xref: /dragonfly/sys/vfs/hammer2/hammer2_admin.c (revision 8e34d37e)
1 /*
2  * Copyright (c) 2015-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * This module implements the hammer2 helper thread API, including
36  * the frontend/backend XOP API.
37  */
38 #include "hammer2.h"
39 
40 #define H2XOPDESCRIPTOR(label)					\
41 	hammer2_xop_desc_t hammer2_##label##_desc = {		\
42 		.storage_func = hammer2_xop_##label,		\
43 		.id = #label					\
44 	}
45 
46 H2XOPDESCRIPTOR(ipcluster);
47 H2XOPDESCRIPTOR(readdir);
48 H2XOPDESCRIPTOR(nresolve);
49 H2XOPDESCRIPTOR(unlink);
50 H2XOPDESCRIPTOR(nrename);
51 H2XOPDESCRIPTOR(scanlhc);
52 H2XOPDESCRIPTOR(scanall);
53 H2XOPDESCRIPTOR(lookup);
54 H2XOPDESCRIPTOR(delete);
55 H2XOPDESCRIPTOR(inode_mkdirent);
56 H2XOPDESCRIPTOR(inode_create);
57 H2XOPDESCRIPTOR(inode_create_det);
58 H2XOPDESCRIPTOR(inode_create_ins);
59 H2XOPDESCRIPTOR(inode_destroy);
60 H2XOPDESCRIPTOR(inode_chain_sync);
61 H2XOPDESCRIPTOR(inode_unlinkall);
62 H2XOPDESCRIPTOR(inode_connect);
63 H2XOPDESCRIPTOR(inode_flush);
64 H2XOPDESCRIPTOR(strategy_read);
65 H2XOPDESCRIPTOR(strategy_write);
66 
67 /*
68  * Set flags and wakeup any waiters.
69  *
70  * WARNING! During teardown (thr) can disappear the instant our cmpset
71  *	    succeeds.
72  */
73 void
74 hammer2_thr_signal(hammer2_thread_t *thr, uint32_t flags)
75 {
76 	uint32_t oflags;
77 	uint32_t nflags;
78 
79 	for (;;) {
80 		oflags = thr->flags;
81 		cpu_ccfence();
82 		nflags = (oflags | flags) & ~HAMMER2_THREAD_WAITING;
83 
84 		if (oflags & HAMMER2_THREAD_WAITING) {
85 			if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
86 				wakeup(&thr->flags);
87 				break;
88 			}
89 		} else {
90 			if (atomic_cmpset_int(&thr->flags, oflags, nflags))
91 				break;
92 		}
93 	}
94 }
95 
96 /*
97  * Set and clear flags and wakeup any waiters.
98  *
99  * WARNING! During teardown (thr) can disappear the instant our cmpset
100  *	    succeeds.
101  */
102 void
103 hammer2_thr_signal2(hammer2_thread_t *thr, uint32_t posflags, uint32_t negflags)
104 {
105 	uint32_t oflags;
106 	uint32_t nflags;
107 
108 	for (;;) {
109 		oflags = thr->flags;
110 		cpu_ccfence();
111 		nflags = (oflags | posflags) &
112 			~(negflags | HAMMER2_THREAD_WAITING);
113 		if (oflags & HAMMER2_THREAD_WAITING) {
114 			if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
115 				wakeup(&thr->flags);
116 				break;
117 			}
118 		} else {
119 			if (atomic_cmpset_int(&thr->flags, oflags, nflags))
120 				break;
121 		}
122 	}
123 }
124 
125 /*
126  * Wait until all the bits in flags are set.
127  *
128  * WARNING! During teardown (thr) can disappear the instant our cmpset
129  *	    succeeds.
130  */
131 void
132 hammer2_thr_wait(hammer2_thread_t *thr, uint32_t flags)
133 {
134 	uint32_t oflags;
135 	uint32_t nflags;
136 
137 	for (;;) {
138 		oflags = thr->flags;
139 		cpu_ccfence();
140 		if ((oflags & flags) == flags)
141 			break;
142 		nflags = oflags | HAMMER2_THREAD_WAITING;
143 		tsleep_interlock(&thr->flags, 0);
144 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
145 			tsleep(&thr->flags, PINTERLOCKED, "h2twait", hz*60);
146 		}
147 	}
148 }
149 
150 /*
151  * Wait until any of the bits in flags are set, with timeout.
152  *
153  * WARNING! During teardown (thr) can disappear the instant our cmpset
154  *	    succeeds.
155  */
156 int
157 hammer2_thr_wait_any(hammer2_thread_t *thr, uint32_t flags, int timo)
158 {
159 	uint32_t oflags;
160 	uint32_t nflags;
161 	int error;
162 
163 	error = 0;
164 	for (;;) {
165 		oflags = thr->flags;
166 		cpu_ccfence();
167 		if (oflags & flags)
168 			break;
169 		nflags = oflags | HAMMER2_THREAD_WAITING;
170 		tsleep_interlock(&thr->flags, 0);
171 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
172 			error = tsleep(&thr->flags, PINTERLOCKED,
173 				       "h2twait", timo);
174 		}
175 		if (error == ETIMEDOUT) {
176 			error = HAMMER2_ERROR_ETIMEDOUT;
177 			break;
178 		}
179 	}
180 	return error;
181 }
182 
183 /*
184  * Wait until the bits in flags are clear.
185  *
186  * WARNING! During teardown (thr) can disappear the instant our cmpset
187  *	    succeeds.
188  */
189 void
190 hammer2_thr_wait_neg(hammer2_thread_t *thr, uint32_t flags)
191 {
192 	uint32_t oflags;
193 	uint32_t nflags;
194 
195 	for (;;) {
196 		oflags = thr->flags;
197 		cpu_ccfence();
198 		if ((oflags & flags) == 0)
199 			break;
200 		nflags = oflags | HAMMER2_THREAD_WAITING;
201 		tsleep_interlock(&thr->flags, 0);
202 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
203 			tsleep(&thr->flags, PINTERLOCKED, "h2twait", hz*60);
204 		}
205 	}
206 }
207 
208 /*
209  * Initialize the supplied thread structure, starting the specified
210  * thread.
211  *
212  * NOTE: thr structure can be retained across mounts and unmounts for this
213  *	 pmp, so make sure the flags are in a sane state.
214  */
215 void
216 hammer2_thr_create(hammer2_thread_t *thr, hammer2_pfs_t *pmp,
217 		   hammer2_dev_t *hmp,
218 		   const char *id, int clindex, int repidx,
219 		   void (*func)(void *arg))
220 {
221 	thr->pmp = pmp;		/* xop helpers */
222 	thr->hmp = hmp;		/* bulkfree */
223 	thr->clindex = clindex;
224 	thr->repidx = repidx;
225 	TAILQ_INIT(&thr->xopq);
226 	atomic_clear_int(&thr->flags, HAMMER2_THREAD_STOP |
227 				      HAMMER2_THREAD_STOPPED |
228 				      HAMMER2_THREAD_FREEZE |
229 				      HAMMER2_THREAD_FROZEN);
230 	if (thr->scratch == NULL)
231 		thr->scratch = kmalloc(MAXPHYS, M_HAMMER2, M_WAITOK | M_ZERO);
232 	if (repidx >= 0) {
233 		lwkt_create(func, thr, &thr->td, NULL, 0, repidx % ncpus,
234 			    "%s-%s.%02d", id, pmp->pfs_names[clindex], repidx);
235 	} else if (pmp) {
236 		lwkt_create(func, thr, &thr->td, NULL, 0, -1,
237 			    "%s-%s", id, pmp->pfs_names[clindex]);
238 	} else {
239 		lwkt_create(func, thr, &thr->td, NULL, 0, -1, "%s", id);
240 	}
241 }
242 
243 /*
244  * Terminate a thread.  This function will silently return if the thread
245  * was never initialized or has already been deleted.
246  *
247  * This is accomplished by setting the STOP flag and waiting for the td
248  * structure to become NULL.
249  */
250 void
251 hammer2_thr_delete(hammer2_thread_t *thr)
252 {
253 	if (thr->td == NULL)
254 		return;
255 	hammer2_thr_signal(thr, HAMMER2_THREAD_STOP);
256 	hammer2_thr_wait(thr, HAMMER2_THREAD_STOPPED);
257 	thr->pmp = NULL;
258 	if (thr->scratch) {
259 		kfree(thr->scratch, M_HAMMER2);
260 		thr->scratch = NULL;
261 	}
262 	KKASSERT(TAILQ_EMPTY(&thr->xopq));
263 }
264 
265 /*
266  * Asynchronous remaster request.  Ask the synchronization thread to
267  * start over soon (as if it were frozen and unfrozen, but without waiting).
268  * The thread always recalculates mastership relationships when restarting.
269  */
270 void
271 hammer2_thr_remaster(hammer2_thread_t *thr)
272 {
273 	if (thr->td == NULL)
274 		return;
275 	hammer2_thr_signal(thr, HAMMER2_THREAD_REMASTER);
276 }
277 
278 void
279 hammer2_thr_freeze_async(hammer2_thread_t *thr)
280 {
281 	hammer2_thr_signal(thr, HAMMER2_THREAD_FREEZE);
282 }
283 
284 void
285 hammer2_thr_freeze(hammer2_thread_t *thr)
286 {
287 	if (thr->td == NULL)
288 		return;
289 	hammer2_thr_signal(thr, HAMMER2_THREAD_FREEZE);
290 	hammer2_thr_wait(thr, HAMMER2_THREAD_FROZEN);
291 }
292 
293 void
294 hammer2_thr_unfreeze(hammer2_thread_t *thr)
295 {
296 	if (thr->td == NULL)
297 		return;
298 	hammer2_thr_signal(thr, HAMMER2_THREAD_UNFREEZE);
299 	hammer2_thr_wait_neg(thr, HAMMER2_THREAD_FROZEN);
300 }
301 
302 int
303 hammer2_thr_break(hammer2_thread_t *thr)
304 {
305 	if (thr->flags & (HAMMER2_THREAD_STOP |
306 			  HAMMER2_THREAD_REMASTER |
307 			  HAMMER2_THREAD_FREEZE)) {
308 		return 1;
309 	}
310 	return 0;
311 }
312 
313 /****************************************************************************
314  *			    HAMMER2 XOPS API	 			    *
315  ****************************************************************************/
316 
317 /*
318  * Allocate a XOP request.
319  *
320  * Once allocated a XOP request can be started, collected, and retired,
321  * and can be retired early if desired.
322  *
323  * NOTE: Fifo indices might not be zero but ri == wi on objcache_get().
324  */
325 void *
326 hammer2_xop_alloc(hammer2_inode_t *ip, int flags)
327 {
328 	hammer2_xop_t *xop;
329 
330 	xop = objcache_get(cache_xops, M_WAITOK);
331 	KKASSERT(xop->head.cluster.array[0].chain == NULL);
332 
333 	xop->head.ip1 = ip;
334 	xop->head.desc = NULL;
335 	xop->head.flags = flags;
336 	xop->head.state = 0;
337 	xop->head.error = 0;
338 	xop->head.collect_key = 0;
339 	xop->head.focus_dio = NULL;
340 
341 	if (flags & HAMMER2_XOP_MODIFYING)
342 		xop->head.mtid = hammer2_trans_sub(ip->pmp);
343 	else
344 		xop->head.mtid = 0;
345 
346 	xop->head.cluster.nchains = ip->cluster.nchains;
347 	xop->head.cluster.pmp = ip->pmp;
348 	xop->head.cluster.flags = HAMMER2_CLUSTER_LOCKED;
349 
350 	/*
351 	 * run_mask - Active thread (or frontend) associated with XOP
352 	 */
353 	xop->head.run_mask = HAMMER2_XOPMASK_VOP;
354 
355 	hammer2_inode_ref(ip);
356 
357 	return xop;
358 }
359 
360 void
361 hammer2_xop_setname(hammer2_xop_head_t *xop, const char *name, size_t name_len)
362 {
363 	xop->name1 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
364 	xop->name1_len = name_len;
365 	bcopy(name, xop->name1, name_len);
366 }
367 
368 void
369 hammer2_xop_setname2(hammer2_xop_head_t *xop, const char *name, size_t name_len)
370 {
371 	xop->name2 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
372 	xop->name2_len = name_len;
373 	bcopy(name, xop->name2, name_len);
374 }
375 
376 size_t
377 hammer2_xop_setname_inum(hammer2_xop_head_t *xop, hammer2_key_t inum)
378 {
379 	const size_t name_len = 18;
380 
381 	xop->name1 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
382 	xop->name1_len = name_len;
383 	ksnprintf(xop->name1, name_len + 1, "0x%016jx", (intmax_t)inum);
384 
385 	return name_len;
386 }
387 
388 
389 void
390 hammer2_xop_setip2(hammer2_xop_head_t *xop, hammer2_inode_t *ip2)
391 {
392 	xop->ip2 = ip2;
393 	hammer2_inode_ref(ip2);
394 }
395 
396 void
397 hammer2_xop_setip3(hammer2_xop_head_t *xop, hammer2_inode_t *ip3)
398 {
399 	xop->ip3 = ip3;
400 	hammer2_inode_ref(ip3);
401 }
402 
403 void
404 hammer2_xop_setip4(hammer2_xop_head_t *xop, hammer2_inode_t *ip4)
405 {
406 	xop->ip4 = ip4;
407 	hammer2_inode_ref(ip4);
408 }
409 
410 void
411 hammer2_xop_reinit(hammer2_xop_head_t *xop)
412 {
413 	xop->state = 0;
414 	xop->error = 0;
415 	xop->collect_key = 0;
416 	xop->run_mask = HAMMER2_XOPMASK_VOP;
417 }
418 
419 /*
420  * A mounted PFS needs Xops threads to support frontend operations.
421  */
422 void
423 hammer2_xop_helper_create(hammer2_pfs_t *pmp)
424 {
425 	int i;
426 	int j;
427 
428 	lockmgr(&pmp->lock, LK_EXCLUSIVE);
429 	pmp->has_xop_threads = 1;
430 
431 	pmp->xop_groups = kmalloc(hammer2_xop_nthreads *
432 				  sizeof(hammer2_xop_group_t),
433 				  M_HAMMER2, M_WAITOK | M_ZERO);
434 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
435 		for (j = 0; j < hammer2_xop_nthreads; ++j) {
436 			if (pmp->xop_groups[j].thrs[i].td)
437 				continue;
438 			hammer2_thr_create(&pmp->xop_groups[j].thrs[i],
439 					   pmp, NULL,
440 					   "h2xop", i, j,
441 					   hammer2_primary_xops_thread);
442 		}
443 	}
444 	lockmgr(&pmp->lock, LK_RELEASE);
445 }
446 
447 void
448 hammer2_xop_helper_cleanup(hammer2_pfs_t *pmp)
449 {
450 	int i;
451 	int j;
452 
453 	if (pmp->xop_groups == NULL) {
454 		KKASSERT(pmp->has_xop_threads == 0);
455 		return;
456 	}
457 
458 	for (i = 0; i < pmp->pfs_nmasters; ++i) {
459 		for (j = 0; j < hammer2_xop_nthreads; ++j) {
460 			if (pmp->xop_groups[j].thrs[i].td)
461 				hammer2_thr_delete(&pmp->xop_groups[j].thrs[i]);
462 		}
463 	}
464 	pmp->has_xop_threads = 0;
465 	kfree(pmp->xop_groups, M_HAMMER2);
466 	pmp->xop_groups = NULL;
467 }
468 
469 /*
470  * Start a XOP request, queueing it to all nodes in the cluster to
471  * execute the cluster op.
472  *
473  * XXX optimize single-target case.
474  */
475 void
476 hammer2_xop_start_except(hammer2_xop_head_t *xop, hammer2_xop_desc_t *desc,
477 			 int notidx)
478 {
479 	hammer2_inode_t *ip1;
480 	hammer2_pfs_t *pmp;
481 	hammer2_thread_t *thr;
482 	int i;
483 	int ng;
484 	int nchains;
485 
486 	ip1 = xop->ip1;
487 	pmp = ip1->pmp;
488 	if (pmp->has_xop_threads == 0)
489 		hammer2_xop_helper_create(pmp);
490 
491 	/*
492 	 * The sequencer assigns a worker thread to the XOP.
493 	 *
494 	 * (1) The worker threads are partitioned into two sets, one for
495 	 *     NON-STRATEGY XOPs, and the other for STRATEGY XOPs.  This
496 	 *     guarantees that strategy calls will always be able to make
497 	 *     progress and will not deadlock against non-strategy calls.
498 	 *
499 	 * (2) If clustered, non-strategy operations to the same inode must
500 	 *     be serialized.  This is to avoid confusion when issuing
501 	 *     modifying operations because a XOP completes the instant a
502 	 *     quorum is reached.
503 	 *
504 	 * TODO - RENAME fails here because it is potentially modifying
505 	 *	  three different inodes, but we triple-lock the inodes
506 	 *	  involved so it shouldn't create a sequencing schism.
507 	 */
508 	if (xop->flags & HAMMER2_XOP_STRATEGY) {
509 		/*
510 		 * Use worker space 0 associated with the current cpu
511 		 * for strategy ops.
512 		 */
513 		hammer2_xop_strategy_t *xopst;
514 		u_int which;
515 
516 		xopst = &((hammer2_xop_t *)xop)->xop_strategy;
517 		which = ((unsigned int)ip1->ihash +
518 			 ((unsigned int)xopst->lbase >> HAMMER2_PBUFRADIX)) %
519 			hammer2_xop_sgroups;
520 		ng = mycpu->gd_cpuid % hammer2_xop_mod +
521 		     hammer2_xop_mod * which;
522 	} else if (hammer2_spread_workers == 0 && ip1->cluster.nchains == 1) {
523 		/*
524 		 * For now try to keep the work on the same cpu to reduce
525 		 * IPI overhead.  Several threads are assigned to each cpu,
526 		 * don't be very smart and select the one to use based on
527 		 * the inode hash.
528 		 */
529 		u_int which;
530 
531 		which = (unsigned int)ip1->ihash % hammer2_xop_xgroups;
532 		ng = mycpu->gd_cpuid % hammer2_xop_mod +
533 		     (which * hammer2_xop_mod) +
534 		     hammer2_xop_xbase;
535 	} else {
536 		/*
537 		 * Hash based on inode only, must serialize inode to same
538 		 * thread regardless of current cpu.
539 		 */
540 		ng = (unsigned int)ip1->ihash %
541 		     (hammer2_xop_mod * hammer2_xop_xgroups) +
542 		     hammer2_xop_xbase;
543 	}
544 	xop->desc = desc;
545 
546 	/*
547 	 * The instant xop is queued another thread can pick it off.  In the
548 	 * case of asynchronous ops, another thread might even finish and
549 	 * deallocate it.
550 	 */
551 	hammer2_spin_ex(&pmp->xop_spin);
552 	nchains = ip1->cluster.nchains;
553 	for (i = 0; i < nchains; ++i) {
554 		/*
555 		 * XXX ip1->cluster.array* not stable here.  This temporary
556 		 *     hack fixes basic issues in target XOPs which need to
557 		 *     obtain a starting chain from the inode but does not
558 		 *     address possible races against inode updates which
559 		 *     might NULL-out a chain.
560 		 */
561 		if (i != notidx && ip1->cluster.array[i].chain) {
562 			thr = &pmp->xop_groups[ng].thrs[i];
563 			atomic_set_64(&xop->run_mask, 1LLU << i);
564 			atomic_set_64(&xop->chk_mask, 1LLU << i);
565 			xop->collect[i].thr = thr;
566 			TAILQ_INSERT_TAIL(&thr->xopq, xop, collect[i].entry);
567 		}
568 	}
569 	hammer2_spin_unex(&pmp->xop_spin);
570 	/* xop can become invalid at this point */
571 
572 	/*
573 	 * Each thread has its own xopq
574 	 */
575 	for (i = 0; i < nchains; ++i) {
576 		if (i != notidx) {
577 			thr = &pmp->xop_groups[ng].thrs[i];
578 			hammer2_thr_signal(thr, HAMMER2_THREAD_XOPQ);
579 		}
580 	}
581 }
582 
583 void
584 hammer2_xop_start(hammer2_xop_head_t *xop, hammer2_xop_desc_t *desc)
585 {
586 	hammer2_xop_start_except(xop, desc, -1);
587 }
588 
589 /*
590  * Retire a XOP.  Used by both the VOP frontend and by the XOP backend.
591  */
592 void
593 hammer2_xop_retire(hammer2_xop_head_t *xop, uint64_t mask)
594 {
595 	hammer2_chain_t *chain;
596 	uint64_t nmask;
597 	int i;
598 
599 	/*
600 	 * Remove the frontend collector or remove a backend feeder.
601 	 *
602 	 * When removing the frontend we must wakeup any backend feeders
603 	 * who are waiting for FIFO space.
604 	 *
605 	 * When removing the last backend feeder we must wakeup any waiting
606 	 * frontend.
607 	 */
608 	KKASSERT(xop->run_mask & mask);
609 	nmask = atomic_fetchadd_64(&xop->run_mask,
610 				   -mask + HAMMER2_XOPMASK_FEED);
611 
612 	/*
613 	 * More than one entity left
614 	 */
615 	if ((nmask & HAMMER2_XOPMASK_ALLDONE) != mask) {
616 		/*
617 		 * Frontend terminating, wakeup any backends waiting on
618 		 * fifo full.
619 		 *
620 		 * NOTE!!! The xop can get ripped out from under us at
621 		 *	   this point, so do not reference it again.
622 		 *	   The wakeup(xop) doesn't touch the xop and
623 		 *	   is ok.
624 		 */
625 		if (mask == HAMMER2_XOPMASK_VOP) {
626 			if (nmask & HAMMER2_XOPMASK_FIFOW)
627 				wakeup(xop);
628 		}
629 
630 		/*
631 		 * Wakeup frontend if the last backend is terminating.
632 		 */
633 		nmask -= mask;
634 		if ((nmask & HAMMER2_XOPMASK_ALLDONE) == HAMMER2_XOPMASK_VOP) {
635 			if (nmask & HAMMER2_XOPMASK_WAIT)
636 				wakeup(xop);
637 		}
638 
639 		return;
640 	}
641 	/* else nobody else left, we can ignore FIFOW */
642 
643 	/*
644 	 * All collectors are gone, we can cleanup and dispose of the XOP.
645 	 * Note that this can wind up being a frontend OR a backend.
646 	 * Pending chains are locked shared and not owned by any thread.
647 	 *
648 	 * Cleanup the collection cluster.
649 	 */
650 	for (i = 0; i < xop->cluster.nchains; ++i) {
651 		xop->cluster.array[i].flags = 0;
652 		chain = xop->cluster.array[i].chain;
653 		if (chain) {
654 			xop->cluster.array[i].chain = NULL;
655 			hammer2_chain_drop_unhold(chain);
656 		}
657 	}
658 
659 	/*
660 	 * Cleanup the fifos.  Since we are the only entity left on this
661 	 * xop we don't have to worry about fifo flow control, and one
662 	 * lfence() will do the job.
663 	 */
664 	cpu_lfence();
665 	mask = xop->chk_mask;
666 	for (i = 0; mask && i < HAMMER2_MAXCLUSTER; ++i) {
667 		hammer2_xop_fifo_t *fifo = &xop->collect[i];
668 		while (fifo->ri != fifo->wi) {
669 			chain = fifo->array[fifo->ri & HAMMER2_XOPFIFO_MASK];
670 			if (chain)
671 				hammer2_chain_drop_unhold(chain);
672 			++fifo->ri;
673 		}
674 		mask &= ~(1U << i);
675 	}
676 
677 	/*
678 	 * The inode is only held at this point, simply drop it.
679 	 */
680 	if (xop->ip1) {
681 		hammer2_inode_drop(xop->ip1);
682 		xop->ip1 = NULL;
683 	}
684 	if (xop->ip2) {
685 		hammer2_inode_drop(xop->ip2);
686 		xop->ip2 = NULL;
687 	}
688 	if (xop->ip3) {
689 		hammer2_inode_drop(xop->ip3);
690 		xop->ip3 = NULL;
691 	}
692 	if (xop->ip4) {
693 		hammer2_inode_drop(xop->ip4);
694 		xop->ip4 = NULL;
695 	}
696 	if (xop->name1) {
697 		kfree(xop->name1, M_HAMMER2);
698 		xop->name1 = NULL;
699 		xop->name1_len = 0;
700 	}
701 	if (xop->name2) {
702 		kfree(xop->name2, M_HAMMER2);
703 		xop->name2 = NULL;
704 		xop->name2_len = 0;
705 	}
706 
707 	objcache_put(cache_xops, xop);
708 }
709 
710 /*
711  * (Backend) Returns non-zero if the frontend is still attached.
712  */
713 int
714 hammer2_xop_active(hammer2_xop_head_t *xop)
715 {
716 	if (xop->run_mask & HAMMER2_XOPMASK_VOP)
717 		return 1;
718 	else
719 		return 0;
720 }
721 
722 /*
723  * (Backend) Feed chain data through the cluster validator and back to
724  * the frontend.  Chains are fed from multiple nodes concurrently
725  * and pipelined via per-node FIFOs in the XOP.
726  *
727  * The chain must be locked (either shared or exclusive).  The caller may
728  * unlock and drop the chain on return.  This function will add an extra
729  * ref and hold the chain's data for the pass-back.
730  *
731  * No xop lock is needed because we are only manipulating fields under
732  * our direct control.
733  *
734  * Returns 0 on success and a hammer2 error code if sync is permanently
735  * lost.  The caller retains a ref on the chain but by convention
736  * the lock is typically inherited by the xop (caller loses lock).
737  *
738  * Returns non-zero on error.  In this situation the caller retains a
739  * ref on the chain but loses the lock (we unlock here).
740  */
741 int
742 hammer2_xop_feed(hammer2_xop_head_t *xop, hammer2_chain_t *chain,
743 		 int clindex, int error)
744 {
745 	hammer2_xop_fifo_t *fifo;
746 	uint64_t mask;
747 
748 	/*
749 	 * Early termination (typicaly of xop_readir)
750 	 */
751 	if (hammer2_xop_active(xop) == 0) {
752 		error = HAMMER2_ERROR_ABORTED;
753 		goto done;
754 	}
755 
756 	/*
757 	 * Multi-threaded entry into the XOP collector.  We own the
758 	 * fifo->wi for our clindex.
759 	 */
760 	fifo = &xop->collect[clindex];
761 
762 	if (fifo->ri == fifo->wi - HAMMER2_XOPFIFO)
763 		lwkt_yield();
764 	while (fifo->ri == fifo->wi - HAMMER2_XOPFIFO) {
765 		atomic_set_int(&fifo->flags, HAMMER2_XOP_FIFO_STALL);
766 		mask = xop->run_mask;
767 		if ((mask & HAMMER2_XOPMASK_VOP) == 0) {
768 			error = HAMMER2_ERROR_ABORTED;
769 			goto done;
770 		}
771 		tsleep_interlock(xop, 0);
772 		if (atomic_cmpset_64(&xop->run_mask, mask,
773 				     mask | HAMMER2_XOPMASK_FIFOW)) {
774 			if (fifo->ri == fifo->wi - HAMMER2_XOPFIFO) {
775 				tsleep(xop, PINTERLOCKED, "h2feed", hz*60);
776 			}
777 		}
778 		/* retry */
779 	}
780 	atomic_clear_int(&fifo->flags, HAMMER2_XOP_FIFO_STALL);
781 	if (chain)
782 		hammer2_chain_ref_hold(chain);
783 	if (error == 0 && chain)
784 		error = chain->error;
785 	fifo->errors[fifo->wi & HAMMER2_XOPFIFO_MASK] = error;
786 	fifo->array[fifo->wi & HAMMER2_XOPFIFO_MASK] = chain;
787 	cpu_sfence();
788 	++fifo->wi;
789 
790 	mask = atomic_fetchadd_64(&xop->run_mask, HAMMER2_XOPMASK_FEED);
791 	if (mask & HAMMER2_XOPMASK_WAIT) {
792 		atomic_clear_64(&xop->run_mask, HAMMER2_XOPMASK_WAIT);
793 		wakeup(xop);
794 	}
795 	error = 0;
796 
797 	/*
798 	 * Cleanup.  If an error occurred we eat the lock.  If no error
799 	 * occurred the fifo inherits the lock and gains an additional ref.
800 	 *
801 	 * The caller's ref remains in both cases.
802 	 */
803 done:
804 	return error;
805 }
806 
807 /*
808  * (Frontend) collect a response from a running cluster op.
809  *
810  * Responses are fed from all appropriate nodes concurrently
811  * and collected into a cohesive response >= collect_key.
812  *
813  * The collector will return the instant quorum or other requirements
814  * are met, even if some nodes get behind or become non-responsive.
815  *
816  * HAMMER2_XOP_COLLECT_NOWAIT	- Used to 'poll' a completed collection,
817  *				  usually called synchronously from the
818  *				  node XOPs for the strategy code to
819  *				  fake the frontend collection and complete
820  *				  the BIO as soon as possible.
821  *
822  * HAMMER2_XOP_SYNCHRONIZER	- Reqeuest synchronization with a particular
823  *				  cluster index, prevents looping when that
824  *				  index is out of sync so caller can act on
825  *				  the out of sync element.  ESRCH and EDEADLK
826  *				  can be returned if this flag is specified.
827  *
828  * Returns 0 on success plus a filled out xop->cluster structure.
829  * Return ENOENT on normal termination.
830  * Otherwise return an error.
831  *
832  * WARNING! If the xop returns a cluster with a non-NULL focus, note that
833  *	    none of the chains in the cluster (or the focus) are either
834  *	    locked or I/O synchronized with the cpu.  hammer2_xop_gdata()
835  *	    and hammer2_xop_pdata() must be used to safely access the focus
836  *	    chain's content.
837  *
838  *	    The frontend can make certain assumptions based on higher-level
839  *	    locking done by the frontend, but data integrity absolutely
840  *	    requires using the gdata/pdata API.
841  */
842 int
843 hammer2_xop_collect(hammer2_xop_head_t *xop, int flags)
844 {
845 	hammer2_xop_fifo_t *fifo;
846 	hammer2_chain_t *chain;
847 	hammer2_key_t lokey;
848 	uint64_t mask;
849 	int error;
850 	int keynull;
851 	int adv;		/* advance the element */
852 	int i;
853 
854 loop:
855 	/*
856 	 * First loop tries to advance pieces of the cluster which
857 	 * are out of sync.
858 	 */
859 	lokey = HAMMER2_KEY_MAX;
860 	keynull = HAMMER2_CHECK_NULL;
861 	mask = xop->run_mask;
862 	cpu_lfence();
863 
864 	for (i = 0; i < xop->cluster.nchains; ++i) {
865 		chain = xop->cluster.array[i].chain;
866 		if (chain == NULL) {
867 			adv = 1;
868 		} else if (chain->bref.key < xop->collect_key) {
869 			adv = 1;
870 		} else {
871 			keynull &= ~HAMMER2_CHECK_NULL;
872 			if (lokey > chain->bref.key)
873 				lokey = chain->bref.key;
874 			adv = 0;
875 		}
876 		if (adv == 0)
877 			continue;
878 
879 		/*
880 		 * Advance element if possible, advanced element may be NULL.
881 		 */
882 		if (chain)
883 			hammer2_chain_drop_unhold(chain);
884 
885 		fifo = &xop->collect[i];
886 		if (fifo->ri != fifo->wi) {
887 			cpu_lfence();
888 			chain = fifo->array[fifo->ri & HAMMER2_XOPFIFO_MASK];
889 			error = fifo->errors[fifo->ri & HAMMER2_XOPFIFO_MASK];
890 			++fifo->ri;
891 			xop->cluster.array[i].chain = chain;
892 			xop->cluster.array[i].error = error;
893 			if (chain == NULL) {
894 				/* XXX */
895 				xop->cluster.array[i].flags |=
896 							HAMMER2_CITEM_NULL;
897 			}
898 			if (fifo->wi - fifo->ri <= HAMMER2_XOPFIFO / 2) {
899 				if (fifo->flags & HAMMER2_XOP_FIFO_STALL) {
900 					atomic_clear_int(&fifo->flags,
901 						    HAMMER2_XOP_FIFO_STALL);
902 					wakeup(xop);
903 					lwkt_yield();
904 				}
905 			}
906 			--i;		/* loop on same index */
907 		} else {
908 			/*
909 			 * Retain CITEM_NULL flag.  If set just repeat EOF.
910 			 * If not, the NULL,0 combination indicates an
911 			 * operation in-progress.
912 			 */
913 			xop->cluster.array[i].chain = NULL;
914 			/* retain any CITEM_NULL setting */
915 		}
916 	}
917 
918 	/*
919 	 * Determine whether the lowest collected key meets clustering
920 	 * requirements.  Returns:
921 	 *
922 	 * 0	 	 - key valid, cluster can be returned.
923 	 *
924 	 * ENOENT	 - normal end of scan, return ENOENT.
925 	 *
926 	 * ESRCH	 - sufficient elements collected, quorum agreement
927 	 *		   that lokey is not a valid element and should be
928 	 *		   skipped.
929 	 *
930 	 * EDEADLK	 - sufficient elements collected, no quorum agreement
931 	 *		   (and no agreement possible).  In this situation a
932 	 *		   repair is needed, for now we loop.
933 	 *
934 	 * EINPROGRESS	 - insufficient elements collected to resolve, wait
935 	 *		   for event and loop.
936 	 */
937 	if ((flags & HAMMER2_XOP_COLLECT_WAITALL) &&
938 	    (mask & HAMMER2_XOPMASK_ALLDONE) != HAMMER2_XOPMASK_VOP) {
939 		error = HAMMER2_ERROR_EINPROGRESS;
940 	} else {
941 		error = hammer2_cluster_check(&xop->cluster, lokey, keynull);
942 	}
943 	if (error == HAMMER2_ERROR_EINPROGRESS) {
944 		if (flags & HAMMER2_XOP_COLLECT_NOWAIT)
945 			goto done;
946 		tsleep_interlock(xop, 0);
947 		if (atomic_cmpset_64(&xop->run_mask,
948 				     mask, mask | HAMMER2_XOPMASK_WAIT)) {
949 			tsleep(xop, PINTERLOCKED, "h2coll", hz*60);
950 		}
951 		goto loop;
952 	}
953 	if (error == HAMMER2_ERROR_ESRCH) {
954 		if (lokey != HAMMER2_KEY_MAX) {
955 			xop->collect_key = lokey + 1;
956 			goto loop;
957 		}
958 		error = HAMMER2_ERROR_ENOENT;
959 	}
960 	if (error == HAMMER2_ERROR_EDEADLK) {
961 		kprintf("hammer2: no quorum possible lokey %016jx\n",
962 			lokey);
963 		if (lokey != HAMMER2_KEY_MAX) {
964 			xop->collect_key = lokey + 1;
965 			goto loop;
966 		}
967 		error = HAMMER2_ERROR_ENOENT;
968 	}
969 	if (lokey == HAMMER2_KEY_MAX)
970 		xop->collect_key = lokey;
971 	else
972 		xop->collect_key = lokey + 1;
973 done:
974 	return error;
975 }
976 
977 /*
978  * N x M processing threads are available to handle XOPs, N per cluster
979  * index x M cluster nodes.
980  *
981  * Locate and return the next runnable xop, or NULL if no xops are
982  * present or none of the xops are currently runnable (for various reasons).
983  * The xop is left on the queue and serves to block other dependent xops
984  * from being run.
985  *
986  * Dependent xops will not be returned.
987  *
988  * Sets HAMMER2_XOP_FIFO_RUN on the returned xop or returns NULL.
989  *
990  * NOTE! Xops run concurrently for each cluster index.
991  */
992 #define XOP_HASH_SIZE	16
993 #define XOP_HASH_MASK	(XOP_HASH_SIZE - 1)
994 
995 static __inline
996 int
997 xop_testhash(hammer2_thread_t *thr, hammer2_inode_t *ip, uint32_t *hash)
998 {
999 	uint32_t mask;
1000 	int hv;
1001 
1002 	hv = (int)((uintptr_t)ip + (uintptr_t)thr) / sizeof(hammer2_inode_t);
1003 	mask = 1U << (hv & 31);
1004 	hv >>= 5;
1005 
1006 	return ((int)(hash[hv & XOP_HASH_MASK] & mask));
1007 }
1008 
1009 static __inline
1010 void
1011 xop_sethash(hammer2_thread_t *thr, hammer2_inode_t *ip, uint32_t *hash)
1012 {
1013 	uint32_t mask;
1014 	int hv;
1015 
1016 	hv = (int)((uintptr_t)ip + (uintptr_t)thr) / sizeof(hammer2_inode_t);
1017 	mask = 1U << (hv & 31);
1018 	hv >>= 5;
1019 
1020 	hash[hv & XOP_HASH_MASK] |= mask;
1021 }
1022 
1023 static
1024 hammer2_xop_head_t *
1025 hammer2_xop_next(hammer2_thread_t *thr)
1026 {
1027 	hammer2_pfs_t *pmp = thr->pmp;
1028 	int clindex = thr->clindex;
1029 	uint32_t hash[XOP_HASH_SIZE] = { 0 };
1030 	hammer2_xop_head_t *xop;
1031 
1032 	hammer2_spin_ex(&pmp->xop_spin);
1033 	TAILQ_FOREACH(xop, &thr->xopq, collect[clindex].entry) {
1034 		/*
1035 		 * Check dependency
1036 		 */
1037 		if (xop_testhash(thr, xop->ip1, hash) ||
1038 		    (xop->ip2 && xop_testhash(thr, xop->ip2, hash)) ||
1039 		    (xop->ip3 && xop_testhash(thr, xop->ip3, hash)) ||
1040 		    (xop->ip4 && xop_testhash(thr, xop->ip4, hash)))
1041 		{
1042 			continue;
1043 		}
1044 		xop_sethash(thr, xop->ip1, hash);
1045 		if (xop->ip2)
1046 			xop_sethash(thr, xop->ip2, hash);
1047 		if (xop->ip3)
1048 			xop_sethash(thr, xop->ip3, hash);
1049 		if (xop->ip4)
1050 			xop_sethash(thr, xop->ip4, hash);
1051 
1052 		/*
1053 		 * Check already running
1054 		 */
1055 		if (xop->collect[clindex].flags & HAMMER2_XOP_FIFO_RUN)
1056 			continue;
1057 
1058 		/*
1059 		 * Found a good one, return it.
1060 		 */
1061 		atomic_set_int(&xop->collect[clindex].flags,
1062 			       HAMMER2_XOP_FIFO_RUN);
1063 		break;
1064 	}
1065 	hammer2_spin_unex(&pmp->xop_spin);
1066 
1067 	return xop;
1068 }
1069 
1070 /*
1071  * Remove the completed XOP from the queue, clear HAMMER2_XOP_FIFO_RUN.
1072  *
1073  * NOTE! Xops run concurrently for each cluster index.
1074  */
1075 static
1076 void
1077 hammer2_xop_dequeue(hammer2_thread_t *thr, hammer2_xop_head_t *xop)
1078 {
1079 	hammer2_pfs_t *pmp = thr->pmp;
1080 	int clindex = thr->clindex;
1081 
1082 	hammer2_spin_ex(&pmp->xop_spin);
1083 	TAILQ_REMOVE(&thr->xopq, xop, collect[clindex].entry);
1084 	atomic_clear_int(&xop->collect[clindex].flags,
1085 			 HAMMER2_XOP_FIFO_RUN);
1086 	hammer2_spin_unex(&pmp->xop_spin);
1087 	if (TAILQ_FIRST(&thr->xopq))
1088 		hammer2_thr_signal(thr, HAMMER2_THREAD_XOPQ);
1089 }
1090 
1091 /*
1092  * Primary management thread for xops support.  Each node has several such
1093  * threads which replicate front-end operations on cluster nodes.
1094  *
1095  * XOPS thread node operations, allowing the function to focus on a single
1096  * node in the cluster after validating the operation with the cluster.
1097  * This is primarily what prevents dead or stalled nodes from stalling
1098  * the front-end.
1099  */
1100 void
1101 hammer2_primary_xops_thread(void *arg)
1102 {
1103 	hammer2_thread_t *thr = arg;
1104 	hammer2_pfs_t *pmp;
1105 	hammer2_xop_head_t *xop;
1106 	uint64_t mask;
1107 	uint32_t flags;
1108 	uint32_t nflags;
1109 	hammer2_xop_desc_t *last_desc = NULL;
1110 
1111 	pmp = thr->pmp;
1112 	/*xgrp = &pmp->xop_groups[thr->repidx]; not needed */
1113 	mask = 1LLU << thr->clindex;
1114 
1115 	for (;;) {
1116 		flags = thr->flags;
1117 
1118 		/*
1119 		 * Handle stop request
1120 		 */
1121 		if (flags & HAMMER2_THREAD_STOP)
1122 			break;
1123 
1124 		/*
1125 		 * Handle freeze request
1126 		 */
1127 		if (flags & HAMMER2_THREAD_FREEZE) {
1128 			hammer2_thr_signal2(thr, HAMMER2_THREAD_FROZEN,
1129 						 HAMMER2_THREAD_FREEZE);
1130 			continue;
1131 		}
1132 
1133 		if (flags & HAMMER2_THREAD_UNFREEZE) {
1134 			hammer2_thr_signal2(thr, 0,
1135 						 HAMMER2_THREAD_FROZEN |
1136 						 HAMMER2_THREAD_UNFREEZE);
1137 			continue;
1138 		}
1139 
1140 		/*
1141 		 * Force idle if frozen until unfrozen or stopped.
1142 		 */
1143 		if (flags & HAMMER2_THREAD_FROZEN) {
1144 			hammer2_thr_wait_any(thr,
1145 					     HAMMER2_THREAD_UNFREEZE |
1146 					     HAMMER2_THREAD_STOP,
1147 					     0);
1148 			continue;
1149 		}
1150 
1151 		/*
1152 		 * Reset state on REMASTER request
1153 		 */
1154 		if (flags & HAMMER2_THREAD_REMASTER) {
1155 			hammer2_thr_signal2(thr, 0, HAMMER2_THREAD_REMASTER);
1156 			/* reset state here */
1157 			continue;
1158 		}
1159 
1160 		/*
1161 		 * Process requests.  Each request can be multi-queued.
1162 		 *
1163 		 * If we get behind and the frontend VOP is no longer active,
1164 		 * we retire the request without processing it.  The callback
1165 		 * may also abort processing if the frontend VOP becomes
1166 		 * inactive.
1167 		 */
1168 		if (flags & HAMMER2_THREAD_XOPQ) {
1169 			nflags = flags & ~HAMMER2_THREAD_XOPQ;
1170 			if (!atomic_cmpset_int(&thr->flags, flags, nflags))
1171 				continue;
1172 			flags = nflags;
1173 			/* fall through */
1174 		}
1175 		while ((xop = hammer2_xop_next(thr)) != NULL) {
1176 			if (hammer2_xop_active(xop)) {
1177 				last_desc = xop->desc;
1178 				xop->desc->storage_func((hammer2_xop_t *)xop,
1179 							thr->scratch,
1180 							thr->clindex);
1181 				hammer2_xop_dequeue(thr, xop);
1182 				hammer2_xop_retire(xop, mask);
1183 			} else {
1184 				last_desc = xop->desc;
1185 				hammer2_xop_feed(xop, NULL, thr->clindex,
1186 						 ECONNABORTED);
1187 				hammer2_xop_dequeue(thr, xop);
1188 				hammer2_xop_retire(xop, mask);
1189 			}
1190 		}
1191 
1192 		/*
1193 		 * Wait for event, interlock using THREAD_WAITING and
1194 		 * THREAD_SIGNAL.
1195 		 *
1196 		 * For robustness poll on a 30-second interval, but nominally
1197 		 * expect to be woken up.
1198 		 */
1199 		nflags = flags | HAMMER2_THREAD_WAITING;
1200 
1201 		tsleep_interlock(&thr->flags, 0);
1202 		if (atomic_cmpset_int(&thr->flags, flags, nflags)) {
1203 			tsleep(&thr->flags, PINTERLOCKED, "h2idle", hz*30);
1204 		}
1205 	}
1206 
1207 #if 0
1208 	/*
1209 	 * Cleanup / termination
1210 	 */
1211 	while ((xop = TAILQ_FIRST(&thr->xopq)) != NULL) {
1212 		kprintf("hammer2_thread: aborting xop %s\n", xop->desc->id);
1213 		TAILQ_REMOVE(&thr->xopq, xop,
1214 			     collect[thr->clindex].entry);
1215 		hammer2_xop_retire(xop, mask);
1216 	}
1217 #endif
1218 	thr->td = NULL;
1219 	hammer2_thr_signal(thr, HAMMER2_THREAD_STOPPED);
1220 	/* thr structure can go invalid after this point */
1221 }
1222