xref: /dragonfly/sys/vfs/hammer2/hammer2_chain.c (revision 2b7dbe20)
1 /*
2  * Copyright (c) 2011-2020 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62 
63 #include <crypto/sha2/sha2.h>
64 
65 #include "hammer2.h"
66 
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68 		hammer2_chain_t *parent,
69 		hammer2_key_t key, int keybits,
70 		hammer2_tid_t mtid, int for_type, int *errorp);
71 static int hammer2_chain_delete_obref(hammer2_chain_t *parent,
72 		hammer2_chain_t *chain,
73 		hammer2_tid_t mtid, int flags,
74 		hammer2_blockref_t *obref);
75 static hammer2_chain_t *hammer2_combined_find(
76 		hammer2_chain_t *parent,
77 		hammer2_blockref_t *base, int count,
78 		hammer2_key_t *key_nextp,
79 		hammer2_key_t key_beg, hammer2_key_t key_end,
80 		hammer2_blockref_t **bresp);
81 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
82 				int depth);
83 static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
84 
85 /*
86  * There are many degenerate situations where an extreme rate of console
87  * output can occur from warnings and errors.  Make sure this output does
88  * not impede operations.
89  */
90 static struct krate krate_h2chk = { .freq = 5 };
91 static struct krate krate_h2me = { .freq = 1 };
92 static struct krate krate_h2em = { .freq = 1 };
93 
94 /*
95  * Basic RBTree for chains (core.rbtree).
96  */
97 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
98 
99 int
100 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
101 {
102 	hammer2_key_t c1_beg;
103 	hammer2_key_t c1_end;
104 	hammer2_key_t c2_beg;
105 	hammer2_key_t c2_end;
106 
107 	/*
108 	 * Compare chains.  Overlaps are not supposed to happen and catch
109 	 * any software issues early we count overlaps as a match.
110 	 */
111 	c1_beg = chain1->bref.key;
112 	c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
113 	c2_beg = chain2->bref.key;
114 	c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
115 
116 	if (c1_end < c2_beg)	/* fully to the left */
117 		return(-1);
118 	if (c1_beg > c2_end)	/* fully to the right */
119 		return(1);
120 	return(0);		/* overlap (must not cross edge boundary) */
121 }
122 
123 /*
124  * Assert that a chain has no media data associated with it.
125  */
126 static __inline void
127 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
128 {
129 	KKASSERT(chain->dio == NULL);
130 	if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
131 	    chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
132 	    chain->data) {
133 		panic("hammer2_chain_assert_no_data: chain %p still has data",
134 		    chain);
135 	}
136 }
137 
138 /*
139  * Make a chain visible to the flusher.  The flusher operates using a top-down
140  * recursion based on the ONFLUSH flag.  It locates MODIFIED and UPDATE chains,
141  * flushes them, and updates blocks back to the volume root.
142  *
143  * This routine sets the ONFLUSH flag upward from the triggering chain until
144  * it hits an inode root or the volume root.  Inode chains serve as inflection
145  * points, requiring the flusher to bridge across trees.  Inodes include
146  * regular inodes, PFS roots (pmp->iroot), and the media super root
147  * (spmp->iroot).
148  */
149 void
150 hammer2_chain_setflush(hammer2_chain_t *chain)
151 {
152 	hammer2_chain_t *parent;
153 
154 	if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
155 		hammer2_spin_sh(&chain->core.spin);
156 		while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
157 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
158 			if (chain->bref.type == HAMMER2_BREF_TYPE_INODE)
159 				break;
160 			if ((parent = chain->parent) == NULL)
161 				break;
162 			hammer2_spin_sh(&parent->core.spin);
163 			hammer2_spin_unsh(&chain->core.spin);
164 			chain = parent;
165 		}
166 		hammer2_spin_unsh(&chain->core.spin);
167 	}
168 }
169 
170 /*
171  * Allocate a new disconnected chain element representing the specified
172  * bref.  chain->refs is set to 1 and the passed bref is copied to
173  * chain->bref.  chain->bytes is derived from the bref.
174  *
175  * chain->pmp inherits pmp unless the chain is an inode (other than the
176  * super-root inode).
177  *
178  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
179  */
180 hammer2_chain_t *
181 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
182 		    hammer2_blockref_t *bref)
183 {
184 	hammer2_chain_t *chain;
185 	u_int bytes;
186 
187 	/*
188 	 * Special case - radix of 0 indicates a chain that does not
189 	 * need a data reference (context is completely embedded in the
190 	 * bref).
191 	 */
192 	if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
193 		bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
194 	else
195 		bytes = 0;
196 
197 	switch(bref->type) {
198 	case HAMMER2_BREF_TYPE_INODE:
199 	case HAMMER2_BREF_TYPE_INDIRECT:
200 	case HAMMER2_BREF_TYPE_DATA:
201 	case HAMMER2_BREF_TYPE_DIRENT:
202 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
203 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
204 	case HAMMER2_BREF_TYPE_FREEMAP:
205 	case HAMMER2_BREF_TYPE_VOLUME:
206 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
207 		atomic_add_long(&hammer2_chain_allocs, 1);
208 		break;
209 	case HAMMER2_BREF_TYPE_EMPTY:
210 	default:
211 		panic("hammer2_chain_alloc: unrecognized blockref type: %d",
212 		      bref->type);
213 		break;
214 	}
215 
216 	/*
217 	 * Initialize the new chain structure.  pmp must be set to NULL for
218 	 * chains belonging to the super-root topology of a device mount.
219 	 */
220 	if (pmp == hmp->spmp)
221 		chain->pmp = NULL;
222 	else
223 		chain->pmp = pmp;
224 
225 	chain->hmp = hmp;
226 	chain->bref = *bref;
227 	chain->bytes = bytes;
228 	chain->refs = 1;
229 	chain->flags = HAMMER2_CHAIN_ALLOCATED;
230 	lockinit(&chain->diolk, "chdio", 0, 0);
231 
232 	/*
233 	 * Set the PFS boundary flag if this chain represents a PFS root.
234 	 */
235 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
236 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
237 	hammer2_chain_core_init(chain);
238 
239 	return (chain);
240 }
241 
242 /*
243  * Initialize a chain's core structure.  This structure used to be allocated
244  * but is now embedded.
245  *
246  * The core is not locked.  No additional refs on the chain are made.
247  * (trans) must not be NULL if (core) is not NULL.
248  */
249 void
250 hammer2_chain_core_init(hammer2_chain_t *chain)
251 {
252 	/*
253 	 * Fresh core under nchain (no multi-homing of ochain's
254 	 * sub-tree).
255 	 */
256 	RB_INIT(&chain->core.rbtree);	/* live chains */
257 	hammer2_mtx_init(&chain->lock, "h2chain");
258 }
259 
260 /*
261  * Add a reference to a chain element, preventing its destruction.
262  *
263  * (can be called with spinlock held)
264  */
265 void
266 hammer2_chain_ref(hammer2_chain_t *chain)
267 {
268 	if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
269 		/*
270 		 * Just flag that the chain was used and should be recycled
271 		 * on the LRU if it encounters it later.
272 		 */
273 		if (chain->flags & HAMMER2_CHAIN_ONLRU)
274 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
275 
276 #if 0
277 		/*
278 		 * REMOVED - reduces contention, lru_list is more heuristical
279 		 * now.
280 		 *
281 		 * 0->non-zero transition must ensure that chain is removed
282 		 * from the LRU list.
283 		 *
284 		 * NOTE: Already holding lru_spin here so we cannot call
285 		 *	 hammer2_chain_ref() to get it off lru_list, do
286 		 *	 it manually.
287 		 */
288 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
289 			hammer2_pfs_t *pmp = chain->pmp;
290 			hammer2_spin_ex(&pmp->lru_spin);
291 			if (chain->flags & HAMMER2_CHAIN_ONLRU) {
292 				atomic_add_int(&pmp->lru_count, -1);
293 				atomic_clear_int(&chain->flags,
294 						 HAMMER2_CHAIN_ONLRU);
295 				TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
296 			}
297 			hammer2_spin_unex(&pmp->lru_spin);
298 		}
299 #endif
300 	}
301 }
302 
303 /*
304  * Ref a locked chain and force the data to be held across an unlock.
305  * Chain must be currently locked.  The user of the chain who desires
306  * to release the hold must call hammer2_chain_lock_unhold() to relock
307  * and unhold the chain, then unlock normally, or may simply call
308  * hammer2_chain_drop_unhold() (which is safer against deadlocks).
309  */
310 void
311 hammer2_chain_ref_hold(hammer2_chain_t *chain)
312 {
313 	atomic_add_int(&chain->lockcnt, 1);
314 	hammer2_chain_ref(chain);
315 }
316 
317 /*
318  * Insert the chain in the core rbtree.
319  *
320  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
321  * chain is a special case used by the flush code that is placed on the
322  * unstaged deleted list to avoid confusing the live view.
323  */
324 #define HAMMER2_CHAIN_INSERT_SPIN	0x0001
325 #define HAMMER2_CHAIN_INSERT_LIVE	0x0002
326 #define HAMMER2_CHAIN_INSERT_RACE	0x0004
327 
328 static
329 int
330 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
331 		     int flags, int generation)
332 {
333 	hammer2_chain_t *xchain;
334 	int error = 0;
335 
336 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
337 		hammer2_spin_ex(&parent->core.spin);
338 
339 	/*
340 	 * Interlocked by spinlock, check for race
341 	 */
342 	if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
343 	    parent->core.generation != generation) {
344 		error = HAMMER2_ERROR_EAGAIN;
345 		goto failed;
346 	}
347 
348 	/*
349 	 * Insert chain
350 	 */
351 	xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
352 	KASSERT(xchain == NULL,
353 		("hammer2_chain_insert: collision %p %p (key=%016jx)",
354 		chain, xchain, chain->bref.key));
355 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
356 	chain->parent = parent;
357 	++parent->core.chain_count;
358 	++parent->core.generation;	/* XXX incs for _get() too, XXX */
359 
360 	/*
361 	 * We have to keep track of the effective live-view blockref count
362 	 * so the create code knows when to push an indirect block.
363 	 */
364 	if (flags & HAMMER2_CHAIN_INSERT_LIVE)
365 		atomic_add_int(&parent->core.live_count, 1);
366 failed:
367 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
368 		hammer2_spin_unex(&parent->core.spin);
369 	return error;
370 }
371 
372 /*
373  * Drop the caller's reference to the chain.  When the ref count drops to
374  * zero this function will try to disassociate the chain from its parent and
375  * deallocate it, then recursely drop the parent using the implied ref
376  * from the chain's chain->parent.
377  *
378  * Nobody should own chain's mutex on the 1->0 transition, unless this drop
379  * races an acquisition by another cpu.  Therefore we can loop if we are
380  * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
381  * race against another drop.
382  */
383 void
384 hammer2_chain_drop(hammer2_chain_t *chain)
385 {
386 	u_int refs;
387 
388 	KKASSERT(chain->refs > 0);
389 
390 	while (chain) {
391 		refs = chain->refs;
392 		cpu_ccfence();
393 		KKASSERT(refs > 0);
394 
395 		if (refs == 1) {
396 			if (hammer2_mtx_ex_try(&chain->lock) == 0)
397 				chain = hammer2_chain_lastdrop(chain, 0);
398 			/* retry the same chain, or chain from lastdrop */
399 		} else {
400 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
401 				break;
402 			/* retry the same chain */
403 		}
404 		cpu_pause();
405 	}
406 }
407 
408 /*
409  * Unhold a held and probably not-locked chain, ensure that the data is
410  * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
411  * lock and then simply unlocking the chain.
412  */
413 void
414 hammer2_chain_unhold(hammer2_chain_t *chain)
415 {
416 	u_int lockcnt;
417 	int iter = 0;
418 
419 	for (;;) {
420 		lockcnt = chain->lockcnt;
421 		cpu_ccfence();
422 		if (lockcnt > 1) {
423 			if (atomic_cmpset_int(&chain->lockcnt,
424 					      lockcnt, lockcnt - 1)) {
425 				break;
426 			}
427 		} else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
428 			hammer2_chain_unlock(chain);
429 			break;
430 		} else {
431 			/*
432 			 * This situation can easily occur on SMP due to
433 			 * the gap inbetween the 1->0 transition and the
434 			 * final unlock.  We cannot safely block on the
435 			 * mutex because lockcnt might go above 1.
436 			 *
437 			 * XXX Sleep for one tick if it takes too long.
438 			 */
439 			if (++iter > 1000) {
440 				if (iter > 1000 + hz) {
441 					kprintf("hammer2: h2race1 %p\n", chain);
442 					iter = 1000;
443 				}
444 				tsleep(&iter, 0, "h2race1", 1);
445 			}
446 			cpu_pause();
447 		}
448 	}
449 }
450 
451 void
452 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
453 {
454 	hammer2_chain_unhold(chain);
455 	hammer2_chain_drop(chain);
456 }
457 
458 void
459 hammer2_chain_rehold(hammer2_chain_t *chain)
460 {
461 	hammer2_chain_lock(chain, HAMMER2_RESOLVE_SHARED);
462 	atomic_add_int(&chain->lockcnt, 1);
463 	hammer2_chain_unlock(chain);
464 }
465 
466 /*
467  * Handles the (potential) last drop of chain->refs from 1->0.  Called with
468  * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
469  * possible against refs and lockcnt.  We must dispose of the mutex on chain.
470  *
471  * This function returns an unlocked chain for recursive drop or NULL.  It
472  * can return the same chain if it determines it has raced another ref.
473  *
474  * --
475  *
476  * When two chains need to be recursively dropped we use the chain we
477  * would otherwise free to placehold the additional chain.  It's a bit
478  * convoluted but we can't just recurse without potentially blowing out
479  * the kernel stack.
480  *
481  * The chain cannot be freed if it has any children.
482  * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
483  * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
484  * Any dedup registration can remain intact.
485  *
486  * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
487  */
488 static
489 hammer2_chain_t *
490 hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
491 {
492 	hammer2_pfs_t *pmp;
493 	hammer2_dev_t *hmp;
494 	hammer2_chain_t *parent;
495 	hammer2_chain_t *rdrop;
496 
497 	/*
498 	 * We need chain's spinlock to interlock the sub-tree test.
499 	 * We already have chain's mutex, protecting chain->parent.
500 	 *
501 	 * Remember that chain->refs can be in flux.
502 	 */
503 	hammer2_spin_ex(&chain->core.spin);
504 
505 	if (chain->parent != NULL) {
506 		/*
507 		 * If the chain has a parent the UPDATE bit prevents scrapping
508 		 * as the chain is needed to properly flush the parent.  Try
509 		 * to complete the 1->0 transition and return NULL.  Retry
510 		 * (return chain) if we are unable to complete the 1->0
511 		 * transition, else return NULL (nothing more to do).
512 		 *
513 		 * If the chain has a parent the MODIFIED bit prevents
514 		 * scrapping.
515 		 *
516 		 * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
517 		 */
518 		if (chain->flags & (HAMMER2_CHAIN_UPDATE |
519 				    HAMMER2_CHAIN_MODIFIED)) {
520 			if (atomic_cmpset_int(&chain->refs, 1, 0)) {
521 				hammer2_spin_unex(&chain->core.spin);
522 				hammer2_chain_assert_no_data(chain);
523 				hammer2_mtx_unlock(&chain->lock);
524 				chain = NULL;
525 			} else {
526 				hammer2_spin_unex(&chain->core.spin);
527 				hammer2_mtx_unlock(&chain->lock);
528 			}
529 			return (chain);
530 		}
531 		/* spinlock still held */
532 	} else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
533 		   chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
534 		/*
535 		 * Retain the static vchain and fchain.  Clear bits that
536 		 * are not relevant.  Do not clear the MODIFIED bit,
537 		 * and certainly do not put it on the delayed-flush queue.
538 		 */
539 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
540 	} else {
541 		/*
542 		 * The chain has no parent and can be flagged for destruction.
543 		 * Since it has no parent, UPDATE can also be cleared.
544 		 */
545 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
546 		if (chain->flags & HAMMER2_CHAIN_UPDATE)
547 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
548 
549 		/*
550 		 * If the chain has children we must propagate the DESTROY
551 		 * flag downward and rip the disconnected topology apart.
552 		 * This is accomplished by calling hammer2_flush() on the
553 		 * chain.
554 		 *
555 		 * Any dedup is already handled by the underlying DIO, so
556 		 * we do not have to specifically flush it here.
557 		 */
558 		if (chain->core.chain_count) {
559 			hammer2_spin_unex(&chain->core.spin);
560 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
561 					     HAMMER2_FLUSH_ALL);
562 			hammer2_mtx_unlock(&chain->lock);
563 
564 			return(chain);	/* retry drop */
565 		}
566 
567 		/*
568 		 * Otherwise we can scrap the MODIFIED bit if it is set,
569 		 * and continue along the freeing path.
570 		 *
571 		 * Be sure to clean-out any dedup bits.  Without a parent
572 		 * this chain will no longer be visible to the flush code.
573 		 * Easy check data_off to avoid the volume root.
574 		 */
575 		if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
576 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
577 			atomic_add_long(&hammer2_count_modified_chains, -1);
578 			if (chain->pmp)
579 				hammer2_pfs_memory_wakeup(chain->pmp, -1);
580 		}
581 		/* spinlock still held */
582 	}
583 
584 	/* spinlock still held */
585 
586 	/*
587 	 * If any children exist we must leave the chain intact with refs == 0.
588 	 * They exist because chains are retained below us which have refs or
589 	 * may require flushing.
590 	 *
591 	 * Retry (return chain) if we fail to transition the refs to 0, else
592 	 * return NULL indication nothing more to do.
593 	 *
594 	 * Chains with children are NOT put on the LRU list.
595 	 */
596 	if (chain->core.chain_count) {
597 		if (atomic_cmpset_int(&chain->refs, 1, 0)) {
598 			hammer2_spin_unex(&chain->core.spin);
599 			hammer2_chain_assert_no_data(chain);
600 			hammer2_mtx_unlock(&chain->lock);
601 			chain = NULL;
602 		} else {
603 			hammer2_spin_unex(&chain->core.spin);
604 			hammer2_mtx_unlock(&chain->lock);
605 		}
606 		return (chain);
607 	}
608 	/* spinlock still held */
609 	/* no chains left under us */
610 
611 	/*
612 	 * chain->core has no children left so no accessors can get to our
613 	 * chain from there.  Now we have to lock the parent core to interlock
614 	 * remaining possible accessors that might bump chain's refs before
615 	 * we can safely drop chain's refs with intent to free the chain.
616 	 */
617 	hmp = chain->hmp;
618 	pmp = chain->pmp;	/* can be NULL */
619 	rdrop = NULL;
620 
621 	parent = chain->parent;
622 
623 	/*
624 	 * WARNING! chain's spin lock is still held here, and other spinlocks
625 	 *	    will be acquired and released in the code below.  We
626 	 *	    cannot be making fancy procedure calls!
627 	 */
628 
629 	/*
630 	 * We can cache the chain if it is associated with a pmp
631 	 * and not flagged as being destroyed or requesting a full
632 	 * release.  In this situation the chain is not removed
633 	 * from its parent, i.e. it can still be looked up.
634 	 *
635 	 * We intentionally do not cache DATA chains because these
636 	 * were likely used to load data into the logical buffer cache
637 	 * and will not be accessed again for some time.
638 	 */
639 	if ((chain->flags &
640 	     (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
641 	    chain->pmp &&
642 	    chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
643 		if (parent)
644 			hammer2_spin_ex(&parent->core.spin);
645 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
646 			/*
647 			 * 1->0 transition failed, retry.  Do not drop
648 			 * the chain's data yet!
649 			 */
650 			if (parent)
651 				hammer2_spin_unex(&parent->core.spin);
652 			hammer2_spin_unex(&chain->core.spin);
653 			hammer2_mtx_unlock(&chain->lock);
654 
655 			return(chain);
656 		}
657 
658 		/*
659 		 * Success
660 		 */
661 		hammer2_chain_assert_no_data(chain);
662 
663 		/*
664 		 * Make sure we are on the LRU list, clean up excessive
665 		 * LRU entries.  We can only really drop one but there might
666 		 * be other entries that we can remove from the lru_list
667 		 * without dropping.
668 		 *
669 		 * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
670 		 *	 chain->core.spin AND pmp->lru_spin are held, but
671 		 *	 can be safely cleared only holding pmp->lru_spin.
672 		 */
673 		if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
674 			hammer2_spin_ex(&pmp->lru_spin);
675 			if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
676 				atomic_set_int(&chain->flags,
677 					       HAMMER2_CHAIN_ONLRU);
678 				TAILQ_INSERT_TAIL(&pmp->lru_list,
679 						  chain, lru_node);
680 				atomic_add_int(&pmp->lru_count, 1);
681 			}
682 			if (pmp->lru_count < HAMMER2_LRU_LIMIT)
683 				depth = 1;	/* disable lru_list flush */
684 			hammer2_spin_unex(&pmp->lru_spin);
685 		} else {
686 			/* disable lru flush */
687 			depth = 1;
688 		}
689 
690 		if (parent) {
691 			hammer2_spin_unex(&parent->core.spin);
692 			parent = NULL;	/* safety */
693 		}
694 		hammer2_spin_unex(&chain->core.spin);
695 		hammer2_mtx_unlock(&chain->lock);
696 
697 		/*
698 		 * lru_list hysteresis (see above for depth overrides).
699 		 * Note that depth also prevents excessive lastdrop recursion.
700 		 */
701 		if (depth == 0)
702 			hammer2_chain_lru_flush(pmp);
703 
704 		return NULL;
705 		/* NOT REACHED */
706 	}
707 
708 	/*
709 	 * Make sure we are not on the LRU list.
710 	 */
711 	if (chain->flags & HAMMER2_CHAIN_ONLRU) {
712 		hammer2_spin_ex(&pmp->lru_spin);
713 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
714 			atomic_add_int(&pmp->lru_count, -1);
715 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
716 			TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
717 		}
718 		hammer2_spin_unex(&pmp->lru_spin);
719 	}
720 
721 	/*
722 	 * Spinlock the parent and try to drop the last ref on chain.
723 	 * On success determine if we should dispose of the chain
724 	 * (remove the chain from its parent, etc).
725 	 *
726 	 * (normal core locks are top-down recursive but we define
727 	 * core spinlocks as bottom-up recursive, so this is safe).
728 	 */
729 	if (parent) {
730 		hammer2_spin_ex(&parent->core.spin);
731 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
732 			/*
733 			 * 1->0 transition failed, retry.
734 			 */
735 			hammer2_spin_unex(&parent->core.spin);
736 			hammer2_spin_unex(&chain->core.spin);
737 			hammer2_mtx_unlock(&chain->lock);
738 
739 			return(chain);
740 		}
741 
742 		/*
743 		 * 1->0 transition successful, parent spin held to prevent
744 		 * new lookups, chain spinlock held to protect parent field.
745 		 * Remove chain from the parent.
746 		 *
747 		 * If the chain is being removed from the parent's btree but
748 		 * is not bmapped, we have to adjust live_count downward.  If
749 		 * it is bmapped then the blockref is retained in the parent
750 		 * as is its associated live_count.  This case can occur when
751 		 * a chain added to the topology is unable to flush and is
752 		 * then later deleted.
753 		 */
754 		if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
755 			if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
756 			    (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
757 				atomic_add_int(&parent->core.live_count, -1);
758 			}
759 			RB_REMOVE(hammer2_chain_tree,
760 				  &parent->core.rbtree, chain);
761 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
762 			--parent->core.chain_count;
763 			chain->parent = NULL;
764 		}
765 
766 		/*
767 		 * If our chain was the last chain in the parent's core the
768 		 * core is now empty and its parent might have to be
769 		 * re-dropped if it has 0 refs.
770 		 */
771 		if (parent->core.chain_count == 0) {
772 			rdrop = parent;
773 			atomic_add_int(&rdrop->refs, 1);
774 			/*
775 			if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
776 				rdrop = NULL;
777 			*/
778 		}
779 		hammer2_spin_unex(&parent->core.spin);
780 		parent = NULL;	/* safety */
781 		/* FALL THROUGH */
782 	} else {
783 		/*
784 		 * No-parent case.
785 		 */
786 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
787 			/*
788 			 * 1->0 transition failed, retry.
789 			 */
790 			hammer2_spin_unex(&parent->core.spin);
791 			hammer2_spin_unex(&chain->core.spin);
792 			hammer2_mtx_unlock(&chain->lock);
793 
794 			return(chain);
795 		}
796 	}
797 
798 	/*
799 	 * Successful 1->0 transition, no parent, no children... no way for
800 	 * anyone to ref this chain any more.  We can clean-up and free it.
801 	 *
802 	 * We still have the core spinlock, and core's chain_count is 0.
803 	 * Any parent spinlock is gone.
804 	 */
805 	hammer2_spin_unex(&chain->core.spin);
806 	hammer2_chain_assert_no_data(chain);
807 	hammer2_mtx_unlock(&chain->lock);
808 	KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
809 		 chain->core.chain_count == 0);
810 
811 	/*
812 	 * All locks are gone, no pointers remain to the chain, finish
813 	 * freeing it.
814 	 */
815 	KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
816 				  HAMMER2_CHAIN_MODIFIED)) == 0);
817 
818 	/*
819 	 * Once chain resources are gone we can use the now dead chain
820 	 * structure to placehold what might otherwise require a recursive
821 	 * drop, because we have potentially two things to drop and can only
822 	 * return one directly.
823 	 */
824 	if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
825 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
826 		chain->hmp = NULL;
827 		kfree(chain, hmp->mchain);
828 	}
829 
830 	/*
831 	 * Possible chaining loop when parent re-drop needed.
832 	 */
833 	return(rdrop);
834 }
835 
836 /*
837  * Heuristical flush of the LRU, try to reduce the number of entries
838  * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3).  This procedure is called
839  * only when lru_count exceeds HAMMER2_LRU_LIMIT.
840  */
841 static
842 void
843 hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
844 {
845 	hammer2_chain_t *chain;
846 
847 again:
848 	chain = NULL;
849 	hammer2_spin_ex(&pmp->lru_spin);
850 	while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
851 		/*
852 		 * Pick a chain off the lru_list, just recycle it quickly
853 		 * if LRUHINT is set (the chain was ref'd but left on
854 		 * the lru_list, so cycle to the end).
855 		 */
856 		chain = TAILQ_FIRST(&pmp->lru_list);
857 		TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
858 
859 		if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
860 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
861 			TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
862 			chain = NULL;
863 			continue;
864 		}
865 
866 		/*
867 		 * Ok, we are off the LRU.  We must adjust refs before we
868 		 * can safely clear the ONLRU flag.
869 		 */
870 		atomic_add_int(&pmp->lru_count, -1);
871 		if (atomic_cmpset_int(&chain->refs, 0, 1)) {
872 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
873 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
874 			break;
875 		}
876 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
877 		chain = NULL;
878 	}
879 	hammer2_spin_unex(&pmp->lru_spin);
880 	if (chain == NULL)
881 		return;
882 
883 	/*
884 	 * If we picked a chain off the lru list we may be able to lastdrop
885 	 * it.  Use a depth of 1 to prevent excessive lastdrop recursion.
886 	 */
887 	while (chain) {
888 		u_int refs;
889 
890 		refs = chain->refs;
891 		cpu_ccfence();
892 		KKASSERT(refs > 0);
893 
894 		if (refs == 1) {
895 			if (hammer2_mtx_ex_try(&chain->lock) == 0)
896 				chain = hammer2_chain_lastdrop(chain, 1);
897 			/* retry the same chain, or chain from lastdrop */
898 		} else {
899 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
900 				break;
901 			/* retry the same chain */
902 		}
903 		cpu_pause();
904 	}
905 	goto again;
906 }
907 
908 /*
909  * On last lock release.
910  */
911 static hammer2_io_t *
912 hammer2_chain_drop_data(hammer2_chain_t *chain)
913 {
914 	hammer2_io_t *dio;
915 
916 	if ((dio = chain->dio) != NULL) {
917 		chain->dio = NULL;
918 		chain->data = NULL;
919 	} else {
920 		switch(chain->bref.type) {
921 		case HAMMER2_BREF_TYPE_VOLUME:
922 		case HAMMER2_BREF_TYPE_FREEMAP:
923 			break;
924 		default:
925 			if (chain->data != NULL) {
926 				hammer2_spin_unex(&chain->core.spin);
927 				panic("chain data not null: "
928 				      "chain %p bref %016jx.%02x "
929 				      "refs %d parent %p dio %p data %p",
930 				      chain, chain->bref.data_off,
931 				      chain->bref.type, chain->refs,
932 				      chain->parent,
933 				      chain->dio, chain->data);
934 			}
935 			KKASSERT(chain->data == NULL);
936 			break;
937 		}
938 	}
939 	return dio;
940 }
941 
942 /*
943  * Lock a referenced chain element, acquiring its data with I/O if necessary,
944  * and specify how you would like the data to be resolved.
945  *
946  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
947  *
948  * The lock is allowed to recurse, multiple locking ops will aggregate
949  * the requested resolve types.  Once data is assigned it will not be
950  * removed until the last unlock.
951  *
952  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
953  *			   (typically used to avoid device/logical buffer
954  *			    aliasing for data)
955  *
956  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
957  *			   the INITIAL-create state (indirect blocks only).
958  *
959  *			   Do not resolve data elements for DATA chains.
960  *			   (typically used to avoid device/logical buffer
961  *			    aliasing for data)
962  *
963  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
964  *
965  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
966  *			   it will be locked exclusive.
967  *
968  * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking.  If
969  *			   the lock fails, EAGAIN is returned.
970  *
971  * NOTE: Embedded elements (volume header, inodes) are always resolved
972  *	 regardless.
973  *
974  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
975  *	 element will instantiate and zero its buffer, and flush it on
976  *	 release.
977  *
978  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
979  *	 so as not to instantiate a device buffer, which could alias against
980  *	 a logical file buffer.  However, if ALWAYS is specified the
981  *	 device buffer will be instantiated anyway.
982  *
983  * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
984  *	 case it can be either 0 or EAGAIN.
985  *
986  * WARNING! This function blocks on I/O if data needs to be fetched.  This
987  *	    blocking can run concurrent with other compatible lock holders
988  *	    who do not need data returning.  The lock is not upgraded to
989  *	    exclusive during a data fetch, a separate bit is used to
990  *	    interlock I/O.  However, an exclusive lock holder can still count
991  *	    on being interlocked against an I/O fetch managed by a shared
992  *	    lock holder.
993  */
994 int
995 hammer2_chain_lock(hammer2_chain_t *chain, int how)
996 {
997 	KKASSERT(chain->refs > 0);
998 
999 	if (how & HAMMER2_RESOLVE_NONBLOCK) {
1000 		/*
1001 		 * We still have to bump lockcnt before acquiring the lock,
1002 		 * even for non-blocking operation, because the unlock code
1003 		 * live-loops on lockcnt == 1 when dropping the last lock.
1004 		 *
1005 		 * If the non-blocking operation fails we have to use an
1006 		 * unhold sequence to undo the mess.
1007 		 *
1008 		 * NOTE: LOCKAGAIN must always succeed without blocking,
1009 		 *	 even if NONBLOCK is specified.
1010 		 */
1011 		atomic_add_int(&chain->lockcnt, 1);
1012 		if (how & HAMMER2_RESOLVE_SHARED) {
1013 			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1014 				hammer2_mtx_sh_again(&chain->lock);
1015 			} else {
1016 				if (hammer2_mtx_sh_try(&chain->lock) != 0) {
1017 					hammer2_chain_unhold(chain);
1018 					return EAGAIN;
1019 				}
1020 			}
1021 		} else {
1022 			if (hammer2_mtx_ex_try(&chain->lock) != 0) {
1023 				hammer2_chain_unhold(chain);
1024 				return EAGAIN;
1025 			}
1026 		}
1027 	} else {
1028 		/*
1029 		 * Get the appropriate lock.  If LOCKAGAIN is flagged with
1030 		 * SHARED the caller expects a shared lock to already be
1031 		 * present and we are giving it another ref.  This case must
1032 		 * importantly not block if there is a pending exclusive lock
1033 		 * request.
1034 		 */
1035 		atomic_add_int(&chain->lockcnt, 1);
1036 		if (how & HAMMER2_RESOLVE_SHARED) {
1037 			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1038 				hammer2_mtx_sh_again(&chain->lock);
1039 			} else {
1040 				hammer2_mtx_sh(&chain->lock);
1041 			}
1042 		} else {
1043 			hammer2_mtx_ex(&chain->lock);
1044 		}
1045 	}
1046 
1047 	/*
1048 	 * If we already have a valid data pointer make sure the data is
1049 	 * synchronized to the current cpu, and then no further action is
1050 	 * necessary.
1051 	 */
1052 	if (chain->data) {
1053 		if (chain->dio)
1054 			hammer2_io_bkvasync(chain->dio);
1055 		return 0;
1056 	}
1057 
1058 	/*
1059 	 * Do we have to resolve the data?  This is generally only
1060 	 * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1061 	 * Other BREF types expects the data to be there.
1062 	 */
1063 	switch(how & HAMMER2_RESOLVE_MASK) {
1064 	case HAMMER2_RESOLVE_NEVER:
1065 		return 0;
1066 	case HAMMER2_RESOLVE_MAYBE:
1067 		if (chain->flags & HAMMER2_CHAIN_INITIAL)
1068 			return 0;
1069 		if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1070 			return 0;
1071 #if 0
1072 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1073 			return 0;
1074 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1075 			return 0;
1076 #endif
1077 		/* fall through */
1078 	case HAMMER2_RESOLVE_ALWAYS:
1079 	default:
1080 		break;
1081 	}
1082 
1083 	/*
1084 	 * Caller requires data
1085 	 */
1086 	hammer2_chain_load_data(chain);
1087 
1088 	return 0;
1089 }
1090 
1091 /*
1092  * Lock the chain, retain the hold, and drop the data persistence count.
1093  * The data should remain valid because we never transitioned lockcnt
1094  * through 0.
1095  */
1096 void
1097 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1098 {
1099 	hammer2_chain_lock(chain, how);
1100 	atomic_add_int(&chain->lockcnt, -1);
1101 }
1102 
1103 #if 0
1104 /*
1105  * Downgrade an exclusive chain lock to a shared chain lock.
1106  *
1107  * NOTE: There is no upgrade equivalent due to the ease of
1108  *	 deadlocks in that direction.
1109  */
1110 void
1111 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1112 {
1113 	hammer2_mtx_downgrade(&chain->lock);
1114 }
1115 #endif
1116 
1117 /*
1118  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1119  * may be of any type.
1120  *
1121  * Once chain->data is set it cannot be disposed of until all locks are
1122  * released.
1123  *
1124  * Make sure the data is synchronized to the current cpu.
1125  */
1126 void
1127 hammer2_chain_load_data(hammer2_chain_t *chain)
1128 {
1129 	hammer2_blockref_t *bref;
1130 	hammer2_dev_t *hmp;
1131 	hammer2_io_t *dio;
1132 	char *bdata;
1133 	int error;
1134 
1135 	/*
1136 	 * Degenerate case, data already present, or chain has no media
1137 	 * reference to load.
1138 	 */
1139 	KKASSERT(chain->lock.mtx_lock & MTX_MASK);
1140 	if (chain->data) {
1141 		if (chain->dio)
1142 			hammer2_io_bkvasync(chain->dio);
1143 		return;
1144 	}
1145 	if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1146 		return;
1147 
1148 	hmp = chain->hmp;
1149 	KKASSERT(hmp != NULL);
1150 
1151 	/*
1152 	 * Gain the IOINPROG bit, interlocked block.
1153 	 */
1154 	for (;;) {
1155 		u_int oflags;
1156 		u_int nflags;
1157 
1158 		oflags = chain->flags;
1159 		cpu_ccfence();
1160 		if (oflags & HAMMER2_CHAIN_IOINPROG) {
1161 			nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1162 			tsleep_interlock(&chain->flags, 0);
1163 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1164 				tsleep(&chain->flags, PINTERLOCKED,
1165 					"h2iocw", 0);
1166 			}
1167 			/* retry */
1168 		} else {
1169 			nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1170 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1171 				break;
1172 			}
1173 			/* retry */
1174 		}
1175 	}
1176 
1177 	/*
1178 	 * We own CHAIN_IOINPROG
1179 	 *
1180 	 * Degenerate case if we raced another load.
1181 	 */
1182 	if (chain->data) {
1183 		if (chain->dio)
1184 			hammer2_io_bkvasync(chain->dio);
1185 		goto done;
1186 	}
1187 
1188 	/*
1189 	 * We must resolve to a device buffer, either by issuing I/O or
1190 	 * by creating a zero-fill element.  We do not mark the buffer
1191 	 * dirty when creating a zero-fill element (the hammer2_chain_modify()
1192 	 * API must still be used to do that).
1193 	 *
1194 	 * The device buffer is variable-sized in powers of 2 down
1195 	 * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1196 	 * chunk always contains buffers of the same size. (XXX)
1197 	 *
1198 	 * The minimum physical IO size may be larger than the variable
1199 	 * block size.
1200 	 */
1201 	bref = &chain->bref;
1202 
1203 	/*
1204 	 * The getblk() optimization can only be used on newly created
1205 	 * elements if the physical block size matches the request.
1206 	 */
1207 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1208 		error = hammer2_io_new(hmp, bref->type,
1209 				       bref->data_off, chain->bytes,
1210 				       &chain->dio);
1211 	} else {
1212 		error = hammer2_io_bread(hmp, bref->type,
1213 					 bref->data_off, chain->bytes,
1214 					 &chain->dio);
1215 		hammer2_adjreadcounter(chain->bref.type, chain->bytes);
1216 	}
1217 	if (error) {
1218 		chain->error = HAMMER2_ERROR_EIO;
1219 		kprintf("hammer2_chain_load_data: I/O error %016jx: %d\n",
1220 			(intmax_t)bref->data_off, error);
1221 		hammer2_io_bqrelse(&chain->dio);
1222 		goto done;
1223 	}
1224 	chain->error = 0;
1225 
1226 	/*
1227 	 * This isn't perfect and can be ignored on OSs which do not have
1228 	 * an indication as to whether a buffer is coming from cache or
1229 	 * if I/O was actually issued for the read.  TESTEDGOOD will work
1230 	 * pretty well without the B_IOISSUED logic because chains are
1231 	 * cached, but in that situation (without B_IOISSUED) it will not
1232 	 * detect whether a re-read via I/O is corrupted verses the original
1233 	 * read.
1234 	 *
1235 	 * We can't re-run the CRC on every fresh lock.  That would be
1236 	 * insanely expensive.
1237 	 *
1238 	 * If the underlying kernel buffer covers the entire chain we can
1239 	 * use the B_IOISSUED indication to determine if we have to re-run
1240 	 * the CRC on chain data for chains that managed to stay cached
1241 	 * across the kernel disposal of the original buffer.
1242 	 */
1243 	if ((dio = chain->dio) != NULL && dio->bp) {
1244 		struct buf *bp = dio->bp;
1245 
1246 		if (dio->psize == chain->bytes &&
1247 		    (bp->b_flags & B_IOISSUED)) {
1248 			atomic_clear_int(&chain->flags,
1249 					 HAMMER2_CHAIN_TESTEDGOOD);
1250 			bp->b_flags &= ~B_IOISSUED;
1251 		}
1252 	}
1253 
1254 	/*
1255 	 * NOTE: A locked chain's data cannot be modified without first
1256 	 *	 calling hammer2_chain_modify().
1257 	 */
1258 
1259 	/*
1260 	 * NOTE: hammer2_io_data() call issues bkvasync()
1261 	 */
1262 	bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1263 
1264 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1265 		/*
1266 		 * Clear INITIAL.  In this case we used io_new() and the
1267 		 * buffer has been zero'd and marked dirty.
1268 		 *
1269 		 * CHAIN_MODIFIED has not been set yet, and we leave it
1270 		 * that way for now.  Set a temporary CHAIN_NOTTESTED flag
1271 		 * to prevent hammer2_chain_testcheck() from trying to match
1272 		 * a check code that has not yet been generated.  This bit
1273 		 * should NOT end up on the actual media.
1274 		 */
1275 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1276 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
1277 	} else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1278 		/*
1279 		 * check data not currently synchronized due to
1280 		 * modification.  XXX assumes data stays in the buffer
1281 		 * cache, which might not be true (need biodep on flush
1282 		 * to calculate crc?  or simple crc?).
1283 		 */
1284 	} else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1285 		if (hammer2_chain_testcheck(chain, bdata) == 0) {
1286 			chain->error = HAMMER2_ERROR_CHECK;
1287 		} else {
1288 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1289 		}
1290 	}
1291 
1292 	/*
1293 	 * Setup the data pointer, either pointing it to an embedded data
1294 	 * structure and copying the data from the buffer, or pointing it
1295 	 * into the buffer.
1296 	 *
1297 	 * The buffer is not retained when copying to an embedded data
1298 	 * structure in order to avoid potential deadlocks or recursions
1299 	 * on the same physical buffer.
1300 	 *
1301 	 * WARNING! Other threads can start using the data the instant we
1302 	 *	    set chain->data non-NULL.
1303 	 */
1304 	switch (bref->type) {
1305 	case HAMMER2_BREF_TYPE_VOLUME:
1306 	case HAMMER2_BREF_TYPE_FREEMAP:
1307 		/*
1308 		 * Copy data from bp to embedded buffer
1309 		 */
1310 		panic("hammer2_chain_load_data: unresolved volume header");
1311 		break;
1312 	case HAMMER2_BREF_TYPE_DIRENT:
1313 		KKASSERT(chain->bytes != 0);
1314 		/* fall through */
1315 	case HAMMER2_BREF_TYPE_INODE:
1316 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1317 	case HAMMER2_BREF_TYPE_INDIRECT:
1318 	case HAMMER2_BREF_TYPE_DATA:
1319 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1320 	default:
1321 		/*
1322 		 * Point data at the device buffer and leave dio intact.
1323 		 */
1324 		chain->data = (void *)bdata;
1325 		break;
1326 	}
1327 
1328 	/*
1329 	 * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1330 	 */
1331 done:
1332 	for (;;) {
1333 		u_int oflags;
1334 		u_int nflags;
1335 
1336 		oflags = chain->flags;
1337 		nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1338 				    HAMMER2_CHAIN_IOSIGNAL);
1339 		KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1340 		if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1341 			if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1342 				wakeup(&chain->flags);
1343 			break;
1344 		}
1345 	}
1346 }
1347 
1348 /*
1349  * Unlock and deref a chain element.
1350  *
1351  * Remember that the presence of children under chain prevent the chain's
1352  * destruction but do not add additional references, so the dio will still
1353  * be dropped.
1354  */
1355 void
1356 hammer2_chain_unlock(hammer2_chain_t *chain)
1357 {
1358 	hammer2_io_t *dio;
1359 	u_int lockcnt;
1360 	int iter = 0;
1361 
1362 	/*
1363 	 * If multiple locks are present (or being attempted) on this
1364 	 * particular chain we can just unlock, drop refs, and return.
1365 	 *
1366 	 * Otherwise fall-through on the 1->0 transition.
1367 	 */
1368 	for (;;) {
1369 		lockcnt = chain->lockcnt;
1370 		KKASSERT(lockcnt > 0);
1371 		cpu_ccfence();
1372 		if (lockcnt > 1) {
1373 			if (atomic_cmpset_int(&chain->lockcnt,
1374 					      lockcnt, lockcnt - 1)) {
1375 				hammer2_mtx_unlock(&chain->lock);
1376 				return;
1377 			}
1378 		} else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1379 			/* while holding the mutex exclusively */
1380 			if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1381 				break;
1382 		} else {
1383 			/*
1384 			 * This situation can easily occur on SMP due to
1385 			 * the gap inbetween the 1->0 transition and the
1386 			 * final unlock.  We cannot safely block on the
1387 			 * mutex because lockcnt might go above 1.
1388 			 *
1389 			 * XXX Sleep for one tick if it takes too long.
1390 			 */
1391 			if (++iter > 1000) {
1392 				if (iter > 1000 + hz) {
1393 					kprintf("hammer2: h2race2 %p\n", chain);
1394 					iter = 1000;
1395 				}
1396 				tsleep(&iter, 0, "h2race2", 1);
1397 			}
1398 			cpu_pause();
1399 		}
1400 		/* retry */
1401 	}
1402 
1403 	/*
1404 	 * Last unlock / mutex upgraded to exclusive.  Drop the data
1405 	 * reference.
1406 	 */
1407 	dio = hammer2_chain_drop_data(chain);
1408 	if (dio)
1409 		hammer2_io_bqrelse(&dio);
1410 	hammer2_mtx_unlock(&chain->lock);
1411 }
1412 
1413 /*
1414  * Unlock and hold chain data intact
1415  */
1416 void
1417 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1418 {
1419 	atomic_add_int(&chain->lockcnt, 1);
1420 	hammer2_chain_unlock(chain);
1421 }
1422 
1423 /*
1424  * Helper to obtain the blockref[] array base and count for a chain.
1425  *
1426  * XXX Not widely used yet, various use cases need to be validated and
1427  *     converted to use this function.
1428  */
1429 static
1430 hammer2_blockref_t *
1431 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1432 {
1433 	hammer2_blockref_t *base;
1434 	int count;
1435 
1436 	if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1437 		base = NULL;
1438 
1439 		switch(parent->bref.type) {
1440 		case HAMMER2_BREF_TYPE_INODE:
1441 			count = HAMMER2_SET_COUNT;
1442 			break;
1443 		case HAMMER2_BREF_TYPE_INDIRECT:
1444 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1445 			count = parent->bytes / sizeof(hammer2_blockref_t);
1446 			break;
1447 		case HAMMER2_BREF_TYPE_VOLUME:
1448 			count = HAMMER2_SET_COUNT;
1449 			break;
1450 		case HAMMER2_BREF_TYPE_FREEMAP:
1451 			count = HAMMER2_SET_COUNT;
1452 			break;
1453 		default:
1454 			panic("hammer2_chain_base_and_count: "
1455 			      "unrecognized blockref type: %d",
1456 			      parent->bref.type);
1457 			count = 0;
1458 			break;
1459 		}
1460 	} else {
1461 		switch(parent->bref.type) {
1462 		case HAMMER2_BREF_TYPE_INODE:
1463 			base = &parent->data->ipdata.u.blockset.blockref[0];
1464 			count = HAMMER2_SET_COUNT;
1465 			break;
1466 		case HAMMER2_BREF_TYPE_INDIRECT:
1467 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1468 			base = &parent->data->npdata[0];
1469 			count = parent->bytes / sizeof(hammer2_blockref_t);
1470 			break;
1471 		case HAMMER2_BREF_TYPE_VOLUME:
1472 			base = &parent->data->voldata.
1473 					sroot_blockset.blockref[0];
1474 			count = HAMMER2_SET_COUNT;
1475 			break;
1476 		case HAMMER2_BREF_TYPE_FREEMAP:
1477 			base = &parent->data->blkset.blockref[0];
1478 			count = HAMMER2_SET_COUNT;
1479 			break;
1480 		default:
1481 			panic("hammer2_chain_base_and_count: "
1482 			      "unrecognized blockref type: %d",
1483 			      parent->bref.type);
1484 			base = NULL;
1485 			count = 0;
1486 			break;
1487 		}
1488 	}
1489 	*countp = count;
1490 
1491 	return base;
1492 }
1493 
1494 /*
1495  * This counts the number of live blockrefs in a block array and
1496  * also calculates the point at which all remaining blockrefs are empty.
1497  * This routine can only be called on a live chain.
1498  *
1499  * Caller holds the chain locked, but possibly with a shared lock.  We
1500  * must use an exclusive spinlock to prevent corruption.
1501  *
1502  * NOTE: Flag is not set until after the count is complete, allowing
1503  *	 callers to test the flag without holding the spinlock.
1504  *
1505  * NOTE: If base is NULL the related chain is still in the INITIAL
1506  *	 state and there are no blockrefs to count.
1507  *
1508  * NOTE: live_count may already have some counts accumulated due to
1509  *	 creation and deletion and could even be initially negative.
1510  */
1511 void
1512 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1513 			 hammer2_blockref_t *base, int count)
1514 {
1515 	hammer2_spin_ex(&chain->core.spin);
1516         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1517 		if (base) {
1518 			while (--count >= 0) {
1519 				if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1520 					break;
1521 			}
1522 			chain->core.live_zero = count + 1;
1523 			while (count >= 0) {
1524 				if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1525 					atomic_add_int(&chain->core.live_count,
1526 						       1);
1527 				--count;
1528 			}
1529 		} else {
1530 			chain->core.live_zero = 0;
1531 		}
1532 		/* else do not modify live_count */
1533 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1534 	}
1535 	hammer2_spin_unex(&chain->core.spin);
1536 }
1537 
1538 /*
1539  * Resize the chain's physical storage allocation in-place.  This function does
1540  * not usually adjust the data pointer and must be followed by (typically) a
1541  * hammer2_chain_modify() call to copy any old data over and adjust the
1542  * data pointer.
1543  *
1544  * Chains can be resized smaller without reallocating the storage.  Resizing
1545  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1546  * asynchronously at a later time.
1547  *
1548  * An nradix value of 0 is special-cased to mean that the storage should
1549  * be disassociated, that is the chain is being resized to 0 bytes (not 1
1550  * byte).
1551  *
1552  * Must be passed an exclusively locked parent and chain.
1553  *
1554  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1555  * to avoid instantiating a device buffer that conflicts with the vnode data
1556  * buffer.  However, because H2 can compress or encrypt data, the chain may
1557  * have a dio assigned to it in those situations, and they do not conflict.
1558  *
1559  * XXX return error if cannot resize.
1560  */
1561 int
1562 hammer2_chain_resize(hammer2_chain_t *chain,
1563 		     hammer2_tid_t mtid, hammer2_off_t dedup_off,
1564 		     int nradix, int flags)
1565 {
1566 	hammer2_dev_t *hmp;
1567 	size_t obytes;
1568 	size_t nbytes;
1569 	int error;
1570 
1571 	hmp = chain->hmp;
1572 
1573 	/*
1574 	 * Only data and indirect blocks can be resized for now.
1575 	 * (The volu root, inodes, and freemap elements use a fixed size).
1576 	 */
1577 	KKASSERT(chain != &hmp->vchain);
1578 	KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1579 		 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1580 		 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1581 
1582 	/*
1583 	 * Nothing to do if the element is already the proper size
1584 	 */
1585 	obytes = chain->bytes;
1586 	nbytes = (nradix) ? (1U << nradix) : 0;
1587 	if (obytes == nbytes)
1588 		return (chain->error);
1589 
1590 	/*
1591 	 * Make sure the old data is instantiated so we can copy it.  If this
1592 	 * is a data block, the device data may be superfluous since the data
1593 	 * might be in a logical block, but compressed or encrypted data is
1594 	 * another matter.
1595 	 *
1596 	 * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1597 	 */
1598 	error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1599 	if (error)
1600 		return error;
1601 
1602 	/*
1603 	 * Reallocate the block, even if making it smaller (because different
1604 	 * block sizes may be in different regions).
1605 	 *
1606 	 * NOTE: Operation does not copy the data and may only be used
1607 	 *	 to resize data blocks in-place, or directory entry blocks
1608 	 *	 which are about to be modified in some manner.
1609 	 */
1610 	error = hammer2_freemap_alloc(chain, nbytes);
1611 	if (error)
1612 		return error;
1613 
1614 	chain->bytes = nbytes;
1615 
1616 	/*
1617 	 * We don't want the followup chain_modify() to try to copy data
1618 	 * from the old (wrong-sized) buffer.  It won't know how much to
1619 	 * copy.  This case should only occur during writes when the
1620 	 * originator already has the data to write in-hand.
1621 	 */
1622 	if (chain->dio) {
1623 		KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1624 			 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1625 		hammer2_io_brelse(&chain->dio);
1626 		chain->data = NULL;
1627 	}
1628 	return (chain->error);
1629 }
1630 
1631 /*
1632  * Set the chain modified so its data can be changed by the caller, or
1633  * install deduplicated data.  The caller must call this routine for each
1634  * set of modifications it makes, even if the chain is already flagged
1635  * MODIFIED.
1636  *
1637  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1638  * is a CLC (cluster level change) field and is not updated by parent
1639  * propagation during a flush.
1640  *
1641  * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1642  * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1643  * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1644  * remains unmodified with its old data ref intact and chain->error
1645  * unchanged.
1646  *
1647  *				 Dedup Handling
1648  *
1649  * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1650  * even if the chain is still flagged MODIFIED.  In this case the chain's
1651  * DEDUPABLE flag will be cleared once the new storage has been assigned.
1652  *
1653  * If the caller passes a non-zero dedup_off we will use it to assign the
1654  * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1655  * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1656  * must not modify the data content upon return.
1657  */
1658 int
1659 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1660 		     hammer2_off_t dedup_off, int flags)
1661 {
1662 	hammer2_blockref_t obref;
1663 	hammer2_dev_t *hmp;
1664 	hammer2_io_t *dio;
1665 	int error;
1666 	int wasinitial;
1667 	int setmodified;
1668 	int setupdate;
1669 	int newmod;
1670 	char *bdata;
1671 
1672 	hmp = chain->hmp;
1673 	obref = chain->bref;
1674 	KKASSERT(chain->lock.mtx_lock & MTX_EXCLUSIVE);
1675 
1676 	/*
1677 	 * Data is not optional for freemap chains (we must always be sure
1678 	 * to copy the data on COW storage allocations).
1679 	 */
1680 	if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1681 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1682 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1683 			 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1684 	}
1685 
1686 	/*
1687 	 * Data must be resolved if already assigned, unless explicitly
1688 	 * flagged otherwise.  If we cannot safety load the data the
1689 	 * modification fails and we return early.
1690 	 */
1691 	if (chain->data == NULL && chain->bytes != 0 &&
1692 	    (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1693 	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1694 		hammer2_chain_load_data(chain);
1695 		if (chain->error)
1696 			return (chain->error);
1697 	}
1698 	error = 0;
1699 
1700 	/*
1701 	 * Set MODIFIED to indicate that the chain has been modified.  A new
1702 	 * allocation is required when modifying a chain.
1703 	 *
1704 	 * Set UPDATE to ensure that the blockref is updated in the parent.
1705 	 *
1706 	 * If MODIFIED is already set determine if we can reuse the assigned
1707 	 * data block or if we need a new data block.
1708 	 */
1709 	if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1710 		/*
1711 		 * Must set modified bit.
1712 		 */
1713 		atomic_add_long(&hammer2_count_modified_chains, 1);
1714 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1715 		hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1716 		setmodified = 1;
1717 
1718 		/*
1719 		 * We may be able to avoid a copy-on-write if the chain's
1720 		 * check mode is set to NONE and the chain's current
1721 		 * modify_tid is beyond the last explicit snapshot tid.
1722 		 *
1723 		 * This implements HAMMER2's overwrite-in-place feature.
1724 		 *
1725 		 * NOTE! This data-block cannot be used as a de-duplication
1726 		 *	 source when the check mode is set to NONE.
1727 		 */
1728 		if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1729 		     chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1730 		    (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1731 		    (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1732 		    HAMMER2_DEC_CHECK(chain->bref.methods) ==
1733 		     HAMMER2_CHECK_NONE &&
1734 		    chain->pmp &&
1735 		    chain->bref.modify_tid >
1736 		     chain->pmp->iroot->meta.pfs_lsnap_tid) {
1737 			/*
1738 			 * Sector overwrite allowed.
1739 			 */
1740 			newmod = 0;
1741 		} else if ((hmp->hflags & HMNT2_EMERG) &&
1742 			   chain->pmp &&
1743 			   chain->bref.modify_tid >
1744 			    chain->pmp->iroot->meta.pfs_lsnap_tid) {
1745 			/*
1746 			 * If in emergency delete mode then do a modify-in-
1747 			 * place on any chain type belonging to the PFS as
1748 			 * long as it doesn't mess up a snapshot.  We might
1749 			 * be forced to do this anyway a little further down
1750 			 * in the code if the allocation fails.
1751 			 *
1752 			 * Also note that in emergency mode, these modify-in-
1753 			 * place operations are NOT SAFE.  A storage failure,
1754 			 * power failure, or panic can corrupt the filesystem.
1755 			 */
1756 			newmod = 0;
1757 		} else {
1758 			/*
1759 			 * Sector overwrite not allowed, must copy-on-write.
1760 			 */
1761 			newmod = 1;
1762 		}
1763 	} else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1764 		/*
1765 		 * If the modified chain was registered for dedup we need
1766 		 * a new allocation.  This only happens for delayed-flush
1767 		 * chains (i.e. which run through the front-end buffer
1768 		 * cache).
1769 		 */
1770 		newmod = 1;
1771 		setmodified = 0;
1772 	} else {
1773 		/*
1774 		 * Already flagged modified, no new allocation is needed.
1775 		 */
1776 		newmod = 0;
1777 		setmodified = 0;
1778 	}
1779 
1780 	/*
1781 	 * Flag parent update required.
1782 	 */
1783 	if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1784 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1785 		setupdate = 1;
1786 	} else {
1787 		setupdate = 0;
1788 	}
1789 
1790 	/*
1791 	 * The XOP code returns held but unlocked focus chains.  This
1792 	 * prevents the chain from being destroyed but does not prevent
1793 	 * it from being modified.  diolk is used to interlock modifications
1794 	 * against XOP frontend accesses to the focus.
1795 	 *
1796 	 * This allows us to theoretically avoid deadlocking the frontend
1797 	 * if one of the backends lock up by not formally locking the
1798 	 * focused chain in the frontend.  In addition, the synchronization
1799 	 * code relies on this mechanism to avoid deadlocking concurrent
1800 	 * synchronization threads.
1801 	 */
1802 	lockmgr(&chain->diolk, LK_EXCLUSIVE);
1803 
1804 	/*
1805 	 * The modification or re-modification requires an allocation and
1806 	 * possible COW.  If an error occurs, the previous content and data
1807 	 * reference is retained and the modification fails.
1808 	 *
1809 	 * If dedup_off is non-zero, the caller is requesting a deduplication
1810 	 * rather than a modification.  The MODIFIED bit is not set and the
1811 	 * data offset is set to the deduplication offset.  The data cannot
1812 	 * be modified.
1813 	 *
1814 	 * NOTE: The dedup offset is allowed to be in a partially free state
1815 	 *	 and we must be sure to reset it to a fully allocated state
1816 	 *	 to force two bulkfree passes to free it again.
1817 	 *
1818 	 * NOTE: Only applicable when chain->bytes != 0.
1819 	 *
1820 	 * XXX can a chain already be marked MODIFIED without a data
1821 	 * assignment?  If not, assert here instead of testing the case.
1822 	 */
1823 	if (chain != &hmp->vchain && chain != &hmp->fchain &&
1824 	    chain->bytes) {
1825 		if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1826 		    newmod
1827 		) {
1828 			/*
1829 			 * NOTE: We do not have to remove the dedup
1830 			 *	 registration because the area is still
1831 			 *	 allocated and the underlying DIO will
1832 			 *	 still be flushed.
1833 			 */
1834 			if (dedup_off) {
1835 				chain->bref.data_off = dedup_off;
1836 				if ((int)(dedup_off & HAMMER2_OFF_MASK_RADIX))
1837 					chain->bytes = 1 <<
1838 						(int)(dedup_off &
1839 						HAMMER2_OFF_MASK_RADIX);
1840 				else
1841 					chain->bytes = 0;
1842 				chain->error = 0;
1843 				atomic_clear_int(&chain->flags,
1844 						 HAMMER2_CHAIN_MODIFIED);
1845 				atomic_add_long(&hammer2_count_modified_chains,
1846 						-1);
1847 				if (chain->pmp) {
1848 					hammer2_pfs_memory_wakeup(
1849 						chain->pmp, -1);
1850 				}
1851 				hammer2_freemap_adjust(hmp, &chain->bref,
1852 						HAMMER2_FREEMAP_DORECOVER);
1853 				atomic_set_int(&chain->flags,
1854 						HAMMER2_CHAIN_DEDUPABLE);
1855 			} else {
1856 				error = hammer2_freemap_alloc(chain,
1857 							      chain->bytes);
1858 				atomic_clear_int(&chain->flags,
1859 						HAMMER2_CHAIN_DEDUPABLE);
1860 
1861 				/*
1862 				 * If we are unable to allocate a new block
1863 				 * but we are in emergency mode, issue a
1864 				 * warning to the console and reuse the same
1865 				 * block.
1866 				 *
1867 				 * We behave as if the allocation were
1868 				 * successful.
1869 				 *
1870 				 * THIS IS IMPORTANT: These modifications
1871 				 * are virtually guaranteed to corrupt any
1872 				 * snapshots related to this filesystem.
1873 				 */
1874 				if (error && (hmp->hflags & HMNT2_EMERG)) {
1875 					error = 0;
1876 					chain->bref.flags |=
1877 						HAMMER2_BREF_FLAG_EMERG_MIP;
1878 
1879 					krateprintf(&krate_h2em,
1880 					    "hammer2: Emergency Mode WARNING: "
1881 					    "Operation will likely corrupt "
1882 					    "related snapshot: "
1883 					    "%016jx.%02x key=%016jx\n",
1884 					    chain->bref.data_off,
1885 					    chain->bref.type,
1886 					    chain->bref.key);
1887 				} else if (error == 0) {
1888 					chain->bref.flags &=
1889 						~HAMMER2_BREF_FLAG_EMERG_MIP;
1890 				}
1891 			}
1892 		}
1893 	}
1894 
1895 	/*
1896 	 * Stop here if error.  We have to undo any flag bits we might
1897 	 * have set above.
1898 	 */
1899 	if (error) {
1900 		if (setmodified) {
1901 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1902 			atomic_add_long(&hammer2_count_modified_chains, -1);
1903 			if (chain->pmp)
1904 				hammer2_pfs_memory_wakeup(chain->pmp, -1);
1905 		}
1906 		if (setupdate) {
1907 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1908 		}
1909 		lockmgr(&chain->diolk, LK_RELEASE);
1910 
1911 		return error;
1912 	}
1913 
1914 	/*
1915 	 * Update mirror_tid and modify_tid.  modify_tid is only updated
1916 	 * if not passed as zero (during flushes, parent propagation passes
1917 	 * the value 0).
1918 	 *
1919 	 * NOTE: chain->pmp could be the device spmp.
1920 	 */
1921 	chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1922 	if (mtid)
1923 		chain->bref.modify_tid = mtid;
1924 
1925 	/*
1926 	 * Set BMAPUPD to tell the flush code that an existing blockmap entry
1927 	 * requires updating as well as to tell the delete code that the
1928 	 * chain's blockref might not exactly match (in terms of physical size
1929 	 * or block offset) the one in the parent's blocktable.  The base key
1930 	 * of course will still match.
1931 	 */
1932 	if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1933 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1934 
1935 	/*
1936 	 * Short-cut data block handling when the caller does not need an
1937 	 * actual data reference to (aka OPTDATA), as long as the chain does
1938 	 * not already have a data pointer to the data and no de-duplication
1939 	 * occurred.
1940 	 *
1941 	 * This generally means that the modifications are being done via the
1942 	 * logical buffer cache.
1943 	 *
1944 	 * NOTE: If deduplication occurred we have to run through the data
1945 	 *	 stuff to clear INITIAL, and the caller will likely want to
1946 	 *	 assign the check code anyway.  Leaving INITIAL set on a
1947 	 *	 dedup can be deadly (it can cause the block to be zero'd!).
1948 	 *
1949 	 * This code also handles bytes == 0 (most dirents).
1950 	 */
1951 	if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1952 	    (flags & HAMMER2_MODIFY_OPTDATA) &&
1953 	    chain->data == NULL) {
1954 		if (dedup_off == 0) {
1955 			KKASSERT(chain->dio == NULL);
1956 			goto skip2;
1957 		}
1958 	}
1959 
1960 	/*
1961 	 * Clearing the INITIAL flag (for indirect blocks) indicates that
1962 	 * we've processed the uninitialized storage allocation.
1963 	 *
1964 	 * If this flag is already clear we are likely in a copy-on-write
1965 	 * situation but we have to be sure NOT to bzero the storage if
1966 	 * no data is present.
1967 	 *
1968 	 * Clearing of NOTTESTED is allowed if the MODIFIED bit is set,
1969 	 */
1970 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1971 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1972 		wasinitial = 1;
1973 	} else {
1974 		wasinitial = 0;
1975 	}
1976 
1977 	/*
1978 	 * Instantiate data buffer and possibly execute COW operation
1979 	 */
1980 	switch(chain->bref.type) {
1981 	case HAMMER2_BREF_TYPE_VOLUME:
1982 	case HAMMER2_BREF_TYPE_FREEMAP:
1983 		/*
1984 		 * The data is embedded, no copy-on-write operation is
1985 		 * needed.
1986 		 */
1987 		KKASSERT(chain->dio == NULL);
1988 		break;
1989 	case HAMMER2_BREF_TYPE_DIRENT:
1990 		/*
1991 		 * The data might be fully embedded.
1992 		 */
1993 		if (chain->bytes == 0) {
1994 			KKASSERT(chain->dio == NULL);
1995 			break;
1996 		}
1997 		/* fall through */
1998 	case HAMMER2_BREF_TYPE_INODE:
1999 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2000 	case HAMMER2_BREF_TYPE_DATA:
2001 	case HAMMER2_BREF_TYPE_INDIRECT:
2002 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2003 		/*
2004 		 * Perform the copy-on-write operation
2005 		 *
2006 		 * zero-fill or copy-on-write depending on whether
2007 		 * chain->data exists or not and set the dirty state for
2008 		 * the new buffer.  hammer2_io_new() will handle the
2009 		 * zero-fill.
2010 		 *
2011 		 * If a dedup_off was supplied this is an existing block
2012 		 * and no COW, copy, or further modification is required.
2013 		 */
2014 		KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
2015 
2016 		if (wasinitial && dedup_off == 0) {
2017 			error = hammer2_io_new(hmp, chain->bref.type,
2018 					       chain->bref.data_off,
2019 					       chain->bytes, &dio);
2020 		} else {
2021 			error = hammer2_io_bread(hmp, chain->bref.type,
2022 						 chain->bref.data_off,
2023 						 chain->bytes, &dio);
2024 		}
2025 		hammer2_adjreadcounter(chain->bref.type, chain->bytes);
2026 
2027 		/*
2028 		 * If an I/O error occurs make sure callers cannot accidently
2029 		 * modify the old buffer's contents and corrupt the filesystem.
2030 		 *
2031 		 * NOTE: hammer2_io_data() call issues bkvasync()
2032 		 */
2033 		if (error) {
2034 			kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
2035 				hmp);
2036 			chain->error = HAMMER2_ERROR_EIO;
2037 			hammer2_io_brelse(&dio);
2038 			hammer2_io_brelse(&chain->dio);
2039 			chain->data = NULL;
2040 			break;
2041 		}
2042 		chain->error = 0;
2043 		bdata = hammer2_io_data(dio, chain->bref.data_off);
2044 
2045 		if (chain->data) {
2046 			/*
2047 			 * COW (unless a dedup).
2048 			 */
2049 			KKASSERT(chain->dio != NULL);
2050 			if (chain->data != (void *)bdata && dedup_off == 0) {
2051 				bcopy(chain->data, bdata, chain->bytes);
2052 			}
2053 		} else if (wasinitial == 0 && dedup_off == 0) {
2054 			/*
2055 			 * We have a problem.  We were asked to COW but
2056 			 * we don't have any data to COW with!
2057 			 */
2058 			panic("hammer2_chain_modify: having a COW %p\n",
2059 			      chain);
2060 		}
2061 
2062 		/*
2063 		 * Retire the old buffer, replace with the new.  Dirty or
2064 		 * redirty the new buffer.
2065 		 *
2066 		 * WARNING! The system buffer cache may have already flushed
2067 		 *	    the buffer, so we must be sure to [re]dirty it
2068 		 *	    for further modification.
2069 		 *
2070 		 *	    If dedup_off was supplied, the caller is not
2071 		 *	    expected to make any further modification to the
2072 		 *	    buffer.
2073 		 *
2074 		 * WARNING! hammer2_get_gdata() assumes dio never transitions
2075 		 *	    through NULL in order to optimize away unnecessary
2076 		 *	    diolk operations.
2077 		 */
2078 		{
2079 			hammer2_io_t *tio;
2080 
2081 			if ((tio = chain->dio) != NULL)
2082 				hammer2_io_bqrelse(&tio);
2083 			chain->data = (void *)bdata;
2084 			chain->dio = dio;
2085 			if (dedup_off == 0)
2086 				hammer2_io_setdirty(dio);
2087 		}
2088 		break;
2089 	default:
2090 		panic("hammer2_chain_modify: illegal non-embedded type %d",
2091 		      chain->bref.type);
2092 		break;
2093 
2094 	}
2095 skip2:
2096 	/*
2097 	 * setflush on parent indicating that the parent must recurse down
2098 	 * to us.  Do not call on chain itself which might already have it
2099 	 * set.
2100 	 */
2101 	if (chain->parent)
2102 		hammer2_chain_setflush(chain->parent);
2103 	lockmgr(&chain->diolk, LK_RELEASE);
2104 
2105 	return (chain->error);
2106 }
2107 
2108 /*
2109  * Modify the chain associated with an inode.
2110  */
2111 int
2112 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2113 			hammer2_tid_t mtid, int flags)
2114 {
2115 	int error;
2116 
2117 	hammer2_inode_modify(ip);
2118 	error = hammer2_chain_modify(chain, mtid, 0, flags);
2119 
2120 	return error;
2121 }
2122 
2123 /*
2124  * This function returns the chain at the nearest key within the specified
2125  * range.  The returned chain will be referenced but not locked.
2126  *
2127  * This function will recurse through chain->rbtree as necessary and will
2128  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
2129  * the iteration value is less than the current value of *key_nextp.
2130  *
2131  * The caller should use (*key_nextp) to calculate the actual range of
2132  * the returned element, which will be (key_beg to *key_nextp - 1), because
2133  * there might be another element which is superior to the returned element
2134  * and overlaps it.
2135  *
2136  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2137  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
2138  * it will wind up being (key_end + 1).
2139  *
2140  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
2141  *	     held through the operation.
2142  */
2143 struct hammer2_chain_find_info {
2144 	hammer2_chain_t		*best;
2145 	hammer2_key_t		key_beg;
2146 	hammer2_key_t		key_end;
2147 	hammer2_key_t		key_next;
2148 };
2149 
2150 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2151 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2152 
2153 static
2154 hammer2_chain_t *
2155 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2156 			  hammer2_key_t key_beg, hammer2_key_t key_end)
2157 {
2158 	struct hammer2_chain_find_info info;
2159 
2160 	info.best = NULL;
2161 	info.key_beg = key_beg;
2162 	info.key_end = key_end;
2163 	info.key_next = *key_nextp;
2164 
2165 	RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2166 		hammer2_chain_find_cmp, hammer2_chain_find_callback,
2167 		&info);
2168 	*key_nextp = info.key_next;
2169 #if 0
2170 	kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2171 		parent, key_beg, key_end, *key_nextp);
2172 #endif
2173 
2174 	return (info.best);
2175 }
2176 
2177 static
2178 int
2179 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2180 {
2181 	struct hammer2_chain_find_info *info = data;
2182 	hammer2_key_t child_beg;
2183 	hammer2_key_t child_end;
2184 
2185 	child_beg = child->bref.key;
2186 	child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2187 
2188 	if (child_end < info->key_beg)
2189 		return(-1);
2190 	if (child_beg > info->key_end)
2191 		return(1);
2192 	return(0);
2193 }
2194 
2195 static
2196 int
2197 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2198 {
2199 	struct hammer2_chain_find_info *info = data;
2200 	hammer2_chain_t *best;
2201 	hammer2_key_t child_end;
2202 
2203 	/*
2204 	 * WARNING! Layerq is scanned forwards, exact matches should keep
2205 	 *	    the existing info->best.
2206 	 */
2207 	if ((best = info->best) == NULL) {
2208 		/*
2209 		 * No previous best.  Assign best
2210 		 */
2211 		info->best = child;
2212 	} else if (best->bref.key <= info->key_beg &&
2213 		   child->bref.key <= info->key_beg) {
2214 		/*
2215 		 * Illegal overlap.
2216 		 */
2217 		KKASSERT(0);
2218 		/*info->best = child;*/
2219 	} else if (child->bref.key < best->bref.key) {
2220 		/*
2221 		 * Child has a nearer key and best is not flush with key_beg.
2222 		 * Set best to child.  Truncate key_next to the old best key.
2223 		 */
2224 		info->best = child;
2225 		if (info->key_next > best->bref.key || info->key_next == 0)
2226 			info->key_next = best->bref.key;
2227 	} else if (child->bref.key == best->bref.key) {
2228 		/*
2229 		 * If our current best is flush with the child then this
2230 		 * is an illegal overlap.
2231 		 *
2232 		 * key_next will automatically be limited to the smaller of
2233 		 * the two end-points.
2234 		 */
2235 		KKASSERT(0);
2236 		info->best = child;
2237 	} else {
2238 		/*
2239 		 * Keep the current best but truncate key_next to the child's
2240 		 * base.
2241 		 *
2242 		 * key_next will also automatically be limited to the smaller
2243 		 * of the two end-points (probably not necessary for this case
2244 		 * but we do it anyway).
2245 		 */
2246 		if (info->key_next > child->bref.key || info->key_next == 0)
2247 			info->key_next = child->bref.key;
2248 	}
2249 
2250 	/*
2251 	 * Always truncate key_next based on child's end-of-range.
2252 	 */
2253 	child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2254 	if (child_end && (info->key_next > child_end || info->key_next == 0))
2255 		info->key_next = child_end;
2256 
2257 	return(0);
2258 }
2259 
2260 /*
2261  * Retrieve the specified chain from a media blockref, creating the
2262  * in-memory chain structure which reflects it.  The returned chain is
2263  * held and locked according to (how) (HAMMER2_RESOLVE_*).  The caller must
2264  * handle crc-checks and so forth, and should check chain->error before
2265  * assuming that the data is good.
2266  *
2267  * To handle insertion races pass the INSERT_RACE flag along with the
2268  * generation number of the core.  NULL will be returned if the generation
2269  * number changes before we have a chance to insert the chain.  Insert
2270  * races can occur because the parent might be held shared.
2271  *
2272  * Caller must hold the parent locked shared or exclusive since we may
2273  * need the parent's bref array to find our block.
2274  *
2275  * WARNING! chain->pmp is always set to NULL for any chain representing
2276  *	    part of the super-root topology.
2277  */
2278 hammer2_chain_t *
2279 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2280 		  hammer2_blockref_t *bref, int how)
2281 {
2282 	hammer2_dev_t *hmp = parent->hmp;
2283 	hammer2_chain_t *chain;
2284 	int error;
2285 
2286 	/*
2287 	 * Allocate a chain structure representing the existing media
2288 	 * entry.  Resulting chain has one ref and is not locked.
2289 	 */
2290 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2291 		chain = hammer2_chain_alloc(hmp, NULL, bref);
2292 	else
2293 		chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2294 	/* ref'd chain returned */
2295 
2296 	/*
2297 	 * Flag that the chain is in the parent's blockmap so delete/flush
2298 	 * knows what to do with it.
2299 	 */
2300 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2301 
2302 	/*
2303 	 * chain must be locked to avoid unexpected ripouts
2304 	 */
2305 	hammer2_chain_lock(chain, how);
2306 
2307 	/*
2308 	 * Link the chain into its parent.  A spinlock is required to safely
2309 	 * access the RBTREE, and it is possible to collide with another
2310 	 * hammer2_chain_get() operation because the caller might only hold
2311 	 * a shared lock on the parent.
2312 	 *
2313 	 * NOTE: Get races can occur quite often when we distribute
2314 	 *	 asynchronous read-aheads across multiple threads.
2315 	 */
2316 	KKASSERT(parent->refs > 0);
2317 	error = hammer2_chain_insert(parent, chain,
2318 				     HAMMER2_CHAIN_INSERT_SPIN |
2319 				     HAMMER2_CHAIN_INSERT_RACE,
2320 				     generation);
2321 	if (error) {
2322 		KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2323 		/*kprintf("chain %p get race\n", chain);*/
2324 		hammer2_chain_unlock(chain);
2325 		hammer2_chain_drop(chain);
2326 		chain = NULL;
2327 	} else {
2328 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2329 	}
2330 
2331 	/*
2332 	 * Return our new chain referenced but not locked, or NULL if
2333 	 * a race occurred.
2334 	 */
2335 	return (chain);
2336 }
2337 
2338 /*
2339  * Lookup initialization/completion API
2340  */
2341 hammer2_chain_t *
2342 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2343 {
2344 	hammer2_chain_ref(parent);
2345 	if (flags & HAMMER2_LOOKUP_SHARED) {
2346 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2347 					   HAMMER2_RESOLVE_SHARED);
2348 	} else {
2349 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2350 	}
2351 	return (parent);
2352 }
2353 
2354 void
2355 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2356 {
2357 	if (parent) {
2358 		hammer2_chain_unlock(parent);
2359 		hammer2_chain_drop(parent);
2360 	}
2361 }
2362 
2363 /*
2364  * Take the locked chain and return a locked parent.  The chain remains
2365  * locked on return, but may have to be temporarily unlocked to acquire
2366  * the parent.  Because of this, (chain) must be stable and cannot be
2367  * deleted while it was temporarily unlocked (typically means that (chain)
2368  * is an inode).
2369  *
2370  * Pass HAMMER2_RESOLVE_* flags in flags.
2371  *
2372  * This will work even if the chain is errored, and the caller can check
2373  * parent->error on return if desired since the parent will be locked.
2374  *
2375  * This function handles the lock order reversal.
2376  */
2377 hammer2_chain_t *
2378 hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2379 {
2380 	hammer2_chain_t *parent;
2381 
2382 	/*
2383 	 * Be careful of order, chain must be unlocked before parent
2384 	 * is locked below to avoid a deadlock.  Try it trivially first.
2385 	 */
2386 	parent = chain->parent;
2387 	if (parent == NULL)
2388 		panic("hammer2_chain_getparent: no parent");
2389 	hammer2_chain_ref(parent);
2390 	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2391 		return parent;
2392 
2393 	for (;;) {
2394 		hammer2_chain_unlock(chain);
2395 		hammer2_chain_lock(parent, flags);
2396 		hammer2_chain_lock(chain, flags);
2397 
2398 		/*
2399 		 * Parent relinking races are quite common.  We have to get
2400 		 * it right or we will blow up the block table.
2401 		 */
2402 		if (chain->parent == parent)
2403 			break;
2404 		hammer2_chain_unlock(parent);
2405 		hammer2_chain_drop(parent);
2406 		cpu_ccfence();
2407 		parent = chain->parent;
2408 		if (parent == NULL)
2409 			panic("hammer2_chain_getparent: no parent");
2410 		hammer2_chain_ref(parent);
2411 	}
2412 	return parent;
2413 }
2414 
2415 /*
2416  * Take the locked chain and return a locked parent.  The chain is unlocked
2417  * and dropped.  *chainp is set to the returned parent as a convenience.
2418  * Pass HAMMER2_RESOLVE_* flags in flags.
2419  *
2420  * This will work even if the chain is errored, and the caller can check
2421  * parent->error on return if desired since the parent will be locked.
2422  *
2423  * The chain does NOT need to be stable.  We use a tracking structure
2424  * to track the expected parent if the chain is deleted out from under us.
2425  *
2426  * This function handles the lock order reversal.
2427  */
2428 hammer2_chain_t *
2429 hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2430 {
2431 	hammer2_chain_t *chain;
2432 	hammer2_chain_t *parent;
2433 	struct hammer2_reptrack reptrack;
2434 	struct hammer2_reptrack **repp;
2435 
2436 	/*
2437 	 * Be careful of order, chain must be unlocked before parent
2438 	 * is locked below to avoid a deadlock.  Try it trivially first.
2439 	 */
2440 	chain = *chainp;
2441 	parent = chain->parent;
2442 	if (parent == NULL) {
2443 		hammer2_spin_unex(&chain->core.spin);
2444 		panic("hammer2_chain_repparent: no parent");
2445 	}
2446 	hammer2_chain_ref(parent);
2447 	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2448 		hammer2_chain_unlock(chain);
2449 		hammer2_chain_drop(chain);
2450 		*chainp = parent;
2451 
2452 		return parent;
2453 	}
2454 
2455 	/*
2456 	 * Ok, now it gets a bit nasty.  There are multiple situations where
2457 	 * the parent might be in the middle of a deletion, or where the child
2458 	 * (chain) might be deleted the instant we let go of its lock.
2459 	 * We can potentially end up in a no-win situation!
2460 	 *
2461 	 * In particular, the indirect_maintenance() case can cause these
2462 	 * situations.
2463 	 *
2464 	 * To deal with this we install a reptrack structure in the parent
2465 	 * This reptrack structure 'owns' the parent ref and will automatically
2466 	 * migrate to the parent's parent if the parent is deleted permanently.
2467 	 */
2468 	hammer2_spin_init(&reptrack.spin, "h2reptrk");
2469 	reptrack.chain = parent;
2470 	hammer2_chain_ref(parent);		/* for the reptrack */
2471 
2472 	hammer2_spin_ex(&parent->core.spin);
2473 	reptrack.next = parent->core.reptrack;
2474 	parent->core.reptrack = &reptrack;
2475 	hammer2_spin_unex(&parent->core.spin);
2476 
2477 	hammer2_chain_unlock(chain);
2478 	hammer2_chain_drop(chain);
2479 	chain = NULL;	/* gone */
2480 
2481 	/*
2482 	 * At the top of this loop, chain is gone and parent is refd both
2483 	 * by us explicitly AND via our reptrack.  We are attempting to
2484 	 * lock parent.
2485 	 */
2486 	for (;;) {
2487 		hammer2_chain_lock(parent, flags);
2488 
2489 		if (reptrack.chain == parent)
2490 			break;
2491 		hammer2_chain_unlock(parent);
2492 		hammer2_chain_drop(parent);
2493 
2494 		kprintf("hammer2: debug REPTRACK %p->%p\n",
2495 			parent, reptrack.chain);
2496 		hammer2_spin_ex(&reptrack.spin);
2497 		parent = reptrack.chain;
2498 		hammer2_chain_ref(parent);
2499 		hammer2_spin_unex(&reptrack.spin);
2500 	}
2501 
2502 	/*
2503 	 * Once parent is locked and matches our reptrack, our reptrack
2504 	 * will be stable and we have our parent.  We can unlink our
2505 	 * reptrack.
2506 	 *
2507 	 * WARNING!  Remember that the chain lock might be shared.  Chains
2508 	 *	     locked shared have stable parent linkages.
2509 	 */
2510 	hammer2_spin_ex(&parent->core.spin);
2511 	repp = &parent->core.reptrack;
2512 	while (*repp != &reptrack)
2513 		repp = &(*repp)->next;
2514 	*repp = reptrack.next;
2515 	hammer2_spin_unex(&parent->core.spin);
2516 
2517 	hammer2_chain_drop(parent);	/* reptrack ref */
2518 	*chainp = parent;		/* return parent lock+ref */
2519 
2520 	return parent;
2521 }
2522 
2523 /*
2524  * Dispose of any linked reptrack structures in (chain) by shifting them to
2525  * (parent).  Both (chain) and (parent) must be exclusively locked.
2526  *
2527  * This is interlocked against any children of (chain) on the other side.
2528  * No children so remain as-of when this is called so we can test
2529  * core.reptrack without holding the spin-lock.
2530  *
2531  * Used whenever the caller intends to permanently delete chains related
2532  * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2533  * where the chains underneath the node being deleted are given a new parent
2534  * above the node being deleted.
2535  */
2536 static
2537 void
2538 hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2539 {
2540 	struct hammer2_reptrack *reptrack;
2541 
2542 	KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2543 	while (chain->core.reptrack) {
2544 		hammer2_spin_ex(&parent->core.spin);
2545 		hammer2_spin_ex(&chain->core.spin);
2546 		reptrack = chain->core.reptrack;
2547 		if (reptrack == NULL) {
2548 			hammer2_spin_unex(&chain->core.spin);
2549 			hammer2_spin_unex(&parent->core.spin);
2550 			break;
2551 		}
2552 		hammer2_spin_ex(&reptrack->spin);
2553 		chain->core.reptrack = reptrack->next;
2554 		reptrack->chain = parent;
2555 		reptrack->next = parent->core.reptrack;
2556 		parent->core.reptrack = reptrack;
2557 		hammer2_chain_ref(parent);		/* reptrack */
2558 
2559 		hammer2_spin_unex(&chain->core.spin);
2560 		hammer2_spin_unex(&parent->core.spin);
2561 		kprintf("hammer2: debug repchange %p %p->%p\n",
2562 			reptrack, chain, parent);
2563 		hammer2_chain_drop(chain);		/* reptrack */
2564 	}
2565 }
2566 
2567 /*
2568  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2569  * (*parentp) typically points to an inode but can also point to a related
2570  * indirect block and this function will recurse upwards and find the inode
2571  * or the nearest undeleted indirect block covering the key range.
2572  *
2573  * This function unconditionally sets *errorp, replacing any previous value.
2574  *
2575  * (*parentp) must be exclusive or shared locked (depending on flags) and
2576  * referenced and can be an inode or an existing indirect block within the
2577  * inode.
2578  *
2579  * If (*parent) is errored out, this function will not attempt to recurse
2580  * the radix tree and will return NULL along with an appropriate *errorp.
2581  * If NULL is returned and *errorp is 0, the requested lookup could not be
2582  * located.
2583  *
2584  * On return (*parentp) will be modified to point at the deepest parent chain
2585  * element encountered during the search, as a helper for an insertion or
2586  * deletion.
2587  *
2588  * The new (*parentp) will be locked shared or exclusive (depending on flags),
2589  * and referenced, and the old will be unlocked and dereferenced (no change
2590  * if they are both the same).  This is particularly important if the caller
2591  * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2592  * is returned, as long as no error occurred.
2593  *
2594  * The matching chain will be returned locked according to flags.
2595  *
2596  * --
2597  *
2598  * NULL is returned if no match was found, but (*parentp) will still
2599  * potentially be adjusted.
2600  *
2601  * On return (*key_nextp) will point to an iterative value for key_beg.
2602  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2603  *
2604  * This function will also recurse up the chain if the key is not within the
2605  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2606  * can simply allow (*parentp) to float inside the loop.
2607  *
2608  * NOTE!  chain->data is not always resolved.  By default it will not be
2609  *	  resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2610  *	  HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2611  *	  BREF_TYPE_DATA as the device buffer can alias the logical file
2612  *	  buffer).
2613  */
2614 
2615 hammer2_chain_t *
2616 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2617 		     hammer2_key_t key_beg, hammer2_key_t key_end,
2618 		     int *errorp, int flags)
2619 {
2620 	hammer2_dev_t *hmp;
2621 	hammer2_chain_t *parent;
2622 	hammer2_chain_t *chain;
2623 	hammer2_blockref_t *base;
2624 	hammer2_blockref_t *bref;
2625 	hammer2_blockref_t bsave;
2626 	hammer2_key_t scan_beg;
2627 	hammer2_key_t scan_end;
2628 	int count = 0;
2629 	int how_always = HAMMER2_RESOLVE_ALWAYS;
2630 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
2631 	int how;
2632 	int generation;
2633 	int maxloops = 300000;
2634 	volatile hammer2_mtx_t save_mtx;
2635 
2636 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
2637 		how_maybe = how_always;
2638 		how = HAMMER2_RESOLVE_ALWAYS;
2639 	} else if (flags & HAMMER2_LOOKUP_NODATA) {
2640 		how = HAMMER2_RESOLVE_NEVER;
2641 	} else {
2642 		how = HAMMER2_RESOLVE_MAYBE;
2643 	}
2644 	if (flags & HAMMER2_LOOKUP_SHARED) {
2645 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2646 		how_always |= HAMMER2_RESOLVE_SHARED;
2647 		how |= HAMMER2_RESOLVE_SHARED;
2648 	}
2649 
2650 	/*
2651 	 * Recurse (*parentp) upward if necessary until the parent completely
2652 	 * encloses the key range or we hit the inode.
2653 	 *
2654 	 * Handle races against the flusher deleting indirect nodes on its
2655 	 * way back up by continuing to recurse upward past the deletion.
2656 	 */
2657 	parent = *parentp;
2658 	hmp = parent->hmp;
2659 	*errorp = 0;
2660 
2661 	while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2662 	       parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2663 		scan_beg = parent->bref.key;
2664 		scan_end = scan_beg +
2665 			   ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2666 		if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2667 			if (key_beg >= scan_beg && key_end <= scan_end)
2668 				break;
2669 		}
2670 		parent = hammer2_chain_repparent(parentp, how_maybe);
2671 	}
2672 again:
2673 	if (--maxloops == 0)
2674 		panic("hammer2_chain_lookup: maxloops");
2675 
2676 	/*
2677 	 * MATCHIND case that does not require parent->data (do prior to
2678 	 * parent->error check).
2679 	 */
2680 	switch(parent->bref.type) {
2681 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2682 	case HAMMER2_BREF_TYPE_INDIRECT:
2683 		if (flags & HAMMER2_LOOKUP_MATCHIND) {
2684 			scan_beg = parent->bref.key;
2685 			scan_end = scan_beg +
2686 			       ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2687 			if (key_beg == scan_beg && key_end == scan_end) {
2688 				chain = parent;
2689 				hammer2_chain_ref(chain);
2690 				hammer2_chain_lock(chain, how_maybe);
2691 				*key_nextp = scan_end + 1;
2692 				goto done;
2693 			}
2694 		}
2695 		break;
2696 	default:
2697 		break;
2698 	}
2699 
2700 	/*
2701 	 * No lookup is possible if the parent is errored.  We delayed
2702 	 * this check as long as we could to ensure that the parent backup,
2703 	 * embedded data, and MATCHIND code could still execute.
2704 	 */
2705 	if (parent->error) {
2706 		*errorp = parent->error;
2707 		return NULL;
2708 	}
2709 
2710 	/*
2711 	 * Locate the blockref array.  Currently we do a fully associative
2712 	 * search through the array.
2713 	 */
2714 	switch(parent->bref.type) {
2715 	case HAMMER2_BREF_TYPE_INODE:
2716 		/*
2717 		 * Special shortcut for embedded data returns the inode
2718 		 * itself.  Callers must detect this condition and access
2719 		 * the embedded data (the strategy code does this for us).
2720 		 *
2721 		 * This is only applicable to regular files and softlinks.
2722 		 *
2723 		 * We need a second lock on parent.  Since we already have
2724 		 * a lock we must pass LOCKAGAIN to prevent unexpected
2725 		 * blocking (we don't want to block on a second shared
2726 		 * ref if an exclusive lock is pending)
2727 		 */
2728 		if (parent->data->ipdata.meta.op_flags &
2729 		    HAMMER2_OPFLAG_DIRECTDATA) {
2730 			if (flags & HAMMER2_LOOKUP_NODIRECT) {
2731 				chain = NULL;
2732 				*key_nextp = key_end + 1;
2733 				goto done;
2734 			}
2735 			hammer2_chain_ref(parent);
2736 			hammer2_chain_lock(parent, how_always |
2737 						   HAMMER2_RESOLVE_LOCKAGAIN);
2738 			*key_nextp = key_end + 1;
2739 			return (parent);
2740 		}
2741 		base = &parent->data->ipdata.u.blockset.blockref[0];
2742 		count = HAMMER2_SET_COUNT;
2743 		break;
2744 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2745 	case HAMMER2_BREF_TYPE_INDIRECT:
2746 		/*
2747 		 * Optimize indirect blocks in the INITIAL state to avoid
2748 		 * I/O.
2749 		 *
2750 		 * Debugging: Enter permanent wait state instead of
2751 		 * panicing on unexpectedly NULL data for the moment.
2752 		 */
2753 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2754 			base = NULL;
2755 		} else {
2756 			if (parent->data == NULL) {
2757 				kprintf("hammer2: unexpected NULL data "
2758 					"on %p\n", parent);
2759 				while (1)
2760 					tsleep(parent, 0, "xxx", 0);
2761 			}
2762 			base = &parent->data->npdata[0];
2763 		}
2764 		count = parent->bytes / sizeof(hammer2_blockref_t);
2765 		break;
2766 	case HAMMER2_BREF_TYPE_VOLUME:
2767 		base = &parent->data->voldata.sroot_blockset.blockref[0];
2768 		count = HAMMER2_SET_COUNT;
2769 		break;
2770 	case HAMMER2_BREF_TYPE_FREEMAP:
2771 		base = &parent->data->blkset.blockref[0];
2772 		count = HAMMER2_SET_COUNT;
2773 		break;
2774 	default:
2775 		panic("hammer2_chain_lookup: unrecognized "
2776 		      "blockref(B) type: %d",
2777 		      parent->bref.type);
2778 		base = NULL;	/* safety */
2779 		count = 0;	/* safety */
2780 		break;
2781 	}
2782 
2783 	/*
2784 	 * Merged scan to find next candidate.
2785 	 *
2786 	 * hammer2_base_*() functions require the parent->core.live_* fields
2787 	 * to be synchronized.
2788 	 *
2789 	 * We need to hold the spinlock to access the block array and RB tree
2790 	 * and to interlock chain creation.
2791 	 */
2792 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2793 		hammer2_chain_countbrefs(parent, base, count);
2794 
2795 	/*
2796 	 * Combined search
2797 	 */
2798 	hammer2_spin_ex(&parent->core.spin);
2799 	chain = hammer2_combined_find(parent, base, count,
2800 				      key_nextp,
2801 				      key_beg, key_end,
2802 				      &bref);
2803 	generation = parent->core.generation;
2804 
2805 	/*
2806 	 * Exhausted parent chain, iterate.
2807 	 */
2808 	if (bref == NULL) {
2809 		KKASSERT(chain == NULL);
2810 		hammer2_spin_unex(&parent->core.spin);
2811 		if (key_beg == key_end)	/* short cut single-key case */
2812 			return (NULL);
2813 
2814 		/*
2815 		 * Stop if we reached the end of the iteration.
2816 		 */
2817 		if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2818 		    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2819 			return (NULL);
2820 		}
2821 
2822 		/*
2823 		 * Calculate next key, stop if we reached the end of the
2824 		 * iteration, otherwise go up one level and loop.
2825 		 */
2826 		key_beg = parent->bref.key +
2827 			  ((hammer2_key_t)1 << parent->bref.keybits);
2828 		if (key_beg == 0 || key_beg > key_end)
2829 			return (NULL);
2830 		parent = hammer2_chain_repparent(parentp, how_maybe);
2831 		goto again;
2832 	}
2833 
2834 	/*
2835 	 * Selected from blockref or in-memory chain.
2836 	 */
2837 	bsave = *bref;
2838 	if (chain == NULL) {
2839 		hammer2_spin_unex(&parent->core.spin);
2840 		if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2841 		    bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2842 			chain = hammer2_chain_get(parent, generation,
2843 						  &bsave, how_maybe);
2844 		} else {
2845 			chain = hammer2_chain_get(parent, generation,
2846 						  &bsave, how);
2847 		}
2848 		if (chain == NULL)
2849 			goto again;
2850 	} else {
2851 		hammer2_chain_ref(chain);
2852 		hammer2_spin_unex(&parent->core.spin);
2853 
2854 		/*
2855 		 * chain is referenced but not locked.  We must lock the
2856 		 * chain to obtain definitive state.
2857 		 */
2858 		if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2859 		    bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2860 			hammer2_chain_lock(chain, how_maybe);
2861 		} else {
2862 			hammer2_chain_lock(chain, how);
2863 		}
2864 		KKASSERT(chain->parent == parent);
2865 	}
2866 	if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
2867 	    chain->parent != parent) {
2868 		hammer2_chain_unlock(chain);
2869 		hammer2_chain_drop(chain);
2870 		chain = NULL;	/* SAFETY */
2871 		goto again;
2872 	}
2873 
2874 
2875 	/*
2876 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2877 	 *
2878 	 * NOTE: Chain's key range is not relevant as there might be
2879 	 *	 one-offs within the range that are not deleted.
2880 	 *
2881 	 * NOTE: Lookups can race delete-duplicate because
2882 	 *	 delete-duplicate does not lock the parent's core
2883 	 *	 (they just use the spinlock on the core).
2884 	 */
2885 	if (chain->flags & HAMMER2_CHAIN_DELETED) {
2886 		kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2887 			chain->bref.data_off, chain->bref.type,
2888 			chain->bref.key);
2889 		hammer2_chain_unlock(chain);
2890 		hammer2_chain_drop(chain);
2891 		chain = NULL;	/* SAFETY */
2892 		key_beg = *key_nextp;
2893 		if (key_beg == 0 || key_beg > key_end)
2894 			return(NULL);
2895 		goto again;
2896 	}
2897 
2898 	/*
2899 	 * If the chain element is an indirect block it becomes the new
2900 	 * parent and we loop on it.  We must maintain our top-down locks
2901 	 * to prevent the flusher from interfering (i.e. doing a
2902 	 * delete-duplicate and leaving us recursing down a deleted chain).
2903 	 *
2904 	 * The parent always has to be locked with at least RESOLVE_MAYBE
2905 	 * so we can access its data.  It might need a fixup if the caller
2906 	 * passed incompatible flags.  Be careful not to cause a deadlock
2907 	 * as a data-load requires an exclusive lock.
2908 	 *
2909 	 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2910 	 * range is within the requested key range we return the indirect
2911 	 * block and do NOT loop.  This is usually only used to acquire
2912 	 * freemap nodes.
2913 	 */
2914 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2915 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2916 		save_mtx = parent->lock;
2917 		hammer2_chain_unlock(parent);
2918 		hammer2_chain_drop(parent);
2919 		*parentp = parent = chain;
2920 		chain = NULL;	/* SAFETY */
2921 		goto again;
2922 	}
2923 done:
2924 	/*
2925 	 * All done, return the locked chain.
2926 	 *
2927 	 * If the caller does not want a locked chain, replace the lock with
2928 	 * a ref.  Perhaps this can eventually be optimized to not obtain the
2929 	 * lock in the first place for situations where the data does not
2930 	 * need to be resolved.
2931 	 *
2932 	 * NOTE! A chain->error must be tested by the caller upon return.
2933 	 *	 *errorp is only set based on issues which occur while
2934 	 *	 trying to reach the chain.
2935 	 */
2936 	return (chain);
2937 }
2938 
2939 /*
2940  * After having issued a lookup we can iterate all matching keys.
2941  *
2942  * If chain is non-NULL we continue the iteration from just after it's index.
2943  *
2944  * If chain is NULL we assume the parent was exhausted and continue the
2945  * iteration at the next parent.
2946  *
2947  * If a fatal error occurs (typically an I/O error), a dummy chain is
2948  * returned with chain->error and error-identifying information set.  This
2949  * chain will assert if you try to do anything fancy with it.
2950  *
2951  * XXX Depending on where the error occurs we should allow continued iteration.
2952  *
2953  * parent must be locked on entry and remains locked throughout.  chain's
2954  * lock status must match flags.  Chain is always at least referenced.
2955  *
2956  * WARNING!  The MATCHIND flag does not apply to this function.
2957  */
2958 hammer2_chain_t *
2959 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2960 		   hammer2_key_t *key_nextp,
2961 		   hammer2_key_t key_beg, hammer2_key_t key_end,
2962 		   int *errorp, int flags)
2963 {
2964 	hammer2_chain_t *parent;
2965 	int how_maybe;
2966 
2967 	/*
2968 	 * Calculate locking flags for upward recursion.
2969 	 */
2970 	how_maybe = HAMMER2_RESOLVE_MAYBE;
2971 	if (flags & HAMMER2_LOOKUP_SHARED)
2972 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2973 
2974 	parent = *parentp;
2975 	*errorp = 0;
2976 
2977 	/*
2978 	 * Calculate the next index and recalculate the parent if necessary.
2979 	 */
2980 	if (chain) {
2981 		key_beg = chain->bref.key +
2982 			  ((hammer2_key_t)1 << chain->bref.keybits);
2983 		hammer2_chain_unlock(chain);
2984 		hammer2_chain_drop(chain);
2985 
2986 		/*
2987 		 * chain invalid past this point, but we can still do a
2988 		 * pointer comparison w/parent.
2989 		 *
2990 		 * Any scan where the lookup returned degenerate data embedded
2991 		 * in the inode has an invalid index and must terminate.
2992 		 */
2993 		if (chain == parent)
2994 			return(NULL);
2995 		if (key_beg == 0 || key_beg > key_end)
2996 			return(NULL);
2997 		chain = NULL;
2998 	} else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2999 		   parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
3000 		/*
3001 		 * We reached the end of the iteration.
3002 		 */
3003 		return (NULL);
3004 	} else {
3005 		/*
3006 		 * Continue iteration with next parent unless the current
3007 		 * parent covers the range.
3008 		 *
3009 		 * (This also handles the case of a deleted, empty indirect
3010 		 * node).
3011 		 */
3012 		key_beg = parent->bref.key +
3013 			  ((hammer2_key_t)1 << parent->bref.keybits);
3014 		if (key_beg == 0 || key_beg > key_end)
3015 			return (NULL);
3016 		parent = hammer2_chain_repparent(parentp, how_maybe);
3017 	}
3018 
3019 	/*
3020 	 * And execute
3021 	 */
3022 	return (hammer2_chain_lookup(parentp, key_nextp,
3023 				     key_beg, key_end,
3024 				     errorp, flags));
3025 }
3026 
3027 /*
3028  * Caller wishes to iterate chains under parent, loading new chains into
3029  * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
3030  * then call hammer2_chain_scan() repeatedly until a non-zero return.
3031  * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
3032  * with the returned chain for the scan.  The returned *chainp will be
3033  * locked and referenced.  Any prior contents will be unlocked and dropped.
3034  *
3035  * Caller should check the return value.  A normal scan EOF will return
3036  * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
3037  * error trying to access parent data.  Any error in the returned chain
3038  * must be tested separately by the caller.
3039  *
3040  * (*chainp) is dropped on each scan, but will only be set if the returned
3041  * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
3042  * returned via *chainp.  The caller will get their bref only.
3043  *
3044  * The raw scan function is similar to lookup/next but does not seek to a key.
3045  * Blockrefs are iterated via first_bref = (parent, NULL) and
3046  * next_chain = (parent, bref).
3047  *
3048  * The passed-in parent must be locked and its data resolved.  The function
3049  * nominally returns a locked and referenced *chainp != NULL for chains
3050  * the caller might need to recurse on (and will dipose of any *chainp passed
3051  * in).  The caller must check the chain->bref.type either way.
3052  */
3053 int
3054 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3055 		   hammer2_blockref_t *bref, int *firstp,
3056 		   int flags)
3057 {
3058 	hammer2_dev_t *hmp;
3059 	hammer2_blockref_t *base;
3060 	hammer2_blockref_t *bref_ptr;
3061 	hammer2_key_t key;
3062 	hammer2_key_t next_key;
3063 	hammer2_chain_t *chain = NULL;
3064 	int count = 0;
3065 	int how_always = HAMMER2_RESOLVE_ALWAYS;
3066 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
3067 	int how;
3068 	int generation;
3069 	int maxloops = 300000;
3070 	int error;
3071 
3072 	hmp = parent->hmp;
3073 	error = 0;
3074 
3075 	/*
3076 	 * Scan flags borrowed from lookup.
3077 	 */
3078 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
3079 		how_maybe = how_always;
3080 		how = HAMMER2_RESOLVE_ALWAYS;
3081 	} else if (flags & HAMMER2_LOOKUP_NODATA) {
3082 		how = HAMMER2_RESOLVE_NEVER;
3083 	} else {
3084 		how = HAMMER2_RESOLVE_MAYBE;
3085 	}
3086 	if (flags & HAMMER2_LOOKUP_SHARED) {
3087 		how_maybe |= HAMMER2_RESOLVE_SHARED;
3088 		how_always |= HAMMER2_RESOLVE_SHARED;
3089 		how |= HAMMER2_RESOLVE_SHARED;
3090 	}
3091 
3092 	/*
3093 	 * Calculate key to locate first/next element, unlocking the previous
3094 	 * element as we go.  Be careful, the key calculation can overflow.
3095 	 *
3096 	 * (also reset bref to NULL)
3097 	 */
3098 	if (*firstp) {
3099 		key = 0;
3100 		*firstp = 0;
3101 	} else {
3102 		key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3103 		if ((chain = *chainp) != NULL) {
3104 			*chainp = NULL;
3105 			hammer2_chain_unlock(chain);
3106 			hammer2_chain_drop(chain);
3107 			chain = NULL;
3108 		}
3109 		if (key == 0) {
3110 			error |= HAMMER2_ERROR_EOF;
3111 			goto done;
3112 		}
3113 	}
3114 
3115 again:
3116 	if (parent->error) {
3117 		error = parent->error;
3118 		goto done;
3119 	}
3120 	if (--maxloops == 0)
3121 		panic("hammer2_chain_scan: maxloops");
3122 
3123 	/*
3124 	 * Locate the blockref array.  Currently we do a fully associative
3125 	 * search through the array.
3126 	 */
3127 	switch(parent->bref.type) {
3128 	case HAMMER2_BREF_TYPE_INODE:
3129 		/*
3130 		 * An inode with embedded data has no sub-chains.
3131 		 *
3132 		 * WARNING! Bulk scan code may pass a static chain marked
3133 		 *	    as BREF_TYPE_INODE with a copy of the volume
3134 		 *	    root blockset to snapshot the volume.
3135 		 */
3136 		if (parent->data->ipdata.meta.op_flags &
3137 		    HAMMER2_OPFLAG_DIRECTDATA) {
3138 			error |= HAMMER2_ERROR_EOF;
3139 			goto done;
3140 		}
3141 		base = &parent->data->ipdata.u.blockset.blockref[0];
3142 		count = HAMMER2_SET_COUNT;
3143 		break;
3144 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3145 	case HAMMER2_BREF_TYPE_INDIRECT:
3146 		/*
3147 		 * Optimize indirect blocks in the INITIAL state to avoid
3148 		 * I/O.
3149 		 */
3150 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3151 			base = NULL;
3152 		} else {
3153 			if (parent->data == NULL)
3154 				panic("parent->data is NULL");
3155 			base = &parent->data->npdata[0];
3156 		}
3157 		count = parent->bytes / sizeof(hammer2_blockref_t);
3158 		break;
3159 	case HAMMER2_BREF_TYPE_VOLUME:
3160 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3161 		count = HAMMER2_SET_COUNT;
3162 		break;
3163 	case HAMMER2_BREF_TYPE_FREEMAP:
3164 		base = &parent->data->blkset.blockref[0];
3165 		count = HAMMER2_SET_COUNT;
3166 		break;
3167 	default:
3168 		panic("hammer2_chain_scan: unrecognized blockref type: %d",
3169 		      parent->bref.type);
3170 		base = NULL;	/* safety */
3171 		count = 0;	/* safety */
3172 		break;
3173 	}
3174 
3175 	/*
3176 	 * Merged scan to find next candidate.
3177 	 *
3178 	 * hammer2_base_*() functions require the parent->core.live_* fields
3179 	 * to be synchronized.
3180 	 *
3181 	 * We need to hold the spinlock to access the block array and RB tree
3182 	 * and to interlock chain creation.
3183 	 */
3184 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3185 		hammer2_chain_countbrefs(parent, base, count);
3186 
3187 	next_key = 0;
3188 	bref_ptr = NULL;
3189 	hammer2_spin_ex(&parent->core.spin);
3190 	chain = hammer2_combined_find(parent, base, count,
3191 				      &next_key,
3192 				      key, HAMMER2_KEY_MAX,
3193 				      &bref_ptr);
3194 	generation = parent->core.generation;
3195 
3196 	/*
3197 	 * Exhausted parent chain, we're done.
3198 	 */
3199 	if (bref_ptr == NULL) {
3200 		hammer2_spin_unex(&parent->core.spin);
3201 		KKASSERT(chain == NULL);
3202 		error |= HAMMER2_ERROR_EOF;
3203 		goto done;
3204 	}
3205 
3206 	/*
3207 	 * Copy into the supplied stack-based blockref.
3208 	 */
3209 	*bref = *bref_ptr;
3210 
3211 	/*
3212 	 * Selected from blockref or in-memory chain.
3213 	 */
3214 	if (chain == NULL) {
3215 		switch(bref->type) {
3216 		case HAMMER2_BREF_TYPE_INODE:
3217 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3218 		case HAMMER2_BREF_TYPE_INDIRECT:
3219 		case HAMMER2_BREF_TYPE_VOLUME:
3220 		case HAMMER2_BREF_TYPE_FREEMAP:
3221 			/*
3222 			 * Recursion, always get the chain
3223 			 */
3224 			hammer2_spin_unex(&parent->core.spin);
3225 			chain = hammer2_chain_get(parent, generation,
3226 						  bref, how);
3227 			if (chain == NULL)
3228 				goto again;
3229 			break;
3230 		default:
3231 			/*
3232 			 * No recursion, do not waste time instantiating
3233 			 * a chain, just iterate using the bref.
3234 			 */
3235 			hammer2_spin_unex(&parent->core.spin);
3236 			break;
3237 		}
3238 	} else {
3239 		/*
3240 		 * Recursion or not we need the chain in order to supply
3241 		 * the bref.
3242 		 */
3243 		hammer2_chain_ref(chain);
3244 		hammer2_spin_unex(&parent->core.spin);
3245 		hammer2_chain_lock(chain, how);
3246 	}
3247 	if (chain &&
3248 	    (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3249 	     chain->parent != parent)) {
3250 		hammer2_chain_unlock(chain);
3251 		hammer2_chain_drop(chain);
3252 		chain = NULL;
3253 		goto again;
3254 	}
3255 
3256 	/*
3257 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3258 	 *
3259 	 * NOTE: chain's key range is not relevant as there might be
3260 	 *	 one-offs within the range that are not deleted.
3261 	 *
3262 	 * NOTE: XXX this could create problems with scans used in
3263 	 *	 situations other than mount-time recovery.
3264 	 *
3265 	 * NOTE: Lookups can race delete-duplicate because
3266 	 *	 delete-duplicate does not lock the parent's core
3267 	 *	 (they just use the spinlock on the core).
3268 	 */
3269 	if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3270 		hammer2_chain_unlock(chain);
3271 		hammer2_chain_drop(chain);
3272 		chain = NULL;
3273 
3274 		key = next_key;
3275 		if (key == 0) {
3276 			error |= HAMMER2_ERROR_EOF;
3277 			goto done;
3278 		}
3279 		goto again;
3280 	}
3281 
3282 done:
3283 	/*
3284 	 * All done, return the bref or NULL, supply chain if necessary.
3285 	 */
3286 	if (chain)
3287 		*chainp = chain;
3288 	return (error);
3289 }
3290 
3291 /*
3292  * Create and return a new hammer2 system memory structure of the specified
3293  * key, type and size and insert it under (*parentp).  This is a full
3294  * insertion, based on the supplied key/keybits, and may involve creating
3295  * indirect blocks and moving other chains around via delete/duplicate.
3296  *
3297  * This call can be made with parent == NULL as long as a non -1 methods
3298  * is supplied.  hmp must also be supplied in this situation (otherwise
3299  * hmp is extracted from the supplied parent).  The chain will be detached
3300  * from the topology.  A later call with both parent and chain can be made
3301  * to attach it.
3302  *
3303  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3304  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3305  * FULL.  This typically means that the caller is creating the chain after
3306  * doing a hammer2_chain_lookup().
3307  *
3308  * (*parentp) must be exclusive locked and may be replaced on return
3309  * depending on how much work the function had to do.
3310  *
3311  * (*parentp) must not be errored or this function will assert.
3312  *
3313  * (*chainp) usually starts out NULL and returns the newly created chain,
3314  * but if the caller desires the caller may allocate a disconnected chain
3315  * and pass it in instead.
3316  *
3317  * This function should NOT be used to insert INDIRECT blocks.  It is
3318  * typically used to create/insert inodes and data blocks.
3319  *
3320  * Caller must pass-in an exclusively locked parent the new chain is to
3321  * be inserted under, and optionally pass-in a disconnected, exclusively
3322  * locked chain to insert (else we create a new chain).  The function will
3323  * adjust (*parentp) as necessary, create or connect the chain, and
3324  * return an exclusively locked chain in *chainp.
3325  *
3326  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3327  * and will be reassigned.
3328  *
3329  * NOTE: returns HAMMER_ERROR_* flags
3330  */
3331 int
3332 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3333 		     hammer2_dev_t *hmp, hammer2_pfs_t *pmp, int methods,
3334 		     hammer2_key_t key, int keybits, int type, size_t bytes,
3335 		     hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3336 {
3337 	hammer2_chain_t *chain;
3338 	hammer2_chain_t *parent;
3339 	hammer2_blockref_t *base;
3340 	hammer2_blockref_t dummy;
3341 	int allocated = 0;
3342 	int error = 0;
3343 	int count;
3344 	int maxloops = 300000;
3345 
3346 	/*
3347 	 * Topology may be crossing a PFS boundary.
3348 	 */
3349 	parent = *parentp;
3350 	if (parent) {
3351 		KKASSERT(hammer2_mtx_owned(&parent->lock));
3352 		KKASSERT(parent->error == 0);
3353 		hmp = parent->hmp;
3354 	}
3355 	chain = *chainp;
3356 
3357 	if (chain == NULL) {
3358 		/*
3359 		 * First allocate media space and construct the dummy bref,
3360 		 * then allocate the in-memory chain structure.  Set the
3361 		 * INITIAL flag for fresh chains which do not have embedded
3362 		 * data.
3363 		 */
3364 		bzero(&dummy, sizeof(dummy));
3365 		dummy.type = type;
3366 		dummy.key = key;
3367 		dummy.keybits = keybits;
3368 		dummy.data_off = hammer2_getradix(bytes);
3369 
3370 		/*
3371 		 * Inherit methods from parent by default.  Primarily used
3372 		 * for BREF_TYPE_DATA.  Non-data types *must* be set to
3373 		 * a non-NONE check algorithm.
3374 		 */
3375 		if (methods == -1)
3376 			dummy.methods = parent->bref.methods;
3377 		else
3378 			dummy.methods = (uint8_t)methods;
3379 
3380 		if (type != HAMMER2_BREF_TYPE_DATA &&
3381 		    HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3382 			dummy.methods |=
3383 				HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3384 		}
3385 
3386 		chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3387 
3388 		/*
3389 		 * Lock the chain manually, chain_lock will load the chain
3390 		 * which we do NOT want to do.  (note: chain->refs is set
3391 		 * to 1 by chain_alloc() for us, but lockcnt is not).
3392 		 */
3393 		chain->lockcnt = 1;
3394 		hammer2_mtx_ex(&chain->lock);
3395 		allocated = 1;
3396 
3397 		/*
3398 		 * Set INITIAL to optimize I/O.  The flag will generally be
3399 		 * processed when we call hammer2_chain_modify().
3400 		 */
3401 		switch(type) {
3402 		case HAMMER2_BREF_TYPE_VOLUME:
3403 		case HAMMER2_BREF_TYPE_FREEMAP:
3404 			panic("hammer2_chain_create: called with volume type");
3405 			break;
3406 		case HAMMER2_BREF_TYPE_INDIRECT:
3407 			panic("hammer2_chain_create: cannot be used to"
3408 			      "create indirect block");
3409 			break;
3410 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3411 			panic("hammer2_chain_create: cannot be used to"
3412 			      "create freemap root or node");
3413 			break;
3414 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3415 			KKASSERT(bytes == sizeof(chain->data->bmdata));
3416 			/* fall through */
3417 		case HAMMER2_BREF_TYPE_DIRENT:
3418 		case HAMMER2_BREF_TYPE_INODE:
3419 		case HAMMER2_BREF_TYPE_DATA:
3420 		default:
3421 			/*
3422 			 * leave chain->data NULL, set INITIAL
3423 			 */
3424 			KKASSERT(chain->data == NULL);
3425 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3426 			break;
3427 		}
3428 	} else {
3429 		/*
3430 		 * We are reattaching a previously deleted chain, possibly
3431 		 * under a new parent and possibly with a new key/keybits.
3432 		 * The chain does not have to be in a modified state.  The
3433 		 * UPDATE flag will be set later on in this routine.
3434 		 *
3435 		 * Do NOT mess with the current state of the INITIAL flag.
3436 		 */
3437 		chain->bref.key = key;
3438 		chain->bref.keybits = keybits;
3439 		if (chain->flags & HAMMER2_CHAIN_DELETED)
3440 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3441 		KKASSERT(chain->parent == NULL);
3442 	}
3443 
3444 	/*
3445 	 * Set the appropriate bref flag if requested.
3446 	 *
3447 	 * NOTE! Callers can call this function to move chains without
3448 	 *	 knowing about special flags, so don't clear bref flags
3449 	 *	 here!
3450 	 */
3451 	if (flags & HAMMER2_INSERT_PFSROOT)
3452 		chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3453 
3454 	if (parent == NULL)
3455 		goto skip;
3456 
3457 	/*
3458 	 * Calculate how many entries we have in the blockref array and
3459 	 * determine if an indirect block is required when inserting into
3460 	 * the parent.
3461 	 */
3462 again:
3463 	if (--maxloops == 0)
3464 		panic("hammer2_chain_create: maxloops");
3465 
3466 	switch(parent->bref.type) {
3467 	case HAMMER2_BREF_TYPE_INODE:
3468 		if ((parent->data->ipdata.meta.op_flags &
3469 		     HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3470 			kprintf("hammer2: parent set for direct-data! "
3471 				"pkey=%016jx ckey=%016jx\n",
3472 				parent->bref.key,
3473 				chain->bref.key);
3474 	        }
3475 		KKASSERT((parent->data->ipdata.meta.op_flags &
3476 			  HAMMER2_OPFLAG_DIRECTDATA) == 0);
3477 		KKASSERT(parent->data != NULL);
3478 		base = &parent->data->ipdata.u.blockset.blockref[0];
3479 		count = HAMMER2_SET_COUNT;
3480 		break;
3481 	case HAMMER2_BREF_TYPE_INDIRECT:
3482 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3483 		if (parent->flags & HAMMER2_CHAIN_INITIAL)
3484 			base = NULL;
3485 		else
3486 			base = &parent->data->npdata[0];
3487 		count = parent->bytes / sizeof(hammer2_blockref_t);
3488 		break;
3489 	case HAMMER2_BREF_TYPE_VOLUME:
3490 		KKASSERT(parent->data != NULL);
3491 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3492 		count = HAMMER2_SET_COUNT;
3493 		break;
3494 	case HAMMER2_BREF_TYPE_FREEMAP:
3495 		KKASSERT(parent->data != NULL);
3496 		base = &parent->data->blkset.blockref[0];
3497 		count = HAMMER2_SET_COUNT;
3498 		break;
3499 	default:
3500 		panic("hammer2_chain_create: unrecognized blockref type: %d",
3501 		      parent->bref.type);
3502 		base = NULL;
3503 		count = 0;
3504 		break;
3505 	}
3506 
3507 	/*
3508 	 * Make sure we've counted the brefs
3509 	 */
3510 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3511 		hammer2_chain_countbrefs(parent, base, count);
3512 
3513 	KASSERT(parent->core.live_count >= 0 &&
3514 		parent->core.live_count <= count,
3515 		("bad live_count %d/%d (%02x, %d)",
3516 			parent->core.live_count, count,
3517 			parent->bref.type, parent->bytes));
3518 
3519 	/*
3520 	 * If no free blockref could be found we must create an indirect
3521 	 * block and move a number of blockrefs into it.  With the parent
3522 	 * locked we can safely lock each child in order to delete+duplicate
3523 	 * it without causing a deadlock.
3524 	 *
3525 	 * This may return the new indirect block or the old parent depending
3526 	 * on where the key falls.  NULL is returned on error.
3527 	 */
3528 	if (parent->core.live_count == count) {
3529 		hammer2_chain_t *nparent;
3530 
3531 		KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3532 
3533 		nparent = hammer2_chain_create_indirect(parent, key, keybits,
3534 							mtid, type, &error);
3535 		if (nparent == NULL) {
3536 			if (allocated)
3537 				hammer2_chain_drop(chain);
3538 			chain = NULL;
3539 			goto done;
3540 		}
3541 		if (parent != nparent) {
3542 			hammer2_chain_unlock(parent);
3543 			hammer2_chain_drop(parent);
3544 			parent = *parentp = nparent;
3545 		}
3546 		goto again;
3547 	}
3548 
3549 	/*
3550 	 * fall through if parent, or skip to here if no parent.
3551 	 */
3552 skip:
3553 	if (chain->flags & HAMMER2_CHAIN_DELETED)
3554 		kprintf("Inserting deleted chain @%016jx\n",
3555 			chain->bref.key);
3556 
3557 	/*
3558 	 * Link the chain into its parent.
3559 	 */
3560 	if (chain->parent != NULL)
3561 		panic("hammer2: hammer2_chain_create: chain already connected");
3562 	KKASSERT(chain->parent == NULL);
3563 	if (parent) {
3564 		KKASSERT(parent->core.live_count < count);
3565 		hammer2_chain_insert(parent, chain,
3566 				     HAMMER2_CHAIN_INSERT_SPIN |
3567 				     HAMMER2_CHAIN_INSERT_LIVE,
3568 				     0);
3569 	}
3570 
3571 	if (allocated) {
3572 		/*
3573 		 * Mark the newly created chain modified.  This will cause
3574 		 * UPDATE to be set and process the INITIAL flag.
3575 		 *
3576 		 * Device buffers are not instantiated for DATA elements
3577 		 * as these are handled by logical buffers.
3578 		 *
3579 		 * Indirect and freemap node indirect blocks are handled
3580 		 * by hammer2_chain_create_indirect() and not by this
3581 		 * function.
3582 		 *
3583 		 * Data for all other bref types is expected to be
3584 		 * instantiated (INODE, LEAF).
3585 		 */
3586 		switch(chain->bref.type) {
3587 		case HAMMER2_BREF_TYPE_DATA:
3588 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3589 		case HAMMER2_BREF_TYPE_DIRENT:
3590 		case HAMMER2_BREF_TYPE_INODE:
3591 			error = hammer2_chain_modify(chain, mtid, dedup_off,
3592 						     HAMMER2_MODIFY_OPTDATA);
3593 			break;
3594 		default:
3595 			/*
3596 			 * Remaining types are not supported by this function.
3597 			 * In particular, INDIRECT and LEAF_NODE types are
3598 			 * handled by create_indirect().
3599 			 */
3600 			panic("hammer2_chain_create: bad type: %d",
3601 			      chain->bref.type);
3602 			/* NOT REACHED */
3603 			break;
3604 		}
3605 	} else {
3606 		/*
3607 		 * When reconnecting a chain we must set UPDATE and
3608 		 * setflush so the flush recognizes that it must update
3609 		 * the bref in the parent.
3610 		 */
3611 		if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3612 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3613 	}
3614 
3615 	/*
3616 	 * We must setflush(parent) to ensure that it recurses through to
3617 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3618 	 * already set in the chain (so it won't recurse up to set it in the
3619 	 * parent).
3620 	 */
3621 	if (parent)
3622 		hammer2_chain_setflush(parent);
3623 
3624 done:
3625 	*chainp = chain;
3626 
3627 	return (error);
3628 }
3629 
3630 /*
3631  * Move the chain from its old parent to a new parent.  The chain must have
3632  * already been deleted or already disconnected (or never associated) with
3633  * a parent.  The chain is reassociated with the new parent and the deleted
3634  * flag will be cleared (no longer deleted).  The chain's modification state
3635  * is not altered.
3636  *
3637  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3638  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3639  * FULL.  This typically means that the caller is creating the chain after
3640  * doing a hammer2_chain_lookup().
3641  *
3642  * Neither (parent) or (chain) can be errored.
3643  *
3644  * If (parent) is non-NULL then the chain is inserted under the parent.
3645  *
3646  * If (parent) is NULL then the newly duplicated chain is not inserted
3647  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3648  * passing into hammer2_chain_create() after this function returns).
3649  *
3650  * WARNING! This function calls create which means it can insert indirect
3651  *	    blocks.  This can cause other unrelated chains in the parent to
3652  *	    be moved to a newly inserted indirect block in addition to the
3653  *	    specific chain.
3654  */
3655 void
3656 hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3657 		     hammer2_tid_t mtid, int flags)
3658 {
3659 	hammer2_blockref_t *bref;
3660 	hammer2_dev_t *hmp;
3661 	hammer2_chain_t *parent;
3662 
3663 	/*
3664 	 * WARNING!  We should never resolve DATA to device buffers
3665 	 *	     (XXX allow it if the caller did?), and since
3666 	 *	     we currently do not have the logical buffer cache
3667 	 *	     buffer in-hand to fix its cached physical offset
3668 	 *	     we also force the modify code to not COW it. XXX
3669 	 *
3670 	 * NOTE!     We allow error'd chains to be renamed.  The bref itself
3671 	 *	     is good and can be renamed.  The content, however, may
3672 	 *	     be inaccessible.
3673 	 */
3674 	hmp = chain->hmp;
3675 	KKASSERT(chain->parent == NULL);
3676 	/*KKASSERT(chain->error == 0); allow */
3677 	bref = &chain->bref;
3678 
3679 	/*
3680 	 * If parent is not NULL the duplicated chain will be entered under
3681 	 * the parent and the UPDATE bit set to tell flush to update
3682 	 * the blockref.
3683 	 *
3684 	 * We must setflush(parent) to ensure that it recurses through to
3685 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3686 	 * already set in the chain (so it won't recurse up to set it in the
3687 	 * parent).
3688 	 *
3689 	 * Having both chains locked is extremely important for atomicy.
3690 	 */
3691 	if (parentp && (parent = *parentp) != NULL) {
3692 		KKASSERT(hammer2_mtx_owned(&parent->lock));
3693 		KKASSERT(parent->refs > 0);
3694 		KKASSERT(parent->error == 0);
3695 
3696 		hammer2_chain_create(parentp, &chain, NULL, chain->pmp,
3697 				     HAMMER2_METH_DEFAULT,
3698 				     bref->key, bref->keybits, bref->type,
3699 				     chain->bytes, mtid, 0, flags);
3700 		KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3701 		hammer2_chain_setflush(*parentp);
3702 	}
3703 }
3704 
3705 /*
3706  * This works in tandem with delete_obref() to install a blockref in
3707  * (typically) an indirect block that is associated with the chain being
3708  * moved to *parentp.
3709  *
3710  * The reason we need this function is that the caller needs to maintain
3711  * the blockref as it was, and not generate a new blockref for what might
3712  * be a modified chain.  Otherwise stuff will leak into the flush that
3713  * the flush code's FLUSH_INODE_STOP flag is unable to catch.
3714  *
3715  * It is EXTREMELY important that we properly set CHAIN_BMAPUPD and
3716  * CHAIN_UPDATE.  We must set BMAPUPD if the bref does not match, and
3717  * we must clear CHAIN_UPDATE (that was likely set by the chain_rename) if
3718  * it does.  Otherwise we can end up in a situation where H2 is unable to
3719  * clean up the in-memory chain topology.
3720  *
3721  * The reason for this is that flushes do not generally flush through
3722  * BREF_TYPE_INODE chains and depend on a hammer2_inode_t queued to syncq
3723  * or sideq to properly flush and dispose of the related inode chain's flags.
3724  * Situations where the inode is not actually modified by the frontend,
3725  * but where we have to move the related chains around as we insert or cleanup
3726  * indirect blocks, can leave us with a 'dirty' (non-disposable) in-memory
3727  * inode chain that does not have a hammer2_inode_t associated with it.
3728  */
3729 static void
3730 hammer2_chain_rename_obref(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3731 			   hammer2_tid_t mtid, int flags,
3732 			   hammer2_blockref_t *obref)
3733 {
3734 	hammer2_chain_rename(parentp, chain, mtid, flags);
3735 
3736 	if (obref->type != HAMMER2_BREF_TYPE_EMPTY) {
3737 		hammer2_blockref_t *tbase;
3738 		int tcount;
3739 
3740 		KKASSERT((chain->flags & HAMMER2_CHAIN_BMAPPED) == 0);
3741 		hammer2_chain_modify(*parentp, mtid, 0, 0);
3742 		tbase = hammer2_chain_base_and_count(*parentp, &tcount);
3743 		hammer2_base_insert(*parentp, tbase, tcount, chain, obref);
3744 		if (bcmp(obref, &chain->bref, sizeof(chain->bref))) {
3745 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD |
3746 						      HAMMER2_CHAIN_UPDATE);
3747 		} else {
3748 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3749 		}
3750 	}
3751 }
3752 
3753 /*
3754  * Helper function for deleting chains.
3755  *
3756  * The chain is removed from the live view (the RBTREE) as well as the parent's
3757  * blockmap.  Both chain and its parent must be locked.
3758  *
3759  * parent may not be errored.  chain can be errored.
3760  */
3761 static int
3762 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3763 			     hammer2_tid_t mtid, int flags,
3764 			     hammer2_blockref_t *obref)
3765 {
3766 	hammer2_dev_t *hmp;
3767 	int error = 0;
3768 
3769 	KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0);
3770 	KKASSERT(chain->parent == parent);
3771 	hmp = chain->hmp;
3772 
3773 	if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3774 		/*
3775 		 * Chain is blockmapped, so there must be a parent.
3776 		 * Atomically remove the chain from the parent and remove
3777 		 * the blockmap entry.  The parent must be set modified
3778 		 * to remove the blockmap entry.
3779 		 */
3780 		hammer2_blockref_t *base;
3781 		int count;
3782 
3783 		KKASSERT(parent != NULL);
3784 		KKASSERT(parent->error == 0);
3785 		KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3786 		error = hammer2_chain_modify(parent, mtid, 0, 0);
3787 		if (error)
3788 			goto done;
3789 
3790 		/*
3791 		 * Calculate blockmap pointer
3792 		 */
3793 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3794 		hammer2_spin_ex(&chain->core.spin);
3795 		hammer2_spin_ex(&parent->core.spin);
3796 
3797 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3798 		atomic_add_int(&parent->core.live_count, -1);
3799 		++parent->core.generation;
3800 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3801 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3802 		--parent->core.chain_count;
3803 		chain->parent = NULL;
3804 
3805 		switch(parent->bref.type) {
3806 		case HAMMER2_BREF_TYPE_INODE:
3807 			/*
3808 			 * Access the inode's block array.  However, there
3809 			 * is no block array if the inode is flagged
3810 			 * DIRECTDATA.
3811 			 */
3812 			if (parent->data &&
3813 			    (parent->data->ipdata.meta.op_flags &
3814 			     HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3815 				base =
3816 				   &parent->data->ipdata.u.blockset.blockref[0];
3817 			} else {
3818 				base = NULL;
3819 			}
3820 			count = HAMMER2_SET_COUNT;
3821 			break;
3822 		case HAMMER2_BREF_TYPE_INDIRECT:
3823 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3824 			if (parent->data)
3825 				base = &parent->data->npdata[0];
3826 			else
3827 				base = NULL;
3828 			count = parent->bytes / sizeof(hammer2_blockref_t);
3829 			break;
3830 		case HAMMER2_BREF_TYPE_VOLUME:
3831 			base = &parent->data->voldata.
3832 					sroot_blockset.blockref[0];
3833 			count = HAMMER2_SET_COUNT;
3834 			break;
3835 		case HAMMER2_BREF_TYPE_FREEMAP:
3836 			base = &parent->data->blkset.blockref[0];
3837 			count = HAMMER2_SET_COUNT;
3838 			break;
3839 		default:
3840 			base = NULL;
3841 			count = 0;
3842 			panic("_hammer2_chain_delete_helper: "
3843 			      "unrecognized blockref type: %d",
3844 			      parent->bref.type);
3845 			break;
3846 		}
3847 
3848 		/*
3849 		 * delete blockmapped chain from its parent.
3850 		 *
3851 		 * The parent is not affected by any statistics in chain
3852 		 * which are pending synchronization.  That is, there is
3853 		 * nothing to undo in the parent since they have not yet
3854 		 * been incorporated into the parent.
3855 		 *
3856 		 * The parent is affected by statistics stored in inodes.
3857 		 * Those have already been synchronized, so they must be
3858 		 * undone.  XXX split update possible w/delete in middle?
3859 		 */
3860 		if (base) {
3861 			hammer2_base_delete(parent, base, count, chain, obref);
3862 		}
3863 		hammer2_spin_unex(&parent->core.spin);
3864 		hammer2_spin_unex(&chain->core.spin);
3865 	} else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3866 		/*
3867 		 * Chain is not blockmapped but a parent is present.
3868 		 * Atomically remove the chain from the parent.  There is
3869 		 * no blockmap entry to remove.
3870 		 *
3871 		 * Because chain was associated with a parent but not
3872 		 * synchronized, the chain's *_count_up fields contain
3873 		 * inode adjustment statistics which must be undone.
3874 		 */
3875 		hammer2_spin_ex(&chain->core.spin);
3876 		hammer2_spin_ex(&parent->core.spin);
3877 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3878 		atomic_add_int(&parent->core.live_count, -1);
3879 		++parent->core.generation;
3880 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3881 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3882 		--parent->core.chain_count;
3883 		chain->parent = NULL;
3884 		hammer2_spin_unex(&parent->core.spin);
3885 		hammer2_spin_unex(&chain->core.spin);
3886 	} else {
3887 		/*
3888 		 * Chain is not blockmapped and has no parent.  This
3889 		 * is a degenerate case.
3890 		 */
3891 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3892 	}
3893 done:
3894 	return error;
3895 }
3896 
3897 /*
3898  * Create an indirect block that covers one or more of the elements in the
3899  * current parent.  Either returns the existing parent with no locking or
3900  * ref changes or returns the new indirect block locked and referenced
3901  * and leaving the original parent lock/ref intact as well.
3902  *
3903  * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3904  *
3905  * The returned chain depends on where the specified key falls.
3906  *
3907  * The key/keybits for the indirect mode only needs to follow three rules:
3908  *
3909  * (1) That all elements underneath it fit within its key space and
3910  *
3911  * (2) That all elements outside it are outside its key space.
3912  *
3913  * (3) When creating the new indirect block any elements in the current
3914  *     parent that fit within the new indirect block's keyspace must be
3915  *     moved into the new indirect block.
3916  *
3917  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3918  *     keyspace the the current parent, but lookup/iteration rules will
3919  *     ensure (and must ensure) that rule (2) for all parents leading up
3920  *     to the nearest inode or the root volume header is adhered to.  This
3921  *     is accomplished by always recursing through matching keyspaces in
3922  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3923  *
3924  * The current implementation calculates the current worst-case keyspace by
3925  * iterating the current parent and then divides it into two halves, choosing
3926  * whichever half has the most elements (not necessarily the half containing
3927  * the requested key).
3928  *
3929  * We can also opt to use the half with the least number of elements.  This
3930  * causes lower-numbered keys (aka logical file offsets) to recurse through
3931  * fewer indirect blocks and higher-numbered keys to recurse through more.
3932  * This also has the risk of not moving enough elements to the new indirect
3933  * block and being forced to create several indirect blocks before the element
3934  * can be inserted.
3935  *
3936  * Must be called with an exclusively locked parent.
3937  *
3938  * NOTE: *errorp set to HAMMER_ERROR_* flags
3939  */
3940 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3941 				hammer2_key_t *keyp, int keybits,
3942 				hammer2_blockref_t *base, int count);
3943 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
3944 				hammer2_key_t *keyp, int keybits,
3945 				hammer2_blockref_t *base, int count,
3946 				int ncount);
3947 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
3948 				hammer2_key_t *keyp, int keybits,
3949 				hammer2_blockref_t *base, int count,
3950 				int ncount);
3951 static
3952 hammer2_chain_t *
3953 hammer2_chain_create_indirect(hammer2_chain_t *parent,
3954 			      hammer2_key_t create_key, int create_bits,
3955 			      hammer2_tid_t mtid, int for_type, int *errorp)
3956 {
3957 	hammer2_dev_t *hmp;
3958 	hammer2_blockref_t *base;
3959 	hammer2_blockref_t *bref;
3960 	hammer2_blockref_t bsave;
3961 	hammer2_blockref_t dummy;
3962 	hammer2_chain_t *chain;
3963 	hammer2_chain_t *ichain;
3964 	hammer2_key_t key = create_key;
3965 	hammer2_key_t key_beg;
3966 	hammer2_key_t key_end;
3967 	hammer2_key_t key_next;
3968 	int keybits = create_bits;
3969 	int count;
3970 	int ncount;
3971 	int nbytes;
3972 	int loops;
3973 	int error;
3974 	int reason;
3975 	int generation;
3976 	int maxloops = 300000;
3977 
3978 	/*
3979 	 * Calculate the base blockref pointer or NULL if the chain
3980 	 * is known to be empty.  We need to calculate the array count
3981 	 * for RB lookups either way.
3982 	 */
3983 	hmp = parent->hmp;
3984 	KKASSERT(hammer2_mtx_owned(&parent->lock));
3985 
3986 	/*
3987 	 * Pre-modify the parent now to avoid having to deal with error
3988 	 * processing if we tried to later (in the middle of our loop).
3989 	 *
3990 	 * We are going to be moving bref's around, the indirect blocks
3991 	 * cannot be in an initial state.  Do not pass MODIFY_OPTDATA.
3992 	 */
3993 	*errorp = hammer2_chain_modify(parent, mtid, 0, 0);
3994 	if (*errorp) {
3995 		kprintf("hammer2_chain_create_indirect: error %08x %s\n",
3996 			*errorp, hammer2_error_str(*errorp));
3997 		return NULL;
3998 	}
3999 	KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
4000 
4001 	/*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
4002 	base = hammer2_chain_base_and_count(parent, &count);
4003 
4004 	/*
4005 	 * How big should our new indirect block be?  It has to be at least
4006 	 * as large as its parent for splits to work properly.
4007 	 *
4008 	 * The freemap uses a specific indirect block size.  The number of
4009 	 * levels are built dynamically and ultimately depend on the size
4010 	 * volume.  Because freemap blocks are taken from the reserved areas
4011 	 * of the volume our goal is efficiency (fewer levels) and not so
4012 	 * much to save disk space.
4013 	 *
4014 	 * The first indirect block level for a directory usually uses
4015 	 * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
4016 	 * the hash mechanism, this typically gives us a nominal
4017 	 * 32 * 4 entries with one level of indirection.
4018 	 *
4019 	 * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
4020 	 * indirect blocks.  The initial 4 entries in the inode gives us
4021 	 * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
4022 	 * of indirection gives us 137GB, and so forth.  H2 can support
4023 	 * huge file sizes but they are not typical, so we try to stick
4024 	 * with compactness and do not use a larger indirect block size.
4025 	 *
4026 	 * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
4027 	 * due to the way indirect blocks are created this usually winds
4028 	 * up being extremely inefficient for small files.  Even though
4029 	 * 16KB requires more levels of indirection for very large files,
4030 	 * the 16KB records can be ganged together into 64KB DIOs.
4031 	 */
4032 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4033 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4034 		nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
4035 	} else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4036 		if (parent->data->ipdata.meta.type ==
4037 		    HAMMER2_OBJTYPE_DIRECTORY)
4038 			nbytes = HAMMER2_IND_BYTES_MIN;	/* 4KB = 32 entries */
4039 		else
4040 			nbytes = HAMMER2_IND_BYTES_NOM;	/* 16KB = ~8MB file */
4041 
4042 	} else {
4043 		nbytes = HAMMER2_IND_BYTES_NOM;
4044 	}
4045 	if (nbytes < count * sizeof(hammer2_blockref_t)) {
4046 		KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
4047 			 for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
4048 		nbytes = count * sizeof(hammer2_blockref_t);
4049 	}
4050 	ncount = nbytes / sizeof(hammer2_blockref_t);
4051 
4052 	/*
4053 	 * When creating an indirect block for a freemap node or leaf
4054 	 * the key/keybits must be fitted to static radix levels because
4055 	 * particular radix levels use particular reserved blocks in the
4056 	 * related zone.
4057 	 *
4058 	 * This routine calculates the key/radix of the indirect block
4059 	 * we need to create, and whether it is on the high-side or the
4060 	 * low-side.
4061 	 */
4062 	switch(for_type) {
4063 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4064 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4065 		keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
4066 						       base, count);
4067 		break;
4068 	case HAMMER2_BREF_TYPE_DATA:
4069 		keybits = hammer2_chain_indkey_file(parent, &key, keybits,
4070 						    base, count, ncount);
4071 		break;
4072 	case HAMMER2_BREF_TYPE_DIRENT:
4073 	case HAMMER2_BREF_TYPE_INODE:
4074 		keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
4075 						   base, count, ncount);
4076 		break;
4077 	default:
4078 		panic("illegal indirect block for bref type %d", for_type);
4079 		break;
4080 	}
4081 
4082 	/*
4083 	 * Normalize the key for the radix being represented, keeping the
4084 	 * high bits and throwing away the low bits.
4085 	 */
4086 	key &= ~(((hammer2_key_t)1 << keybits) - 1);
4087 
4088 	/*
4089 	 * Ok, create our new indirect block
4090 	 */
4091 	bzero(&dummy, sizeof(dummy));
4092 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4093 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4094 		dummy.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4095 	} else {
4096 		dummy.type = HAMMER2_BREF_TYPE_INDIRECT;
4097 	}
4098 	dummy.key = key;
4099 	dummy.keybits = keybits;
4100 	dummy.data_off = hammer2_getradix(nbytes);
4101 	dummy.methods =
4102 		HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4103 		HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4104 
4105 	ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy);
4106 	atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4107 	hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4108 	/* ichain has one ref at this point */
4109 
4110 	/*
4111 	 * We have to mark it modified to allocate its block, but use
4112 	 * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
4113 	 * it won't be acted upon by the flush code.
4114 	 *
4115 	 * XXX remove OPTDATA, we need a fully initialized indirect block to
4116 	 * be able to move the original blockref.
4117 	 */
4118 	*errorp = hammer2_chain_modify(ichain, mtid, 0, 0);
4119 	if (*errorp) {
4120 		kprintf("hammer2_chain_create_indirect: error %08x %s\n",
4121 			*errorp, hammer2_error_str(*errorp));
4122 		hammer2_chain_unlock(ichain);
4123 		hammer2_chain_drop(ichain);
4124 		return NULL;
4125 	}
4126 	KKASSERT((ichain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4127 
4128 	/*
4129 	 * Iterate the original parent and move the matching brefs into
4130 	 * the new indirect block.
4131 	 *
4132 	 * XXX handle flushes.
4133 	 */
4134 	key_beg = 0;
4135 	key_end = HAMMER2_KEY_MAX;
4136 	key_next = 0;	/* avoid gcc warnings */
4137 	hammer2_spin_ex(&parent->core.spin);
4138 	loops = 0;
4139 	reason = 0;
4140 
4141 	for (;;) {
4142 		/*
4143 		 * Parent may have been modified, relocating its block array.
4144 		 * Reload the base pointer.
4145 		 */
4146 		base = hammer2_chain_base_and_count(parent, &count);
4147 
4148 		if (++loops > 100000) {
4149 		    hammer2_spin_unex(&parent->core.spin);
4150 		    panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4151 			  reason, parent, base, count, key_next);
4152 		}
4153 
4154 		/*
4155 		 * NOTE: spinlock stays intact, returned chain (if not NULL)
4156 		 *	 is not referenced or locked which means that we
4157 		 *	 cannot safely check its flagged / deletion status
4158 		 *	 until we lock it.
4159 		 */
4160 		chain = hammer2_combined_find(parent, base, count,
4161 					      &key_next,
4162 					      key_beg, key_end,
4163 					      &bref);
4164 		generation = parent->core.generation;
4165 		if (bref == NULL)
4166 			break;
4167 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4168 
4169 		/*
4170 		 * Skip keys that are not within the key/radix of the new
4171 		 * indirect block.  They stay in the parent.
4172 		 */
4173 		if (rounddown2(key ^ bref->key, (hammer2_key_t)1 << keybits) != 0) {
4174 			goto next_key_spinlocked;
4175 		}
4176 
4177 		/*
4178 		 * Load the new indirect block by acquiring the related
4179 		 * chains (potentially from media as it might not be
4180 		 * in-memory).  Then move it to the new parent (ichain).
4181 		 *
4182 		 * chain is referenced but not locked.  We must lock the
4183 		 * chain to obtain definitive state.
4184 		 */
4185 		bsave = *bref;
4186 		if (chain) {
4187 			/*
4188 			 * Use chain already present in the RBTREE
4189 			 */
4190 			hammer2_chain_ref(chain);
4191 			hammer2_spin_unex(&parent->core.spin);
4192 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4193 		} else {
4194 			/*
4195 			 * Get chain for blockref element.  _get returns NULL
4196 			 * on insertion race.
4197 			 */
4198 			hammer2_spin_unex(&parent->core.spin);
4199 			chain = hammer2_chain_get(parent, generation, &bsave,
4200 						  HAMMER2_RESOLVE_NEVER);
4201 			if (chain == NULL) {
4202 				reason = 1;
4203 				hammer2_spin_ex(&parent->core.spin);
4204 				continue;
4205 			}
4206 		}
4207 
4208 		/*
4209 		 * This is always live so if the chain has been deleted
4210 		 * we raced someone and we have to retry.
4211 		 *
4212 		 * NOTE: Lookups can race delete-duplicate because
4213 		 *	 delete-duplicate does not lock the parent's core
4214 		 *	 (they just use the spinlock on the core).
4215 		 *
4216 		 *	 (note reversed logic for this one)
4217 		 */
4218 		if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
4219 		    chain->parent != parent ||
4220 		    (chain->flags & HAMMER2_CHAIN_DELETED)) {
4221 			hammer2_chain_unlock(chain);
4222 			hammer2_chain_drop(chain);
4223 			if (hammer2_debug & 0x0040) {
4224 				kprintf("LOST PARENT RETRY "
4225 				"RETRY (%p,%p)->%p %08x\n",
4226 				parent, chain->parent, chain, chain->flags);
4227 			}
4228 			hammer2_spin_ex(&parent->core.spin);
4229 			continue;
4230 		}
4231 
4232 		/*
4233 		 * Shift the chain to the indirect block.
4234 		 *
4235 		 * WARNING! No reason for us to load chain data, pass NOSTATS
4236 		 *	    to prevent delete/insert from trying to access
4237 		 *	    inode stats (and thus asserting if there is no
4238 		 *	    chain->data loaded).
4239 		 *
4240 		 * WARNING! The (parent, chain) deletion may modify the parent
4241 		 *	    and invalidate the base pointer.
4242 		 *
4243 		 * WARNING! Parent must already be marked modified, so we
4244 		 *	    can assume that chain_delete always suceeds.
4245 		 *
4246 		 * WARNING! hammer2_chain_repchange() does not have to be
4247 		 *	    called (and doesn't work anyway because we are
4248 		 *	    only doing a partial shift).  A recursion that is
4249 		 *	    in-progress can continue at the current parent
4250 		 *	    and will be able to properly find its next key.
4251 		 */
4252 		error = hammer2_chain_delete_obref(parent, chain, mtid, 0,
4253 						   &bsave);
4254 		KKASSERT(error == 0);
4255 		hammer2_chain_rename_obref(&ichain, chain, mtid, 0, &bsave);
4256 		hammer2_chain_unlock(chain);
4257 		hammer2_chain_drop(chain);
4258 		KKASSERT(parent->refs > 0);
4259 		chain = NULL;
4260 		base = NULL;	/* safety */
4261 		hammer2_spin_ex(&parent->core.spin);
4262 next_key_spinlocked:
4263 		if (--maxloops == 0)
4264 			panic("hammer2_chain_create_indirect: maxloops");
4265 		reason = 4;
4266 		if (key_next == 0 || key_next > key_end)
4267 			break;
4268 		key_beg = key_next;
4269 		/* loop */
4270 	}
4271 	hammer2_spin_unex(&parent->core.spin);
4272 
4273 	/*
4274 	 * Insert the new indirect block into the parent now that we've
4275 	 * cleared out some entries in the parent.  We calculated a good
4276 	 * insertion index in the loop above (ichain->index).
4277 	 *
4278 	 * We don't have to set UPDATE here because we mark ichain
4279 	 * modified down below (so the normal modified -> flush -> set-moved
4280 	 * sequence applies).
4281 	 *
4282 	 * The insertion shouldn't race as this is a completely new block
4283 	 * and the parent is locked.
4284 	 */
4285 	base = NULL;	/* safety, parent modify may change address */
4286 	KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4287 	KKASSERT(parent->core.live_count < count);
4288 	hammer2_chain_insert(parent, ichain,
4289 			     HAMMER2_CHAIN_INSERT_SPIN |
4290 			     HAMMER2_CHAIN_INSERT_LIVE,
4291 			     0);
4292 
4293 	/*
4294 	 * Make sure flushes propogate after our manual insertion.
4295 	 */
4296 	hammer2_chain_setflush(ichain);
4297 	hammer2_chain_setflush(parent);
4298 
4299 	/*
4300 	 * Figure out what to return.
4301 	 */
4302 	if (rounddown2(create_key ^ key, (hammer2_key_t)1 << keybits)) {
4303 		/*
4304 		 * Key being created is outside the key range,
4305 		 * return the original parent.
4306 		 */
4307 		hammer2_chain_unlock(ichain);
4308 		hammer2_chain_drop(ichain);
4309 	} else {
4310 		/*
4311 		 * Otherwise its in the range, return the new parent.
4312 		 * (leave both the new and old parent locked).
4313 		 */
4314 		parent = ichain;
4315 	}
4316 
4317 	return(parent);
4318 }
4319 
4320 /*
4321  * Do maintenance on an indirect chain.  Both parent and chain are locked.
4322  *
4323  * Returns non-zero if (chain) is deleted, either due to being empty or
4324  * because its children were safely moved into the parent.
4325  */
4326 int
4327 hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4328 				   hammer2_chain_t *chain)
4329 {
4330 	hammer2_blockref_t *chain_base;
4331 	hammer2_blockref_t *base;
4332 	hammer2_blockref_t *bref;
4333 	hammer2_blockref_t bsave;
4334 	hammer2_key_t key_next;
4335 	hammer2_key_t key_beg;
4336 	hammer2_key_t key_end;
4337 	hammer2_chain_t *sub;
4338 	int chain_count;
4339 	int count;
4340 	int error;
4341 	int generation;
4342 
4343 	/*
4344 	 * Make sure we have an accurate live_count
4345 	 */
4346 	if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4347 			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4348 		base = &chain->data->npdata[0];
4349 		count = chain->bytes / sizeof(hammer2_blockref_t);
4350 		hammer2_chain_countbrefs(chain, base, count);
4351 	}
4352 
4353 	/*
4354 	 * If the indirect block is empty we can delete it.
4355 	 * (ignore deletion error)
4356 	 */
4357 	if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4358 		hammer2_chain_delete(parent, chain,
4359 				     chain->bref.modify_tid,
4360 				     HAMMER2_DELETE_PERMANENT);
4361 		hammer2_chain_repchange(parent, chain);
4362 		return 1;
4363 	}
4364 
4365 	base = hammer2_chain_base_and_count(parent, &count);
4366 
4367 	if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4368 			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4369 		hammer2_chain_countbrefs(parent, base, count);
4370 	}
4371 
4372 	/*
4373 	 * Determine if we can collapse chain into parent, calculate
4374 	 * hysteresis for chain emptiness.
4375 	 */
4376 	if (parent->core.live_count + chain->core.live_count - 1 > count)
4377 		return 0;
4378 	chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4379 	if (chain->core.live_count > chain_count * 3 / 4)
4380 		return 0;
4381 
4382 	/*
4383 	 * Ok, theoretically we can collapse chain's contents into
4384 	 * parent.  chain is locked, but any in-memory children of chain
4385 	 * are not.  For this to work, we must be able to dispose of any
4386 	 * in-memory children of chain.
4387 	 *
4388 	 * For now require that there are no in-memory children of chain.
4389 	 *
4390 	 * WARNING! Both chain and parent must remain locked across this
4391 	 *	    entire operation.
4392 	 */
4393 
4394 	/*
4395 	 * Parent must be marked modified.  Don't try to collapse it if we
4396 	 * can't mark it modified.  Once modified, destroy chain to make room
4397 	 * and to get rid of what will be a conflicting key (this is included
4398 	 * in the calculation above).  Finally, move the children of chain
4399 	 * into chain's parent.
4400 	 *
4401 	 * This order creates an accounting problem for bref.embed.stats
4402 	 * because we destroy chain before we remove its children.  Any
4403 	 * elements whos blockref is already synchronized will be counted
4404 	 * twice.  To deal with the problem we clean out chain's stats prior
4405 	 * to deleting it.
4406 	 */
4407 	error = hammer2_chain_modify(parent, 0, 0, 0);
4408 	if (error) {
4409 		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4410 			    hammer2_error_str(error));
4411 		return 0;
4412 	}
4413 	error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4414 	if (error) {
4415 		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4416 			    hammer2_error_str(error));
4417 		return 0;
4418 	}
4419 
4420 	chain->bref.embed.stats.inode_count = 0;
4421 	chain->bref.embed.stats.data_count = 0;
4422 	error = hammer2_chain_delete(parent, chain,
4423 				     chain->bref.modify_tid,
4424 				     HAMMER2_DELETE_PERMANENT);
4425 	KKASSERT(error == 0);
4426 
4427 	/*
4428 	 * The combined_find call requires core.spin to be held.  One would
4429 	 * think there wouldn't be any conflicts since we hold chain
4430 	 * exclusively locked, but the caching mechanism for 0-ref children
4431 	 * does not require a chain lock.
4432 	 */
4433 	hammer2_spin_ex(&chain->core.spin);
4434 
4435 	key_next = 0;
4436 	key_beg = 0;
4437 	key_end = HAMMER2_KEY_MAX;
4438 	for (;;) {
4439 		chain_base = &chain->data->npdata[0];
4440 		chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4441 		sub = hammer2_combined_find(chain, chain_base, chain_count,
4442 					    &key_next,
4443 					    key_beg, key_end,
4444 					    &bref);
4445 		generation = chain->core.generation;
4446 		if (bref == NULL)
4447 			break;
4448 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4449 
4450 		bsave = *bref;
4451 		if (sub) {
4452 			hammer2_chain_ref(sub);
4453 			hammer2_spin_unex(&chain->core.spin);
4454 			hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4455 		} else {
4456 			hammer2_spin_unex(&chain->core.spin);
4457 			sub = hammer2_chain_get(chain, generation, &bsave,
4458 						HAMMER2_RESOLVE_NEVER);
4459 			if (sub == NULL) {
4460 				hammer2_spin_ex(&chain->core.spin);
4461 				continue;
4462 			}
4463 		}
4464 		if (bcmp(&bsave, &sub->bref, sizeof(bsave)) ||
4465 		    sub->parent != chain ||
4466 		    (sub->flags & HAMMER2_CHAIN_DELETED)) {
4467 			hammer2_chain_unlock(sub);
4468 			hammer2_chain_drop(sub);
4469 			hammer2_spin_ex(&chain->core.spin);
4470 			sub = NULL;	/* safety */
4471 			continue;
4472 		}
4473 		error = hammer2_chain_delete_obref(chain, sub,
4474 						   sub->bref.modify_tid, 0,
4475 						   &bsave);
4476 		KKASSERT(error == 0);
4477 		hammer2_chain_rename_obref(&parent, sub,
4478 				     sub->bref.modify_tid,
4479 				     HAMMER2_INSERT_SAMEPARENT, &bsave);
4480 		hammer2_chain_unlock(sub);
4481 		hammer2_chain_drop(sub);
4482 		hammer2_spin_ex(&chain->core.spin);
4483 
4484 		if (key_next == 0)
4485 			break;
4486 		key_beg = key_next;
4487 	}
4488 	hammer2_spin_unex(&chain->core.spin);
4489 
4490 	hammer2_chain_repchange(parent, chain);
4491 
4492 	return 1;
4493 }
4494 
4495 /*
4496  * Freemap indirect blocks
4497  *
4498  * Calculate the keybits and highside/lowside of the freemap node the
4499  * caller is creating.
4500  *
4501  * This routine will specify the next higher-level freemap key/radix
4502  * representing the lowest-ordered set.  By doing so, eventually all
4503  * low-ordered sets will be moved one level down.
4504  *
4505  * We have to be careful here because the freemap reserves a limited
4506  * number of blocks for a limited number of levels.  So we can't just
4507  * push indiscriminately.
4508  */
4509 int
4510 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4511 			     int keybits, hammer2_blockref_t *base, int count)
4512 {
4513 	hammer2_chain_t *chain;
4514 	hammer2_blockref_t *bref;
4515 	hammer2_key_t key;
4516 	hammer2_key_t key_beg;
4517 	hammer2_key_t key_end;
4518 	hammer2_key_t key_next;
4519 	int locount;
4520 	int hicount;
4521 	int maxloops = 300000;
4522 
4523 	key = *keyp;
4524 	locount = 0;
4525 	hicount = 0;
4526 	keybits = 64;
4527 
4528 	/*
4529 	 * Calculate the range of keys in the array being careful to skip
4530 	 * slots which are overridden with a deletion.
4531 	 */
4532 	key_beg = 0;
4533 	key_end = HAMMER2_KEY_MAX;
4534 	hammer2_spin_ex(&parent->core.spin);
4535 
4536 	for (;;) {
4537 		if (--maxloops == 0) {
4538 			panic("indkey_freemap shit %p %p:%d\n",
4539 			      parent, base, count);
4540 		}
4541 		chain = hammer2_combined_find(parent, base, count,
4542 					      &key_next,
4543 					      key_beg, key_end,
4544 					      &bref);
4545 
4546 		/*
4547 		 * Exhausted search
4548 		 */
4549 		if (bref == NULL)
4550 			break;
4551 
4552 		/*
4553 		 * Skip deleted chains.
4554 		 */
4555 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4556 			if (key_next == 0 || key_next > key_end)
4557 				break;
4558 			key_beg = key_next;
4559 			continue;
4560 		}
4561 
4562 		/*
4563 		 * Use the full live (not deleted) element for the scan
4564 		 * iteration.  HAMMER2 does not allow partial replacements.
4565 		 *
4566 		 * XXX should be built into hammer2_combined_find().
4567 		 */
4568 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4569 
4570 		if (keybits > bref->keybits) {
4571 			key = bref->key;
4572 			keybits = bref->keybits;
4573 		} else if (keybits == bref->keybits && bref->key < key) {
4574 			key = bref->key;
4575 		}
4576 		if (key_next == 0)
4577 			break;
4578 		key_beg = key_next;
4579 	}
4580 	hammer2_spin_unex(&parent->core.spin);
4581 
4582 	/*
4583 	 * Return the keybits for a higher-level FREEMAP_NODE covering
4584 	 * this node.
4585 	 */
4586 	switch(keybits) {
4587 	case HAMMER2_FREEMAP_LEVEL0_RADIX:
4588 		keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4589 		break;
4590 	case HAMMER2_FREEMAP_LEVEL1_RADIX:
4591 		keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4592 		break;
4593 	case HAMMER2_FREEMAP_LEVEL2_RADIX:
4594 		keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4595 		break;
4596 	case HAMMER2_FREEMAP_LEVEL3_RADIX:
4597 		keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4598 		break;
4599 	case HAMMER2_FREEMAP_LEVEL4_RADIX:
4600 		keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4601 		break;
4602 	case HAMMER2_FREEMAP_LEVEL5_RADIX:
4603 		panic("hammer2_chain_indkey_freemap: level too high");
4604 		break;
4605 	default:
4606 		panic("hammer2_chain_indkey_freemap: bad radix");
4607 		break;
4608 	}
4609 	*keyp = key;
4610 
4611 	return (keybits);
4612 }
4613 
4614 /*
4615  * File indirect blocks
4616  *
4617  * Calculate the key/keybits for the indirect block to create by scanning
4618  * existing keys.  The key being created is also passed in *keyp and can be
4619  * inside or outside the indirect block.  Regardless, the indirect block
4620  * must hold at least two keys in order to guarantee sufficient space.
4621  *
4622  * We use a modified version of the freemap's fixed radix tree, but taylored
4623  * for file data.  Basically we configure an indirect block encompassing the
4624  * smallest key.
4625  */
4626 static int
4627 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4628 			    int keybits, hammer2_blockref_t *base, int count,
4629 			    int ncount)
4630 {
4631 	hammer2_chain_t *chain;
4632 	hammer2_blockref_t *bref;
4633 	hammer2_key_t key;
4634 	hammer2_key_t key_beg;
4635 	hammer2_key_t key_end;
4636 	hammer2_key_t key_next;
4637 	int nradix;
4638 	int locount;
4639 	int hicount;
4640 	int maxloops = 300000;
4641 
4642 	key = *keyp;
4643 	locount = 0;
4644 	hicount = 0;
4645 	keybits = 64;
4646 
4647 	/*
4648 	 * Calculate the range of keys in the array being careful to skip
4649 	 * slots which are overridden with a deletion.
4650 	 *
4651 	 * Locate the smallest key.
4652 	 */
4653 	key_beg = 0;
4654 	key_end = HAMMER2_KEY_MAX;
4655 	hammer2_spin_ex(&parent->core.spin);
4656 
4657 	for (;;) {
4658 		if (--maxloops == 0) {
4659 			panic("indkey_freemap shit %p %p:%d\n",
4660 			      parent, base, count);
4661 		}
4662 		chain = hammer2_combined_find(parent, base, count,
4663 					      &key_next,
4664 					      key_beg, key_end,
4665 					      &bref);
4666 
4667 		/*
4668 		 * Exhausted search
4669 		 */
4670 		if (bref == NULL)
4671 			break;
4672 
4673 		/*
4674 		 * Skip deleted chains.
4675 		 */
4676 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4677 			if (key_next == 0 || key_next > key_end)
4678 				break;
4679 			key_beg = key_next;
4680 			continue;
4681 		}
4682 
4683 		/*
4684 		 * Use the full live (not deleted) element for the scan
4685 		 * iteration.  HAMMER2 does not allow partial replacements.
4686 		 *
4687 		 * XXX should be built into hammer2_combined_find().
4688 		 */
4689 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4690 
4691 		if (keybits > bref->keybits) {
4692 			key = bref->key;
4693 			keybits = bref->keybits;
4694 		} else if (keybits == bref->keybits && bref->key < key) {
4695 			key = bref->key;
4696 		}
4697 		if (key_next == 0)
4698 			break;
4699 		key_beg = key_next;
4700 	}
4701 	hammer2_spin_unex(&parent->core.spin);
4702 
4703 	/*
4704 	 * Calculate the static keybits for a higher-level indirect block
4705 	 * that contains the key.
4706 	 */
4707 	*keyp = key;
4708 
4709 	switch(ncount) {
4710 	case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4711 		nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4712 		break;
4713 	case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4714 		nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4715 		break;
4716 	case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4717 		nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4718 		break;
4719 	default:
4720 		panic("bad ncount %d\n", ncount);
4721 		nradix = 0;
4722 		break;
4723 	}
4724 
4725 	/*
4726 	 * The largest radix that can be returned for an indirect block is
4727 	 * 63 bits.  (The largest practical indirect block radix is actually
4728 	 * 62 bits because the top-level inode or volume root contains four
4729 	 * entries, but allow 63 to be returned).
4730 	 */
4731 	if (nradix >= 64)
4732 		nradix = 63;
4733 
4734 	return keybits + nradix;
4735 }
4736 
4737 #if 1
4738 
4739 /*
4740  * Directory indirect blocks.
4741  *
4742  * Covers both the inode index (directory of inodes), and directory contents
4743  * (filenames hardlinked to inodes).
4744  *
4745  * Because directory keys are hashed we generally try to cut the space in
4746  * half.  We accomodate the inode index (which tends to have linearly
4747  * increasing inode numbers) by ensuring that the keyspace is at least large
4748  * enough to fill up the indirect block being created.
4749  */
4750 static int
4751 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4752 			 int keybits, hammer2_blockref_t *base, int count,
4753 			 int ncount)
4754 {
4755 	hammer2_blockref_t *bref;
4756 	hammer2_chain_t	*chain;
4757 	hammer2_key_t key_beg;
4758 	hammer2_key_t key_end;
4759 	hammer2_key_t key_next;
4760 	hammer2_key_t key;
4761 	int nkeybits;
4762 	int locount;
4763 	int hicount;
4764 	int maxloops = 300000;
4765 
4766 	/*
4767 	 * NOTE: We can't take a shortcut here anymore for inodes because
4768 	 *	 the root directory can contain a mix of inodes and directory
4769 	 *	 entries (we used to just return 63 if parent->bref.type was
4770 	 *	 HAMMER2_BREF_TYPE_INODE.
4771 	 */
4772 	key = *keyp;
4773 	locount = 0;
4774 	hicount = 0;
4775 
4776 	/*
4777 	 * Calculate the range of keys in the array being careful to skip
4778 	 * slots which are overridden with a deletion.
4779 	 */
4780 	key_beg = 0;
4781 	key_end = HAMMER2_KEY_MAX;
4782 	hammer2_spin_ex(&parent->core.spin);
4783 
4784 	for (;;) {
4785 		if (--maxloops == 0) {
4786 			panic("indkey_freemap shit %p %p:%d\n",
4787 			      parent, base, count);
4788 		}
4789 		chain = hammer2_combined_find(parent, base, count,
4790 					      &key_next,
4791 					      key_beg, key_end,
4792 					      &bref);
4793 
4794 		/*
4795 		 * Exhausted search
4796 		 */
4797 		if (bref == NULL)
4798 			break;
4799 
4800 		/*
4801 		 * Deleted object
4802 		 */
4803 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4804 			if (key_next == 0 || key_next > key_end)
4805 				break;
4806 			key_beg = key_next;
4807 			continue;
4808 		}
4809 
4810 		/*
4811 		 * Use the full live (not deleted) element for the scan
4812 		 * iteration.  HAMMER2 does not allow partial replacements.
4813 		 *
4814 		 * XXX should be built into hammer2_combined_find().
4815 		 */
4816 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4817 
4818 		/*
4819 		 * Expand our calculated key range (key, keybits) to fit
4820 		 * the scanned key.  nkeybits represents the full range
4821 		 * that we will later cut in half (two halves @ nkeybits - 1).
4822 		 */
4823 		nkeybits = keybits;
4824 		if (nkeybits < bref->keybits) {
4825 			if (bref->keybits > 64) {
4826 				kprintf("bad bref chain %p bref %p\n",
4827 					chain, bref);
4828 				Debugger("fubar");
4829 			}
4830 			nkeybits = bref->keybits;
4831 		}
4832 		while (nkeybits < 64 &&
4833 		       rounddown2(key ^ bref->key, (hammer2_key_t)1 << nkeybits) != 0) {
4834 			++nkeybits;
4835 		}
4836 
4837 		/*
4838 		 * If the new key range is larger we have to determine
4839 		 * which side of the new key range the existing keys fall
4840 		 * under by checking the high bit, then collapsing the
4841 		 * locount into the hicount or vise-versa.
4842 		 */
4843 		if (keybits != nkeybits) {
4844 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4845 				hicount += locount;
4846 				locount = 0;
4847 			} else {
4848 				locount += hicount;
4849 				hicount = 0;
4850 			}
4851 			keybits = nkeybits;
4852 		}
4853 
4854 		/*
4855 		 * The newly scanned key will be in the lower half or the
4856 		 * upper half of the (new) key range.
4857 		 */
4858 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4859 			++hicount;
4860 		else
4861 			++locount;
4862 
4863 		if (key_next == 0)
4864 			break;
4865 		key_beg = key_next;
4866 	}
4867 	hammer2_spin_unex(&parent->core.spin);
4868 	bref = NULL;	/* now invalid (safety) */
4869 
4870 	/*
4871 	 * Adjust keybits to represent half of the full range calculated
4872 	 * above (radix 63 max) for our new indirect block.
4873 	 */
4874 	--keybits;
4875 
4876 	/*
4877 	 * Expand keybits to hold at least ncount elements.  ncount will be
4878 	 * a power of 2.  This is to try to completely fill leaf nodes (at
4879 	 * least for keys which are not hashes).
4880 	 *
4881 	 * We aren't counting 'in' or 'out', we are counting 'high side'
4882 	 * and 'low side' based on the bit at (1LL << keybits).  We want
4883 	 * everything to be inside in these cases so shift it all to
4884 	 * the low or high side depending on the new high bit.
4885 	 */
4886 	while (((hammer2_key_t)1 << keybits) < ncount) {
4887 		++keybits;
4888 		if (key & ((hammer2_key_t)1 << keybits)) {
4889 			hicount += locount;
4890 			locount = 0;
4891 		} else {
4892 			locount += hicount;
4893 			hicount = 0;
4894 		}
4895 	}
4896 
4897 	if (hicount > locount)
4898 		key |= (hammer2_key_t)1 << keybits;
4899 	else
4900 		key &= ~(hammer2_key_t)1 << keybits;
4901 
4902 	*keyp = key;
4903 
4904 	return (keybits);
4905 }
4906 
4907 #else
4908 
4909 /*
4910  * Directory indirect blocks.
4911  *
4912  * Covers both the inode index (directory of inodes), and directory contents
4913  * (filenames hardlinked to inodes).
4914  *
4915  * Because directory keys are hashed we generally try to cut the space in
4916  * half.  We accomodate the inode index (which tends to have linearly
4917  * increasing inode numbers) by ensuring that the keyspace is at least large
4918  * enough to fill up the indirect block being created.
4919  */
4920 static int
4921 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4922 			 int keybits, hammer2_blockref_t *base, int count,
4923 			 int ncount)
4924 {
4925 	hammer2_blockref_t *bref;
4926 	hammer2_chain_t	*chain;
4927 	hammer2_key_t key_beg;
4928 	hammer2_key_t key_end;
4929 	hammer2_key_t key_next;
4930 	hammer2_key_t key;
4931 	int nkeybits;
4932 	int locount;
4933 	int hicount;
4934 	int maxloops = 300000;
4935 
4936 	/*
4937 	 * Shortcut if the parent is the inode.  In this situation the
4938 	 * parent has 4+1 directory entries and we are creating an indirect
4939 	 * block capable of holding many more.
4940 	 */
4941 	if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4942 		return 63;
4943 	}
4944 
4945 	key = *keyp;
4946 	locount = 0;
4947 	hicount = 0;
4948 
4949 	/*
4950 	 * Calculate the range of keys in the array being careful to skip
4951 	 * slots which are overridden with a deletion.
4952 	 */
4953 	key_beg = 0;
4954 	key_end = HAMMER2_KEY_MAX;
4955 	hammer2_spin_ex(&parent->core.spin);
4956 
4957 	for (;;) {
4958 		if (--maxloops == 0) {
4959 			panic("indkey_freemap shit %p %p:%d\n",
4960 			      parent, base, count);
4961 		}
4962 		chain = hammer2_combined_find(parent, base, count,
4963 					      &key_next,
4964 					      key_beg, key_end,
4965 					      &bref);
4966 
4967 		/*
4968 		 * Exhausted search
4969 		 */
4970 		if (bref == NULL)
4971 			break;
4972 
4973 		/*
4974 		 * Deleted object
4975 		 */
4976 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4977 			if (key_next == 0 || key_next > key_end)
4978 				break;
4979 			key_beg = key_next;
4980 			continue;
4981 		}
4982 
4983 		/*
4984 		 * Use the full live (not deleted) element for the scan
4985 		 * iteration.  HAMMER2 does not allow partial replacements.
4986 		 *
4987 		 * XXX should be built into hammer2_combined_find().
4988 		 */
4989 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4990 
4991 		/*
4992 		 * Expand our calculated key range (key, keybits) to fit
4993 		 * the scanned key.  nkeybits represents the full range
4994 		 * that we will later cut in half (two halves @ nkeybits - 1).
4995 		 */
4996 		nkeybits = keybits;
4997 		if (nkeybits < bref->keybits) {
4998 			if (bref->keybits > 64) {
4999 				kprintf("bad bref chain %p bref %p\n",
5000 					chain, bref);
5001 				Debugger("fubar");
5002 			}
5003 			nkeybits = bref->keybits;
5004 		}
5005 		while (nkeybits < 64 &&
5006 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
5007 		        (key ^ bref->key)) != 0) {
5008 			++nkeybits;
5009 		}
5010 
5011 		/*
5012 		 * If the new key range is larger we have to determine
5013 		 * which side of the new key range the existing keys fall
5014 		 * under by checking the high bit, then collapsing the
5015 		 * locount into the hicount or vise-versa.
5016 		 */
5017 		if (keybits != nkeybits) {
5018 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
5019 				hicount += locount;
5020 				locount = 0;
5021 			} else {
5022 				locount += hicount;
5023 				hicount = 0;
5024 			}
5025 			keybits = nkeybits;
5026 		}
5027 
5028 		/*
5029 		 * The newly scanned key will be in the lower half or the
5030 		 * upper half of the (new) key range.
5031 		 */
5032 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
5033 			++hicount;
5034 		else
5035 			++locount;
5036 
5037 		if (key_next == 0)
5038 			break;
5039 		key_beg = key_next;
5040 	}
5041 	hammer2_spin_unex(&parent->core.spin);
5042 	bref = NULL;	/* now invalid (safety) */
5043 
5044 	/*
5045 	 * Adjust keybits to represent half of the full range calculated
5046 	 * above (radix 63 max) for our new indirect block.
5047 	 */
5048 	--keybits;
5049 
5050 	/*
5051 	 * Expand keybits to hold at least ncount elements.  ncount will be
5052 	 * a power of 2.  This is to try to completely fill leaf nodes (at
5053 	 * least for keys which are not hashes).
5054 	 *
5055 	 * We aren't counting 'in' or 'out', we are counting 'high side'
5056 	 * and 'low side' based on the bit at (1LL << keybits).  We want
5057 	 * everything to be inside in these cases so shift it all to
5058 	 * the low or high side depending on the new high bit.
5059 	 */
5060 	while (((hammer2_key_t)1 << keybits) < ncount) {
5061 		++keybits;
5062 		if (key & ((hammer2_key_t)1 << keybits)) {
5063 			hicount += locount;
5064 			locount = 0;
5065 		} else {
5066 			locount += hicount;
5067 			hicount = 0;
5068 		}
5069 	}
5070 
5071 	if (hicount > locount)
5072 		key |= (hammer2_key_t)1 << keybits;
5073 	else
5074 		key &= ~(hammer2_key_t)1 << keybits;
5075 
5076 	*keyp = key;
5077 
5078 	return (keybits);
5079 }
5080 
5081 #endif
5082 
5083 /*
5084  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5085  * it exists.
5086  *
5087  * Both parent and chain must be locked exclusively.
5088  *
5089  * This function will modify the parent if the blockref requires removal
5090  * from the parent's block table.
5091  *
5092  * This function is NOT recursive.  Any entity already pushed into the
5093  * chain (such as an inode) may still need visibility into its contents,
5094  * as well as the ability to read and modify the contents.  For example,
5095  * for an unlinked file which is still open.
5096  *
5097  * Also note that the flusher is responsible for cleaning up empty
5098  * indirect blocks.
5099  */
5100 int
5101 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5102 		     hammer2_tid_t mtid, int flags)
5103 {
5104 	int error = 0;
5105 
5106 	KKASSERT(hammer2_mtx_owned(&chain->lock));
5107 
5108 	/*
5109 	 * Nothing to do if already marked.
5110 	 *
5111 	 * We need the spinlock on the core whos RBTREE contains chain
5112 	 * to protect against races.
5113 	 */
5114 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5115 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5116 			 chain->parent == parent);
5117 		error = _hammer2_chain_delete_helper(parent, chain,
5118 						     mtid, flags, NULL);
5119 	}
5120 
5121 	/*
5122 	 * Permanent deletions mark the chain as destroyed.
5123 	 *
5124 	 * NOTE: We do not setflush the chain unless the deletion is
5125 	 *	 permanent, since the deletion of a chain does not actually
5126 	 *	 require it to be flushed.
5127 	 */
5128 	if (error == 0) {
5129 		if (flags & HAMMER2_DELETE_PERMANENT) {
5130 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5131 			hammer2_chain_setflush(chain);
5132 		}
5133 	}
5134 
5135 	return error;
5136 }
5137 
5138 static int
5139 hammer2_chain_delete_obref(hammer2_chain_t *parent, hammer2_chain_t *chain,
5140 		     hammer2_tid_t mtid, int flags,
5141 		     hammer2_blockref_t *obref)
5142 {
5143 	int error = 0;
5144 
5145 	KKASSERT(hammer2_mtx_owned(&chain->lock));
5146 
5147 	/*
5148 	 * Nothing to do if already marked.
5149 	 *
5150 	 * We need the spinlock on the core whos RBTREE contains chain
5151 	 * to protect against races.
5152 	 */
5153 	obref->type = HAMMER2_BREF_TYPE_EMPTY;
5154 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5155 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5156 			 chain->parent == parent);
5157 		error = _hammer2_chain_delete_helper(parent, chain,
5158 						     mtid, flags, obref);
5159 	}
5160 
5161 	/*
5162 	 * Permanent deletions mark the chain as destroyed.
5163 	 *
5164 	 * NOTE: We do not setflush the chain unless the deletion is
5165 	 *	 permanent, since the deletion of a chain does not actually
5166 	 *	 require it to be flushed.
5167 	 */
5168 	if (error == 0) {
5169 		if (flags & HAMMER2_DELETE_PERMANENT) {
5170 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5171 			hammer2_chain_setflush(chain);
5172 		}
5173 	}
5174 
5175 	return error;
5176 }
5177 
5178 /*
5179  * Returns the index of the nearest element in the blockref array >= elm.
5180  * Returns (count) if no element could be found.
5181  *
5182  * Sets *key_nextp to the next key for loop purposes but does not modify
5183  * it if the next key would be higher than the current value of *key_nextp.
5184  * Note that *key_nexp can overflow to 0, which should be tested by the
5185  * caller.
5186  *
5187  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5188  *	     held through the operation.
5189  */
5190 static int
5191 hammer2_base_find(hammer2_chain_t *parent,
5192 		  hammer2_blockref_t *base, int count,
5193 		  hammer2_key_t *key_nextp,
5194 		  hammer2_key_t key_beg, hammer2_key_t key_end)
5195 {
5196 	hammer2_blockref_t *scan;
5197 	hammer2_key_t scan_end;
5198 	int i;
5199 	int limit;
5200 
5201 	/*
5202 	 * Require the live chain's already have their core's counted
5203 	 * so we can optimize operations.
5204 	 */
5205         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5206 
5207 	/*
5208 	 * Degenerate case
5209 	 */
5210 	if (count == 0 || base == NULL)
5211 		return(count);
5212 
5213 	/*
5214 	 * Sequential optimization using parent->cache_index.  This is
5215 	 * the most likely scenario.
5216 	 *
5217 	 * We can avoid trailing empty entries on live chains, otherwise
5218 	 * we might have to check the whole block array.
5219 	 */
5220 	i = parent->cache_index;	/* SMP RACE OK */
5221 	cpu_ccfence();
5222 	limit = parent->core.live_zero;
5223 	if (i >= limit)
5224 		i = limit - 1;
5225 	if (i < 0)
5226 		i = 0;
5227 	KKASSERT(i < count);
5228 
5229 	/*
5230 	 * Search backwards
5231 	 */
5232 	scan = &base[i];
5233 	while (i > 0 && (scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5234 	    scan->key > key_beg)) {
5235 		--scan;
5236 		--i;
5237 	}
5238 	parent->cache_index = i;
5239 
5240 	/*
5241 	 * Search forwards, stop when we find a scan element which
5242 	 * encloses the key or until we know that there are no further
5243 	 * elements.
5244 	 */
5245 	while (i < count) {
5246 		if (scan->type != HAMMER2_BREF_TYPE_EMPTY) {
5247 			scan_end = scan->key +
5248 				   ((hammer2_key_t)1 << scan->keybits) - 1;
5249 			if (scan->key > key_beg || scan_end >= key_beg)
5250 				break;
5251 		}
5252 		if (i >= limit)
5253 			return (count);
5254 		++scan;
5255 		++i;
5256 	}
5257 	if (i != count) {
5258 		parent->cache_index = i;
5259 		if (i >= limit) {
5260 			i = count;
5261 		} else {
5262 			scan_end = scan->key +
5263 				   ((hammer2_key_t)1 << scan->keybits);
5264 			if (scan_end && (*key_nextp > scan_end ||
5265 					 *key_nextp == 0)) {
5266 				*key_nextp = scan_end;
5267 			}
5268 		}
5269 	}
5270 	return (i);
5271 }
5272 
5273 /*
5274  * Do a combined search and return the next match either from the blockref
5275  * array or from the in-memory chain.  Sets *bresp to the returned bref in
5276  * both cases, or sets it to NULL if the search exhausted.  Only returns
5277  * a non-NULL chain if the search matched from the in-memory chain.
5278  *
5279  * When no in-memory chain has been found and a non-NULL bref is returned
5280  * in *bresp.
5281  *
5282  *
5283  * The returned chain is not locked or referenced.  Use the returned bref
5284  * to determine if the search exhausted or not.  Iterate if the base find
5285  * is chosen but matches a deleted chain.
5286  *
5287  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5288  *	     held through the operation.
5289  */
5290 hammer2_chain_t *
5291 hammer2_combined_find(hammer2_chain_t *parent,
5292 		      hammer2_blockref_t *base, int count,
5293 		      hammer2_key_t *key_nextp,
5294 		      hammer2_key_t key_beg, hammer2_key_t key_end,
5295 		      hammer2_blockref_t **bresp)
5296 {
5297 	hammer2_blockref_t *bref;
5298 	hammer2_chain_t *chain;
5299 	int i;
5300 
5301 	/*
5302 	 * Lookup in block array and in rbtree.
5303 	 */
5304 	*key_nextp = key_end + 1;
5305 	i = hammer2_base_find(parent, base, count, key_nextp,
5306 			      key_beg, key_end);
5307 	chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5308 
5309 	/*
5310 	 * Neither matched
5311 	 */
5312 	if (i == count && chain == NULL) {
5313 		*bresp = NULL;
5314 		return(NULL);
5315 	}
5316 
5317 	/*
5318 	 * Only chain matched.
5319 	 */
5320 	if (i == count) {
5321 		bref = &chain->bref;
5322 		goto found;
5323 	}
5324 
5325 	/*
5326 	 * Only blockref matched.
5327 	 */
5328 	if (chain == NULL) {
5329 		bref = &base[i];
5330 		goto found;
5331 	}
5332 
5333 	/*
5334 	 * Both in-memory and blockref matched, select the nearer element.
5335 	 *
5336 	 * If both are flush with the left-hand side or both are the
5337 	 * same distance away, select the chain.  In this situation the
5338 	 * chain must have been loaded from the matching blockmap.
5339 	 */
5340 	if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5341 	    chain->bref.key == base[i].key) {
5342 		KKASSERT(chain->bref.key == base[i].key);
5343 		bref = &chain->bref;
5344 		goto found;
5345 	}
5346 
5347 	/*
5348 	 * Select the nearer key
5349 	 */
5350 	if (chain->bref.key < base[i].key) {
5351 		bref = &chain->bref;
5352 	} else {
5353 		bref = &base[i];
5354 		chain = NULL;
5355 	}
5356 
5357 	/*
5358 	 * If the bref is out of bounds we've exhausted our search.
5359 	 */
5360 found:
5361 	if (bref->key > key_end) {
5362 		*bresp = NULL;
5363 		chain = NULL;
5364 	} else {
5365 		*bresp = bref;
5366 	}
5367 	return(chain);
5368 }
5369 
5370 /*
5371  * Locate the specified block array element and delete it.  The element
5372  * must exist.
5373  *
5374  * The spin lock on the related chain must be held.
5375  *
5376  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5377  *	 need to be adjusted when we commit the media change.
5378  */
5379 void
5380 hammer2_base_delete(hammer2_chain_t *parent,
5381 		    hammer2_blockref_t *base, int count,
5382 		    hammer2_chain_t *chain,
5383 		    hammer2_blockref_t *obref)
5384 {
5385 	hammer2_blockref_t *elm = &chain->bref;
5386 	hammer2_blockref_t *scan;
5387 	hammer2_key_t key_next;
5388 	int i;
5389 
5390 	/*
5391 	 * Delete element.  Expect the element to exist.
5392 	 *
5393 	 * XXX see caller, flush code not yet sophisticated enough to prevent
5394 	 *     re-flushed in some cases.
5395 	 */
5396 	key_next = 0; /* max range */
5397 	i = hammer2_base_find(parent, base, count, &key_next,
5398 			      elm->key, elm->key);
5399 	scan = &base[i];
5400 	if (i == count || scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5401 	    scan->key != elm->key ||
5402 	    ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
5403 	     scan->keybits != elm->keybits)) {
5404 		hammer2_spin_unex(&parent->core.spin);
5405 		panic("delete base %p element not found at %d/%d elm %p\n",
5406 		      base, i, count, elm);
5407 		return;
5408 	}
5409 
5410 	/*
5411 	 * Update stats and zero the entry.
5412 	 *
5413 	 * NOTE: Handle radix == 0 (0 bytes) case.
5414 	 */
5415 	if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5416 		parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5417 				(int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5418 	}
5419 	switch(scan->type) {
5420 	case HAMMER2_BREF_TYPE_INODE:
5421 		--parent->bref.embed.stats.inode_count;
5422 		/* fall through */
5423 	case HAMMER2_BREF_TYPE_DATA:
5424 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5425 			atomic_set_int(&chain->flags,
5426 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5427 		} else {
5428 			if (parent->bref.leaf_count)
5429 				--parent->bref.leaf_count;
5430 		}
5431 		/* fall through */
5432 	case HAMMER2_BREF_TYPE_INDIRECT:
5433 		if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5434 			parent->bref.embed.stats.data_count -=
5435 				scan->embed.stats.data_count;
5436 			parent->bref.embed.stats.inode_count -=
5437 				scan->embed.stats.inode_count;
5438 		}
5439 		if (scan->type == HAMMER2_BREF_TYPE_INODE)
5440 			break;
5441 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5442 			atomic_set_int(&chain->flags,
5443 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5444 		} else {
5445 			if (parent->bref.leaf_count <= scan->leaf_count)
5446 				parent->bref.leaf_count = 0;
5447 			else
5448 				parent->bref.leaf_count -= scan->leaf_count;
5449 		}
5450 		break;
5451 	case HAMMER2_BREF_TYPE_DIRENT:
5452 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5453 			atomic_set_int(&chain->flags,
5454 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5455 		} else {
5456 			if (parent->bref.leaf_count)
5457 				--parent->bref.leaf_count;
5458 		}
5459 	default:
5460 		break;
5461 	}
5462 
5463 	if (obref)
5464 		*obref = *scan;
5465 	bzero(scan, sizeof(*scan));
5466 
5467 	/*
5468 	 * We can only optimize parent->core.live_zero for live chains.
5469 	 */
5470 	if (parent->core.live_zero == i + 1) {
5471 		while (--i >= 0 && base[i].type == HAMMER2_BREF_TYPE_EMPTY)
5472 			;
5473 		parent->core.live_zero = i + 1;
5474 	}
5475 
5476 	/*
5477 	 * Clear appropriate blockmap flags in chain.
5478 	 */
5479 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
5480 					HAMMER2_CHAIN_BMAPUPD);
5481 }
5482 
5483 /*
5484  * Insert the specified element.  The block array must not already have the
5485  * element and must have space available for the insertion.
5486  *
5487  * The spin lock on the related chain must be held.
5488  *
5489  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5490  *	 need to be adjusted when we commit the media change.
5491  */
5492 void
5493 hammer2_base_insert(hammer2_chain_t *parent,
5494 		    hammer2_blockref_t *base, int count,
5495 		    hammer2_chain_t *chain, hammer2_blockref_t *elm)
5496 {
5497 	hammer2_key_t key_next;
5498 	hammer2_key_t xkey;
5499 	int i;
5500 	int j;
5501 	int k;
5502 	int l;
5503 	int u = 1;
5504 
5505 	/*
5506 	 * Insert new element.  Expect the element to not already exist
5507 	 * unless we are replacing it.
5508 	 *
5509 	 * XXX see caller, flush code not yet sophisticated enough to prevent
5510 	 *     re-flushed in some cases.
5511 	 */
5512 	key_next = 0; /* max range */
5513 	i = hammer2_base_find(parent, base, count, &key_next,
5514 			      elm->key, elm->key);
5515 
5516 	/*
5517 	 * Shortcut fill optimization, typical ordered insertion(s) may not
5518 	 * require a search.
5519 	 */
5520 	KKASSERT(i >= 0 && i <= count);
5521 
5522 	/*
5523 	 * Set appropriate blockmap flags in chain (if not NULL)
5524 	 */
5525 	if (chain)
5526 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
5527 
5528 	/*
5529 	 * Update stats and zero the entry
5530 	 */
5531 	if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5532 		parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5533 				(int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5534 	}
5535 	switch(elm->type) {
5536 	case HAMMER2_BREF_TYPE_INODE:
5537 		++parent->bref.embed.stats.inode_count;
5538 		/* fall through */
5539 	case HAMMER2_BREF_TYPE_DATA:
5540 		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5541 			++parent->bref.leaf_count;
5542 		/* fall through */
5543 	case HAMMER2_BREF_TYPE_INDIRECT:
5544 		if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5545 			parent->bref.embed.stats.data_count +=
5546 				elm->embed.stats.data_count;
5547 			parent->bref.embed.stats.inode_count +=
5548 				elm->embed.stats.inode_count;
5549 		}
5550 		if (elm->type == HAMMER2_BREF_TYPE_INODE)
5551 			break;
5552 		if (parent->bref.leaf_count + elm->leaf_count <
5553 		    HAMMER2_BLOCKREF_LEAF_MAX) {
5554 			parent->bref.leaf_count += elm->leaf_count;
5555 		} else {
5556 			parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5557 		}
5558 		break;
5559 	case HAMMER2_BREF_TYPE_DIRENT:
5560 		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5561 			++parent->bref.leaf_count;
5562 		break;
5563 	default:
5564 		break;
5565 	}
5566 
5567 
5568 	/*
5569 	 * We can only optimize parent->core.live_zero for live chains.
5570 	 */
5571 	if (i == count && parent->core.live_zero < count) {
5572 		i = parent->core.live_zero++;
5573 		base[i] = *elm;
5574 		return;
5575 	}
5576 
5577 	xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5578 	if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5579 		hammer2_spin_unex(&parent->core.spin);
5580 		panic("insert base %p overlapping elements at %d elm %p\n",
5581 		      base, i, elm);
5582 	}
5583 
5584 	/*
5585 	 * Try to find an empty slot before or after.
5586 	 */
5587 	j = i;
5588 	k = i;
5589 	while (j > 0 || k < count) {
5590 		--j;
5591 		if (j >= 0 && base[j].type == HAMMER2_BREF_TYPE_EMPTY) {
5592 			if (j == i - 1) {
5593 				base[j] = *elm;
5594 			} else {
5595 				bcopy(&base[j+1], &base[j],
5596 				      (i - j - 1) * sizeof(*base));
5597 				base[i - 1] = *elm;
5598 			}
5599 			goto validate;
5600 		}
5601 		++k;
5602 		if (k < count && base[k].type == HAMMER2_BREF_TYPE_EMPTY) {
5603 			bcopy(&base[i], &base[i+1],
5604 			      (k - i) * sizeof(hammer2_blockref_t));
5605 			base[i] = *elm;
5606 
5607 			/*
5608 			 * We can only update parent->core.live_zero for live
5609 			 * chains.
5610 			 */
5611 			if (parent->core.live_zero <= k)
5612 				parent->core.live_zero = k + 1;
5613 			u = 2;
5614 			goto validate;
5615 		}
5616 	}
5617 	panic("hammer2_base_insert: no room!");
5618 
5619 	/*
5620 	 * Debugging
5621 	 */
5622 validate:
5623 	key_next = 0;
5624 	for (l = 0; l < count; ++l) {
5625 		if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5626 			key_next = base[l].key +
5627 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5628 			break;
5629 		}
5630 	}
5631 	while (++l < count) {
5632 		if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5633 			if (base[l].key <= key_next)
5634 				panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5635 			key_next = base[l].key +
5636 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5637 
5638 		}
5639 	}
5640 
5641 }
5642 
5643 #if 0
5644 
5645 /*
5646  * Sort the blockref array for the chain.  Used by the flush code to
5647  * sort the blockref[] array.
5648  *
5649  * The chain must be exclusively locked AND spin-locked.
5650  */
5651 typedef hammer2_blockref_t *hammer2_blockref_p;
5652 
5653 static
5654 int
5655 hammer2_base_sort_callback(const void *v1, const void *v2)
5656 {
5657 	hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5658 	hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5659 
5660 	/*
5661 	 * Make sure empty elements are placed at the end of the array
5662 	 */
5663 	if (bref1->type == HAMMER2_BREF_TYPE_EMPTY) {
5664 		if (bref2->type == HAMMER2_BREF_TYPE_EMPTY)
5665 			return(0);
5666 		return(1);
5667 	} else if (bref2->type == HAMMER2_BREF_TYPE_EMPTY) {
5668 		return(-1);
5669 	}
5670 
5671 	/*
5672 	 * Sort by key
5673 	 */
5674 	if (bref1->key < bref2->key)
5675 		return(-1);
5676 	if (bref1->key > bref2->key)
5677 		return(1);
5678 	return(0);
5679 }
5680 
5681 void
5682 hammer2_base_sort(hammer2_chain_t *chain)
5683 {
5684 	hammer2_blockref_t *base;
5685 	int count;
5686 
5687 	switch(chain->bref.type) {
5688 	case HAMMER2_BREF_TYPE_INODE:
5689 		/*
5690 		 * Special shortcut for embedded data returns the inode
5691 		 * itself.  Callers must detect this condition and access
5692 		 * the embedded data (the strategy code does this for us).
5693 		 *
5694 		 * This is only applicable to regular files and softlinks.
5695 		 */
5696 		if (chain->data->ipdata.meta.op_flags &
5697 		    HAMMER2_OPFLAG_DIRECTDATA) {
5698 			return;
5699 		}
5700 		base = &chain->data->ipdata.u.blockset.blockref[0];
5701 		count = HAMMER2_SET_COUNT;
5702 		break;
5703 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5704 	case HAMMER2_BREF_TYPE_INDIRECT:
5705 		/*
5706 		 * Optimize indirect blocks in the INITIAL state to avoid
5707 		 * I/O.
5708 		 */
5709 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5710 		base = &chain->data->npdata[0];
5711 		count = chain->bytes / sizeof(hammer2_blockref_t);
5712 		break;
5713 	case HAMMER2_BREF_TYPE_VOLUME:
5714 		base = &chain->data->voldata.sroot_blockset.blockref[0];
5715 		count = HAMMER2_SET_COUNT;
5716 		break;
5717 	case HAMMER2_BREF_TYPE_FREEMAP:
5718 		base = &chain->data->blkset.blockref[0];
5719 		count = HAMMER2_SET_COUNT;
5720 		break;
5721 	default:
5722 		panic("hammer2_base_sort: unrecognized "
5723 		      "blockref(A) type: %d",
5724 		      chain->bref.type);
5725 		base = NULL;	/* safety */
5726 		count = 0;	/* safety */
5727 		break;
5728 	}
5729 	kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5730 }
5731 
5732 #endif
5733 
5734 /*
5735  * Set the check data for a chain.  This can be a heavy-weight operation
5736  * and typically only runs on-flush.  For file data check data is calculated
5737  * when the logical buffers are flushed.
5738  */
5739 void
5740 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5741 {
5742 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
5743 
5744 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5745 	case HAMMER2_CHECK_NONE:
5746 		break;
5747 	case HAMMER2_CHECK_DISABLED:
5748 		break;
5749 	case HAMMER2_CHECK_ISCSI32:
5750 		chain->bref.check.iscsi32.value =
5751 			hammer2_icrc32(bdata, chain->bytes);
5752 		break;
5753 	case HAMMER2_CHECK_XXHASH64:
5754 		chain->bref.check.xxhash64.value =
5755 			XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5756 		break;
5757 	case HAMMER2_CHECK_SHA192:
5758 		{
5759 			SHA256_CTX hash_ctx;
5760 			union {
5761 				uint8_t digest[SHA256_DIGEST_LENGTH];
5762 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5763 			} u;
5764 
5765 			SHA256_Init(&hash_ctx);
5766 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5767 			SHA256_Final(u.digest, &hash_ctx);
5768 			u.digest64[2] ^= u.digest64[3];
5769 			bcopy(u.digest,
5770 			      chain->bref.check.sha192.data,
5771 			      sizeof(chain->bref.check.sha192.data));
5772 		}
5773 		break;
5774 	case HAMMER2_CHECK_FREEMAP:
5775 		chain->bref.check.freemap.icrc32 =
5776 			hammer2_icrc32(bdata, chain->bytes);
5777 		break;
5778 	default:
5779 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5780 			chain->bref.methods);
5781 		break;
5782 	}
5783 }
5784 
5785 /*
5786  * Characterize a failed check code and try to trace back to the inode.
5787  */
5788 static void
5789 hammer2_characterize_failed_chain(hammer2_chain_t *chain, uint64_t check,
5790 				  int bits)
5791 {
5792 	hammer2_chain_t *lchain;
5793 	hammer2_chain_t *ochain;
5794 	int did;
5795 
5796 	did = krateprintf(&krate_h2chk,
5797 		"chain %016jx.%02x (%s) meth=%02x CHECK FAIL "
5798 		"(flags=%08x, bref/data ",
5799 		chain->bref.data_off,
5800 		chain->bref.type,
5801 		hammer2_bref_type_str(chain->bref.type),
5802 		chain->bref.methods,
5803 		chain->flags);
5804 	if (did == 0)
5805 		return;
5806 
5807 	if (bits == 32) {
5808 		kprintf("%08x/%08x)\n",
5809 			chain->bref.check.iscsi32.value,
5810 			(uint32_t)check);
5811 	} else {
5812 		kprintf("%016jx/%016jx)\n",
5813 			chain->bref.check.xxhash64.value,
5814 			check);
5815 	}
5816 
5817 	/*
5818 	 * Run up the chains to try to find the governing inode so we
5819 	 * can report it.
5820 	 *
5821 	 * XXX This error reporting is not really MPSAFE
5822 	 */
5823 	ochain = chain;
5824 	lchain = chain;
5825 	while (chain && chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
5826 		lchain = chain;
5827 		chain = chain->parent;
5828 	}
5829 
5830 	if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
5831 	    ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) == 0 ||
5832 	     (lchain->bref.key & HAMMER2_DIRHASH_VISIBLE))) {
5833 		kprintf("   Resides at/in inode %ld\n",
5834 			chain->bref.key);
5835 	} else if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5836 		kprintf("   Resides in inode index - CRITICAL!!!\n");
5837 	} else {
5838 		kprintf("   Resides in root index - CRITICAL!!!\n");
5839 	}
5840 	if (ochain->hmp) {
5841 		const char *pfsname = "UNKNOWN";
5842 		int i;
5843 
5844 		if (ochain->pmp) {
5845 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
5846 				if (ochain->pmp->pfs_hmps[i] == ochain->hmp &&
5847 				    ochain->pmp->pfs_names[i]) {
5848 					pfsname = ochain->pmp->pfs_names[i];
5849 					break;
5850 				}
5851 			}
5852 		}
5853 		kprintf("   In pfs %s on device %s\n",
5854 			pfsname, ochain->hmp->devrepname);
5855 	}
5856 }
5857 
5858 /*
5859  * Returns non-zero on success, 0 on failure.
5860  */
5861 int
5862 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5863 {
5864 	uint32_t check32;
5865 	uint64_t check64;
5866 	int r;
5867 
5868 	if (chain->flags & HAMMER2_CHAIN_NOTTESTED)
5869 		return 1;
5870 
5871 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5872 	case HAMMER2_CHECK_NONE:
5873 		r = 1;
5874 		break;
5875 	case HAMMER2_CHECK_DISABLED:
5876 		r = 1;
5877 		break;
5878 	case HAMMER2_CHECK_ISCSI32:
5879 		check32 = hammer2_icrc32(bdata, chain->bytes);
5880 		r = (chain->bref.check.iscsi32.value == check32);
5881 		if (r == 0) {
5882 			hammer2_characterize_failed_chain(chain, check32, 32);
5883 		}
5884 		hammer2_process_icrc32 += chain->bytes;
5885 		break;
5886 	case HAMMER2_CHECK_XXHASH64:
5887 		check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5888 		r = (chain->bref.check.xxhash64.value == check64);
5889 		if (r == 0) {
5890 			hammer2_characterize_failed_chain(chain, check64, 64);
5891 		}
5892 		hammer2_process_xxhash64 += chain->bytes;
5893 		break;
5894 	case HAMMER2_CHECK_SHA192:
5895 		{
5896 			SHA256_CTX hash_ctx;
5897 			union {
5898 				uint8_t digest[SHA256_DIGEST_LENGTH];
5899 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5900 			} u;
5901 
5902 			SHA256_Init(&hash_ctx);
5903 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5904 			SHA256_Final(u.digest, &hash_ctx);
5905 			u.digest64[2] ^= u.digest64[3];
5906 			if (bcmp(u.digest,
5907 				 chain->bref.check.sha192.data,
5908 			         sizeof(chain->bref.check.sha192.data)) == 0) {
5909 				r = 1;
5910 			} else {
5911 				r = 0;
5912 				krateprintf(&krate_h2chk,
5913 					"chain %016jx.%02x meth=%02x "
5914 					"CHECK FAIL\n",
5915 					chain->bref.data_off,
5916 					chain->bref.type,
5917 					chain->bref.methods);
5918 			}
5919 		}
5920 		break;
5921 	case HAMMER2_CHECK_FREEMAP:
5922 		r = (chain->bref.check.freemap.icrc32 ==
5923 		     hammer2_icrc32(bdata, chain->bytes));
5924 		if (r == 0) {
5925 			int did;
5926 
5927 			did = krateprintf(&krate_h2chk,
5928 					  "chain %016jx.%02x meth=%02x "
5929 					  "CHECK FAIL\n",
5930 					  chain->bref.data_off,
5931 					  chain->bref.type,
5932 					  chain->bref.methods);
5933 			if (did) {
5934 				kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
5935 					chain->bref.check.freemap.icrc32,
5936 					hammer2_icrc32(bdata, chain->bytes),
5937 					chain->bytes);
5938 				if (chain->dio) {
5939 					kprintf("dio %p buf %016jx,%d "
5940 						"bdata %p/%p\n",
5941 						chain->dio,
5942 						chain->dio->bp->b_loffset,
5943 						chain->dio->bp->b_bufsize,
5944 						bdata,
5945 						chain->dio->bp->b_data);
5946 				}
5947 			}
5948 		}
5949 		break;
5950 	default:
5951 		kprintf("hammer2_chain_testcheck: unknown check type %02x\n",
5952 			chain->bref.methods);
5953 		r = 1;
5954 		break;
5955 	}
5956 	return r;
5957 }
5958 
5959 /*
5960  * Acquire the chain and parent representing the specified inode for the
5961  * device at the specified cluster index.
5962  *
5963  * The flags passed in are LOOKUP flags, not RESOLVE flags.
5964  *
5965  * If we are unable to locate the inode, HAMMER2_ERROR_EIO is returned and
5966  * *chainp will be NULL.  *parentp may still be set error or not, or NULL
5967  * if the parent itself could not be resolved.
5968  *
5969  * The caller may pass-in a locked *parentp and/or *chainp, or neither.
5970  * They will be unlocked and released by this function.  The *parentp and
5971  * *chainp representing the located inode are returned locked.
5972  */
5973 int
5974 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
5975 			 int clindex, int flags,
5976 			 hammer2_chain_t **parentp, hammer2_chain_t **chainp)
5977 {
5978 	hammer2_chain_t *parent;
5979 	hammer2_chain_t *rchain;
5980 	hammer2_key_t key_dummy;
5981 	hammer2_inode_t *ip;
5982 	int resolve_flags;
5983 	int error;
5984 
5985 	resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
5986 			HAMMER2_RESOLVE_SHARED : 0;
5987 
5988 	/*
5989 	 * Caller expects us to replace these.
5990 	 */
5991 	if (*chainp) {
5992 		hammer2_chain_unlock(*chainp);
5993 		hammer2_chain_drop(*chainp);
5994 		*chainp = NULL;
5995 	}
5996 	if (*parentp) {
5997 		hammer2_chain_unlock(*parentp);
5998 		hammer2_chain_drop(*parentp);
5999 		*parentp = NULL;
6000 	}
6001 
6002 	/*
6003 	 * Be very careful, this is a backend function and we CANNOT
6004 	 * lock any frontend inode structure we find.  But we have to
6005 	 * look the inode up this way first in case it exists but is
6006 	 * detached from the radix tree.
6007 	 */
6008 	ip = hammer2_inode_lookup(pmp, inum);
6009 	if (ip) {
6010 		*chainp = hammer2_inode_chain_and_parent(ip, clindex,
6011 						       parentp,
6012 						       resolve_flags);
6013 		hammer2_inode_drop(ip);
6014 		if (*chainp)
6015 			return 0;
6016 		hammer2_chain_unlock(*chainp);
6017 		hammer2_chain_drop(*chainp);
6018 		*chainp = NULL;
6019 		if (*parentp) {
6020 			hammer2_chain_unlock(*parentp);
6021 			hammer2_chain_drop(*parentp);
6022 			*parentp = NULL;
6023 		}
6024 	}
6025 
6026 	/*
6027 	 * Inodes hang off of the iroot (bit 63 is clear, differentiating
6028 	 * inodes from root directory entries in the key lookup).
6029 	 */
6030 	parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
6031 	rchain = NULL;
6032 	if (parent) {
6033 		rchain = hammer2_chain_lookup(&parent, &key_dummy,
6034 					      inum, inum,
6035 					      &error, flags);
6036 	} else {
6037 		error = HAMMER2_ERROR_EIO;
6038 	}
6039 	*parentp = parent;
6040 	*chainp = rchain;
6041 
6042 	return error;
6043 }
6044 
6045 /*
6046  * Used by the bulkscan code to snapshot the synchronized storage for
6047  * a volume, allowing it to be scanned concurrently against normal
6048  * operation.
6049  */
6050 hammer2_chain_t *
6051 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
6052 {
6053 	hammer2_chain_t *copy;
6054 
6055 	copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
6056 	copy->data = kmalloc(sizeof(copy->data->voldata),
6057 			     hmp->mchain,
6058 			     M_WAITOK | M_ZERO);
6059 	hammer2_voldata_lock(hmp);
6060 	copy->data->voldata = hmp->volsync;
6061 	hammer2_voldata_unlock(hmp);
6062 
6063 	return copy;
6064 }
6065 
6066 void
6067 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
6068 {
6069 	KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
6070 	KKASSERT(copy->data);
6071 	kfree(copy->data, copy->hmp->mchain);
6072 	copy->data = NULL;
6073 	atomic_add_long(&hammer2_chain_allocs, -1);
6074 	hammer2_chain_drop(copy);
6075 }
6076 
6077 /*
6078  * Returns non-zero if the chain (INODE or DIRENT) matches the
6079  * filename.
6080  */
6081 int
6082 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
6083 			  size_t name_len)
6084 {
6085 	const hammer2_inode_data_t *ripdata;
6086 
6087 	if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
6088 		ripdata = &chain->data->ipdata;
6089 		if (ripdata->meta.name_len == name_len &&
6090 		    bcmp(ripdata->filename, name, name_len) == 0) {
6091 			return 1;
6092 		}
6093 	}
6094 	if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
6095 	    chain->bref.embed.dirent.namlen == name_len) {
6096 		if (name_len > sizeof(chain->bref.check.buf) &&
6097 		    bcmp(chain->data->buf, name, name_len) == 0) {
6098 			return 1;
6099 		}
6100 		if (name_len <= sizeof(chain->bref.check.buf) &&
6101 		    bcmp(chain->bref.check.buf, name, name_len) == 0) {
6102 			return 1;
6103 		}
6104 	}
6105 	return 0;
6106 }
6107