xref: /dragonfly/sys/vfs/hammer/hammer_vnops.c (revision ffe53622)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/mountctl.h>
36 #include <sys/namecache.h>
37 #include <sys/buf2.h>
38 #include <vfs/fifofs/fifo.h>
39 
40 #include "hammer.h"
41 
42 /*
43  * USERFS VNOPS
44  */
45 static int hammer_vop_fsync(struct vop_fsync_args *);
46 static int hammer_vop_read(struct vop_read_args *);
47 static int hammer_vop_write(struct vop_write_args *);
48 static int hammer_vop_access(struct vop_access_args *);
49 static int hammer_vop_advlock(struct vop_advlock_args *);
50 static int hammer_vop_close(struct vop_close_args *);
51 static int hammer_vop_ncreate(struct vop_ncreate_args *);
52 static int hammer_vop_getattr(struct vop_getattr_args *);
53 static int hammer_vop_nresolve(struct vop_nresolve_args *);
54 static int hammer_vop_nlookupdotdot(struct vop_nlookupdotdot_args *);
55 static int hammer_vop_nlink(struct vop_nlink_args *);
56 static int hammer_vop_nmkdir(struct vop_nmkdir_args *);
57 static int hammer_vop_nmknod(struct vop_nmknod_args *);
58 static int hammer_vop_open(struct vop_open_args *);
59 static int hammer_vop_print(struct vop_print_args *);
60 static int hammer_vop_readdir(struct vop_readdir_args *);
61 static int hammer_vop_readlink(struct vop_readlink_args *);
62 static int hammer_vop_nremove(struct vop_nremove_args *);
63 static int hammer_vop_nrename(struct vop_nrename_args *);
64 static int hammer_vop_nrmdir(struct vop_nrmdir_args *);
65 static int hammer_vop_markatime(struct vop_markatime_args *);
66 static int hammer_vop_setattr(struct vop_setattr_args *);
67 static int hammer_vop_strategy(struct vop_strategy_args *);
68 static int hammer_vop_bmap(struct vop_bmap_args *ap);
69 static int hammer_vop_nsymlink(struct vop_nsymlink_args *);
70 static int hammer_vop_nwhiteout(struct vop_nwhiteout_args *);
71 static int hammer_vop_ioctl(struct vop_ioctl_args *);
72 static int hammer_vop_mountctl(struct vop_mountctl_args *);
73 static int hammer_vop_kqfilter (struct vop_kqfilter_args *);
74 
75 static int hammer_vop_fifoclose (struct vop_close_args *);
76 static int hammer_vop_fiforead (struct vop_read_args *);
77 static int hammer_vop_fifowrite (struct vop_write_args *);
78 static int hammer_vop_fifokqfilter (struct vop_kqfilter_args *);
79 
80 struct vop_ops hammer_vnode_vops = {
81 	.vop_default =		vop_defaultop,
82 	.vop_fsync =		hammer_vop_fsync,
83 	.vop_getpages =		vop_stdgetpages,
84 	.vop_putpages =		vop_stdputpages,
85 	.vop_read =		hammer_vop_read,
86 	.vop_write =		hammer_vop_write,
87 	.vop_access =		hammer_vop_access,
88 	.vop_advlock =		hammer_vop_advlock,
89 	.vop_close =		hammer_vop_close,
90 	.vop_ncreate =		hammer_vop_ncreate,
91 	.vop_getattr =		hammer_vop_getattr,
92 	.vop_inactive =		hammer_vop_inactive,
93 	.vop_reclaim =		hammer_vop_reclaim,
94 	.vop_nresolve =		hammer_vop_nresolve,
95 	.vop_nlookupdotdot =	hammer_vop_nlookupdotdot,
96 	.vop_nlink =		hammer_vop_nlink,
97 	.vop_nmkdir =		hammer_vop_nmkdir,
98 	.vop_nmknod =		hammer_vop_nmknod,
99 	.vop_open =		hammer_vop_open,
100 	.vop_pathconf =		vop_stdpathconf,
101 	.vop_print =		hammer_vop_print,
102 	.vop_readdir =		hammer_vop_readdir,
103 	.vop_readlink =		hammer_vop_readlink,
104 	.vop_nremove =		hammer_vop_nremove,
105 	.vop_nrename =		hammer_vop_nrename,
106 	.vop_nrmdir =		hammer_vop_nrmdir,
107 	.vop_markatime =	hammer_vop_markatime,
108 	.vop_setattr =		hammer_vop_setattr,
109 	.vop_bmap =		hammer_vop_bmap,
110 	.vop_strategy =		hammer_vop_strategy,
111 	.vop_nsymlink =		hammer_vop_nsymlink,
112 	.vop_nwhiteout =	hammer_vop_nwhiteout,
113 	.vop_ioctl =		hammer_vop_ioctl,
114 	.vop_mountctl =		hammer_vop_mountctl,
115 	.vop_kqfilter =		hammer_vop_kqfilter
116 };
117 
118 struct vop_ops hammer_spec_vops = {
119 	.vop_default =		vop_defaultop,
120 	.vop_fsync =		hammer_vop_fsync,
121 	.vop_read =		vop_stdnoread,
122 	.vop_write =		vop_stdnowrite,
123 	.vop_access =		hammer_vop_access,
124 	.vop_close =		hammer_vop_close,
125 	.vop_markatime =	hammer_vop_markatime,
126 	.vop_getattr =		hammer_vop_getattr,
127 	.vop_inactive =		hammer_vop_inactive,
128 	.vop_reclaim =		hammer_vop_reclaim,
129 	.vop_setattr =		hammer_vop_setattr
130 };
131 
132 struct vop_ops hammer_fifo_vops = {
133 	.vop_default =		fifo_vnoperate,
134 	.vop_fsync =		hammer_vop_fsync,
135 	.vop_read =		hammer_vop_fiforead,
136 	.vop_write =		hammer_vop_fifowrite,
137 	.vop_access =		hammer_vop_access,
138 	.vop_close =		hammer_vop_fifoclose,
139 	.vop_markatime =	hammer_vop_markatime,
140 	.vop_getattr =		hammer_vop_getattr,
141 	.vop_inactive =		hammer_vop_inactive,
142 	.vop_reclaim =		hammer_vop_reclaim,
143 	.vop_setattr =		hammer_vop_setattr,
144 	.vop_kqfilter =		hammer_vop_fifokqfilter
145 };
146 
147 static __inline
148 void
149 hammer_knote(struct vnode *vp, int flags)
150 {
151 	if (flags)
152 		KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, flags);
153 }
154 
155 static int hammer_dounlink(hammer_transaction_t trans, struct nchandle *nch,
156 			   struct vnode *dvp, struct ucred *cred,
157 			   int flags, int isdir);
158 static int hammer_vop_strategy_read(struct vop_strategy_args *ap);
159 static int hammer_vop_strategy_write(struct vop_strategy_args *ap);
160 
161 /*
162  * hammer_vop_fsync { vp, waitfor }
163  *
164  * fsync() an inode to disk and wait for it to be completely committed
165  * such that the information would not be undone if a crash occured after
166  * return.
167  *
168  * NOTE: HAMMER's fsync()'s are going to remain expensive until we implement
169  *	 a REDO log.  A sysctl is provided to relax HAMMER's fsync()
170  *	 operation.
171  *
172  *	 Ultimately the combination of a REDO log and use of fast storage
173  *	 to front-end cluster caches will make fsync fast, but it aint
174  *	 here yet.  And, in anycase, we need real transactional
175  *	 all-or-nothing features which are not restricted to a single file.
176  */
177 static
178 int
179 hammer_vop_fsync(struct vop_fsync_args *ap)
180 {
181 	hammer_inode_t ip = VTOI(ap->a_vp);
182 	hammer_mount_t hmp = ip->hmp;
183 	int waitfor = ap->a_waitfor;
184 	int mode;
185 
186 	lwkt_gettoken(&hmp->fs_token);
187 
188 	/*
189 	 * Fsync rule relaxation (default is either full synchronous flush
190 	 * or REDO semantics with synchronous flush).
191 	 */
192 	if (ap->a_flags & VOP_FSYNC_SYSCALL) {
193 		switch(hammer_fsync_mode) {
194 		case 0:
195 mode0:
196 			/* no REDO, full synchronous flush */
197 			goto skip;
198 		case 1:
199 mode1:
200 			/* no REDO, full asynchronous flush */
201 			if (waitfor == MNT_WAIT)
202 				waitfor = MNT_NOWAIT;
203 			goto skip;
204 		case 2:
205 			/* REDO semantics, synchronous flush */
206 			if (hmp->version < HAMMER_VOL_VERSION_FOUR)
207 				goto mode0;
208 			mode = HAMMER_FLUSH_UNDOS_AUTO;
209 			break;
210 		case 3:
211 			/* REDO semantics, relaxed asynchronous flush */
212 			if (hmp->version < HAMMER_VOL_VERSION_FOUR)
213 				goto mode1;
214 			mode = HAMMER_FLUSH_UNDOS_RELAXED;
215 			if (waitfor == MNT_WAIT)
216 				waitfor = MNT_NOWAIT;
217 			break;
218 		case 4:
219 			/* ignore the fsync() system call */
220 			lwkt_reltoken(&hmp->fs_token);
221 			return(0);
222 		default:
223 			/* we have to do something */
224 			mode = HAMMER_FLUSH_UNDOS_RELAXED;
225 			if (waitfor == MNT_WAIT)
226 				waitfor = MNT_NOWAIT;
227 			break;
228 		}
229 
230 		/*
231 		 * Fast fsync only needs to flush the UNDO/REDO fifo if
232 		 * HAMMER_INODE_REDO is non-zero and the only modifications
233 		 * made to the file are write or write-extends.
234 		 */
235 		if ((ip->flags & HAMMER_INODE_REDO) &&
236 		    (ip->flags & HAMMER_INODE_MODMASK_NOREDO) == 0) {
237 			++hammer_count_fsyncs;
238 			hammer_flusher_flush_undos(hmp, mode);
239 			ip->redo_count = 0;
240 			if (ip->vp && (ip->flags & HAMMER_INODE_MODMASK) == 0)
241 				vclrisdirty(ip->vp);
242 			lwkt_reltoken(&hmp->fs_token);
243 			return(0);
244 		}
245 
246 		/*
247 		 * REDO is enabled by fsync(), the idea being we really only
248 		 * want to lay down REDO records when programs are using
249 		 * fsync() heavily.  The first fsync() on the file starts
250 		 * the gravy train going and later fsync()s keep it hot by
251 		 * resetting the redo_count.
252 		 *
253 		 * We weren't running REDOs before now so we have to fall
254 		 * through and do a full fsync of what we have.
255 		 */
256 		if (hmp->version >= HAMMER_VOL_VERSION_FOUR &&
257 		    (hmp->flags & HAMMER_MOUNT_REDO_RECOVERY_RUN) == 0) {
258 			ip->flags |= HAMMER_INODE_REDO;
259 			ip->redo_count = 0;
260 		}
261 	}
262 skip:
263 
264 	/*
265 	 * Do a full flush sequence.
266 	 *
267 	 * Attempt to release the vnode while waiting for the inode to
268 	 * finish flushing.  This can really mess up inactive->reclaim
269 	 * sequences so only do it if the vnode is active.
270 	 *
271 	 * WARNING! The VX lock functions must be used.  vn_lock() will
272 	 *	    fail when this is part of a VOP_RECLAIM sequence.
273 	 */
274 	++hammer_count_fsyncs;
275 	vfsync(ap->a_vp, waitfor, 1, NULL, NULL);
276 	hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
277 	if (waitfor == MNT_WAIT) {
278 		int dorelock;
279 
280 		if ((ap->a_vp->v_flag & VRECLAIMED) == 0) {
281 			vx_unlock(ap->a_vp);
282 			dorelock = 1;
283 		} else {
284 			dorelock = 0;
285 		}
286 		hammer_wait_inode(ip);
287 		if (dorelock)
288 			vx_lock(ap->a_vp);
289 	}
290 	if (ip->vp && (ip->flags & HAMMER_INODE_MODMASK) == 0)
291 		vclrisdirty(ip->vp);
292 	lwkt_reltoken(&hmp->fs_token);
293 	return (ip->error);
294 }
295 
296 /*
297  * hammer_vop_read { vp, uio, ioflag, cred }
298  *
299  * MPSAFE (for the cache safe does not require fs_token)
300  */
301 static
302 int
303 hammer_vop_read(struct vop_read_args *ap)
304 {
305 	struct hammer_transaction trans;
306 	hammer_inode_t ip;
307 	hammer_mount_t hmp;
308 	off_t offset;
309 	struct buf *bp;
310 	struct uio *uio;
311 	int error;
312 	int n;
313 	int seqcount;
314 	int ioseqcount;
315 	int blksize;
316 	int bigread;
317 	int got_trans;
318 	size_t resid;
319 
320 	if (ap->a_vp->v_type != VREG)
321 		return (EINVAL);
322 	ip = VTOI(ap->a_vp);
323 	hmp = ip->hmp;
324 	error = 0;
325 	got_trans = 0;
326 	uio = ap->a_uio;
327 
328 	/*
329 	 * Attempt to shortcut directly to the VM object using lwbufs.
330 	 * This is much faster than instantiating buffer cache buffers.
331 	 */
332 	resid = uio->uio_resid;
333 	error = vop_helper_read_shortcut(ap);
334 	hammer_stats_file_read += resid - uio->uio_resid;
335 	if (error)
336 		return (error);
337 	if (uio->uio_resid == 0)
338 		goto finished;
339 
340 	/*
341 	 * Allow the UIO's size to override the sequential heuristic.
342 	 */
343 	blksize = hammer_blocksize(uio->uio_offset);
344 	seqcount = (uio->uio_resid + (MAXBSIZE - 1)) / MAXBSIZE;
345 	ioseqcount = (ap->a_ioflag >> 16);
346 	if (seqcount < ioseqcount)
347 		seqcount = ioseqcount;
348 
349 	/*
350 	 * If reading or writing a huge amount of data we have to break
351 	 * atomicy and allow the operation to be interrupted by a signal
352 	 * or it can DOS the machine.
353 	 */
354 	bigread = (uio->uio_resid > 100 * 1024 * 1024);
355 
356 	/*
357 	 * Access the data typically in HAMMER_BUFSIZE blocks via the
358 	 * buffer cache, but HAMMER may use a variable block size based
359 	 * on the offset.
360 	 *
361 	 * XXX Temporary hack, delay the start transaction while we remain
362 	 *     MPSAFE.  NOTE: ino_data.size cannot change while vnode is
363 	 *     locked-shared.
364 	 */
365 	while (uio->uio_resid > 0 && uio->uio_offset < ip->ino_data.size) {
366 		int64_t base_offset;
367 		int64_t file_limit;
368 
369 		blksize = hammer_blocksize(uio->uio_offset);
370 		offset = (int)uio->uio_offset & (blksize - 1);
371 		base_offset = uio->uio_offset - offset;
372 
373 		if (bigread && (error = hammer_signal_check(ip->hmp)) != 0)
374 			break;
375 
376 		/*
377 		 * MPSAFE
378 		 */
379 		bp = getblk(ap->a_vp, base_offset, blksize, 0, 0);
380 		if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
381 			bp->b_flags &= ~B_AGE;
382 			error = 0;
383 			goto skip;
384 		}
385 		if (ap->a_ioflag & IO_NRDELAY) {
386 			bqrelse(bp);
387 			return (EWOULDBLOCK);
388 		}
389 
390 		/*
391 		 * MPUNSAFE
392 		 */
393 		if (got_trans == 0) {
394 			hammer_start_transaction(&trans, ip->hmp);
395 			got_trans = 1;
396 		}
397 
398 		/*
399 		 * NOTE: A valid bp has already been acquired, but was not
400 		 *	 B_CACHE.
401 		 */
402 		if (hammer_cluster_enable) {
403 			/*
404 			 * Use file_limit to prevent cluster_read() from
405 			 * creating buffers of the wrong block size past
406 			 * the demarc.
407 			 */
408 			file_limit = ip->ino_data.size;
409 			if (base_offset < HAMMER_XDEMARC &&
410 			    file_limit > HAMMER_XDEMARC) {
411 				file_limit = HAMMER_XDEMARC;
412 			}
413 			error = cluster_readx(ap->a_vp,
414 					     file_limit, base_offset,
415 					     blksize, B_NOTMETA,
416 					     uio->uio_resid,
417 					     seqcount * MAXBSIZE,
418 					     &bp);
419 		} else {
420 			error = breadnx(ap->a_vp, base_offset,
421 					blksize, B_NOTMETA,
422 					NULL, NULL, 0, &bp);
423 		}
424 		if (error) {
425 			brelse(bp);
426 			break;
427 		}
428 skip:
429 		if ((hammer_debug_io & 0x0001) && (bp->b_flags & B_IOISSUED)) {
430 			hdkprintf("zone2_offset %016jx read file %016jx@%016jx\n",
431 				(intmax_t)bp->b_bio2.bio_offset,
432 				(intmax_t)ip->obj_id,
433 				(intmax_t)bp->b_loffset);
434 		}
435 		bp->b_flags &= ~B_IOISSUED;
436 		if (blksize == HAMMER_XBUFSIZE)
437 			bp->b_flags |= B_CLUSTEROK;
438 
439 		n = blksize - offset;
440 		if (n > uio->uio_resid)
441 			n = uio->uio_resid;
442 		if (n > ip->ino_data.size - uio->uio_offset)
443 			n = (int)(ip->ino_data.size - uio->uio_offset);
444 
445 		/*
446 		 * Set B_AGE, data has a lower priority than meta-data.
447 		 *
448 		 * Use a hold/unlock/drop sequence to run the uiomove
449 		 * with the buffer unlocked, avoiding deadlocks against
450 		 * read()s on mmap()'d spaces.
451 		 */
452 		bp->b_flags |= B_AGE;
453 		error = uiomovebp(bp, (char *)bp->b_data + offset, n, uio);
454 		bqrelse(bp);
455 
456 		if (error)
457 			break;
458 		hammer_stats_file_read += n;
459 	}
460 
461 finished:
462 
463 	/*
464 	 * Try to update the atime with just the inode lock for maximum
465 	 * concurrency.  If we can't shortcut it we have to get the full
466 	 * blown transaction.
467 	 */
468 	if (got_trans == 0 && hammer_update_atime_quick(ip) < 0) {
469 		hammer_start_transaction(&trans, ip->hmp);
470 		got_trans = 1;
471 	}
472 
473 	if (got_trans) {
474 		if ((ip->flags & HAMMER_INODE_RO) == 0 &&
475 		    (ip->hmp->mp->mnt_flag & MNT_NOATIME) == 0) {
476 			lwkt_gettoken(&hmp->fs_token);
477 			ip->ino_data.atime = trans.time;
478 			hammer_modify_inode(&trans, ip, HAMMER_INODE_ATIME);
479 			hammer_done_transaction(&trans);
480 			lwkt_reltoken(&hmp->fs_token);
481 		} else {
482 			hammer_done_transaction(&trans);
483 		}
484 	}
485 	return (error);
486 }
487 
488 /*
489  * hammer_vop_write { vp, uio, ioflag, cred }
490  */
491 static
492 int
493 hammer_vop_write(struct vop_write_args *ap)
494 {
495 	struct hammer_transaction trans;
496 	hammer_inode_t ip;
497 	hammer_mount_t hmp;
498 	thread_t td;
499 	struct vnode *vp;
500 	struct uio *uio;
501 	int offset;
502 	off_t base_offset;
503 	int64_t cluster_eof;
504 	struct buf *bp;
505 	int kflags;
506 	int error;
507 	int n;
508 	int flags;
509 	int seqcount;
510 	int bigwrite;
511 
512 	vp = ap->a_vp;
513 	if (vp->v_type != VREG)
514 		return (EINVAL);
515 	ip = VTOI(ap->a_vp);
516 	hmp = ip->hmp;
517 	error = 0;
518 	kflags = 0;
519 	seqcount = ap->a_ioflag >> 16;
520 
521 	if (ip->flags & HAMMER_INODE_RO)
522 		return (EROFS);
523 
524 	/*
525 	 * Create a transaction to cover the operations we perform.
526 	 */
527 	hammer_start_transaction(&trans, hmp);
528 	uio = ap->a_uio;
529 
530 	/*
531 	 * Use v_lastwrite_ts if file not open for writing
532 	 * (i.e. a late msync)
533 	 */
534 	if (vp->v_writecount == 0) {
535 		trans.time = vp->v_lastwrite_ts.tv_sec * 1000000 +
536 			     vp->v_lastwrite_ts.tv_nsec / 1000;
537 	}
538 
539 
540 	/*
541 	 * Check append mode
542 	 */
543 	if (ap->a_ioflag & IO_APPEND)
544 		uio->uio_offset = ip->ino_data.size;
545 
546 	/*
547 	 * Check for illegal write offsets.  Valid range is 0...2^63-1.
548 	 *
549 	 * NOTE: the base_off assignment is required to work around what
550 	 * I consider to be a GCC-4 optimization bug.
551 	 */
552 	if (uio->uio_offset < 0) {
553 		hammer_done_transaction(&trans);
554 		return (EFBIG);
555 	}
556 	base_offset = uio->uio_offset + uio->uio_resid;	/* work around gcc-4 */
557 	if (uio->uio_resid > 0 && base_offset <= uio->uio_offset) {
558 		hammer_done_transaction(&trans);
559 		return (EFBIG);
560 	}
561 
562 	if (uio->uio_resid > 0 && (td = uio->uio_td) != NULL && td->td_proc &&
563 	    base_offset > td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
564 		hammer_done_transaction(&trans);
565 		lwpsignal(td->td_proc, td->td_lwp, SIGXFSZ);
566 		return (EFBIG);
567 	}
568 
569 	/*
570 	 * If reading or writing a huge amount of data we have to break
571 	 * atomicy and allow the operation to be interrupted by a signal
572 	 * or it can DOS the machine.
573 	 *
574 	 * Preset redo_count so we stop generating REDOs earlier if the
575 	 * limit is exceeded.
576 	 *
577 	 * redo_count is heuristical, SMP races are ok
578 	 */
579 	bigwrite = (uio->uio_resid > 100 * 1024 * 1024);
580 	if ((ip->flags & HAMMER_INODE_REDO) &&
581 	    ip->redo_count < hammer_limit_redo) {
582 		ip->redo_count += uio->uio_resid;
583 	}
584 
585 	/*
586 	 * Access the data typically in HAMMER_BUFSIZE blocks via the
587 	 * buffer cache, but HAMMER may use a variable block size based
588 	 * on the offset.
589 	 */
590 	while (uio->uio_resid > 0) {
591 		int fixsize = 0;
592 		int blksize;
593 		int blkmask;
594 		int trivial;
595 		int endofblk;
596 		off_t nsize;
597 
598 		if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_WRITE)) != 0)
599 			break;
600 		if (bigwrite && (error = hammer_signal_check(hmp)) != 0)
601 			break;
602 
603 		blksize = hammer_blocksize(uio->uio_offset);
604 
605 		/*
606 		 * Control the number of pending records associated with
607 		 * this inode.  If too many have accumulated start a
608 		 * flush.  Try to maintain a pipeline with the flusher.
609 		 *
610 		 * NOTE: It is possible for other sources to grow the
611 		 *	 records but not necessarily issue another flush,
612 		 *	 so use a timeout and ensure that a re-flush occurs.
613 		 */
614 		if (ip->rsv_recs >= hammer_limit_inode_recs) {
615 			lwkt_gettoken(&hmp->fs_token);
616 			hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
617 			while (ip->rsv_recs >= hammer_limit_inode_recs * 2) {
618 				ip->flags |= HAMMER_INODE_RECSW;
619 				tsleep(&ip->rsv_recs, 0, "hmrwww", hz);
620 				hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
621 			}
622 			lwkt_reltoken(&hmp->fs_token);
623 		}
624 
625 		/*
626 		 * Do not allow HAMMER to blow out the buffer cache.  Very
627 		 * large UIOs can lockout other processes due to bwillwrite()
628 		 * mechanics.
629 		 *
630 		 * The hammer inode is not locked during these operations.
631 		 * The vnode is locked which can interfere with the pageout
632 		 * daemon for non-UIO_NOCOPY writes but should not interfere
633 		 * with the buffer cache.  Even so, we cannot afford to
634 		 * allow the pageout daemon to build up too many dirty buffer
635 		 * cache buffers.
636 		 *
637 		 * Only call this if we aren't being recursively called from
638 		 * a virtual disk device (vn), else we may deadlock.
639 		 */
640 		if ((ap->a_ioflag & IO_RECURSE) == 0)
641 			bwillwrite(blksize);
642 
643 		/*
644 		 * Calculate the blocksize at the current offset and figure
645 		 * out how much we can actually write.
646 		 */
647 		blkmask = blksize - 1;
648 		offset = (int)uio->uio_offset & blkmask;
649 		base_offset = uio->uio_offset & ~(int64_t)blkmask;
650 		n = blksize - offset;
651 		if (n > uio->uio_resid) {
652 			n = uio->uio_resid;
653 			endofblk = 0;
654 		} else {
655 			endofblk = 1;
656 		}
657 		nsize = uio->uio_offset + n;
658 		if (nsize > ip->ino_data.size) {
659 			if (uio->uio_offset > ip->ino_data.size)
660 				trivial = 0;
661 			else
662 				trivial = 1;
663 			nvextendbuf(ap->a_vp,
664 				    ip->ino_data.size,
665 				    nsize,
666 				    hammer_blocksize(ip->ino_data.size),
667 				    hammer_blocksize(nsize),
668 				    hammer_blockoff(ip->ino_data.size),
669 				    hammer_blockoff(nsize),
670 				    trivial);
671 			fixsize = 1;
672 			kflags |= NOTE_EXTEND;
673 		}
674 
675 		if (uio->uio_segflg == UIO_NOCOPY) {
676 			/*
677 			 * Issuing a write with the same data backing the
678 			 * buffer.  Instantiate the buffer to collect the
679 			 * backing vm pages, then read-in any missing bits.
680 			 *
681 			 * This case is used by vop_stdputpages().
682 			 */
683 			bp = getblk(ap->a_vp, base_offset,
684 				    blksize, GETBLK_BHEAVY, 0);
685 			if ((bp->b_flags & B_CACHE) == 0) {
686 				bqrelse(bp);
687 				error = bread(ap->a_vp, base_offset,
688 					      blksize, &bp);
689 			}
690 		} else if (offset == 0 && uio->uio_resid >= blksize) {
691 			/*
692 			 * Even though we are entirely overwriting the buffer
693 			 * we may still have to zero it out to avoid a
694 			 * mmap/write visibility issue.
695 			 */
696 			bp = getblk(ap->a_vp, base_offset, blksize, GETBLK_BHEAVY, 0);
697 			if ((bp->b_flags & B_CACHE) == 0)
698 				vfs_bio_clrbuf(bp);
699 		} else if (base_offset >= ip->ino_data.size) {
700 			/*
701 			 * If the base offset of the buffer is beyond the
702 			 * file EOF, we don't have to issue a read.
703 			 */
704 			bp = getblk(ap->a_vp, base_offset,
705 				    blksize, GETBLK_BHEAVY, 0);
706 			vfs_bio_clrbuf(bp);
707 		} else {
708 			/*
709 			 * Partial overwrite, read in any missing bits then
710 			 * replace the portion being written.
711 			 */
712 			error = bread(ap->a_vp, base_offset, blksize, &bp);
713 			if (error == 0)
714 				bheavy(bp);
715 		}
716 		if (error == 0)
717 			error = uiomovebp(bp, bp->b_data + offset, n, uio);
718 
719 		lwkt_gettoken(&hmp->fs_token);
720 
721 		/*
722 		 * Generate REDO records if enabled and redo_count will not
723 		 * exceeded the limit.
724 		 *
725 		 * If redo_count exceeds the limit we stop generating records
726 		 * and clear HAMMER_INODE_REDO.  This will cause the next
727 		 * fsync() to do a full meta-data sync instead of just an
728 		 * UNDO/REDO fifo update.
729 		 *
730 		 * When clearing HAMMER_INODE_REDO any pre-existing REDOs
731 		 * will still be tracked.  The tracks will be terminated
732 		 * when the related meta-data (including possible data
733 		 * modifications which are not tracked via REDO) is
734 		 * flushed.
735 		 */
736 		if ((ip->flags & HAMMER_INODE_REDO) && error == 0) {
737 			if (ip->redo_count < hammer_limit_redo) {
738 				bp->b_flags |= B_VFSFLAG1;
739 				error = hammer_generate_redo(&trans, ip,
740 						     base_offset + offset,
741 						     HAMMER_REDO_WRITE,
742 						     bp->b_data + offset,
743 						     (size_t)n);
744 			} else {
745 				ip->flags &= ~HAMMER_INODE_REDO;
746 			}
747 		}
748 
749 		/*
750 		 * If we screwed up we have to undo any VM size changes we
751 		 * made.
752 		 */
753 		if (error) {
754 			brelse(bp);
755 			if (fixsize) {
756 				nvtruncbuf(ap->a_vp, ip->ino_data.size,
757 					  hammer_blocksize(ip->ino_data.size),
758 					  hammer_blockoff(ip->ino_data.size),
759 					  0);
760 			}
761 			lwkt_reltoken(&hmp->fs_token);
762 			break;
763 		}
764 		kflags |= NOTE_WRITE;
765 		hammer_stats_file_write += n;
766 		if (blksize == HAMMER_XBUFSIZE)
767 			bp->b_flags |= B_CLUSTEROK;
768 		if (ip->ino_data.size < uio->uio_offset) {
769 			ip->ino_data.size = uio->uio_offset;
770 			flags = HAMMER_INODE_SDIRTY;
771 		} else {
772 			flags = 0;
773 		}
774 		ip->ino_data.mtime = trans.time;
775 		flags |= HAMMER_INODE_MTIME | HAMMER_INODE_BUFS;
776 		hammer_modify_inode(&trans, ip, flags);
777 
778 		/*
779 		 * Once we dirty the buffer any cached zone-X offset
780 		 * becomes invalid.  HAMMER NOTE: no-history mode cannot
781 		 * allow overwriting over the same data sector unless
782 		 * we provide UNDOs for the old data, which we don't.
783 		 */
784 		bp->b_bio2.bio_offset = NOOFFSET;
785 
786 		lwkt_reltoken(&hmp->fs_token);
787 
788 		/*
789 		 * Final buffer disposition.
790 		 *
791 		 * Because meta-data updates are deferred, HAMMER is
792 		 * especially sensitive to excessive bdwrite()s because
793 		 * the I/O stream is not broken up by disk reads.  So the
794 		 * buffer cache simply cannot keep up.
795 		 *
796 		 * WARNING!  blksize is variable.  cluster_write() is
797 		 *	     expected to not blow up if it encounters
798 		 *	     buffers that do not match the passed blksize.
799 		 *
800 		 * NOTE!  Hammer shouldn't need to bawrite()/cluster_write().
801 		 *	  The ip->rsv_recs check should burst-flush the data.
802 		 *	  If we queue it immediately the buf could be left
803 		 *	  locked on the device queue for a very long time.
804 		 *
805 		 *	  However, failing to flush a dirty buffer out when
806 		 *        issued from the pageout daemon can result in a low
807 		 *        memory deadlock against bio_page_alloc(), so we
808 		 *	  have to bawrite() on IO_ASYNC as well.
809 		 *
810 		 * NOTE!  To avoid degenerate stalls due to mismatched block
811 		 *	  sizes we only honor IO_DIRECT on the write which
812 		 *	  abuts the end of the buffer.  However, we must
813 		 *	  honor IO_SYNC in case someone is silly enough to
814 		 *	  configure a HAMMER file as swap, or when HAMMER
815 		 *	  is serving NFS (for commits).  Ick ick.
816 		 */
817 		bp->b_flags |= B_AGE;
818 		if (blksize == HAMMER_XBUFSIZE)
819 			bp->b_flags |= B_CLUSTEROK;
820 
821 		if (ap->a_ioflag & IO_SYNC) {
822 			bwrite(bp);
823 		} else if ((ap->a_ioflag & IO_DIRECT) && endofblk) {
824 			bawrite(bp);
825 		} else if (ap->a_ioflag & IO_ASYNC) {
826 			bawrite(bp);
827 		} else if (hammer_cluster_enable &&
828 			   !(ap->a_vp->v_mount->mnt_flag & MNT_NOCLUSTERW)) {
829 			if (base_offset < HAMMER_XDEMARC)
830 				cluster_eof = hammer_blockdemarc(base_offset,
831 							 ip->ino_data.size);
832 			else
833 				cluster_eof = ip->ino_data.size;
834 			cluster_write(bp, cluster_eof, blksize, seqcount);
835 		} else {
836 			bdwrite(bp);
837 		}
838 	}
839 	hammer_done_transaction(&trans);
840 	hammer_knote(ap->a_vp, kflags);
841 
842 	return (error);
843 }
844 
845 /*
846  * hammer_vop_access { vp, mode, cred }
847  *
848  * MPSAFE - does not require fs_token
849  */
850 static
851 int
852 hammer_vop_access(struct vop_access_args *ap)
853 {
854 	hammer_inode_t ip = VTOI(ap->a_vp);
855 	uid_t uid;
856 	gid_t gid;
857 	int error;
858 
859 	uid = hammer_to_unix_xid(&ip->ino_data.uid);
860 	gid = hammer_to_unix_xid(&ip->ino_data.gid);
861 
862 	error = vop_helper_access(ap, uid, gid, ip->ino_data.mode,
863 				  ip->ino_data.uflags);
864 	return (error);
865 }
866 
867 /*
868  * hammer_vop_advlock { vp, id, op, fl, flags }
869  *
870  * MPSAFE - does not require fs_token
871  */
872 static
873 int
874 hammer_vop_advlock(struct vop_advlock_args *ap)
875 {
876 	hammer_inode_t ip = VTOI(ap->a_vp);
877 
878 	return (lf_advlock(ap, &ip->advlock, ip->ino_data.size));
879 }
880 
881 /*
882  * hammer_vop_close { vp, fflag }
883  *
884  * We can only sync-on-close for normal closes.  XXX disabled for now.
885  */
886 static
887 int
888 hammer_vop_close(struct vop_close_args *ap)
889 {
890 #if 0
891 	struct vnode *vp = ap->a_vp;
892 	hammer_inode_t ip = VTOI(vp);
893 	int waitfor;
894 	if (ip->flags & (HAMMER_INODE_CLOSESYNC|HAMMER_INODE_CLOSEASYNC)) {
895 		if (vn_islocked(vp) == LK_EXCLUSIVE &&
896 		    (vp->v_flag & (VINACTIVE|VRECLAIMED)) == 0) {
897 			if (ip->flags & HAMMER_INODE_CLOSESYNC)
898 				waitfor = MNT_WAIT;
899 			else
900 				waitfor = MNT_NOWAIT;
901 			ip->flags &= ~(HAMMER_INODE_CLOSESYNC |
902 				       HAMMER_INODE_CLOSEASYNC);
903 			VOP_FSYNC(vp, MNT_NOWAIT, waitfor);
904 		}
905 	}
906 #endif
907 	return (vop_stdclose(ap));
908 }
909 
910 /*
911  * hammer_vop_ncreate { nch, dvp, vpp, cred, vap }
912  *
913  * The operating system has already ensured that the directory entry
914  * does not exist and done all appropriate namespace locking.
915  */
916 static
917 int
918 hammer_vop_ncreate(struct vop_ncreate_args *ap)
919 {
920 	struct hammer_transaction trans;
921 	hammer_inode_t dip;
922 	hammer_inode_t nip;
923 	struct nchandle *nch;
924 	hammer_mount_t hmp;
925 	int error;
926 
927 	nch = ap->a_nch;
928 	dip = VTOI(ap->a_dvp);
929 	hmp = dip->hmp;
930 
931 	if (dip->flags & HAMMER_INODE_RO)
932 		return (EROFS);
933 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
934 		return (error);
935 
936 	/*
937 	 * Create a transaction to cover the operations we perform.
938 	 */
939 	lwkt_gettoken(&hmp->fs_token);
940 	hammer_start_transaction(&trans, hmp);
941 
942 	/*
943 	 * Create a new filesystem object of the requested type.  The
944 	 * returned inode will be referenced and shared-locked to prevent
945 	 * it from being moved to the flusher.
946 	 */
947 	error = hammer_create_inode(&trans, ap->a_vap, ap->a_cred,
948 				    dip, nch->ncp->nc_name, nch->ncp->nc_nlen,
949 				    NULL, &nip);
950 	if (error) {
951 		hkprintf("hammer_create_inode error %d\n", error);
952 		hammer_done_transaction(&trans);
953 		*ap->a_vpp = NULL;
954 		lwkt_reltoken(&hmp->fs_token);
955 		return (error);
956 	}
957 
958 	/*
959 	 * Add the new filesystem object to the directory.  This will also
960 	 * bump the inode's link count.
961 	 */
962 	error = hammer_ip_add_direntry(&trans, dip,
963 					nch->ncp->nc_name, nch->ncp->nc_nlen,
964 					nip);
965 	if (error)
966 		hkprintf("hammer_ip_add_direntry error %d\n", error);
967 
968 	/*
969 	 * Finish up.
970 	 */
971 	if (error) {
972 		hammer_rel_inode(nip, 0);
973 		hammer_done_transaction(&trans);
974 		*ap->a_vpp = NULL;
975 	} else {
976 		error = hammer_get_vnode(nip, ap->a_vpp);
977 		hammer_done_transaction(&trans);
978 		hammer_rel_inode(nip, 0);
979 		if (error == 0) {
980 			cache_setunresolved(ap->a_nch);
981 			cache_setvp(ap->a_nch, *ap->a_vpp);
982 		}
983 		hammer_knote(ap->a_dvp, NOTE_WRITE);
984 	}
985 	lwkt_reltoken(&hmp->fs_token);
986 	return (error);
987 }
988 
989 /*
990  * hammer_vop_getattr { vp, vap }
991  *
992  * Retrieve an inode's attribute information.  When accessing inodes
993  * historically we fake the atime field to ensure consistent results.
994  * The atime field is stored in the B-Tree element and allowed to be
995  * updated without cycling the element.
996  *
997  * MPSAFE - does not require fs_token
998  */
999 static
1000 int
1001 hammer_vop_getattr(struct vop_getattr_args *ap)
1002 {
1003 	hammer_inode_t ip = VTOI(ap->a_vp);
1004 	struct vattr *vap = ap->a_vap;
1005 
1006 	/*
1007 	 * We want the fsid to be different when accessing a filesystem
1008 	 * with different as-of's so programs like diff don't think
1009 	 * the files are the same.
1010 	 *
1011 	 * We also want the fsid to be the same when comparing snapshots,
1012 	 * or when comparing mirrors (which might be backed by different
1013 	 * physical devices).  HAMMER fsids are based on the PFS's
1014 	 * shared_uuid field.
1015 	 *
1016 	 * XXX there is a chance of collision here.  The va_fsid reported
1017 	 * by stat is different from the more involved fsid used in the
1018 	 * mount structure.
1019 	 */
1020 	hammer_lock_sh(&ip->lock);
1021 	vap->va_fsid = ip->pfsm->fsid_udev ^ (uint32_t)ip->obj_asof ^
1022 		       (uint32_t)(ip->obj_asof >> 32);
1023 
1024 	vap->va_fileid = ip->ino_leaf.base.obj_id;
1025 	vap->va_mode = ip->ino_data.mode;
1026 	vap->va_nlink = ip->ino_data.nlinks;
1027 	vap->va_uid = hammer_to_unix_xid(&ip->ino_data.uid);
1028 	vap->va_gid = hammer_to_unix_xid(&ip->ino_data.gid);
1029 	vap->va_rmajor = 0;
1030 	vap->va_rminor = 0;
1031 	vap->va_size = ip->ino_data.size;
1032 
1033 	/*
1034 	 * Special case for @@PFS softlinks.  The actual size of the
1035 	 * expanded softlink is "@@0x%016llx:%05d" == 26 bytes.
1036 	 * or for MAX_TID is    "@@-1:%05d" == 10 bytes.
1037 	 *
1038 	 * Note that userspace hammer command does not allow users to
1039 	 * create a @@PFS softlink under an existing other PFS (id!=0)
1040 	 * so the ip localization here for @@PFS softlink is always 0.
1041 	 */
1042 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_SOFTLINK &&
1043 	    ip->ino_data.size == 10 &&
1044 	    ip->obj_asof == HAMMER_MAX_TID &&
1045 	    ip->obj_localization == HAMMER_DEF_LOCALIZATION &&
1046 	    strncmp(ip->ino_data.ext.symlink, "@@PFS", 5) == 0) {
1047 		if (hammer_is_pfs_slave(&ip->pfsm->pfsd))
1048 			vap->va_size = 26;
1049 		else
1050 			vap->va_size = 10;
1051 	}
1052 
1053 	/*
1054 	 * We must provide a consistent atime and mtime for snapshots
1055 	 * so people can do a 'tar cf - ... | md5' on them and get
1056 	 * consistent results.
1057 	 */
1058 	if (ip->flags & HAMMER_INODE_RO) {
1059 		hammer_time_to_timespec(ip->ino_data.ctime, &vap->va_atime);
1060 		hammer_time_to_timespec(ip->ino_data.ctime, &vap->va_mtime);
1061 	} else {
1062 		hammer_time_to_timespec(ip->ino_data.atime, &vap->va_atime);
1063 		hammer_time_to_timespec(ip->ino_data.mtime, &vap->va_mtime);
1064 	}
1065 	hammer_time_to_timespec(ip->ino_data.ctime, &vap->va_ctime);
1066 	vap->va_flags = ip->ino_data.uflags;
1067 	vap->va_gen = 1;	/* hammer inums are unique for all time */
1068 	vap->va_blocksize = HAMMER_BUFSIZE;
1069 	if (ip->ino_data.size >= HAMMER_XDEMARC) {
1070 		vap->va_bytes = HAMMER_XBUFSIZE64_DOALIGN(ip->ino_data.size);
1071 	} else if (ip->ino_data.size > HAMMER_HBUFSIZE) {
1072 		vap->va_bytes = HAMMER_BUFSIZE64_DOALIGN(ip->ino_data.size);
1073 	} else {
1074 		vap->va_bytes = HAMMER_DATA_DOALIGN(ip->ino_data.size);
1075 	}
1076 
1077 	vap->va_type = hammer_get_vnode_type(ip->ino_data.obj_type);
1078 	vap->va_filerev = 0;	/* XXX */
1079 	vap->va_uid_uuid = ip->ino_data.uid;
1080 	vap->va_gid_uuid = ip->ino_data.gid;
1081 	vap->va_fsid_uuid = ip->hmp->fsid;
1082 	vap->va_vaflags = VA_UID_UUID_VALID | VA_GID_UUID_VALID |
1083 			  VA_FSID_UUID_VALID;
1084 
1085 	switch (ip->ino_data.obj_type) {
1086 	case HAMMER_OBJTYPE_CDEV:
1087 	case HAMMER_OBJTYPE_BDEV:
1088 		vap->va_rmajor = ip->ino_data.rmajor;
1089 		vap->va_rminor = ip->ino_data.rminor;
1090 		break;
1091 	default:
1092 		break;
1093 	}
1094 	hammer_unlock(&ip->lock);
1095 	return(0);
1096 }
1097 
1098 /*
1099  * hammer_vop_nresolve { nch, dvp, cred }
1100  *
1101  * Locate the requested directory entry.
1102  */
1103 static
1104 int
1105 hammer_vop_nresolve(struct vop_nresolve_args *ap)
1106 {
1107 	struct hammer_transaction trans;
1108 	struct namecache *ncp;
1109 	hammer_mount_t hmp;
1110 	hammer_inode_t dip;
1111 	hammer_inode_t ip;
1112 	hammer_tid_t asof;
1113 	struct hammer_cursor cursor;
1114 	struct vnode *vp;
1115 	int64_t namekey;
1116 	int error;
1117 	int i;
1118 	int nlen;
1119 	int flags;
1120 	int ispfs;
1121 	int64_t obj_id;
1122 	uint32_t localization;
1123 	uint32_t max_iterations;
1124 
1125 	/*
1126 	 * Misc initialization, plus handle as-of name extensions.  Look for
1127 	 * the '@@' extension.  Note that as-of files and directories cannot
1128 	 * be modified.
1129 	 */
1130 	dip = VTOI(ap->a_dvp);
1131 	ncp = ap->a_nch->ncp;
1132 	asof = dip->obj_asof;
1133 	localization = dip->obj_localization;	/* for code consistency */
1134 	nlen = ncp->nc_nlen;
1135 	flags = dip->flags & HAMMER_INODE_RO;
1136 	ispfs = 0;
1137 	hmp = dip->hmp;
1138 
1139 	lwkt_gettoken(&hmp->fs_token);
1140 	hammer_simple_transaction(&trans, hmp);
1141 
1142 	for (i = 0; i < nlen; ++i) {
1143 		if (ncp->nc_name[i] == '@' && ncp->nc_name[i+1] == '@') {
1144 			error = hammer_str_to_tid(ncp->nc_name + i + 2,
1145 						  &ispfs, &asof, &localization);
1146 			if (error != 0) {
1147 				i = nlen;
1148 				break;
1149 			}
1150 			if (asof != HAMMER_MAX_TID)
1151 				flags |= HAMMER_INODE_RO;
1152 			break;
1153 		}
1154 	}
1155 	nlen = i;
1156 
1157 	/*
1158 	 * If this is a PFS we dive into the PFS root inode
1159 	 */
1160 	if (ispfs && nlen == 0) {
1161 		ip = hammer_get_inode(&trans, dip, HAMMER_OBJID_ROOT,
1162 				      asof, localization,
1163 				      flags, &error);
1164 		if (error == 0) {
1165 			error = hammer_get_vnode(ip, &vp);
1166 			hammer_rel_inode(ip, 0);
1167 		} else {
1168 			vp = NULL;
1169 		}
1170 		if (error == 0) {
1171 			vn_unlock(vp);
1172 			cache_setvp(ap->a_nch, vp);
1173 			vrele(vp);
1174 		}
1175 		goto done;
1176 	}
1177 
1178 	/*
1179 	 * If there is no path component the time extension is relative to dip.
1180 	 * e.g. "fubar/@@<snapshot>"
1181 	 *
1182 	 * "." is handled by the kernel, but ".@@<snapshot>" is not.
1183 	 * e.g. "fubar/.@@<snapshot>"
1184 	 *
1185 	 * ".." is handled by the kernel.  We do not currently handle
1186 	 * "..@<snapshot>".
1187 	 */
1188 	if (nlen == 0 || (nlen == 1 && ncp->nc_name[0] == '.')) {
1189 		ip = hammer_get_inode(&trans, dip, dip->obj_id,
1190 				      asof, dip->obj_localization,
1191 				      flags, &error);
1192 		if (error == 0) {
1193 			error = hammer_get_vnode(ip, &vp);
1194 			hammer_rel_inode(ip, 0);
1195 		} else {
1196 			vp = NULL;
1197 		}
1198 		if (error == 0) {
1199 			vn_unlock(vp);
1200 			cache_setvp(ap->a_nch, vp);
1201 			vrele(vp);
1202 		}
1203 		goto done;
1204 	}
1205 
1206 	/*
1207 	 * Calculate the namekey and setup the key range for the scan.  This
1208 	 * works kinda like a chained hash table where the lower 32 bits
1209 	 * of the namekey synthesize the chain.
1210 	 *
1211 	 * The key range is inclusive of both key_beg and key_end.
1212 	 */
1213 	namekey = hammer_direntry_namekey(dip, ncp->nc_name, nlen,
1214 					   &max_iterations);
1215 
1216 	error = hammer_init_cursor(&trans, &cursor, &dip->cache[1], dip);
1217 	cursor.key_beg.localization = dip->obj_localization |
1218 				      hammer_dir_localization(dip);
1219         cursor.key_beg.obj_id = dip->obj_id;
1220 	cursor.key_beg.key = namekey;
1221         cursor.key_beg.create_tid = 0;
1222         cursor.key_beg.delete_tid = 0;
1223         cursor.key_beg.rec_type = HAMMER_RECTYPE_DIRENTRY;
1224         cursor.key_beg.obj_type = 0;
1225 
1226 	cursor.key_end = cursor.key_beg;
1227 	cursor.key_end.key += max_iterations;
1228 	cursor.asof = asof;
1229 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
1230 
1231 	/*
1232 	 * Scan all matching records (the chain), locate the one matching
1233 	 * the requested path component.
1234 	 *
1235 	 * The hammer_ip_*() functions merge in-memory records with on-disk
1236 	 * records for the purposes of the search.
1237 	 */
1238 	obj_id = 0;
1239 	localization = HAMMER_DEF_LOCALIZATION;
1240 
1241 	if (error == 0) {
1242 		error = hammer_ip_first(&cursor);
1243 		while (error == 0) {
1244 			error = hammer_ip_resolve_data(&cursor);
1245 			if (error)
1246 				break;
1247 			if (nlen == cursor.leaf->data_len - HAMMER_ENTRY_NAME_OFF &&
1248 			    bcmp(ncp->nc_name, cursor.data->entry.name, nlen) == 0) {
1249 				obj_id = cursor.data->entry.obj_id;
1250 				localization = cursor.data->entry.localization;
1251 				break;
1252 			}
1253 			error = hammer_ip_next(&cursor);
1254 		}
1255 	}
1256 	hammer_done_cursor(&cursor);
1257 
1258 	/*
1259 	 * Lookup the obj_id.  This should always succeed.  If it does not
1260 	 * the filesystem may be damaged and we return a dummy inode.
1261 	 */
1262 	if (error == 0) {
1263 		ip = hammer_get_inode(&trans, dip, obj_id,
1264 				      asof, localization,
1265 				      flags, &error);
1266 		if (error == ENOENT) {
1267 			hkprintf("WARNING: Missing inode for dirent \"%s\"\n"
1268 				"\tobj_id = %016jx, asof=%016jx, lo=%08x\n",
1269 				ncp->nc_name,
1270 				(intmax_t)obj_id, (intmax_t)asof,
1271 				localization);
1272 			error = 0;
1273 			ip = hammer_get_dummy_inode(&trans, dip, obj_id,
1274 						    asof, localization,
1275 						    flags, &error);
1276 		}
1277 		if (error == 0) {
1278 			error = hammer_get_vnode(ip, &vp);
1279 			hammer_rel_inode(ip, 0);
1280 		} else {
1281 			vp = NULL;
1282 		}
1283 		if (error == 0) {
1284 			vn_unlock(vp);
1285 			cache_setvp(ap->a_nch, vp);
1286 			vrele(vp);
1287 		}
1288 	} else if (error == ENOENT) {
1289 		cache_setvp(ap->a_nch, NULL);
1290 	}
1291 done:
1292 	hammer_done_transaction(&trans);
1293 	lwkt_reltoken(&hmp->fs_token);
1294 	return (error);
1295 }
1296 
1297 /*
1298  * hammer_vop_nlookupdotdot { dvp, vpp, cred }
1299  *
1300  * Locate the parent directory of a directory vnode.
1301  *
1302  * dvp is referenced but not locked.  *vpp must be returned referenced and
1303  * locked.  A parent_obj_id of 0 indicates that we are at the root.
1304  *
1305  * NOTE: as-of sequences are not linked into the directory structure.  If
1306  * we are at the root with a different asof then the mount point, reload
1307  * the same directory with the mount point's asof.   I'm not sure what this
1308  * will do to NFS.  We encode ASOF stamps in NFS file handles so it might not
1309  * get confused, but it hasn't been tested.
1310  */
1311 static
1312 int
1313 hammer_vop_nlookupdotdot(struct vop_nlookupdotdot_args *ap)
1314 {
1315 	struct hammer_transaction trans;
1316 	hammer_inode_t dip;
1317 	hammer_inode_t ip;
1318 	hammer_mount_t hmp;
1319 	int64_t parent_obj_id;
1320 	uint32_t parent_obj_localization;
1321 	hammer_tid_t asof;
1322 	int error;
1323 
1324 	dip = VTOI(ap->a_dvp);
1325 	asof = dip->obj_asof;
1326 	hmp = dip->hmp;
1327 
1328 	/*
1329 	 * Whos are parent?  This could be the root of a pseudo-filesystem
1330 	 * whos parent is in another localization domain.
1331 	 */
1332 	lwkt_gettoken(&hmp->fs_token);
1333 	parent_obj_id = dip->ino_data.parent_obj_id;
1334 	if (dip->obj_id == HAMMER_OBJID_ROOT)
1335 		parent_obj_localization = HAMMER_DEF_LOCALIZATION;
1336 	else
1337 		parent_obj_localization = dip->obj_localization;
1338 
1339 	/*
1340 	 * It's probably a PFS root when dip->ino_data.parent_obj_id is 0.
1341 	 */
1342 	if (parent_obj_id == 0) {
1343 		if (dip->obj_id == HAMMER_OBJID_ROOT &&
1344 		   asof != hmp->asof) {
1345 			parent_obj_id = dip->obj_id;
1346 			asof = hmp->asof;
1347 			*ap->a_fakename = kmalloc(19, M_TEMP, M_WAITOK);
1348 			ksnprintf(*ap->a_fakename, 19, "0x%016jx",
1349 				  (intmax_t)dip->obj_asof);
1350 		} else {
1351 			*ap->a_vpp = NULL;
1352 			lwkt_reltoken(&hmp->fs_token);
1353 			return ENOENT;
1354 		}
1355 	}
1356 
1357 	hammer_simple_transaction(&trans, hmp);
1358 
1359 	ip = hammer_get_inode(&trans, dip, parent_obj_id,
1360 			      asof, parent_obj_localization,
1361 			      dip->flags, &error);
1362 	if (ip) {
1363 		error = hammer_get_vnode(ip, ap->a_vpp);
1364 		hammer_rel_inode(ip, 0);
1365 	} else {
1366 		*ap->a_vpp = NULL;
1367 	}
1368 	hammer_done_transaction(&trans);
1369 	lwkt_reltoken(&hmp->fs_token);
1370 	return (error);
1371 }
1372 
1373 /*
1374  * hammer_vop_nlink { nch, dvp, vp, cred }
1375  */
1376 static
1377 int
1378 hammer_vop_nlink(struct vop_nlink_args *ap)
1379 {
1380 	struct hammer_transaction trans;
1381 	hammer_inode_t dip;
1382 	hammer_inode_t ip;
1383 	struct nchandle *nch;
1384 	hammer_mount_t hmp;
1385 	int error;
1386 
1387 	if (ap->a_dvp->v_mount != ap->a_vp->v_mount)
1388 		return(EXDEV);
1389 
1390 	nch = ap->a_nch;
1391 	dip = VTOI(ap->a_dvp);
1392 	ip = VTOI(ap->a_vp);
1393 	hmp = dip->hmp;
1394 
1395 	if (dip->obj_localization != ip->obj_localization)
1396 		return(EXDEV);
1397 
1398 	if (dip->flags & HAMMER_INODE_RO)
1399 		return (EROFS);
1400 	if (ip->flags & HAMMER_INODE_RO)
1401 		return (EROFS);
1402 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
1403 		return (error);
1404 
1405 	/*
1406 	 * Create a transaction to cover the operations we perform.
1407 	 */
1408 	lwkt_gettoken(&hmp->fs_token);
1409 	hammer_start_transaction(&trans, hmp);
1410 
1411 	/*
1412 	 * Add the filesystem object to the directory.  Note that neither
1413 	 * dip nor ip are referenced or locked, but their vnodes are
1414 	 * referenced.  This function will bump the inode's link count.
1415 	 */
1416 	error = hammer_ip_add_direntry(&trans, dip,
1417 					nch->ncp->nc_name, nch->ncp->nc_nlen,
1418 					ip);
1419 
1420 	/*
1421 	 * Finish up.
1422 	 */
1423 	if (error == 0) {
1424 		cache_setunresolved(nch);
1425 		cache_setvp(nch, ap->a_vp);
1426 	}
1427 	hammer_done_transaction(&trans);
1428 	hammer_knote(ap->a_vp, NOTE_LINK);
1429 	hammer_knote(ap->a_dvp, NOTE_WRITE);
1430 	lwkt_reltoken(&hmp->fs_token);
1431 	return (error);
1432 }
1433 
1434 /*
1435  * hammer_vop_nmkdir { nch, dvp, vpp, cred, vap }
1436  *
1437  * The operating system has already ensured that the directory entry
1438  * does not exist and done all appropriate namespace locking.
1439  */
1440 static
1441 int
1442 hammer_vop_nmkdir(struct vop_nmkdir_args *ap)
1443 {
1444 	struct hammer_transaction trans;
1445 	hammer_inode_t dip;
1446 	hammer_inode_t nip;
1447 	struct nchandle *nch;
1448 	hammer_mount_t hmp;
1449 	int error;
1450 
1451 	nch = ap->a_nch;
1452 	dip = VTOI(ap->a_dvp);
1453 	hmp = dip->hmp;
1454 
1455 	if (dip->flags & HAMMER_INODE_RO)
1456 		return (EROFS);
1457 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
1458 		return (error);
1459 
1460 	/*
1461 	 * Create a transaction to cover the operations we perform.
1462 	 */
1463 	lwkt_gettoken(&hmp->fs_token);
1464 	hammer_start_transaction(&trans, hmp);
1465 
1466 	/*
1467 	 * Create a new filesystem object of the requested type.  The
1468 	 * returned inode will be referenced but not locked.
1469 	 */
1470 	error = hammer_create_inode(&trans, ap->a_vap, ap->a_cred,
1471 				    dip, nch->ncp->nc_name, nch->ncp->nc_nlen,
1472 				    NULL, &nip);
1473 	if (error) {
1474 		hammer_done_transaction(&trans);
1475 		*ap->a_vpp = NULL;
1476 		lwkt_reltoken(&hmp->fs_token);
1477 		return (error);
1478 	}
1479 	/*
1480 	 * Add the new filesystem object to the directory.  This will also
1481 	 * bump the inode's link count.
1482 	 */
1483 	error = hammer_ip_add_direntry(&trans, dip,
1484 					nch->ncp->nc_name, nch->ncp->nc_nlen,
1485 					nip);
1486 	if (error)
1487 		hkprintf("hammer_mkdir (add) error %d\n", error);
1488 
1489 	/*
1490 	 * Finish up.
1491 	 */
1492 	if (error) {
1493 		hammer_rel_inode(nip, 0);
1494 		*ap->a_vpp = NULL;
1495 	} else {
1496 		error = hammer_get_vnode(nip, ap->a_vpp);
1497 		hammer_rel_inode(nip, 0);
1498 		if (error == 0) {
1499 			cache_setunresolved(ap->a_nch);
1500 			cache_setvp(ap->a_nch, *ap->a_vpp);
1501 		}
1502 	}
1503 	hammer_done_transaction(&trans);
1504 	if (error == 0)
1505 		hammer_knote(ap->a_dvp, NOTE_WRITE | NOTE_LINK);
1506 	lwkt_reltoken(&hmp->fs_token);
1507 	return (error);
1508 }
1509 
1510 /*
1511  * hammer_vop_nmknod { nch, dvp, vpp, cred, vap }
1512  *
1513  * The operating system has already ensured that the directory entry
1514  * does not exist and done all appropriate namespace locking.
1515  */
1516 static
1517 int
1518 hammer_vop_nmknod(struct vop_nmknod_args *ap)
1519 {
1520 	struct hammer_transaction trans;
1521 	hammer_inode_t dip;
1522 	hammer_inode_t nip;
1523 	struct nchandle *nch;
1524 	hammer_mount_t hmp;
1525 	int error;
1526 
1527 	nch = ap->a_nch;
1528 	dip = VTOI(ap->a_dvp);
1529 	hmp = dip->hmp;
1530 
1531 	if (dip->flags & HAMMER_INODE_RO)
1532 		return (EROFS);
1533 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
1534 		return (error);
1535 
1536 	/*
1537 	 * Create a transaction to cover the operations we perform.
1538 	 */
1539 	lwkt_gettoken(&hmp->fs_token);
1540 	hammer_start_transaction(&trans, hmp);
1541 
1542 	/*
1543 	 * Create a new filesystem object of the requested type.  The
1544 	 * returned inode will be referenced but not locked.
1545 	 *
1546 	 * If mknod specifies a directory a pseudo-fs is created.
1547 	 */
1548 	error = hammer_create_inode(&trans, ap->a_vap, ap->a_cred,
1549 				    dip, nch->ncp->nc_name, nch->ncp->nc_nlen,
1550 				    NULL, &nip);
1551 	if (error) {
1552 		hammer_done_transaction(&trans);
1553 		*ap->a_vpp = NULL;
1554 		lwkt_reltoken(&hmp->fs_token);
1555 		return (error);
1556 	}
1557 
1558 	/*
1559 	 * Add the new filesystem object to the directory.  This will also
1560 	 * bump the inode's link count.
1561 	 */
1562 	error = hammer_ip_add_direntry(&trans, dip,
1563 					nch->ncp->nc_name, nch->ncp->nc_nlen,
1564 					nip);
1565 
1566 	/*
1567 	 * Finish up.
1568 	 */
1569 	if (error) {
1570 		hammer_rel_inode(nip, 0);
1571 		*ap->a_vpp = NULL;
1572 	} else {
1573 		error = hammer_get_vnode(nip, ap->a_vpp);
1574 		hammer_rel_inode(nip, 0);
1575 		if (error == 0) {
1576 			cache_setunresolved(ap->a_nch);
1577 			cache_setvp(ap->a_nch, *ap->a_vpp);
1578 		}
1579 	}
1580 	hammer_done_transaction(&trans);
1581 	if (error == 0)
1582 		hammer_knote(ap->a_dvp, NOTE_WRITE);
1583 	lwkt_reltoken(&hmp->fs_token);
1584 	return (error);
1585 }
1586 
1587 /*
1588  * hammer_vop_open { vp, mode, cred, fp }
1589  *
1590  * MPSAFE (does not require fs_token)
1591  */
1592 static
1593 int
1594 hammer_vop_open(struct vop_open_args *ap)
1595 {
1596 	hammer_inode_t ip;
1597 
1598 	ip = VTOI(ap->a_vp);
1599 
1600 	if ((ap->a_mode & FWRITE) && (ip->flags & HAMMER_INODE_RO))
1601 		return (EROFS);
1602 	return(vop_stdopen(ap));
1603 }
1604 
1605 /*
1606  * hammer_vop_print { vp }
1607  */
1608 static
1609 int
1610 hammer_vop_print(struct vop_print_args *ap)
1611 {
1612 	return EOPNOTSUPP;
1613 }
1614 
1615 /*
1616  * hammer_vop_readdir { vp, uio, cred, *eofflag, *ncookies, off_t **cookies }
1617  */
1618 static
1619 int
1620 hammer_vop_readdir(struct vop_readdir_args *ap)
1621 {
1622 	struct hammer_transaction trans;
1623 	struct hammer_cursor cursor;
1624 	hammer_inode_t ip;
1625 	hammer_mount_t hmp;
1626 	struct uio *uio;
1627 	hammer_base_elm_t base;
1628 	int error;
1629 	int cookie_index;
1630 	int ncookies;
1631 	off_t *cookies;
1632 	off_t saveoff;
1633 	int r;
1634 	int dtype;
1635 
1636 	ip = VTOI(ap->a_vp);
1637 	uio = ap->a_uio;
1638 	saveoff = uio->uio_offset;
1639 	hmp = ip->hmp;
1640 
1641 	if (ap->a_ncookies) {
1642 		ncookies = uio->uio_resid / 16 + 1;
1643 		if (ncookies > 1024)
1644 			ncookies = 1024;
1645 		cookies = kmalloc(ncookies * sizeof(off_t), M_TEMP, M_WAITOK);
1646 		cookie_index = 0;
1647 	} else {
1648 		ncookies = -1;
1649 		cookies = NULL;
1650 		cookie_index = 0;
1651 	}
1652 
1653 	lwkt_gettoken(&hmp->fs_token);
1654 	hammer_simple_transaction(&trans, hmp);
1655 
1656 	/*
1657 	 * Handle artificial entries
1658 	 *
1659 	 * It should be noted that the minimum value for a directory
1660 	 * hash key on-media is 0x0000000100000000, so we can use anything
1661 	 * less then that to represent our 'special' key space.
1662 	 */
1663 	error = 0;
1664 	if (saveoff == 0) {
1665 		r = vop_write_dirent(&error, uio, ip->obj_id, DT_DIR, 1, ".");
1666 		if (r)
1667 			goto done;
1668 		if (cookies)
1669 			cookies[cookie_index] = saveoff;
1670 		++saveoff;
1671 		++cookie_index;
1672 		if (cookie_index == ncookies)
1673 			goto done;
1674 	}
1675 	if (saveoff == 1) {
1676 		if (ip->ino_data.parent_obj_id) {
1677 			r = vop_write_dirent(&error, uio,
1678 					     ip->ino_data.parent_obj_id,
1679 					     DT_DIR, 2, "..");
1680 		} else {
1681 			r = vop_write_dirent(&error, uio,
1682 					     ip->obj_id, DT_DIR, 2, "..");
1683 		}
1684 		if (r)
1685 			goto done;
1686 		if (cookies)
1687 			cookies[cookie_index] = saveoff;
1688 		++saveoff;
1689 		++cookie_index;
1690 		if (cookie_index == ncookies)
1691 			goto done;
1692 	}
1693 
1694 	/*
1695 	 * Key range (begin and end inclusive) to scan.  Directory keys
1696 	 * directly translate to a 64 bit 'seek' position.
1697 	 */
1698 	hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
1699 	cursor.key_beg.localization = ip->obj_localization |
1700 				      hammer_dir_localization(ip);
1701 	cursor.key_beg.obj_id = ip->obj_id;
1702 	cursor.key_beg.create_tid = 0;
1703 	cursor.key_beg.delete_tid = 0;
1704         cursor.key_beg.rec_type = HAMMER_RECTYPE_DIRENTRY;
1705 	cursor.key_beg.obj_type = 0;
1706 	cursor.key_beg.key = saveoff;
1707 
1708 	cursor.key_end = cursor.key_beg;
1709 	cursor.key_end.key = HAMMER_MAX_KEY;
1710 	cursor.asof = ip->obj_asof;
1711 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
1712 
1713 	error = hammer_ip_first(&cursor);
1714 
1715 	while (error == 0) {
1716 		error = hammer_ip_resolve_data(&cursor);
1717 		if (error)
1718 			break;
1719 		base = &cursor.leaf->base;
1720 		saveoff = base->key;
1721 		KKASSERT(cursor.leaf->data_len > HAMMER_ENTRY_NAME_OFF);
1722 
1723 		if (base->obj_id != ip->obj_id)
1724 			hpanic("bad record at %p", cursor.node);
1725 
1726 		dtype = hammer_get_dtype(cursor.leaf->base.obj_type);
1727 		r = vop_write_dirent(
1728 			     &error, uio, cursor.data->entry.obj_id,
1729 			     dtype,
1730 			     cursor.leaf->data_len - HAMMER_ENTRY_NAME_OFF ,
1731 			     (void *)cursor.data->entry.name);
1732 		if (r)
1733 			break;
1734 		++saveoff;
1735 		if (cookies)
1736 			cookies[cookie_index] = base->key;
1737 		++cookie_index;
1738 		if (cookie_index == ncookies)
1739 			break;
1740 		error = hammer_ip_next(&cursor);
1741 	}
1742 	hammer_done_cursor(&cursor);
1743 
1744 done:
1745 	hammer_done_transaction(&trans);
1746 
1747 	if (ap->a_eofflag)
1748 		*ap->a_eofflag = (error == ENOENT);
1749 	uio->uio_offset = saveoff;
1750 	if (error && cookie_index == 0) {
1751 		if (error == ENOENT)
1752 			error = 0;
1753 		if (cookies) {
1754 			kfree(cookies, M_TEMP);
1755 			*ap->a_ncookies = 0;
1756 			*ap->a_cookies = NULL;
1757 		}
1758 	} else {
1759 		if (error == ENOENT)
1760 			error = 0;
1761 		if (cookies) {
1762 			*ap->a_ncookies = cookie_index;
1763 			*ap->a_cookies = cookies;
1764 		}
1765 	}
1766 	lwkt_reltoken(&hmp->fs_token);
1767 	return(error);
1768 }
1769 
1770 /*
1771  * hammer_vop_readlink { vp, uio, cred }
1772  */
1773 static
1774 int
1775 hammer_vop_readlink(struct vop_readlink_args *ap)
1776 {
1777 	struct hammer_transaction trans;
1778 	struct hammer_cursor cursor;
1779 	hammer_inode_t ip;
1780 	hammer_mount_t hmp;
1781 	char buf[32];
1782 	uint32_t localization;
1783 	hammer_pseudofs_inmem_t pfsm;
1784 	int error;
1785 
1786 	ip = VTOI(ap->a_vp);
1787 	hmp = ip->hmp;
1788 
1789 	lwkt_gettoken(&hmp->fs_token);
1790 
1791 	/*
1792 	 * Shortcut if the symlink data was stuffed into ino_data.
1793 	 *
1794 	 * Also expand special "@@PFS%05d" softlinks (expansion only
1795 	 * occurs for non-historical (current) accesses made from the
1796 	 * primary filesystem).
1797 	 *
1798 	 * Note that userspace hammer command does not allow users to
1799 	 * create a @@PFS softlink under an existing other PFS (id!=0)
1800 	 * so the ip localization here for @@PFS softlink is always 0.
1801 	 */
1802 	if (ip->ino_data.size <= HAMMER_INODE_BASESYMLEN) {
1803 		char *ptr;
1804 		int bytes;
1805 
1806 		ptr = ip->ino_data.ext.symlink;
1807 		bytes = (int)ip->ino_data.size;
1808 		if (bytes == 10 &&
1809 		    ip->obj_asof == HAMMER_MAX_TID &&
1810 		    ip->obj_localization == HAMMER_DEF_LOCALIZATION &&
1811 		    strncmp(ptr, "@@PFS", 5) == 0) {
1812 			hammer_simple_transaction(&trans, hmp);
1813 			bcopy(ptr + 5, buf, 5);
1814 			buf[5] = 0;
1815 			localization = pfs_to_lo(strtoul(buf, NULL, 10));
1816 			pfsm = hammer_load_pseudofs(&trans, localization,
1817 						    &error);
1818 			if (error == 0) {
1819 				if (hammer_is_pfs_slave(&pfsm->pfsd)) {
1820 					/* vap->va_size == 26 */
1821 					ksnprintf(buf, sizeof(buf),
1822 						  "@@0x%016jx:%05d",
1823 						  (intmax_t)pfsm->pfsd.sync_end_tid,
1824 						  lo_to_pfs(localization));
1825 				} else {
1826 					/* vap->va_size == 10 */
1827 					ksnprintf(buf, sizeof(buf),
1828 						  "@@-1:%05d",
1829 						  lo_to_pfs(localization));
1830 				}
1831 				ptr = buf;
1832 				bytes = strlen(buf);
1833 			}
1834 			if (pfsm)
1835 				hammer_rel_pseudofs(hmp, pfsm);
1836 			hammer_done_transaction(&trans);
1837 		}
1838 		error = uiomove(ptr, bytes, ap->a_uio);
1839 		lwkt_reltoken(&hmp->fs_token);
1840 		return(error);
1841 	}
1842 
1843 	/*
1844 	 * Long version
1845 	 */
1846 	hammer_simple_transaction(&trans, hmp);
1847 	hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
1848 
1849 	/*
1850 	 * Key range (begin and end inclusive) to scan.  Directory keys
1851 	 * directly translate to a 64 bit 'seek' position.
1852 	 */
1853 	cursor.key_beg.localization = ip->obj_localization |
1854 				      HAMMER_LOCALIZE_MISC;
1855 	cursor.key_beg.obj_id = ip->obj_id;
1856 	cursor.key_beg.create_tid = 0;
1857 	cursor.key_beg.delete_tid = 0;
1858         cursor.key_beg.rec_type = HAMMER_RECTYPE_FIX;
1859 	cursor.key_beg.obj_type = 0;
1860 	cursor.key_beg.key = HAMMER_FIXKEY_SYMLINK;
1861 	cursor.asof = ip->obj_asof;
1862 	cursor.flags |= HAMMER_CURSOR_ASOF;
1863 
1864 	error = hammer_ip_lookup(&cursor);
1865 	if (error == 0) {
1866 		error = hammer_ip_resolve_data(&cursor);
1867 		if (error == 0) {
1868 			KKASSERT(cursor.leaf->data_len >=
1869 				 HAMMER_SYMLINK_NAME_OFF);
1870 			error = uiomove(cursor.data->symlink.name,
1871 					cursor.leaf->data_len -
1872 						HAMMER_SYMLINK_NAME_OFF,
1873 					ap->a_uio);
1874 		}
1875 	}
1876 	hammer_done_cursor(&cursor);
1877 	hammer_done_transaction(&trans);
1878 	lwkt_reltoken(&hmp->fs_token);
1879 	return(error);
1880 }
1881 
1882 /*
1883  * hammer_vop_nremove { nch, dvp, cred }
1884  */
1885 static
1886 int
1887 hammer_vop_nremove(struct vop_nremove_args *ap)
1888 {
1889 	struct hammer_transaction trans;
1890 	hammer_inode_t dip;
1891 	hammer_mount_t hmp;
1892 	int error;
1893 
1894 	dip = VTOI(ap->a_dvp);
1895 	hmp = dip->hmp;
1896 
1897 	if (hammer_nohistory(dip) == 0 &&
1898 	    (error = hammer_checkspace(hmp, HAMMER_CHKSPC_REMOVE)) != 0) {
1899 		return (error);
1900 	}
1901 
1902 	lwkt_gettoken(&hmp->fs_token);
1903 	hammer_start_transaction(&trans, hmp);
1904 	error = hammer_dounlink(&trans, ap->a_nch, ap->a_dvp, ap->a_cred, 0, 0);
1905 	hammer_done_transaction(&trans);
1906 	if (error == 0)
1907 		hammer_knote(ap->a_dvp, NOTE_WRITE);
1908 	lwkt_reltoken(&hmp->fs_token);
1909 	return (error);
1910 }
1911 
1912 /*
1913  * hammer_vop_nrename { fnch, tnch, fdvp, tdvp, cred }
1914  */
1915 static
1916 int
1917 hammer_vop_nrename(struct vop_nrename_args *ap)
1918 {
1919 	struct hammer_transaction trans;
1920 	struct namecache *fncp;
1921 	struct namecache *tncp;
1922 	hammer_inode_t fdip;
1923 	hammer_inode_t tdip;
1924 	hammer_inode_t ip;
1925 	hammer_mount_t hmp;
1926 	struct hammer_cursor cursor;
1927 	int64_t namekey;
1928 	uint32_t max_iterations;
1929 	int nlen, error;
1930 
1931 	if (ap->a_fdvp->v_mount != ap->a_tdvp->v_mount)
1932 		return(EXDEV);
1933 	if (ap->a_fdvp->v_mount != ap->a_fnch->ncp->nc_vp->v_mount)
1934 		return(EXDEV);
1935 
1936 	fdip = VTOI(ap->a_fdvp);
1937 	tdip = VTOI(ap->a_tdvp);
1938 	fncp = ap->a_fnch->ncp;
1939 	tncp = ap->a_tnch->ncp;
1940 	ip = VTOI(fncp->nc_vp);
1941 	KKASSERT(ip != NULL);
1942 
1943 	hmp = ip->hmp;
1944 
1945 	if (fdip->obj_localization != tdip->obj_localization)
1946 		return(EXDEV);
1947 	if (fdip->obj_localization != ip->obj_localization)
1948 		return(EXDEV);
1949 
1950 	if (fdip->flags & HAMMER_INODE_RO)
1951 		return (EROFS);
1952 	if (tdip->flags & HAMMER_INODE_RO)
1953 		return (EROFS);
1954 	if (ip->flags & HAMMER_INODE_RO)
1955 		return (EROFS);
1956 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
1957 		return (error);
1958 
1959 	lwkt_gettoken(&hmp->fs_token);
1960 	hammer_start_transaction(&trans, hmp);
1961 
1962 	/*
1963 	 * Remove tncp from the target directory and then link ip as
1964 	 * tncp. XXX pass trans to dounlink
1965 	 *
1966 	 * Force the inode sync-time to match the transaction so it is
1967 	 * in-sync with the creation of the target directory entry.
1968 	 */
1969 	error = hammer_dounlink(&trans, ap->a_tnch, ap->a_tdvp,
1970 				ap->a_cred, 0, -1);
1971 	if (error == 0 || error == ENOENT) {
1972 		error = hammer_ip_add_direntry(&trans, tdip,
1973 						tncp->nc_name, tncp->nc_nlen,
1974 						ip);
1975 		if (error == 0) {
1976 			ip->ino_data.parent_obj_id = tdip->obj_id;
1977 			ip->ino_data.ctime = trans.time;
1978 			hammer_modify_inode(&trans, ip, HAMMER_INODE_DDIRTY);
1979 		}
1980 	}
1981 	if (error)
1982 		goto failed; /* XXX */
1983 
1984 	/*
1985 	 * Locate the record in the originating directory and remove it.
1986 	 *
1987 	 * Calculate the namekey and setup the key range for the scan.  This
1988 	 * works kinda like a chained hash table where the lower 32 bits
1989 	 * of the namekey synthesize the chain.
1990 	 *
1991 	 * The key range is inclusive of both key_beg and key_end.
1992 	 */
1993 	namekey = hammer_direntry_namekey(fdip, fncp->nc_name, fncp->nc_nlen,
1994 					   &max_iterations);
1995 retry:
1996 	hammer_init_cursor(&trans, &cursor, &fdip->cache[1], fdip);
1997 	cursor.key_beg.localization = fdip->obj_localization |
1998 				      hammer_dir_localization(fdip);
1999         cursor.key_beg.obj_id = fdip->obj_id;
2000 	cursor.key_beg.key = namekey;
2001         cursor.key_beg.create_tid = 0;
2002         cursor.key_beg.delete_tid = 0;
2003         cursor.key_beg.rec_type = HAMMER_RECTYPE_DIRENTRY;
2004         cursor.key_beg.obj_type = 0;
2005 
2006 	cursor.key_end = cursor.key_beg;
2007 	cursor.key_end.key += max_iterations;
2008 	cursor.asof = fdip->obj_asof;
2009 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2010 
2011 	/*
2012 	 * Scan all matching records (the chain), locate the one matching
2013 	 * the requested path component.
2014 	 *
2015 	 * The hammer_ip_*() functions merge in-memory records with on-disk
2016 	 * records for the purposes of the search.
2017 	 */
2018 	error = hammer_ip_first(&cursor);
2019 	while (error == 0) {
2020 		if (hammer_ip_resolve_data(&cursor) != 0)
2021 			break;
2022 		nlen = cursor.leaf->data_len - HAMMER_ENTRY_NAME_OFF;
2023 		KKASSERT(nlen > 0);
2024 		if (fncp->nc_nlen == nlen &&
2025 		    bcmp(fncp->nc_name, cursor.data->entry.name, nlen) == 0) {
2026 			break;
2027 		}
2028 		error = hammer_ip_next(&cursor);
2029 	}
2030 
2031 	/*
2032 	 * If all is ok we have to get the inode so we can adjust nlinks.
2033 	 *
2034 	 * WARNING: hammer_ip_del_direntry() may have to terminate the
2035 	 * cursor to avoid a recursion.  It's ok to call hammer_done_cursor()
2036 	 * twice.
2037 	 */
2038 	if (error == 0)
2039 		error = hammer_ip_del_direntry(&trans, &cursor, fdip, ip);
2040 
2041 	/*
2042 	 * XXX A deadlock here will break rename's atomicy for the purposes
2043 	 * of crash recovery.
2044 	 */
2045 	if (error == EDEADLK) {
2046 		hammer_done_cursor(&cursor);
2047 		goto retry;
2048 	}
2049 
2050 	/*
2051 	 * Cleanup and tell the kernel that the rename succeeded.
2052 	 *
2053 	 * NOTE: ip->vp, if non-NULL, cannot be directly referenced
2054 	 *	 without formally acquiring the vp since the vp might
2055 	 *	 have zero refs on it, or in the middle of a reclaim,
2056 	 *	 etc.
2057 	 */
2058         hammer_done_cursor(&cursor);
2059 	if (error == 0) {
2060 		cache_rename(ap->a_fnch, ap->a_tnch);
2061 		hammer_knote(ap->a_fdvp, NOTE_WRITE);
2062 		hammer_knote(ap->a_tdvp, NOTE_WRITE);
2063 		while (ip->vp) {
2064 			struct vnode *vp;
2065 
2066 			error = hammer_get_vnode(ip, &vp);
2067 			if (error == 0 && vp) {
2068 				vn_unlock(vp);
2069 				hammer_knote(ip->vp, NOTE_RENAME);
2070 				vrele(vp);
2071 				break;
2072 			}
2073 			hdkprintf("ip/vp race2 avoided\n");
2074 		}
2075 	}
2076 
2077 failed:
2078 	hammer_done_transaction(&trans);
2079 	lwkt_reltoken(&hmp->fs_token);
2080 	return (error);
2081 }
2082 
2083 /*
2084  * hammer_vop_nrmdir { nch, dvp, cred }
2085  */
2086 static
2087 int
2088 hammer_vop_nrmdir(struct vop_nrmdir_args *ap)
2089 {
2090 	struct hammer_transaction trans;
2091 	hammer_inode_t dip;
2092 	hammer_mount_t hmp;
2093 	int error;
2094 
2095 	dip = VTOI(ap->a_dvp);
2096 	hmp = dip->hmp;
2097 
2098 	if (hammer_nohistory(dip) == 0 &&
2099 	    (error = hammer_checkspace(hmp, HAMMER_CHKSPC_REMOVE)) != 0) {
2100 		return (error);
2101 	}
2102 
2103 	lwkt_gettoken(&hmp->fs_token);
2104 	hammer_start_transaction(&trans, hmp);
2105 	error = hammer_dounlink(&trans, ap->a_nch, ap->a_dvp, ap->a_cred, 0, 1);
2106 	hammer_done_transaction(&trans);
2107 	if (error == 0)
2108 		hammer_knote(ap->a_dvp, NOTE_WRITE | NOTE_LINK);
2109 	lwkt_reltoken(&hmp->fs_token);
2110 	return (error);
2111 }
2112 
2113 /*
2114  * hammer_vop_markatime { vp, cred }
2115  */
2116 static
2117 int
2118 hammer_vop_markatime(struct vop_markatime_args *ap)
2119 {
2120 	struct hammer_transaction trans;
2121 	hammer_inode_t ip;
2122 	hammer_mount_t hmp;
2123 
2124 	ip = VTOI(ap->a_vp);
2125 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
2126 		return (EROFS);
2127 	if (ip->flags & HAMMER_INODE_RO)
2128 		return (EROFS);
2129 	hmp = ip->hmp;
2130 	if (hmp->mp->mnt_flag & MNT_NOATIME)
2131 		return (0);
2132 	lwkt_gettoken(&hmp->fs_token);
2133 	hammer_start_transaction(&trans, hmp);
2134 
2135 	ip->ino_data.atime = trans.time;
2136 	hammer_modify_inode(&trans, ip, HAMMER_INODE_ATIME);
2137 	hammer_done_transaction(&trans);
2138 	hammer_knote(ap->a_vp, NOTE_ATTRIB);
2139 	lwkt_reltoken(&hmp->fs_token);
2140 	return (0);
2141 }
2142 
2143 /*
2144  * hammer_vop_setattr { vp, vap, cred }
2145  */
2146 static
2147 int
2148 hammer_vop_setattr(struct vop_setattr_args *ap)
2149 {
2150 	struct hammer_transaction trans;
2151 	hammer_inode_t ip;
2152 	struct vattr *vap;
2153 	hammer_mount_t hmp;
2154 	int modflags;
2155 	int error;
2156 	int truncating;
2157 	int blksize;
2158 	int kflags;
2159 #if 0
2160 	int64_t aligned_size;
2161 #endif
2162 	uint32_t flags;
2163 
2164 	vap = ap->a_vap;
2165 	ip = ap->a_vp->v_data;
2166 	modflags = 0;
2167 	kflags = 0;
2168 	hmp = ip->hmp;
2169 
2170 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
2171 		return(EROFS);
2172 	if (ip->flags & HAMMER_INODE_RO)
2173 		return (EROFS);
2174 	if (hammer_nohistory(ip) == 0 &&
2175 	    (error = hammer_checkspace(hmp, HAMMER_CHKSPC_REMOVE)) != 0) {
2176 		return (error);
2177 	}
2178 
2179 	lwkt_gettoken(&hmp->fs_token);
2180 	hammer_start_transaction(&trans, hmp);
2181 	error = 0;
2182 
2183 	if (vap->va_flags != VNOVAL) {
2184 		flags = ip->ino_data.uflags;
2185 		error = vop_helper_setattr_flags(&flags, vap->va_flags,
2186 					 hammer_to_unix_xid(&ip->ino_data.uid),
2187 					 ap->a_cred);
2188 		if (error == 0) {
2189 			if (ip->ino_data.uflags != flags) {
2190 				ip->ino_data.uflags = flags;
2191 				ip->ino_data.ctime = trans.time;
2192 				modflags |= HAMMER_INODE_DDIRTY;
2193 				kflags |= NOTE_ATTRIB;
2194 			}
2195 			if (ip->ino_data.uflags & (IMMUTABLE | APPEND)) {
2196 				error = 0;
2197 				goto done;
2198 			}
2199 		}
2200 		goto done;
2201 	}
2202 	if (ip->ino_data.uflags & (IMMUTABLE | APPEND)) {
2203 		error = EPERM;
2204 		goto done;
2205 	}
2206 	if (vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL) {
2207 		mode_t cur_mode = ip->ino_data.mode;
2208 		uid_t cur_uid = hammer_to_unix_xid(&ip->ino_data.uid);
2209 		gid_t cur_gid = hammer_to_unix_xid(&ip->ino_data.gid);
2210 		hammer_uuid_t uuid_uid;
2211 		hammer_uuid_t uuid_gid;
2212 
2213 		error = vop_helper_chown(ap->a_vp, vap->va_uid, vap->va_gid,
2214 					 ap->a_cred,
2215 					 &cur_uid, &cur_gid, &cur_mode);
2216 		if (error == 0) {
2217 			hammer_guid_to_uuid(&uuid_uid, cur_uid);
2218 			hammer_guid_to_uuid(&uuid_gid, cur_gid);
2219 			if (kuuid_compare(&uuid_uid, &ip->ino_data.uid) ||
2220 			    kuuid_compare(&uuid_gid, &ip->ino_data.gid) ||
2221 			    ip->ino_data.mode != cur_mode) {
2222 				ip->ino_data.uid = uuid_uid;
2223 				ip->ino_data.gid = uuid_gid;
2224 				ip->ino_data.mode = cur_mode;
2225 				ip->ino_data.ctime = trans.time;
2226 				modflags |= HAMMER_INODE_DDIRTY;
2227 			}
2228 			kflags |= NOTE_ATTRIB;
2229 		}
2230 	}
2231 	while (vap->va_size != VNOVAL && ip->ino_data.size != vap->va_size) {
2232 		switch(ap->a_vp->v_type) {
2233 		case VREG:
2234 			if (vap->va_size == ip->ino_data.size)
2235 				break;
2236 
2237 			/*
2238 			 * Log the operation if in fast-fsync mode or if
2239 			 * there are unterminated redo write records present.
2240 			 *
2241 			 * The second check is needed so the recovery code
2242 			 * properly truncates write redos even if nominal
2243 			 * REDO operations is turned off due to excessive
2244 			 * writes, because the related records might be
2245 			 * destroyed and never lay down a TERM_WRITE.
2246 			 */
2247 			if ((ip->flags & HAMMER_INODE_REDO) ||
2248 			    (ip->flags & HAMMER_INODE_RDIRTY)) {
2249 				error = hammer_generate_redo(&trans, ip,
2250 							     vap->va_size,
2251 							     HAMMER_REDO_TRUNC,
2252 							     NULL, 0);
2253 			}
2254 			blksize = hammer_blocksize(vap->va_size);
2255 
2256 			/*
2257 			 * XXX break atomicy, we can deadlock the backend
2258 			 * if we do not release the lock.  Probably not a
2259 			 * big deal here.
2260 			 */
2261 			if (vap->va_size < ip->ino_data.size) {
2262 				nvtruncbuf(ap->a_vp, vap->va_size,
2263 					   blksize,
2264 					   hammer_blockoff(vap->va_size),
2265 					   0);
2266 				truncating = 1;
2267 				kflags |= NOTE_WRITE;
2268 			} else {
2269 				nvextendbuf(ap->a_vp,
2270 					    ip->ino_data.size,
2271 					    vap->va_size,
2272 					    hammer_blocksize(ip->ino_data.size),
2273 					    hammer_blocksize(vap->va_size),
2274 					    hammer_blockoff(ip->ino_data.size),
2275 					    hammer_blockoff(vap->va_size),
2276 					    0);
2277 				truncating = 0;
2278 				kflags |= NOTE_WRITE | NOTE_EXTEND;
2279 			}
2280 			ip->ino_data.size = vap->va_size;
2281 			ip->ino_data.mtime = trans.time;
2282 			/* XXX safe to use SDIRTY instead of DDIRTY here? */
2283 			modflags |= HAMMER_INODE_MTIME | HAMMER_INODE_DDIRTY;
2284 
2285 			/*
2286 			 * On-media truncation is cached in the inode until
2287 			 * the inode is synchronized.  We must immediately
2288 			 * handle any frontend records.
2289 			 */
2290 			if (truncating) {
2291 				hammer_ip_frontend_trunc(ip, vap->va_size);
2292 				if ((ip->flags & HAMMER_INODE_TRUNCATED) == 0) {
2293 					ip->flags |= HAMMER_INODE_TRUNCATED;
2294 					ip->trunc_off = vap->va_size;
2295 					hammer_inode_dirty(ip);
2296 				} else if (ip->trunc_off > vap->va_size) {
2297 					ip->trunc_off = vap->va_size;
2298 				}
2299 			}
2300 
2301 #if 0
2302 			/*
2303 			 * When truncating, nvtruncbuf() may have cleaned out
2304 			 * a portion of the last block on-disk in the buffer
2305 			 * cache.  We must clean out any frontend records
2306 			 * for blocks beyond the new last block.
2307 			 */
2308 			aligned_size = (vap->va_size + (blksize - 1)) &
2309 				       ~(int64_t)(blksize - 1);
2310 			if (truncating && vap->va_size < aligned_size) {
2311 				aligned_size -= blksize;
2312 				hammer_ip_frontend_trunc(ip, aligned_size);
2313 			}
2314 #endif
2315 			break;
2316 		case VDATABASE:
2317 			if ((ip->flags & HAMMER_INODE_TRUNCATED) == 0) {
2318 				ip->flags |= HAMMER_INODE_TRUNCATED;
2319 				ip->trunc_off = vap->va_size;
2320 				hammer_inode_dirty(ip);
2321 			} else if (ip->trunc_off > vap->va_size) {
2322 				ip->trunc_off = vap->va_size;
2323 			}
2324 			hammer_ip_frontend_trunc(ip, vap->va_size);
2325 			ip->ino_data.size = vap->va_size;
2326 			ip->ino_data.mtime = trans.time;
2327 			modflags |= HAMMER_INODE_MTIME | HAMMER_INODE_DDIRTY;
2328 			kflags |= NOTE_ATTRIB;
2329 			break;
2330 		default:
2331 			error = EINVAL;
2332 			goto done;
2333 		}
2334 		break;
2335 	}
2336 	if (vap->va_atime.tv_sec != VNOVAL) {
2337 		ip->ino_data.atime = hammer_timespec_to_time(&vap->va_atime);
2338 		modflags |= HAMMER_INODE_ATIME;
2339 		kflags |= NOTE_ATTRIB;
2340 	}
2341 	if (vap->va_mtime.tv_sec != VNOVAL) {
2342 		ip->ino_data.mtime = hammer_timespec_to_time(&vap->va_mtime);
2343 		modflags |= HAMMER_INODE_MTIME;
2344 		kflags |= NOTE_ATTRIB;
2345 	}
2346 	if (vap->va_mode != (mode_t)VNOVAL) {
2347 		mode_t   cur_mode = ip->ino_data.mode;
2348 		uid_t cur_uid = hammer_to_unix_xid(&ip->ino_data.uid);
2349 		gid_t cur_gid = hammer_to_unix_xid(&ip->ino_data.gid);
2350 
2351 		error = vop_helper_chmod(ap->a_vp, vap->va_mode, ap->a_cred,
2352 					 cur_uid, cur_gid, &cur_mode);
2353 		if (error == 0 && ip->ino_data.mode != cur_mode) {
2354 			ip->ino_data.mode = cur_mode;
2355 			ip->ino_data.ctime = trans.time;
2356 			modflags |= HAMMER_INODE_DDIRTY;
2357 			kflags |= NOTE_ATTRIB;
2358 		}
2359 	}
2360 done:
2361 	if (error == 0)
2362 		hammer_modify_inode(&trans, ip, modflags);
2363 	hammer_done_transaction(&trans);
2364 	hammer_knote(ap->a_vp, kflags);
2365 	lwkt_reltoken(&hmp->fs_token);
2366 	return (error);
2367 }
2368 
2369 /*
2370  * hammer_vop_nsymlink { nch, dvp, vpp, cred, vap, target }
2371  */
2372 static
2373 int
2374 hammer_vop_nsymlink(struct vop_nsymlink_args *ap)
2375 {
2376 	struct hammer_transaction trans;
2377 	hammer_inode_t dip;
2378 	hammer_inode_t nip;
2379 	hammer_record_t record;
2380 	struct nchandle *nch;
2381 	hammer_mount_t hmp;
2382 	int error;
2383 	int bytes;
2384 
2385 	ap->a_vap->va_type = VLNK;
2386 
2387 	nch = ap->a_nch;
2388 	dip = VTOI(ap->a_dvp);
2389 	hmp = dip->hmp;
2390 
2391 	if (dip->flags & HAMMER_INODE_RO)
2392 		return (EROFS);
2393 	if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
2394 		return (error);
2395 
2396 	/*
2397 	 * Create a transaction to cover the operations we perform.
2398 	 */
2399 	lwkt_gettoken(&hmp->fs_token);
2400 	hammer_start_transaction(&trans, hmp);
2401 
2402 	/*
2403 	 * Create a new filesystem object of the requested type.  The
2404 	 * returned inode will be referenced but not locked.
2405 	 */
2406 
2407 	error = hammer_create_inode(&trans, ap->a_vap, ap->a_cred,
2408 				    dip, nch->ncp->nc_name, nch->ncp->nc_nlen,
2409 				    NULL, &nip);
2410 	if (error) {
2411 		hammer_done_transaction(&trans);
2412 		*ap->a_vpp = NULL;
2413 		lwkt_reltoken(&hmp->fs_token);
2414 		return (error);
2415 	}
2416 
2417 	/*
2418 	 * Add a record representing the symlink.  symlink stores the link
2419 	 * as pure data, not a string, and is no \0 terminated.
2420 	 */
2421 	if (error == 0) {
2422 		bytes = strlen(ap->a_target);
2423 
2424 		if (bytes <= HAMMER_INODE_BASESYMLEN) {
2425 			bcopy(ap->a_target, nip->ino_data.ext.symlink, bytes);
2426 		} else {
2427 			record = hammer_alloc_mem_record(nip, bytes);
2428 			record->type = HAMMER_MEM_RECORD_GENERAL;
2429 
2430 			record->leaf.base.localization = nip->obj_localization |
2431 							 HAMMER_LOCALIZE_MISC;
2432 			record->leaf.base.key = HAMMER_FIXKEY_SYMLINK;
2433 			record->leaf.base.rec_type = HAMMER_RECTYPE_FIX;
2434 			record->leaf.data_len = bytes;
2435 			KKASSERT(HAMMER_SYMLINK_NAME_OFF == 0);
2436 			bcopy(ap->a_target, record->data->symlink.name, bytes);
2437 			error = hammer_ip_add_record(&trans, record);
2438 		}
2439 
2440 		/*
2441 		 * Set the file size to the length of the link.
2442 		 */
2443 		if (error == 0) {
2444 			nip->ino_data.size = bytes;
2445 			hammer_modify_inode(&trans, nip, HAMMER_INODE_DDIRTY);
2446 		}
2447 	}
2448 	if (error == 0)
2449 		error = hammer_ip_add_direntry(&trans, dip, nch->ncp->nc_name,
2450 						nch->ncp->nc_nlen, nip);
2451 
2452 	/*
2453 	 * Finish up.
2454 	 */
2455 	if (error) {
2456 		hammer_rel_inode(nip, 0);
2457 		*ap->a_vpp = NULL;
2458 	} else {
2459 		error = hammer_get_vnode(nip, ap->a_vpp);
2460 		hammer_rel_inode(nip, 0);
2461 		if (error == 0) {
2462 			cache_setunresolved(ap->a_nch);
2463 			cache_setvp(ap->a_nch, *ap->a_vpp);
2464 			hammer_knote(ap->a_dvp, NOTE_WRITE);
2465 		}
2466 	}
2467 	hammer_done_transaction(&trans);
2468 	lwkt_reltoken(&hmp->fs_token);
2469 	return (error);
2470 }
2471 
2472 /*
2473  * hammer_vop_nwhiteout { nch, dvp, cred, flags }
2474  */
2475 static
2476 int
2477 hammer_vop_nwhiteout(struct vop_nwhiteout_args *ap)
2478 {
2479 	struct hammer_transaction trans;
2480 	hammer_inode_t dip;
2481 	hammer_mount_t hmp;
2482 	int error;
2483 
2484 	dip = VTOI(ap->a_dvp);
2485 	hmp = dip->hmp;
2486 
2487 	if (hammer_nohistory(dip) == 0 &&
2488 	    (error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0) {
2489 		return (error);
2490 	}
2491 
2492 	lwkt_gettoken(&hmp->fs_token);
2493 	hammer_start_transaction(&trans, hmp);
2494 	error = hammer_dounlink(&trans, ap->a_nch, ap->a_dvp,
2495 				ap->a_cred, ap->a_flags, -1);
2496 	hammer_done_transaction(&trans);
2497 	lwkt_reltoken(&hmp->fs_token);
2498 
2499 	return (error);
2500 }
2501 
2502 /*
2503  * hammer_vop_ioctl { vp, command, data, fflag, cred }
2504  */
2505 static
2506 int
2507 hammer_vop_ioctl(struct vop_ioctl_args *ap)
2508 {
2509 	hammer_inode_t ip = ap->a_vp->v_data;
2510 	hammer_mount_t hmp = ip->hmp;
2511 	int error;
2512 
2513 	lwkt_gettoken(&hmp->fs_token);
2514 	error = hammer_ioctl(ip, ap->a_command, ap->a_data,
2515 			     ap->a_fflag, ap->a_cred);
2516 	lwkt_reltoken(&hmp->fs_token);
2517 	return (error);
2518 }
2519 
2520 static
2521 int
2522 hammer_vop_mountctl(struct vop_mountctl_args *ap)
2523 {
2524 	static const struct mountctl_opt extraopt[] = {
2525 		{ HMNT_NOHISTORY,	"nohistory" },
2526 		{ HMNT_MASTERID,	"master" },
2527 		{ HMNT_NOMIRROR,	"nomirror" },
2528 		{ 0, NULL}
2529 
2530 	};
2531 	hammer_mount_t hmp;
2532 	struct mount *mp;
2533 	int usedbytes;
2534 	int error;
2535 
2536 	error = 0;
2537 	usedbytes = 0;
2538 	mp = ap->a_head.a_ops->head.vv_mount;
2539 	KKASSERT(mp->mnt_data != NULL);
2540 	hmp = (hammer_mount_t)mp->mnt_data;
2541 
2542 	lwkt_gettoken(&hmp->fs_token);
2543 
2544 	switch(ap->a_op) {
2545 	case MOUNTCTL_SET_EXPORT:
2546 		if (ap->a_ctllen != sizeof(struct export_args))
2547 			error = EINVAL;
2548 		else
2549 			error = hammer_vfs_export(mp, ap->a_op,
2550 				      (const struct export_args *)ap->a_ctl);
2551 		break;
2552 	case MOUNTCTL_MOUNTFLAGS:
2553 		/*
2554 		 * Call standard mountctl VOP function
2555 		 * so we get user mount flags.
2556 		 */
2557 		error = vop_stdmountctl(ap);
2558 		if (error)
2559 			break;
2560 
2561 		usedbytes = *ap->a_res;
2562 
2563 		if (usedbytes > 0 && usedbytes < ap->a_buflen) {
2564 			usedbytes += vfs_flagstostr(hmp->hflags, extraopt,
2565 						    ap->a_buf,
2566 						    ap->a_buflen - usedbytes,
2567 						    &error);
2568 		}
2569 
2570 		*ap->a_res += usedbytes;
2571 		break;
2572 	default:
2573 		error = vop_stdmountctl(ap);
2574 		break;
2575 	}
2576 	lwkt_reltoken(&hmp->fs_token);
2577 	return(error);
2578 }
2579 
2580 /*
2581  * hammer_vop_strategy { vp, bio }
2582  *
2583  * Strategy call, used for regular file read & write only.  Note that the
2584  * bp may represent a cluster.
2585  *
2586  * To simplify operation and allow better optimizations in the future,
2587  * this code does not make any assumptions with regards to buffer alignment
2588  * or size.
2589  */
2590 static
2591 int
2592 hammer_vop_strategy(struct vop_strategy_args *ap)
2593 {
2594 	struct buf *bp;
2595 	int error;
2596 
2597 	bp = ap->a_bio->bio_buf;
2598 
2599 	switch(bp->b_cmd) {
2600 	case BUF_CMD_READ:
2601 		error = hammer_vop_strategy_read(ap);
2602 		break;
2603 	case BUF_CMD_WRITE:
2604 		error = hammer_vop_strategy_write(ap);
2605 		break;
2606 	default:
2607 		bp->b_error = error = EINVAL;
2608 		bp->b_flags |= B_ERROR;
2609 		biodone(ap->a_bio);
2610 		break;
2611 	}
2612 
2613 	/* hammer_dump_dedup_cache(((hammer_inode_t)ap->a_vp->v_data)->hmp); */
2614 
2615 	return (error);
2616 }
2617 
2618 /*
2619  * Read from a regular file.  Iterate the related records and fill in the
2620  * BIO/BUF.  Gaps are zero-filled.
2621  *
2622  * The support code in hammer_object.c should be used to deal with mixed
2623  * in-memory and on-disk records.
2624  *
2625  * NOTE: Can be called from the cluster code with an oversized buf.
2626  *
2627  * XXX atime update
2628  */
2629 static
2630 int
2631 hammer_vop_strategy_read(struct vop_strategy_args *ap)
2632 {
2633 	struct hammer_transaction trans;
2634 	hammer_inode_t ip;
2635 	hammer_inode_t dip;
2636 	hammer_mount_t hmp;
2637 	struct hammer_cursor cursor;
2638 	hammer_base_elm_t base;
2639 	hammer_off_t disk_offset;
2640 	struct bio *bio;
2641 	struct bio *nbio;
2642 	struct buf *bp;
2643 	int64_t rec_offset;
2644 	int64_t ran_end;
2645 	int64_t tmp64;
2646 	int error;
2647 	int boff;
2648 	int roff;
2649 	int n;
2650 	int isdedupable;
2651 
2652 	bio = ap->a_bio;
2653 	bp = bio->bio_buf;
2654 	ip = ap->a_vp->v_data;
2655 	hmp = ip->hmp;
2656 
2657 	/*
2658 	 * The zone-2 disk offset may have been set by the cluster code via
2659 	 * a BMAP operation, or else should be NOOFFSET.
2660 	 *
2661 	 * Checking the high bits for a match against zone-2 should suffice.
2662 	 *
2663 	 * In cases where a lot of data duplication is present it may be
2664 	 * more beneficial to drop through and doubule-buffer through the
2665 	 * device.
2666 	 */
2667 	nbio = push_bio(bio);
2668 	if (hammer_is_zone_large_data(nbio->bio_offset)) {
2669 		if (hammer_double_buffer == 0) {
2670 			lwkt_gettoken(&hmp->fs_token);
2671 			error = hammer_io_direct_read(hmp, nbio, NULL);
2672 			lwkt_reltoken(&hmp->fs_token);
2673 			return (error);
2674 		}
2675 
2676 		/*
2677 		 * Try to shortcut requests for double_buffer mode too.
2678 		 * Since this mode runs through the device buffer cache
2679 		 * only compatible buffer sizes (meaning those generated
2680 		 * by normal filesystem buffers) are legal.
2681 		 */
2682 		if (hammer_live_dedup == 0 && (bp->b_flags & B_PAGING) == 0) {
2683 			lwkt_gettoken(&hmp->fs_token);
2684 			error = hammer_io_indirect_read(hmp, nbio, NULL);
2685 			lwkt_reltoken(&hmp->fs_token);
2686 			return (error);
2687 		}
2688 	}
2689 
2690 	/*
2691 	 * Well, that sucked.  Do it the hard way.  If all the stars are
2692 	 * aligned we may still be able to issue a direct-read.
2693 	 */
2694 	lwkt_gettoken(&hmp->fs_token);
2695 	hammer_simple_transaction(&trans, hmp);
2696 	hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
2697 
2698 	/*
2699 	 * Key range (begin and end inclusive) to scan.  Note that the key's
2700 	 * stored in the actual records represent BASE+LEN, not BASE.  The
2701 	 * first record containing bio_offset will have a key > bio_offset.
2702 	 */
2703 	cursor.key_beg.localization = ip->obj_localization |
2704 				      HAMMER_LOCALIZE_MISC;
2705 	cursor.key_beg.obj_id = ip->obj_id;
2706 	cursor.key_beg.create_tid = 0;
2707 	cursor.key_beg.delete_tid = 0;
2708 	cursor.key_beg.obj_type = 0;
2709 	cursor.key_beg.key = bio->bio_offset + 1;
2710 	cursor.asof = ip->obj_asof;
2711 	cursor.flags |= HAMMER_CURSOR_ASOF;
2712 
2713 	cursor.key_end = cursor.key_beg;
2714 	KKASSERT(ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE);
2715 #if 0
2716 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
2717 		cursor.key_beg.rec_type = HAMMER_RECTYPE_DB;
2718 		cursor.key_end.rec_type = HAMMER_RECTYPE_DB;
2719 		cursor.key_end.key = HAMMER_MAX_KEY;
2720 	} else
2721 #endif
2722 	{
2723 		ran_end = bio->bio_offset + bp->b_bufsize;
2724 		cursor.key_beg.rec_type = HAMMER_RECTYPE_DATA;
2725 		cursor.key_end.rec_type = HAMMER_RECTYPE_DATA;
2726 		tmp64 = ran_end + MAXPHYS + 1;	/* work-around GCC-4 bug */
2727 		if (tmp64 < ran_end)
2728 			cursor.key_end.key = HAMMER_MAX_KEY;
2729 		else
2730 			cursor.key_end.key = ran_end + MAXPHYS + 1;
2731 	}
2732 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE;
2733 
2734 	/*
2735 	 * Set NOSWAPCACHE for cursor data extraction if double buffering
2736 	 * is disabled or (if the file is not marked cacheable via chflags
2737 	 * and vm.swapcache_use_chflags is enabled).
2738 	 */
2739 	if (hammer_double_buffer == 0 ||
2740 	    ((ap->a_vp->v_flag & VSWAPCACHE) == 0 &&
2741 	     vm_swapcache_use_chflags)) {
2742 		cursor.flags |= HAMMER_CURSOR_NOSWAPCACHE;
2743 	}
2744 
2745 	error = hammer_ip_first(&cursor);
2746 	boff = 0;
2747 
2748 	while (error == 0) {
2749 		/*
2750 		 * Get the base file offset of the record.  The key for
2751 		 * data records is (base + bytes) rather then (base).
2752 		 */
2753 		base = &cursor.leaf->base;
2754 		rec_offset = base->key - cursor.leaf->data_len;
2755 
2756 		/*
2757 		 * Calculate the gap, if any, and zero-fill it.
2758 		 *
2759 		 * n is the offset of the start of the record verses our
2760 		 * current seek offset in the bio.
2761 		 */
2762 		n = (int)(rec_offset - (bio->bio_offset + boff));
2763 		if (n > 0) {
2764 			if (n > bp->b_bufsize - boff)
2765 				n = bp->b_bufsize - boff;
2766 			bzero((char *)bp->b_data + boff, n);
2767 			boff += n;
2768 			n = 0;
2769 		}
2770 
2771 		/*
2772 		 * Calculate the data offset in the record and the number
2773 		 * of bytes we can copy.
2774 		 *
2775 		 * There are two degenerate cases.  First, boff may already
2776 		 * be at bp->b_bufsize.  Secondly, the data offset within
2777 		 * the record may exceed the record's size.
2778 		 */
2779 		roff = -n;
2780 		rec_offset += roff;
2781 		n = cursor.leaf->data_len - roff;
2782 		if (n <= 0) {
2783 			hdkprintf("bad n=%d roff=%d\n", n, roff);
2784 			n = 0;
2785 		} else if (n > bp->b_bufsize - boff) {
2786 			n = bp->b_bufsize - boff;
2787 		}
2788 
2789 		/*
2790 		 * Deal with cached truncations.  This cool bit of code
2791 		 * allows truncate()/ftruncate() to avoid having to sync
2792 		 * the file.
2793 		 *
2794 		 * If the frontend is truncated then all backend records are
2795 		 * subject to the frontend's truncation.
2796 		 *
2797 		 * If the backend is truncated then backend records on-disk
2798 		 * (but not in-memory) are subject to the backend's
2799 		 * truncation.  In-memory records owned by the backend
2800 		 * represent data written after the truncation point on the
2801 		 * backend and must not be truncated.
2802 		 *
2803 		 * Truncate operations deal with frontend buffer cache
2804 		 * buffers and frontend-owned in-memory records synchronously.
2805 		 */
2806 		if (ip->flags & HAMMER_INODE_TRUNCATED) {
2807 			if (hammer_cursor_ondisk(&cursor)/* ||
2808 			    cursor.iprec->flush_state == HAMMER_FST_FLUSH*/) {
2809 				if (ip->trunc_off <= rec_offset)
2810 					n = 0;
2811 				else if (ip->trunc_off < rec_offset + n)
2812 					n = (int)(ip->trunc_off - rec_offset);
2813 			}
2814 		}
2815 		if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2816 			if (hammer_cursor_ondisk(&cursor)) {
2817 				if (ip->sync_trunc_off <= rec_offset)
2818 					n = 0;
2819 				else if (ip->sync_trunc_off < rec_offset + n)
2820 					n = (int)(ip->sync_trunc_off - rec_offset);
2821 			}
2822 		}
2823 
2824 		/*
2825 		 * Try to issue a direct read into our bio if possible,
2826 		 * otherwise resolve the element data into a hammer_buffer
2827 		 * and copy.
2828 		 *
2829 		 * The buffer on-disk should be zerod past any real
2830 		 * truncation point, but may not be for any synthesized
2831 		 * truncation point from above.
2832 		 *
2833 		 * NOTE: disk_offset is only valid if the cursor data is
2834 		 *	 on-disk.
2835 		 */
2836 		disk_offset = cursor.leaf->data_offset + roff;
2837 		isdedupable = (boff == 0 && n == bp->b_bufsize &&
2838 			       hammer_cursor_ondisk(&cursor) &&
2839 			       ((int)disk_offset & HAMMER_BUFMASK) == 0);
2840 
2841 		if (isdedupable && hammer_double_buffer == 0) {
2842 			/*
2843 			 * Direct read case
2844 			 */
2845 			KKASSERT(hammer_is_zone_large_data(disk_offset));
2846 			nbio->bio_offset = disk_offset;
2847 			error = hammer_io_direct_read(hmp, nbio, cursor.leaf);
2848 			if (hammer_live_dedup && error == 0)
2849 				hammer_dedup_cache_add(ip, cursor.leaf);
2850 			goto done;
2851 		} else if (isdedupable) {
2852 			/*
2853 			 * Async I/O case for reading from backing store
2854 			 * and copying the data to the filesystem buffer.
2855 			 * live-dedup has to verify the data anyway if it
2856 			 * gets a hit later so we can just add the entry
2857 			 * now.
2858 			 */
2859 			KKASSERT(hammer_is_zone_large_data(disk_offset));
2860 			nbio->bio_offset = disk_offset;
2861 			if (hammer_live_dedup)
2862 				hammer_dedup_cache_add(ip, cursor.leaf);
2863 			error = hammer_io_indirect_read(hmp, nbio, cursor.leaf);
2864 			goto done;
2865 		} else if (n) {
2866 			error = hammer_ip_resolve_data(&cursor);
2867 			if (error == 0) {
2868 				if (hammer_live_dedup && isdedupable)
2869 					hammer_dedup_cache_add(ip, cursor.leaf);
2870 				bcopy((char *)cursor.data + roff,
2871 				      (char *)bp->b_data + boff, n);
2872 			}
2873 		}
2874 		if (error)
2875 			break;
2876 
2877 		/*
2878 		 * We have to be sure that the only elements added to the
2879 		 * dedup cache are those which are already on-media.
2880 		 */
2881 		if (hammer_live_dedup && hammer_cursor_ondisk(&cursor))
2882 			hammer_dedup_cache_add(ip, cursor.leaf);
2883 
2884 		/*
2885 		 * Iterate until we have filled the request.
2886 		 */
2887 		boff += n;
2888 		if (boff == bp->b_bufsize)
2889 			break;
2890 		error = hammer_ip_next(&cursor);
2891 	}
2892 
2893 	/*
2894 	 * There may have been a gap after the last record
2895 	 */
2896 	if (error == ENOENT)
2897 		error = 0;
2898 	if (error == 0 && boff != bp->b_bufsize) {
2899 		KKASSERT(boff < bp->b_bufsize);
2900 		bzero((char *)bp->b_data + boff, bp->b_bufsize - boff);
2901 		/* boff = bp->b_bufsize; */
2902 	}
2903 
2904 	/*
2905 	 * Disallow swapcache operation on the vnode buffer if double
2906 	 * buffering is enabled, the swapcache will get the data via
2907 	 * the block device buffer.
2908 	 */
2909 	if (hammer_double_buffer)
2910 		bp->b_flags |= B_NOTMETA;
2911 
2912 	/*
2913 	 * Cleanup
2914 	 */
2915 	bp->b_resid = 0;
2916 	bp->b_error = error;
2917 	if (error)
2918 		bp->b_flags |= B_ERROR;
2919 	biodone(ap->a_bio);
2920 
2921 done:
2922 	/*
2923 	 * Cache the b-tree node for the last data read in cache[1].
2924 	 *
2925 	 * If we hit the file EOF then also cache the node in the
2926 	 * governing directory's cache[3], it will be used to initialize
2927 	 * the new inode's cache[1] for any inodes looked up via the directory.
2928 	 *
2929 	 * This doesn't reduce disk accesses since the B-Tree chain is
2930 	 * likely cached, but it does reduce cpu overhead when looking
2931 	 * up file offsets for cpdup/tar/cpio style iterations.
2932 	 */
2933 	if (cursor.node)
2934 		hammer_cache_node(&ip->cache[1], cursor.node);
2935 	if (ran_end >= ip->ino_data.size) {
2936 		dip = hammer_find_inode(&trans, ip->ino_data.parent_obj_id,
2937 					ip->obj_asof, ip->obj_localization);
2938 		if (dip) {
2939 			hammer_cache_node(&dip->cache[3], cursor.node);
2940 			hammer_rel_inode(dip, 0);
2941 		}
2942 	}
2943 	hammer_done_cursor(&cursor);
2944 	hammer_done_transaction(&trans);
2945 	lwkt_reltoken(&hmp->fs_token);
2946 	return(error);
2947 }
2948 
2949 /*
2950  * BMAP operation - used to support cluster_read() only.
2951  *
2952  * (struct vnode *vp, off_t loffset, off_t *doffsetp, int *runp, int *runb)
2953  *
2954  * This routine may return EOPNOTSUPP if the opration is not supported for
2955  * the specified offset.  The contents of the pointer arguments do not
2956  * need to be initialized in that case.
2957  *
2958  * If a disk address is available and properly aligned return 0 with
2959  * *doffsetp set to the zone-2 address, and *runp / *runb set appropriately
2960  * to the run-length relative to that offset.  Callers may assume that
2961  * *doffsetp is valid if 0 is returned, even if *runp is not sufficiently
2962  * large, so return EOPNOTSUPP if it is not sufficiently large.
2963  */
2964 static
2965 int
2966 hammer_vop_bmap(struct vop_bmap_args *ap)
2967 {
2968 	struct hammer_transaction trans;
2969 	hammer_inode_t ip;
2970 	hammer_mount_t hmp;
2971 	struct hammer_cursor cursor;
2972 	hammer_base_elm_t base;
2973 	int64_t rec_offset;
2974 	int64_t ran_end;
2975 	int64_t tmp64;
2976 	int64_t base_offset;
2977 	int64_t base_disk_offset;
2978 	int64_t last_offset;
2979 	hammer_off_t last_disk_offset;
2980 	hammer_off_t disk_offset;
2981 	int	rec_len;
2982 	int	error;
2983 	int	blksize;
2984 
2985 	ip = ap->a_vp->v_data;
2986 	hmp = ip->hmp;
2987 
2988 	/*
2989 	 * We can only BMAP regular files.  We can't BMAP database files,
2990 	 * directories, etc.
2991 	 */
2992 	if (ip->ino_data.obj_type != HAMMER_OBJTYPE_REGFILE)
2993 		return(EOPNOTSUPP);
2994 
2995 	/*
2996 	 * bmap is typically called with runp/runb both NULL when used
2997 	 * for writing.  We do not support BMAP for writing atm.
2998 	 */
2999 	if (ap->a_cmd != BUF_CMD_READ)
3000 		return(EOPNOTSUPP);
3001 
3002 	/*
3003 	 * Scan the B-Tree to acquire blockmap addresses, then translate
3004 	 * to raw addresses.
3005 	 */
3006 	lwkt_gettoken(&hmp->fs_token);
3007 	hammer_simple_transaction(&trans, hmp);
3008 
3009 	hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
3010 
3011 	/*
3012 	 * Key range (begin and end inclusive) to scan.  Note that the key's
3013 	 * stored in the actual records represent BASE+LEN, not BASE.  The
3014 	 * first record containing bio_offset will have a key > bio_offset.
3015 	 */
3016 	cursor.key_beg.localization = ip->obj_localization |
3017 				      HAMMER_LOCALIZE_MISC;
3018 	cursor.key_beg.obj_id = ip->obj_id;
3019 	cursor.key_beg.create_tid = 0;
3020 	cursor.key_beg.delete_tid = 0;
3021 	cursor.key_beg.obj_type = 0;
3022 	if (ap->a_runb)
3023 		cursor.key_beg.key = ap->a_loffset - MAXPHYS + 1;
3024 	else
3025 		cursor.key_beg.key = ap->a_loffset + 1;
3026 	if (cursor.key_beg.key < 0)
3027 		cursor.key_beg.key = 0;
3028 	cursor.asof = ip->obj_asof;
3029 	cursor.flags |= HAMMER_CURSOR_ASOF;
3030 
3031 	cursor.key_end = cursor.key_beg;
3032 	KKASSERT(ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE);
3033 
3034 	ran_end = ap->a_loffset + MAXPHYS;
3035 	cursor.key_beg.rec_type = HAMMER_RECTYPE_DATA;
3036 	cursor.key_end.rec_type = HAMMER_RECTYPE_DATA;
3037 	tmp64 = ran_end + MAXPHYS + 1;	/* work-around GCC-4 bug */
3038 	if (tmp64 < ran_end)
3039 		cursor.key_end.key = HAMMER_MAX_KEY;
3040 	else
3041 		cursor.key_end.key = ran_end + MAXPHYS + 1;
3042 
3043 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE;
3044 
3045 	error = hammer_ip_first(&cursor);
3046 	base_offset = last_offset = 0;
3047 	base_disk_offset = last_disk_offset = 0;
3048 
3049 	while (error == 0) {
3050 		/*
3051 		 * Get the base file offset of the record.  The key for
3052 		 * data records is (base + bytes) rather then (base).
3053 		 *
3054 		 * NOTE: rec_offset + rec_len may exceed the end-of-file.
3055 		 * The extra bytes should be zero on-disk and the BMAP op
3056 		 * should still be ok.
3057 		 */
3058 		base = &cursor.leaf->base;
3059 		rec_offset = base->key - cursor.leaf->data_len;
3060 		rec_len    = cursor.leaf->data_len;
3061 
3062 		/*
3063 		 * Incorporate any cached truncation.
3064 		 *
3065 		 * NOTE: Modifications to rec_len based on synthesized
3066 		 * truncation points remove the guarantee that any extended
3067 		 * data on disk is zero (since the truncations may not have
3068 		 * taken place on-media yet).
3069 		 */
3070 		if (ip->flags & HAMMER_INODE_TRUNCATED) {
3071 			if (hammer_cursor_ondisk(&cursor) ||
3072 			    cursor.iprec->flush_state == HAMMER_FST_FLUSH) {
3073 				if (ip->trunc_off <= rec_offset)
3074 					rec_len = 0;
3075 				else if (ip->trunc_off < rec_offset + rec_len)
3076 					rec_len = (int)(ip->trunc_off - rec_offset);
3077 			}
3078 		}
3079 		if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
3080 			if (hammer_cursor_ondisk(&cursor)) {
3081 				if (ip->sync_trunc_off <= rec_offset)
3082 					rec_len = 0;
3083 				else if (ip->sync_trunc_off < rec_offset + rec_len)
3084 					rec_len = (int)(ip->sync_trunc_off - rec_offset);
3085 			}
3086 		}
3087 
3088 		/*
3089 		 * Accumulate information.  If we have hit a discontiguous
3090 		 * block reset base_offset unless we are already beyond the
3091 		 * requested offset.  If we are, that's it, we stop.
3092 		 */
3093 		if (error)
3094 			break;
3095 		if (hammer_cursor_ondisk(&cursor)) {
3096 			disk_offset = cursor.leaf->data_offset;
3097 			if (rec_offset != last_offset ||
3098 			    disk_offset != last_disk_offset) {
3099 				if (rec_offset > ap->a_loffset)
3100 					break;
3101 				base_offset = rec_offset;
3102 				base_disk_offset = disk_offset;
3103 			}
3104 			last_offset = rec_offset + rec_len;
3105 			last_disk_offset = disk_offset + rec_len;
3106 
3107 			if (hammer_live_dedup)
3108 				hammer_dedup_cache_add(ip, cursor.leaf);
3109 		}
3110 
3111 		error = hammer_ip_next(&cursor);
3112 	}
3113 
3114 	if (cursor.node)
3115 		hammer_cache_node(&ip->cache[1], cursor.node);
3116 
3117 	hammer_done_cursor(&cursor);
3118 	hammer_done_transaction(&trans);
3119 	lwkt_reltoken(&hmp->fs_token);
3120 
3121 	/*
3122 	 * If we couldn't find any records or the records we did find were
3123 	 * all behind the requested offset, return failure.  A forward
3124 	 * truncation can leave a hole w/ no on-disk records.
3125 	 */
3126 	if (last_offset == 0 || last_offset < ap->a_loffset)
3127 		return (EOPNOTSUPP);
3128 
3129 	/*
3130 	 * Figure out the block size at the requested offset and adjust
3131 	 * our limits so the cluster_read() does not create inappropriately
3132 	 * sized buffer cache buffers.
3133 	 */
3134 	blksize = hammer_blocksize(ap->a_loffset);
3135 	if (hammer_blocksize(base_offset) != blksize) {
3136 		base_offset = hammer_blockdemarc(base_offset, ap->a_loffset);
3137 	}
3138 	if (last_offset != ap->a_loffset &&
3139 	    hammer_blocksize(last_offset - 1) != blksize) {
3140 		last_offset = hammer_blockdemarc(ap->a_loffset,
3141 						 last_offset - 1);
3142 	}
3143 
3144 	/*
3145 	 * Returning EOPNOTSUPP simply prevents the direct-IO optimization
3146 	 * from occuring.
3147 	 */
3148 	disk_offset = base_disk_offset + (ap->a_loffset - base_offset);
3149 
3150 	if (!hammer_is_zone_large_data(disk_offset)) {
3151 		/*
3152 		 * Only large-data zones can be direct-IOd
3153 		 */
3154 		error = EOPNOTSUPP;
3155 	} else if ((disk_offset & HAMMER_BUFMASK) ||
3156 		   (last_offset - ap->a_loffset) < blksize) {
3157 		/*
3158 		 * doffsetp is not aligned or the forward run size does
3159 		 * not cover a whole buffer, disallow the direct I/O.
3160 		 */
3161 		error = EOPNOTSUPP;
3162 	} else {
3163 		/*
3164 		 * We're good.
3165 		 */
3166 		*ap->a_doffsetp = disk_offset;
3167 		if (ap->a_runb) {
3168 			*ap->a_runb = ap->a_loffset - base_offset;
3169 			KKASSERT(*ap->a_runb >= 0);
3170 		}
3171 		if (ap->a_runp) {
3172 			*ap->a_runp = last_offset - ap->a_loffset;
3173 			KKASSERT(*ap->a_runp >= 0);
3174 		}
3175 		error = 0;
3176 	}
3177 	return(error);
3178 }
3179 
3180 /*
3181  * Write to a regular file.   Because this is a strategy call the OS is
3182  * trying to actually get data onto the media.
3183  */
3184 static
3185 int
3186 hammer_vop_strategy_write(struct vop_strategy_args *ap)
3187 {
3188 	hammer_record_t record;
3189 	hammer_mount_t hmp;
3190 	hammer_inode_t ip;
3191 	struct bio *bio;
3192 	struct buf *bp;
3193 	int blksize __debugvar;
3194 	int bytes;
3195 	int error;
3196 
3197 	bio = ap->a_bio;
3198 	bp = bio->bio_buf;
3199 	ip = ap->a_vp->v_data;
3200 	hmp = ip->hmp;
3201 
3202 	blksize = hammer_blocksize(bio->bio_offset);
3203 	KKASSERT(bp->b_bufsize == blksize);
3204 
3205 	if (ip->flags & HAMMER_INODE_RO) {
3206 		bp->b_error = EROFS;
3207 		bp->b_flags |= B_ERROR;
3208 		biodone(ap->a_bio);
3209 		return(EROFS);
3210 	}
3211 
3212 	lwkt_gettoken(&hmp->fs_token);
3213 
3214 	/*
3215 	 * Disallow swapcache operation on the vnode buffer if double
3216 	 * buffering is enabled, the swapcache will get the data via
3217 	 * the block device buffer.
3218 	 */
3219 	if (hammer_double_buffer)
3220 		bp->b_flags |= B_NOTMETA;
3221 
3222 	/*
3223 	 * Interlock with inode destruction (no in-kernel or directory
3224 	 * topology visibility).  If we queue new IO while trying to
3225 	 * destroy the inode we can deadlock the vtrunc call in
3226 	 * hammer_inode_unloadable_check().
3227 	 *
3228 	 * Besides, there's no point flushing a bp associated with an
3229 	 * inode that is being destroyed on-media and has no kernel
3230 	 * references.
3231 	 */
3232 	if ((ip->flags | ip->sync_flags) &
3233 	    (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) {
3234 		bp->b_resid = 0;
3235 		biodone(ap->a_bio);
3236 		lwkt_reltoken(&hmp->fs_token);
3237 		return(0);
3238 	}
3239 
3240 	/*
3241 	 * Reserve space and issue a direct-write from the front-end.
3242 	 * NOTE: The direct_io code will hammer_bread/bcopy smaller
3243 	 * allocations.
3244 	 *
3245 	 * An in-memory record will be installed to reference the storage
3246 	 * until the flusher can get to it.
3247 	 *
3248 	 * Since we own the high level bio the front-end will not try to
3249 	 * do a direct-read until the write completes.
3250 	 *
3251 	 * NOTE: The only time we do not reserve a full-sized buffers
3252 	 * worth of data is if the file is small.  We do not try to
3253 	 * allocate a fragment (from the small-data zone) at the end of
3254 	 * an otherwise large file as this can lead to wildly separated
3255 	 * data.
3256 	 */
3257 	KKASSERT((bio->bio_offset & HAMMER_BUFMASK) == 0);
3258 	KKASSERT(bio->bio_offset < ip->ino_data.size);
3259 	if (bio->bio_offset || ip->ino_data.size > HAMMER_HBUFSIZE)
3260 		bytes = bp->b_bufsize;
3261 	else
3262 		bytes = HAMMER_DATA_DOALIGN_WITH(int, ip->ino_data.size);
3263 
3264 	record = hammer_ip_add_bulk(ip, bio->bio_offset, bp->b_data,
3265 				    bytes, &error);
3266 
3267 	/*
3268 	 * B_VFSFLAG1 indicates that a REDO_WRITE entry was generated
3269 	 * in hammer_vop_write().  We must flag the record so the proper
3270 	 * REDO_TERM_WRITE entry is generated during the flush.
3271 	 */
3272 	if (record) {
3273 		if (bp->b_flags & B_VFSFLAG1) {
3274 			record->flags |= HAMMER_RECF_REDO;
3275 			bp->b_flags &= ~B_VFSFLAG1;
3276 		}
3277 		if (record->flags & HAMMER_RECF_DEDUPED) {
3278 			bp->b_resid = 0;
3279 			hammer_ip_replace_bulk(hmp, record);
3280 			biodone(ap->a_bio);
3281 		} else {
3282 			hammer_io_direct_write(hmp, bio, record);
3283 		}
3284 		if (ip->rsv_recs > 1 && hmp->rsv_recs > hammer_limit_recs)
3285 			hammer_flush_inode(ip, 0);
3286 	} else {
3287 		bp->b_bio2.bio_offset = NOOFFSET;
3288 		bp->b_error = error;
3289 		bp->b_flags |= B_ERROR;
3290 		biodone(ap->a_bio);
3291 	}
3292 	lwkt_reltoken(&hmp->fs_token);
3293 	return(error);
3294 }
3295 
3296 /*
3297  * dounlink - disconnect a directory entry
3298  *
3299  * XXX whiteout support not really in yet
3300  */
3301 static int
3302 hammer_dounlink(hammer_transaction_t trans, struct nchandle *nch,
3303 		struct vnode *dvp, struct ucred *cred,
3304 		int flags, int isdir)
3305 {
3306 	struct namecache *ncp;
3307 	hammer_inode_t dip;
3308 	hammer_inode_t ip;
3309 	hammer_mount_t hmp;
3310 	struct hammer_cursor cursor;
3311 	int64_t namekey;
3312 	uint32_t max_iterations;
3313 	int nlen, error;
3314 
3315 	/*
3316 	 * Calculate the namekey and setup the key range for the scan.  This
3317 	 * works kinda like a chained hash table where the lower 32 bits
3318 	 * of the namekey synthesize the chain.
3319 	 *
3320 	 * The key range is inclusive of both key_beg and key_end.
3321 	 */
3322 	dip = VTOI(dvp);
3323 	ncp = nch->ncp;
3324 	hmp = dip->hmp;
3325 
3326 	if (dip->flags & HAMMER_INODE_RO)
3327 		return (EROFS);
3328 
3329 	namekey = hammer_direntry_namekey(dip, ncp->nc_name, ncp->nc_nlen,
3330 					   &max_iterations);
3331 retry:
3332 	hammer_init_cursor(trans, &cursor, &dip->cache[1], dip);
3333 	cursor.key_beg.localization = dip->obj_localization |
3334 				      hammer_dir_localization(dip);
3335         cursor.key_beg.obj_id = dip->obj_id;
3336 	cursor.key_beg.key = namekey;
3337         cursor.key_beg.create_tid = 0;
3338         cursor.key_beg.delete_tid = 0;
3339         cursor.key_beg.rec_type = HAMMER_RECTYPE_DIRENTRY;
3340         cursor.key_beg.obj_type = 0;
3341 
3342 	cursor.key_end = cursor.key_beg;
3343 	cursor.key_end.key += max_iterations;
3344 	cursor.asof = dip->obj_asof;
3345 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
3346 
3347 	/*
3348 	 * Scan all matching records (the chain), locate the one matching
3349 	 * the requested path component.  info->last_error contains the
3350 	 * error code on search termination and could be 0, ENOENT, or
3351 	 * something else.
3352 	 *
3353 	 * The hammer_ip_*() functions merge in-memory records with on-disk
3354 	 * records for the purposes of the search.
3355 	 */
3356 	error = hammer_ip_first(&cursor);
3357 
3358 	while (error == 0) {
3359 		error = hammer_ip_resolve_data(&cursor);
3360 		if (error)
3361 			break;
3362 		nlen = cursor.leaf->data_len - HAMMER_ENTRY_NAME_OFF;
3363 		KKASSERT(nlen > 0);
3364 		if (ncp->nc_nlen == nlen &&
3365 		    bcmp(ncp->nc_name, cursor.data->entry.name, nlen) == 0) {
3366 			break;
3367 		}
3368 		error = hammer_ip_next(&cursor);
3369 	}
3370 
3371 	/*
3372 	 * If all is ok we have to get the inode so we can adjust nlinks.
3373 	 * To avoid a deadlock with the flusher we must release the inode
3374 	 * lock on the directory when acquiring the inode for the entry.
3375 	 *
3376 	 * If the target is a directory, it must be empty.
3377 	 */
3378 	if (error == 0) {
3379 		hammer_unlock(&cursor.ip->lock);
3380 		ip = hammer_get_inode(trans, dip, cursor.data->entry.obj_id,
3381 				      hmp->asof,
3382 				      cursor.data->entry.localization,
3383 				      0, &error);
3384 		hammer_lock_sh(&cursor.ip->lock);
3385 		if (error == ENOENT) {
3386 			hkprintf("WARNING: Removing dirent w/missing inode "
3387 				"\"%s\"\n"
3388 				"\tobj_id = %016jx\n",
3389 				ncp->nc_name,
3390 				(intmax_t)cursor.data->entry.obj_id);
3391 			error = 0;
3392 		}
3393 
3394 		/*
3395 		 * If isdir >= 0 we validate that the entry is or is not a
3396 		 * directory.  If isdir < 0 we don't care.
3397 		 */
3398 		if (error == 0 && isdir >= 0 && ip) {
3399 			if (isdir &&
3400 			    ip->ino_data.obj_type != HAMMER_OBJTYPE_DIRECTORY) {
3401 				error = ENOTDIR;
3402 			} else if (isdir == 0 &&
3403 			    ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
3404 				error = EISDIR;
3405 			}
3406 		}
3407 
3408 		/*
3409 		 * If we are trying to remove a directory the directory must
3410 		 * be empty.
3411 		 *
3412 		 * The check directory code can loop and deadlock/retry.  Our
3413 		 * own cursor's node locks must be released to avoid a 3-way
3414 		 * deadlock with the flusher if the check directory code
3415 		 * blocks.
3416 		 *
3417 		 * If any changes whatsoever have been made to the cursor
3418 		 * set EDEADLK and retry.
3419 		 *
3420 		 * WARNING: See warnings in hammer_unlock_cursor()
3421 		 *	    function.
3422 		 */
3423 		if (error == 0 && ip && ip->ino_data.obj_type ==
3424 				        HAMMER_OBJTYPE_DIRECTORY) {
3425 			hammer_unlock_cursor(&cursor);
3426 			error = hammer_ip_check_directory_empty(trans, ip);
3427 			hammer_lock_cursor(&cursor);
3428 			if (cursor.flags & HAMMER_CURSOR_RETEST) {
3429 				hkprintf("Warning: avoided deadlock "
3430 					"on rmdir '%s'\n",
3431 					ncp->nc_name);
3432 				error = EDEADLK;
3433 			}
3434 		}
3435 
3436 		/*
3437 		 * Delete the directory entry.
3438 		 *
3439 		 * WARNING: hammer_ip_del_direntry() may have to terminate
3440 		 * the cursor to avoid a deadlock.  It is ok to call
3441 		 * hammer_done_cursor() twice.
3442 		 */
3443 		if (error == 0) {
3444 			error = hammer_ip_del_direntry(trans, &cursor,
3445 							dip, ip);
3446 		}
3447 		hammer_done_cursor(&cursor);
3448 		if (error == 0) {
3449 			/*
3450 			 * Tell the namecache that we are now unlinked.
3451 			 */
3452 			cache_unlink(nch);
3453 
3454 			/*
3455 			 * NOTE: ip->vp, if non-NULL, cannot be directly
3456 			 *	 referenced without formally acquiring the
3457 			 *	 vp since the vp might have zero refs on it,
3458 			 *	 or in the middle of a reclaim, etc.
3459 			 *
3460 			 * NOTE: The cache_setunresolved() can rip the vp
3461 			 *	 out from under us since the vp may not have
3462 			 *	 any refs, in which case ip->vp will be NULL
3463 			 *	 from the outset.
3464 			 */
3465 			while (ip && ip->vp) {
3466 				struct vnode *vp;
3467 
3468 				error = hammer_get_vnode(ip, &vp);
3469 				if (error == 0 && vp) {
3470 					vn_unlock(vp);
3471 					hammer_knote(ip->vp, NOTE_DELETE);
3472 #if 0
3473 					/*
3474 					 * Don't do this, it can deadlock
3475 					 * on concurrent rm's of hardlinks.
3476 					 * Shouldn't be needed any more.
3477 					 */
3478 					cache_inval_vp(ip->vp, CINV_DESTROY);
3479 #endif
3480 					vrele(vp);
3481 					break;
3482 				}
3483 				hdkprintf("ip/vp race1 avoided\n");
3484 			}
3485 		}
3486 		if (ip)
3487 			hammer_rel_inode(ip, 0);
3488 	} else {
3489 		hammer_done_cursor(&cursor);
3490 	}
3491 	if (error == EDEADLK)
3492 		goto retry;
3493 
3494 	return (error);
3495 }
3496 
3497 /************************************************************************
3498  *			    FIFO AND SPECFS OPS				*
3499  ************************************************************************
3500  *
3501  */
3502 static int
3503 hammer_vop_fifoclose (struct vop_close_args *ap)
3504 {
3505 	/* XXX update itimes */
3506 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3507 }
3508 
3509 static int
3510 hammer_vop_fiforead (struct vop_read_args *ap)
3511 {
3512 	int error;
3513 
3514 	error = VOCALL(&fifo_vnode_vops, &ap->a_head);
3515 	/* XXX update access time */
3516 	return (error);
3517 }
3518 
3519 static int
3520 hammer_vop_fifowrite (struct vop_write_args *ap)
3521 {
3522 	int error;
3523 
3524 	error = VOCALL(&fifo_vnode_vops, &ap->a_head);
3525 	/* XXX update access time */
3526 	return (error);
3527 }
3528 
3529 static
3530 int
3531 hammer_vop_fifokqfilter(struct vop_kqfilter_args *ap)
3532 {
3533 	int error;
3534 
3535 	error = VOCALL(&fifo_vnode_vops, &ap->a_head);
3536 	if (error)
3537 		error = hammer_vop_kqfilter(ap);
3538 	return(error);
3539 }
3540 
3541 /************************************************************************
3542  *			    KQFILTER OPS				*
3543  ************************************************************************
3544  *
3545  */
3546 static void filt_hammerdetach(struct knote *kn);
3547 static int filt_hammerread(struct knote *kn, long hint);
3548 static int filt_hammerwrite(struct knote *kn, long hint);
3549 static int filt_hammervnode(struct knote *kn, long hint);
3550 
3551 static struct filterops hammerread_filtops =
3552 	{ FILTEROP_ISFD | FILTEROP_MPSAFE,
3553 	  NULL, filt_hammerdetach, filt_hammerread };
3554 static struct filterops hammerwrite_filtops =
3555 	{ FILTEROP_ISFD | FILTEROP_MPSAFE,
3556 	  NULL, filt_hammerdetach, filt_hammerwrite };
3557 static struct filterops hammervnode_filtops =
3558 	{ FILTEROP_ISFD | FILTEROP_MPSAFE,
3559 	  NULL, filt_hammerdetach, filt_hammervnode };
3560 
3561 static
3562 int
3563 hammer_vop_kqfilter(struct vop_kqfilter_args *ap)
3564 {
3565 	struct vnode *vp = ap->a_vp;
3566 	struct knote *kn = ap->a_kn;
3567 
3568 	switch (kn->kn_filter) {
3569 	case EVFILT_READ:
3570 		kn->kn_fop = &hammerread_filtops;
3571 		break;
3572 	case EVFILT_WRITE:
3573 		kn->kn_fop = &hammerwrite_filtops;
3574 		break;
3575 	case EVFILT_VNODE:
3576 		kn->kn_fop = &hammervnode_filtops;
3577 		break;
3578 	default:
3579 		return (EOPNOTSUPP);
3580 	}
3581 
3582 	kn->kn_hook = (caddr_t)vp;
3583 
3584 	knote_insert(&vp->v_pollinfo.vpi_kqinfo.ki_note, kn);
3585 
3586 	return(0);
3587 }
3588 
3589 static void
3590 filt_hammerdetach(struct knote *kn)
3591 {
3592 	struct vnode *vp = (void *)kn->kn_hook;
3593 
3594 	knote_remove(&vp->v_pollinfo.vpi_kqinfo.ki_note, kn);
3595 }
3596 
3597 static int
3598 filt_hammerread(struct knote *kn, long hint)
3599 {
3600 	struct vnode *vp = (void *)kn->kn_hook;
3601 	hammer_inode_t ip = VTOI(vp);
3602 	hammer_mount_t hmp = ip->hmp;
3603 	off_t off;
3604 
3605 	if (hint == NOTE_REVOKE) {
3606 		kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
3607 		return(1);
3608 	}
3609 	lwkt_gettoken(&hmp->fs_token);	/* XXX use per-ip-token */
3610 	off = ip->ino_data.size - kn->kn_fp->f_offset;
3611 	kn->kn_data = (off < INTPTR_MAX) ? off : INTPTR_MAX;
3612 	lwkt_reltoken(&hmp->fs_token);
3613 	if (kn->kn_sfflags & NOTE_OLDAPI)
3614 		return(1);
3615 	return (kn->kn_data != 0);
3616 }
3617 
3618 static int
3619 filt_hammerwrite(struct knote *kn, long hint)
3620 {
3621 	if (hint == NOTE_REVOKE)
3622 		kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
3623 	kn->kn_data = 0;
3624 	return (1);
3625 }
3626 
3627 static int
3628 filt_hammervnode(struct knote *kn, long hint)
3629 {
3630 	if (kn->kn_sfflags & hint)
3631 		kn->kn_fflags |= hint;
3632 	if (hint == NOTE_REVOKE) {
3633 		kn->kn_flags |= (EV_EOF | EV_NODATA);
3634 		return (1);
3635 	}
3636 	return (kn->kn_fflags != 0);
3637 }
3638 
3639