked.  A parent_obj_id of 0 indicates that we are at the root.
1295  *
1296  * NOTE: as-of sequences are not linked into the directory structure.  If
1297  * we are at the root with a different asof then the mount point, reload
1298  * the same directory with the mount point's asof.   I'm not sure what this
1299  * will do to NFS.  We encode ASOF stamps in NFS file handles so it might not
1300  * get confused, but it hasn't been tested.
1301  */
1302 static
1303 int
1304 hammer_vop_nlookupdotdot(struct vop_nlookupdotdot_args *ap)
1305 {
1306 	struct hammer_transaction trans;
1307 	struct hammer_inode *dip;
1308 	struct hammer_inode *ip;
1309 	hammer_mount_t hmp;
1310 	int64_t parent_obj_id;
1311 	uint32_t parent_obj_localization;
1312 	hammer_tid_t asof;
1313 	int error;
1314 
1315 	dip = VTOI(ap->a_dvp);
1316 	asof = dip->obj_asof;
1317 	hmp = dip->hmp;
1318 
1319 	/*
1320 	 * Whos are parent?  This could be the root of a pseudo-filesystem
1321 	 * whos parent is in another localization domain.
1322 	 */
1323 	lwkt_gettoken(&hmp->fs_token);
1324 	parent_obj_id = dip->ino_data.parent_obj_id;
1325 	if (dip->obj_id == HAMMER_OBJID_ROOT)
1326 		parent_obj_localization = HAMMER_DEF_LOCALIZATION;
1327 	else
1328 		parent_obj_localization = dip->obj_localization;
1329 
1330 	/*
1331 	 * It's probably a PFS root when dip->ino_data.parent_obj_id is 0.
1332 	 */
1333 	if (parent_obj_id == 0) {
1334 		if (dip->obj_id == HAMMER_OBJID_ROOT &&
1335 		   asof != hmp->asof) {
1336 			parent_obj_id = dip->obj_id;
1337 			asof = hmp->asof;
1338 			*ap->a_fakename = kmalloc(19, M_TEMP, M_WAITOK);
1339 			ksnprintf(*ap->a_fakename, 19, "0x%016jx",
1340 				  (intmax_t)dip->obj_asof);
1341 		} else {
1342 			*ap->a_vpp = NULL;
1343 			lwkt_reltoken(&hmp->fs_token);
1344 			return ENOENT;
1345 		}
1346 	}
1347 
1348 	hammer_simple_transaction(&trans, hmp);
1349 	++hammer_stats_file_iopsr;
1350 
1351 	ip = hammer_get_inode(&trans, dip, parent_obj_id,
1352 			      asof, parent_obj_localization,
1353 			      dip->flags, &error);
1354 	if (ip) {
1355 		error = hammer_get_vnode(ip, ap->a_vpp);
1356 		hammer_rel_inode(ip, 0);
1357 	} else {
1358 		*ap->a_vpp = NULL;
1359 	}
1360 	hammer_done_transaction(&trans);
1361 	lwkt_reltoken(&hmp->fs_token);
1362 	return (error);
1363 }
1364 
1365 /*
1366  * hammer_vop_nlink { nch, dvp, vp, cred }
1367  */
1368 static
1369 int
1370 hammer_vop_nlink(struct vop_nlink_args *ap)
1371 {
1372 	struct hammer_transaction trans;
1373 	struct hammer_inode *dip;
1374 	struct hammer_inode *ip;
1375 	struct nchandle *nch;
1376 	hammer_mount_t hmp;
1377 	int error;
1378 
1379 	if (ap->a_dvp->v_mount != ap->a_vp->v_mount)
1380 		return(EXDEV);
1381 
1382 	nch = ap->a_nch;
1383 	dip = VTOI(ap->a_dvp);
1384 	ip = VTOI(ap->a_vp);
1385 	hmp = dip->hmp;
1386 
1387 	if (dip->obj_localization != ip->obj_localization)
1388 		return(EXDEV);
1389 
1390 	if (dip->flags & HAMMER_INODE_RO)
1391 		return (EROFS);
1392 	if (ip->flags & HAMMER_INODE_RO)
1393 		return (EROFS);
1394 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
1395 		return (error);
1396 
1397 	/*
1398 	 * Create a transaction to cover the operations we perform.
1399 	 */
1400 	lwkt_gettoken(&hmp->fs_token);
1401 	hammer_start_transaction(&trans, hmp);
1402 	++hammer_stats_file_iopsw;
1403 
1404 	/*
1405 	 * Add the filesystem object to the directory.  Note that neither
1406 	 * dip nor ip are referenced or locked, but their vnodes are
1407 	 * referenced.  This function will bump the inode's link count.
1408 	 */
1409 	error = hammer_ip_add_direntry(&trans, dip,
1410 					nch->ncp->nc_name, nch->ncp->nc_nlen,
1411 					ip);
1412 
1413 	/*
1414 	 * Finish up.
1415 	 */
1416 	if (error == 0) {
1417 		cache_setunresolved(nch);
1418 		cache_setvp(nch, ap->a_vp);
1419 	}
1420 	hammer_done_transaction(&trans);
1421 	hammer_knote(ap->a_vp, NOTE_LINK);
1422 	hammer_knote(ap->a_dvp, NOTE_WRITE);
1423 	lwkt_reltoken(&hmp->fs_token);
1424 	return (error);
1425 }
1426 
1427 /*
1428  * hammer_vop_nmkdir { nch, dvp, vpp, cred, vap }
1429  *
1430  * The operating system has already ensured that the directory entry
1431  * does not exist and done all appropriate namespace locking.
1432  */
1433 static
1434 int
1435 hammer_vop_nmkdir(struct vop_nmkdir_args *ap)
1436 {
1437 	struct hammer_transaction trans;
1438 	struct hammer_inode *dip;
1439 	struct hammer_inode *nip;
1440 	struct nchandle *nch;
1441 	hammer_mount_t hmp;
1442 	int error;
1443 
1444 	nch = ap->a_nch;
1445 	dip = VTOI(ap->a_dvp);
1446 	hmp = dip->hmp;
1447 
1448 	if (dip->flags & HAMMER_INODE_RO)
1449 		return (EROFS);
1450 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
1451 		return (error);
1452 
1453 	/*
1454 	 * Create a transaction to cover the operations we perform.
1455 	 */
1456 	lwkt_gettoken(&hmp->fs_token);
1457 	hammer_start_transaction(&trans, hmp);
1458 	++hammer_stats_file_iopsw;
1459 
1460 	/*
1461 	 * Create a new filesystem object of the requested type.  The
1462 	 * returned inode will be referenced but not locked.
1463 	 */
1464 	error = hammer_create_inode(&trans, ap->a_vap, ap->a_cred,
1465 				    dip, nch->ncp->nc_name, nch->ncp->nc_nlen,
1466 				    NULL, &nip);
1467 	if (error) {
1468 		hammer_done_transaction(&trans);
1469 		*ap->a_vpp = NULL;
1470 		lwkt_reltoken(&hmp->fs_token);
1471 		return (error);
1472 	}
1473 	/*
1474 	 * Add the new filesystem object to the directory.  This will also
1475 	 * bump the inode's link count.
1476 	 */
1477 	error = hammer_ip_add_direntry(&trans, dip,
1478 					nch->ncp->nc_name, nch->ncp->nc_nlen,
1479 					nip);
1480 	if (error)
1481 		hkprintf("hammer_mkdir (add) error %d\n", error);
1482 
1483 	/*
1484 	 * Finish up.
1485 	 */
1486 	if (error) {
1487 		hammer_rel_inode(nip, 0);
1488 		*ap->a_vpp = NULL;
1489 	} else {
1490 		error = hammer_get_vnode(nip, ap->a_vpp);
1491 		hammer_rel_inode(nip, 0);
1492 		if (error == 0) {
1493 			cache_setunresolved(ap->a_nch);
1494 			cache_setvp(ap->a_nch, *ap->a_vpp);
1495 		}
1496 	}
1497 	hammer_done_transaction(&trans);
1498 	if (error == 0)
1499 		hammer_knote(ap->a_dvp, NOTE_WRITE | NOTE_LINK);
1500 	lwkt_reltoken(&hmp->fs_token);
1501 	return (error);
1502 }
1503 
1504 /*
1505  * hammer_vop_nmknod { nch, dvp, vpp, cred, vap }
1506  *
1507  * The operating system has already ensured that the directory entry
1508  * does not exist and done all appropriate namespace locking.
1509  */
1510 static
1511 int
1512 hammer_vop_nmknod(struct vop_nmknod_args *ap)
1513 {
1514 	struct hammer_transaction trans;
1515 	struct hammer_inode *dip;
1516 	struct hammer_inode *nip;
1517 	struct nchandle *nch;
1518 	hammer_mount_t hmp;
1519 	int error;
1520 
1521 	nch = ap->a_nch;
1522 	dip = VTOI(ap->a_dvp);
1523 	hmp = dip->hmp;
1524 
1525 	if (dip->flags & HAMMER_INODE_RO)
1526 		return (EROFS);
1527 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
1528 		return (error);
1529 
1530 	/*
1531 	 * Create a transaction to cover the operations we perform.
1532 	 */
1533 	lwkt_gettoken(&hmp->fs_token);
1534 	hammer_start_transaction(&trans, hmp);
1535 	++hammer_stats_file_iopsw;
1536 
1537 	/*
1538 	 * Create a new filesystem object of the requested type.  The
1539 	 * returned inode will be referenced but not locked.
1540 	 *
1541 	 * If mknod specifies a directory a pseudo-fs is created.
1542 	 */
1543 	error = hammer_create_inode(&trans, ap->a_vap, ap->a_cred,
1544 				    dip, nch->ncp->nc_name, nch->ncp->nc_nlen,
1545 				    NULL, &nip);
1546 	if (error) {
1547 		hammer_done_transaction(&trans);
1548 		*ap->a_vpp = NULL;
1549 		lwkt_reltoken(&hmp->fs_token);
1550 		return (error);
1551 	}
1552 
1553 	/*
1554 	 * Add the new filesystem object to the directory.  This will also
1555 	 * bump the inode's link count.
1556 	 */
1557 	error = hammer_ip_add_direntry(&trans, dip,
1558 					nch->ncp->nc_name, nch->ncp->nc_nlen,
1559 					nip);
1560 
1561 	/*
1562 	 * Finish up.
1563 	 */
1564 	if (error) {
1565 		hammer_rel_inode(nip, 0);
1566 		*ap->a_vpp = NULL;
1567 	} else {
1568 		error = hammer_get_vnode(nip, ap->a_vpp);
1569 		hammer_rel_inode(nip, 0);
1570 		if (error == 0) {
1571 			cache_setunresolved(ap->a_nch);
1572 			cache_setvp(ap->a_nch, *ap->a_vpp);
1573 		}
1574 	}
1575 	hammer_done_transaction(&trans);
1576 	if (error == 0)
1577 		hammer_knote(ap->a_dvp, NOTE_WRITE);
1578 	lwkt_reltoken(&hmp->fs_token);
1579 	return (error);
1580 }
1581 
1582 /*
1583  * hammer_vop_open { vp, mode, cred, fp }
1584  *
1585  * MPSAFE (does not require fs_token)
1586  */
1587 static
1588 int
1589 hammer_vop_open(struct vop_open_args *ap)
1590 {
1591 	hammer_inode_t ip;
1592 
1593 	++hammer_stats_file_iopsr;
1594 	ip = VTOI(ap->a_vp);
1595 
1596 	if ((ap->a_mode & FWRITE) && (ip->flags & HAMMER_INODE_RO))
1597 		return (EROFS);
1598 	return(vop_stdopen(ap));
1599 }
1600 
1601 /*
1602  * hammer_vop_print { vp }
1603  */
1604 static
1605 int
1606 hammer_vop_print(struct vop_print_args *ap)
1607 {
1608 	return EOPNOTSUPP;
1609 }
1610 
1611 /*
1612  * hammer_vop_readdir { vp, uio, cred, *eofflag, *ncookies, off_t **cookies }
1613  */
1614 static
1615 int
1616 hammer_vop_readdir(struct vop_readdir_args *ap)
1617 {
1618 	struct hammer_transaction trans;
1619 	struct hammer_cursor cursor;
1620 	struct hammer_inode *ip;
1621 	hammer_mount_t hmp;
1622 	struct uio *uio;
1623 	hammer_base_elm_t base;
1624 	int error;
1625 	int cookie_index;
1626 	int ncookies;
1627 	off_t *cookies;
1628 	off_t saveoff;
1629 	int r;
1630 	int dtype;
1631 
1632 	++hammer_stats_file_iopsr;
1633 	ip = VTOI(ap->a_vp);
1634 	uio = ap->a_uio;
1635 	saveoff = uio->uio_offset;
1636 	hmp = ip->hmp;
1637 
1638 	if (ap->a_ncookies) {
1639 		ncookies = uio->uio_resid / 16 + 1;
1640 		if (ncookies > 1024)
1641 			ncookies = 1024;
1642 		cookies = kmalloc(ncookies * sizeof(off_t), M_TEMP, M_WAITOK);
1643 		cookie_index = 0;
1644 	} else {
1645 		ncookies = -1;
1646 		cookies = NULL;
1647 		cookie_index = 0;
1648 	}
1649 
1650 	lwkt_gettoken(&hmp->fs_token);
1651 	hammer_simple_transaction(&trans, hmp);
1652 
1653 	/*
1654 	 * Handle artificial entries
1655 	 *
1656 	 * It should be noted that the minimum value for a directory
1657 	 * hash key on-media is 0x0000000100000000, so we can use anything
1658 	 * less then that to represent our 'special' key space.
1659 	 */
1660 	error = 0;
1661 	if (saveoff == 0) {
1662 		r = vop_write_dirent(&error, uio, ip->obj_id, DT_DIR, 1, ".");
1663 		if (r)
1664 			goto done;
1665 		if (cookies)
1666 			cookies[cookie_index] = saveoff;
1667 		++saveoff;
1668 		++cookie_index;
1669 		if (cookie_index == ncookies)
1670 			goto done;
1671 	}
1672 	if (saveoff == 1) {
1673 		if (ip->ino_data.parent_obj_id) {
1674 			r = vop_write_dirent(&error, uio,
1675 					     ip->ino_data.parent_obj_id,
1676 					     DT_DIR, 2, "..");
1677 		} else {
1678 			r = vop_write_dirent(&error, uio,
1679 					     ip->obj_id, DT_DIR, 2, "..");
1680 		}
1681 		if (r)
1682 			goto done;
1683 		if (cookies)
1684 			cookies[cookie_index] = saveoff;
1685 		++saveoff;
1686 		++cookie_index;
1687 		if (cookie_index == ncookies)
1688 			goto done;
1689 	}
1690 
1691 	/*
1692 	 * Key range (begin and end inclusive) to scan.  Directory keys
1693 	 * directly translate to a 64 bit 'seek' position.
1694 	 */
1695 	hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
1696 	cursor.key_beg.localization = ip->obj_localization |
1697 				      hammer_dir_localization(ip);
1698 	cursor.key_beg.obj_id = ip->obj_id;
1699 	cursor.key_beg.create_tid = 0;
1700 	cursor.key_beg.delete_tid = 0;
1701         cursor.key_beg.rec_type = HAMMER_RECTYPE_DIRENTRY;
1702 	cursor.key_beg.obj_type = 0;
1703 	cursor.key_beg.key = saveoff;
1704 
1705 	cursor.key_end = cursor.key_beg;
1706 	cursor.key_end.key = HAMMER_MAX_KEY;
1707 	cursor.asof = ip->obj_asof;
1708 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
1709 
1710 	error = hammer_ip_first(&cursor);
1711 
1712 	while (error == 0) {
1713 		error = hammer_ip_resolve_data(&cursor);
1714 		if (error)
1715 			break;
1716 		base = &cursor.leaf->base;
1717 		saveoff = base->key;
1718 		KKASSERT(cursor.leaf->data_len > HAMMER_ENTRY_NAME_OFF);
1719 
1720 		if (base->obj_id != ip->obj_id)
1721 			hpanic("bad record at %p", cursor.node);
1722 
1723 		/*
1724 		 * Convert pseudo-filesystems into softlinks
1725 		 */
1726 		dtype = hammer_get_dtype(cursor.leaf->base.obj_type);
1727 		r = vop_write_dirent(
1728 			     &error, uio, cursor.data->entry.obj_id,
1729 			     dtype,
1730 			     cursor.leaf->data_len - HAMMER_ENTRY_NAME_OFF ,
1731 			     (void *)cursor.data->entry.name);
1732 		if (r)
1733 			break;
1734 		++saveoff;
1735 		if (cookies)
1736 			cookies[cookie_index] = base->key;
1737 		++cookie_index;
1738 		if (cookie_index == ncookies)
1739 			break;
1740 		error = hammer_ip_next(&cursor);
1741 	}
1742 	hammer_done_cursor(&cursor);
1743 
1744 done:
1745 	hammer_done_transaction(&trans);
1746 
1747 	if (ap->a_eofflag)
1748 		*ap->a_eofflag = (error == ENOENT);
1749 	uio->uio_offset = saveoff;
1750 	if (error && cookie_index == 0) {
1751 		if (error == ENOENT)
1752 			error = 0;
1753 		if (cookies) {
1754 			kfree(cookies, M_TEMP);
1755 			*ap->a_ncookies = 0;
1756 			*ap->a_cookies = NULL;
1757 		}
1758 	} else {
1759 		if (error == ENOENT)
1760 			error = 0;
1761 		if (cookies) {
1762 			*ap->a_ncookies = cookie_index;
1763 			*ap->a_cookies = cookies;
1764 		}
1765 	}
1766 	lwkt_reltoken(&hmp->fs_token);
1767 	return(error);
1768 }
1769 
1770 /*
1771  * hammer_vop_readlink { vp, uio, cred }
1772  */
1773 static
1774 int
1775 hammer_vop_readlink(struct vop_readlink_args *ap)
1776 {
1777 	struct hammer_transaction trans;
1778 	struct hammer_cursor cursor;
1779 	struct hammer_inode *ip;
1780 	hammer_mount_t hmp;
1781 	char buf[32];
1782 	uint32_t localization;
1783 	hammer_pseudofs_inmem_t pfsm;
1784 	int error;
1785 
1786 	ip = VTOI(ap->a_vp);
1787 	hmp = ip->hmp;
1788 
1789 	lwkt_gettoken(&hmp->fs_token);
1790 
1791 	/*
1792 	 * Shortcut if the symlink data was stuffed into ino_data.
1793 	 *
1794 	 * Also expand special "@@PFS%05d" softlinks (expansion only
1795 	 * occurs for non-historical (current) accesses made from the
1796 	 * primary filesystem).
1797 	 *
1798 	 * Note that userspace hammer command does not allow users to
1799 	 * create a @@PFS softlink under an existing other PFS (id!=0)
1800 	 * so the ip localization here for @@PFS softlink is always 0.
1801 	 */
1802 	if (ip->ino_data.size <= HAMMER_INODE_BASESYMLEN) {
1803 		char *ptr;
1804 		int bytes;
1805 
1806 		ptr = ip->ino_data.ext.symlink;
1807 		bytes = (int)ip->ino_data.size;
1808 		if (bytes == 10 &&
1809 		    ip->obj_asof == HAMMER_MAX_TID &&
1810 		    ip->obj_localization == HAMMER_DEF_LOCALIZATION &&
1811 		    strncmp(ptr, "@@PFS", 5) == 0) {
1812 			hammer_simple_transaction(&trans, hmp);
1813 			bcopy(ptr + 5, buf, 5);
1814 			buf[5] = 0;
1815 			localization = pfs_to_lo(strtoul(buf, NULL, 10));
1816 			pfsm = hammer_load_pseudofs(&trans, localization,
1817 						    &error);
1818 			if (error == 0) {
1819 				if (hammer_is_pfs_slave(&pfsm->pfsd)) {
1820 					/* vap->va_size == 26 */
1821 					ksnprintf(buf, sizeof(buf),
1822 						  "@@0x%016jx:%05d",
1823 						  (intmax_t)pfsm->pfsd.sync_end_tid,
1824 						  lo_to_pfs(localization));
1825 				} else {
1826 					/* vap->va_size == 10 */
1827 					ksnprintf(buf, sizeof(buf),
1828 						  "@@-1:%05d",
1829 						  lo_to_pfs(localization));
1830 				}
1831 				ptr = buf;
1832 				bytes = strlen(buf);
1833 			}
1834 			if (pfsm)
1835 				hammer_rel_pseudofs(hmp, pfsm);
1836 			hammer_done_transaction(&trans);
1837 		}
1838 		error = uiomove(ptr, bytes, ap->a_uio);
1839 		lwkt_reltoken(&hmp->fs_token);
1840 		return(error);
1841 	}
1842 
1843 	/*
1844 	 * Long version
1845 	 */
1846 	hammer_simple_transaction(&trans, hmp);
1847 	++hammer_stats_file_iopsr;
1848 	hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
1849 
1850 	/*
1851 	 * Key range (begin and end inclusive) to scan.  Directory keys
1852 	 * directly translate to a 64 bit 'seek' position.
1853 	 */
1854 	cursor.key_beg.localization = ip->obj_localization |
1855 				      HAMMER_LOCALIZE_MISC;
1856 	cursor.key_beg.obj_id = ip->obj_id;
1857 	cursor.key_beg.create_tid = 0;
1858 	cursor.key_beg.delete_tid = 0;
1859         cursor.key_beg.rec_type = HAMMER_RECTYPE_FIX;
1860 	cursor.key_beg.obj_type = 0;
1861 	cursor.key_beg.key = HAMMER_FIXKEY_SYMLINK;
1862 	cursor.asof = ip->obj_asof;
1863 	cursor.flags |= HAMMER_CURSOR_ASOF;
1864 
1865 	error = hammer_ip_lookup(&cursor);
1866 	if (error == 0) {
1867 		error = hammer_ip_resolve_data(&cursor);
1868 		if (error == 0) {
1869 			KKASSERT(cursor.leaf->data_len >=
1870 				 HAMMER_SYMLINK_NAME_OFF);
1871 			error = uiomove(cursor.data->symlink.name,
1872 					cursor.leaf->data_len -
1873 						HAMMER_SYMLINK_NAME_OFF,
1874 					ap->a_uio);
1875 		}
1876 	}
1877 	hammer_done_cursor(&cursor);
1878 	hammer_done_transaction(&trans);
1879 	lwkt_reltoken(&hmp->fs_token);
1880 	return(error);
1881 }
1882 
1883 /*
1884  * hammer_vop_nremove { nch, dvp, cred }
1885  */
1886 static
1887 int
1888 hammer_vop_nremove(struct vop_nremove_args *ap)
1889 {
1890 	struct hammer_transaction trans;
1891 	struct hammer_inode *dip;
1892 	hammer_mount_t hmp;
1893 	int error;
1894 
1895 	dip = VTOI(ap->a_dvp);
1896 	hmp = dip->hmp;
1897 
1898 	if (hammer_nohistory(dip) == 0 &&
1899 	    (error = hammer_checkspace(hmp, HAMMER_CHKSPC_REMOVE)) != 0) {
1900 		return (error);
1901 	}
1902 
1903 	lwkt_gettoken(&hmp->fs_token);
1904 	hammer_start_transaction(&trans, hmp);
1905 	++hammer_stats_file_iopsw;
1906 	error = hammer_dounlink(&trans, ap->a_nch, ap->a_dvp, ap->a_cred, 0, 0);
1907 	hammer_done_transaction(&trans);
1908 	if (error == 0)
1909 		hammer_knote(ap->a_dvp, NOTE_WRITE);
1910 	lwkt_reltoken(&hmp->fs_token);
1911 	return (error);
1912 }
1913 
1914 /*
1915  * hammer_vop_nrename { fnch, tnch, fdvp, tdvp, cred }
1916  */
1917 static
1918 int
1919 hammer_vop_nrename(struct vop_nrename_args *ap)
1920 {
1921 	struct hammer_transaction trans;
1922 	struct namecache *fncp;
1923 	struct namecache *tncp;
1924 	struct hammer_inode *fdip;
1925 	struct hammer_inode *tdip;
1926 	struct hammer_inode *ip;
1927 	hammer_mount_t hmp;
1928 	struct hammer_cursor cursor;
1929 	int64_t namekey;
1930 	uint32_t max_iterations;
1931 	int nlen, error;
1932 
1933 	if (ap->a_fdvp->v_mount != ap->a_tdvp->v_mount)
1934 		return(EXDEV);
1935 	if (ap->a_fdvp->v_mount != ap->a_fnch->ncp->nc_vp->v_mount)
1936 		return(EXDEV);
1937 
1938 	fdip = VTOI(ap->a_fdvp);
1939 	tdip = VTOI(ap->a_tdvp);
1940 	fncp = ap->a_fnch->ncp;
1941 	tncp = ap->a_tnch->ncp;
1942 	ip = VTOI(fncp->nc_vp);
1943 	KKASSERT(ip != NULL);
1944 
1945 	hmp = ip->hmp;
1946 
1947 	if (fdip->obj_localization != tdip->obj_localization)
1948 		return(EXDEV);
1949 	if (fdip->obj_localization != ip->obj_localization)
1950 		return(EXDEV);
1951 
1952 	if (fdip->flags & HAMMER_INODE_RO)
1953 		return (EROFS);
1954 	if (tdip->flags & HAMMER_INODE_RO)
1955 		return (EROFS);
1956 	if (ip->flags & HAMMER_INODE_RO)
1957 		return (EROFS);
1958 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
1959 		return (error);
1960 
1961 	lwkt_gettoken(&hmp->fs_token);
1962 	hammer_start_transaction(&trans, hmp);
1963 	++hammer_stats_file_iopsw;
1964 
1965 	/*
1966 	 * Remove tncp from the target directory and then link ip as
1967 	 * tncp. XXX pass trans to dounlink
1968 	 *
1969 	 * Force the inode sync-time to match the transaction so it is
1970 	 * in-sync with the creation of the target directory entry.
1971 	 */
1972 	error = hammer_dounlink(&trans, ap->a_tnch, ap->a_tdvp,
1973 				ap->a_cred, 0, -1);
1974 	if (error == 0 || error == ENOENT) {
1975 		error = hammer_ip_add_direntry(&trans, tdip,
1976 						tncp->nc_name, tncp->nc_nlen,
1977 						ip);
1978 		if (error == 0) {
1979 			ip->ino_data.parent_obj_id = tdip->obj_id;
1980 			ip->ino_data.ctime = trans.time;
1981 			hammer_modify_inode(&trans, ip, HAMMER_INODE_DDIRTY);
1982 		}
1983 	}
1984 	if (error)
1985 		goto failed; /* XXX */
1986 
1987 	/*
1988 	 * Locate the record in the originating directory and remove it.
1989 	 *
1990 	 * Calculate the namekey and setup the key range for the scan.  This
1991 	 * works kinda like a chained hash table where the lower 32 bits
1992 	 * of the namekey synthesize the chain.
1993 	 *
1994 	 * The key range is inclusive of both key_beg and key_end.
1995 	 */
1996 	namekey = hammer_direntry_namekey(fdip, fncp->nc_name, fncp->nc_nlen,
1997 					   &max_iterations);
1998 retry:
1999 	hammer_init_cursor(&trans, &cursor, &fdip->cache[1], fdip);
2000 	cursor.key_beg.localization = fdip->obj_localization |
2001 				      hammer_dir_localization(fdip);
2002         cursor.key_beg.obj_id = fdip->obj_id;
2003 	cursor.key_beg.key = namekey;
2004         cursor.key_beg.create_tid = 0;
2005         cursor.key_beg.delete_tid = 0;
2006         cursor.key_beg.rec_type = HAMMER_RECTYPE_DIRENTRY;
2007         cursor.key_beg.obj_type = 0;
2008 
2009 	cursor.key_end = cursor.key_beg;
2010 	cursor.key_end.key += max_iterations;
2011 	cursor.asof = fdip->obj_asof;
2012 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2013 
2014 	/*
2015 	 * Scan all matching records (the chain), locate the one matching
2016 	 * the requested path component.
2017 	 *
2018 	 * The hammer_ip_*() functions merge in-memory records with on-disk
2019 	 * records for the purposes of the search.
2020 	 */
2021 	error = hammer_ip_first(&cursor);
2022 	while (error == 0) {
2023 		if (hammer_ip_resolve_data(&cursor) != 0)
2024 			break;
2025 		nlen = cursor.leaf->data_len - HAMMER_ENTRY_NAME_OFF;
2026 		KKASSERT(nlen > 0);
2027 		if (fncp->nc_nlen == nlen &&
2028 		    bcmp(fncp->nc_name, cursor.data->entry.name, nlen) == 0) {
2029 			break;
2030 		}
2031 		error = hammer_ip_next(&cursor);
2032 	}
2033 
2034 	/*
2035 	 * If all is ok we have to get the inode so we can adjust nlinks.
2036 	 *
2037 	 * WARNING: hammer_ip_del_direntry() may have to terminate the
2038 	 * cursor to avoid a recursion.  It's ok to call hammer_done_cursor()
2039 	 * twice.
2040 	 */
2041 	if (error == 0)
2042 		error = hammer_ip_del_direntry(&trans, &cursor, fdip, ip);
2043 
2044 	/*
2045 	 * XXX A deadlock here will break rename's atomicy for the purposes
2046 	 * of crash recovery.
2047 	 */
2048 	if (error == EDEADLK) {
2049 		hammer_done_cursor(&cursor);
2050 		goto retry;
2051 	}
2052 
2053 	/*
2054 	 * Cleanup and tell the kernel that the rename succeeded.
2055 	 *
2056 	 * NOTE: ip->vp, if non-NULL, cannot be directly referenced
2057 	 *	 without formally acquiring the vp since the vp might
2058 	 *	 have zero refs on it, or in the middle of a reclaim,
2059 	 *	 etc.
2060 	 */
2061         hammer_done_cursor(&cursor);
2062 	if (error == 0) {
2063 		cache_rename(ap->a_fnch, ap->a_tnch);
2064 		hammer_knote(ap->a_fdvp, NOTE_WRITE);
2065 		hammer_knote(ap->a_tdvp, NOTE_WRITE);
2066 		while (ip->vp) {
2067 			struct vnode *vp;
2068 
2069 			error = hammer_get_vnode(ip, &vp);
2070 			if (error == 0 && vp) {
2071 				vn_unlock(vp);
2072 				hammer_knote(ip->vp, NOTE_RENAME);
2073 				vrele(vp);
2074 				break;
2075 			}
2076 			hdkprintf("ip/vp race2 avoided\n");
2077 		}
2078 	}
2079 
2080 failed:
2081 	hammer_done_transaction(&trans);
2082 	lwkt_reltoken(&hmp->fs_token);
2083 	return (error);
2084 }
2085 
2086 /*
2087  * hammer_vop_nrmdir { nch, dvp, cred }
2088  */
2089 static
2090 int
2091 hammer_vop_nrmdir(struct vop_nrmdir_args *ap)
2092 {
2093 	struct hammer_transaction trans;
2094 	struct hammer_inode *dip;
2095 	hammer_mount_t hmp;
2096 	int error;
2097 
2098 	dip = VTOI(ap->a_dvp);
2099 	hmp = dip->hmp;
2100 
2101 	if (hammer_nohistory(dip) == 0 &&
2102 	    (error = hammer_checkspace(hmp, HAMMER_CHKSPC_REMOVE)) != 0) {
2103 		return (error);
2104 	}
2105 
2106 	lwkt_gettoken(&hmp->fs_token);
2107 	hammer_start_transaction(&trans, hmp);
2108 	++hammer_stats_file_iopsw;
2109 	error = hammer_dounlink(&trans, ap->a_nch, ap->a_dvp, ap->a_cred, 0, 1);
2110 	hammer_done_transaction(&trans);
2111 	if (error == 0)
2112 		hammer_knote(ap->a_dvp, NOTE_WRITE | NOTE_LINK);
2113 	lwkt_reltoken(&hmp->fs_token);
2114 	return (error);
2115 }
2116 
2117 /*
2118  * hammer_vop_markatime { vp, cred }
2119  */
2120 static
2121 int
2122 hammer_vop_markatime(struct vop_markatime_args *ap)
2123 {
2124 	struct hammer_transaction trans;
2125 	struct hammer_inode *ip;
2126 	hammer_mount_t hmp;
2127 
2128 	ip = VTOI(ap->a_vp);
2129 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
2130 		return (EROFS);
2131 	if (ip->flags & HAMMER_INODE_RO)
2132 		return (EROFS);
2133 	hmp = ip->hmp;
2134 	if (hmp->mp->mnt_flag & MNT_NOATIME)
2135 		return (0);
2136 	lwkt_gettoken(&hmp->fs_token);
2137 	hammer_start_transaction(&trans, hmp);
2138 	++hammer_stats_file_iopsw;
2139 
2140 	ip->ino_data.atime = trans.time;
2141 	hammer_modify_inode(&trans, ip, HAMMER_INODE_ATIME);
2142 	hammer_done_transaction(&trans);
2143 	hammer_knote(ap->a_vp, NOTE_ATTRIB);
2144 	lwkt_reltoken(&hmp->fs_token);
2145 	return (0);
2146 }
2147 
2148 /*
2149  * hammer_vop_setattr { vp, vap, cred }
2150  */
2151 static
2152 int
2153 hammer_vop_setattr(struct vop_setattr_args *ap)
2154 {
2155 	struct hammer_transaction trans;
2156 	struct hammer_inode *ip;
2157 	struct vattr *vap;
2158 	hammer_mount_t hmp;
2159 	int modflags;
2160 	int error;
2161 	int truncating;
2162 	int blksize;
2163 	int kflags;
2164 #if 0
2165 	int64_t aligned_size;
2166 #endif
2167 	uint32_t flags;
2168 
2169 	vap = ap->a_vap;
2170 	ip = ap->a_vp->v_data;
2171 	modflags = 0;
2172 	kflags = 0;
2173 	hmp = ip->hmp;
2174 
2175 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
2176 		return(EROFS);
2177 	if (ip->flags & HAMMER_INODE_RO)
2178 		return (EROFS);
2179 	if (hammer_nohistory(ip) == 0 &&
2180 	    (error = hammer_checkspace(hmp, HAMMER_CHKSPC_REMOVE)) != 0) {
2181 		return (error);
2182 	}
2183 
2184 	lwkt_gettoken(&hmp->fs_token);
2185 	hammer_start_transaction(&trans, hmp);
2186 	++hammer_stats_file_iopsw;
2187 	error = 0;
2188 
2189 	if (vap->va_flags != VNOVAL) {
2190 		flags = ip->ino_data.uflags;
2191 		error = vop_helper_setattr_flags(&flags, vap->va_flags,
2192 					 hammer_to_unix_xid(&ip->ino_data.uid),
2193 					 ap->a_cred);
2194 		if (error == 0) {
2195 			if (ip->ino_data.uflags != flags) {
2196 				ip->ino_data.uflags = flags;
2197 				ip->ino_data.ctime = trans.time;
2198 				modflags |= HAMMER_INODE_DDIRTY;
2199 				kflags |= NOTE_ATTRIB;
2200 			}
2201 			if (ip->ino_data.uflags & (IMMUTABLE | APPEND)) {
2202 				error = 0;
2203 				goto done;
2204 			}
2205 		}
2206 		goto done;
2207 	}
2208 	if (ip->ino_data.uflags & (IMMUTABLE | APPEND)) {
2209 		error = EPERM;
2210 		goto done;
2211 	}
2212 	if (vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL) {
2213 		mode_t cur_mode = ip->ino_data.mode;
2214 		uid_t cur_uid = hammer_to_unix_xid(&ip->ino_data.uid);
2215 		gid_t cur_gid = hammer_to_unix_xid(&ip->ino_data.gid);
2216 		uuid_t uuid_uid;
2217 		uuid_t uuid_gid;
2218 
2219 		error = vop_helper_chown(ap->a_vp, vap->va_uid, vap->va_gid,
2220 					 ap->a_cred,
2221 					 &cur_uid, &cur_gid, &cur_mode);
2222 		if (error == 0) {
2223 			hammer_guid_to_uuid(&uuid_uid, cur_uid);
2224 			hammer_guid_to_uuid(&uuid_gid, cur_gid);
2225 			if (bcmp(&uuid_uid, &ip->ino_data.uid,
2226 				 sizeof(uuid_uid)) ||
2227 			    bcmp(&uuid_gid, &ip->ino_data.gid,
2228 				 sizeof(uuid_gid)) ||
2229 			    ip->ino_data.mode != cur_mode) {
2230 				ip->ino_data.uid = uuid_uid;
2231 				ip->ino_data.gid = uuid_gid;
2232 				ip->ino_data.mode = cur_mode;
2233 				ip->ino_data.ctime = trans.time;
2234 				modflags |= HAMMER_INODE_DDIRTY;
2235 			}
2236 			kflags |= NOTE_ATTRIB;
2237 		}
2238 	}
2239 	while (vap->va_size != VNOVAL && ip->ino_data.size != vap->va_size) {
2240 		switch(ap->a_vp->v_type) {
2241 		case VREG:
2242 			if (vap->va_size == ip->ino_data.size)
2243 				break;
2244 
2245 			/*
2246 			 * Log the operation if in fast-fsync mode or if
2247 			 * there are unterminated redo write records present.
2248 			 *
2249 			 * The second check is needed so the recovery code
2250 			 * properly truncates write redos even if nominal
2251 			 * REDO operations is turned off due to excessive
2252 			 * writes, because the related records might be
2253 			 * destroyed and never lay down a TERM_WRITE.
2254 			 */
2255 			if ((ip->flags & HAMMER_INODE_REDO) ||
2256 			    (ip->flags & HAMMER_INODE_RDIRTY)) {
2257 				error = hammer_generate_redo(&trans, ip,
2258 							     vap->va_size,
2259 							     HAMMER_REDO_TRUNC,
2260 							     NULL, 0);
2261 			}
2262 			blksize = hammer_blocksize(vap->va_size);
2263 
2264 			/*
2265 			 * XXX break atomicy, we can deadlock the backend
2266 			 * if we do not release the lock.  Probably not a
2267 			 * big deal here.
2268 			 */
2269 			if (vap->va_size < ip->ino_data.size) {
2270 				nvtruncbuf(ap->a_vp, vap->va_size,
2271 					   blksize,
2272 					   hammer_blockoff(vap->va_size),
2273 					   0);
2274 				truncating = 1;
2275 				kflags |= NOTE_WRITE;
2276 			} else {
2277 				nvextendbuf(ap->a_vp,
2278 					    ip->ino_data.size,
2279 					    vap->va_size,
2280 					    hammer_blocksize(ip->ino_data.size),
2281 					    hammer_blocksize(vap->va_size),
2282 					    hammer_blockoff(ip->ino_data.size),
2283 					    hammer_blockoff(vap->va_size),
2284 					    0);
2285 				truncating = 0;
2286 				kflags |= NOTE_WRITE | NOTE_EXTEND;
2287 			}
2288 			ip->ino_data.size = vap->va_size;
2289 			ip->ino_data.mtime = trans.time;
2290 			/* XXX safe to use SDIRTY instead of DDIRTY here? */
2291 			modflags |= HAMMER_INODE_MTIME | HAMMER_INODE_DDIRTY;
2292 
2293 			/*
2294 			 * On-media truncation is cached in the inode until
2295 			 * the inode is synchronized.  We must immediately
2296 			 * handle any frontend records.
2297 			 */
2298 			if (truncating) {
2299 				hammer_ip_frontend_trunc(ip, vap->va_size);
2300 				if ((ip->flags & HAMMER_INODE_TRUNCATED) == 0) {
2301 					ip->flags |= HAMMER_INODE_TRUNCATED;
2302 					ip->trunc_off = vap->va_size;
2303 					hammer_inode_dirty(ip);
2304 				} else if (ip->trunc_off > vap->va_size) {
2305 					ip->trunc_off = vap->va_size;
2306 				}
2307 			}
2308 
2309 #if 0
2310 			/*
2311 			 * When truncating, nvtruncbuf() may have cleaned out
2312 			 * a portion of the last block on-disk in the buffer
2313 			 * cache.  We must clean out any frontend records
2314 			 * for blocks beyond the new last block.
2315 			 */
2316 			aligned_size = (vap->va_size + (blksize - 1)) &
2317 				       ~(int64_t)(blksize - 1);
2318 			if (truncating && vap->va_size < aligned_size) {
2319 				aligned_size -= blksize;
2320 				hammer_ip_frontend_trunc(ip, aligned_size);
2321 			}
2322 #endif
2323 			break;
2324 		case VDATABASE:
2325 			if ((ip->flags & HAMMER_INODE_TRUNCATED) == 0) {
2326 				ip->flags |= HAMMER_INODE_TRUNCATED;
2327 				ip->trunc_off = vap->va_size;
2328 				hammer_inode_dirty(ip);
2329 			} else if (ip->trunc_off > vap->va_size) {
2330 				ip->trunc_off = vap->va_size;
2331 			}
2332 			hammer_ip_frontend_trunc(ip, vap->va_size);
2333 			ip->ino_data.size = vap->va_size;
2334 			ip->ino_data.mtime = trans.time;
2335 			modflags |= HAMMER_INODE_MTIME | HAMMER_INODE_DDIRTY;
2336 			kflags |= NOTE_ATTRIB;
2337 			break;
2338 		default:
2339 			error = EINVAL;
2340 			goto done;
2341 		}
2342 		break;
2343 	}
2344 	if (vap->va_atime.tv_sec != VNOVAL) {
2345 		ip->ino_data.atime = hammer_timespec_to_time(&vap->va_atime);
2346 		modflags |= HAMMER_INODE_ATIME;
2347 		kflags |= NOTE_ATTRIB;
2348 	}
2349 	if (vap->va_mtime.tv_sec != VNOVAL) {
2350 		ip->ino_data.mtime = hammer_timespec_to_time(&vap->va_mtime);
2351 		modflags |= HAMMER_INODE_MTIME;
2352 		kflags |= NOTE_ATTRIB;
2353 	}
2354 	if (vap->va_mode != (mode_t)VNOVAL) {
2355 		mode_t   cur_mode = ip->ino_data.mode;
2356 		uid_t cur_uid = hammer_to_unix_xid(&ip->ino_data.uid);
2357 		gid_t cur_gid = hammer_to_unix_xid(&ip->ino_data.gid);
2358 
2359 		error = vop_helper_chmod(ap->a_vp, vap->va_mode, ap->a_cred,
2360 					 cur_uid, cur_gid, &cur_mode);
2361 		if (error == 0 && ip->ino_data.mode != cur_mode) {
2362 			ip->ino_data.mode = cur_mode;
2363 			ip->ino_data.ctime = trans.time;
2364 			modflags |= HAMMER_INODE_DDIRTY;
2365 			kflags |= NOTE_ATTRIB;
2366 		}
2367 	}
2368 done:
2369 	if (error == 0)
2370 		hammer_modify_inode(&trans, ip, modflags);
2371 	hammer_done_transaction(&trans);
2372 	hammer_knote(ap->a_vp, kflags);
2373 	lwkt_reltoken(&hmp->fs_token);
2374 	return (error);
2375 }
2376 
2377 /*
2378  * hammer_vop_nsymlink { nch, dvp, vpp, cred, vap, target }
2379  */
2380 static
2381 int
2382 hammer_vop_nsymlink(struct vop_nsymlink_args *ap)
2383 {
2384 	struct hammer_transaction trans;
2385 	struct hammer_inode *dip;
2386 	struct hammer_inode *nip;
2387 	hammer_record_t record;
2388 	struct nchandle *nch;
2389 	hammer_mount_t hmp;
2390 	int error;
2391 	int bytes;
2392 
2393 	ap->a_vap->va_type = VLNK;
2394 
2395 	nch = ap->a_nch;
2396 	dip = VTOI(ap->a_dvp);
2397 	hmp = dip->hmp;
2398 
2399 	if (dip->flags & HAMMER_INODE_RO)
2400 		return (EROFS);
2401 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
2402 		return (error);
2403 
2404 	/*
2405 	 * Create a transaction to cover the operations we perform.
2406 	 */
2407 	lwkt_gettoken(&hmp->fs_token);
2408 	hammer_start_transaction(&trans, hmp);
2409 	++hammer_stats_file_iopsw;
2410 
2411 	/*
2412 	 * Create a new filesystem object of the requested type.  The
2413 	 * returned inode will be referenced but not locked.
2414 	 */
2415 
2416 	error = hammer_create_inode(&trans, ap->a_vap, ap->a_cred,
2417 				    dip, nch->ncp->nc_name, nch->ncp->nc_nlen,
2418 				    NULL, &nip);
2419 	if (error) {
2420 		hammer_done_transaction(&trans);
2421 		*ap->a_vpp = NULL;
2422 		lwkt_reltoken(&hmp->fs_token);
2423 		return (error);
2424 	}
2425 
2426 	/*
2427 	 * Add a record representing the symlink.  symlink stores the link
2428 	 * as pure data, not a string, and is no \0 terminated.
2429 	 */
2430 	if (error == 0) {
2431 		bytes = strlen(ap->a_target);
2432 
2433 		if (bytes <= HAMMER_INODE_BASESYMLEN) {
2434 			bcopy(ap->a_target, nip->ino_data.ext.symlink, bytes);
2435 		} else {
2436 			record = hammer_alloc_mem_record(nip, bytes);
2437 			record->type = HAMMER_MEM_RECORD_GENERAL;
2438 
2439 			record->leaf.base.localization = nip->obj_localization |
2440 							 HAMMER_LOCALIZE_MISC;
2441 			record->leaf.base.key = HAMMER_FIXKEY_SYMLINK;
2442 			record->leaf.base.rec_type = HAMMER_RECTYPE_FIX;
2443 			record->leaf.data_len = bytes;
2444 			KKASSERT(HAMMER_SYMLINK_NAME_OFF == 0);
2445 			bcopy(ap->a_target, record->data->symlink.name, bytes);
2446 			error = hammer_ip_add_record(&trans, record);
2447 		}
2448 
2449 		/*
2450 		 * Set the file size to the length of the link.
2451 		 */
2452 		if (error == 0) {
2453 			nip->ino_data.size = bytes;
2454 			hammer_modify_inode(&trans, nip, HAMMER_INODE_DDIRTY);
2455 		}
2456 	}
2457 	if (error == 0)
2458 		error = hammer_ip_add_direntry(&trans, dip, nch->ncp->nc_name,
2459 						nch->ncp->nc_nlen, nip);
2460 
2461 	/*
2462 	 * Finish up.
2463 	 */
2464 	if (error) {
2465 		hammer_rel_inode(nip, 0);
2466 		*ap->a_vpp = NULL;
2467 	} else {
2468 		error = hammer_get_vnode(nip, ap->a_vpp);
2469 		hammer_rel_inode(nip, 0);
2470 		if (error == 0) {
2471 			cache_setunresolved(ap->a_nch);
2472 			cache_setvp(ap->a_nch, *ap->a_vpp);
2473 			hammer_knote(ap->a_dvp, NOTE_WRITE);
2474 		}
2475 	}
2476 	hammer_done_transaction(&trans);
2477 	lwkt_reltoken(&hmp->fs_token);
2478 	return (error);
2479 }
2480 
2481 /*
2482  * hammer_vop_nwhiteout { nch, dvp, cred, flags }
2483  */
2484 static
2485 int
2486 hammer_vop_nwhiteout(struct vop_nwhiteout_args *ap)
2487 {
2488 	struct hammer_transaction trans;
2489 	struct hammer_inode *dip;
2490 	hammer_mount_t hmp;
2491 	int error;
2492 
2493 	dip = VTOI(ap->a_dvp);
2494 	hmp = dip->hmp;
2495 
2496 	if (hammer_nohistory(dip) == 0 &&
2497 	    (error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0) {
2498 		return (error);
2499 	}
2500 
2501 	lwkt_gettoken(&hmp->fs_token);
2502 	hammer_start_transaction(&trans, hmp);
2503 	++hammer_stats_file_iopsw;
2504 	error = hammer_dounlink(&trans, ap->a_nch, ap->a_dvp,
2505 				ap->a_cred, ap->a_flags, -1);
2506 	hammer_done_transaction(&trans);
2507 	lwkt_reltoken(&hmp->fs_token);
2508 
2509 	return (error);
2510 }
2511 
2512 /*
2513  * hammer_vop_ioctl { vp, command, data, fflag, cred }
2514  */
2515 static
2516 int
2517 hammer_vop_ioctl(struct vop_ioctl_args *ap)
2518 {
2519 	struct hammer_inode *ip = ap->a_vp->v_data;
2520 	hammer_mount_t hmp = ip->hmp;
2521 	int error;
2522 
2523 	++hammer_stats_file_iopsr;
2524 	lwkt_gettoken(&hmp->fs_token);
2525 	error = hammer_ioctl(ip, ap->a_command, ap->a_data,
2526 			     ap->a_fflag, ap->a_cred);
2527 	lwkt_reltoken(&hmp->fs_token);
2528 	return (error);
2529 }
2530 
2531 static
2532 int
2533 hammer_vop_mountctl(struct vop_mountctl_args *ap)
2534 {
2535 	static const struct mountctl_opt extraopt[] = {
2536 		{ HMNT_NOHISTORY,	"nohistory" },
2537 		{ HMNT_MASTERID,	"master" },
2538 		{ HMNT_NOMIRROR,	"nomirror" },
2539 		{ 0, NULL}
2540 
2541 	};
2542 	struct hammer_mount *hmp;
2543 	struct mount *mp;
2544 	int usedbytes;
2545 	int error;
2546 
2547 	error = 0;
2548 	usedbytes = 0;
2549 	mp = ap->a_head.a_ops->head.vv_mount;
2550 	KKASSERT(mp->mnt_data != NULL);
2551 	hmp = (struct hammer_mount *)mp->mnt_data;
2552 
2553 	lwkt_gettoken(&hmp->fs_token);
2554 
2555 	switch(ap->a_op) {
2556 	case MOUNTCTL_SET_EXPORT:
2557 		if (ap->a_ctllen != sizeof(struct export_args))
2558 			error = EINVAL;
2559 		else
2560 			error = hammer_vfs_export(mp, ap->a_op,
2561 				      (const struct export_args *)ap->a_ctl);
2562 		break;
2563 	case MOUNTCTL_MOUNTFLAGS:
2564 		/*
2565 		 * Call standard mountctl VOP function
2566 		 * so we get user mount flags.
2567 		 */
2568 		error = vop_stdmountctl(ap);
2569 		if (error)
2570 			break;
2571 
2572 		usedbytes = *ap->a_res;
2573 
2574 		if (usedbytes > 0 && usedbytes < ap->a_buflen) {
2575 			usedbytes += vfs_flagstostr(hmp->hflags, extraopt,
2576 						    ap->a_buf,
2577 						    ap->a_buflen - usedbytes,
2578 						    &error);
2579 		}
2580 
2581 		*ap->a_res += usedbytes;
2582 		break;
2583 	default:
2584 		error = vop_stdmountctl(ap);
2585 		break;
2586 	}
2587 	lwkt_reltoken(&hmp->fs_token);
2588 	return(error);
2589 }
2590 
2591 /*
2592  * hammer_vop_strategy { vp, bio }
2593  *
2594  * Strategy call, used for regular file read & write only.  Note that the
2595  * bp may represent a cluster.
2596  *
2597  * To simplify operation and allow better optimizations in the future,
2598  * this code does not make any assumptions with regards to buffer alignment
2599  * or size.
2600  */
2601 static
2602 int
2603 hammer_vop_strategy(struct vop_strategy_args *ap)
2604 {
2605 	struct buf *bp;
2606 	int error;
2607 
2608 	bp = ap->a_bio->bio_buf;
2609 
2610 	switch(bp->b_cmd) {
2611 	case BUF_CMD_READ:
2612 		error = hammer_vop_strategy_read(ap);
2613 		break;
2614 	case BUF_CMD_WRITE:
2615 		error = hammer_vop_strategy_write(ap);
2616 		break;
2617 	default:
2618 		bp->b_error = error = EINVAL;
2619 		bp->b_flags |= B_ERROR;
2620 		biodone(ap->a_bio);
2621 		break;
2622 	}
2623 
2624 	/* hammer_dump_dedup_cache(((hammer_inode_t)ap->a_vp->v_data)->hmp); */
2625 
2626 	return (error);
2627 }
2628 
2629 /*
2630  * Read from a regular file.  Iterate the related records and fill in the
2631  * BIO/BUF.  Gaps are zero-filled.
2632  *
2633  * The support code in hammer_object.c should be used to deal with mixed
2634  * in-memory and on-disk records.
2635  *
2636  * NOTE: Can be called from the cluster code with an oversized buf.
2637  *
2638  * XXX atime update
2639  */
2640 static
2641 int
2642 hammer_vop_strategy_read(struct vop_strategy_args *ap)
2643 {
2644 	struct hammer_transaction trans;
2645 	struct hammer_inode *ip;
2646 	struct hammer_inode *dip;
2647 	hammer_mount_t hmp;
2648 	struct hammer_cursor cursor;
2649 	hammer_base_elm_t base;
2650 	hammer_off_t disk_offset;
2651 	struct bio *bio;
2652 	struct bio *nbio;
2653 	struct buf *bp;
2654 	int64_t rec_offset;
2655 	int64_t ran_end;
2656 	int64_t tmp64;
2657 	int error;
2658 	int boff;
2659 	int roff;
2660 	int n;
2661 	int isdedupable;
2662 
2663 	bio = ap->a_bio;
2664 	bp = bio->bio_buf;
2665 	ip = ap->a_vp->v_data;
2666 	hmp = ip->hmp;
2667 
2668 	/*
2669 	 * The zone-2 disk offset may have been set by the cluster code via
2670 	 * a BMAP operation, or else should be NOOFFSET.
2671 	 *
2672 	 * Checking the high bits for a match against zone-2 should suffice.
2673 	 *
2674 	 * In cases where a lot of data duplication is present it may be
2675 	 * more beneficial to drop through and doubule-buffer through the
2676 	 * device.
2677 	 */
2678 	nbio = push_bio(bio);
2679 	if (hammer_is_zone_large_data(nbio->bio_offset)) {
2680 		if (hammer_double_buffer == 0) {
2681 			lwkt_gettoken(&hmp->fs_token);
2682 			error = hammer_io_direct_read(hmp, nbio, NULL);
2683 			lwkt_reltoken(&hmp->fs_token);
2684 			return (error);
2685 		}
2686 
2687 		/*
2688 		 * Try to shortcut requests for double_buffer mode too.
2689 		 * Since this mode runs through the device buffer cache
2690 		 * only compatible buffer sizes (meaning those generated
2691 		 * by normal filesystem buffers) are legal.
2692 		 */
2693 		if (hammer_live_dedup == 0 && (bp->b_flags & B_PAGING) == 0) {
2694 			lwkt_gettoken(&hmp->fs_token);
2695 			error = hammer_io_indirect_read(hmp, nbio, NULL);
2696 			lwkt_reltoken(&hmp->fs_token);
2697 			return (error);
2698 		}
2699 	}
2700 
2701 	/*
2702 	 * Well, that sucked.  Do it the hard way.  If all the stars are
2703 	 * aligned we may still be able to issue a direct-read.
2704 	 */
2705 	lwkt_gettoken(&hmp->fs_token);
2706 	hammer_simple_transaction(&trans, hmp);
2707 	hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
2708 
2709 	/*
2710 	 * Key range (begin and end inclusive) to scan.  Note that the key's
2711 	 * stored in the actual records represent BASE+LEN, not BASE.  The
2712 	 * first record containing bio_offset will have a key > bio_offset.
2713 	 */
2714 	cursor.key_beg.localization = ip->obj_localization |
2715 				      HAMMER_LOCALIZE_MISC;
2716 	cursor.key_beg.obj_id = ip->obj_id;
2717 	cursor.key_beg.create_tid = 0;
2718 	cursor.key_beg.delete_tid = 0;
2719 	cursor.key_beg.obj_type = 0;
2720 	cursor.key_beg.key = bio->bio_offset + 1;
2721 	cursor.asof = ip->obj_asof;
2722 	cursor.flags |= HAMMER_CURSOR_ASOF;
2723 
2724 	cursor.key_end = cursor.key_beg;
2725 	KKASSERT(ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE);
2726 #if 0
2727 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
2728 		cursor.key_beg.rec_type = HAMMER_RECTYPE_DB;
2729 		cursor.key_end.rec_type = HAMMER_RECTYPE_DB;
2730 		cursor.key_end.key = 0x7FFFFFFFFFFFFFFFLL;
2731 	} else
2732 #endif
2733 	{
2734 		ran_end = bio->bio_offset + bp->b_bufsize;
2735 		cursor.key_beg.rec_type = HAMMER_RECTYPE_DATA;
2736 		cursor.key_end.rec_type = HAMMER_RECTYPE_DATA;
2737 		tmp64 = ran_end + MAXPHYS + 1;	/* work-around GCC-4 bug */
2738 		if (tmp64 < ran_end)
2739 			cursor.key_end.key = 0x7FFFFFFFFFFFFFFFLL;
2740 		else
2741 			cursor.key_end.key = ran_end + MAXPHYS + 1;
2742 	}
2743 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE;
2744 
2745 	/*
2746 	 * Set NOSWAPCACHE for cursor data extraction if double buffering
2747 	 * is disabled or (if the file is not marked cacheable via chflags
2748 	 * and vm.swapcache_use_chflags is enabled).
2749 	 */
2750 	if (hammer_double_buffer == 0 ||
2751 	    ((ap->a_vp->v_flag & VSWAPCACHE) == 0 &&
2752 	     vm_swapcache_use_chflags)) {
2753 		cursor.flags |= HAMMER_CURSOR_NOSWAPCACHE;
2754 	}
2755 
2756 	error = hammer_ip_first(&cursor);
2757 	boff = 0;
2758 
2759 	while (error == 0) {
2760 		/*
2761 		 * Get the base file offset of the record.  The key for
2762 		 * data records is (base + bytes) rather then (base).
2763 		 */
2764 		base = &cursor.leaf->base;
2765 		rec_offset = base->key - cursor.leaf->data_len;
2766 
2767 		/*
2768 		 * Calculate the gap, if any, and zero-fill it.
2769 		 *
2770 		 * n is the offset of the start of the record verses our
2771 		 * current seek offset in the bio.
2772 		 */
2773 		n = (int)(rec_offset - (bio->bio_offset + boff));
2774 		if (n > 0) {
2775 			if (n > bp->b_bufsize - boff)
2776 				n = bp->b_bufsize - boff;
2777 			bzero((char *)bp->b_data + boff, n);
2778 			boff += n;
2779 			n = 0;
2780 		}
2781 
2782 		/*
2783 		 * Calculate the data offset in the record and the number
2784 		 * of bytes we can copy.
2785 		 *
2786 		 * There are two degenerate cases.  First, boff may already
2787 		 * be at bp->b_bufsize.  Secondly, the data offset within
2788 		 * the record may exceed the record's size.
2789 		 */
2790 		roff = -n;
2791 		rec_offset += roff;
2792 		n = cursor.leaf->data_len - roff;
2793 		if (n <= 0) {
2794 			hdkprintf("bad n=%d roff=%d\n", n, roff);
2795 			n = 0;
2796 		} else if (n > bp->b_bufsize - boff) {
2797 			n = bp->b_bufsize - boff;
2798 		}
2799 
2800 		/*
2801 		 * Deal with cached truncations.  This cool bit of code
2802 		 * allows truncate()/ftruncate() to avoid having to sync
2803 		 * the file.
2804 		 *
2805 		 * If the frontend is truncated then all backend records are
2806 		 * subject to the frontend's truncation.
2807 		 *
2808 		 * If the backend is truncated then backend records on-disk
2809 		 * (but not in-memory) are subject to the backend's
2810 		 * truncation.  In-memory records owned by the backend
2811 		 * represent data written after the truncation point on the
2812 		 * backend and must not be truncated.
2813 		 *
2814 		 * Truncate operations deal with frontend buffer cache
2815 		 * buffers and frontend-owned in-memory records synchronously.
2816 		 */
2817 		if (ip->flags & HAMMER_INODE_TRUNCATED) {
2818 			if (hammer_cursor_ondisk(&cursor)/* ||
2819 			    cursor.iprec->flush_state == HAMMER_FST_FLUSH*/) {
2820 				if (ip->trunc_off <= rec_offset)
2821 					n = 0;
2822 				else if (ip->trunc_off < rec_offset + n)
2823 					n = (int)(ip->trunc_off - rec_offset);
2824 			}
2825 		}
2826 		if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2827 			if (hammer_cursor_ondisk(&cursor)) {
2828 				if (ip->sync_trunc_off <= rec_offset)
2829 					n = 0;
2830 				else if (ip->sync_trunc_off < rec_offset + n)
2831 					n = (int)(ip->sync_trunc_off - rec_offset);
2832 			}
2833 		}
2834 
2835 		/*
2836 		 * Try to issue a direct read into our bio if possible,
2837 		 * otherwise resolve the element data into a hammer_buffer
2838 		 * and copy.
2839 		 *
2840 		 * The buffer on-disk should be zerod past any real
2841 		 * truncation point, but may not be for any synthesized
2842 		 * truncation point from above.
2843 		 *
2844 		 * NOTE: disk_offset is only valid if the cursor data is
2845 		 *	 on-disk.
2846 		 */
2847 		disk_offset = cursor.leaf->data_offset + roff;
2848 		isdedupable = (boff == 0 && n == bp->b_bufsize &&
2849 			       hammer_cursor_ondisk(&cursor) &&
2850 			       ((int)disk_offset & HAMMER_BUFMASK) == 0);
2851 
2852 		if (isdedupable && hammer_double_buffer == 0) {
2853 			/*
2854 			 * Direct read case
2855 			 */
2856 			KKASSERT(hammer_is_zone_large_data(disk_offset));
2857 			nbio->bio_offset = disk_offset;
2858 			error = hammer_io_direct_read(hmp, nbio, cursor.leaf);
2859 			if (hammer_live_dedup && error == 0)
2860 				hammer_dedup_cache_add(ip, cursor.leaf);
2861 			goto done;
2862 		} else if (isdedupable) {
2863 			/*
2864 			 * Async I/O case for reading from backing store
2865 			 * and copying the data to the filesystem buffer.
2866 			 * live-dedup has to verify the data anyway if it
2867 			 * gets a hit later so we can just add the entry
2868 			 * now.
2869 			 */
2870 			KKASSERT(hammer_is_zone_large_data(disk_offset));
2871 			nbio->bio_offset = disk_offset;
2872 			if (hammer_live_dedup)
2873 				hammer_dedup_cache_add(ip, cursor.leaf);
2874 			error = hammer_io_indirect_read(hmp, nbio, cursor.leaf);
2875 			goto done;
2876 		} else if (n) {
2877 			error = hammer_ip_resolve_data(&cursor);
2878 			if (error == 0) {
2879 				if (hammer_live_dedup && isdedupable)
2880 					hammer_dedup_cache_add(ip, cursor.leaf);
2881 				bcopy((char *)cursor.data + roff,
2882 				      (char *)bp->b_data + boff, n);
2883 			}
2884 		}
2885 		if (error)
2886 			break;
2887 
2888 		/*
2889 		 * We have to be sure that the only elements added to the
2890 		 * dedup cache are those which are already on-media.
2891 		 */
2892 		if (hammer_live_dedup && hammer_cursor_ondisk(&cursor))
2893 			hammer_dedup_cache_add(ip, cursor.leaf);
2894 
2895 		/*
2896 		 * Iterate until we have filled the request.
2897 		 */
2898 		boff += n;
2899 		if (boff == bp->b_bufsize)
2900 			break;
2901 		error = hammer_ip_next(&cursor);
2902 	}
2903 
2904 	/*
2905 	 * There may have been a gap after the last record
2906 	 */
2907 	if (error == ENOENT)
2908 		error = 0;
2909 	if (error == 0 && boff != bp->b_bufsize) {
2910 		KKASSERT(boff < bp->b_bufsize);
2911 		bzero((char *)bp->b_data + boff, bp->b_bufsize - boff);
2912 		/* boff = bp->b_bufsize; */
2913 	}
2914 
2915 	/*
2916 	 * Disallow swapcache operation on the vnode buffer if double
2917 	 * buffering is enabled, the swapcache will get the data via
2918 	 * the block device buffer.
2919 	 */
2920 	if (hammer_double_buffer)
2921 		bp->b_flags |= B_NOTMETA;
2922 
2923 	/*
2924 	 * Cleanup
2925 	 */
2926 	bp->b_resid = 0;
2927 	bp->b_error = error;
2928 	if (error)
2929 		bp->b_flags |= B_ERROR;
2930 	biodone(ap->a_bio);
2931 
2932 done:
2933 	/*
2934 	 * Cache the b-tree node for the last data read in cache[1].
2935 	 *
2936 	 * If we hit the file EOF then also cache the node in the
2937 	 * governing directory's cache[3], it will be used to initialize
2938 	 * the new inode's cache[1] for any inodes looked up via the directory.
2939 	 *
2940 	 * This doesn't reduce disk accesses since the B-Tree chain is
2941 	 * likely cached, but it does reduce cpu overhead when looking
2942 	 * up file offsets for cpdup/tar/cpio style iterations.
2943 	 */
2944 	if (cursor.node)
2945 		hammer_cache_node(&ip->cache[1], cursor.node);
2946 	if (ran_end >= ip->ino_data.size) {
2947 		dip = hammer_find_inode(&trans, ip->ino_data.parent_obj_id,
2948 					ip->obj_asof, ip->obj_localization);
2949 		if (dip) {
2950 			hammer_cache_node(&dip->cache[3], cursor.node);
2951 			hammer_rel_inode(dip, 0);
2952 		}
2953 	}
2954 	hammer_done_cursor(&cursor);
2955 	hammer_done_transaction(&trans);
2956 	lwkt_reltoken(&hmp->fs_token);
2957 	return(error);
2958 }
2959 
2960 /*
2961  * BMAP operation - used to support cluster_read() only.
2962  *
2963  * (struct vnode *vp, off_t loffset, off_t *doffsetp, int *runp, int *runb)
2964  *
2965  * This routine may return EOPNOTSUPP if the opration is not supported for
2966  * the specified offset.  The contents of the pointer arguments do not
2967  * need to be initialized in that case.
2968  *
2969  * If a disk address is available and properly aligned return 0 with
2970  * *doffsetp set to the zone-2 address, and *runp / *runb set appropriately
2971  * to the run-length relative to that offset.  Callers may assume that
2972  * *doffsetp is valid if 0 is returned, even if *runp is not sufficiently
2973  * large, so return EOPNOTSUPP if it is not sufficiently large.
2974  */
2975 static
2976 int
2977 hammer_vop_bmap(struct vop_bmap_args *ap)
2978 {
2979 	struct hammer_transaction trans;
2980 	struct hammer_inode *ip;
2981 	hammer_mount_t hmp;
2982 	struct hammer_cursor cursor;
2983 	hammer_base_elm_t base;
2984 	int64_t rec_offset;
2985 	int64_t ran_end;
2986 	int64_t tmp64;
2987 	int64_t base_offset;
2988 	int64_t base_disk_offset;
2989 	int64_t last_offset;
2990 	hammer_off_t last_disk_offset;
2991 	hammer_off_t disk_offset;
2992 	int	rec_len;
2993 	int	error;
2994 	int	blksize;
2995 
2996 	++hammer_stats_file_iopsr;
2997 	ip = ap->a_vp->v_data;
2998 	hmp = ip->hmp;
2999 
3000 	/*
3001 	 * We can only BMAP regular files.  We can't BMAP database files,
3002 	 * directories, etc.
3003 	 */
3004 	if (ip->ino_data.obj_type != HAMMER_OBJTYPE_REGFILE)
3005 		return(EOPNOTSUPP);
3006 
3007 	/*
3008 	 * bmap is typically called with runp/runb both NULL when used
3009 	 * for writing.  We do not support BMAP for writing atm.
3010 	 */
3011 	if (ap->a_cmd != BUF_CMD_READ)
3012 		return(EOPNOTSUPP);
3013 
3014 	/*
3015 	 * Scan the B-Tree to acquire blockmap addresses, then translate
3016 	 * to raw addresses.
3017 	 */
3018 	lwkt_gettoken(&hmp->fs_token);
3019 	hammer_simple_transaction(&trans, hmp);
3020 
3021 	hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
3022 
3023 	/*
3024 	 * Key range (begin and end inclusive) to scan.  Note that the key's
3025 	 * stored in the actual records represent BASE+LEN, not BASE.  The
3026 	 * first record containing bio_offset will have a key > bio_offset.
3027 	 */
3028 	cursor.key_beg.localization = ip->obj_localization |
3029 				      HAMMER_LOCALIZE_MISC;
3030 	cursor.key_beg.obj_id = ip->obj_id;
3031 	cursor.key_beg.create_tid = 0;
3032 	cursor.key_beg.delete_tid = 0;
3033 	cursor.key_beg.obj_type = 0;
3034 	if (ap->a_runb)
3035 		cursor.key_beg.key = ap->a_loffset - MAXPHYS + 1;
3036 	else
3037 		cursor.key_beg.key = ap->a_loffset + 1;
3038 	if (cursor.key_beg.key < 0)
3039 		cursor.key_beg.key = 0;
3040 	cursor.asof = ip->obj_asof;
3041 	cursor.flags |= HAMMER_CURSOR_ASOF;
3042 
3043 	cursor.key_end = cursor.key_beg;
3044 	KKASSERT(ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE);
3045 
3046 	ran_end = ap->a_loffset + MAXPHYS;
3047 	cursor.key_beg.rec_type = HAMMER_RECTYPE_DATA;
3048 	cursor.key_end.rec_type = HAMMER_RECTYPE_DATA;
3049 	tmp64 = ran_end + MAXPHYS + 1;	/* work-around GCC-4 bug */
3050 	if (tmp64 < ran_end)
3051 		cursor.key_end.key = 0x7FFFFFFFFFFFFFFFLL;
3052 	else
3053 		cursor.key_end.key = ran_end + MAXPHYS + 1;
3054 
3055 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE;
3056 
3057 	error = hammer_ip_first(&cursor);
3058 	base_offset = last_offset = 0;
3059 	base_disk_offset = last_disk_offset = 0;
3060 
3061 	while (error == 0) {
3062 		/*
3063 		 * Get the base file offset of the record.  The key for
3064 		 * data records is (base + bytes) rather then (base).
3065 		 *
3066 		 * NOTE: rec_offset + rec_len may exceed the end-of-file.
3067 		 * The extra bytes should be zero on-disk and the BMAP op
3068 		 * should still be ok.
3069 		 */
3070 		base = &cursor.leaf->base;
3071 		rec_offset = base->key - cursor.leaf->data_len;
3072 		rec_len    = cursor.leaf->data_len;
3073 
3074 		/*
3075 		 * Incorporate any cached truncation.
3076 		 *
3077 		 * NOTE: Modifications to rec_len based on synthesized
3078 		 * truncation points remove the guarantee that any extended
3079 		 * data on disk is zero (since the truncations may not have
3080 		 * taken place on-media yet).
3081 		 */
3082 		if (ip->flags & HAMMER_INODE_TRUNCATED) {
3083 			if (hammer_cursor_ondisk(&cursor) ||
3084 			    cursor.iprec->flush_state == HAMMER_FST_FLUSH) {
3085 				if (ip->trunc_off <= rec_offset)
3086 					rec_len = 0;
3087 				else if (ip->trunc_off < rec_offset + rec_len)
3088 					rec_len = (int)(ip->trunc_off - rec_offset);
3089 			}
3090 		}
3091 		if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
3092 			if (hammer_cursor_ondisk(&cursor)) {
3093 				if (ip->sync_trunc_off <= rec_offset)
3094 					rec_len = 0;
3095 				else if (ip->sync_trunc_off < rec_offset + rec_len)
3096 					rec_len = (int)(ip->sync_trunc_off - rec_offset);
3097 			}
3098 		}
3099 
3100 		/*
3101 		 * Accumulate information.  If we have hit a discontiguous
3102 		 * block reset base_offset unless we are already beyond the
3103 		 * requested offset.  If we are, that's it, we stop.
3104 		 */
3105 		if (error)
3106 			break;
3107 		if (hammer_cursor_ondisk(&cursor)) {
3108 			disk_offset = cursor.leaf->data_offset;
3109 			if (rec_offset != last_offset ||
3110 			    disk_offset != last_disk_offset) {
3111 				if (rec_offset > ap->a_loffset)
3112 					break;
3113 				base_offset = rec_offset;
3114 				base_disk_offset = disk_offset;
3115 			}
3116 			last_offset = rec_offset + rec_len;
3117 			last_disk_offset = disk_offset + rec_len;
3118 
3119 			if (hammer_live_dedup)
3120 				hammer_dedup_cache_add(ip, cursor.leaf);
3121 		}
3122 
3123 		error = hammer_ip_next(&cursor);
3124 	}
3125 
3126 	if (cursor.node)
3127 		hammer_cache_node(&ip->cache[1], cursor.node);
3128 
3129 	hammer_done_cursor(&cursor);
3130 	hammer_done_transaction(&trans);
3131 	lwkt_reltoken(&hmp->fs_token);
3132 
3133 	/*
3134 	 * If we couldn't find any records or the records we did find were
3135 	 * all behind the requested offset, return failure.  A forward
3136 	 * truncation can leave a hole w/ no on-disk records.
3137 	 */
3138 	if (last_offset == 0 || last_offset < ap->a_loffset)
3139 		return (EOPNOTSUPP);
3140 
3141 	/*
3142 	 * Figure out the block size at the requested offset and adjust
3143 	 * our limits so the cluster_read() does not create inappropriately
3144 	 * sized buffer cache buffers.
3145 	 */
3146 	blksize = hammer_blocksize(ap->a_loffset);
3147 	if (hammer_blocksize(base_offset) != blksize) {
3148 		base_offset = hammer_blockdemarc(base_offset, ap->a_loffset);
3149 	}
3150 	if (last_offset != ap->a_loffset &&
3151 	    hammer_blocksize(last_offset - 1) != blksize) {
3152 		last_offset = hammer_blockdemarc(ap->a_loffset,
3153 						 last_offset - 1);
3154 	}
3155 
3156 	/*
3157 	 * Returning EOPNOTSUPP simply prevents the direct-IO optimization
3158 	 * from occuring.
3159 	 */
3160 	disk_offset = base_disk_offset + (ap->a_loffset - base_offset);
3161 
3162 	if (!hammer_is_zone_large_data(disk_offset)) {
3163 		/*
3164 		 * Only large-data zones can be direct-IOd
3165 		 */
3166 		error = EOPNOTSUPP;
3167 	} else if ((disk_offset & HAMMER_BUFMASK) ||
3168 		   (last_offset - ap->a_loffset) < blksize) {
3169 		/*
3170 		 * doffsetp is not aligned or the forward run size does
3171 		 * not cover a whole buffer, disallow the direct I/O.
3172 		 */
3173 		error = EOPNOTSUPP;
3174 	} else {
3175 		/*
3176 		 * We're good.
3177 		 */
3178 		*ap->a_doffsetp = disk_offset;
3179 		if (ap->a_runb) {
3180 			*ap->a_runb = ap->a_loffset - base_offset;
3181 			KKASSERT(*ap->a_runb >= 0);
3182 		}
3183 		if (ap->a_runp) {
3184 			*ap->a_runp = last_offset - ap->a_loffset;
3185 			KKASSERT(*ap->a_runp >= 0);
3186 		}
3187 		error = 0;
3188 	}
3189 	return(error);
3190 }
3191 
3192 /*
3193  * Write to a regular file.   Because this is a strategy call the OS is
3194  * trying to actually get data onto the media.
3195  */
3196 static
3197 int
3198 hammer_vop_strategy_write(struct vop_strategy_args *ap)
3199 {
3200 	hammer_record_t record;
3201 	hammer_mount_t hmp;
3202 	hammer_inode_t ip;
3203 	struct bio *bio;
3204 	struct buf *bp;
3205 	int blksize __debugvar;
3206 	int bytes;
3207 	int error;
3208 
3209 	bio = ap->a_bio;
3210 	bp = bio->bio_buf;
3211 	ip = ap->a_vp->v_data;
3212 	hmp = ip->hmp;
3213 
3214 	blksize = hammer_blocksize(bio->bio_offset);
3215 	KKASSERT(bp->b_bufsize == blksize);
3216 
3217 	if (ip->flags & HAMMER_INODE_RO) {
3218 		bp->b_error = EROFS;
3219 		bp->b_flags |= B_ERROR;
3220 		biodone(ap->a_bio);
3221 		return(EROFS);
3222 	}
3223 
3224 	lwkt_gettoken(&hmp->fs_token);
3225 
3226 	/*
3227 	 * Disallow swapcache operation on the vnode buffer if double
3228 	 * buffering is enabled, the swapcache will get the data via
3229 	 * the block device buffer.
3230 	 */
3231 	if (hammer_double_buffer)
3232 		bp->b_flags |= B_NOTMETA;
3233 
3234 	/*
3235 	 * Interlock with inode destruction (no in-kernel or directory
3236 	 * topology visibility).  If we queue new IO while trying to
3237 	 * destroy the inode we can deadlock the vtrunc call in
3238 	 * hammer_inode_unloadable_check().
3239 	 *
3240 	 * Besides, there's no point flushing a bp associated with an
3241 	 * inode that is being destroyed on-media and has no kernel
3242 	 * references.
3243 	 */
3244 	if ((ip->flags | ip->sync_flags) &
3245 	    (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) {
3246 		bp->b_resid = 0;
3247 		biodone(ap->a_bio);
3248 		lwkt_reltoken(&hmp->fs_token);
3249 		return(0);
3250 	}
3251 
3252 	/*
3253 	 * Reserve space and issue a direct-write from the front-end.
3254 	 * NOTE: The direct_io code will hammer_bread/bcopy smaller
3255 	 * allocations.
3256 	 *
3257 	 * An in-memory record will be installed to reference the storage
3258 	 * until the flusher can get to it.
3259 	 *
3260 	 * Since we own the high level bio the front-end will not try to
3261 	 * do a direct-read until the write completes.
3262 	 *
3263 	 * NOTE: The only time we do not reserve a full-sized buffers
3264 	 * worth of data is if the file is small.  We do not try to
3265 	 * allocate a fragment (from the small-data zone) at the end of
3266 	 * an otherwise large file as this can lead to wildly separated
3267 	 * data.
3268 	 */
3269 	KKASSERT((bio->bio_offset & HAMMER_BUFMASK) == 0);
3270 	KKASSERT(bio->bio_offset < ip->ino_data.size);
3271 	if (bio->bio_offset || ip->ino_data.size > HAMMER_HBUFSIZE)
3272 		bytes = bp->b_bufsize;
3273 	else
3274 		bytes = ((int)ip->ino_data.size + 15) & ~15;
3275 
3276 	record = hammer_ip_add_bulk(ip, bio->bio_offset, bp->b_data,
3277 				    bytes, &error);
3278 
3279 	/*
3280 	 * B_VFSFLAG1 indicates that a REDO_WRITE entry was generated
3281 	 * in hammer_vop_write().  We must flag the record so the proper
3282 	 * REDO_TERM_WRITE entry is generated during the flush.
3283 	 */
3284 	if (record) {
3285 		if (bp->b_flags & B_VFSFLAG1) {
3286 			record->flags |= HAMMER_RECF_REDO;
3287 			bp->b_flags &= ~B_VFSFLAG1;
3288 		}
3289 		if (record->flags & HAMMER_RECF_DEDUPED) {
3290 			bp->b_resid = 0;
3291 			hammer_ip_replace_bulk(hmp, record);
3292 			biodone(ap->a_bio);
3293 		} else {
3294 			hammer_io_direct_write(hmp, bio, record);
3295 		}
3296 		if (ip->rsv_recs > 1 && hmp->rsv_recs > hammer_limit_recs)
3297 			hammer_flush_inode(ip, 0);
3298 	} else {
3299 		bp->b_bio2.bio_offset = NOOFFSET;
3300 		bp->b_error = error;
3301 		bp->b_flags |= B_ERROR;
3302 		biodone(ap->a_bio);
3303 	}
3304 	lwkt_reltoken(&hmp->fs_token);
3305 	return(error);
3306 }
3307 
3308 /*
3309  * dounlink - disconnect a directory entry
3310  *
3311  * XXX whiteout support not really in yet
3312  */
3313 static int
3314 hammer_dounlink(hammer_transaction_t trans, struct nchandle *nch,
3315 		struct vnode *dvp, struct ucred *cred,
3316 		int flags, int isdir)
3317 {
3318 	struct namecache *ncp;
3319 	hammer_inode_t dip;
3320 	hammer_inode_t ip;
3321 	hammer_mount_t hmp;
3322 	struct hammer_cursor cursor;
3323 	int64_t namekey;
3324 	uint32_t max_iterations;
3325 	int nlen, error;
3326 
3327 	/*
3328 	 * Calculate the namekey and setup the key range for the scan.  This
3329 	 * works kinda like a chained hash table where the lower 32 bits
3330 	 * of the namekey synthesize the chain.
3331 	 *
3332 	 * The key range is inclusive of both key_beg and key_end.
3333 	 */
3334 	dip = VTOI(dvp);
3335 	ncp = nch->ncp;
3336 	hmp = dip->hmp;
3337 
3338 	if (dip->flags & HAMMER_INODE_RO)
3339 		return (EROFS);
3340 
3341 	namekey = hammer_direntry_namekey(dip, ncp->nc_name, ncp->nc_nlen,
3342 					   &max_iterations);
3343 retry:
3344 	hammer_init_cursor(trans, &cursor, &dip->cache[1], dip);
3345 	cursor.key_beg.localization = dip->obj_localization |
3346 				      hammer_dir_localization(dip);
3347         cursor.key_beg.obj_id = dip->obj_id;
3348 	cursor.key_beg.key = namekey;
3349         cursor.key_beg.create_tid = 0;
3350         cursor.key_beg.delete_tid = 0;
3351         cursor.key_beg.rec_type = HAMMER_RECTYPE_DIRENTRY;
3352         cursor.key_beg.obj_type = 0;
3353 
3354 	cursor.key_end = cursor.key_beg;
3355 	cursor.key_end.key += max_iterations;
3356 	cursor.asof = dip->obj_asof;
3357 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
3358 
3359 	/*
3360 	 * Scan all matching records (the chain), locate the one matching
3361 	 * the requested path component.  info->last_error contains the
3362 	 * error code on search termination and could be 0, ENOENT, or
3363 	 * something else.
3364 	 *
3365 	 * The hammer_ip_*() functions merge in-memory records with on-disk
3366 	 * records for the purposes of the search.
3367 	 */
3368 	error = hammer_ip_first(&cursor);
3369 
3370 	while (error == 0) {
3371 		error = hammer_ip_resolve_data(&cursor);
3372 		if (error)
3373 			break;
3374 		nlen = cursor.leaf->data_len - HAMMER_ENTRY_NAME_OFF;
3375 		KKASSERT(nlen > 0);
3376 		if (ncp->nc_nlen == nlen &&
3377 		    bcmp(ncp->nc_name, cursor.data->entry.name, nlen) == 0) {
3378 			break;
3379 		}
3380 		error = hammer_ip_next(&cursor);
3381 	}
3382 
3383 	/*
3384 	 * If all is ok we have to get the inode so we can adjust nlinks.
3385 	 * To avoid a deadlock with the flusher we must release the inode
3386 	 * lock on the directory when acquiring the inode for the entry.
3387 	 *
3388 	 * If the target is a directory, it must be empty.
3389 	 */
3390 	if (error == 0) {
3391 		hammer_unlock(&cursor.ip->lock);
3392 		ip = hammer_get_inode(trans, dip, cursor.data->entry.obj_id,
3393 				      hmp->asof,
3394 				      cursor.data->entry.localization,
3395 				      0, &error);
3396 		hammer_lock_sh(&cursor.ip->lock);
3397 		if (error == ENOENT) {
3398 			hkprintf("WARNING: Removing dirent w/missing inode "
3399 				"\"%s\"\n"
3400 				"\tobj_id = %016jx\n",
3401 				ncp->nc_name,
3402 				(intmax_t)cursor.data->entry.obj_id);
3403 			error = 0;
3404 		}
3405 
3406 		/*
3407 		 * If isdir >= 0 we validate that the entry is or is not a
3408 		 * directory.  If isdir < 0 we don't care.
3409 		 */
3410 		if (error == 0 && isdir >= 0 && ip) {
3411 			if (isdir &&
3412 			    ip->ino_data.obj_type != HAMMER_OBJTYPE_DIRECTORY) {
3413 				error = ENOTDIR;
3414 			} else if (isdir == 0 &&
3415 			    ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
3416 				error = EISDIR;
3417 			}
3418 		}
3419 
3420 		/*
3421 		 * If we are trying to remove a directory the directory must
3422 		 * be empty.
3423 		 *
3424 		 * The check directory code can loop and deadlock/retry.  Our
3425 		 * own cursor's node locks must be released to avoid a 3-way
3426 		 * deadlock with the flusher if the check directory code
3427 		 * blocks.
3428 		 *
3429 		 * If any changes whatsoever have been made to the cursor
3430 		 * set EDEADLK and retry.
3431 		 *
3432 		 * WARNING: See warnings in hammer_unlock_cursor()
3433 		 *	    function.
3434 		 */
3435 		if (error == 0 && ip && ip->ino_data.obj_type ==
3436 				        HAMMER_OBJTYPE_DIRECTORY) {
3437 			hammer_unlock_cursor(&cursor);
3438 			error = hammer_ip_check_directory_empty(trans, ip);
3439 			hammer_lock_cursor(&cursor);
3440 			if (cursor.flags & HAMMER_CURSOR_RETEST) {
3441 				hkprintf("Warning: avoided deadlock "
3442 					"on rmdir '%s'\n",
3443 					ncp->nc_name);
3444 				error = EDEADLK;
3445 			}
3446 		}
3447 
3448 		/*
3449 		 * Delete the directory entry.
3450 		 *
3451 		 * WARNING: hammer_ip_del_direntry() may have to terminate
3452 		 * the cursor to avoid a deadlock.  It is ok to call
3453 		 * hammer_done_cursor() twice.
3454 		 */
3455 		if (error == 0) {
3456 			error = hammer_ip_del_direntry(trans, &cursor,
3457 							dip, ip);
3458 		}
3459 		hammer_done_cursor(&cursor);
3460 		if (error == 0) {
3461 			/*
3462 			 * Tell the namecache that we are now unlinked.
3463 			 */
3464 			cache_unlink(nch);
3465 
3466 			/*
3467 			 * NOTE: ip->vp, if non-NULL, cannot be directly
3468 			 *	 referenced without formally acquiring the
3469 			 *	 vp since the vp might have zero refs on it,
3470 			 *	 or in the middle of a reclaim, etc.
3471 			 *
3472 			 * NOTE: The cache_setunresolved() can rip the vp
3473 			 *	 out from under us since the vp may not have
3474 			 *	 any refs, in which case ip->vp will be NULL
3475 			 *	 from the outset.
3476 			 */
3477 			while (ip && ip->vp) {
3478 				struct vnode *vp;
3479 
3480 				error = hammer_get_vnode(ip, &vp);
3481 				if (error == 0 && vp) {
3482 					vn_unlock(vp);
3483 					hammer_knote(ip->vp, NOTE_DELETE);
3484 #if 0
3485 					/*
3486 					 * Don't do this, it can deadlock
3487 					 * on concurrent rm's of hardlinks.
3488 					 * Shouldn't be needed any more.
3489 					 */
3490 					cache_inval_vp(ip->vp, CINV_DESTROY);
3491 #endif
3492 					vrele(vp);
3493 					break;
3494 				}
3495 				hdkprintf("ip/vp race1 avoided\n");
3496 			}
3497 		}
3498 		if (ip)
3499 			hammer_rel_inode(ip, 0);
3500 	} else {
3501 		hammer_done_cursor(&cursor);
3502 	}
3503 	if (error == EDEADLK)
3504 		goto retry;
3505 
3506 	return (error);
3507 }
3508 
3509 /************************************************************************
3510  *			    FIFO AND SPECFS OPS				*
3511  ************************************************************************
3512  *
3513  */
3514 static int
3515 hammer_vop_fifoclose (struct vop_close_args *ap)
3516 {
3517 	/* XXX update itimes */
3518 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3519 }
3520 
3521 static int
3522 hammer_vop_fiforead (struct vop_read_args *ap)
3523 {
3524 	int error;
3525 
3526 	error = VOCALL(&fifo_vnode_vops, &ap->a_head);
3527 	/* XXX update access time */
3528 	return (error);
3529 }
3530 
3531 static int
3532 hammer_vop_fifowrite (struct vop_write_args *ap)
3533 {
3534 	int error;
3535 
3536 	error = VOCALL(&fifo_vnode_vops, &ap->a_head);
3537 	/* XXX update access time */
3538 	return (error);
3539 }
3540 
3541 static
3542 int
3543 hammer_vop_fifokqfilter(struct vop_kqfilter_args *ap)
3544 {
3545 	int error;
3546 
3547 	error = VOCALL(&fifo_vnode_vops, &ap->a_head);
3548 	if (error)
3549 		error = hammer_vop_kqfilter(ap);
3550 	return(error);
3551 }
3552 
3553 /************************************************************************
3554  *			    KQFILTER OPS				*
3555  ************************************************************************
3556  *
3557  */
3558 static void filt_hammerdetach(struct knote *kn);
3559 static int filt_hammerread(struct knote *kn, long hint);
3560 static int filt_hammerwrite(struct knote *kn, long hint);
3561 static int filt_hammervnode(struct knote *kn, long hint);
3562 
3563 static struct filterops hammerread_filtops =
3564 	{ FILTEROP_ISFD | FILTEROP_MPSAFE,
3565 	  NULL, filt_hammerdetach, filt_hammerread };
3566 static struct filterops hammerwrite_filtops =
3567 	{ FILTEROP_ISFD | FILTEROP_MPSAFE,
3568 	  NULL, filt_hammerdetach, filt_hammerwrite };
3569 static struct filterops hammervnode_filtops =
3570 	{ FILTEROP_ISFD | FILTEROP_MPSAFE,
3571 	  NULL, filt_hammerdetach, filt_hammervnode };
3572 
3573 static
3574 int
3575 hammer_vop_kqfilter(struct vop_kqfilter_args *ap)
3576 {
3577 	struct vnode *vp = ap->a_vp;
3578 	struct knote *kn = ap->a_kn;
3579 
3580 	switch (kn->kn_filter) {
3581 	case EVFILT_READ:
3582 		kn->kn_fop = &hammerread_filtops;
3583 		break;
3584 	case EVFILT_WRITE:
3585 		kn->kn_fop = &hammerwrite_filtops;
3586 		break;
3587 	case EVFILT_VNODE:
3588 		kn->kn_fop = &hammervnode_filtops;
3589 		break;
3590 	default:
3591 		return (EOPNOTSUPP);
3592 	}
3593 
3594 	kn->kn_hook = (caddr_t)vp;
3595 
3596 	knote_insert(&vp->v_pollinfo.vpi_kqinfo.ki_note, kn);
3597 
3598 	return(0);
3599 }
3600 
3601 static void
3602 filt_hammerdetach(struct knote *kn)
3603 {
3604 	struct vnode *vp = (void *)kn->kn_hook;
3605 
3606 	knote_remove(&vp->v_pollinfo.vpi_kqinfo.ki_note, kn);
3607 }
3608 
3609 static int
3610 filt_hammerread(struct knote *kn, long hint)
3611 {
3612 	struct vnode *vp = (void *)kn->kn_hook;
3613 	hammer_inode_t ip = VTOI(vp);
3614 	hammer_mount_t hmp = ip->hmp;
3615 	off_t off;
3616 
3617 	if (hint == NOTE_REVOKE) {
3618 		kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
3619 		return(1);
3620 	}
3621 	lwkt_gettoken(&hmp->fs_token);	/* XXX use per-ip-token */
3622 	off = ip->ino_data.size - kn->kn_fp->f_offset;
3623 	kn->kn_data = (off < INTPTR_MAX) ? off : INTPTR_MAX;
3624 	lwkt_reltoken(&hmp->fs_token);
3625 	if (kn->kn_sfflags & NOTE_OLDAPI)
3626 		return(1);
3627 	return (kn->kn_data != 0);
3628 }
3629 
3630 static int
3631 filt_hammerwrite(struct knote *kn, long hint)
3632 {
3633 	if (hint == NOTE_REVOKE)
3634 		kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
3635 	kn->kn_data = 0;
3636 	return (1);
3637 }
3638 
3639 static int
3640 filt_hammervnode(struct knote *kn, long hint)
3641 {
3642 	if (kn->kn_sfflags & hint)
3643 		kn->kn_fflags |= hint;
3644 	if (hint == NOTE_REVOKE) {
3645 		kn->kn_flags |= (EV_EOF | EV_NODATA);
3646 		return (1);
3647 	}
3648 	return (kn->kn_fflags != 0);
3649 }
3650 
3651