xref: /dragonfly/sys/vfs/hammer2/hammer2_admin.c (revision 5071e670)
1 /*
2  * Copyright (c) 2015-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * This module implements the hammer2 helper thread API, including
36  * the frontend/backend XOP API.
37  */
38 #include "hammer2.h"
39 
40 #define H2XOPDESCRIPTOR(label)					\
41 	hammer2_xop_desc_t hammer2_##label##_desc = {		\
42 		.storage_func = hammer2_xop_##label,		\
43 		.id = #label					\
44 	};							\
45 
46 H2XOPDESCRIPTOR(ipcluster);
47 H2XOPDESCRIPTOR(readdir);
48 H2XOPDESCRIPTOR(nresolve);
49 H2XOPDESCRIPTOR(unlink);
50 H2XOPDESCRIPTOR(nrename);
51 H2XOPDESCRIPTOR(scanlhc);
52 H2XOPDESCRIPTOR(scanall);
53 H2XOPDESCRIPTOR(lookup);
54 H2XOPDESCRIPTOR(delete);
55 H2XOPDESCRIPTOR(inode_mkdirent);
56 H2XOPDESCRIPTOR(inode_create);
57 H2XOPDESCRIPTOR(inode_create_det);
58 H2XOPDESCRIPTOR(inode_create_ins);
59 H2XOPDESCRIPTOR(inode_destroy);
60 H2XOPDESCRIPTOR(inode_chain_sync);
61 H2XOPDESCRIPTOR(inode_unlinkall);
62 H2XOPDESCRIPTOR(inode_connect);
63 H2XOPDESCRIPTOR(inode_flush);
64 H2XOPDESCRIPTOR(strategy_read);
65 H2XOPDESCRIPTOR(strategy_write);
66 
67 /*
68  * Set flags and wakeup any waiters.
69  *
70  * WARNING! During teardown (thr) can disappear the instant our cmpset
71  *	    succeeds.
72  */
73 void
74 hammer2_thr_signal(hammer2_thread_t *thr, uint32_t flags)
75 {
76 	uint32_t oflags;
77 	uint32_t nflags;
78 
79 	for (;;) {
80 		oflags = thr->flags;
81 		cpu_ccfence();
82 		nflags = (oflags | flags) & ~HAMMER2_THREAD_WAITING;
83 
84 		if (oflags & HAMMER2_THREAD_WAITING) {
85 			if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
86 				wakeup(&thr->flags);
87 				break;
88 			}
89 		} else {
90 			if (atomic_cmpset_int(&thr->flags, oflags, nflags))
91 				break;
92 		}
93 	}
94 }
95 
96 /*
97  * Set and clear flags and wakeup any waiters.
98  *
99  * WARNING! During teardown (thr) can disappear the instant our cmpset
100  *	    succeeds.
101  */
102 void
103 hammer2_thr_signal2(hammer2_thread_t *thr, uint32_t posflags, uint32_t negflags)
104 {
105 	uint32_t oflags;
106 	uint32_t nflags;
107 
108 	for (;;) {
109 		oflags = thr->flags;
110 		cpu_ccfence();
111 		nflags = (oflags | posflags) &
112 			~(negflags | HAMMER2_THREAD_WAITING);
113 		if (oflags & HAMMER2_THREAD_WAITING) {
114 			if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
115 				wakeup(&thr->flags);
116 				break;
117 			}
118 		} else {
119 			if (atomic_cmpset_int(&thr->flags, oflags, nflags))
120 				break;
121 		}
122 	}
123 }
124 
125 /*
126  * Wait until all the bits in flags are set.
127  *
128  * WARNING! During teardown (thr) can disappear the instant our cmpset
129  *	    succeeds.
130  */
131 void
132 hammer2_thr_wait(hammer2_thread_t *thr, uint32_t flags)
133 {
134 	uint32_t oflags;
135 	uint32_t nflags;
136 
137 	for (;;) {
138 		oflags = thr->flags;
139 		cpu_ccfence();
140 		if ((oflags & flags) == flags)
141 			break;
142 		nflags = oflags | HAMMER2_THREAD_WAITING;
143 		tsleep_interlock(&thr->flags, 0);
144 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
145 			tsleep(&thr->flags, PINTERLOCKED, "h2twait", hz*60);
146 		}
147 	}
148 }
149 
150 /*
151  * Wait until any of the bits in flags are set, with timeout.
152  *
153  * WARNING! During teardown (thr) can disappear the instant our cmpset
154  *	    succeeds.
155  */
156 int
157 hammer2_thr_wait_any(hammer2_thread_t *thr, uint32_t flags, int timo)
158 {
159 	uint32_t oflags;
160 	uint32_t nflags;
161 	int error;
162 
163 	error = 0;
164 	for (;;) {
165 		oflags = thr->flags;
166 		cpu_ccfence();
167 		if (oflags & flags)
168 			break;
169 		nflags = oflags | HAMMER2_THREAD_WAITING;
170 		tsleep_interlock(&thr->flags, 0);
171 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
172 			error = tsleep(&thr->flags, PINTERLOCKED,
173 				       "h2twait", timo);
174 		}
175 		if (error == ETIMEDOUT) {
176 			error = HAMMER2_ERROR_ETIMEDOUT;
177 			break;
178 		}
179 	}
180 	return error;
181 }
182 
183 /*
184  * Wait until the bits in flags are clear.
185  *
186  * WARNING! During teardown (thr) can disappear the instant our cmpset
187  *	    succeeds.
188  */
189 void
190 hammer2_thr_wait_neg(hammer2_thread_t *thr, uint32_t flags)
191 {
192 	uint32_t oflags;
193 	uint32_t nflags;
194 
195 	for (;;) {
196 		oflags = thr->flags;
197 		cpu_ccfence();
198 		if ((oflags & flags) == 0)
199 			break;
200 		nflags = oflags | HAMMER2_THREAD_WAITING;
201 		tsleep_interlock(&thr->flags, 0);
202 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
203 			tsleep(&thr->flags, PINTERLOCKED, "h2twait", hz*60);
204 		}
205 	}
206 }
207 
208 /*
209  * Initialize the supplied thread structure, starting the specified
210  * thread.
211  *
212  * NOTE: thr structure can be retained across mounts and unmounts for this
213  *	 pmp, so make sure the flags are in a sane state.
214  */
215 void
216 hammer2_thr_create(hammer2_thread_t *thr, hammer2_pfs_t *pmp,
217 		   hammer2_dev_t *hmp,
218 		   const char *id, int clindex, int repidx,
219 		   void (*func)(void *arg))
220 {
221 	thr->pmp = pmp;		/* xop helpers */
222 	thr->hmp = hmp;		/* bulkfree */
223 	thr->clindex = clindex;
224 	thr->repidx = repidx;
225 	TAILQ_INIT(&thr->xopq);
226 	atomic_clear_int(&thr->flags, HAMMER2_THREAD_STOP |
227 				      HAMMER2_THREAD_STOPPED |
228 				      HAMMER2_THREAD_FREEZE |
229 				      HAMMER2_THREAD_FROZEN);
230 	if (thr->scratch == NULL)
231 		thr->scratch = kmalloc(MAXPHYS, M_HAMMER2, M_WAITOK | M_ZERO);
232 	if (repidx >= 0) {
233 		lwkt_create(func, thr, &thr->td, NULL, 0, repidx % ncpus,
234 			    "%s-%s.%02d", id, pmp->pfs_names[clindex], repidx);
235 	} else if (pmp) {
236 		lwkt_create(func, thr, &thr->td, NULL, 0, -1,
237 			    "%s-%s", id, pmp->pfs_names[clindex]);
238 	} else {
239 		lwkt_create(func, thr, &thr->td, NULL, 0, -1, "%s", id);
240 	}
241 }
242 
243 /*
244  * Terminate a thread.  This function will silently return if the thread
245  * was never initialized or has already been deleted.
246  *
247  * This is accomplished by setting the STOP flag and waiting for the td
248  * structure to become NULL.
249  */
250 void
251 hammer2_thr_delete(hammer2_thread_t *thr)
252 {
253 	if (thr->td == NULL)
254 		return;
255 	hammer2_thr_signal(thr, HAMMER2_THREAD_STOP);
256 	hammer2_thr_wait(thr, HAMMER2_THREAD_STOPPED);
257 	thr->pmp = NULL;
258 	if (thr->scratch) {
259 		kfree(thr->scratch, M_HAMMER2);
260 		thr->scratch = NULL;
261 	}
262 	KKASSERT(TAILQ_EMPTY(&thr->xopq));
263 }
264 
265 /*
266  * Asynchronous remaster request.  Ask the synchronization thread to
267  * start over soon (as if it were frozen and unfrozen, but without waiting).
268  * The thread always recalculates mastership relationships when restarting.
269  */
270 void
271 hammer2_thr_remaster(hammer2_thread_t *thr)
272 {
273 	if (thr->td == NULL)
274 		return;
275 	hammer2_thr_signal(thr, HAMMER2_THREAD_REMASTER);
276 }
277 
278 void
279 hammer2_thr_freeze_async(hammer2_thread_t *thr)
280 {
281 	hammer2_thr_signal(thr, HAMMER2_THREAD_FREEZE);
282 }
283 
284 void
285 hammer2_thr_freeze(hammer2_thread_t *thr)
286 {
287 	if (thr->td == NULL)
288 		return;
289 	hammer2_thr_signal(thr, HAMMER2_THREAD_FREEZE);
290 	hammer2_thr_wait(thr, HAMMER2_THREAD_FROZEN);
291 }
292 
293 void
294 hammer2_thr_unfreeze(hammer2_thread_t *thr)
295 {
296 	if (thr->td == NULL)
297 		return;
298 	hammer2_thr_signal(thr, HAMMER2_THREAD_UNFREEZE);
299 	hammer2_thr_wait_neg(thr, HAMMER2_THREAD_FROZEN);
300 }
301 
302 int
303 hammer2_thr_break(hammer2_thread_t *thr)
304 {
305 	if (thr->flags & (HAMMER2_THREAD_STOP |
306 			  HAMMER2_THREAD_REMASTER |
307 			  HAMMER2_THREAD_FREEZE)) {
308 		return 1;
309 	}
310 	return 0;
311 }
312 
313 /****************************************************************************
314  *			    HAMMER2 XOPS API	 			    *
315  ****************************************************************************/
316 
317 void
318 hammer2_xop_group_init(hammer2_pfs_t *pmp, hammer2_xop_group_t *xgrp)
319 {
320 	/* no extra fields in structure at the moment */
321 }
322 
323 /*
324  * Allocate a XOP request.
325  *
326  * Once allocated a XOP request can be started, collected, and retired,
327  * and can be retired early if desired.
328  *
329  * NOTE: Fifo indices might not be zero but ri == wi on objcache_get().
330  */
331 void *
332 hammer2_xop_alloc(hammer2_inode_t *ip, int flags)
333 {
334 	hammer2_xop_t *xop;
335 
336 	xop = objcache_get(cache_xops, M_WAITOK);
337 	KKASSERT(xop->head.cluster.array[0].chain == NULL);
338 
339 	xop->head.ip1 = ip;
340 	xop->head.desc = NULL;
341 	xop->head.flags = flags;
342 	xop->head.state = 0;
343 	xop->head.error = 0;
344 	xop->head.collect_key = 0;
345 	xop->head.focus_dio = NULL;
346 
347 	if (flags & HAMMER2_XOP_MODIFYING)
348 		xop->head.mtid = hammer2_trans_sub(ip->pmp);
349 	else
350 		xop->head.mtid = 0;
351 
352 	xop->head.cluster.nchains = ip->cluster.nchains;
353 	xop->head.cluster.pmp = ip->pmp;
354 	xop->head.cluster.flags = HAMMER2_CLUSTER_LOCKED;
355 
356 	/*
357 	 * run_mask - Active thread (or frontend) associated with XOP
358 	 */
359 	xop->head.run_mask = HAMMER2_XOPMASK_VOP;
360 
361 	hammer2_inode_ref(ip);
362 
363 	return xop;
364 }
365 
366 void
367 hammer2_xop_setname(hammer2_xop_head_t *xop, const char *name, size_t name_len)
368 {
369 	xop->name1 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
370 	xop->name1_len = name_len;
371 	bcopy(name, xop->name1, name_len);
372 }
373 
374 void
375 hammer2_xop_setname2(hammer2_xop_head_t *xop, const char *name, size_t name_len)
376 {
377 	xop->name2 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
378 	xop->name2_len = name_len;
379 	bcopy(name, xop->name2, name_len);
380 }
381 
382 size_t
383 hammer2_xop_setname_inum(hammer2_xop_head_t *xop, hammer2_key_t inum)
384 {
385 	const size_t name_len = 18;
386 
387 	xop->name1 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
388 	xop->name1_len = name_len;
389 	ksnprintf(xop->name1, name_len + 1, "0x%016jx", (intmax_t)inum);
390 
391 	return name_len;
392 }
393 
394 
395 void
396 hammer2_xop_setip2(hammer2_xop_head_t *xop, hammer2_inode_t *ip2)
397 {
398 	xop->ip2 = ip2;
399 	hammer2_inode_ref(ip2);
400 }
401 
402 void
403 hammer2_xop_setip3(hammer2_xop_head_t *xop, hammer2_inode_t *ip3)
404 {
405 	xop->ip3 = ip3;
406 	hammer2_inode_ref(ip3);
407 }
408 
409 void
410 hammer2_xop_reinit(hammer2_xop_head_t *xop)
411 {
412 	xop->state = 0;
413 	xop->error = 0;
414 	xop->collect_key = 0;
415 	xop->run_mask = HAMMER2_XOPMASK_VOP;
416 }
417 
418 /*
419  * A mounted PFS needs Xops threads to support frontend operations.
420  */
421 void
422 hammer2_xop_helper_create(hammer2_pfs_t *pmp)
423 {
424 	int i;
425 	int j;
426 
427 	lockmgr(&pmp->lock, LK_EXCLUSIVE);
428 	pmp->has_xop_threads = 1;
429 
430 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
431 		for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
432 			if (pmp->xop_groups[j].thrs[i].td)
433 				continue;
434 			hammer2_thr_create(&pmp->xop_groups[j].thrs[i],
435 					   pmp, NULL,
436 					   "h2xop", i, j,
437 					   hammer2_primary_xops_thread);
438 		}
439 	}
440 	lockmgr(&pmp->lock, LK_RELEASE);
441 }
442 
443 void
444 hammer2_xop_helper_cleanup(hammer2_pfs_t *pmp)
445 {
446 	int i;
447 	int j;
448 
449 	for (i = 0; i < pmp->pfs_nmasters; ++i) {
450 		for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
451 			if (pmp->xop_groups[j].thrs[i].td)
452 				hammer2_thr_delete(&pmp->xop_groups[j].thrs[i]);
453 		}
454 	}
455 	pmp->has_xop_threads = 0;
456 }
457 
458 /*
459  * Start a XOP request, queueing it to all nodes in the cluster to
460  * execute the cluster op.
461  *
462  * XXX optimize single-target case.
463  */
464 void
465 hammer2_xop_start_except(hammer2_xop_head_t *xop, hammer2_xop_desc_t *desc,
466 			 int notidx)
467 {
468 	hammer2_inode_t *ip1;
469 	hammer2_pfs_t *pmp;
470 	hammer2_thread_t *thr;
471 	int i;
472 	int ng;
473 	int nchains;
474 
475 	ip1 = xop->ip1;
476 	pmp = ip1->pmp;
477 	if (pmp->has_xop_threads == 0)
478 		hammer2_xop_helper_create(pmp);
479 
480 	/*
481 	 * The intent of the XOP sequencer is to ensure that ops on the same
482 	 * inode execute in the same order.  This is necessary when issuing
483 	 * modifying operations to multiple targets because some targets might
484 	 * get behind and the frontend is allowed to complete the moment a
485 	 * quorum of targets succeed.
486 	 *
487 	 * Strategy operations must be segregated from non-strategy operations
488 	 * to avoid a deadlock.  For example, if a vfsync and a bread/bwrite
489 	 * were queued to the same worker thread, the locked buffer in the
490 	 * strategy operation can deadlock the vfsync's buffer list scan.
491 	 *
492 	 * TODO - RENAME fails here because it is potentially modifying
493 	 *	  three different inodes.
494 	 */
495 	if (xop->flags & HAMMER2_XOP_STRATEGY) {
496 		hammer2_xop_strategy_t *xopst;
497 
498 		xopst = &((hammer2_xop_t *)xop)->xop_strategy;
499 		ng = (int)(hammer2_icrc32(&xop->ip1, sizeof(xop->ip1)) ^
500 			   hammer2_icrc32(&xopst->lbase, sizeof(xopst->lbase)));
501 		ng = ng & (HAMMER2_XOPGROUPS_MASK >> 1);
502 		ng += HAMMER2_XOPGROUPS / 2;
503 	} else {
504 		ng = (int)(hammer2_icrc32(&xop->ip1, sizeof(xop->ip1)));
505 		ng = ng & (HAMMER2_XOPGROUPS_MASK >> 1);
506 	}
507 	xop->desc = desc;
508 
509 	/*
510 	 * The instant xop is queued another thread can pick it off.  In the
511 	 * case of asynchronous ops, another thread might even finish and
512 	 * deallocate it.
513 	 */
514 	hammer2_spin_ex(&pmp->xop_spin);
515 	nchains = ip1->cluster.nchains;
516 	for (i = 0; i < nchains; ++i) {
517 		/*
518 		 * XXX ip1->cluster.array* not stable here.  This temporary
519 		 *     hack fixes basic issues in target XOPs which need to
520 		 *     obtain a starting chain from the inode but does not
521 		 *     address possible races against inode updates which
522 		 *     might NULL-out a chain.
523 		 */
524 		if (i != notidx && ip1->cluster.array[i].chain) {
525 			thr = &pmp->xop_groups[ng].thrs[i];
526 			atomic_set_64(&xop->run_mask, 1LLU << i);
527 			atomic_set_64(&xop->chk_mask, 1LLU << i);
528 			xop->collect[i].thr = thr;
529 			TAILQ_INSERT_TAIL(&thr->xopq, xop, collect[i].entry);
530 		}
531 	}
532 	hammer2_spin_unex(&pmp->xop_spin);
533 	/* xop can become invalid at this point */
534 
535 	/*
536 	 * Each thread has its own xopq
537 	 */
538 	for (i = 0; i < nchains; ++i) {
539 		if (i != notidx) {
540 			thr = &pmp->xop_groups[ng].thrs[i];
541 			hammer2_thr_signal(thr, HAMMER2_THREAD_XOPQ);
542 		}
543 	}
544 }
545 
546 void
547 hammer2_xop_start(hammer2_xop_head_t *xop, hammer2_xop_desc_t *desc)
548 {
549 	hammer2_xop_start_except(xop, desc, -1);
550 }
551 
552 /*
553  * Retire a XOP.  Used by both the VOP frontend and by the XOP backend.
554  */
555 void
556 hammer2_xop_retire(hammer2_xop_head_t *xop, uint64_t mask)
557 {
558 	hammer2_chain_t *chain;
559 	uint64_t nmask;
560 	int i;
561 
562 	/*
563 	 * Remove the frontend collector or remove a backend feeder.
564 	 *
565 	 * When removing the frontend we must wakeup any backend feeders
566 	 * who are waiting for FIFO space.
567 	 *
568 	 * When removing the last backend feeder we must wakeup any waiting
569 	 * frontend.
570 	 */
571 	KKASSERT(xop->run_mask & mask);
572 	nmask = atomic_fetchadd_64(&xop->run_mask,
573 				   -mask + HAMMER2_XOPMASK_FEED);
574 
575 	/*
576 	 * More than one entity left
577 	 */
578 	if ((nmask & HAMMER2_XOPMASK_ALLDONE) != mask) {
579 		/*
580 		 * Frontend terminating, wakeup any backends waiting on
581 		 * fifo full.
582 		 *
583 		 * NOTE!!! The xop can get ripped out from under us at
584 		 *	   this point, so do not reference it again.
585 		 *	   The wakeup(xop) doesn't touch the xop and
586 		 *	   is ok.
587 		 */
588 		if (mask == HAMMER2_XOPMASK_VOP) {
589 			if (nmask & HAMMER2_XOPMASK_FIFOW)
590 				wakeup(xop);
591 		}
592 
593 		/*
594 		 * Wakeup frontend if the last backend is terminating.
595 		 */
596 		nmask -= mask;
597 		if ((nmask & HAMMER2_XOPMASK_ALLDONE) == HAMMER2_XOPMASK_VOP) {
598 			if (nmask & HAMMER2_XOPMASK_WAIT)
599 				wakeup(xop);
600 		}
601 
602 		return;
603 	}
604 	/* else nobody else left, we can ignore FIFOW */
605 
606 	/*
607 	 * All collectors are gone, we can cleanup and dispose of the XOP.
608 	 * Note that this can wind up being a frontend OR a backend.
609 	 * Pending chains are locked shared and not owned by any thread.
610 	 *
611 	 * Cleanup the collection cluster.
612 	 */
613 	for (i = 0; i < xop->cluster.nchains; ++i) {
614 		xop->cluster.array[i].flags = 0;
615 		chain = xop->cluster.array[i].chain;
616 		if (chain) {
617 			xop->cluster.array[i].chain = NULL;
618 			hammer2_chain_drop_unhold(chain);
619 		}
620 	}
621 
622 	/*
623 	 * Cleanup the fifos.  Since we are the only entity left on this
624 	 * xop we don't have to worry about fifo flow control, and one
625 	 * lfence() will do the job.
626 	 */
627 	cpu_lfence();
628 	mask = xop->chk_mask;
629 	for (i = 0; mask && i < HAMMER2_MAXCLUSTER; ++i) {
630 		hammer2_xop_fifo_t *fifo = &xop->collect[i];
631 		while (fifo->ri != fifo->wi) {
632 			chain = fifo->array[fifo->ri & HAMMER2_XOPFIFO_MASK];
633 			if (chain)
634 				hammer2_chain_drop_unhold(chain);
635 			++fifo->ri;
636 		}
637 		mask &= ~(1U << i);
638 	}
639 
640 	/*
641 	 * The inode is only held at this point, simply drop it.
642 	 */
643 	if (xop->ip1) {
644 		hammer2_inode_drop(xop->ip1);
645 		xop->ip1 = NULL;
646 	}
647 	if (xop->ip2) {
648 		hammer2_inode_drop(xop->ip2);
649 		xop->ip2 = NULL;
650 	}
651 	if (xop->ip3) {
652 		hammer2_inode_drop(xop->ip3);
653 		xop->ip3 = NULL;
654 	}
655 	if (xop->name1) {
656 		kfree(xop->name1, M_HAMMER2);
657 		xop->name1 = NULL;
658 		xop->name1_len = 0;
659 	}
660 	if (xop->name2) {
661 		kfree(xop->name2, M_HAMMER2);
662 		xop->name2 = NULL;
663 		xop->name2_len = 0;
664 	}
665 
666 	objcache_put(cache_xops, xop);
667 }
668 
669 /*
670  * (Backend) Returns non-zero if the frontend is still attached.
671  */
672 int
673 hammer2_xop_active(hammer2_xop_head_t *xop)
674 {
675 	if (xop->run_mask & HAMMER2_XOPMASK_VOP)
676 		return 1;
677 	else
678 		return 0;
679 }
680 
681 /*
682  * (Backend) Feed chain data through the cluster validator and back to
683  * the frontend.  Chains are fed from multiple nodes concurrently
684  * and pipelined via per-node FIFOs in the XOP.
685  *
686  * The chain must be locked (either shared or exclusive).  The caller may
687  * unlock and drop the chain on return.  This function will add an extra
688  * ref and hold the chain's data for the pass-back.
689  *
690  * No xop lock is needed because we are only manipulating fields under
691  * our direct control.
692  *
693  * Returns 0 on success and a hammer2 error code if sync is permanently
694  * lost.  The caller retains a ref on the chain but by convention
695  * the lock is typically inherited by the xop (caller loses lock).
696  *
697  * Returns non-zero on error.  In this situation the caller retains a
698  * ref on the chain but loses the lock (we unlock here).
699  */
700 int
701 hammer2_xop_feed(hammer2_xop_head_t *xop, hammer2_chain_t *chain,
702 		 int clindex, int error)
703 {
704 	hammer2_xop_fifo_t *fifo;
705 	uint64_t mask;
706 
707 	/*
708 	 * Early termination (typicaly of xop_readir)
709 	 */
710 	if (hammer2_xop_active(xop) == 0) {
711 		error = HAMMER2_ERROR_ABORTED;
712 		goto done;
713 	}
714 
715 	/*
716 	 * Multi-threaded entry into the XOP collector.  We own the
717 	 * fifo->wi for our clindex.
718 	 */
719 	fifo = &xop->collect[clindex];
720 
721 	if (fifo->ri == fifo->wi - HAMMER2_XOPFIFO)
722 		lwkt_yield();
723 	while (fifo->ri == fifo->wi - HAMMER2_XOPFIFO) {
724 		atomic_set_int(&fifo->flags, HAMMER2_XOP_FIFO_STALL);
725 		mask = xop->run_mask;
726 		if ((mask & HAMMER2_XOPMASK_VOP) == 0) {
727 			error = HAMMER2_ERROR_ABORTED;
728 			goto done;
729 		}
730 		tsleep_interlock(xop, 0);
731 		if (atomic_cmpset_64(&xop->run_mask, mask,
732 				     mask | HAMMER2_XOPMASK_FIFOW)) {
733 			if (fifo->ri == fifo->wi - HAMMER2_XOPFIFO) {
734 				tsleep(xop, PINTERLOCKED, "h2feed", hz*60);
735 			}
736 		}
737 		/* retry */
738 	}
739 	atomic_clear_int(&fifo->flags, HAMMER2_XOP_FIFO_STALL);
740 	if (chain)
741 		hammer2_chain_ref_hold(chain);
742 	if (error == 0 && chain)
743 		error = chain->error;
744 	fifo->errors[fifo->wi & HAMMER2_XOPFIFO_MASK] = error;
745 	fifo->array[fifo->wi & HAMMER2_XOPFIFO_MASK] = chain;
746 	cpu_sfence();
747 	++fifo->wi;
748 
749 	mask = atomic_fetchadd_64(&xop->run_mask, HAMMER2_XOPMASK_FEED);
750 	if (mask & HAMMER2_XOPMASK_WAIT) {
751 		atomic_clear_64(&xop->run_mask, HAMMER2_XOPMASK_WAIT);
752 		wakeup(xop);
753 	}
754 	error = 0;
755 
756 	/*
757 	 * Cleanup.  If an error occurred we eat the lock.  If no error
758 	 * occurred the fifo inherits the lock and gains an additional ref.
759 	 *
760 	 * The caller's ref remains in both cases.
761 	 */
762 done:
763 	return error;
764 }
765 
766 /*
767  * (Frontend) collect a response from a running cluster op.
768  *
769  * Responses are fed from all appropriate nodes concurrently
770  * and collected into a cohesive response >= collect_key.
771  *
772  * The collector will return the instant quorum or other requirements
773  * are met, even if some nodes get behind or become non-responsive.
774  *
775  * HAMMER2_XOP_COLLECT_NOWAIT	- Used to 'poll' a completed collection,
776  *				  usually called synchronously from the
777  *				  node XOPs for the strategy code to
778  *				  fake the frontend collection and complete
779  *				  the BIO as soon as possible.
780  *
781  * HAMMER2_XOP_SYNCHRONIZER	- Reqeuest synchronization with a particular
782  *				  cluster index, prevents looping when that
783  *				  index is out of sync so caller can act on
784  *				  the out of sync element.  ESRCH and EDEADLK
785  *				  can be returned if this flag is specified.
786  *
787  * Returns 0 on success plus a filled out xop->cluster structure.
788  * Return ENOENT on normal termination.
789  * Otherwise return an error.
790  *
791  * WARNING! If the xop returns a cluster with a non-NULL focus, note that
792  *	    none of the chains in the cluster (or the focus) are either
793  *	    locked or I/O synchronized with the cpu.  hammer2_xop_gdata()
794  *	    and hammer2_xop_pdata() must be used to safely access the focus
795  *	    chain's content.
796  *
797  *	    The frontend can make certain assumptions based on higher-level
798  *	    locking done by the frontend, but data integrity absolutely
799  *	    requires using the gdata/pdata API.
800  */
801 int
802 hammer2_xop_collect(hammer2_xop_head_t *xop, int flags)
803 {
804 	hammer2_xop_fifo_t *fifo;
805 	hammer2_chain_t *chain;
806 	hammer2_key_t lokey;
807 	uint64_t mask;
808 	int error;
809 	int keynull;
810 	int adv;		/* advance the element */
811 	int i;
812 
813 loop:
814 	/*
815 	 * First loop tries to advance pieces of the cluster which
816 	 * are out of sync.
817 	 */
818 	lokey = HAMMER2_KEY_MAX;
819 	keynull = HAMMER2_CHECK_NULL;
820 	mask = xop->run_mask;
821 	cpu_lfence();
822 
823 	for (i = 0; i < xop->cluster.nchains; ++i) {
824 		chain = xop->cluster.array[i].chain;
825 		if (chain == NULL) {
826 			adv = 1;
827 		} else if (chain->bref.key < xop->collect_key) {
828 			adv = 1;
829 		} else {
830 			keynull &= ~HAMMER2_CHECK_NULL;
831 			if (lokey > chain->bref.key)
832 				lokey = chain->bref.key;
833 			adv = 0;
834 		}
835 		if (adv == 0)
836 			continue;
837 
838 		/*
839 		 * Advance element if possible, advanced element may be NULL.
840 		 */
841 		if (chain)
842 			hammer2_chain_drop_unhold(chain);
843 
844 		fifo = &xop->collect[i];
845 		if (fifo->ri != fifo->wi) {
846 			cpu_lfence();
847 			chain = fifo->array[fifo->ri & HAMMER2_XOPFIFO_MASK];
848 			error = fifo->errors[fifo->ri & HAMMER2_XOPFIFO_MASK];
849 			++fifo->ri;
850 			xop->cluster.array[i].chain = chain;
851 			xop->cluster.array[i].error = error;
852 			if (chain == NULL) {
853 				/* XXX */
854 				xop->cluster.array[i].flags |=
855 							HAMMER2_CITEM_NULL;
856 			}
857 			if (fifo->wi - fifo->ri <= HAMMER2_XOPFIFO / 2) {
858 				if (fifo->flags & HAMMER2_XOP_FIFO_STALL) {
859 					atomic_clear_int(&fifo->flags,
860 						    HAMMER2_XOP_FIFO_STALL);
861 					wakeup(xop);
862 					lwkt_yield();
863 				}
864 			}
865 			--i;		/* loop on same index */
866 		} else {
867 			/*
868 			 * Retain CITEM_NULL flag.  If set just repeat EOF.
869 			 * If not, the NULL,0 combination indicates an
870 			 * operation in-progress.
871 			 */
872 			xop->cluster.array[i].chain = NULL;
873 			/* retain any CITEM_NULL setting */
874 		}
875 	}
876 
877 	/*
878 	 * Determine whether the lowest collected key meets clustering
879 	 * requirements.  Returns:
880 	 *
881 	 * 0	 	 - key valid, cluster can be returned.
882 	 *
883 	 * ENOENT	 - normal end of scan, return ENOENT.
884 	 *
885 	 * ESRCH	 - sufficient elements collected, quorum agreement
886 	 *		   that lokey is not a valid element and should be
887 	 *		   skipped.
888 	 *
889 	 * EDEADLK	 - sufficient elements collected, no quorum agreement
890 	 *		   (and no agreement possible).  In this situation a
891 	 *		   repair is needed, for now we loop.
892 	 *
893 	 * EINPROGRESS	 - insufficient elements collected to resolve, wait
894 	 *		   for event and loop.
895 	 */
896 	if ((flags & HAMMER2_XOP_COLLECT_WAITALL) &&
897 	    (mask & HAMMER2_XOPMASK_ALLDONE) != HAMMER2_XOPMASK_VOP) {
898 		error = HAMMER2_ERROR_EINPROGRESS;
899 	} else {
900 		error = hammer2_cluster_check(&xop->cluster, lokey, keynull);
901 	}
902 	if (error == HAMMER2_ERROR_EINPROGRESS) {
903 		if (flags & HAMMER2_XOP_COLLECT_NOWAIT)
904 			goto done;
905 		tsleep_interlock(xop, 0);
906 		if (atomic_cmpset_64(&xop->run_mask,
907 				     mask, mask | HAMMER2_XOPMASK_WAIT)) {
908 			tsleep(xop, PINTERLOCKED, "h2coll", hz*60);
909 		}
910 		goto loop;
911 	}
912 	if (error == HAMMER2_ERROR_ESRCH) {
913 		if (lokey != HAMMER2_KEY_MAX) {
914 			xop->collect_key = lokey + 1;
915 			goto loop;
916 		}
917 		error = HAMMER2_ERROR_ENOENT;
918 	}
919 	if (error == HAMMER2_ERROR_EDEADLK) {
920 		kprintf("hammer2: no quorum possible lokey %016jx\n",
921 			lokey);
922 		if (lokey != HAMMER2_KEY_MAX) {
923 			xop->collect_key = lokey + 1;
924 			goto loop;
925 		}
926 		error = HAMMER2_ERROR_ENOENT;
927 	}
928 	if (lokey == HAMMER2_KEY_MAX)
929 		xop->collect_key = lokey;
930 	else
931 		xop->collect_key = lokey + 1;
932 done:
933 	return error;
934 }
935 
936 /*
937  * N x M processing threads are available to handle XOPs, N per cluster
938  * index x M cluster nodes.
939  *
940  * Locate and return the next runnable xop, or NULL if no xops are
941  * present or none of the xops are currently runnable (for various reasons).
942  * The xop is left on the queue and serves to block other dependent xops
943  * from being run.
944  *
945  * Dependent xops will not be returned.
946  *
947  * Sets HAMMER2_XOP_FIFO_RUN on the returned xop or returns NULL.
948  *
949  * NOTE! Xops run concurrently for each cluster index.
950  */
951 #define XOP_HASH_SIZE	16
952 #define XOP_HASH_MASK	(XOP_HASH_SIZE - 1)
953 
954 static __inline
955 int
956 xop_testhash(hammer2_thread_t *thr, hammer2_inode_t *ip, uint32_t *hash)
957 {
958 	uint32_t mask;
959 	int hv;
960 
961 	hv = (int)((uintptr_t)ip + (uintptr_t)thr) / sizeof(hammer2_inode_t);
962 	mask = 1U << (hv & 31);
963 	hv >>= 5;
964 
965 	return ((int)(hash[hv & XOP_HASH_MASK] & mask));
966 }
967 
968 static __inline
969 void
970 xop_sethash(hammer2_thread_t *thr, hammer2_inode_t *ip, uint32_t *hash)
971 {
972 	uint32_t mask;
973 	int hv;
974 
975 	hv = (int)((uintptr_t)ip + (uintptr_t)thr) / sizeof(hammer2_inode_t);
976 	mask = 1U << (hv & 31);
977 	hv >>= 5;
978 
979 	hash[hv & XOP_HASH_MASK] |= mask;
980 }
981 
982 static
983 hammer2_xop_head_t *
984 hammer2_xop_next(hammer2_thread_t *thr)
985 {
986 	hammer2_pfs_t *pmp = thr->pmp;
987 	int clindex = thr->clindex;
988 	uint32_t hash[XOP_HASH_SIZE] = { 0 };
989 	hammer2_xop_head_t *xop;
990 
991 	hammer2_spin_ex(&pmp->xop_spin);
992 	TAILQ_FOREACH(xop, &thr->xopq, collect[clindex].entry) {
993 		/*
994 		 * Check dependency
995 		 */
996 		if (xop_testhash(thr, xop->ip1, hash) ||
997 		    (xop->ip2 && xop_testhash(thr, xop->ip2, hash)) ||
998 		    (xop->ip3 && xop_testhash(thr, xop->ip3, hash))) {
999 			continue;
1000 		}
1001 		xop_sethash(thr, xop->ip1, hash);
1002 		if (xop->ip2)
1003 			xop_sethash(thr, xop->ip2, hash);
1004 		if (xop->ip3)
1005 			xop_sethash(thr, xop->ip3, hash);
1006 
1007 		/*
1008 		 * Check already running
1009 		 */
1010 		if (xop->collect[clindex].flags & HAMMER2_XOP_FIFO_RUN)
1011 			continue;
1012 
1013 		/*
1014 		 * Found a good one, return it.
1015 		 */
1016 		atomic_set_int(&xop->collect[clindex].flags,
1017 			       HAMMER2_XOP_FIFO_RUN);
1018 		break;
1019 	}
1020 	hammer2_spin_unex(&pmp->xop_spin);
1021 
1022 	return xop;
1023 }
1024 
1025 /*
1026  * Remove the completed XOP from the queue, clear HAMMER2_XOP_FIFO_RUN.
1027  *
1028  * NOTE! Xops run concurrently for each cluster index.
1029  */
1030 static
1031 void
1032 hammer2_xop_dequeue(hammer2_thread_t *thr, hammer2_xop_head_t *xop)
1033 {
1034 	hammer2_pfs_t *pmp = thr->pmp;
1035 	int clindex = thr->clindex;
1036 
1037 	hammer2_spin_ex(&pmp->xop_spin);
1038 	TAILQ_REMOVE(&thr->xopq, xop, collect[clindex].entry);
1039 	atomic_clear_int(&xop->collect[clindex].flags,
1040 			 HAMMER2_XOP_FIFO_RUN);
1041 	hammer2_spin_unex(&pmp->xop_spin);
1042 	if (TAILQ_FIRST(&thr->xopq))
1043 		hammer2_thr_signal(thr, HAMMER2_THREAD_XOPQ);
1044 }
1045 
1046 /*
1047  * Primary management thread for xops support.  Each node has several such
1048  * threads which replicate front-end operations on cluster nodes.
1049  *
1050  * XOPS thread node operations, allowing the function to focus on a single
1051  * node in the cluster after validating the operation with the cluster.
1052  * This is primarily what prevents dead or stalled nodes from stalling
1053  * the front-end.
1054  */
1055 void
1056 hammer2_primary_xops_thread(void *arg)
1057 {
1058 	hammer2_thread_t *thr = arg;
1059 	hammer2_pfs_t *pmp;
1060 	hammer2_xop_head_t *xop;
1061 	uint64_t mask;
1062 	uint32_t flags;
1063 	uint32_t nflags;
1064 	hammer2_xop_desc_t *last_desc = NULL;
1065 
1066 	pmp = thr->pmp;
1067 	/*xgrp = &pmp->xop_groups[thr->repidx]; not needed */
1068 	mask = 1LLU << thr->clindex;
1069 
1070 	for (;;) {
1071 		flags = thr->flags;
1072 
1073 		/*
1074 		 * Handle stop request
1075 		 */
1076 		if (flags & HAMMER2_THREAD_STOP)
1077 			break;
1078 
1079 		/*
1080 		 * Handle freeze request
1081 		 */
1082 		if (flags & HAMMER2_THREAD_FREEZE) {
1083 			hammer2_thr_signal2(thr, HAMMER2_THREAD_FROZEN,
1084 						 HAMMER2_THREAD_FREEZE);
1085 			continue;
1086 		}
1087 
1088 		if (flags & HAMMER2_THREAD_UNFREEZE) {
1089 			hammer2_thr_signal2(thr, 0,
1090 						 HAMMER2_THREAD_FROZEN |
1091 						 HAMMER2_THREAD_UNFREEZE);
1092 			continue;
1093 		}
1094 
1095 		/*
1096 		 * Force idle if frozen until unfrozen or stopped.
1097 		 */
1098 		if (flags & HAMMER2_THREAD_FROZEN) {
1099 			hammer2_thr_wait_any(thr,
1100 					     HAMMER2_THREAD_UNFREEZE |
1101 					     HAMMER2_THREAD_STOP,
1102 					     0);
1103 			continue;
1104 		}
1105 
1106 		/*
1107 		 * Reset state on REMASTER request
1108 		 */
1109 		if (flags & HAMMER2_THREAD_REMASTER) {
1110 			hammer2_thr_signal2(thr, 0, HAMMER2_THREAD_REMASTER);
1111 			/* reset state here */
1112 			continue;
1113 		}
1114 
1115 		/*
1116 		 * Process requests.  Each request can be multi-queued.
1117 		 *
1118 		 * If we get behind and the frontend VOP is no longer active,
1119 		 * we retire the request without processing it.  The callback
1120 		 * may also abort processing if the frontend VOP becomes
1121 		 * inactive.
1122 		 */
1123 		if (flags & HAMMER2_THREAD_XOPQ) {
1124 			nflags = flags & ~HAMMER2_THREAD_XOPQ;
1125 			if (!atomic_cmpset_int(&thr->flags, flags, nflags))
1126 				continue;
1127 			flags = nflags;
1128 			/* fall through */
1129 		}
1130 		while ((xop = hammer2_xop_next(thr)) != NULL) {
1131 			if (hammer2_xop_active(xop)) {
1132 				last_desc = xop->desc;
1133 				xop->desc->storage_func((hammer2_xop_t *)xop,
1134 							thr->scratch,
1135 							thr->clindex);
1136 				hammer2_xop_dequeue(thr, xop);
1137 				hammer2_xop_retire(xop, mask);
1138 			} else {
1139 				last_desc = xop->desc;
1140 				hammer2_xop_feed(xop, NULL, thr->clindex,
1141 						 ECONNABORTED);
1142 				hammer2_xop_dequeue(thr, xop);
1143 				hammer2_xop_retire(xop, mask);
1144 			}
1145 		}
1146 
1147 		/*
1148 		 * Wait for event, interlock using THREAD_WAITING and
1149 		 * THREAD_SIGNAL.
1150 		 *
1151 		 * For robustness poll on a 30-second interval, but nominally
1152 		 * expect to be woken up.
1153 		 */
1154 		nflags = flags | HAMMER2_THREAD_WAITING;
1155 
1156 		tsleep_interlock(&thr->flags, 0);
1157 		if (atomic_cmpset_int(&thr->flags, flags, nflags)) {
1158 			tsleep(&thr->flags, PINTERLOCKED, "h2idle", hz*30);
1159 		}
1160 	}
1161 
1162 #if 0
1163 	/*
1164 	 * Cleanup / termination
1165 	 */
1166 	while ((xop = TAILQ_FIRST(&thr->xopq)) != NULL) {
1167 		kprintf("hammer2_thread: aborting xop %s\n", xop->desc->id);
1168 		TAILQ_REMOVE(&thr->xopq, xop,
1169 			     collect[thr->clindex].entry);
1170 		hammer2_xop_retire(xop, mask);
1171 	}
1172 #endif
1173 	thr->td = NULL;
1174 	hammer2_thr_signal(thr, HAMMER2_THREAD_STOPPED);
1175 	/* thr structure can go invalid after this point */
1176 }
1177