xref: /dragonfly/sys/vfs/hammer2/hammer2_admin.c (revision 8f2ce533)
1 /*
2  * Copyright (c) 2015-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * This module implements the hammer2 helper thread API, including
36  * the frontend/backend XOP API.
37  */
38 #include "hammer2.h"
39 
40 #define H2XOPDESCRIPTOR(label)					\
41 	hammer2_xop_desc_t hammer2_##label##_desc = {		\
42 		.storage_func = hammer2_xop_##label,		\
43 		.id = #label					\
44 	}
45 
46 H2XOPDESCRIPTOR(ipcluster);
47 H2XOPDESCRIPTOR(readdir);
48 H2XOPDESCRIPTOR(nresolve);
49 H2XOPDESCRIPTOR(unlink);
50 H2XOPDESCRIPTOR(nrename);
51 H2XOPDESCRIPTOR(scanlhc);
52 H2XOPDESCRIPTOR(scanall);
53 H2XOPDESCRIPTOR(lookup);
54 H2XOPDESCRIPTOR(delete);
55 H2XOPDESCRIPTOR(inode_mkdirent);
56 H2XOPDESCRIPTOR(inode_create);
57 H2XOPDESCRIPTOR(inode_create_det);
58 H2XOPDESCRIPTOR(inode_create_ins);
59 H2XOPDESCRIPTOR(inode_destroy);
60 H2XOPDESCRIPTOR(inode_chain_sync);
61 H2XOPDESCRIPTOR(inode_unlinkall);
62 H2XOPDESCRIPTOR(inode_connect);
63 H2XOPDESCRIPTOR(inode_flush);
64 H2XOPDESCRIPTOR(strategy_read);
65 H2XOPDESCRIPTOR(strategy_write);
66 
67 struct objcache *cache_xops;
68 
69 /*
70  * Set flags and wakeup any waiters.
71  *
72  * WARNING! During teardown (thr) can disappear the instant our cmpset
73  *	    succeeds.
74  */
75 void
76 hammer2_thr_signal(hammer2_thread_t *thr, uint32_t flags)
77 {
78 	uint32_t oflags;
79 	uint32_t nflags;
80 
81 	for (;;) {
82 		oflags = thr->flags;
83 		cpu_ccfence();
84 		nflags = (oflags | flags) & ~HAMMER2_THREAD_WAITING;
85 
86 		if (oflags & HAMMER2_THREAD_WAITING) {
87 			if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
88 				wakeup(&thr->flags);
89 				break;
90 			}
91 		} else {
92 			if (atomic_cmpset_int(&thr->flags, oflags, nflags))
93 				break;
94 		}
95 	}
96 }
97 
98 /*
99  * Set and clear flags and wakeup any waiters.
100  *
101  * WARNING! During teardown (thr) can disappear the instant our cmpset
102  *	    succeeds.
103  */
104 void
105 hammer2_thr_signal2(hammer2_thread_t *thr, uint32_t posflags, uint32_t negflags)
106 {
107 	uint32_t oflags;
108 	uint32_t nflags;
109 
110 	for (;;) {
111 		oflags = thr->flags;
112 		cpu_ccfence();
113 		nflags = (oflags | posflags) &
114 			~(negflags | HAMMER2_THREAD_WAITING);
115 		if (oflags & HAMMER2_THREAD_WAITING) {
116 			if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
117 				wakeup(&thr->flags);
118 				break;
119 			}
120 		} else {
121 			if (atomic_cmpset_int(&thr->flags, oflags, nflags))
122 				break;
123 		}
124 	}
125 }
126 
127 /*
128  * Wait until all the bits in flags are set.
129  *
130  * WARNING! During teardown (thr) can disappear the instant our cmpset
131  *	    succeeds.
132  */
133 void
134 hammer2_thr_wait(hammer2_thread_t *thr, uint32_t flags)
135 {
136 	uint32_t oflags;
137 	uint32_t nflags;
138 
139 	for (;;) {
140 		oflags = thr->flags;
141 		cpu_ccfence();
142 		if ((oflags & flags) == flags)
143 			break;
144 		nflags = oflags | HAMMER2_THREAD_WAITING;
145 		tsleep_interlock(&thr->flags, 0);
146 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
147 			tsleep(&thr->flags, PINTERLOCKED, "h2twait", hz*60);
148 		}
149 	}
150 }
151 
152 /*
153  * Wait until any of the bits in flags are set, with timeout.
154  *
155  * WARNING! During teardown (thr) can disappear the instant our cmpset
156  *	    succeeds.
157  */
158 int
159 hammer2_thr_wait_any(hammer2_thread_t *thr, uint32_t flags, int timo)
160 {
161 	uint32_t oflags;
162 	uint32_t nflags;
163 	int error;
164 
165 	error = 0;
166 	for (;;) {
167 		oflags = thr->flags;
168 		cpu_ccfence();
169 		if (oflags & flags)
170 			break;
171 		nflags = oflags | HAMMER2_THREAD_WAITING;
172 		tsleep_interlock(&thr->flags, 0);
173 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
174 			error = tsleep(&thr->flags, PINTERLOCKED,
175 				       "h2twait", timo);
176 		}
177 		if (error == ETIMEDOUT) {
178 			error = HAMMER2_ERROR_ETIMEDOUT;
179 			break;
180 		}
181 	}
182 	return error;
183 }
184 
185 /*
186  * Wait until the bits in flags are clear.
187  *
188  * WARNING! During teardown (thr) can disappear the instant our cmpset
189  *	    succeeds.
190  */
191 void
192 hammer2_thr_wait_neg(hammer2_thread_t *thr, uint32_t flags)
193 {
194 	uint32_t oflags;
195 	uint32_t nflags;
196 
197 	for (;;) {
198 		oflags = thr->flags;
199 		cpu_ccfence();
200 		if ((oflags & flags) == 0)
201 			break;
202 		nflags = oflags | HAMMER2_THREAD_WAITING;
203 		tsleep_interlock(&thr->flags, 0);
204 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
205 			tsleep(&thr->flags, PINTERLOCKED, "h2twait", hz*60);
206 		}
207 	}
208 }
209 
210 /*
211  * Initialize the supplied thread structure, starting the specified
212  * thread.
213  *
214  * NOTE: thr structure can be retained across mounts and unmounts for this
215  *	 pmp, so make sure the flags are in a sane state.
216  */
217 void
218 hammer2_thr_create(hammer2_thread_t *thr, hammer2_pfs_t *pmp,
219 		   hammer2_dev_t *hmp,
220 		   const char *id, int clindex, int repidx,
221 		   void (*func)(void *arg))
222 {
223 	thr->pmp = pmp;		/* xop helpers */
224 	thr->hmp = hmp;		/* bulkfree */
225 	thr->clindex = clindex;
226 	thr->repidx = repidx;
227 	TAILQ_INIT(&thr->xopq);
228 	atomic_clear_int(&thr->flags, HAMMER2_THREAD_STOP |
229 				      HAMMER2_THREAD_STOPPED |
230 				      HAMMER2_THREAD_FREEZE |
231 				      HAMMER2_THREAD_FROZEN);
232 	if (thr->scratch == NULL)
233 		thr->scratch = kmalloc(MAXPHYS, M_HAMMER2, M_WAITOK | M_ZERO);
234 	if (repidx >= 0) {
235 		lwkt_create(func, thr, &thr->td, NULL, 0, repidx % ncpus,
236 			    "%s-%s.%02d", id, pmp->pfs_names[clindex], repidx);
237 	} else if (pmp) {
238 		lwkt_create(func, thr, &thr->td, NULL, 0, -1,
239 			    "%s-%s", id, pmp->pfs_names[clindex]);
240 	} else {
241 		lwkt_create(func, thr, &thr->td, NULL, 0, -1, "%s", id);
242 	}
243 }
244 
245 /*
246  * Terminate a thread.  This function will silently return if the thread
247  * was never initialized or has already been deleted.
248  *
249  * This is accomplished by setting the STOP flag and waiting for the td
250  * structure to become NULL.
251  */
252 void
253 hammer2_thr_delete(hammer2_thread_t *thr)
254 {
255 	if (thr->td == NULL)
256 		return;
257 	hammer2_thr_signal(thr, HAMMER2_THREAD_STOP);
258 	hammer2_thr_wait(thr, HAMMER2_THREAD_STOPPED);
259 	thr->pmp = NULL;
260 	if (thr->scratch) {
261 		kfree(thr->scratch, M_HAMMER2);
262 		thr->scratch = NULL;
263 	}
264 	KKASSERT(TAILQ_EMPTY(&thr->xopq));
265 }
266 
267 /*
268  * Asynchronous remaster request.  Ask the synchronization thread to
269  * start over soon (as if it were frozen and unfrozen, but without waiting).
270  * The thread always recalculates mastership relationships when restarting.
271  */
272 void
273 hammer2_thr_remaster(hammer2_thread_t *thr)
274 {
275 	if (thr->td == NULL)
276 		return;
277 	hammer2_thr_signal(thr, HAMMER2_THREAD_REMASTER);
278 }
279 
280 void
281 hammer2_thr_freeze_async(hammer2_thread_t *thr)
282 {
283 	hammer2_thr_signal(thr, HAMMER2_THREAD_FREEZE);
284 }
285 
286 void
287 hammer2_thr_freeze(hammer2_thread_t *thr)
288 {
289 	if (thr->td == NULL)
290 		return;
291 	hammer2_thr_signal(thr, HAMMER2_THREAD_FREEZE);
292 	hammer2_thr_wait(thr, HAMMER2_THREAD_FROZEN);
293 }
294 
295 void
296 hammer2_thr_unfreeze(hammer2_thread_t *thr)
297 {
298 	if (thr->td == NULL)
299 		return;
300 	hammer2_thr_signal(thr, HAMMER2_THREAD_UNFREEZE);
301 	hammer2_thr_wait_neg(thr, HAMMER2_THREAD_FROZEN);
302 }
303 
304 int
305 hammer2_thr_break(hammer2_thread_t *thr)
306 {
307 	if (thr->flags & (HAMMER2_THREAD_STOP |
308 			  HAMMER2_THREAD_REMASTER |
309 			  HAMMER2_THREAD_FREEZE)) {
310 		return 1;
311 	}
312 	return 0;
313 }
314 
315 /****************************************************************************
316  *			    HAMMER2 XOPS API	 			    *
317  ****************************************************************************/
318 
319 /*
320  * Allocate a XOP request.
321  *
322  * Once allocated a XOP request can be started, collected, and retired,
323  * and can be retired early if desired.
324  *
325  * NOTE: Fifo indices might not be zero but ri == wi on objcache_get().
326  */
327 void *
328 hammer2_xop_alloc(hammer2_inode_t *ip, int flags)
329 {
330 	hammer2_xop_t *xop;
331 
332 	xop = objcache_get(cache_xops, M_WAITOK);
333 	KKASSERT(xop->head.cluster.array[0].chain == NULL);
334 
335 	xop->head.ip1 = ip;
336 	xop->head.desc = NULL;
337 	xop->head.flags = flags;
338 	xop->head.state = 0;
339 	xop->head.error = 0;
340 	xop->head.collect_key = 0;
341 	xop->head.focus_dio = NULL;
342 
343 	if (flags & HAMMER2_XOP_MODIFYING)
344 		xop->head.mtid = hammer2_trans_sub(ip->pmp);
345 	else
346 		xop->head.mtid = 0;
347 
348 	xop->head.cluster.nchains = ip->cluster.nchains;
349 	xop->head.cluster.pmp = ip->pmp;
350 	xop->head.cluster.flags = HAMMER2_CLUSTER_LOCKED;
351 
352 	/*
353 	 * run_mask - Active thread (or frontend) associated with XOP
354 	 */
355 	xop->head.run_mask = HAMMER2_XOPMASK_VOP;
356 
357 	hammer2_inode_ref(ip);
358 
359 	return xop;
360 }
361 
362 void
363 hammer2_xop_setname(hammer2_xop_head_t *xop, const char *name, size_t name_len)
364 {
365 	xop->name1 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
366 	xop->name1_len = name_len;
367 	bcopy(name, xop->name1, name_len);
368 }
369 
370 void
371 hammer2_xop_setname2(hammer2_xop_head_t *xop, const char *name, size_t name_len)
372 {
373 	xop->name2 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
374 	xop->name2_len = name_len;
375 	bcopy(name, xop->name2, name_len);
376 }
377 
378 size_t
379 hammer2_xop_setname_inum(hammer2_xop_head_t *xop, hammer2_key_t inum)
380 {
381 	const size_t name_len = 18;
382 
383 	xop->name1 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
384 	xop->name1_len = name_len;
385 	ksnprintf(xop->name1, name_len + 1, "0x%016jx", (intmax_t)inum);
386 
387 	return name_len;
388 }
389 
390 
391 void
392 hammer2_xop_setip2(hammer2_xop_head_t *xop, hammer2_inode_t *ip2)
393 {
394 	xop->ip2 = ip2;
395 	hammer2_inode_ref(ip2);
396 }
397 
398 void
399 hammer2_xop_setip3(hammer2_xop_head_t *xop, hammer2_inode_t *ip3)
400 {
401 	xop->ip3 = ip3;
402 	hammer2_inode_ref(ip3);
403 }
404 
405 void
406 hammer2_xop_setip4(hammer2_xop_head_t *xop, hammer2_inode_t *ip4)
407 {
408 	xop->ip4 = ip4;
409 	hammer2_inode_ref(ip4);
410 }
411 
412 void
413 hammer2_xop_reinit(hammer2_xop_head_t *xop)
414 {
415 	xop->state = 0;
416 	xop->error = 0;
417 	xop->collect_key = 0;
418 	xop->run_mask = HAMMER2_XOPMASK_VOP;
419 }
420 
421 /*
422  * A mounted PFS needs Xops threads to support frontend operations.
423  */
424 void
425 hammer2_xop_helper_create(hammer2_pfs_t *pmp)
426 {
427 	int i;
428 	int j;
429 
430 	lockmgr(&pmp->lock, LK_EXCLUSIVE);
431 	pmp->has_xop_threads = 1;
432 
433 	pmp->xop_groups = kmalloc(hammer2_xop_nthreads *
434 				  sizeof(hammer2_xop_group_t),
435 				  M_HAMMER2, M_WAITOK | M_ZERO);
436 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
437 		for (j = 0; j < hammer2_xop_nthreads; ++j) {
438 			if (pmp->xop_groups[j].thrs[i].td)
439 				continue;
440 			hammer2_thr_create(&pmp->xop_groups[j].thrs[i],
441 					   pmp, NULL,
442 					   "h2xop", i, j,
443 					   hammer2_primary_xops_thread);
444 		}
445 	}
446 	lockmgr(&pmp->lock, LK_RELEASE);
447 }
448 
449 void
450 hammer2_xop_helper_cleanup(hammer2_pfs_t *pmp)
451 {
452 	int i;
453 	int j;
454 
455 	if (pmp->xop_groups == NULL) {
456 		KKASSERT(pmp->has_xop_threads == 0);
457 		return;
458 	}
459 
460 	for (i = 0; i < pmp->pfs_nmasters; ++i) {
461 		for (j = 0; j < hammer2_xop_nthreads; ++j) {
462 			if (pmp->xop_groups[j].thrs[i].td)
463 				hammer2_thr_delete(&pmp->xop_groups[j].thrs[i]);
464 		}
465 	}
466 	pmp->has_xop_threads = 0;
467 	kfree(pmp->xop_groups, M_HAMMER2);
468 	pmp->xop_groups = NULL;
469 }
470 
471 /*
472  * Start a XOP request, queueing it to all nodes in the cluster to
473  * execute the cluster op.
474  *
475  * XXX optimize single-target case.
476  */
477 void
478 hammer2_xop_start_except(hammer2_xop_head_t *xop, hammer2_xop_desc_t *desc,
479 			 int notidx)
480 {
481 	hammer2_inode_t *ip1;
482 	hammer2_pfs_t *pmp;
483 	hammer2_thread_t *thr;
484 	int i;
485 	int ng;
486 	int nchains;
487 
488 	ip1 = xop->ip1;
489 	pmp = ip1->pmp;
490 	if (pmp->has_xop_threads == 0)
491 		hammer2_xop_helper_create(pmp);
492 
493 	/*
494 	 * The sequencer assigns a worker thread to the XOP.
495 	 *
496 	 * (1) The worker threads are partitioned into two sets, one for
497 	 *     NON-STRATEGY XOPs, and the other for STRATEGY XOPs.  This
498 	 *     guarantees that strategy calls will always be able to make
499 	 *     progress and will not deadlock against non-strategy calls.
500 	 *
501 	 * (2) If clustered, non-strategy operations to the same inode must
502 	 *     be serialized.  This is to avoid confusion when issuing
503 	 *     modifying operations because a XOP completes the instant a
504 	 *     quorum is reached.
505 	 *
506 	 * TODO - RENAME fails here because it is potentially modifying
507 	 *	  three different inodes, but we triple-lock the inodes
508 	 *	  involved so it shouldn't create a sequencing schism.
509 	 */
510 	if (xop->flags & HAMMER2_XOP_STRATEGY) {
511 		/*
512 		 * Use worker space 0 associated with the current cpu
513 		 * for strategy ops.
514 		 */
515 		hammer2_xop_strategy_t *xopst;
516 		u_int which;
517 
518 		xopst = &((hammer2_xop_t *)xop)->xop_strategy;
519 		which = ((unsigned int)ip1->ihash +
520 			 ((unsigned int)xopst->lbase >> HAMMER2_PBUFRADIX)) %
521 			hammer2_xop_sgroups;
522 		ng = mycpu->gd_cpuid % hammer2_xop_mod +
523 		     hammer2_xop_mod * which;
524 	} else if (hammer2_spread_workers == 0 && ip1->cluster.nchains == 1) {
525 		/*
526 		 * For now try to keep the work on the same cpu to reduce
527 		 * IPI overhead.  Several threads are assigned to each cpu,
528 		 * don't be very smart and select the one to use based on
529 		 * the inode hash.
530 		 */
531 		u_int which;
532 
533 		which = (unsigned int)ip1->ihash % hammer2_xop_xgroups;
534 		ng = mycpu->gd_cpuid % hammer2_xop_mod +
535 		     (which * hammer2_xop_mod) +
536 		     hammer2_xop_xbase;
537 	} else {
538 		/*
539 		 * Hash based on inode only, must serialize inode to same
540 		 * thread regardless of current cpu.
541 		 */
542 		ng = (unsigned int)ip1->ihash %
543 		     (hammer2_xop_mod * hammer2_xop_xgroups) +
544 		     hammer2_xop_xbase;
545 	}
546 	xop->desc = desc;
547 
548 	/*
549 	 * The instant xop is queued another thread can pick it off.  In the
550 	 * case of asynchronous ops, another thread might even finish and
551 	 * deallocate it.
552 	 */
553 	hammer2_spin_ex(&pmp->xop_spin);
554 	nchains = ip1->cluster.nchains;
555 	for (i = 0; i < nchains; ++i) {
556 		/*
557 		 * XXX ip1->cluster.array* not stable here.  This temporary
558 		 *     hack fixes basic issues in target XOPs which need to
559 		 *     obtain a starting chain from the inode but does not
560 		 *     address possible races against inode updates which
561 		 *     might NULL-out a chain.
562 		 */
563 		if (i != notidx && ip1->cluster.array[i].chain) {
564 			thr = &pmp->xop_groups[ng].thrs[i];
565 			atomic_set_64(&xop->run_mask, 1LLU << i);
566 			atomic_set_64(&xop->chk_mask, 1LLU << i);
567 			xop->collect[i].thr = thr;
568 			TAILQ_INSERT_TAIL(&thr->xopq, xop, collect[i].entry);
569 		}
570 	}
571 	hammer2_spin_unex(&pmp->xop_spin);
572 	/* xop can become invalid at this point */
573 
574 	/*
575 	 * Each thread has its own xopq
576 	 */
577 	for (i = 0; i < nchains; ++i) {
578 		if (i != notidx) {
579 			thr = &pmp->xop_groups[ng].thrs[i];
580 			hammer2_thr_signal(thr, HAMMER2_THREAD_XOPQ);
581 		}
582 	}
583 }
584 
585 void
586 hammer2_xop_start(hammer2_xop_head_t *xop, hammer2_xop_desc_t *desc)
587 {
588 	hammer2_xop_start_except(xop, desc, -1);
589 }
590 
591 /*
592  * Retire a XOP.  Used by both the VOP frontend and by the XOP backend.
593  */
594 void
595 hammer2_xop_retire(hammer2_xop_head_t *xop, uint64_t mask)
596 {
597 	hammer2_chain_t *chain;
598 	uint64_t nmask;
599 	int i;
600 
601 	/*
602 	 * Remove the frontend collector or remove a backend feeder.
603 	 *
604 	 * When removing the frontend we must wakeup any backend feeders
605 	 * who are waiting for FIFO space.
606 	 *
607 	 * When removing the last backend feeder we must wakeup any waiting
608 	 * frontend.
609 	 */
610 	KKASSERT(xop->run_mask & mask);
611 	nmask = atomic_fetchadd_64(&xop->run_mask,
612 				   -mask + HAMMER2_XOPMASK_FEED);
613 
614 	/*
615 	 * More than one entity left
616 	 */
617 	if ((nmask & HAMMER2_XOPMASK_ALLDONE) != mask) {
618 		/*
619 		 * Frontend terminating, wakeup any backends waiting on
620 		 * fifo full.
621 		 *
622 		 * NOTE!!! The xop can get ripped out from under us at
623 		 *	   this point, so do not reference it again.
624 		 *	   The wakeup(xop) doesn't touch the xop and
625 		 *	   is ok.
626 		 */
627 		if (mask == HAMMER2_XOPMASK_VOP) {
628 			if (nmask & HAMMER2_XOPMASK_FIFOW)
629 				wakeup(xop);
630 		}
631 
632 		/*
633 		 * Wakeup frontend if the last backend is terminating.
634 		 */
635 		nmask -= mask;
636 		if ((nmask & HAMMER2_XOPMASK_ALLDONE) == HAMMER2_XOPMASK_VOP) {
637 			if (nmask & HAMMER2_XOPMASK_WAIT)
638 				wakeup(xop);
639 		}
640 
641 		return;
642 	}
643 	/* else nobody else left, we can ignore FIFOW */
644 
645 	/*
646 	 * All collectors are gone, we can cleanup and dispose of the XOP.
647 	 * Note that this can wind up being a frontend OR a backend.
648 	 * Pending chains are locked shared and not owned by any thread.
649 	 *
650 	 * Cleanup the collection cluster.
651 	 */
652 	for (i = 0; i < xop->cluster.nchains; ++i) {
653 		xop->cluster.array[i].flags = 0;
654 		chain = xop->cluster.array[i].chain;
655 		if (chain) {
656 			xop->cluster.array[i].chain = NULL;
657 			hammer2_chain_drop_unhold(chain);
658 		}
659 	}
660 
661 	/*
662 	 * Cleanup the fifos.  Since we are the only entity left on this
663 	 * xop we don't have to worry about fifo flow control, and one
664 	 * lfence() will do the job.
665 	 */
666 	cpu_lfence();
667 	mask = xop->chk_mask;
668 	for (i = 0; mask && i < HAMMER2_MAXCLUSTER; ++i) {
669 		hammer2_xop_fifo_t *fifo = &xop->collect[i];
670 		while (fifo->ri != fifo->wi) {
671 			chain = fifo->array[fifo->ri & HAMMER2_XOPFIFO_MASK];
672 			if (chain)
673 				hammer2_chain_drop_unhold(chain);
674 			++fifo->ri;
675 		}
676 		mask &= ~(1U << i);
677 	}
678 
679 	/*
680 	 * The inode is only held at this point, simply drop it.
681 	 */
682 	if (xop->ip1) {
683 		hammer2_inode_drop(xop->ip1);
684 		xop->ip1 = NULL;
685 	}
686 	if (xop->ip2) {
687 		hammer2_inode_drop(xop->ip2);
688 		xop->ip2 = NULL;
689 	}
690 	if (xop->ip3) {
691 		hammer2_inode_drop(xop->ip3);
692 		xop->ip3 = NULL;
693 	}
694 	if (xop->ip4) {
695 		hammer2_inode_drop(xop->ip4);
696 		xop->ip4 = NULL;
697 	}
698 	if (xop->name1) {
699 		kfree(xop->name1, M_HAMMER2);
700 		xop->name1 = NULL;
701 		xop->name1_len = 0;
702 	}
703 	if (xop->name2) {
704 		kfree(xop->name2, M_HAMMER2);
705 		xop->name2 = NULL;
706 		xop->name2_len = 0;
707 	}
708 
709 	objcache_put(cache_xops, xop);
710 }
711 
712 /*
713  * (Backend) Returns non-zero if the frontend is still attached.
714  */
715 int
716 hammer2_xop_active(hammer2_xop_head_t *xop)
717 {
718 	if (xop->run_mask & HAMMER2_XOPMASK_VOP)
719 		return 1;
720 	else
721 		return 0;
722 }
723 
724 /*
725  * (Backend) Feed chain data through the cluster validator and back to
726  * the frontend.  Chains are fed from multiple nodes concurrently
727  * and pipelined via per-node FIFOs in the XOP.
728  *
729  * The chain must be locked (either shared or exclusive).  The caller may
730  * unlock and drop the chain on return.  This function will add an extra
731  * ref and hold the chain's data for the pass-back.
732  *
733  * No xop lock is needed because we are only manipulating fields under
734  * our direct control.
735  *
736  * Returns 0 on success and a hammer2 error code if sync is permanently
737  * lost.  The caller retains a ref on the chain but by convention
738  * the lock is typically inherited by the xop (caller loses lock).
739  *
740  * Returns non-zero on error.  In this situation the caller retains a
741  * ref on the chain but loses the lock (we unlock here).
742  */
743 int
744 hammer2_xop_feed(hammer2_xop_head_t *xop, hammer2_chain_t *chain,
745 		 int clindex, int error)
746 {
747 	hammer2_xop_fifo_t *fifo;
748 	uint64_t mask;
749 
750 	/*
751 	 * Early termination (typicaly of xop_readir)
752 	 */
753 	if (hammer2_xop_active(xop) == 0) {
754 		error = HAMMER2_ERROR_ABORTED;
755 		goto done;
756 	}
757 
758 	/*
759 	 * Multi-threaded entry into the XOP collector.  We own the
760 	 * fifo->wi for our clindex.
761 	 */
762 	fifo = &xop->collect[clindex];
763 
764 	if (fifo->ri == fifo->wi - HAMMER2_XOPFIFO)
765 		lwkt_yield();
766 	while (fifo->ri == fifo->wi - HAMMER2_XOPFIFO) {
767 		atomic_set_int(&fifo->flags, HAMMER2_XOP_FIFO_STALL);
768 		mask = xop->run_mask;
769 		if ((mask & HAMMER2_XOPMASK_VOP) == 0) {
770 			error = HAMMER2_ERROR_ABORTED;
771 			goto done;
772 		}
773 		tsleep_interlock(xop, 0);
774 		if (atomic_cmpset_64(&xop->run_mask, mask,
775 				     mask | HAMMER2_XOPMASK_FIFOW)) {
776 			if (fifo->ri == fifo->wi - HAMMER2_XOPFIFO) {
777 				tsleep(xop, PINTERLOCKED, "h2feed", hz*60);
778 			}
779 		}
780 		/* retry */
781 	}
782 	atomic_clear_int(&fifo->flags, HAMMER2_XOP_FIFO_STALL);
783 	if (chain)
784 		hammer2_chain_ref_hold(chain);
785 	if (error == 0 && chain)
786 		error = chain->error;
787 	fifo->errors[fifo->wi & HAMMER2_XOPFIFO_MASK] = error;
788 	fifo->array[fifo->wi & HAMMER2_XOPFIFO_MASK] = chain;
789 	cpu_sfence();
790 	++fifo->wi;
791 
792 	mask = atomic_fetchadd_64(&xop->run_mask, HAMMER2_XOPMASK_FEED);
793 	if (mask & HAMMER2_XOPMASK_WAIT) {
794 		atomic_clear_64(&xop->run_mask, HAMMER2_XOPMASK_WAIT);
795 		wakeup(xop);
796 	}
797 	error = 0;
798 
799 	/*
800 	 * Cleanup.  If an error occurred we eat the lock.  If no error
801 	 * occurred the fifo inherits the lock and gains an additional ref.
802 	 *
803 	 * The caller's ref remains in both cases.
804 	 */
805 done:
806 	return error;
807 }
808 
809 /*
810  * (Frontend) collect a response from a running cluster op.
811  *
812  * Responses are fed from all appropriate nodes concurrently
813  * and collected into a cohesive response >= collect_key.
814  *
815  * The collector will return the instant quorum or other requirements
816  * are met, even if some nodes get behind or become non-responsive.
817  *
818  * HAMMER2_XOP_COLLECT_NOWAIT	- Used to 'poll' a completed collection,
819  *				  usually called synchronously from the
820  *				  node XOPs for the strategy code to
821  *				  fake the frontend collection and complete
822  *				  the BIO as soon as possible.
823  *
824  * HAMMER2_XOP_SYNCHRONIZER	- Reqeuest synchronization with a particular
825  *				  cluster index, prevents looping when that
826  *				  index is out of sync so caller can act on
827  *				  the out of sync element.  ESRCH and EDEADLK
828  *				  can be returned if this flag is specified.
829  *
830  * Returns 0 on success plus a filled out xop->cluster structure.
831  * Return ENOENT on normal termination.
832  * Otherwise return an error.
833  *
834  * WARNING! If the xop returns a cluster with a non-NULL focus, note that
835  *	    none of the chains in the cluster (or the focus) are either
836  *	    locked or I/O synchronized with the cpu.  hammer2_xop_gdata()
837  *	    and hammer2_xop_pdata() must be used to safely access the focus
838  *	    chain's content.
839  *
840  *	    The frontend can make certain assumptions based on higher-level
841  *	    locking done by the frontend, but data integrity absolutely
842  *	    requires using the gdata/pdata API.
843  */
844 int
845 hammer2_xop_collect(hammer2_xop_head_t *xop, int flags)
846 {
847 	hammer2_xop_fifo_t *fifo;
848 	hammer2_chain_t *chain;
849 	hammer2_key_t lokey;
850 	uint64_t mask;
851 	int error;
852 	int keynull;
853 	int adv;		/* advance the element */
854 	int i;
855 
856 loop:
857 	/*
858 	 * First loop tries to advance pieces of the cluster which
859 	 * are out of sync.
860 	 */
861 	lokey = HAMMER2_KEY_MAX;
862 	keynull = HAMMER2_CHECK_NULL;
863 	mask = xop->run_mask;
864 	cpu_lfence();
865 
866 	for (i = 0; i < xop->cluster.nchains; ++i) {
867 		chain = xop->cluster.array[i].chain;
868 		if (chain == NULL) {
869 			adv = 1;
870 		} else if (chain->bref.key < xop->collect_key) {
871 			adv = 1;
872 		} else {
873 			keynull &= ~HAMMER2_CHECK_NULL;
874 			if (lokey > chain->bref.key)
875 				lokey = chain->bref.key;
876 			adv = 0;
877 		}
878 		if (adv == 0)
879 			continue;
880 
881 		/*
882 		 * Advance element if possible, advanced element may be NULL.
883 		 */
884 		if (chain)
885 			hammer2_chain_drop_unhold(chain);
886 
887 		fifo = &xop->collect[i];
888 		if (fifo->ri != fifo->wi) {
889 			cpu_lfence();
890 			chain = fifo->array[fifo->ri & HAMMER2_XOPFIFO_MASK];
891 			error = fifo->errors[fifo->ri & HAMMER2_XOPFIFO_MASK];
892 			++fifo->ri;
893 			xop->cluster.array[i].chain = chain;
894 			xop->cluster.array[i].error = error;
895 			if (chain == NULL) {
896 				/* XXX */
897 				xop->cluster.array[i].flags |=
898 							HAMMER2_CITEM_NULL;
899 			}
900 			if (fifo->wi - fifo->ri <= HAMMER2_XOPFIFO / 2) {
901 				if (fifo->flags & HAMMER2_XOP_FIFO_STALL) {
902 					atomic_clear_int(&fifo->flags,
903 						    HAMMER2_XOP_FIFO_STALL);
904 					wakeup(xop);
905 					lwkt_yield();
906 				}
907 			}
908 			--i;		/* loop on same index */
909 		} else {
910 			/*
911 			 * Retain CITEM_NULL flag.  If set just repeat EOF.
912 			 * If not, the NULL,0 combination indicates an
913 			 * operation in-progress.
914 			 */
915 			xop->cluster.array[i].chain = NULL;
916 			/* retain any CITEM_NULL setting */
917 		}
918 	}
919 
920 	/*
921 	 * Determine whether the lowest collected key meets clustering
922 	 * requirements.  Returns HAMMER2_ERROR_*:
923 	 *
924 	 * 0	 	 - key valid, cluster can be returned.
925 	 *
926 	 * ENOENT	 - normal end of scan, return ENOENT.
927 	 *
928 	 * ESRCH	 - sufficient elements collected, quorum agreement
929 	 *		   that lokey is not a valid element and should be
930 	 *		   skipped.
931 	 *
932 	 * EDEADLK	 - sufficient elements collected, no quorum agreement
933 	 *		   (and no agreement possible).  In this situation a
934 	 *		   repair is needed, for now we loop.
935 	 *
936 	 * EINPROGRESS	 - insufficient elements collected to resolve, wait
937 	 *		   for event and loop.
938 	 *
939 	 * EIO/ECHECK	 - IO error or CRC check error from hammer2_cluster_check()
940 	 */
941 	if ((flags & HAMMER2_XOP_COLLECT_WAITALL) &&
942 	    (mask & HAMMER2_XOPMASK_ALLDONE) != HAMMER2_XOPMASK_VOP) {
943 		error = HAMMER2_ERROR_EINPROGRESS;
944 	} else {
945 		error = hammer2_cluster_check(&xop->cluster, lokey, keynull);
946 	}
947 	if (error == HAMMER2_ERROR_EINPROGRESS) {
948 		if (flags & HAMMER2_XOP_COLLECT_NOWAIT)
949 			goto done;
950 		tsleep_interlock(xop, 0);
951 		if (atomic_cmpset_64(&xop->run_mask,
952 				     mask, mask | HAMMER2_XOPMASK_WAIT)) {
953 			tsleep(xop, PINTERLOCKED, "h2coll", hz*60);
954 		}
955 		goto loop;
956 	}
957 	if (error == HAMMER2_ERROR_ESRCH) {
958 		if (lokey != HAMMER2_KEY_MAX) {
959 			xop->collect_key = lokey + 1;
960 			goto loop;
961 		}
962 		error = HAMMER2_ERROR_ENOENT;
963 	}
964 	if (error == HAMMER2_ERROR_EDEADLK) {
965 		kprintf("hammer2: no quorum possible lokey %016jx\n",
966 			lokey);
967 		if (lokey != HAMMER2_KEY_MAX) {
968 			xop->collect_key = lokey + 1;
969 			goto loop;
970 		}
971 		error = HAMMER2_ERROR_ENOENT;
972 	}
973 	if (lokey == HAMMER2_KEY_MAX)
974 		xop->collect_key = lokey;
975 	else
976 		xop->collect_key = lokey + 1;
977 done:
978 	return error;
979 }
980 
981 /*
982  * N x M processing threads are available to handle XOPs, N per cluster
983  * index x M cluster nodes.
984  *
985  * Locate and return the next runnable xop, or NULL if no xops are
986  * present or none of the xops are currently runnable (for various reasons).
987  * The xop is left on the queue and serves to block other dependent xops
988  * from being run.
989  *
990  * Dependent xops will not be returned.
991  *
992  * Sets HAMMER2_XOP_FIFO_RUN on the returned xop or returns NULL.
993  *
994  * NOTE! Xops run concurrently for each cluster index.
995  */
996 #define XOP_HASH_SIZE	16
997 #define XOP_HASH_MASK	(XOP_HASH_SIZE - 1)
998 
999 static __inline
1000 int
1001 xop_testhash(hammer2_thread_t *thr, hammer2_inode_t *ip, uint32_t *hash)
1002 {
1003 	uint32_t mask;
1004 	int hv;
1005 
1006 	hv = (int)((uintptr_t)ip + (uintptr_t)thr) / sizeof(hammer2_inode_t);
1007 	mask = 1U << (hv & 31);
1008 	hv >>= 5;
1009 
1010 	return ((int)(hash[hv & XOP_HASH_MASK] & mask));
1011 }
1012 
1013 static __inline
1014 void
1015 xop_sethash(hammer2_thread_t *thr, hammer2_inode_t *ip, uint32_t *hash)
1016 {
1017 	uint32_t mask;
1018 	int hv;
1019 
1020 	hv = (int)((uintptr_t)ip + (uintptr_t)thr) / sizeof(hammer2_inode_t);
1021 	mask = 1U << (hv & 31);
1022 	hv >>= 5;
1023 
1024 	hash[hv & XOP_HASH_MASK] |= mask;
1025 }
1026 
1027 static
1028 hammer2_xop_head_t *
1029 hammer2_xop_next(hammer2_thread_t *thr)
1030 {
1031 	hammer2_pfs_t *pmp = thr->pmp;
1032 	int clindex = thr->clindex;
1033 	uint32_t hash[XOP_HASH_SIZE] = { 0 };
1034 	hammer2_xop_head_t *xop;
1035 
1036 	hammer2_spin_ex(&pmp->xop_spin);
1037 	TAILQ_FOREACH(xop, &thr->xopq, collect[clindex].entry) {
1038 		/*
1039 		 * Check dependency
1040 		 */
1041 		if (xop_testhash(thr, xop->ip1, hash) ||
1042 		    (xop->ip2 && xop_testhash(thr, xop->ip2, hash)) ||
1043 		    (xop->ip3 && xop_testhash(thr, xop->ip3, hash)) ||
1044 		    (xop->ip4 && xop_testhash(thr, xop->ip4, hash)))
1045 		{
1046 			continue;
1047 		}
1048 		xop_sethash(thr, xop->ip1, hash);
1049 		if (xop->ip2)
1050 			xop_sethash(thr, xop->ip2, hash);
1051 		if (xop->ip3)
1052 			xop_sethash(thr, xop->ip3, hash);
1053 		if (xop->ip4)
1054 			xop_sethash(thr, xop->ip4, hash);
1055 
1056 		/*
1057 		 * Check already running
1058 		 */
1059 		if (xop->collect[clindex].flags & HAMMER2_XOP_FIFO_RUN)
1060 			continue;
1061 
1062 		/*
1063 		 * Found a good one, return it.
1064 		 */
1065 		atomic_set_int(&xop->collect[clindex].flags,
1066 			       HAMMER2_XOP_FIFO_RUN);
1067 		break;
1068 	}
1069 	hammer2_spin_unex(&pmp->xop_spin);
1070 
1071 	return xop;
1072 }
1073 
1074 /*
1075  * Remove the completed XOP from the queue, clear HAMMER2_XOP_FIFO_RUN.
1076  *
1077  * NOTE! Xops run concurrently for each cluster index.
1078  */
1079 static
1080 void
1081 hammer2_xop_dequeue(hammer2_thread_t *thr, hammer2_xop_head_t *xop)
1082 {
1083 	hammer2_pfs_t *pmp = thr->pmp;
1084 	int clindex = thr->clindex;
1085 
1086 	hammer2_spin_ex(&pmp->xop_spin);
1087 	TAILQ_REMOVE(&thr->xopq, xop, collect[clindex].entry);
1088 	atomic_clear_int(&xop->collect[clindex].flags,
1089 			 HAMMER2_XOP_FIFO_RUN);
1090 	hammer2_spin_unex(&pmp->xop_spin);
1091 	if (TAILQ_FIRST(&thr->xopq))
1092 		hammer2_thr_signal(thr, HAMMER2_THREAD_XOPQ);
1093 }
1094 
1095 /*
1096  * Primary management thread for xops support.  Each node has several such
1097  * threads which replicate front-end operations on cluster nodes.
1098  *
1099  * XOPS thread node operations, allowing the function to focus on a single
1100  * node in the cluster after validating the operation with the cluster.
1101  * This is primarily what prevents dead or stalled nodes from stalling
1102  * the front-end.
1103  */
1104 void
1105 hammer2_primary_xops_thread(void *arg)
1106 {
1107 	hammer2_thread_t *thr = arg;
1108 	hammer2_pfs_t *pmp;
1109 	hammer2_xop_head_t *xop;
1110 	uint64_t mask;
1111 	uint32_t flags;
1112 	uint32_t nflags;
1113 	hammer2_xop_desc_t *last_desc = NULL;
1114 
1115 	pmp = thr->pmp;
1116 	/*xgrp = &pmp->xop_groups[thr->repidx]; not needed */
1117 	mask = 1LLU << thr->clindex;
1118 
1119 	for (;;) {
1120 		flags = thr->flags;
1121 
1122 		/*
1123 		 * Handle stop request
1124 		 */
1125 		if (flags & HAMMER2_THREAD_STOP)
1126 			break;
1127 
1128 		/*
1129 		 * Handle freeze request
1130 		 */
1131 		if (flags & HAMMER2_THREAD_FREEZE) {
1132 			hammer2_thr_signal2(thr, HAMMER2_THREAD_FROZEN,
1133 						 HAMMER2_THREAD_FREEZE);
1134 			continue;
1135 		}
1136 
1137 		if (flags & HAMMER2_THREAD_UNFREEZE) {
1138 			hammer2_thr_signal2(thr, 0,
1139 						 HAMMER2_THREAD_FROZEN |
1140 						 HAMMER2_THREAD_UNFREEZE);
1141 			continue;
1142 		}
1143 
1144 		/*
1145 		 * Force idle if frozen until unfrozen or stopped.
1146 		 */
1147 		if (flags & HAMMER2_THREAD_FROZEN) {
1148 			hammer2_thr_wait_any(thr,
1149 					     HAMMER2_THREAD_UNFREEZE |
1150 					     HAMMER2_THREAD_STOP,
1151 					     0);
1152 			continue;
1153 		}
1154 
1155 		/*
1156 		 * Reset state on REMASTER request
1157 		 */
1158 		if (flags & HAMMER2_THREAD_REMASTER) {
1159 			hammer2_thr_signal2(thr, 0, HAMMER2_THREAD_REMASTER);
1160 			/* reset state here */
1161 			continue;
1162 		}
1163 
1164 		/*
1165 		 * Process requests.  Each request can be multi-queued.
1166 		 *
1167 		 * If we get behind and the frontend VOP is no longer active,
1168 		 * we retire the request without processing it.  The callback
1169 		 * may also abort processing if the frontend VOP becomes
1170 		 * inactive.
1171 		 */
1172 		if (flags & HAMMER2_THREAD_XOPQ) {
1173 			nflags = flags & ~HAMMER2_THREAD_XOPQ;
1174 			if (!atomic_cmpset_int(&thr->flags, flags, nflags))
1175 				continue;
1176 			flags = nflags;
1177 			/* fall through */
1178 		}
1179 		while ((xop = hammer2_xop_next(thr)) != NULL) {
1180 			if (hammer2_xop_active(xop)) {
1181 				last_desc = xop->desc;
1182 				xop->desc->storage_func((hammer2_xop_t *)xop,
1183 							thr->scratch,
1184 							thr->clindex);
1185 				hammer2_xop_dequeue(thr, xop);
1186 				hammer2_xop_retire(xop, mask);
1187 			} else {
1188 				last_desc = xop->desc;
1189 				hammer2_xop_feed(xop, NULL, thr->clindex,
1190 						 ECONNABORTED);
1191 				hammer2_xop_dequeue(thr, xop);
1192 				hammer2_xop_retire(xop, mask);
1193 			}
1194 		}
1195 
1196 		/*
1197 		 * Wait for event, interlock using THREAD_WAITING and
1198 		 * THREAD_SIGNAL.
1199 		 *
1200 		 * For robustness poll on a 30-second interval, but nominally
1201 		 * expect to be woken up.
1202 		 */
1203 		nflags = flags | HAMMER2_THREAD_WAITING;
1204 
1205 		tsleep_interlock(&thr->flags, 0);
1206 		if (atomic_cmpset_int(&thr->flags, flags, nflags)) {
1207 			tsleep(&thr->flags, PINTERLOCKED, "h2idle", hz*30);
1208 		}
1209 	}
1210 
1211 #if 0
1212 	/*
1213 	 * Cleanup / termination
1214 	 */
1215 	while ((xop = TAILQ_FIRST(&thr->xopq)) != NULL) {
1216 		kprintf("hammer2_thread: aborting xop %s\n", xop->desc->id);
1217 		TAILQ_REMOVE(&thr->xopq, xop,
1218 			     collect[thr->clindex].entry);
1219 		hammer2_xop_retire(xop, mask);
1220 	}
1221 #endif
1222 	thr->td = NULL;
1223 	hammer2_thr_signal(thr, HAMMER2_THREAD_STOPPED);
1224 	/* thr structure can go invalid after this point */
1225 }
1226