xref: /dragonfly/sys/vfs/hammer2/hammer2_chain.c (revision 2dac8a3e)
1 /*
2  * Copyright (c) 2011-2019 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62 
63 #include <crypto/sha2/sha2.h>
64 
65 #include "hammer2.h"
66 
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68 		hammer2_chain_t *parent,
69 		hammer2_key_t key, int keybits,
70 		hammer2_tid_t mtid, int for_type, int *errorp);
71 static void hammer2_chain_rename_obref(hammer2_chain_t **parentp,
72 		hammer2_chain_t *chain, hammer2_tid_t mtid,
73 		int flags, hammer2_blockref_t *obref);
74 static int hammer2_chain_delete_obref(hammer2_chain_t *parent,
75 		hammer2_chain_t *chain,
76 		hammer2_tid_t mtid, int flags,
77 		hammer2_blockref_t *obref);
78 static hammer2_io_t *hammer2_chain_drop_data(hammer2_chain_t *chain);
79 static hammer2_chain_t *hammer2_combined_find(
80 		hammer2_chain_t *parent,
81 		hammer2_blockref_t *base, int count,
82 		hammer2_key_t *key_nextp,
83 		hammer2_key_t key_beg, hammer2_key_t key_end,
84 		hammer2_blockref_t **bresp);
85 
86 /*
87  * There are many degenerate situations where an extreme rate of console
88  * output can occur from warnings and errors.  Make sure this output does
89  * not impede operations.
90  */
91 static struct krate krate_h2chk = { .freq = 5 };
92 static struct krate krate_h2me = { .freq = 1 };
93 static struct krate krate_h2em = { .freq = 1 };
94 
95 /*
96  * Basic RBTree for chains (core.rbtree).
97  */
98 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
99 
100 int
101 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
102 {
103 	hammer2_key_t c1_beg;
104 	hammer2_key_t c1_end;
105 	hammer2_key_t c2_beg;
106 	hammer2_key_t c2_end;
107 
108 	/*
109 	 * Compare chains.  Overlaps are not supposed to happen and catch
110 	 * any software issues early we count overlaps as a match.
111 	 */
112 	c1_beg = chain1->bref.key;
113 	c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
114 	c2_beg = chain2->bref.key;
115 	c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
116 
117 	if (c1_end < c2_beg)	/* fully to the left */
118 		return(-1);
119 	if (c1_beg > c2_end)	/* fully to the right */
120 		return(1);
121 	return(0);		/* overlap (must not cross edge boundary) */
122 }
123 
124 /*
125  * Assert that a chain has no media data associated with it.
126  */
127 static __inline void
128 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
129 {
130 	KKASSERT(chain->dio == NULL);
131 	if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
132 	    chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
133 	    chain->data) {
134 		panic("hammer2_chain_assert_no_data: chain %p still has data",
135 		    chain);
136 	}
137 }
138 
139 /*
140  * Make a chain visible to the flusher.  The flusher operates using a top-down
141  * recursion based on the ONFLUSH flag.  It locates MODIFIED and UPDATE chains,
142  * flushes them, and updates blocks back to the volume root.
143  *
144  * This routine sets the ONFLUSH flag upward from the triggering chain until
145  * it hits an inode root or the volume root.  Inode chains serve as inflection
146  * points, requiring the flusher to bridge across trees.  Inodes include
147  * regular inodes, PFS roots (pmp->iroot), and the media super root
148  * (spmp->iroot).
149  */
150 void
151 hammer2_chain_setflush(hammer2_chain_t *chain)
152 {
153 	hammer2_chain_t *parent;
154 
155 	if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
156 		hammer2_spin_sh(&chain->core.spin);
157 		while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
158 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
159 			if (chain->bref.type == HAMMER2_BREF_TYPE_INODE)
160 				break;
161 			if ((parent = chain->parent) == NULL)
162 				break;
163 			hammer2_spin_sh(&parent->core.spin);
164 			hammer2_spin_unsh(&chain->core.spin);
165 			chain = parent;
166 		}
167 		hammer2_spin_unsh(&chain->core.spin);
168 	}
169 }
170 
171 /*
172  * Allocate a new disconnected chain element representing the specified
173  * bref.  chain->refs is set to 1 and the passed bref is copied to
174  * chain->bref.  chain->bytes is derived from the bref.
175  *
176  * chain->pmp inherits pmp unless the chain is an inode (other than the
177  * super-root inode).
178  *
179  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
180  */
181 hammer2_chain_t *
182 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
183 		    hammer2_blockref_t *bref)
184 {
185 	hammer2_chain_t *chain;
186 	u_int bytes;
187 
188 	/*
189 	 * Special case - radix of 0 indicates a chain that does not
190 	 * need a data reference (context is completely embedded in the
191 	 * bref).
192 	 */
193 	if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
194 		bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
195 	else
196 		bytes = 0;
197 
198 	atomic_add_long(&hammer2_chain_allocs, 1);
199 
200 	/*
201 	 * Construct the appropriate system structure.
202 	 */
203 	switch(bref->type) {
204 	case HAMMER2_BREF_TYPE_DIRENT:
205 	case HAMMER2_BREF_TYPE_INODE:
206 	case HAMMER2_BREF_TYPE_INDIRECT:
207 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
208 	case HAMMER2_BREF_TYPE_DATA:
209 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
210 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
211 		break;
212 	case HAMMER2_BREF_TYPE_VOLUME:
213 	case HAMMER2_BREF_TYPE_FREEMAP:
214 		/*
215 		 * Only hammer2_chain_bulksnap() calls this function with these
216 		 * types.
217 		 */
218 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
219 		break;
220 	default:
221 		chain = NULL;
222 		panic("hammer2_chain_alloc: unrecognized blockref type: %d",
223 		      bref->type);
224 	}
225 
226 	/*
227 	 * Initialize the new chain structure.  pmp must be set to NULL for
228 	 * chains belonging to the super-root topology of a device mount.
229 	 */
230 	if (pmp == hmp->spmp)
231 		chain->pmp = NULL;
232 	else
233 		chain->pmp = pmp;
234 
235 	chain->hmp = hmp;
236 	chain->bref = *bref;
237 	chain->bytes = bytes;
238 	chain->refs = 1;
239 	chain->flags = HAMMER2_CHAIN_ALLOCATED;
240 	lockinit(&chain->diolk, "chdio", 0, 0);
241 
242 	/*
243 	 * Set the PFS boundary flag if this chain represents a PFS root.
244 	 */
245 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
246 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
247 	hammer2_chain_core_init(chain);
248 
249 	return (chain);
250 }
251 
252 /*
253  * Initialize a chain's core structure.  This structure used to be allocated
254  * but is now embedded.
255  *
256  * The core is not locked.  No additional refs on the chain are made.
257  * (trans) must not be NULL if (core) is not NULL.
258  */
259 void
260 hammer2_chain_core_init(hammer2_chain_t *chain)
261 {
262 	/*
263 	 * Fresh core under nchain (no multi-homing of ochain's
264 	 * sub-tree).
265 	 */
266 	RB_INIT(&chain->core.rbtree);	/* live chains */
267 	hammer2_mtx_init(&chain->lock, "h2chain");
268 }
269 
270 /*
271  * Add a reference to a chain element, preventing its destruction.
272  *
273  * (can be called with spinlock held)
274  */
275 void
276 hammer2_chain_ref(hammer2_chain_t *chain)
277 {
278 	if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
279 		/*
280 		 * Just flag that the chain was used and should be recycled
281 		 * on the LRU if it encounters it later.
282 		 */
283 		if (chain->flags & HAMMER2_CHAIN_ONLRU)
284 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
285 
286 #if 0
287 		/*
288 		 * REMOVED - reduces contention, lru_list is more heuristical
289 		 * now.
290 		 *
291 		 * 0->non-zero transition must ensure that chain is removed
292 		 * from the LRU list.
293 		 *
294 		 * NOTE: Already holding lru_spin here so we cannot call
295 		 *	 hammer2_chain_ref() to get it off lru_list, do
296 		 *	 it manually.
297 		 */
298 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
299 			hammer2_pfs_t *pmp = chain->pmp;
300 			hammer2_spin_ex(&pmp->lru_spin);
301 			if (chain->flags & HAMMER2_CHAIN_ONLRU) {
302 				atomic_add_int(&pmp->lru_count, -1);
303 				atomic_clear_int(&chain->flags,
304 						 HAMMER2_CHAIN_ONLRU);
305 				TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
306 			}
307 			hammer2_spin_unex(&pmp->lru_spin);
308 		}
309 #endif
310 	}
311 }
312 
313 /*
314  * Ref a locked chain and force the data to be held across an unlock.
315  * Chain must be currently locked.  The user of the chain who desires
316  * to release the hold must call hammer2_chain_lock_unhold() to relock
317  * and unhold the chain, then unlock normally, or may simply call
318  * hammer2_chain_drop_unhold() (which is safer against deadlocks).
319  */
320 void
321 hammer2_chain_ref_hold(hammer2_chain_t *chain)
322 {
323 	atomic_add_int(&chain->lockcnt, 1);
324 	hammer2_chain_ref(chain);
325 }
326 
327 /*
328  * Insert the chain in the core rbtree.
329  *
330  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
331  * chain is a special case used by the flush code that is placed on the
332  * unstaged deleted list to avoid confusing the live view.
333  */
334 #define HAMMER2_CHAIN_INSERT_SPIN	0x0001
335 #define HAMMER2_CHAIN_INSERT_LIVE	0x0002
336 #define HAMMER2_CHAIN_INSERT_RACE	0x0004
337 
338 static
339 int
340 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
341 		     int flags, int generation)
342 {
343 	hammer2_chain_t *xchain;
344 	int error = 0;
345 
346 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
347 		hammer2_spin_ex(&parent->core.spin);
348 
349 	/*
350 	 * Interlocked by spinlock, check for race
351 	 */
352 	if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
353 	    parent->core.generation != generation) {
354 		error = HAMMER2_ERROR_EAGAIN;
355 		goto failed;
356 	}
357 
358 	/*
359 	 * Insert chain
360 	 */
361 	xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
362 	KASSERT(xchain == NULL,
363 		("hammer2_chain_insert: collision %p %p (key=%016jx)",
364 		chain, xchain, chain->bref.key));
365 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
366 	chain->parent = parent;
367 	++parent->core.chain_count;
368 	++parent->core.generation;	/* XXX incs for _get() too, XXX */
369 
370 	/*
371 	 * We have to keep track of the effective live-view blockref count
372 	 * so the create code knows when to push an indirect block.
373 	 */
374 	if (flags & HAMMER2_CHAIN_INSERT_LIVE)
375 		atomic_add_int(&parent->core.live_count, 1);
376 failed:
377 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
378 		hammer2_spin_unex(&parent->core.spin);
379 	return error;
380 }
381 
382 /*
383  * Drop the caller's reference to the chain.  When the ref count drops to
384  * zero this function will try to disassociate the chain from its parent and
385  * deallocate it, then recursely drop the parent using the implied ref
386  * from the chain's chain->parent.
387  *
388  * Nobody should own chain's mutex on the 1->0 transition, unless this drop
389  * races an acquisition by another cpu.  Therefore we can loop if we are
390  * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
391  * race against another drop.
392  */
393 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
394 				int depth);
395 static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
396 
397 void
398 hammer2_chain_drop(hammer2_chain_t *chain)
399 {
400 	u_int refs;
401 
402 	if (hammer2_debug & 0x200000)
403 		Debugger("drop");
404 
405 	KKASSERT(chain->refs > 0);
406 
407 	while (chain) {
408 		refs = chain->refs;
409 		cpu_ccfence();
410 		KKASSERT(refs > 0);
411 
412 		if (refs == 1) {
413 			if (hammer2_mtx_ex_try(&chain->lock) == 0)
414 				chain = hammer2_chain_lastdrop(chain, 0);
415 			/* retry the same chain, or chain from lastdrop */
416 		} else {
417 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
418 				break;
419 			/* retry the same chain */
420 		}
421 		cpu_pause();
422 	}
423 }
424 
425 /*
426  * Unhold a held and probably not-locked chain, ensure that the data is
427  * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
428  * lock and then simply unlocking the chain.
429  */
430 void
431 hammer2_chain_unhold(hammer2_chain_t *chain)
432 {
433 	u_int lockcnt;
434 	int iter = 0;
435 
436 	for (;;) {
437 		lockcnt = chain->lockcnt;
438 		cpu_ccfence();
439 		if (lockcnt > 1) {
440 			if (atomic_cmpset_int(&chain->lockcnt,
441 					      lockcnt, lockcnt - 1)) {
442 				break;
443 			}
444 		} else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
445 			hammer2_chain_unlock(chain);
446 			break;
447 		} else {
448 			/*
449 			 * This situation can easily occur on SMP due to
450 			 * the gap inbetween the 1->0 transition and the
451 			 * final unlock.  We cannot safely block on the
452 			 * mutex because lockcnt might go above 1.
453 			 *
454 			 * XXX Sleep for one tick if it takes too long.
455 			 */
456 			if (++iter > 1000) {
457 				if (iter > 1000 + hz) {
458 					kprintf("hammer2: h2race1 %p\n", chain);
459 					iter = 1000;
460 				}
461 				tsleep(&iter, 0, "h2race1", 1);
462 			}
463 			cpu_pause();
464 		}
465 	}
466 }
467 
468 void
469 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
470 {
471 	hammer2_chain_unhold(chain);
472 	hammer2_chain_drop(chain);
473 }
474 
475 void
476 hammer2_chain_rehold(hammer2_chain_t *chain)
477 {
478 	hammer2_chain_lock(chain, HAMMER2_RESOLVE_SHARED);
479 	atomic_add_int(&chain->lockcnt, 1);
480 	hammer2_chain_unlock(chain);
481 }
482 
483 /*
484  * Handles the (potential) last drop of chain->refs from 1->0.  Called with
485  * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
486  * possible against refs and lockcnt.  We must dispose of the mutex on chain.
487  *
488  * This function returns an unlocked chain for recursive drop or NULL.  It
489  * can return the same chain if it determines it has raced another ref.
490  *
491  * --
492  *
493  * When two chains need to be recursively dropped we use the chain we
494  * would otherwise free to placehold the additional chain.  It's a bit
495  * convoluted but we can't just recurse without potentially blowing out
496  * the kernel stack.
497  *
498  * The chain cannot be freed if it has any children.
499  * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
500  * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
501  * Any dedup registration can remain intact.
502  *
503  * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
504  */
505 static
506 hammer2_chain_t *
507 hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
508 {
509 	hammer2_pfs_t *pmp;
510 	hammer2_dev_t *hmp;
511 	hammer2_chain_t *parent;
512 	hammer2_chain_t *rdrop;
513 
514 	/*
515 	 * We need chain's spinlock to interlock the sub-tree test.
516 	 * We already have chain's mutex, protecting chain->parent.
517 	 *
518 	 * Remember that chain->refs can be in flux.
519 	 */
520 	hammer2_spin_ex(&chain->core.spin);
521 
522 	if (chain->parent != NULL) {
523 		/*
524 		 * If the chain has a parent the UPDATE bit prevents scrapping
525 		 * as the chain is needed to properly flush the parent.  Try
526 		 * to complete the 1->0 transition and return NULL.  Retry
527 		 * (return chain) if we are unable to complete the 1->0
528 		 * transition, else return NULL (nothing more to do).
529 		 *
530 		 * If the chain has a parent the MODIFIED bit prevents
531 		 * scrapping.
532 		 *
533 		 * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
534 		 */
535 		if (chain->flags & (HAMMER2_CHAIN_UPDATE |
536 				    HAMMER2_CHAIN_MODIFIED)) {
537 			if (atomic_cmpset_int(&chain->refs, 1, 0)) {
538 				hammer2_spin_unex(&chain->core.spin);
539 				hammer2_chain_assert_no_data(chain);
540 				hammer2_mtx_unlock(&chain->lock);
541 				chain = NULL;
542 			} else {
543 				hammer2_spin_unex(&chain->core.spin);
544 				hammer2_mtx_unlock(&chain->lock);
545 			}
546 			return (chain);
547 		}
548 		/* spinlock still held */
549 	} else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
550 		   chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
551 		/*
552 		 * Retain the static vchain and fchain.  Clear bits that
553 		 * are not relevant.  Do not clear the MODIFIED bit,
554 		 * and certainly do not put it on the delayed-flush queue.
555 		 */
556 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
557 	} else {
558 		/*
559 		 * The chain has no parent and can be flagged for destruction.
560 		 * Since it has no parent, UPDATE can also be cleared.
561 		 */
562 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
563 		if (chain->flags & HAMMER2_CHAIN_UPDATE)
564 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
565 
566 		/*
567 		 * If the chain has children we must propagate the DESTROY
568 		 * flag downward and rip the disconnected topology apart.
569 		 * This is accomplished by calling hammer2_flush() on the
570 		 * chain.
571 		 *
572 		 * Any dedup is already handled by the underlying DIO, so
573 		 * we do not have to specifically flush it here.
574 		 */
575 		if (chain->core.chain_count) {
576 			hammer2_spin_unex(&chain->core.spin);
577 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
578 					     HAMMER2_FLUSH_ALL);
579 			hammer2_mtx_unlock(&chain->lock);
580 
581 			return(chain);	/* retry drop */
582 		}
583 
584 		/*
585 		 * Otherwise we can scrap the MODIFIED bit if it is set,
586 		 * and continue along the freeing path.
587 		 *
588 		 * Be sure to clean-out any dedup bits.  Without a parent
589 		 * this chain will no longer be visible to the flush code.
590 		 * Easy check data_off to avoid the volume root.
591 		 */
592 		if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
593 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
594 			atomic_add_long(&hammer2_count_modified_chains, -1);
595 			if (chain->pmp)
596 				hammer2_pfs_memory_wakeup(chain->pmp, -1);
597 		}
598 		/* spinlock still held */
599 	}
600 
601 	/* spinlock still held */
602 
603 	/*
604 	 * If any children exist we must leave the chain intact with refs == 0.
605 	 * They exist because chains are retained below us which have refs or
606 	 * may require flushing.
607 	 *
608 	 * Retry (return chain) if we fail to transition the refs to 0, else
609 	 * return NULL indication nothing more to do.
610 	 *
611 	 * Chains with children are NOT put on the LRU list.
612 	 */
613 	if (chain->core.chain_count) {
614 		if (atomic_cmpset_int(&chain->refs, 1, 0)) {
615 			hammer2_spin_unex(&chain->core.spin);
616 			hammer2_chain_assert_no_data(chain);
617 			hammer2_mtx_unlock(&chain->lock);
618 			chain = NULL;
619 		} else {
620 			hammer2_spin_unex(&chain->core.spin);
621 			hammer2_mtx_unlock(&chain->lock);
622 		}
623 		return (chain);
624 	}
625 	/* spinlock still held */
626 	/* no chains left under us */
627 
628 	/*
629 	 * chain->core has no children left so no accessors can get to our
630 	 * chain from there.  Now we have to lock the parent core to interlock
631 	 * remaining possible accessors that might bump chain's refs before
632 	 * we can safely drop chain's refs with intent to free the chain.
633 	 */
634 	hmp = chain->hmp;
635 	pmp = chain->pmp;	/* can be NULL */
636 	rdrop = NULL;
637 
638 	parent = chain->parent;
639 
640 	/*
641 	 * WARNING! chain's spin lock is still held here, and other spinlocks
642 	 *	    will be acquired and released in the code below.  We
643 	 *	    cannot be making fancy procedure calls!
644 	 */
645 
646 	/*
647 	 * We can cache the chain if it is associated with a pmp
648 	 * and not flagged as being destroyed or requesting a full
649 	 * release.  In this situation the chain is not removed
650 	 * from its parent, i.e. it can still be looked up.
651 	 *
652 	 * We intentionally do not cache DATA chains because these
653 	 * were likely used to load data into the logical buffer cache
654 	 * and will not be accessed again for some time.
655 	 */
656 	if ((chain->flags &
657 	     (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
658 	    chain->pmp &&
659 	    chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
660 		if (parent)
661 			hammer2_spin_ex(&parent->core.spin);
662 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
663 			/*
664 			 * 1->0 transition failed, retry.  Do not drop
665 			 * the chain's data yet!
666 			 */
667 			if (parent)
668 				hammer2_spin_unex(&parent->core.spin);
669 			hammer2_spin_unex(&chain->core.spin);
670 			hammer2_mtx_unlock(&chain->lock);
671 
672 			return(chain);
673 		}
674 
675 		/*
676 		 * Success
677 		 */
678 		hammer2_chain_assert_no_data(chain);
679 
680 		/*
681 		 * Make sure we are on the LRU list, clean up excessive
682 		 * LRU entries.  We can only really drop one but there might
683 		 * be other entries that we can remove from the lru_list
684 		 * without dropping.
685 		 *
686 		 * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
687 		 *	 chain->core.spin AND pmp->lru_spin are held, but
688 		 *	 can be safely cleared only holding pmp->lru_spin.
689 		 */
690 		if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
691 			hammer2_spin_ex(&pmp->lru_spin);
692 			if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
693 				atomic_set_int(&chain->flags,
694 					       HAMMER2_CHAIN_ONLRU);
695 				TAILQ_INSERT_TAIL(&pmp->lru_list,
696 						  chain, lru_node);
697 				atomic_add_int(&pmp->lru_count, 1);
698 			}
699 			if (pmp->lru_count < HAMMER2_LRU_LIMIT)
700 				depth = 1;	/* disable lru_list flush */
701 			hammer2_spin_unex(&pmp->lru_spin);
702 		} else {
703 			/* disable lru flush */
704 			depth = 1;
705 		}
706 
707 		if (parent) {
708 			hammer2_spin_unex(&parent->core.spin);
709 			parent = NULL;	/* safety */
710 		}
711 		hammer2_spin_unex(&chain->core.spin);
712 		hammer2_mtx_unlock(&chain->lock);
713 
714 		/*
715 		 * lru_list hysteresis (see above for depth overrides).
716 		 * Note that depth also prevents excessive lastdrop recursion.
717 		 */
718 		if (depth == 0)
719 			hammer2_chain_lru_flush(pmp);
720 
721 		return NULL;
722 		/* NOT REACHED */
723 	}
724 
725 	/*
726 	 * Make sure we are not on the LRU list.
727 	 */
728 	if (chain->flags & HAMMER2_CHAIN_ONLRU) {
729 		hammer2_spin_ex(&pmp->lru_spin);
730 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
731 			atomic_add_int(&pmp->lru_count, -1);
732 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
733 			TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
734 		}
735 		hammer2_spin_unex(&pmp->lru_spin);
736 	}
737 
738 	/*
739 	 * Spinlock the parent and try to drop the last ref on chain.
740 	 * On success determine if we should dispose of the chain
741 	 * (remove the chain from its parent, etc).
742 	 *
743 	 * (normal core locks are top-down recursive but we define
744 	 * core spinlocks as bottom-up recursive, so this is safe).
745 	 */
746 	if (parent) {
747 		hammer2_spin_ex(&parent->core.spin);
748 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
749 			/*
750 			 * 1->0 transition failed, retry.
751 			 */
752 			hammer2_spin_unex(&parent->core.spin);
753 			hammer2_spin_unex(&chain->core.spin);
754 			hammer2_mtx_unlock(&chain->lock);
755 
756 			return(chain);
757 		}
758 
759 		/*
760 		 * 1->0 transition successful, parent spin held to prevent
761 		 * new lookups, chain spinlock held to protect parent field.
762 		 * Remove chain from the parent.
763 		 *
764 		 * If the chain is being removed from the parent's btree but
765 		 * is not bmapped, we have to adjust live_count downward.  If
766 		 * it is bmapped then the blockref is retained in the parent
767 		 * as is its associated live_count.  This case can occur when
768 		 * a chain added to the topology is unable to flush and is
769 		 * then later deleted.
770 		 */
771 		if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
772 			if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
773 			    (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
774 				atomic_add_int(&parent->core.live_count, -1);
775 			}
776 			RB_REMOVE(hammer2_chain_tree,
777 				  &parent->core.rbtree, chain);
778 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
779 			--parent->core.chain_count;
780 			chain->parent = NULL;
781 		}
782 
783 		/*
784 		 * If our chain was the last chain in the parent's core the
785 		 * core is now empty and its parent might have to be
786 		 * re-dropped if it has 0 refs.
787 		 */
788 		if (parent->core.chain_count == 0) {
789 			rdrop = parent;
790 			atomic_add_int(&rdrop->refs, 1);
791 			/*
792 			if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
793 				rdrop = NULL;
794 			*/
795 		}
796 		hammer2_spin_unex(&parent->core.spin);
797 		parent = NULL;	/* safety */
798 		/* FALL THROUGH */
799 	} else {
800 		/*
801 		 * No-parent case.
802 		 */
803 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
804 			/*
805 			 * 1->0 transition failed, retry.
806 			 */
807 			hammer2_spin_unex(&parent->core.spin);
808 			hammer2_spin_unex(&chain->core.spin);
809 			hammer2_mtx_unlock(&chain->lock);
810 
811 			return(chain);
812 		}
813 	}
814 
815 	/*
816 	 * Successful 1->0 transition, no parent, no children... no way for
817 	 * anyone to ref this chain any more.  We can clean-up and free it.
818 	 *
819 	 * We still have the core spinlock, and core's chain_count is 0.
820 	 * Any parent spinlock is gone.
821 	 */
822 	hammer2_spin_unex(&chain->core.spin);
823 	hammer2_chain_assert_no_data(chain);
824 	hammer2_mtx_unlock(&chain->lock);
825 	KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
826 		 chain->core.chain_count == 0);
827 
828 	/*
829 	 * All locks are gone, no pointers remain to the chain, finish
830 	 * freeing it.
831 	 */
832 	KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
833 				  HAMMER2_CHAIN_MODIFIED)) == 0);
834 
835 	/*
836 	 * Once chain resources are gone we can use the now dead chain
837 	 * structure to placehold what might otherwise require a recursive
838 	 * drop, because we have potentially two things to drop and can only
839 	 * return one directly.
840 	 */
841 	if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
842 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
843 		chain->hmp = NULL;
844 		kfree(chain, hmp->mchain);
845 	}
846 
847 	/*
848 	 * Possible chaining loop when parent re-drop needed.
849 	 */
850 	return(rdrop);
851 }
852 
853 /*
854  * Heuristical flush of the LRU, try to reduce the number of entries
855  * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3).  This procedure is called
856  * only when lru_count exceeds HAMMER2_LRU_LIMIT.
857  */
858 static
859 void
860 hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
861 {
862 	hammer2_chain_t *chain;
863 
864 again:
865 	chain = NULL;
866 	hammer2_spin_ex(&pmp->lru_spin);
867 	while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
868 		/*
869 		 * Pick a chain off the lru_list, just recycle it quickly
870 		 * if LRUHINT is set (the chain was ref'd but left on
871 		 * the lru_list, so cycle to the end).
872 		 */
873 		chain = TAILQ_FIRST(&pmp->lru_list);
874 		TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
875 
876 		if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
877 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
878 			TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
879 			chain = NULL;
880 			continue;
881 		}
882 
883 		/*
884 		 * Ok, we are off the LRU.  We must adjust refs before we
885 		 * can safely clear the ONLRU flag.
886 		 */
887 		atomic_add_int(&pmp->lru_count, -1);
888 		if (atomic_cmpset_int(&chain->refs, 0, 1)) {
889 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
890 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
891 			break;
892 		}
893 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
894 		chain = NULL;
895 	}
896 	hammer2_spin_unex(&pmp->lru_spin);
897 	if (chain == NULL)
898 		return;
899 
900 	/*
901 	 * If we picked a chain off the lru list we may be able to lastdrop
902 	 * it.  Use a depth of 1 to prevent excessive lastdrop recursion.
903 	 */
904 	while (chain) {
905 		u_int refs;
906 
907 		refs = chain->refs;
908 		cpu_ccfence();
909 		KKASSERT(refs > 0);
910 
911 		if (refs == 1) {
912 			if (hammer2_mtx_ex_try(&chain->lock) == 0)
913 				chain = hammer2_chain_lastdrop(chain, 1);
914 			/* retry the same chain, or chain from lastdrop */
915 		} else {
916 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
917 				break;
918 			/* retry the same chain */
919 		}
920 		cpu_pause();
921 	}
922 	goto again;
923 }
924 
925 /*
926  * On last lock release.
927  */
928 static hammer2_io_t *
929 hammer2_chain_drop_data(hammer2_chain_t *chain)
930 {
931 	hammer2_io_t *dio;
932 
933 	if ((dio = chain->dio) != NULL) {
934 		chain->dio = NULL;
935 		chain->data = NULL;
936 	} else {
937 		switch(chain->bref.type) {
938 		case HAMMER2_BREF_TYPE_VOLUME:
939 		case HAMMER2_BREF_TYPE_FREEMAP:
940 			break;
941 		default:
942 			if (chain->data != NULL) {
943 				hammer2_spin_unex(&chain->core.spin);
944 				panic("chain data not null: "
945 				      "chain %p bref %016jx.%02x "
946 				      "refs %d parent %p dio %p data %p",
947 				      chain, chain->bref.data_off,
948 				      chain->bref.type, chain->refs,
949 				      chain->parent,
950 				      chain->dio, chain->data);
951 			}
952 			KKASSERT(chain->data == NULL);
953 			break;
954 		}
955 	}
956 	return dio;
957 }
958 
959 /*
960  * Lock a referenced chain element, acquiring its data with I/O if necessary,
961  * and specify how you would like the data to be resolved.
962  *
963  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
964  *
965  * The lock is allowed to recurse, multiple locking ops will aggregate
966  * the requested resolve types.  Once data is assigned it will not be
967  * removed until the last unlock.
968  *
969  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
970  *			   (typically used to avoid device/logical buffer
971  *			    aliasing for data)
972  *
973  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
974  *			   the INITIAL-create state (indirect blocks only).
975  *
976  *			   Do not resolve data elements for DATA chains.
977  *			   (typically used to avoid device/logical buffer
978  *			    aliasing for data)
979  *
980  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
981  *
982  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
983  *			   it will be locked exclusive.
984  *
985  * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking.  If
986  *			   the lock fails, EAGAIN is returned.
987  *
988  * NOTE: Embedded elements (volume header, inodes) are always resolved
989  *	 regardless.
990  *
991  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
992  *	 element will instantiate and zero its buffer, and flush it on
993  *	 release.
994  *
995  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
996  *	 so as not to instantiate a device buffer, which could alias against
997  *	 a logical file buffer.  However, if ALWAYS is specified the
998  *	 device buffer will be instantiated anyway.
999  *
1000  * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
1001  *	 case it can be either 0 or EAGAIN.
1002  *
1003  * WARNING! This function blocks on I/O if data needs to be fetched.  This
1004  *	    blocking can run concurrent with other compatible lock holders
1005  *	    who do not need data returning.  The lock is not upgraded to
1006  *	    exclusive during a data fetch, a separate bit is used to
1007  *	    interlock I/O.  However, an exclusive lock holder can still count
1008  *	    on being interlocked against an I/O fetch managed by a shared
1009  *	    lock holder.
1010  */
1011 int
1012 hammer2_chain_lock(hammer2_chain_t *chain, int how)
1013 {
1014 	KKASSERT(chain->refs > 0);
1015 
1016 	if (how & HAMMER2_RESOLVE_NONBLOCK) {
1017 		/*
1018 		 * We still have to bump lockcnt before acquiring the lock,
1019 		 * even for non-blocking operation, because the unlock code
1020 		 * live-loops on lockcnt == 1 when dropping the last lock.
1021 		 *
1022 		 * If the non-blocking operation fails we have to use an
1023 		 * unhold sequence to undo the mess.
1024 		 *
1025 		 * NOTE: LOCKAGAIN must always succeed without blocking,
1026 		 *	 even if NONBLOCK is specified.
1027 		 */
1028 		atomic_add_int(&chain->lockcnt, 1);
1029 		if (how & HAMMER2_RESOLVE_SHARED) {
1030 			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1031 				hammer2_mtx_sh_again(&chain->lock);
1032 			} else {
1033 				if (hammer2_mtx_sh_try(&chain->lock) != 0) {
1034 					hammer2_chain_unhold(chain);
1035 					return EAGAIN;
1036 				}
1037 			}
1038 		} else {
1039 			if (hammer2_mtx_ex_try(&chain->lock) != 0) {
1040 				hammer2_chain_unhold(chain);
1041 				return EAGAIN;
1042 			}
1043 		}
1044 	} else {
1045 		/*
1046 		 * Get the appropriate lock.  If LOCKAGAIN is flagged with
1047 		 * SHARED the caller expects a shared lock to already be
1048 		 * present and we are giving it another ref.  This case must
1049 		 * importantly not block if there is a pending exclusive lock
1050 		 * request.
1051 		 */
1052 		atomic_add_int(&chain->lockcnt, 1);
1053 		if (how & HAMMER2_RESOLVE_SHARED) {
1054 			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1055 				hammer2_mtx_sh_again(&chain->lock);
1056 			} else {
1057 				hammer2_mtx_sh(&chain->lock);
1058 			}
1059 		} else {
1060 			hammer2_mtx_ex(&chain->lock);
1061 		}
1062 	}
1063 
1064 	/*
1065 	 * If we already have a valid data pointer make sure the data is
1066 	 * synchronized to the current cpu, and then no further action is
1067 	 * necessary.
1068 	 */
1069 	if (chain->data) {
1070 		if (chain->dio)
1071 			hammer2_io_bkvasync(chain->dio);
1072 		return 0;
1073 	}
1074 
1075 	/*
1076 	 * Do we have to resolve the data?  This is generally only
1077 	 * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1078 	 * Other BREF types expects the data to be there.
1079 	 */
1080 	switch(how & HAMMER2_RESOLVE_MASK) {
1081 	case HAMMER2_RESOLVE_NEVER:
1082 		return 0;
1083 	case HAMMER2_RESOLVE_MAYBE:
1084 		if (chain->flags & HAMMER2_CHAIN_INITIAL)
1085 			return 0;
1086 		if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1087 			return 0;
1088 #if 0
1089 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1090 			return 0;
1091 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1092 			return 0;
1093 #endif
1094 		/* fall through */
1095 	case HAMMER2_RESOLVE_ALWAYS:
1096 	default:
1097 		break;
1098 	}
1099 
1100 	/*
1101 	 * Caller requires data
1102 	 */
1103 	hammer2_chain_load_data(chain);
1104 
1105 	return 0;
1106 }
1107 
1108 /*
1109  * Lock the chain, retain the hold, and drop the data persistence count.
1110  * The data should remain valid because we never transitioned lockcnt
1111  * through 0.
1112  */
1113 void
1114 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1115 {
1116 	hammer2_chain_lock(chain, how);
1117 	atomic_add_int(&chain->lockcnt, -1);
1118 }
1119 
1120 #if 0
1121 /*
1122  * Downgrade an exclusive chain lock to a shared chain lock.
1123  *
1124  * NOTE: There is no upgrade equivalent due to the ease of
1125  *	 deadlocks in that direction.
1126  */
1127 void
1128 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1129 {
1130 	hammer2_mtx_downgrade(&chain->lock);
1131 }
1132 #endif
1133 
1134 /*
1135  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1136  * may be of any type.
1137  *
1138  * Once chain->data is set it cannot be disposed of until all locks are
1139  * released.
1140  *
1141  * Make sure the data is synchronized to the current cpu.
1142  */
1143 void
1144 hammer2_chain_load_data(hammer2_chain_t *chain)
1145 {
1146 	hammer2_blockref_t *bref;
1147 	hammer2_dev_t *hmp;
1148 	hammer2_io_t *dio;
1149 	char *bdata;
1150 	int error;
1151 
1152 	/*
1153 	 * Degenerate case, data already present, or chain has no media
1154 	 * reference to load.
1155 	 */
1156 	KKASSERT(chain->lock.mtx_lock & MTX_MASK);
1157 	if (chain->data) {
1158 		if (chain->dio)
1159 			hammer2_io_bkvasync(chain->dio);
1160 		return;
1161 	}
1162 	if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1163 		return;
1164 
1165 	hmp = chain->hmp;
1166 	KKASSERT(hmp != NULL);
1167 
1168 	/*
1169 	 * Gain the IOINPROG bit, interlocked block.
1170 	 */
1171 	for (;;) {
1172 		u_int oflags;
1173 		u_int nflags;
1174 
1175 		oflags = chain->flags;
1176 		cpu_ccfence();
1177 		if (oflags & HAMMER2_CHAIN_IOINPROG) {
1178 			nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1179 			tsleep_interlock(&chain->flags, 0);
1180 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1181 				tsleep(&chain->flags, PINTERLOCKED,
1182 					"h2iocw", 0);
1183 			}
1184 			/* retry */
1185 		} else {
1186 			nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1187 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1188 				break;
1189 			}
1190 			/* retry */
1191 		}
1192 	}
1193 
1194 	/*
1195 	 * We own CHAIN_IOINPROG
1196 	 *
1197 	 * Degenerate case if we raced another load.
1198 	 */
1199 	if (chain->data) {
1200 		if (chain->dio)
1201 			hammer2_io_bkvasync(chain->dio);
1202 		goto done;
1203 	}
1204 
1205 	/*
1206 	 * We must resolve to a device buffer, either by issuing I/O or
1207 	 * by creating a zero-fill element.  We do not mark the buffer
1208 	 * dirty when creating a zero-fill element (the hammer2_chain_modify()
1209 	 * API must still be used to do that).
1210 	 *
1211 	 * The device buffer is variable-sized in powers of 2 down
1212 	 * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1213 	 * chunk always contains buffers of the same size. (XXX)
1214 	 *
1215 	 * The minimum physical IO size may be larger than the variable
1216 	 * block size.
1217 	 */
1218 	bref = &chain->bref;
1219 
1220 	/*
1221 	 * The getblk() optimization can only be used on newly created
1222 	 * elements if the physical block size matches the request.
1223 	 */
1224 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1225 		error = hammer2_io_new(hmp, bref->type,
1226 				       bref->data_off, chain->bytes,
1227 				       &chain->dio);
1228 	} else {
1229 		error = hammer2_io_bread(hmp, bref->type,
1230 					 bref->data_off, chain->bytes,
1231 					 &chain->dio);
1232 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
1233 	}
1234 	if (error) {
1235 		chain->error = HAMMER2_ERROR_EIO;
1236 		kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
1237 			(intmax_t)bref->data_off, error);
1238 		hammer2_io_bqrelse(&chain->dio);
1239 		goto done;
1240 	}
1241 	chain->error = 0;
1242 
1243 	/*
1244 	 * This isn't perfect and can be ignored on OSs which do not have
1245 	 * an indication as to whether a buffer is coming from cache or
1246 	 * if I/O was actually issued for the read.  TESTEDGOOD will work
1247 	 * pretty well without the B_IOISSUED logic because chains are
1248 	 * cached, but in that situation (without B_IOISSUED) it will not
1249 	 * detect whether a re-read via I/O is corrupted verses the original
1250 	 * read.
1251 	 *
1252 	 * We can't re-run the CRC on every fresh lock.  That would be
1253 	 * insanely expensive.
1254 	 *
1255 	 * If the underlying kernel buffer covers the entire chain we can
1256 	 * use the B_IOISSUED indication to determine if we have to re-run
1257 	 * the CRC on chain data for chains that managed to stay cached
1258 	 * across the kernel disposal of the original buffer.
1259 	 */
1260 	if ((dio = chain->dio) != NULL && dio->bp) {
1261 		struct buf *bp = dio->bp;
1262 
1263 		if (dio->psize == chain->bytes &&
1264 		    (bp->b_flags & B_IOISSUED)) {
1265 			atomic_clear_int(&chain->flags,
1266 					 HAMMER2_CHAIN_TESTEDGOOD);
1267 			bp->b_flags &= ~B_IOISSUED;
1268 		}
1269 	}
1270 
1271 	/*
1272 	 * NOTE: A locked chain's data cannot be modified without first
1273 	 *	 calling hammer2_chain_modify().
1274 	 */
1275 
1276 	/*
1277 	 * Clear INITIAL.  In this case we used io_new() and the buffer has
1278 	 * been zero'd and marked dirty.
1279 	 *
1280 	 * NOTE: hammer2_io_data() call issues bkvasync()
1281 	 */
1282 	bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1283 
1284 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1285 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1286 		chain->bref.flags |= HAMMER2_BREF_FLAG_ZERO;
1287 	} else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1288 		/*
1289 		 * check data not currently synchronized due to
1290 		 * modification.  XXX assumes data stays in the buffer
1291 		 * cache, which might not be true (need biodep on flush
1292 		 * to calculate crc?  or simple crc?).
1293 		 */
1294 	} else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1295 		if (hammer2_chain_testcheck(chain, bdata) == 0) {
1296 			chain->error = HAMMER2_ERROR_CHECK;
1297 		} else {
1298 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1299 		}
1300 	}
1301 
1302 	/*
1303 	 * Setup the data pointer, either pointing it to an embedded data
1304 	 * structure and copying the data from the buffer, or pointing it
1305 	 * into the buffer.
1306 	 *
1307 	 * The buffer is not retained when copying to an embedded data
1308 	 * structure in order to avoid potential deadlocks or recursions
1309 	 * on the same physical buffer.
1310 	 *
1311 	 * WARNING! Other threads can start using the data the instant we
1312 	 *	    set chain->data non-NULL.
1313 	 */
1314 	switch (bref->type) {
1315 	case HAMMER2_BREF_TYPE_VOLUME:
1316 	case HAMMER2_BREF_TYPE_FREEMAP:
1317 		/*
1318 		 * Copy data from bp to embedded buffer
1319 		 */
1320 		panic("hammer2_chain_load_data: unresolved volume header");
1321 		break;
1322 	case HAMMER2_BREF_TYPE_DIRENT:
1323 		KKASSERT(chain->bytes != 0);
1324 		/* fall through */
1325 	case HAMMER2_BREF_TYPE_INODE:
1326 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1327 	case HAMMER2_BREF_TYPE_INDIRECT:
1328 	case HAMMER2_BREF_TYPE_DATA:
1329 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1330 	default:
1331 		/*
1332 		 * Point data at the device buffer and leave dio intact.
1333 		 */
1334 		chain->data = (void *)bdata;
1335 		break;
1336 	}
1337 
1338 	/*
1339 	 * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1340 	 */
1341 done:
1342 	for (;;) {
1343 		u_int oflags;
1344 		u_int nflags;
1345 
1346 		oflags = chain->flags;
1347 		nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1348 				    HAMMER2_CHAIN_IOSIGNAL);
1349 		KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1350 		if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1351 			if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1352 				wakeup(&chain->flags);
1353 			break;
1354 		}
1355 	}
1356 }
1357 
1358 /*
1359  * Unlock and deref a chain element.
1360  *
1361  * Remember that the presence of children under chain prevent the chain's
1362  * destruction but do not add additional references, so the dio will still
1363  * be dropped.
1364  */
1365 void
1366 hammer2_chain_unlock(hammer2_chain_t *chain)
1367 {
1368 	hammer2_io_t *dio;
1369 	u_int lockcnt;
1370 	int iter = 0;
1371 
1372 	/*
1373 	 * If multiple locks are present (or being attempted) on this
1374 	 * particular chain we can just unlock, drop refs, and return.
1375 	 *
1376 	 * Otherwise fall-through on the 1->0 transition.
1377 	 */
1378 	for (;;) {
1379 		lockcnt = chain->lockcnt;
1380 		KKASSERT(lockcnt > 0);
1381 		cpu_ccfence();
1382 		if (lockcnt > 1) {
1383 			if (atomic_cmpset_int(&chain->lockcnt,
1384 					      lockcnt, lockcnt - 1)) {
1385 				hammer2_mtx_unlock(&chain->lock);
1386 				return;
1387 			}
1388 		} else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1389 			/* while holding the mutex exclusively */
1390 			if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1391 				break;
1392 		} else {
1393 			/*
1394 			 * This situation can easily occur on SMP due to
1395 			 * the gap inbetween the 1->0 transition and the
1396 			 * final unlock.  We cannot safely block on the
1397 			 * mutex because lockcnt might go above 1.
1398 			 *
1399 			 * XXX Sleep for one tick if it takes too long.
1400 			 */
1401 			if (++iter > 1000) {
1402 				if (iter > 1000 + hz) {
1403 					kprintf("hammer2: h2race2 %p\n", chain);
1404 					iter = 1000;
1405 				}
1406 				tsleep(&iter, 0, "h2race2", 1);
1407 			}
1408 			cpu_pause();
1409 		}
1410 		/* retry */
1411 	}
1412 
1413 	/*
1414 	 * Last unlock / mutex upgraded to exclusive.  Drop the data
1415 	 * reference.
1416 	 */
1417 	dio = hammer2_chain_drop_data(chain);
1418 	if (dio)
1419 		hammer2_io_bqrelse(&dio);
1420 	hammer2_mtx_unlock(&chain->lock);
1421 }
1422 
1423 /*
1424  * Unlock and hold chain data intact
1425  */
1426 void
1427 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1428 {
1429 	atomic_add_int(&chain->lockcnt, 1);
1430 	hammer2_chain_unlock(chain);
1431 }
1432 
1433 /*
1434  * Helper to obtain the blockref[] array base and count for a chain.
1435  *
1436  * XXX Not widely used yet, various use cases need to be validated and
1437  *     converted to use this function.
1438  */
1439 static
1440 hammer2_blockref_t *
1441 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1442 {
1443 	hammer2_blockref_t *base;
1444 	int count;
1445 
1446 	if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1447 		base = NULL;
1448 
1449 		switch(parent->bref.type) {
1450 		case HAMMER2_BREF_TYPE_INODE:
1451 			count = HAMMER2_SET_COUNT;
1452 			break;
1453 		case HAMMER2_BREF_TYPE_INDIRECT:
1454 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1455 			count = parent->bytes / sizeof(hammer2_blockref_t);
1456 			break;
1457 		case HAMMER2_BREF_TYPE_VOLUME:
1458 			count = HAMMER2_SET_COUNT;
1459 			break;
1460 		case HAMMER2_BREF_TYPE_FREEMAP:
1461 			count = HAMMER2_SET_COUNT;
1462 			break;
1463 		default:
1464 			panic("hammer2_chain_base_and_count: "
1465 			      "unrecognized blockref type: %d",
1466 			      parent->bref.type);
1467 			count = 0;
1468 			break;
1469 		}
1470 	} else {
1471 		switch(parent->bref.type) {
1472 		case HAMMER2_BREF_TYPE_INODE:
1473 			base = &parent->data->ipdata.u.blockset.blockref[0];
1474 			count = HAMMER2_SET_COUNT;
1475 			break;
1476 		case HAMMER2_BREF_TYPE_INDIRECT:
1477 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1478 			base = &parent->data->npdata[0];
1479 			count = parent->bytes / sizeof(hammer2_blockref_t);
1480 			break;
1481 		case HAMMER2_BREF_TYPE_VOLUME:
1482 			base = &parent->data->voldata.
1483 					sroot_blockset.blockref[0];
1484 			count = HAMMER2_SET_COUNT;
1485 			break;
1486 		case HAMMER2_BREF_TYPE_FREEMAP:
1487 			base = &parent->data->blkset.blockref[0];
1488 			count = HAMMER2_SET_COUNT;
1489 			break;
1490 		default:
1491 			panic("hammer2_chain_base_and_count: "
1492 			      "unrecognized blockref type: %d",
1493 			      parent->bref.type);
1494 			count = 0;
1495 			break;
1496 		}
1497 	}
1498 	*countp = count;
1499 
1500 	return base;
1501 }
1502 
1503 /*
1504  * This counts the number of live blockrefs in a block array and
1505  * also calculates the point at which all remaining blockrefs are empty.
1506  * This routine can only be called on a live chain.
1507  *
1508  * Caller holds the chain locked, but possibly with a shared lock.  We
1509  * must use an exclusive spinlock to prevent corruption.
1510  *
1511  * NOTE: Flag is not set until after the count is complete, allowing
1512  *	 callers to test the flag without holding the spinlock.
1513  *
1514  * NOTE: If base is NULL the related chain is still in the INITIAL
1515  *	 state and there are no blockrefs to count.
1516  *
1517  * NOTE: live_count may already have some counts accumulated due to
1518  *	 creation and deletion and could even be initially negative.
1519  */
1520 void
1521 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1522 			 hammer2_blockref_t *base, int count)
1523 {
1524 	hammer2_spin_ex(&chain->core.spin);
1525         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1526 		if (base) {
1527 			while (--count >= 0) {
1528 				if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1529 					break;
1530 			}
1531 			chain->core.live_zero = count + 1;
1532 			while (count >= 0) {
1533 				if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1534 					atomic_add_int(&chain->core.live_count,
1535 						       1);
1536 				--count;
1537 			}
1538 		} else {
1539 			chain->core.live_zero = 0;
1540 		}
1541 		/* else do not modify live_count */
1542 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1543 	}
1544 	hammer2_spin_unex(&chain->core.spin);
1545 }
1546 
1547 /*
1548  * Resize the chain's physical storage allocation in-place.  This function does
1549  * not usually adjust the data pointer and must be followed by (typically) a
1550  * hammer2_chain_modify() call to copy any old data over and adjust the
1551  * data pointer.
1552  *
1553  * Chains can be resized smaller without reallocating the storage.  Resizing
1554  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1555  * asynchronously at a later time.
1556  *
1557  * An nradix value of 0 is special-cased to mean that the storage should
1558  * be disassociated, that is the chain is being resized to 0 bytes (not 1
1559  * byte).
1560  *
1561  * Must be passed an exclusively locked parent and chain.
1562  *
1563  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1564  * to avoid instantiating a device buffer that conflicts with the vnode data
1565  * buffer.  However, because H2 can compress or encrypt data, the chain may
1566  * have a dio assigned to it in those situations, and they do not conflict.
1567  *
1568  * XXX return error if cannot resize.
1569  */
1570 int
1571 hammer2_chain_resize(hammer2_chain_t *chain,
1572 		     hammer2_tid_t mtid, hammer2_off_t dedup_off,
1573 		     int nradix, int flags)
1574 {
1575 	hammer2_dev_t *hmp;
1576 	size_t obytes;
1577 	size_t nbytes;
1578 	int error;
1579 
1580 	hmp = chain->hmp;
1581 
1582 	/*
1583 	 * Only data and indirect blocks can be resized for now.
1584 	 * (The volu root, inodes, and freemap elements use a fixed size).
1585 	 */
1586 	KKASSERT(chain != &hmp->vchain);
1587 	KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1588 		 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1589 		 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1590 
1591 	/*
1592 	 * Nothing to do if the element is already the proper size
1593 	 */
1594 	obytes = chain->bytes;
1595 	nbytes = (nradix) ? (1U << nradix) : 0;
1596 	if (obytes == nbytes)
1597 		return (chain->error);
1598 
1599 	/*
1600 	 * Make sure the old data is instantiated so we can copy it.  If this
1601 	 * is a data block, the device data may be superfluous since the data
1602 	 * might be in a logical block, but compressed or encrypted data is
1603 	 * another matter.
1604 	 *
1605 	 * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1606 	 */
1607 	error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1608 	if (error)
1609 		return error;
1610 
1611 	/*
1612 	 * Relocate the block, even if making it smaller (because different
1613 	 * block sizes may be in different regions).
1614 	 *
1615 	 * NOTE: Operation does not copy the data and may only be used
1616 	 *	  to resize data blocks in-place, or directory entry blocks
1617 	 *	  which are about to be modified in some manner.
1618 	 */
1619 	error = hammer2_freemap_alloc(chain, nbytes);
1620 	if (error)
1621 		return error;
1622 
1623 	chain->bytes = nbytes;
1624 
1625 	/*
1626 	 * We don't want the followup chain_modify() to try to copy data
1627 	 * from the old (wrong-sized) buffer.  It won't know how much to
1628 	 * copy.  This case should only occur during writes when the
1629 	 * originator already has the data to write in-hand.
1630 	 */
1631 	if (chain->dio) {
1632 		KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1633 			 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1634 		hammer2_io_brelse(&chain->dio);
1635 		chain->data = NULL;
1636 	}
1637 	return (chain->error);
1638 }
1639 
1640 /*
1641  * Set the chain modified so its data can be changed by the caller, or
1642  * install deduplicated data.  The caller must call this routine for each
1643  * set of modifications it makes, even if the chain is already flagged
1644  * MODIFIED.
1645  *
1646  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1647  * is a CLC (cluster level change) field and is not updated by parent
1648  * propagation during a flush.
1649  *
1650  * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1651  * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1652  * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1653  * remains unmodified with its old data ref intact and chain->error
1654  * unchanged.
1655  *
1656  *				 Dedup Handling
1657  *
1658  * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1659  * even if the chain is still flagged MODIFIED.  In this case the chain's
1660  * DEDUPABLE flag will be cleared once the new storage has been assigned.
1661  *
1662  * If the caller passes a non-zero dedup_off we will use it to assign the
1663  * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1664  * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1665  * must not modify the data content upon return.
1666  */
1667 int
1668 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1669 		     hammer2_off_t dedup_off, int flags)
1670 {
1671 	hammer2_blockref_t obref;
1672 	hammer2_dev_t *hmp;
1673 	hammer2_io_t *dio;
1674 	int error;
1675 	int wasinitial;
1676 	int setmodified;
1677 	int setupdate;
1678 	int newmod;
1679 	char *bdata;
1680 
1681 	hmp = chain->hmp;
1682 	obref = chain->bref;
1683 	KKASSERT((chain->flags & HAMMER2_CHAIN_FICTITIOUS) == 0);
1684 	KKASSERT(chain->lock.mtx_lock & MTX_EXCLUSIVE);
1685 
1686 	/*
1687 	 * Data is not optional for freemap chains (we must always be sure
1688 	 * to copy the data on COW storage allocations).
1689 	 */
1690 	if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1691 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1692 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1693 			 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1694 	}
1695 
1696 	/*
1697 	 * Data must be resolved if already assigned, unless explicitly
1698 	 * flagged otherwise.  If we cannot safety load the data the
1699 	 * modification fails and we return early.
1700 	 */
1701 	if (chain->data == NULL && chain->bytes != 0 &&
1702 	    (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1703 	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1704 		hammer2_chain_load_data(chain);
1705 		if (chain->error)
1706 			return (chain->error);
1707 	}
1708 	error = 0;
1709 
1710 	/*
1711 	 * Set MODIFIED to indicate that the chain has been modified.  A new
1712 	 * allocation is required when modifying a chain.
1713 	 *
1714 	 * Set UPDATE to ensure that the blockref is updated in the parent.
1715 	 *
1716 	 * If MODIFIED is already set determine if we can reuse the assigned
1717 	 * data block or if we need a new data block.
1718 	 */
1719 	if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1720 		/*
1721 		 * Must set modified bit.
1722 		 */
1723 		atomic_add_long(&hammer2_count_modified_chains, 1);
1724 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1725 		hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1726 		setmodified = 1;
1727 
1728 		/*
1729 		 * We may be able to avoid a copy-on-write if the chain's
1730 		 * check mode is set to NONE and the chain's current
1731 		 * modify_tid is beyond the last explicit snapshot tid.
1732 		 *
1733 		 * This implements HAMMER2's overwrite-in-place feature.
1734 		 *
1735 		 * NOTE! This data-block cannot be used as a de-duplication
1736 		 *	 source when the check mode is set to NONE.
1737 		 */
1738 		if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1739 		     chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1740 		    (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1741 		    (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1742 		    HAMMER2_DEC_CHECK(chain->bref.methods) ==
1743 		     HAMMER2_CHECK_NONE &&
1744 		    chain->pmp &&
1745 		    chain->bref.modify_tid >
1746 		     chain->pmp->iroot->meta.pfs_lsnap_tid) {
1747 			/*
1748 			 * Sector overwrite allowed.
1749 			 */
1750 			newmod = 0;
1751 		} else if ((hmp->hflags & HMNT2_EMERG) &&
1752 			   chain->pmp &&
1753 			   chain->bref.modify_tid >
1754 			    chain->pmp->iroot->meta.pfs_lsnap_tid) {
1755 			/*
1756 			 * If in emergency delete mode then do a modify-in-
1757 			 * place on any chain type belonging to the PFS as
1758 			 * long as it doesn't mess up a snapshot.  We might
1759 			 * be forced to do this anyway a little further down
1760 			 * in the code if the allocation fails.
1761 			 *
1762 			 * Also note that in emergency mode, these modify-in-
1763 			 * place operations are NOT SAFE.  A storage failure,
1764 			 * power failure, or panic can corrupt the filesystem.
1765 			 */
1766 			newmod = 0;
1767 		} else {
1768 			/*
1769 			 * Sector overwrite not allowed, must copy-on-write.
1770 			 */
1771 			newmod = 1;
1772 		}
1773 	} else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1774 		/*
1775 		 * If the modified chain was registered for dedup we need
1776 		 * a new allocation.  This only happens for delayed-flush
1777 		 * chains (i.e. which run through the front-end buffer
1778 		 * cache).
1779 		 */
1780 		newmod = 1;
1781 		setmodified = 0;
1782 	} else {
1783 		/*
1784 		 * Already flagged modified, no new allocation is needed.
1785 		 */
1786 		newmod = 0;
1787 		setmodified = 0;
1788 	}
1789 
1790 	/*
1791 	 * Flag parent update required.
1792 	 */
1793 	if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1794 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1795 		setupdate = 1;
1796 	} else {
1797 		setupdate = 0;
1798 	}
1799 
1800 	/*
1801 	 * The XOP code returns held but unlocked focus chains.  This
1802 	 * prevents the chain from being destroyed but does not prevent
1803 	 * it from being modified.  diolk is used to interlock modifications
1804 	 * against XOP frontend accesses to the focus.
1805 	 *
1806 	 * This allows us to theoretically avoid deadlocking the frontend
1807 	 * if one of the backends lock up by not formally locking the
1808 	 * focused chain in the frontend.  In addition, the synchronization
1809 	 * code relies on this mechanism to avoid deadlocking concurrent
1810 	 * synchronization threads.
1811 	 */
1812 	lockmgr(&chain->diolk, LK_EXCLUSIVE);
1813 
1814 	/*
1815 	 * The modification or re-modification requires an allocation and
1816 	 * possible COW.  If an error occurs, the previous content and data
1817 	 * reference is retained and the modification fails.
1818 	 *
1819 	 * If dedup_off is non-zero, the caller is requesting a deduplication
1820 	 * rather than a modification.  The MODIFIED bit is not set and the
1821 	 * data offset is set to the deduplication offset.  The data cannot
1822 	 * be modified.
1823 	 *
1824 	 * NOTE: The dedup offset is allowed to be in a partially free state
1825 	 *	 and we must be sure to reset it to a fully allocated state
1826 	 *	 to force two bulkfree passes to free it again.
1827 	 *
1828 	 * NOTE: Only applicable when chain->bytes != 0.
1829 	 *
1830 	 * XXX can a chain already be marked MODIFIED without a data
1831 	 * assignment?  If not, assert here instead of testing the case.
1832 	 */
1833 	if (chain != &hmp->vchain && chain != &hmp->fchain &&
1834 	    chain->bytes) {
1835 		if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1836 		    newmod
1837 		) {
1838 			/*
1839 			 * NOTE: We do not have to remove the dedup
1840 			 *	 registration because the area is still
1841 			 *	 allocated and the underlying DIO will
1842 			 *	 still be flushed.
1843 			 */
1844 			if (dedup_off) {
1845 				chain->bref.data_off = dedup_off;
1846 				chain->bytes = 1 << (dedup_off &
1847 						     HAMMER2_OFF_MASK_RADIX);
1848 				chain->error = 0;
1849 				atomic_clear_int(&chain->flags,
1850 						 HAMMER2_CHAIN_MODIFIED);
1851 				atomic_add_long(&hammer2_count_modified_chains,
1852 						-1);
1853 				if (chain->pmp) {
1854 					hammer2_pfs_memory_wakeup(
1855 						chain->pmp, -1);
1856 				}
1857 				hammer2_freemap_adjust(hmp, &chain->bref,
1858 						HAMMER2_FREEMAP_DORECOVER);
1859 				atomic_set_int(&chain->flags,
1860 						HAMMER2_CHAIN_DEDUPABLE);
1861 			} else {
1862 				error = hammer2_freemap_alloc(chain,
1863 							      chain->bytes);
1864 				atomic_clear_int(&chain->flags,
1865 						HAMMER2_CHAIN_DEDUPABLE);
1866 
1867 				/*
1868 				 * If we are unable to allocate a new block
1869 				 * but we are in emergency mode, issue a
1870 				 * warning to the console and reuse the same
1871 				 * block.
1872 				 *
1873 				 * We behave as if the allocation were
1874 				 * successful.
1875 				 *
1876 				 * THIS IS IMPORTANT: These modifications
1877 				 * are virtually guaranteed to corrupt any
1878 				 * snapshots related to this filesystem.
1879 				 */
1880 				if (error && (hmp->hflags & HMNT2_EMERG)) {
1881 					error = 0;
1882 					chain->bref.flags |=
1883 						HAMMER2_BREF_FLAG_EMERG_MIP;
1884 
1885 					krateprintf(&krate_h2em,
1886 					    "hammer2: Emergency Mode WARNING: "
1887 					    "Operation will likely corrupt "
1888 					    "related snapshot: "
1889 					    "%016jx.%02x key=%016jx\n",
1890 					    chain->bref.data_off,
1891 					    chain->bref.type,
1892 					    chain->bref.key);
1893 				} else if (error == 0) {
1894 					chain->bref.flags &=
1895 						~HAMMER2_BREF_FLAG_EMERG_MIP;
1896 				}
1897 			}
1898 		}
1899 	}
1900 
1901 	/*
1902 	 * Stop here if error.  We have to undo any flag bits we might
1903 	 * have set above.
1904 	 */
1905 	if (error) {
1906 		if (setmodified) {
1907 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1908 			atomic_add_long(&hammer2_count_modified_chains, -1);
1909 			if (chain->pmp)
1910 				hammer2_pfs_memory_wakeup(chain->pmp, -1);
1911 		}
1912 		if (setupdate) {
1913 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1914 		}
1915 		lockmgr(&chain->diolk, LK_RELEASE);
1916 
1917 		return error;
1918 	}
1919 
1920 	/*
1921 	 * Update mirror_tid and modify_tid.  modify_tid is only updated
1922 	 * if not passed as zero (during flushes, parent propagation passes
1923 	 * the value 0).
1924 	 *
1925 	 * NOTE: chain->pmp could be the device spmp.
1926 	 */
1927 	chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1928 	if (mtid)
1929 		chain->bref.modify_tid = mtid;
1930 
1931 	/*
1932 	 * Set BMAPUPD to tell the flush code that an existing blockmap entry
1933 	 * requires updating as well as to tell the delete code that the
1934 	 * chain's blockref might not exactly match (in terms of physical size
1935 	 * or block offset) the one in the parent's blocktable.  The base key
1936 	 * of course will still match.
1937 	 */
1938 	if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1939 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1940 
1941 	/*
1942 	 * Short-cut data blocks which the caller does not need an actual
1943 	 * data reference to (aka OPTDATA), as long as the chain does not
1944 	 * already have a data pointer to the data.  This generally means
1945 	 * that the modifications are being done via the logical buffer cache.
1946 	 * The INITIAL flag relates only to the device data buffer and thus
1947 	 * remains unchange in this situation.
1948 	 *
1949 	 * This code also handles bytes == 0 (most dirents).
1950 	 */
1951 	if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1952 	    (flags & HAMMER2_MODIFY_OPTDATA) &&
1953 	    chain->data == NULL) {
1954 		KKASSERT(chain->dio == NULL);
1955 		goto skip2;
1956 	}
1957 
1958 	/*
1959 	 * Clearing the INITIAL flag (for indirect blocks) indicates that
1960 	 * we've processed the uninitialized storage allocation.
1961 	 *
1962 	 * If this flag is already clear we are likely in a copy-on-write
1963 	 * situation but we have to be sure NOT to bzero the storage if
1964 	 * no data is present.
1965 	 */
1966 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1967 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1968 		wasinitial = 1;
1969 	} else {
1970 		wasinitial = 0;
1971 	}
1972 
1973 	/*
1974 	 * Instantiate data buffer and possibly execute COW operation
1975 	 */
1976 	switch(chain->bref.type) {
1977 	case HAMMER2_BREF_TYPE_VOLUME:
1978 	case HAMMER2_BREF_TYPE_FREEMAP:
1979 		/*
1980 		 * The data is embedded, no copy-on-write operation is
1981 		 * needed.
1982 		 */
1983 		KKASSERT(chain->dio == NULL);
1984 		break;
1985 	case HAMMER2_BREF_TYPE_DIRENT:
1986 		/*
1987 		 * The data might be fully embedded.
1988 		 */
1989 		if (chain->bytes == 0) {
1990 			KKASSERT(chain->dio == NULL);
1991 			break;
1992 		}
1993 		/* fall through */
1994 	case HAMMER2_BREF_TYPE_INODE:
1995 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1996 	case HAMMER2_BREF_TYPE_DATA:
1997 	case HAMMER2_BREF_TYPE_INDIRECT:
1998 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1999 		/*
2000 		 * Perform the copy-on-write operation
2001 		 *
2002 		 * zero-fill or copy-on-write depending on whether
2003 		 * chain->data exists or not and set the dirty state for
2004 		 * the new buffer.  hammer2_io_new() will handle the
2005 		 * zero-fill.
2006 		 *
2007 		 * If a dedup_off was supplied this is an existing block
2008 		 * and no COW, copy, or further modification is required.
2009 		 */
2010 		KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
2011 
2012 		if (wasinitial && dedup_off == 0) {
2013 			error = hammer2_io_new(hmp, chain->bref.type,
2014 					       chain->bref.data_off,
2015 					       chain->bytes, &dio);
2016 		} else {
2017 			error = hammer2_io_bread(hmp, chain->bref.type,
2018 						 chain->bref.data_off,
2019 						 chain->bytes, &dio);
2020 		}
2021 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
2022 
2023 		/*
2024 		 * If an I/O error occurs make sure callers cannot accidently
2025 		 * modify the old buffer's contents and corrupt the filesystem.
2026 		 *
2027 		 * NOTE: hammer2_io_data() call issues bkvasync()
2028 		 */
2029 		if (error) {
2030 			kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
2031 				hmp);
2032 			chain->error = HAMMER2_ERROR_EIO;
2033 			hammer2_io_brelse(&dio);
2034 			hammer2_io_brelse(&chain->dio);
2035 			chain->data = NULL;
2036 			break;
2037 		}
2038 		chain->error = 0;
2039 		bdata = hammer2_io_data(dio, chain->bref.data_off);
2040 
2041 		if (chain->data) {
2042 			/*
2043 			 * COW (unless a dedup).
2044 			 */
2045 			KKASSERT(chain->dio != NULL);
2046 			if (chain->data != (void *)bdata && dedup_off == 0) {
2047 				bcopy(chain->data, bdata, chain->bytes);
2048 			}
2049 		} else if (wasinitial == 0) {
2050 			/*
2051 			 * We have a problem.  We were asked to COW but
2052 			 * we don't have any data to COW with!
2053 			 */
2054 			panic("hammer2_chain_modify: having a COW %p\n",
2055 			      chain);
2056 		}
2057 
2058 		/*
2059 		 * Retire the old buffer, replace with the new.  Dirty or
2060 		 * redirty the new buffer.
2061 		 *
2062 		 * WARNING! The system buffer cache may have already flushed
2063 		 *	    the buffer, so we must be sure to [re]dirty it
2064 		 *	    for further modification.
2065 		 *
2066 		 *	    If dedup_off was supplied, the caller is not
2067 		 *	    expected to make any further modification to the
2068 		 *	    buffer.
2069 		 *
2070 		 * WARNING! hammer2_get_gdata() assumes dio never transitions
2071 		 *	    through NULL in order to optimize away unnecessary
2072 		 *	    diolk operations.
2073 		 */
2074 		{
2075 			hammer2_io_t *tio;
2076 
2077 			if ((tio = chain->dio) != NULL)
2078 				hammer2_io_bqrelse(&tio);
2079 			chain->data = (void *)bdata;
2080 			chain->dio = dio;
2081 			if (dedup_off == 0)
2082 				hammer2_io_setdirty(dio);
2083 		}
2084 		break;
2085 	default:
2086 		panic("hammer2_chain_modify: illegal non-embedded type %d",
2087 		      chain->bref.type);
2088 		break;
2089 
2090 	}
2091 skip2:
2092 	/*
2093 	 * setflush on parent indicating that the parent must recurse down
2094 	 * to us.  Do not call on chain itself which might already have it
2095 	 * set.
2096 	 */
2097 	if (chain->parent)
2098 		hammer2_chain_setflush(chain->parent);
2099 	lockmgr(&chain->diolk, LK_RELEASE);
2100 
2101 	return (chain->error);
2102 }
2103 
2104 /*
2105  * Modify the chain associated with an inode.
2106  */
2107 int
2108 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2109 			hammer2_tid_t mtid, int flags)
2110 {
2111 	int error;
2112 
2113 	hammer2_inode_modify(ip);
2114 	error = hammer2_chain_modify(chain, mtid, 0, flags);
2115 
2116 	return error;
2117 }
2118 
2119 /*
2120  * Volume header data locks
2121  */
2122 void
2123 hammer2_voldata_lock(hammer2_dev_t *hmp)
2124 {
2125 	lockmgr(&hmp->vollk, LK_EXCLUSIVE);
2126 }
2127 
2128 void
2129 hammer2_voldata_unlock(hammer2_dev_t *hmp)
2130 {
2131 	lockmgr(&hmp->vollk, LK_RELEASE);
2132 }
2133 
2134 void
2135 hammer2_voldata_modify(hammer2_dev_t *hmp)
2136 {
2137 	if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
2138 		atomic_add_long(&hammer2_count_modified_chains, 1);
2139 		atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
2140 		hammer2_pfs_memory_inc(hmp->vchain.pmp);
2141 	}
2142 }
2143 
2144 /*
2145  * This function returns the chain at the nearest key within the specified
2146  * range.  The returned chain will be referenced but not locked.
2147  *
2148  * This function will recurse through chain->rbtree as necessary and will
2149  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
2150  * the iteration value is less than the current value of *key_nextp.
2151  *
2152  * The caller should use (*key_nextp) to calculate the actual range of
2153  * the returned element, which will be (key_beg to *key_nextp - 1), because
2154  * there might be another element which is superior to the returned element
2155  * and overlaps it.
2156  *
2157  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2158  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
2159  * it will wind up being (key_end + 1).
2160  *
2161  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
2162  *	     held through the operation.
2163  */
2164 struct hammer2_chain_find_info {
2165 	hammer2_chain_t		*best;
2166 	hammer2_key_t		key_beg;
2167 	hammer2_key_t		key_end;
2168 	hammer2_key_t		key_next;
2169 };
2170 
2171 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2172 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2173 
2174 static
2175 hammer2_chain_t *
2176 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2177 			  hammer2_key_t key_beg, hammer2_key_t key_end)
2178 {
2179 	struct hammer2_chain_find_info info;
2180 
2181 	info.best = NULL;
2182 	info.key_beg = key_beg;
2183 	info.key_end = key_end;
2184 	info.key_next = *key_nextp;
2185 
2186 	RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2187 		hammer2_chain_find_cmp, hammer2_chain_find_callback,
2188 		&info);
2189 	*key_nextp = info.key_next;
2190 #if 0
2191 	kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2192 		parent, key_beg, key_end, *key_nextp);
2193 #endif
2194 
2195 	return (info.best);
2196 }
2197 
2198 static
2199 int
2200 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2201 {
2202 	struct hammer2_chain_find_info *info = data;
2203 	hammer2_key_t child_beg;
2204 	hammer2_key_t child_end;
2205 
2206 	child_beg = child->bref.key;
2207 	child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2208 
2209 	if (child_end < info->key_beg)
2210 		return(-1);
2211 	if (child_beg > info->key_end)
2212 		return(1);
2213 	return(0);
2214 }
2215 
2216 static
2217 int
2218 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2219 {
2220 	struct hammer2_chain_find_info *info = data;
2221 	hammer2_chain_t *best;
2222 	hammer2_key_t child_end;
2223 
2224 	/*
2225 	 * WARNING! Layerq is scanned forwards, exact matches should keep
2226 	 *	    the existing info->best.
2227 	 */
2228 	if ((best = info->best) == NULL) {
2229 		/*
2230 		 * No previous best.  Assign best
2231 		 */
2232 		info->best = child;
2233 	} else if (best->bref.key <= info->key_beg &&
2234 		   child->bref.key <= info->key_beg) {
2235 		/*
2236 		 * Illegal overlap.
2237 		 */
2238 		KKASSERT(0);
2239 		/*info->best = child;*/
2240 	} else if (child->bref.key < best->bref.key) {
2241 		/*
2242 		 * Child has a nearer key and best is not flush with key_beg.
2243 		 * Set best to child.  Truncate key_next to the old best key.
2244 		 */
2245 		info->best = child;
2246 		if (info->key_next > best->bref.key || info->key_next == 0)
2247 			info->key_next = best->bref.key;
2248 	} else if (child->bref.key == best->bref.key) {
2249 		/*
2250 		 * If our current best is flush with the child then this
2251 		 * is an illegal overlap.
2252 		 *
2253 		 * key_next will automatically be limited to the smaller of
2254 		 * the two end-points.
2255 		 */
2256 		KKASSERT(0);
2257 		info->best = child;
2258 	} else {
2259 		/*
2260 		 * Keep the current best but truncate key_next to the child's
2261 		 * base.
2262 		 *
2263 		 * key_next will also automatically be limited to the smaller
2264 		 * of the two end-points (probably not necessary for this case
2265 		 * but we do it anyway).
2266 		 */
2267 		if (info->key_next > child->bref.key || info->key_next == 0)
2268 			info->key_next = child->bref.key;
2269 	}
2270 
2271 	/*
2272 	 * Always truncate key_next based on child's end-of-range.
2273 	 */
2274 	child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2275 	if (child_end && (info->key_next > child_end || info->key_next == 0))
2276 		info->key_next = child_end;
2277 
2278 	return(0);
2279 }
2280 
2281 /*
2282  * Retrieve the specified chain from a media blockref, creating the
2283  * in-memory chain structure which reflects it.  The returned chain is
2284  * held and locked according to (how) (HAMMER2_RESOLVE_*).  The caller must
2285  * handle crc-checks and so forth, and should check chain->error before
2286  * assuming that the data is good.
2287  *
2288  * To handle insertion races pass the INSERT_RACE flag along with the
2289  * generation number of the core.  NULL will be returned if the generation
2290  * number changes before we have a chance to insert the chain.  Insert
2291  * races can occur because the parent might be held shared.
2292  *
2293  * Caller must hold the parent locked shared or exclusive since we may
2294  * need the parent's bref array to find our block.
2295  *
2296  * WARNING! chain->pmp is always set to NULL for any chain representing
2297  *	    part of the super-root topology.
2298  */
2299 hammer2_chain_t *
2300 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2301 		  hammer2_blockref_t *bref, int how)
2302 {
2303 	hammer2_dev_t *hmp = parent->hmp;
2304 	hammer2_chain_t *chain;
2305 	int error;
2306 
2307 	/*
2308 	 * Allocate a chain structure representing the existing media
2309 	 * entry.  Resulting chain has one ref and is not locked.
2310 	 */
2311 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2312 		chain = hammer2_chain_alloc(hmp, NULL, bref);
2313 	else
2314 		chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2315 	/* ref'd chain returned */
2316 
2317 	/*
2318 	 * Flag that the chain is in the parent's blockmap so delete/flush
2319 	 * knows what to do with it.
2320 	 */
2321 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2322 
2323 	/*
2324 	 * chain must be locked to avoid unexpected ripouts
2325 	 */
2326 	hammer2_chain_lock(chain, how);
2327 
2328 	/*
2329 	 * Link the chain into its parent.  A spinlock is required to safely
2330 	 * access the RBTREE, and it is possible to collide with another
2331 	 * hammer2_chain_get() operation because the caller might only hold
2332 	 * a shared lock on the parent.
2333 	 *
2334 	 * NOTE: Get races can occur quite often when we distribute
2335 	 *	 asynchronous read-aheads across multiple threads.
2336 	 */
2337 	KKASSERT(parent->refs > 0);
2338 	error = hammer2_chain_insert(parent, chain,
2339 				     HAMMER2_CHAIN_INSERT_SPIN |
2340 				     HAMMER2_CHAIN_INSERT_RACE,
2341 				     generation);
2342 	if (error) {
2343 		KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2344 		/*kprintf("chain %p get race\n", chain);*/
2345 		hammer2_chain_unlock(chain);
2346 		hammer2_chain_drop(chain);
2347 		chain = NULL;
2348 	} else {
2349 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2350 	}
2351 
2352 	/*
2353 	 * Return our new chain referenced but not locked, or NULL if
2354 	 * a race occurred.
2355 	 */
2356 	return (chain);
2357 }
2358 
2359 /*
2360  * Lookup initialization/completion API
2361  */
2362 hammer2_chain_t *
2363 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2364 {
2365 	hammer2_chain_ref(parent);
2366 	if (flags & HAMMER2_LOOKUP_SHARED) {
2367 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2368 					   HAMMER2_RESOLVE_SHARED);
2369 	} else {
2370 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2371 	}
2372 	return (parent);
2373 }
2374 
2375 void
2376 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2377 {
2378 	if (parent) {
2379 		hammer2_chain_unlock(parent);
2380 		hammer2_chain_drop(parent);
2381 	}
2382 }
2383 
2384 /*
2385  * Take the locked chain and return a locked parent.  The chain remains
2386  * locked on return, but may have to be temporarily unlocked to acquire
2387  * the parent.  Because of this, (chain) must be stable and cannot be
2388  * deleted while it was temporarily unlocked (typically means that (chain)
2389  * is an inode).
2390  *
2391  * Pass HAMMER2_RESOLVE_* flags in flags.
2392  *
2393  * This will work even if the chain is errored, and the caller can check
2394  * parent->error on return if desired since the parent will be locked.
2395  *
2396  * This function handles the lock order reversal.
2397  */
2398 hammer2_chain_t *
2399 hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2400 {
2401 	hammer2_chain_t *parent;
2402 
2403 	/*
2404 	 * Be careful of order, chain must be unlocked before parent
2405 	 * is locked below to avoid a deadlock.  Try it trivially first.
2406 	 */
2407 	parent = chain->parent;
2408 	if (parent == NULL)
2409 		panic("hammer2_chain_getparent: no parent");
2410 	hammer2_chain_ref(parent);
2411 	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2412 		return parent;
2413 
2414 	for (;;) {
2415 		hammer2_chain_unlock(chain);
2416 		hammer2_chain_lock(parent, flags);
2417 		hammer2_chain_lock(chain, flags);
2418 
2419 		/*
2420 		 * Parent relinking races are quite common.  We have to get
2421 		 * it right or we will blow up the block table.
2422 		 */
2423 		if (chain->parent == parent)
2424 			break;
2425 		hammer2_chain_unlock(parent);
2426 		hammer2_chain_drop(parent);
2427 		cpu_ccfence();
2428 		parent = chain->parent;
2429 		if (parent == NULL)
2430 			panic("hammer2_chain_getparent: no parent");
2431 		hammer2_chain_ref(parent);
2432 	}
2433 	return parent;
2434 }
2435 
2436 /*
2437  * Take the locked chain and return a locked parent.  The chain is unlocked
2438  * and dropped.  *chainp is set to the returned parent as a convenience.
2439  * Pass HAMMER2_RESOLVE_* flags in flags.
2440  *
2441  * This will work even if the chain is errored, and the caller can check
2442  * parent->error on return if desired since the parent will be locked.
2443  *
2444  * The chain does NOT need to be stable.  We use a tracking structure
2445  * to track the expected parent if the chain is deleted out from under us.
2446  *
2447  * This function handles the lock order reversal.
2448  */
2449 hammer2_chain_t *
2450 hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2451 {
2452 	hammer2_chain_t *chain;
2453 	hammer2_chain_t *parent;
2454 	struct hammer2_reptrack reptrack;
2455 	struct hammer2_reptrack **repp;
2456 
2457 	/*
2458 	 * Be careful of order, chain must be unlocked before parent
2459 	 * is locked below to avoid a deadlock.  Try it trivially first.
2460 	 */
2461 	chain = *chainp;
2462 	parent = chain->parent;
2463 	if (parent == NULL) {
2464 		hammer2_spin_unex(&chain->core.spin);
2465 		panic("hammer2_chain_repparent: no parent");
2466 	}
2467 	hammer2_chain_ref(parent);
2468 	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2469 		hammer2_chain_unlock(chain);
2470 		hammer2_chain_drop(chain);
2471 		*chainp = parent;
2472 
2473 		return parent;
2474 	}
2475 
2476 	/*
2477 	 * Ok, now it gets a bit nasty.  There are multiple situations where
2478 	 * the parent might be in the middle of a deletion, or where the child
2479 	 * (chain) might be deleted the instant we let go of its lock.
2480 	 * We can potentially end up in a no-win situation!
2481 	 *
2482 	 * In particular, the indirect_maintenance() case can cause these
2483 	 * situations.
2484 	 *
2485 	 * To deal with this we install a reptrack structure in the parent
2486 	 * This reptrack structure 'owns' the parent ref and will automatically
2487 	 * migrate to the parent's parent if the parent is deleted permanently.
2488 	 */
2489 	hammer2_spin_init(&reptrack.spin, "h2reptrk");
2490 	reptrack.chain = parent;
2491 	hammer2_chain_ref(parent);		/* for the reptrack */
2492 
2493 	hammer2_spin_ex(&parent->core.spin);
2494 	reptrack.next = parent->core.reptrack;
2495 	parent->core.reptrack = &reptrack;
2496 	hammer2_spin_unex(&parent->core.spin);
2497 
2498 	hammer2_chain_unlock(chain);
2499 	hammer2_chain_drop(chain);
2500 	chain = NULL;	/* gone */
2501 
2502 	/*
2503 	 * At the top of this loop, chain is gone and parent is refd both
2504 	 * by us explicitly AND via our reptrack.  We are attempting to
2505 	 * lock parent.
2506 	 */
2507 	for (;;) {
2508 		hammer2_chain_lock(parent, flags);
2509 
2510 		if (reptrack.chain == parent)
2511 			break;
2512 		hammer2_chain_unlock(parent);
2513 		hammer2_chain_drop(parent);
2514 
2515 		kprintf("hammer2: debug REPTRACK %p->%p\n",
2516 			parent, reptrack.chain);
2517 		hammer2_spin_ex(&reptrack.spin);
2518 		parent = reptrack.chain;
2519 		hammer2_chain_ref(parent);
2520 		hammer2_spin_unex(&reptrack.spin);
2521 	}
2522 
2523 	/*
2524 	 * Once parent is locked and matches our reptrack, our reptrack
2525 	 * will be stable and we have our parent.  We can unlink our
2526 	 * reptrack.
2527 	 *
2528 	 * WARNING!  Remember that the chain lock might be shared.  Chains
2529 	 *	     locked shared have stable parent linkages.
2530 	 */
2531 	hammer2_spin_ex(&parent->core.spin);
2532 	repp = &parent->core.reptrack;
2533 	while (*repp != &reptrack)
2534 		repp = &(*repp)->next;
2535 	*repp = reptrack.next;
2536 	hammer2_spin_unex(&parent->core.spin);
2537 
2538 	hammer2_chain_drop(parent);	/* reptrack ref */
2539 	*chainp = parent;		/* return parent lock+ref */
2540 
2541 	return parent;
2542 }
2543 
2544 /*
2545  * Dispose of any linked reptrack structures in (chain) by shifting them to
2546  * (parent).  Both (chain) and (parent) must be exclusively locked.
2547  *
2548  * This is interlocked against any children of (chain) on the other side.
2549  * No children so remain as-of when this is called so we can test
2550  * core.reptrack without holding the spin-lock.
2551  *
2552  * Used whenever the caller intends to permanently delete chains related
2553  * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2554  * where the chains underneath the node being deleted are given a new parent
2555  * above the node being deleted.
2556  */
2557 static
2558 void
2559 hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2560 {
2561 	struct hammer2_reptrack *reptrack;
2562 
2563 	KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2564 	while (chain->core.reptrack) {
2565 		hammer2_spin_ex(&parent->core.spin);
2566 		hammer2_spin_ex(&chain->core.spin);
2567 		reptrack = chain->core.reptrack;
2568 		if (reptrack == NULL) {
2569 			hammer2_spin_unex(&chain->core.spin);
2570 			hammer2_spin_unex(&parent->core.spin);
2571 			break;
2572 		}
2573 		hammer2_spin_ex(&reptrack->spin);
2574 		chain->core.reptrack = reptrack->next;
2575 		reptrack->chain = parent;
2576 		reptrack->next = parent->core.reptrack;
2577 		parent->core.reptrack = reptrack;
2578 		hammer2_chain_ref(parent);		/* reptrack */
2579 
2580 		hammer2_spin_unex(&chain->core.spin);
2581 		hammer2_spin_unex(&parent->core.spin);
2582 		kprintf("hammer2: debug repchange %p %p->%p\n",
2583 			reptrack, chain, parent);
2584 		hammer2_chain_drop(chain);		/* reptrack */
2585 	}
2586 }
2587 
2588 /*
2589  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2590  * (*parentp) typically points to an inode but can also point to a related
2591  * indirect block and this function will recurse upwards and find the inode
2592  * or the nearest undeleted indirect block covering the key range.
2593  *
2594  * This function unconditionally sets *errorp, replacing any previous value.
2595  *
2596  * (*parentp) must be exclusive or shared locked (depending on flags) and
2597  * referenced and can be an inode or an existing indirect block within the
2598  * inode.
2599  *
2600  * If (*parent) is errored out, this function will not attempt to recurse
2601  * the radix tree and will return NULL along with an appropriate *errorp.
2602  * If NULL is returned and *errorp is 0, the requested lookup could not be
2603  * located.
2604  *
2605  * On return (*parentp) will be modified to point at the deepest parent chain
2606  * element encountered during the search, as a helper for an insertion or
2607  * deletion.
2608  *
2609  * The new (*parentp) will be locked shared or exclusive (depending on flags),
2610  * and referenced, and the old will be unlocked and dereferenced (no change
2611  * if they are both the same).  This is particularly important if the caller
2612  * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2613  * is returned, as long as no error occurred.
2614  *
2615  * The matching chain will be returned locked according to flags.
2616  *
2617  * --
2618  *
2619  * NULL is returned if no match was found, but (*parentp) will still
2620  * potentially be adjusted.
2621  *
2622  * On return (*key_nextp) will point to an iterative value for key_beg.
2623  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2624  *
2625  * This function will also recurse up the chain if the key is not within the
2626  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2627  * can simply allow (*parentp) to float inside the loop.
2628  *
2629  * NOTE!  chain->data is not always resolved.  By default it will not be
2630  *	  resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2631  *	  HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2632  *	  BREF_TYPE_DATA as the device buffer can alias the logical file
2633  *	  buffer).
2634  */
2635 
2636 hammer2_chain_t *
2637 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2638 		     hammer2_key_t key_beg, hammer2_key_t key_end,
2639 		     int *errorp, int flags)
2640 {
2641 	hammer2_dev_t *hmp;
2642 	hammer2_chain_t *parent;
2643 	hammer2_chain_t *chain;
2644 	hammer2_blockref_t *base;
2645 	hammer2_blockref_t *bref;
2646 	hammer2_blockref_t bsave;
2647 	hammer2_key_t scan_beg;
2648 	hammer2_key_t scan_end;
2649 	int count = 0;
2650 	int how_always = HAMMER2_RESOLVE_ALWAYS;
2651 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
2652 	int how;
2653 	int generation;
2654 	int maxloops = 300000;
2655 	volatile hammer2_mtx_t save_mtx;
2656 
2657 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
2658 		how_maybe = how_always;
2659 		how = HAMMER2_RESOLVE_ALWAYS;
2660 	} else if (flags & HAMMER2_LOOKUP_NODATA) {
2661 		how = HAMMER2_RESOLVE_NEVER;
2662 	} else {
2663 		how = HAMMER2_RESOLVE_MAYBE;
2664 	}
2665 	if (flags & HAMMER2_LOOKUP_SHARED) {
2666 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2667 		how_always |= HAMMER2_RESOLVE_SHARED;
2668 		how |= HAMMER2_RESOLVE_SHARED;
2669 	}
2670 
2671 	/*
2672 	 * Recurse (*parentp) upward if necessary until the parent completely
2673 	 * encloses the key range or we hit the inode.
2674 	 *
2675 	 * Handle races against the flusher deleting indirect nodes on its
2676 	 * way back up by continuing to recurse upward past the deletion.
2677 	 */
2678 	parent = *parentp;
2679 	hmp = parent->hmp;
2680 	*errorp = 0;
2681 
2682 	while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2683 	       parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2684 		scan_beg = parent->bref.key;
2685 		scan_end = scan_beg +
2686 			   ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2687 		if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2688 			if (key_beg >= scan_beg && key_end <= scan_end)
2689 				break;
2690 		}
2691 		parent = hammer2_chain_repparent(parentp, how_maybe);
2692 	}
2693 again:
2694 	if (--maxloops == 0)
2695 		panic("hammer2_chain_lookup: maxloops");
2696 
2697 	/*
2698 	 * MATCHIND case that does not require parent->data (do prior to
2699 	 * parent->error check).
2700 	 */
2701 	switch(parent->bref.type) {
2702 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2703 	case HAMMER2_BREF_TYPE_INDIRECT:
2704 		if (flags & HAMMER2_LOOKUP_MATCHIND) {
2705 			scan_beg = parent->bref.key;
2706 			scan_end = scan_beg +
2707 			       ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2708 			if (key_beg == scan_beg && key_end == scan_end) {
2709 				chain = parent;
2710 				hammer2_chain_ref(chain);
2711 				hammer2_chain_lock(chain, how_maybe);
2712 				*key_nextp = scan_end + 1;
2713 				goto done;
2714 			}
2715 		}
2716 		break;
2717 	default:
2718 		break;
2719 	}
2720 
2721 	/*
2722 	 * No lookup is possible if the parent is errored.  We delayed
2723 	 * this check as long as we could to ensure that the parent backup,
2724 	 * embedded data, and MATCHIND code could still execute.
2725 	 */
2726 	if (parent->error) {
2727 		*errorp = parent->error;
2728 		return NULL;
2729 	}
2730 
2731 	/*
2732 	 * Locate the blockref array.  Currently we do a fully associative
2733 	 * search through the array.
2734 	 */
2735 	switch(parent->bref.type) {
2736 	case HAMMER2_BREF_TYPE_INODE:
2737 		/*
2738 		 * Special shortcut for embedded data returns the inode
2739 		 * itself.  Callers must detect this condition and access
2740 		 * the embedded data (the strategy code does this for us).
2741 		 *
2742 		 * This is only applicable to regular files and softlinks.
2743 		 *
2744 		 * We need a second lock on parent.  Since we already have
2745 		 * a lock we must pass LOCKAGAIN to prevent unexpected
2746 		 * blocking (we don't want to block on a second shared
2747 		 * ref if an exclusive lock is pending)
2748 		 */
2749 		if (parent->data->ipdata.meta.op_flags &
2750 		    HAMMER2_OPFLAG_DIRECTDATA) {
2751 			if (flags & HAMMER2_LOOKUP_NODIRECT) {
2752 				chain = NULL;
2753 				*key_nextp = key_end + 1;
2754 				goto done;
2755 			}
2756 			hammer2_chain_ref(parent);
2757 			hammer2_chain_lock(parent, how_always |
2758 						   HAMMER2_RESOLVE_LOCKAGAIN);
2759 			*key_nextp = key_end + 1;
2760 			return (parent);
2761 		}
2762 		base = &parent->data->ipdata.u.blockset.blockref[0];
2763 		count = HAMMER2_SET_COUNT;
2764 		break;
2765 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2766 	case HAMMER2_BREF_TYPE_INDIRECT:
2767 		/*
2768 		 * Optimize indirect blocks in the INITIAL state to avoid
2769 		 * I/O.
2770 		 *
2771 		 * Debugging: Enter permanent wait state instead of
2772 		 * panicing on unexpectedly NULL data for the moment.
2773 		 */
2774 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2775 			base = NULL;
2776 		} else {
2777 			if (parent->data == NULL) {
2778 				kprintf("hammer2: unexpected NULL data "
2779 					"on %p\n", parent);
2780 				while (1)
2781 					tsleep(parent, 0, "xxx", 0);
2782 			}
2783 			base = &parent->data->npdata[0];
2784 		}
2785 		count = parent->bytes / sizeof(hammer2_blockref_t);
2786 		break;
2787 	case HAMMER2_BREF_TYPE_VOLUME:
2788 		base = &parent->data->voldata.sroot_blockset.blockref[0];
2789 		count = HAMMER2_SET_COUNT;
2790 		break;
2791 	case HAMMER2_BREF_TYPE_FREEMAP:
2792 		base = &parent->data->blkset.blockref[0];
2793 		count = HAMMER2_SET_COUNT;
2794 		break;
2795 	default:
2796 		kprintf("hammer2_chain_lookup: unrecognized "
2797 			"blockref(B) type: %d",
2798 			parent->bref.type);
2799 		while (1)
2800 			tsleep(&base, 0, "dead", 0);
2801 		panic("hammer2_chain_lookup: unrecognized "
2802 		      "blockref(B) type: %d",
2803 		      parent->bref.type);
2804 		base = NULL;	/* safety */
2805 		count = 0;	/* safety */
2806 	}
2807 
2808 	/*
2809 	 * Merged scan to find next candidate.
2810 	 *
2811 	 * hammer2_base_*() functions require the parent->core.live_* fields
2812 	 * to be synchronized.
2813 	 *
2814 	 * We need to hold the spinlock to access the block array and RB tree
2815 	 * and to interlock chain creation.
2816 	 */
2817 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2818 		hammer2_chain_countbrefs(parent, base, count);
2819 
2820 	/*
2821 	 * Combined search
2822 	 */
2823 	hammer2_spin_ex(&parent->core.spin);
2824 	chain = hammer2_combined_find(parent, base, count,
2825 				      key_nextp,
2826 				      key_beg, key_end,
2827 				      &bref);
2828 	generation = parent->core.generation;
2829 
2830 	/*
2831 	 * Exhausted parent chain, iterate.
2832 	 */
2833 	if (bref == NULL) {
2834 		KKASSERT(chain == NULL);
2835 		hammer2_spin_unex(&parent->core.spin);
2836 		if (key_beg == key_end)	/* short cut single-key case */
2837 			return (NULL);
2838 
2839 		/*
2840 		 * Stop if we reached the end of the iteration.
2841 		 */
2842 		if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2843 		    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2844 			return (NULL);
2845 		}
2846 
2847 		/*
2848 		 * Calculate next key, stop if we reached the end of the
2849 		 * iteration, otherwise go up one level and loop.
2850 		 */
2851 		key_beg = parent->bref.key +
2852 			  ((hammer2_key_t)1 << parent->bref.keybits);
2853 		if (key_beg == 0 || key_beg > key_end)
2854 			return (NULL);
2855 		parent = hammer2_chain_repparent(parentp, how_maybe);
2856 		goto again;
2857 	}
2858 
2859 	/*
2860 	 * Selected from blockref or in-memory chain.
2861 	 */
2862 	bsave = *bref;
2863 	if (chain == NULL) {
2864 		hammer2_spin_unex(&parent->core.spin);
2865 		if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2866 		    bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2867 			chain = hammer2_chain_get(parent, generation,
2868 						  &bsave, how_maybe);
2869 		} else {
2870 			chain = hammer2_chain_get(parent, generation,
2871 						  &bsave, how);
2872 		}
2873 		if (chain == NULL)
2874 			goto again;
2875 	} else {
2876 		hammer2_chain_ref(chain);
2877 		hammer2_spin_unex(&parent->core.spin);
2878 
2879 		/*
2880 		 * chain is referenced but not locked.  We must lock the
2881 		 * chain to obtain definitive state.
2882 		 */
2883 		if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2884 		    bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2885 			hammer2_chain_lock(chain, how_maybe);
2886 		} else {
2887 			hammer2_chain_lock(chain, how);
2888 		}
2889 		KKASSERT(chain->parent == parent);
2890 	}
2891 	if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
2892 	    chain->parent != parent) {
2893 		hammer2_chain_unlock(chain);
2894 		hammer2_chain_drop(chain);
2895 		chain = NULL;	/* SAFETY */
2896 		goto again;
2897 	}
2898 
2899 
2900 	/*
2901 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2902 	 *
2903 	 * NOTE: Chain's key range is not relevant as there might be
2904 	 *	 one-offs within the range that are not deleted.
2905 	 *
2906 	 * NOTE: Lookups can race delete-duplicate because
2907 	 *	 delete-duplicate does not lock the parent's core
2908 	 *	 (they just use the spinlock on the core).
2909 	 */
2910 	if (chain->flags & HAMMER2_CHAIN_DELETED) {
2911 		kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2912 			chain->bref.data_off, chain->bref.type,
2913 			chain->bref.key);
2914 		hammer2_chain_unlock(chain);
2915 		hammer2_chain_drop(chain);
2916 		chain = NULL;	/* SAFETY */
2917 		key_beg = *key_nextp;
2918 		if (key_beg == 0 || key_beg > key_end)
2919 			return(NULL);
2920 		goto again;
2921 	}
2922 
2923 	/*
2924 	 * If the chain element is an indirect block it becomes the new
2925 	 * parent and we loop on it.  We must maintain our top-down locks
2926 	 * to prevent the flusher from interfering (i.e. doing a
2927 	 * delete-duplicate and leaving us recursing down a deleted chain).
2928 	 *
2929 	 * The parent always has to be locked with at least RESOLVE_MAYBE
2930 	 * so we can access its data.  It might need a fixup if the caller
2931 	 * passed incompatible flags.  Be careful not to cause a deadlock
2932 	 * as a data-load requires an exclusive lock.
2933 	 *
2934 	 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2935 	 * range is within the requested key range we return the indirect
2936 	 * block and do NOT loop.  This is usually only used to acquire
2937 	 * freemap nodes.
2938 	 */
2939 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2940 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2941 		save_mtx = parent->lock;
2942 		hammer2_chain_unlock(parent);
2943 		hammer2_chain_drop(parent);
2944 		*parentp = parent = chain;
2945 		chain = NULL;	/* SAFETY */
2946 		goto again;
2947 	}
2948 done:
2949 	/*
2950 	 * All done, return the locked chain.
2951 	 *
2952 	 * If the caller does not want a locked chain, replace the lock with
2953 	 * a ref.  Perhaps this can eventually be optimized to not obtain the
2954 	 * lock in the first place for situations where the data does not
2955 	 * need to be resolved.
2956 	 *
2957 	 * NOTE! A chain->error must be tested by the caller upon return.
2958 	 *	 *errorp is only set based on issues which occur while
2959 	 *	 trying to reach the chain.
2960 	 */
2961 	return (chain);
2962 }
2963 
2964 /*
2965  * After having issued a lookup we can iterate all matching keys.
2966  *
2967  * If chain is non-NULL we continue the iteration from just after it's index.
2968  *
2969  * If chain is NULL we assume the parent was exhausted and continue the
2970  * iteration at the next parent.
2971  *
2972  * If a fatal error occurs (typically an I/O error), a dummy chain is
2973  * returned with chain->error and error-identifying information set.  This
2974  * chain will assert if you try to do anything fancy with it.
2975  *
2976  * XXX Depending on where the error occurs we should allow continued iteration.
2977  *
2978  * parent must be locked on entry and remains locked throughout.  chain's
2979  * lock status must match flags.  Chain is always at least referenced.
2980  *
2981  * WARNING!  The MATCHIND flag does not apply to this function.
2982  */
2983 hammer2_chain_t *
2984 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2985 		   hammer2_key_t *key_nextp,
2986 		   hammer2_key_t key_beg, hammer2_key_t key_end,
2987 		   int *errorp, int flags)
2988 {
2989 	hammer2_chain_t *parent;
2990 	int how_maybe;
2991 
2992 	/*
2993 	 * Calculate locking flags for upward recursion.
2994 	 */
2995 	how_maybe = HAMMER2_RESOLVE_MAYBE;
2996 	if (flags & HAMMER2_LOOKUP_SHARED)
2997 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2998 
2999 	parent = *parentp;
3000 	*errorp = 0;
3001 
3002 	/*
3003 	 * Calculate the next index and recalculate the parent if necessary.
3004 	 */
3005 	if (chain) {
3006 		key_beg = chain->bref.key +
3007 			  ((hammer2_key_t)1 << chain->bref.keybits);
3008 		hammer2_chain_unlock(chain);
3009 		hammer2_chain_drop(chain);
3010 
3011 		/*
3012 		 * chain invalid past this point, but we can still do a
3013 		 * pointer comparison w/parent.
3014 		 *
3015 		 * Any scan where the lookup returned degenerate data embedded
3016 		 * in the inode has an invalid index and must terminate.
3017 		 */
3018 		if (chain == parent)
3019 			return(NULL);
3020 		if (key_beg == 0 || key_beg > key_end)
3021 			return(NULL);
3022 		chain = NULL;
3023 	} else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
3024 		   parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
3025 		/*
3026 		 * We reached the end of the iteration.
3027 		 */
3028 		return (NULL);
3029 	} else {
3030 		/*
3031 		 * Continue iteration with next parent unless the current
3032 		 * parent covers the range.
3033 		 *
3034 		 * (This also handles the case of a deleted, empty indirect
3035 		 * node).
3036 		 */
3037 		key_beg = parent->bref.key +
3038 			  ((hammer2_key_t)1 << parent->bref.keybits);
3039 		if (key_beg == 0 || key_beg > key_end)
3040 			return (NULL);
3041 		parent = hammer2_chain_repparent(parentp, how_maybe);
3042 	}
3043 
3044 	/*
3045 	 * And execute
3046 	 */
3047 	return (hammer2_chain_lookup(parentp, key_nextp,
3048 				     key_beg, key_end,
3049 				     errorp, flags));
3050 }
3051 
3052 /*
3053  * Caller wishes to iterate chains under parent, loading new chains into
3054  * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
3055  * then call hammer2_chain_scan() repeatedly until a non-zero return.
3056  * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
3057  * with the returned chain for the scan.  The returned *chainp will be
3058  * locked and referenced.  Any prior contents will be unlocked and dropped.
3059  *
3060  * Caller should check the return value.  A normal scan EOF will return
3061  * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
3062  * error trying to access parent data.  Any error in the returned chain
3063  * must be tested separately by the caller.
3064  *
3065  * (*chainp) is dropped on each scan, but will only be set if the returned
3066  * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
3067  * returned via *chainp.  The caller will get their bref only.
3068  *
3069  * The raw scan function is similar to lookup/next but does not seek to a key.
3070  * Blockrefs are iterated via first_bref = (parent, NULL) and
3071  * next_chain = (parent, bref).
3072  *
3073  * The passed-in parent must be locked and its data resolved.  The function
3074  * nominally returns a locked and referenced *chainp != NULL for chains
3075  * the caller might need to recurse on (and will dipose of any *chainp passed
3076  * in).  The caller must check the chain->bref.type either way.
3077  */
3078 int
3079 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3080 		   hammer2_blockref_t *bref, int *firstp,
3081 		   int flags)
3082 {
3083 	hammer2_dev_t *hmp;
3084 	hammer2_blockref_t *base;
3085 	hammer2_blockref_t *bref_ptr;
3086 	hammer2_key_t key;
3087 	hammer2_key_t next_key;
3088 	hammer2_chain_t *chain = NULL;
3089 	int count = 0;
3090 	int how_always = HAMMER2_RESOLVE_ALWAYS;
3091 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
3092 	int how;
3093 	int generation;
3094 	int maxloops = 300000;
3095 	int error;
3096 
3097 	hmp = parent->hmp;
3098 	error = 0;
3099 
3100 	/*
3101 	 * Scan flags borrowed from lookup.
3102 	 */
3103 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
3104 		how_maybe = how_always;
3105 		how = HAMMER2_RESOLVE_ALWAYS;
3106 	} else if (flags & HAMMER2_LOOKUP_NODATA) {
3107 		how = HAMMER2_RESOLVE_NEVER;
3108 	} else {
3109 		how = HAMMER2_RESOLVE_MAYBE;
3110 	}
3111 	if (flags & HAMMER2_LOOKUP_SHARED) {
3112 		how_maybe |= HAMMER2_RESOLVE_SHARED;
3113 		how_always |= HAMMER2_RESOLVE_SHARED;
3114 		how |= HAMMER2_RESOLVE_SHARED;
3115 	}
3116 
3117 	/*
3118 	 * Calculate key to locate first/next element, unlocking the previous
3119 	 * element as we go.  Be careful, the key calculation can overflow.
3120 	 *
3121 	 * (also reset bref to NULL)
3122 	 */
3123 	if (*firstp) {
3124 		key = 0;
3125 		*firstp = 0;
3126 	} else {
3127 		key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3128 		if ((chain = *chainp) != NULL) {
3129 			*chainp = NULL;
3130 			hammer2_chain_unlock(chain);
3131 			hammer2_chain_drop(chain);
3132 			chain = NULL;
3133 		}
3134 		if (key == 0) {
3135 			error |= HAMMER2_ERROR_EOF;
3136 			goto done;
3137 		}
3138 	}
3139 
3140 again:
3141 	if (parent->error) {
3142 		error = parent->error;
3143 		goto done;
3144 	}
3145 	if (--maxloops == 0)
3146 		panic("hammer2_chain_scan: maxloops");
3147 
3148 	/*
3149 	 * Locate the blockref array.  Currently we do a fully associative
3150 	 * search through the array.
3151 	 */
3152 	switch(parent->bref.type) {
3153 	case HAMMER2_BREF_TYPE_INODE:
3154 		/*
3155 		 * An inode with embedded data has no sub-chains.
3156 		 *
3157 		 * WARNING! Bulk scan code may pass a static chain marked
3158 		 *	    as BREF_TYPE_INODE with a copy of the volume
3159 		 *	    root blockset to snapshot the volume.
3160 		 */
3161 		if (parent->data->ipdata.meta.op_flags &
3162 		    HAMMER2_OPFLAG_DIRECTDATA) {
3163 			error |= HAMMER2_ERROR_EOF;
3164 			goto done;
3165 		}
3166 		base = &parent->data->ipdata.u.blockset.blockref[0];
3167 		count = HAMMER2_SET_COUNT;
3168 		break;
3169 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3170 	case HAMMER2_BREF_TYPE_INDIRECT:
3171 		/*
3172 		 * Optimize indirect blocks in the INITIAL state to avoid
3173 		 * I/O.
3174 		 */
3175 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3176 			base = NULL;
3177 		} else {
3178 			if (parent->data == NULL)
3179 				panic("parent->data is NULL");
3180 			base = &parent->data->npdata[0];
3181 		}
3182 		count = parent->bytes / sizeof(hammer2_blockref_t);
3183 		break;
3184 	case HAMMER2_BREF_TYPE_VOLUME:
3185 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3186 		count = HAMMER2_SET_COUNT;
3187 		break;
3188 	case HAMMER2_BREF_TYPE_FREEMAP:
3189 		base = &parent->data->blkset.blockref[0];
3190 		count = HAMMER2_SET_COUNT;
3191 		break;
3192 	default:
3193 		panic("hammer2_chain_scan: unrecognized blockref type: %d",
3194 		      parent->bref.type);
3195 		base = NULL;	/* safety */
3196 		count = 0;	/* safety */
3197 	}
3198 
3199 	/*
3200 	 * Merged scan to find next candidate.
3201 	 *
3202 	 * hammer2_base_*() functions require the parent->core.live_* fields
3203 	 * to be synchronized.
3204 	 *
3205 	 * We need to hold the spinlock to access the block array and RB tree
3206 	 * and to interlock chain creation.
3207 	 */
3208 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3209 		hammer2_chain_countbrefs(parent, base, count);
3210 
3211 	next_key = 0;
3212 	bref_ptr = NULL;
3213 	hammer2_spin_ex(&parent->core.spin);
3214 	chain = hammer2_combined_find(parent, base, count,
3215 				      &next_key,
3216 				      key, HAMMER2_KEY_MAX,
3217 				      &bref_ptr);
3218 	generation = parent->core.generation;
3219 
3220 	/*
3221 	 * Exhausted parent chain, we're done.
3222 	 */
3223 	if (bref_ptr == NULL) {
3224 		hammer2_spin_unex(&parent->core.spin);
3225 		KKASSERT(chain == NULL);
3226 		error |= HAMMER2_ERROR_EOF;
3227 		goto done;
3228 	}
3229 
3230 	/*
3231 	 * Copy into the supplied stack-based blockref.
3232 	 */
3233 	*bref = *bref_ptr;
3234 
3235 	/*
3236 	 * Selected from blockref or in-memory chain.
3237 	 */
3238 	if (chain == NULL) {
3239 		switch(bref->type) {
3240 		case HAMMER2_BREF_TYPE_INODE:
3241 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3242 		case HAMMER2_BREF_TYPE_INDIRECT:
3243 		case HAMMER2_BREF_TYPE_VOLUME:
3244 		case HAMMER2_BREF_TYPE_FREEMAP:
3245 			/*
3246 			 * Recursion, always get the chain
3247 			 */
3248 			hammer2_spin_unex(&parent->core.spin);
3249 			chain = hammer2_chain_get(parent, generation,
3250 						  bref, how);
3251 			if (chain == NULL)
3252 				goto again;
3253 			break;
3254 		default:
3255 			/*
3256 			 * No recursion, do not waste time instantiating
3257 			 * a chain, just iterate using the bref.
3258 			 */
3259 			hammer2_spin_unex(&parent->core.spin);
3260 			break;
3261 		}
3262 	} else {
3263 		/*
3264 		 * Recursion or not we need the chain in order to supply
3265 		 * the bref.
3266 		 */
3267 		hammer2_chain_ref(chain);
3268 		hammer2_spin_unex(&parent->core.spin);
3269 		hammer2_chain_lock(chain, how);
3270 	}
3271 	if (chain &&
3272 	    (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3273 	     chain->parent != parent)) {
3274 		hammer2_chain_unlock(chain);
3275 		hammer2_chain_drop(chain);
3276 		chain = NULL;
3277 		goto again;
3278 	}
3279 
3280 	/*
3281 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3282 	 *
3283 	 * NOTE: chain's key range is not relevant as there might be
3284 	 *	 one-offs within the range that are not deleted.
3285 	 *
3286 	 * NOTE: XXX this could create problems with scans used in
3287 	 *	 situations other than mount-time recovery.
3288 	 *
3289 	 * NOTE: Lookups can race delete-duplicate because
3290 	 *	 delete-duplicate does not lock the parent's core
3291 	 *	 (they just use the spinlock on the core).
3292 	 */
3293 	if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3294 		hammer2_chain_unlock(chain);
3295 		hammer2_chain_drop(chain);
3296 		chain = NULL;
3297 
3298 		key = next_key;
3299 		if (key == 0) {
3300 			error |= HAMMER2_ERROR_EOF;
3301 			goto done;
3302 		}
3303 		goto again;
3304 	}
3305 
3306 done:
3307 	/*
3308 	 * All done, return the bref or NULL, supply chain if necessary.
3309 	 */
3310 	if (chain)
3311 		*chainp = chain;
3312 	return (error);
3313 }
3314 
3315 /*
3316  * Create and return a new hammer2 system memory structure of the specified
3317  * key, type and size and insert it under (*parentp).  This is a full
3318  * insertion, based on the supplied key/keybits, and may involve creating
3319  * indirect blocks and moving other chains around via delete/duplicate.
3320  *
3321  * This call can be made with parent == NULL as long as a non -1 methods
3322  * is supplied.  hmp must also be supplied in this situation (otherwise
3323  * hmp is extracted from the supplied parent).  The chain will be detached
3324  * from the topology.  A later call with both parent and chain can be made
3325  * to attach it.
3326  *
3327  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3328  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3329  * FULL.  This typically means that the caller is creating the chain after
3330  * doing a hammer2_chain_lookup().
3331  *
3332  * (*parentp) must be exclusive locked and may be replaced on return
3333  * depending on how much work the function had to do.
3334  *
3335  * (*parentp) must not be errored or this function will assert.
3336  *
3337  * (*chainp) usually starts out NULL and returns the newly created chain,
3338  * but if the caller desires the caller may allocate a disconnected chain
3339  * and pass it in instead.
3340  *
3341  * This function should NOT be used to insert INDIRECT blocks.  It is
3342  * typically used to create/insert inodes and data blocks.
3343  *
3344  * Caller must pass-in an exclusively locked parent the new chain is to
3345  * be inserted under, and optionally pass-in a disconnected, exclusively
3346  * locked chain to insert (else we create a new chain).  The function will
3347  * adjust (*parentp) as necessary, create or connect the chain, and
3348  * return an exclusively locked chain in *chainp.
3349  *
3350  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3351  * and will be reassigned.
3352  *
3353  * NOTE: returns HAMMER_ERROR_* flags
3354  */
3355 int
3356 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3357 		     hammer2_dev_t *hmp, hammer2_pfs_t *pmp, int methods,
3358 		     hammer2_key_t key, int keybits, int type, size_t bytes,
3359 		     hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3360 {
3361 	hammer2_chain_t *chain;
3362 	hammer2_chain_t *parent;
3363 	hammer2_blockref_t *base;
3364 	hammer2_blockref_t dummy;
3365 	int allocated = 0;
3366 	int error = 0;
3367 	int count;
3368 	int maxloops = 300000;
3369 
3370 	/*
3371 	 * Topology may be crossing a PFS boundary.
3372 	 */
3373 	parent = *parentp;
3374 	if (parent) {
3375 		KKASSERT(hammer2_mtx_owned(&parent->lock));
3376 		KKASSERT(parent->error == 0);
3377 		hmp = parent->hmp;
3378 	}
3379 	chain = *chainp;
3380 
3381 	if (chain == NULL) {
3382 		/*
3383 		 * First allocate media space and construct the dummy bref,
3384 		 * then allocate the in-memory chain structure.  Set the
3385 		 * INITIAL flag for fresh chains which do not have embedded
3386 		 * data.
3387 		 *
3388 		 * XXX for now set the check mode of the child based on
3389 		 *     the parent or, if the parent is an inode, the
3390 		 *     specification in the inode.
3391 		 */
3392 		bzero(&dummy, sizeof(dummy));
3393 		dummy.type = type;
3394 		dummy.key = key;
3395 		dummy.keybits = keybits;
3396 		dummy.data_off = hammer2_getradix(bytes);
3397 
3398 		/*
3399 		 * Inherit methods from parent by default.  Primarily used
3400 		 * for BREF_TYPE_DATA.  Non-data types *must* be set to
3401 		 * a non-NONE check algorithm.
3402 		 */
3403 		if (methods == -1)
3404 			dummy.methods = parent->bref.methods;
3405 		else
3406 			dummy.methods = (uint8_t)methods;
3407 
3408 		if (type != HAMMER2_BREF_TYPE_DATA &&
3409 		    HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3410 			dummy.methods |=
3411 				HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3412 		}
3413 
3414 		chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3415 
3416 		/*
3417 		 * Lock the chain manually, chain_lock will load the chain
3418 		 * which we do NOT want to do.  (note: chain->refs is set
3419 		 * to 1 by chain_alloc() for us, but lockcnt is not).
3420 		 */
3421 		chain->lockcnt = 1;
3422 		hammer2_mtx_ex(&chain->lock);
3423 		allocated = 1;
3424 
3425 		/*
3426 		 * Set INITIAL to optimize I/O.  The flag will generally be
3427 		 * processed when we call hammer2_chain_modify().
3428 		 *
3429 		 * Recalculate bytes to reflect the actual media block
3430 		 * allocation.  Handle special case radix 0 == 0 bytes.
3431 		 */
3432 		bytes = (size_t)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
3433 		if (bytes)
3434 			bytes = (hammer2_off_t)1 << bytes;
3435 		chain->bytes = bytes;
3436 
3437 		switch(type) {
3438 		case HAMMER2_BREF_TYPE_VOLUME:
3439 		case HAMMER2_BREF_TYPE_FREEMAP:
3440 			panic("hammer2_chain_create: called with volume type");
3441 			break;
3442 		case HAMMER2_BREF_TYPE_INDIRECT:
3443 			panic("hammer2_chain_create: cannot be used to"
3444 			      "create indirect block");
3445 			break;
3446 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3447 			panic("hammer2_chain_create: cannot be used to"
3448 			      "create freemap root or node");
3449 			break;
3450 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3451 			KKASSERT(bytes == sizeof(chain->data->bmdata));
3452 			/* fall through */
3453 		case HAMMER2_BREF_TYPE_DIRENT:
3454 		case HAMMER2_BREF_TYPE_INODE:
3455 		case HAMMER2_BREF_TYPE_DATA:
3456 		default:
3457 			/*
3458 			 * leave chain->data NULL, set INITIAL
3459 			 */
3460 			KKASSERT(chain->data == NULL);
3461 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3462 			break;
3463 		}
3464 	} else {
3465 		/*
3466 		 * We are reattaching a previously deleted chain, possibly
3467 		 * under a new parent and possibly with a new key/keybits.
3468 		 * The chain does not have to be in a modified state.  The
3469 		 * UPDATE flag will be set later on in this routine.
3470 		 *
3471 		 * Do NOT mess with the current state of the INITIAL flag.
3472 		 */
3473 		chain->bref.key = key;
3474 		chain->bref.keybits = keybits;
3475 		if (chain->flags & HAMMER2_CHAIN_DELETED)
3476 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3477 		KKASSERT(chain->parent == NULL);
3478 	}
3479 
3480 	/*
3481 	 * Set the appropriate bref flag if requested.
3482 	 *
3483 	 * NOTE! Callers can call this function to move chains without
3484 	 *	 knowing about special flags, so don't clear bref flags
3485 	 *	 here!
3486 	 */
3487 	if (flags & HAMMER2_INSERT_PFSROOT)
3488 		chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3489 
3490 	if (parent == NULL)
3491 		goto skip;
3492 
3493 	/*
3494 	 * Calculate how many entries we have in the blockref array and
3495 	 * determine if an indirect block is required when inserting into
3496 	 * the parent.
3497 	 */
3498 again:
3499 	if (--maxloops == 0)
3500 		panic("hammer2_chain_create: maxloops");
3501 
3502 	switch(parent->bref.type) {
3503 	case HAMMER2_BREF_TYPE_INODE:
3504 		if ((parent->data->ipdata.meta.op_flags &
3505 		     HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3506 			kprintf("hammer2: parent set for direct-data! "
3507 				"pkey=%016jx ckey=%016jx\n",
3508 				parent->bref.key,
3509 				chain->bref.key);
3510 	        }
3511 		KKASSERT((parent->data->ipdata.meta.op_flags &
3512 			  HAMMER2_OPFLAG_DIRECTDATA) == 0);
3513 		KKASSERT(parent->data != NULL);
3514 		base = &parent->data->ipdata.u.blockset.blockref[0];
3515 		count = HAMMER2_SET_COUNT;
3516 		break;
3517 	case HAMMER2_BREF_TYPE_INDIRECT:
3518 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3519 		if (parent->flags & HAMMER2_CHAIN_INITIAL)
3520 			base = NULL;
3521 		else
3522 			base = &parent->data->npdata[0];
3523 		count = parent->bytes / sizeof(hammer2_blockref_t);
3524 		break;
3525 	case HAMMER2_BREF_TYPE_VOLUME:
3526 		KKASSERT(parent->data != NULL);
3527 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3528 		count = HAMMER2_SET_COUNT;
3529 		break;
3530 	case HAMMER2_BREF_TYPE_FREEMAP:
3531 		KKASSERT(parent->data != NULL);
3532 		base = &parent->data->blkset.blockref[0];
3533 		count = HAMMER2_SET_COUNT;
3534 		break;
3535 	default:
3536 		panic("hammer2_chain_create: unrecognized blockref type: %d",
3537 		      parent->bref.type);
3538 		base = NULL;
3539 		count = 0;
3540 		break;
3541 	}
3542 
3543 	/*
3544 	 * Make sure we've counted the brefs
3545 	 */
3546 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3547 		hammer2_chain_countbrefs(parent, base, count);
3548 
3549 	KASSERT(parent->core.live_count >= 0 &&
3550 		parent->core.live_count <= count,
3551 		("bad live_count %d/%d (%02x, %d)",
3552 			parent->core.live_count, count,
3553 			parent->bref.type, parent->bytes));
3554 
3555 	/*
3556 	 * If no free blockref could be found we must create an indirect
3557 	 * block and move a number of blockrefs into it.  With the parent
3558 	 * locked we can safely lock each child in order to delete+duplicate
3559 	 * it without causing a deadlock.
3560 	 *
3561 	 * This may return the new indirect block or the old parent depending
3562 	 * on where the key falls.  NULL is returned on error.
3563 	 */
3564 	if (parent->core.live_count == count) {
3565 		hammer2_chain_t *nparent;
3566 
3567 		KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3568 
3569 		nparent = hammer2_chain_create_indirect(parent, key, keybits,
3570 							mtid, type, &error);
3571 		if (nparent == NULL) {
3572 			if (allocated)
3573 				hammer2_chain_drop(chain);
3574 			chain = NULL;
3575 			goto done;
3576 		}
3577 		if (parent != nparent) {
3578 			hammer2_chain_unlock(parent);
3579 			hammer2_chain_drop(parent);
3580 			parent = *parentp = nparent;
3581 		}
3582 		goto again;
3583 	}
3584 
3585 	/*
3586 	 * fall through if parent, or skip to here if no parent.
3587 	 */
3588 skip:
3589 	if (chain->flags & HAMMER2_CHAIN_DELETED)
3590 		kprintf("Inserting deleted chain @%016jx\n",
3591 			chain->bref.key);
3592 
3593 	/*
3594 	 * Link the chain into its parent.
3595 	 */
3596 	if (chain->parent != NULL)
3597 		panic("hammer2: hammer2_chain_create: chain already connected");
3598 	KKASSERT(chain->parent == NULL);
3599 	if (parent) {
3600 		KKASSERT(parent->core.live_count < count);
3601 		hammer2_chain_insert(parent, chain,
3602 				     HAMMER2_CHAIN_INSERT_SPIN |
3603 				     HAMMER2_CHAIN_INSERT_LIVE,
3604 				     0);
3605 	}
3606 
3607 	if (allocated) {
3608 		/*
3609 		 * Mark the newly created chain modified.  This will cause
3610 		 * UPDATE to be set and process the INITIAL flag.
3611 		 *
3612 		 * Device buffers are not instantiated for DATA elements
3613 		 * as these are handled by logical buffers.
3614 		 *
3615 		 * Indirect and freemap node indirect blocks are handled
3616 		 * by hammer2_chain_create_indirect() and not by this
3617 		 * function.
3618 		 *
3619 		 * Data for all other bref types is expected to be
3620 		 * instantiated (INODE, LEAF).
3621 		 */
3622 		switch(chain->bref.type) {
3623 		case HAMMER2_BREF_TYPE_DATA:
3624 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3625 		case HAMMER2_BREF_TYPE_DIRENT:
3626 		case HAMMER2_BREF_TYPE_INODE:
3627 			error = hammer2_chain_modify(chain, mtid, dedup_off,
3628 						     HAMMER2_MODIFY_OPTDATA);
3629 			break;
3630 		default:
3631 			/*
3632 			 * Remaining types are not supported by this function.
3633 			 * In particular, INDIRECT and LEAF_NODE types are
3634 			 * handled by create_indirect().
3635 			 */
3636 			panic("hammer2_chain_create: bad type: %d",
3637 			      chain->bref.type);
3638 			/* NOT REACHED */
3639 			break;
3640 		}
3641 	} else {
3642 		/*
3643 		 * When reconnecting a chain we must set UPDATE and
3644 		 * setflush so the flush recognizes that it must update
3645 		 * the bref in the parent.
3646 		 */
3647 		if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3648 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3649 	}
3650 
3651 	/*
3652 	 * We must setflush(parent) to ensure that it recurses through to
3653 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3654 	 * already set in the chain (so it won't recurse up to set it in the
3655 	 * parent).
3656 	 */
3657 	if (parent)
3658 		hammer2_chain_setflush(parent);
3659 
3660 done:
3661 	*chainp = chain;
3662 
3663 	return (error);
3664 }
3665 
3666 /*
3667  * Move the chain from its old parent to a new parent.  The chain must have
3668  * already been deleted or already disconnected (or never associated) with
3669  * a parent.  The chain is reassociated with the new parent and the deleted
3670  * flag will be cleared (no longer deleted).  The chain's modification state
3671  * is not altered.
3672  *
3673  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3674  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3675  * FULL.  This typically means that the caller is creating the chain after
3676  * doing a hammer2_chain_lookup().
3677  *
3678  * Neither (parent) or (chain) can be errored.
3679  *
3680  * If (parent) is non-NULL then the chain is inserted under the parent.
3681  *
3682  * If (parent) is NULL then the newly duplicated chain is not inserted
3683  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3684  * passing into hammer2_chain_create() after this function returns).
3685  *
3686  * WARNING! This function calls create which means it can insert indirect
3687  *	    blocks.  This can cause other unrelated chains in the parent to
3688  *	    be moved to a newly inserted indirect block in addition to the
3689  *	    specific chain.
3690  */
3691 void
3692 hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3693 		     hammer2_tid_t mtid, int flags)
3694 {
3695 	hammer2_blockref_t *bref;
3696 	hammer2_dev_t *hmp;
3697 	hammer2_chain_t *parent;
3698 	size_t bytes;
3699 
3700 	/*
3701 	 * WARNING!  We should never resolve DATA to device buffers
3702 	 *	     (XXX allow it if the caller did?), and since
3703 	 *	     we currently do not have the logical buffer cache
3704 	 *	     buffer in-hand to fix its cached physical offset
3705 	 *	     we also force the modify code to not COW it. XXX
3706 	 *
3707 	 * NOTE!     We allow error'd chains to be renamed.  The bref itself
3708 	 *	     is good and can be renamed.  The content, however, may
3709 	 *	     be inaccessible.
3710 	 */
3711 	hmp = chain->hmp;
3712 	KKASSERT(chain->parent == NULL);
3713 	/*KKASSERT(chain->error == 0); allow */
3714 
3715 	/*
3716 	 * Now create a duplicate of the chain structure, associating
3717 	 * it with the same core, making it the same size, pointing it
3718 	 * to the same bref (the same media block).
3719 	 *
3720 	 * NOTE: Handle special radix == 0 case (means 0 bytes).
3721 	 */
3722 	bref = &chain->bref;
3723 	bytes = (size_t)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
3724 	if (bytes)
3725 		bytes = (hammer2_off_t)1 << bytes;
3726 
3727 	/*
3728 	 * If parent is not NULL the duplicated chain will be entered under
3729 	 * the parent and the UPDATE bit set to tell flush to update
3730 	 * the blockref.
3731 	 *
3732 	 * We must setflush(parent) to ensure that it recurses through to
3733 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3734 	 * already set in the chain (so it won't recurse up to set it in the
3735 	 * parent).
3736 	 *
3737 	 * Having both chains locked is extremely important for atomicy.
3738 	 */
3739 	if (parentp && (parent = *parentp) != NULL) {
3740 		KKASSERT(hammer2_mtx_owned(&parent->lock));
3741 		KKASSERT(parent->refs > 0);
3742 		KKASSERT(parent->error == 0);
3743 
3744 		hammer2_chain_create(parentp, &chain, NULL, chain->pmp,
3745 				     HAMMER2_METH_DEFAULT,
3746 				     bref->key, bref->keybits, bref->type,
3747 				     chain->bytes, mtid, 0, flags);
3748 		KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3749 		hammer2_chain_setflush(*parentp);
3750 	}
3751 }
3752 
3753 /*
3754  * This works in tandem with delete_obref() to install a blockref in
3755  * (typically) an indirect block that is associated with the chain being
3756  * moved to *parentp.
3757  *
3758  * The reason we need this function is that the caller needs to maintain
3759  * the blockref as it was, and not generate a new blockref for what might
3760  * be a modified chain.  Otherwise stuff will leak into the flush that
3761  * the flush code's FLUSH_INODE_STOP flag is unable to catch.
3762  *
3763  * It is EXTREMELY important that we properly set CHAIN_BMAPUPD and
3764  * CHAIN_UPDATE.  We must set BMAPUPD if the bref does not match, and
3765  * we must clear CHAIN_UPDATE (that was likely set by the chain_rename) if
3766  * it does.  Otherwise we can end up in a situation where H2 is unable to
3767  * clean up the in-memory chain topology.
3768  *
3769  * The reason for this is that flushes do not generally flush through
3770  * BREF_TYPE_INODE chains and depend on a hammer2_inode_t queued to syncq
3771  * or sideq to properly flush and dispose of the related inode chain's flags.
3772  * Situations where the inode is not actually modified by the frontend,
3773  * but where we have to move the related chains around as we insert or cleanup
3774  * indirect blocks, can leave us with a 'dirty' (non-disposable) in-memory
3775  * inode chain that does not have a hammer2_inode_t associated with it.
3776  */
3777 void
3778 hammer2_chain_rename_obref(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3779 			   hammer2_tid_t mtid, int flags,
3780 			   hammer2_blockref_t *obref)
3781 {
3782 	hammer2_chain_rename(parentp, chain, mtid, flags);
3783 
3784 	if (obref->type != HAMMER2_BREF_TYPE_EMPTY) {
3785 		hammer2_blockref_t *tbase;
3786 		int tcount;
3787 
3788 		KKASSERT((chain->flags & HAMMER2_CHAIN_BMAPPED) == 0);
3789 		hammer2_chain_modify(*parentp, mtid, 0, 0);
3790 		tbase = hammer2_chain_base_and_count(*parentp, &tcount);
3791 		hammer2_base_insert(*parentp, tbase, tcount, chain, obref);
3792 		if (bcmp(obref, &chain->bref, sizeof(chain->bref))) {
3793 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD |
3794 						      HAMMER2_CHAIN_UPDATE);
3795 		} else {
3796 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3797 		}
3798 	}
3799 }
3800 
3801 /*
3802  * Helper function for deleting chains.
3803  *
3804  * The chain is removed from the live view (the RBTREE) as well as the parent's
3805  * blockmap.  Both chain and its parent must be locked.
3806  *
3807  * parent may not be errored.  chain can be errored.
3808  */
3809 static int
3810 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3811 			     hammer2_tid_t mtid, int flags,
3812 			     hammer2_blockref_t *obref)
3813 {
3814 	hammer2_dev_t *hmp;
3815 	int error = 0;
3816 
3817 	KKASSERT((chain->flags & (HAMMER2_CHAIN_DELETED |
3818 				  HAMMER2_CHAIN_FICTITIOUS)) == 0);
3819 	KKASSERT(chain->parent == parent);
3820 	hmp = chain->hmp;
3821 
3822 	if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3823 		/*
3824 		 * Chain is blockmapped, so there must be a parent.
3825 		 * Atomically remove the chain from the parent and remove
3826 		 * the blockmap entry.  The parent must be set modified
3827 		 * to remove the blockmap entry.
3828 		 */
3829 		hammer2_blockref_t *base;
3830 		int count;
3831 
3832 		KKASSERT(parent != NULL);
3833 		KKASSERT(parent->error == 0);
3834 		KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3835 		error = hammer2_chain_modify(parent, mtid, 0, 0);
3836 		if (error)
3837 			goto done;
3838 
3839 		/*
3840 		 * Calculate blockmap pointer
3841 		 */
3842 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3843 		hammer2_spin_ex(&chain->core.spin);
3844 		hammer2_spin_ex(&parent->core.spin);
3845 
3846 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3847 		atomic_add_int(&parent->core.live_count, -1);
3848 		++parent->core.generation;
3849 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3850 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3851 		--parent->core.chain_count;
3852 		chain->parent = NULL;
3853 
3854 		switch(parent->bref.type) {
3855 		case HAMMER2_BREF_TYPE_INODE:
3856 			/*
3857 			 * Access the inode's block array.  However, there
3858 			 * is no block array if the inode is flagged
3859 			 * DIRECTDATA.
3860 			 */
3861 			if (parent->data &&
3862 			    (parent->data->ipdata.meta.op_flags &
3863 			     HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3864 				base =
3865 				   &parent->data->ipdata.u.blockset.blockref[0];
3866 			} else {
3867 				base = NULL;
3868 			}
3869 			count = HAMMER2_SET_COUNT;
3870 			break;
3871 		case HAMMER2_BREF_TYPE_INDIRECT:
3872 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3873 			if (parent->data)
3874 				base = &parent->data->npdata[0];
3875 			else
3876 				base = NULL;
3877 			count = parent->bytes / sizeof(hammer2_blockref_t);
3878 			break;
3879 		case HAMMER2_BREF_TYPE_VOLUME:
3880 			base = &parent->data->voldata.
3881 					sroot_blockset.blockref[0];
3882 			count = HAMMER2_SET_COUNT;
3883 			break;
3884 		case HAMMER2_BREF_TYPE_FREEMAP:
3885 			base = &parent->data->blkset.blockref[0];
3886 			count = HAMMER2_SET_COUNT;
3887 			break;
3888 		default:
3889 			base = NULL;
3890 			count = 0;
3891 			panic("_hammer2_chain_delete_helper: "
3892 			      "unrecognized blockref type: %d",
3893 			      parent->bref.type);
3894 		}
3895 
3896 		/*
3897 		 * delete blockmapped chain from its parent.
3898 		 *
3899 		 * The parent is not affected by any statistics in chain
3900 		 * which are pending synchronization.  That is, there is
3901 		 * nothing to undo in the parent since they have not yet
3902 		 * been incorporated into the parent.
3903 		 *
3904 		 * The parent is affected by statistics stored in inodes.
3905 		 * Those have already been synchronized, so they must be
3906 		 * undone.  XXX split update possible w/delete in middle?
3907 		 */
3908 		if (base) {
3909 			hammer2_base_delete(parent, base, count, chain, obref);
3910 		}
3911 		hammer2_spin_unex(&parent->core.spin);
3912 		hammer2_spin_unex(&chain->core.spin);
3913 	} else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3914 		/*
3915 		 * Chain is not blockmapped but a parent is present.
3916 		 * Atomically remove the chain from the parent.  There is
3917 		 * no blockmap entry to remove.
3918 		 *
3919 		 * Because chain was associated with a parent but not
3920 		 * synchronized, the chain's *_count_up fields contain
3921 		 * inode adjustment statistics which must be undone.
3922 		 */
3923 		hammer2_spin_ex(&chain->core.spin);
3924 		hammer2_spin_ex(&parent->core.spin);
3925 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3926 		atomic_add_int(&parent->core.live_count, -1);
3927 		++parent->core.generation;
3928 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3929 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3930 		--parent->core.chain_count;
3931 		chain->parent = NULL;
3932 		hammer2_spin_unex(&parent->core.spin);
3933 		hammer2_spin_unex(&chain->core.spin);
3934 	} else {
3935 		/*
3936 		 * Chain is not blockmapped and has no parent.  This
3937 		 * is a degenerate case.
3938 		 */
3939 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3940 	}
3941 done:
3942 	return error;
3943 }
3944 
3945 /*
3946  * Create an indirect block that covers one or more of the elements in the
3947  * current parent.  Either returns the existing parent with no locking or
3948  * ref changes or returns the new indirect block locked and referenced
3949  * and leaving the original parent lock/ref intact as well.
3950  *
3951  * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3952  *
3953  * The returned chain depends on where the specified key falls.
3954  *
3955  * The key/keybits for the indirect mode only needs to follow three rules:
3956  *
3957  * (1) That all elements underneath it fit within its key space and
3958  *
3959  * (2) That all elements outside it are outside its key space.
3960  *
3961  * (3) When creating the new indirect block any elements in the current
3962  *     parent that fit within the new indirect block's keyspace must be
3963  *     moved into the new indirect block.
3964  *
3965  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3966  *     keyspace the the current parent, but lookup/iteration rules will
3967  *     ensure (and must ensure) that rule (2) for all parents leading up
3968  *     to the nearest inode or the root volume header is adhered to.  This
3969  *     is accomplished by always recursing through matching keyspaces in
3970  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3971  *
3972  * The current implementation calculates the current worst-case keyspace by
3973  * iterating the current parent and then divides it into two halves, choosing
3974  * whichever half has the most elements (not necessarily the half containing
3975  * the requested key).
3976  *
3977  * We can also opt to use the half with the least number of elements.  This
3978  * causes lower-numbered keys (aka logical file offsets) to recurse through
3979  * fewer indirect blocks and higher-numbered keys to recurse through more.
3980  * This also has the risk of not moving enough elements to the new indirect
3981  * block and being forced to create several indirect blocks before the element
3982  * can be inserted.
3983  *
3984  * Must be called with an exclusively locked parent.
3985  *
3986  * NOTE: *errorp set to HAMMER_ERROR_* flags
3987  */
3988 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3989 				hammer2_key_t *keyp, int keybits,
3990 				hammer2_blockref_t *base, int count);
3991 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
3992 				hammer2_key_t *keyp, int keybits,
3993 				hammer2_blockref_t *base, int count,
3994 				int ncount);
3995 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
3996 				hammer2_key_t *keyp, int keybits,
3997 				hammer2_blockref_t *base, int count,
3998 				int ncount);
3999 static
4000 hammer2_chain_t *
4001 hammer2_chain_create_indirect(hammer2_chain_t *parent,
4002 			      hammer2_key_t create_key, int create_bits,
4003 			      hammer2_tid_t mtid, int for_type, int *errorp)
4004 {
4005 	hammer2_dev_t *hmp;
4006 	hammer2_blockref_t *base;
4007 	hammer2_blockref_t *bref;
4008 	hammer2_blockref_t bsave;
4009 	hammer2_blockref_t dummy;
4010 	hammer2_chain_t *chain;
4011 	hammer2_chain_t *ichain;
4012 	hammer2_key_t key = create_key;
4013 	hammer2_key_t key_beg;
4014 	hammer2_key_t key_end;
4015 	hammer2_key_t key_next;
4016 	int keybits = create_bits;
4017 	int count;
4018 	int ncount;
4019 	int nbytes;
4020 	int loops;
4021 	int error;
4022 	int reason;
4023 	int generation;
4024 	int maxloops = 300000;
4025 
4026 	/*
4027 	 * Calculate the base blockref pointer or NULL if the chain
4028 	 * is known to be empty.  We need to calculate the array count
4029 	 * for RB lookups either way.
4030 	 */
4031 	hmp = parent->hmp;
4032 	KKASSERT(hammer2_mtx_owned(&parent->lock));
4033 
4034 	/*
4035 	 * Pre-modify the parent now to avoid having to deal with error
4036 	 * processing if we tried to later (in the middle of our loop).
4037 	 *
4038 	 * We are going to be moving bref's around, the indirect blocks
4039 	 * cannot be in an initial state.  Do not pass MODIFY_OPTDATA.
4040 	 */
4041 	*errorp = hammer2_chain_modify(parent, mtid, 0, 0);
4042 	if (*errorp) {
4043 		kprintf("hammer2_create_indirect: error %08x %s\n",
4044 			*errorp, hammer2_error_str(*errorp));
4045 		return NULL;
4046 	}
4047 	KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
4048 
4049 	/*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
4050 	base = hammer2_chain_base_and_count(parent, &count);
4051 
4052 	/*
4053 	 * How big should our new indirect block be?  It has to be at least
4054 	 * as large as its parent for splits to work properly.
4055 	 *
4056 	 * The freemap uses a specific indirect block size.  The number of
4057 	 * levels are built dynamically and ultimately depend on the size
4058 	 * volume.  Because freemap blocks are taken from the reserved areas
4059 	 * of the volume our goal is efficiency (fewer levels) and not so
4060 	 * much to save disk space.
4061 	 *
4062 	 * The first indirect block level for a directory usually uses
4063 	 * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
4064 	 * the hash mechanism, this typically gives us a nominal
4065 	 * 32 * 4 entries with one level of indirection.
4066 	 *
4067 	 * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
4068 	 * indirect blocks.  The initial 4 entries in the inode gives us
4069 	 * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
4070 	 * of indirection gives us 137GB, and so forth.  H2 can support
4071 	 * huge file sizes but they are not typical, so we try to stick
4072 	 * with compactness and do not use a larger indirect block size.
4073 	 *
4074 	 * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
4075 	 * due to the way indirect blocks are created this usually winds
4076 	 * up being extremely inefficient for small files.  Even though
4077 	 * 16KB requires more levels of indirection for very large files,
4078 	 * the 16KB records can be ganged together into 64KB DIOs.
4079 	 */
4080 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4081 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4082 		nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
4083 	} else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4084 		if (parent->data->ipdata.meta.type ==
4085 		    HAMMER2_OBJTYPE_DIRECTORY)
4086 			nbytes = HAMMER2_IND_BYTES_MIN;	/* 4KB = 32 entries */
4087 		else
4088 			nbytes = HAMMER2_IND_BYTES_NOM;	/* 16KB = ~8MB file */
4089 
4090 	} else {
4091 		nbytes = HAMMER2_IND_BYTES_NOM;
4092 	}
4093 	if (nbytes < count * sizeof(hammer2_blockref_t)) {
4094 		KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
4095 			 for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
4096 		nbytes = count * sizeof(hammer2_blockref_t);
4097 	}
4098 	ncount = nbytes / sizeof(hammer2_blockref_t);
4099 
4100 	/*
4101 	 * When creating an indirect block for a freemap node or leaf
4102 	 * the key/keybits must be fitted to static radix levels because
4103 	 * particular radix levels use particular reserved blocks in the
4104 	 * related zone.
4105 	 *
4106 	 * This routine calculates the key/radix of the indirect block
4107 	 * we need to create, and whether it is on the high-side or the
4108 	 * low-side.
4109 	 */
4110 	switch(for_type) {
4111 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4112 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4113 		keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
4114 						       base, count);
4115 		break;
4116 	case HAMMER2_BREF_TYPE_DATA:
4117 		keybits = hammer2_chain_indkey_file(parent, &key, keybits,
4118 						    base, count, ncount);
4119 		break;
4120 	case HAMMER2_BREF_TYPE_DIRENT:
4121 	case HAMMER2_BREF_TYPE_INODE:
4122 		keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
4123 						   base, count, ncount);
4124 		break;
4125 	default:
4126 		panic("illegal indirect block for bref type %d", for_type);
4127 		break;
4128 	}
4129 
4130 	/*
4131 	 * Normalize the key for the radix being represented, keeping the
4132 	 * high bits and throwing away the low bits.
4133 	 */
4134 	key &= ~(((hammer2_key_t)1 << keybits) - 1);
4135 
4136 	/*
4137 	 * Ok, create our new indirect block
4138 	 */
4139 	bzero(&dummy, sizeof(dummy));
4140 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4141 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4142 		dummy.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4143 	} else {
4144 		dummy.type = HAMMER2_BREF_TYPE_INDIRECT;
4145 	}
4146 	dummy.key = key;
4147 	dummy.keybits = keybits;
4148 	dummy.data_off = hammer2_getradix(nbytes);
4149 	dummy.methods =
4150 		HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4151 		HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4152 
4153 	ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy);
4154 	atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4155 	hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4156 	/* ichain has one ref at this point */
4157 
4158 	/*
4159 	 * We have to mark it modified to allocate its block, but use
4160 	 * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
4161 	 * it won't be acted upon by the flush code.
4162 	 *
4163 	 * XXX remove OPTDATA, we need a fully initialized indirect block to
4164 	 * be able to move the original blockref.
4165 	 */
4166 	*errorp = hammer2_chain_modify(ichain, mtid, 0, 0);
4167 	if (*errorp) {
4168 		kprintf("hammer2_alloc_indirect: error %08x %s\n",
4169 			*errorp, hammer2_error_str(*errorp));
4170 		hammer2_chain_unlock(ichain);
4171 		hammer2_chain_drop(ichain);
4172 		return NULL;
4173 	}
4174 	KKASSERT((ichain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4175 
4176 	/*
4177 	 * Iterate the original parent and move the matching brefs into
4178 	 * the new indirect block.
4179 	 *
4180 	 * XXX handle flushes.
4181 	 */
4182 	key_beg = 0;
4183 	key_end = HAMMER2_KEY_MAX;
4184 	key_next = 0;	/* avoid gcc warnings */
4185 	hammer2_spin_ex(&parent->core.spin);
4186 	loops = 0;
4187 	reason = 0;
4188 
4189 	for (;;) {
4190 		/*
4191 		 * Parent may have been modified, relocating its block array.
4192 		 * Reload the base pointer.
4193 		 */
4194 		base = hammer2_chain_base_and_count(parent, &count);
4195 
4196 		if (++loops > 100000) {
4197 		    hammer2_spin_unex(&parent->core.spin);
4198 		    panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4199 			  reason, parent, base, count, key_next);
4200 		}
4201 
4202 		/*
4203 		 * NOTE: spinlock stays intact, returned chain (if not NULL)
4204 		 *	 is not referenced or locked which means that we
4205 		 *	 cannot safely check its flagged / deletion status
4206 		 *	 until we lock it.
4207 		 */
4208 		chain = hammer2_combined_find(parent, base, count,
4209 					      &key_next,
4210 					      key_beg, key_end,
4211 					      &bref);
4212 		generation = parent->core.generation;
4213 		if (bref == NULL)
4214 			break;
4215 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4216 
4217 		/*
4218 		 * Skip keys that are not within the key/radix of the new
4219 		 * indirect block.  They stay in the parent.
4220 		 */
4221 		if (rounddown2(key ^ bref->key, (hammer2_key_t)1 << keybits) != 0) {
4222 			goto next_key_spinlocked;
4223 		}
4224 
4225 		/*
4226 		 * Load the new indirect block by acquiring the related
4227 		 * chains (potentially from media as it might not be
4228 		 * in-memory).  Then move it to the new parent (ichain).
4229 		 *
4230 		 * chain is referenced but not locked.  We must lock the
4231 		 * chain to obtain definitive state.
4232 		 */
4233 		bsave = *bref;
4234 		if (chain) {
4235 			/*
4236 			 * Use chain already present in the RBTREE
4237 			 */
4238 			hammer2_chain_ref(chain);
4239 			hammer2_spin_unex(&parent->core.spin);
4240 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4241 		} else {
4242 			/*
4243 			 * Get chain for blockref element.  _get returns NULL
4244 			 * on insertion race.
4245 			 */
4246 			hammer2_spin_unex(&parent->core.spin);
4247 			chain = hammer2_chain_get(parent, generation, &bsave,
4248 						  HAMMER2_RESOLVE_NEVER);
4249 			if (chain == NULL) {
4250 				reason = 1;
4251 				hammer2_spin_ex(&parent->core.spin);
4252 				continue;
4253 			}
4254 		}
4255 
4256 		/*
4257 		 * This is always live so if the chain has been deleted
4258 		 * we raced someone and we have to retry.
4259 		 *
4260 		 * NOTE: Lookups can race delete-duplicate because
4261 		 *	 delete-duplicate does not lock the parent's core
4262 		 *	 (they just use the spinlock on the core).
4263 		 *
4264 		 *	 (note reversed logic for this one)
4265 		 */
4266 		if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
4267 		    chain->parent != parent ||
4268 		    (chain->flags & HAMMER2_CHAIN_DELETED)) {
4269 			hammer2_chain_unlock(chain);
4270 			hammer2_chain_drop(chain);
4271 			if (hammer2_debug & 0x0040) {
4272 				kprintf("LOST PARENT RETRY "
4273 				"RETRY (%p,%p)->%p %08x\n",
4274 				parent, chain->parent, chain, chain->flags);
4275 			}
4276 			hammer2_spin_ex(&parent->core.spin);
4277 			continue;
4278 		}
4279 
4280 		/*
4281 		 * Shift the chain to the indirect block.
4282 		 *
4283 		 * WARNING! No reason for us to load chain data, pass NOSTATS
4284 		 *	    to prevent delete/insert from trying to access
4285 		 *	    inode stats (and thus asserting if there is no
4286 		 *	    chain->data loaded).
4287 		 *
4288 		 * WARNING! The (parent, chain) deletion may modify the parent
4289 		 *	    and invalidate the base pointer.
4290 		 *
4291 		 * WARNING! Parent must already be marked modified, so we
4292 		 *	    can assume that chain_delete always suceeds.
4293 		 *
4294 		 * WARNING! hammer2_chain_repchange() does not have to be
4295 		 *	    called (and doesn't work anyway because we are
4296 		 *	    only doing a partial shift).  A recursion that is
4297 		 *	    in-progress can continue at the current parent
4298 		 *	    and will be able to properly find its next key.
4299 		 */
4300 		error = hammer2_chain_delete_obref(parent, chain, mtid, 0,
4301 						   &bsave);
4302 		KKASSERT(error == 0);
4303 		hammer2_chain_rename_obref(&ichain, chain, mtid, 0, &bsave);
4304 		hammer2_chain_unlock(chain);
4305 		hammer2_chain_drop(chain);
4306 		KKASSERT(parent->refs > 0);
4307 		chain = NULL;
4308 		base = NULL;	/* safety */
4309 		hammer2_spin_ex(&parent->core.spin);
4310 next_key_spinlocked:
4311 		if (--maxloops == 0)
4312 			panic("hammer2_chain_create_indirect: maxloops");
4313 		reason = 4;
4314 		if (key_next == 0 || key_next > key_end)
4315 			break;
4316 		key_beg = key_next;
4317 		/* loop */
4318 	}
4319 	hammer2_spin_unex(&parent->core.spin);
4320 
4321 	/*
4322 	 * Insert the new indirect block into the parent now that we've
4323 	 * cleared out some entries in the parent.  We calculated a good
4324 	 * insertion index in the loop above (ichain->index).
4325 	 *
4326 	 * We don't have to set UPDATE here because we mark ichain
4327 	 * modified down below (so the normal modified -> flush -> set-moved
4328 	 * sequence applies).
4329 	 *
4330 	 * The insertion shouldn't race as this is a completely new block
4331 	 * and the parent is locked.
4332 	 */
4333 	base = NULL;	/* safety, parent modify may change address */
4334 	KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4335 	KKASSERT(parent->core.live_count < count);
4336 	hammer2_chain_insert(parent, ichain,
4337 			     HAMMER2_CHAIN_INSERT_SPIN |
4338 			     HAMMER2_CHAIN_INSERT_LIVE,
4339 			     0);
4340 
4341 	/*
4342 	 * Make sure flushes propogate after our manual insertion.
4343 	 */
4344 	hammer2_chain_setflush(ichain);
4345 	hammer2_chain_setflush(parent);
4346 
4347 	/*
4348 	 * Figure out what to return.
4349 	 */
4350 	if (rounddown2(create_key ^ key, (hammer2_key_t)1 << keybits)) {
4351 		/*
4352 		 * Key being created is outside the key range,
4353 		 * return the original parent.
4354 		 */
4355 		hammer2_chain_unlock(ichain);
4356 		hammer2_chain_drop(ichain);
4357 	} else {
4358 		/*
4359 		 * Otherwise its in the range, return the new parent.
4360 		 * (leave both the new and old parent locked).
4361 		 */
4362 		parent = ichain;
4363 	}
4364 
4365 	return(parent);
4366 }
4367 
4368 /*
4369  * Do maintenance on an indirect chain.  Both parent and chain are locked.
4370  *
4371  * Returns non-zero if (chain) is deleted, either due to being empty or
4372  * because its children were safely moved into the parent.
4373  */
4374 int
4375 hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4376 				   hammer2_chain_t *chain)
4377 {
4378 	hammer2_blockref_t *chain_base;
4379 	hammer2_blockref_t *base;
4380 	hammer2_blockref_t *bref;
4381 	hammer2_blockref_t bsave;
4382 	hammer2_key_t key_next;
4383 	hammer2_key_t key_beg;
4384 	hammer2_key_t key_end;
4385 	hammer2_chain_t *sub;
4386 	int chain_count;
4387 	int count;
4388 	int error;
4389 	int generation;
4390 
4391 	/*
4392 	 * Make sure we have an accurate live_count
4393 	 */
4394 	if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4395 			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4396 		base = &chain->data->npdata[0];
4397 		count = chain->bytes / sizeof(hammer2_blockref_t);
4398 		hammer2_chain_countbrefs(chain, base, count);
4399 	}
4400 
4401 	/*
4402 	 * If the indirect block is empty we can delete it.
4403 	 * (ignore deletion error)
4404 	 */
4405 	if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4406 		hammer2_chain_delete(parent, chain,
4407 				     chain->bref.modify_tid,
4408 				     HAMMER2_DELETE_PERMANENT);
4409 		hammer2_chain_repchange(parent, chain);
4410 		return 1;
4411 	}
4412 
4413 	base = hammer2_chain_base_and_count(parent, &count);
4414 
4415 	if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4416 			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4417 		hammer2_chain_countbrefs(parent, base, count);
4418 	}
4419 
4420 	/*
4421 	 * Determine if we can collapse chain into parent, calculate
4422 	 * hysteresis for chain emptiness.
4423 	 */
4424 	if (parent->core.live_count + chain->core.live_count - 1 > count)
4425 		return 0;
4426 	chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4427 	if (chain->core.live_count > chain_count * 3 / 4)
4428 		return 0;
4429 
4430 	/*
4431 	 * Ok, theoretically we can collapse chain's contents into
4432 	 * parent.  chain is locked, but any in-memory children of chain
4433 	 * are not.  For this to work, we must be able to dispose of any
4434 	 * in-memory children of chain.
4435 	 *
4436 	 * For now require that there are no in-memory children of chain.
4437 	 *
4438 	 * WARNING! Both chain and parent must remain locked across this
4439 	 *	    entire operation.
4440 	 */
4441 
4442 	/*
4443 	 * Parent must be marked modified.  Don't try to collapse it if we
4444 	 * can't mark it modified.  Once modified, destroy chain to make room
4445 	 * and to get rid of what will be a conflicting key (this is included
4446 	 * in the calculation above).  Finally, move the children of chain
4447 	 * into chain's parent.
4448 	 *
4449 	 * This order creates an accounting problem for bref.embed.stats
4450 	 * because we destroy chain before we remove its children.  Any
4451 	 * elements whos blockref is already synchronized will be counted
4452 	 * twice.  To deal with the problem we clean out chain's stats prior
4453 	 * to deleting it.
4454 	 */
4455 	error = hammer2_chain_modify(parent, 0, 0, 0);
4456 	if (error) {
4457 		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4458 			    hammer2_error_str(error));
4459 		return 0;
4460 	}
4461 	error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4462 	if (error) {
4463 		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4464 			    hammer2_error_str(error));
4465 		return 0;
4466 	}
4467 
4468 	chain->bref.embed.stats.inode_count = 0;
4469 	chain->bref.embed.stats.data_count = 0;
4470 	error = hammer2_chain_delete(parent, chain,
4471 				     chain->bref.modify_tid,
4472 				     HAMMER2_DELETE_PERMANENT);
4473 	KKASSERT(error == 0);
4474 
4475 	/*
4476 	 * The combined_find call requires core.spin to be held.  One would
4477 	 * think there wouldn't be any conflicts since we hold chain
4478 	 * exclusively locked, but the caching mechanism for 0-ref children
4479 	 * does not require a chain lock.
4480 	 */
4481 	hammer2_spin_ex(&chain->core.spin);
4482 
4483 	key_next = 0;
4484 	key_beg = 0;
4485 	key_end = HAMMER2_KEY_MAX;
4486 	for (;;) {
4487 		chain_base = &chain->data->npdata[0];
4488 		chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4489 		sub = hammer2_combined_find(chain, chain_base, chain_count,
4490 					    &key_next,
4491 					    key_beg, key_end,
4492 					    &bref);
4493 		generation = chain->core.generation;
4494 		if (bref == NULL)
4495 			break;
4496 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4497 
4498 		bsave = *bref;
4499 		if (sub) {
4500 			hammer2_chain_ref(sub);
4501 			hammer2_spin_unex(&chain->core.spin);
4502 			hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4503 		} else {
4504 			hammer2_spin_unex(&chain->core.spin);
4505 			sub = hammer2_chain_get(chain, generation, &bsave,
4506 						HAMMER2_RESOLVE_NEVER);
4507 			if (sub == NULL) {
4508 				hammer2_spin_ex(&chain->core.spin);
4509 				continue;
4510 			}
4511 		}
4512 		if (bcmp(&bsave, &sub->bref, sizeof(bsave)) ||
4513 		    sub->parent != chain ||
4514 		    (sub->flags & HAMMER2_CHAIN_DELETED)) {
4515 			hammer2_chain_unlock(sub);
4516 			hammer2_chain_drop(sub);
4517 			hammer2_spin_ex(&chain->core.spin);
4518 			sub = NULL;	/* safety */
4519 			continue;
4520 		}
4521 		error = hammer2_chain_delete_obref(chain, sub,
4522 						   sub->bref.modify_tid, 0,
4523 						   &bsave);
4524 		KKASSERT(error == 0);
4525 		hammer2_chain_rename_obref(&parent, sub,
4526 				     sub->bref.modify_tid,
4527 				     HAMMER2_INSERT_SAMEPARENT, &bsave);
4528 		hammer2_chain_unlock(sub);
4529 		hammer2_chain_drop(sub);
4530 		hammer2_spin_ex(&chain->core.spin);
4531 
4532 		if (key_next == 0)
4533 			break;
4534 		key_beg = key_next;
4535 	}
4536 	hammer2_spin_unex(&chain->core.spin);
4537 
4538 	hammer2_chain_repchange(parent, chain);
4539 
4540 	return 1;
4541 }
4542 
4543 /*
4544  * Freemap indirect blocks
4545  *
4546  * Calculate the keybits and highside/lowside of the freemap node the
4547  * caller is creating.
4548  *
4549  * This routine will specify the next higher-level freemap key/radix
4550  * representing the lowest-ordered set.  By doing so, eventually all
4551  * low-ordered sets will be moved one level down.
4552  *
4553  * We have to be careful here because the freemap reserves a limited
4554  * number of blocks for a limited number of levels.  So we can't just
4555  * push indiscriminately.
4556  */
4557 int
4558 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4559 			     int keybits, hammer2_blockref_t *base, int count)
4560 {
4561 	hammer2_chain_t *chain;
4562 	hammer2_blockref_t *bref;
4563 	hammer2_key_t key;
4564 	hammer2_key_t key_beg;
4565 	hammer2_key_t key_end;
4566 	hammer2_key_t key_next;
4567 	int locount;
4568 	int hicount;
4569 	int maxloops = 300000;
4570 
4571 	key = *keyp;
4572 	locount = 0;
4573 	hicount = 0;
4574 	keybits = 64;
4575 
4576 	/*
4577 	 * Calculate the range of keys in the array being careful to skip
4578 	 * slots which are overridden with a deletion.
4579 	 */
4580 	key_beg = 0;
4581 	key_end = HAMMER2_KEY_MAX;
4582 	hammer2_spin_ex(&parent->core.spin);
4583 
4584 	for (;;) {
4585 		if (--maxloops == 0) {
4586 			panic("indkey_freemap shit %p %p:%d\n",
4587 			      parent, base, count);
4588 		}
4589 		chain = hammer2_combined_find(parent, base, count,
4590 					      &key_next,
4591 					      key_beg, key_end,
4592 					      &bref);
4593 
4594 		/*
4595 		 * Exhausted search
4596 		 */
4597 		if (bref == NULL)
4598 			break;
4599 
4600 		/*
4601 		 * Skip deleted chains.
4602 		 */
4603 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4604 			if (key_next == 0 || key_next > key_end)
4605 				break;
4606 			key_beg = key_next;
4607 			continue;
4608 		}
4609 
4610 		/*
4611 		 * Use the full live (not deleted) element for the scan
4612 		 * iteration.  HAMMER2 does not allow partial replacements.
4613 		 *
4614 		 * XXX should be built into hammer2_combined_find().
4615 		 */
4616 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4617 
4618 		if (keybits > bref->keybits) {
4619 			key = bref->key;
4620 			keybits = bref->keybits;
4621 		} else if (keybits == bref->keybits && bref->key < key) {
4622 			key = bref->key;
4623 		}
4624 		if (key_next == 0)
4625 			break;
4626 		key_beg = key_next;
4627 	}
4628 	hammer2_spin_unex(&parent->core.spin);
4629 
4630 	/*
4631 	 * Return the keybits for a higher-level FREEMAP_NODE covering
4632 	 * this node.
4633 	 */
4634 	switch(keybits) {
4635 	case HAMMER2_FREEMAP_LEVEL0_RADIX:
4636 		keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4637 		break;
4638 	case HAMMER2_FREEMAP_LEVEL1_RADIX:
4639 		keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4640 		break;
4641 	case HAMMER2_FREEMAP_LEVEL2_RADIX:
4642 		keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4643 		break;
4644 	case HAMMER2_FREEMAP_LEVEL3_RADIX:
4645 		keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4646 		break;
4647 	case HAMMER2_FREEMAP_LEVEL4_RADIX:
4648 		keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4649 		break;
4650 	case HAMMER2_FREEMAP_LEVEL5_RADIX:
4651 		panic("hammer2_chain_indkey_freemap: level too high");
4652 		break;
4653 	default:
4654 		panic("hammer2_chain_indkey_freemap: bad radix");
4655 		break;
4656 	}
4657 	*keyp = key;
4658 
4659 	return (keybits);
4660 }
4661 
4662 /*
4663  * File indirect blocks
4664  *
4665  * Calculate the key/keybits for the indirect block to create by scanning
4666  * existing keys.  The key being created is also passed in *keyp and can be
4667  * inside or outside the indirect block.  Regardless, the indirect block
4668  * must hold at least two keys in order to guarantee sufficient space.
4669  *
4670  * We use a modified version of the freemap's fixed radix tree, but taylored
4671  * for file data.  Basically we configure an indirect block encompassing the
4672  * smallest key.
4673  */
4674 static int
4675 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4676 			    int keybits, hammer2_blockref_t *base, int count,
4677 			    int ncount)
4678 {
4679 	hammer2_chain_t *chain;
4680 	hammer2_blockref_t *bref;
4681 	hammer2_key_t key;
4682 	hammer2_key_t key_beg;
4683 	hammer2_key_t key_end;
4684 	hammer2_key_t key_next;
4685 	int nradix;
4686 	int locount;
4687 	int hicount;
4688 	int maxloops = 300000;
4689 
4690 	key = *keyp;
4691 	locount = 0;
4692 	hicount = 0;
4693 	keybits = 64;
4694 
4695 	/*
4696 	 * Calculate the range of keys in the array being careful to skip
4697 	 * slots which are overridden with a deletion.
4698 	 *
4699 	 * Locate the smallest key.
4700 	 */
4701 	key_beg = 0;
4702 	key_end = HAMMER2_KEY_MAX;
4703 	hammer2_spin_ex(&parent->core.spin);
4704 
4705 	for (;;) {
4706 		if (--maxloops == 0) {
4707 			panic("indkey_freemap shit %p %p:%d\n",
4708 			      parent, base, count);
4709 		}
4710 		chain = hammer2_combined_find(parent, base, count,
4711 					      &key_next,
4712 					      key_beg, key_end,
4713 					      &bref);
4714 
4715 		/*
4716 		 * Exhausted search
4717 		 */
4718 		if (bref == NULL)
4719 			break;
4720 
4721 		/*
4722 		 * Skip deleted chains.
4723 		 */
4724 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4725 			if (key_next == 0 || key_next > key_end)
4726 				break;
4727 			key_beg = key_next;
4728 			continue;
4729 		}
4730 
4731 		/*
4732 		 * Use the full live (not deleted) element for the scan
4733 		 * iteration.  HAMMER2 does not allow partial replacements.
4734 		 *
4735 		 * XXX should be built into hammer2_combined_find().
4736 		 */
4737 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4738 
4739 		if (keybits > bref->keybits) {
4740 			key = bref->key;
4741 			keybits = bref->keybits;
4742 		} else if (keybits == bref->keybits && bref->key < key) {
4743 			key = bref->key;
4744 		}
4745 		if (key_next == 0)
4746 			break;
4747 		key_beg = key_next;
4748 	}
4749 	hammer2_spin_unex(&parent->core.spin);
4750 
4751 	/*
4752 	 * Calculate the static keybits for a higher-level indirect block
4753 	 * that contains the key.
4754 	 */
4755 	*keyp = key;
4756 
4757 	switch(ncount) {
4758 	case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4759 		nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4760 		break;
4761 	case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4762 		nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4763 		break;
4764 	case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4765 		nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4766 		break;
4767 	default:
4768 		panic("bad ncount %d\n", ncount);
4769 		nradix = 0;
4770 		break;
4771 	}
4772 
4773 	/*
4774 	 * The largest radix that can be returned for an indirect block is
4775 	 * 63 bits.  (The largest practical indirect block radix is actually
4776 	 * 62 bits because the top-level inode or volume root contains four
4777 	 * entries, but allow 63 to be returned).
4778 	 */
4779 	if (nradix >= 64)
4780 		nradix = 63;
4781 
4782 	return keybits + nradix;
4783 }
4784 
4785 #if 1
4786 
4787 /*
4788  * Directory indirect blocks.
4789  *
4790  * Covers both the inode index (directory of inodes), and directory contents
4791  * (filenames hardlinked to inodes).
4792  *
4793  * Because directory keys are hashed we generally try to cut the space in
4794  * half.  We accomodate the inode index (which tends to have linearly
4795  * increasing inode numbers) by ensuring that the keyspace is at least large
4796  * enough to fill up the indirect block being created.
4797  */
4798 static int
4799 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4800 			 int keybits, hammer2_blockref_t *base, int count,
4801 			 int ncount)
4802 {
4803 	hammer2_blockref_t *bref;
4804 	hammer2_chain_t	*chain;
4805 	hammer2_key_t key_beg;
4806 	hammer2_key_t key_end;
4807 	hammer2_key_t key_next;
4808 	hammer2_key_t key;
4809 	int nkeybits;
4810 	int locount;
4811 	int hicount;
4812 	int maxloops = 300000;
4813 
4814 	/*
4815 	 * NOTE: We can't take a shortcut here anymore for inodes because
4816 	 *	 the root directory can contain a mix of inodes and directory
4817 	 *	 entries (we used to just return 63 if parent->bref.type was
4818 	 *	 HAMMER2_BREF_TYPE_INODE.
4819 	 */
4820 	key = *keyp;
4821 	locount = 0;
4822 	hicount = 0;
4823 
4824 	/*
4825 	 * Calculate the range of keys in the array being careful to skip
4826 	 * slots which are overridden with a deletion.
4827 	 */
4828 	key_beg = 0;
4829 	key_end = HAMMER2_KEY_MAX;
4830 	hammer2_spin_ex(&parent->core.spin);
4831 
4832 	for (;;) {
4833 		if (--maxloops == 0) {
4834 			panic("indkey_freemap shit %p %p:%d\n",
4835 			      parent, base, count);
4836 		}
4837 		chain = hammer2_combined_find(parent, base, count,
4838 					      &key_next,
4839 					      key_beg, key_end,
4840 					      &bref);
4841 
4842 		/*
4843 		 * Exhausted search
4844 		 */
4845 		if (bref == NULL)
4846 			break;
4847 
4848 		/*
4849 		 * Deleted object
4850 		 */
4851 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4852 			if (key_next == 0 || key_next > key_end)
4853 				break;
4854 			key_beg = key_next;
4855 			continue;
4856 		}
4857 
4858 		/*
4859 		 * Use the full live (not deleted) element for the scan
4860 		 * iteration.  HAMMER2 does not allow partial replacements.
4861 		 *
4862 		 * XXX should be built into hammer2_combined_find().
4863 		 */
4864 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4865 
4866 		/*
4867 		 * Expand our calculated key range (key, keybits) to fit
4868 		 * the scanned key.  nkeybits represents the full range
4869 		 * that we will later cut in half (two halves @ nkeybits - 1).
4870 		 */
4871 		nkeybits = keybits;
4872 		if (nkeybits < bref->keybits) {
4873 			if (bref->keybits > 64) {
4874 				kprintf("bad bref chain %p bref %p\n",
4875 					chain, bref);
4876 				Debugger("fubar");
4877 			}
4878 			nkeybits = bref->keybits;
4879 		}
4880 		while (nkeybits < 64 &&
4881 		       rounddown2(key ^ bref->key, (hammer2_key_t)1 << nkeybits) != 0) {
4882 			++nkeybits;
4883 		}
4884 
4885 		/*
4886 		 * If the new key range is larger we have to determine
4887 		 * which side of the new key range the existing keys fall
4888 		 * under by checking the high bit, then collapsing the
4889 		 * locount into the hicount or vise-versa.
4890 		 */
4891 		if (keybits != nkeybits) {
4892 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4893 				hicount += locount;
4894 				locount = 0;
4895 			} else {
4896 				locount += hicount;
4897 				hicount = 0;
4898 			}
4899 			keybits = nkeybits;
4900 		}
4901 
4902 		/*
4903 		 * The newly scanned key will be in the lower half or the
4904 		 * upper half of the (new) key range.
4905 		 */
4906 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4907 			++hicount;
4908 		else
4909 			++locount;
4910 
4911 		if (key_next == 0)
4912 			break;
4913 		key_beg = key_next;
4914 	}
4915 	hammer2_spin_unex(&parent->core.spin);
4916 	bref = NULL;	/* now invalid (safety) */
4917 
4918 	/*
4919 	 * Adjust keybits to represent half of the full range calculated
4920 	 * above (radix 63 max) for our new indirect block.
4921 	 */
4922 	--keybits;
4923 
4924 	/*
4925 	 * Expand keybits to hold at least ncount elements.  ncount will be
4926 	 * a power of 2.  This is to try to completely fill leaf nodes (at
4927 	 * least for keys which are not hashes).
4928 	 *
4929 	 * We aren't counting 'in' or 'out', we are counting 'high side'
4930 	 * and 'low side' based on the bit at (1LL << keybits).  We want
4931 	 * everything to be inside in these cases so shift it all to
4932 	 * the low or high side depending on the new high bit.
4933 	 */
4934 	while (((hammer2_key_t)1 << keybits) < ncount) {
4935 		++keybits;
4936 		if (key & ((hammer2_key_t)1 << keybits)) {
4937 			hicount += locount;
4938 			locount = 0;
4939 		} else {
4940 			locount += hicount;
4941 			hicount = 0;
4942 		}
4943 	}
4944 
4945 	if (hicount > locount)
4946 		key |= (hammer2_key_t)1 << keybits;
4947 	else
4948 		key &= ~(hammer2_key_t)1 << keybits;
4949 
4950 	*keyp = key;
4951 
4952 	return (keybits);
4953 }
4954 
4955 #else
4956 
4957 /*
4958  * Directory indirect blocks.
4959  *
4960  * Covers both the inode index (directory of inodes), and directory contents
4961  * (filenames hardlinked to inodes).
4962  *
4963  * Because directory keys are hashed we generally try to cut the space in
4964  * half.  We accomodate the inode index (which tends to have linearly
4965  * increasing inode numbers) by ensuring that the keyspace is at least large
4966  * enough to fill up the indirect block being created.
4967  */
4968 static int
4969 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4970 			 int keybits, hammer2_blockref_t *base, int count,
4971 			 int ncount)
4972 {
4973 	hammer2_blockref_t *bref;
4974 	hammer2_chain_t	*chain;
4975 	hammer2_key_t key_beg;
4976 	hammer2_key_t key_end;
4977 	hammer2_key_t key_next;
4978 	hammer2_key_t key;
4979 	int nkeybits;
4980 	int locount;
4981 	int hicount;
4982 	int maxloops = 300000;
4983 
4984 	/*
4985 	 * Shortcut if the parent is the inode.  In this situation the
4986 	 * parent has 4+1 directory entries and we are creating an indirect
4987 	 * block capable of holding many more.
4988 	 */
4989 	if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4990 		return 63;
4991 	}
4992 
4993 	key = *keyp;
4994 	locount = 0;
4995 	hicount = 0;
4996 
4997 	/*
4998 	 * Calculate the range of keys in the array being careful to skip
4999 	 * slots which are overridden with a deletion.
5000 	 */
5001 	key_beg = 0;
5002 	key_end = HAMMER2_KEY_MAX;
5003 	hammer2_spin_ex(&parent->core.spin);
5004 
5005 	for (;;) {
5006 		if (--maxloops == 0) {
5007 			panic("indkey_freemap shit %p %p:%d\n",
5008 			      parent, base, count);
5009 		}
5010 		chain = hammer2_combined_find(parent, base, count,
5011 					      &key_next,
5012 					      key_beg, key_end,
5013 					      &bref);
5014 
5015 		/*
5016 		 * Exhausted search
5017 		 */
5018 		if (bref == NULL)
5019 			break;
5020 
5021 		/*
5022 		 * Deleted object
5023 		 */
5024 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
5025 			if (key_next == 0 || key_next > key_end)
5026 				break;
5027 			key_beg = key_next;
5028 			continue;
5029 		}
5030 
5031 		/*
5032 		 * Use the full live (not deleted) element for the scan
5033 		 * iteration.  HAMMER2 does not allow partial replacements.
5034 		 *
5035 		 * XXX should be built into hammer2_combined_find().
5036 		 */
5037 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
5038 
5039 		/*
5040 		 * Expand our calculated key range (key, keybits) to fit
5041 		 * the scanned key.  nkeybits represents the full range
5042 		 * that we will later cut in half (two halves @ nkeybits - 1).
5043 		 */
5044 		nkeybits = keybits;
5045 		if (nkeybits < bref->keybits) {
5046 			if (bref->keybits > 64) {
5047 				kprintf("bad bref chain %p bref %p\n",
5048 					chain, bref);
5049 				Debugger("fubar");
5050 			}
5051 			nkeybits = bref->keybits;
5052 		}
5053 		while (nkeybits < 64 &&
5054 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
5055 		        (key ^ bref->key)) != 0) {
5056 			++nkeybits;
5057 		}
5058 
5059 		/*
5060 		 * If the new key range is larger we have to determine
5061 		 * which side of the new key range the existing keys fall
5062 		 * under by checking the high bit, then collapsing the
5063 		 * locount into the hicount or vise-versa.
5064 		 */
5065 		if (keybits != nkeybits) {
5066 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
5067 				hicount += locount;
5068 				locount = 0;
5069 			} else {
5070 				locount += hicount;
5071 				hicount = 0;
5072 			}
5073 			keybits = nkeybits;
5074 		}
5075 
5076 		/*
5077 		 * The newly scanned key will be in the lower half or the
5078 		 * upper half of the (new) key range.
5079 		 */
5080 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
5081 			++hicount;
5082 		else
5083 			++locount;
5084 
5085 		if (key_next == 0)
5086 			break;
5087 		key_beg = key_next;
5088 	}
5089 	hammer2_spin_unex(&parent->core.spin);
5090 	bref = NULL;	/* now invalid (safety) */
5091 
5092 	/*
5093 	 * Adjust keybits to represent half of the full range calculated
5094 	 * above (radix 63 max) for our new indirect block.
5095 	 */
5096 	--keybits;
5097 
5098 	/*
5099 	 * Expand keybits to hold at least ncount elements.  ncount will be
5100 	 * a power of 2.  This is to try to completely fill leaf nodes (at
5101 	 * least for keys which are not hashes).
5102 	 *
5103 	 * We aren't counting 'in' or 'out', we are counting 'high side'
5104 	 * and 'low side' based on the bit at (1LL << keybits).  We want
5105 	 * everything to be inside in these cases so shift it all to
5106 	 * the low or high side depending on the new high bit.
5107 	 */
5108 	while (((hammer2_key_t)1 << keybits) < ncount) {
5109 		++keybits;
5110 		if (key & ((hammer2_key_t)1 << keybits)) {
5111 			hicount += locount;
5112 			locount = 0;
5113 		} else {
5114 			locount += hicount;
5115 			hicount = 0;
5116 		}
5117 	}
5118 
5119 	if (hicount > locount)
5120 		key |= (hammer2_key_t)1 << keybits;
5121 	else
5122 		key &= ~(hammer2_key_t)1 << keybits;
5123 
5124 	*keyp = key;
5125 
5126 	return (keybits);
5127 }
5128 
5129 #endif
5130 
5131 /*
5132  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5133  * it exists.
5134  *
5135  * Both parent and chain must be locked exclusively.
5136  *
5137  * This function will modify the parent if the blockref requires removal
5138  * from the parent's block table.
5139  *
5140  * This function is NOT recursive.  Any entity already pushed into the
5141  * chain (such as an inode) may still need visibility into its contents,
5142  * as well as the ability to read and modify the contents.  For example,
5143  * for an unlinked file which is still open.
5144  *
5145  * Also note that the flusher is responsible for cleaning up empty
5146  * indirect blocks.
5147  */
5148 int
5149 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5150 		     hammer2_tid_t mtid, int flags)
5151 {
5152 	int error = 0;
5153 
5154 	KKASSERT(hammer2_mtx_owned(&chain->lock));
5155 
5156 	/*
5157 	 * Nothing to do if already marked.
5158 	 *
5159 	 * We need the spinlock on the core whos RBTREE contains chain
5160 	 * to protect against races.
5161 	 */
5162 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5163 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5164 			 chain->parent == parent);
5165 		error = _hammer2_chain_delete_helper(parent, chain,
5166 						     mtid, flags, NULL);
5167 	}
5168 
5169 	/*
5170 	 * Permanent deletions mark the chain as destroyed.
5171 	 *
5172 	 * NOTE: We do not setflush the chain unless the deletion is
5173 	 *	 permanent, since the deletion of a chain does not actually
5174 	 *	 require it to be flushed.
5175 	 */
5176 	if (error == 0) {
5177 		if (flags & HAMMER2_DELETE_PERMANENT) {
5178 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5179 			hammer2_chain_setflush(chain);
5180 		}
5181 	}
5182 
5183 	return error;
5184 }
5185 
5186 static int
5187 hammer2_chain_delete_obref(hammer2_chain_t *parent, hammer2_chain_t *chain,
5188 		     hammer2_tid_t mtid, int flags,
5189 		     hammer2_blockref_t *obref)
5190 {
5191 	int error = 0;
5192 
5193 	KKASSERT(hammer2_mtx_owned(&chain->lock));
5194 
5195 	/*
5196 	 * Nothing to do if already marked.
5197 	 *
5198 	 * We need the spinlock on the core whos RBTREE contains chain
5199 	 * to protect against races.
5200 	 */
5201 	obref->type = HAMMER2_BREF_TYPE_EMPTY;
5202 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5203 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5204 			 chain->parent == parent);
5205 		error = _hammer2_chain_delete_helper(parent, chain,
5206 						     mtid, flags, obref);
5207 	}
5208 
5209 	/*
5210 	 * Permanent deletions mark the chain as destroyed.
5211 	 *
5212 	 * NOTE: We do not setflush the chain unless the deletion is
5213 	 *	 permanent, since the deletion of a chain does not actually
5214 	 *	 require it to be flushed.
5215 	 */
5216 	if (error == 0) {
5217 		if (flags & HAMMER2_DELETE_PERMANENT) {
5218 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5219 			hammer2_chain_setflush(chain);
5220 		}
5221 	}
5222 
5223 	return error;
5224 }
5225 
5226 /*
5227  * Returns the index of the nearest element in the blockref array >= elm.
5228  * Returns (count) if no element could be found.
5229  *
5230  * Sets *key_nextp to the next key for loop purposes but does not modify
5231  * it if the next key would be higher than the current value of *key_nextp.
5232  * Note that *key_nexp can overflow to 0, which should be tested by the
5233  * caller.
5234  *
5235  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5236  *	     held through the operation.
5237  */
5238 static int
5239 hammer2_base_find(hammer2_chain_t *parent,
5240 		  hammer2_blockref_t *base, int count,
5241 		  hammer2_key_t *key_nextp,
5242 		  hammer2_key_t key_beg, hammer2_key_t key_end)
5243 {
5244 	hammer2_blockref_t *scan;
5245 	hammer2_key_t scan_end;
5246 	int i;
5247 	int limit;
5248 
5249 	/*
5250 	 * Require the live chain's already have their core's counted
5251 	 * so we can optimize operations.
5252 	 */
5253         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5254 
5255 	/*
5256 	 * Degenerate case
5257 	 */
5258 	if (count == 0 || base == NULL)
5259 		return(count);
5260 
5261 	/*
5262 	 * Sequential optimization using parent->cache_index.  This is
5263 	 * the most likely scenario.
5264 	 *
5265 	 * We can avoid trailing empty entries on live chains, otherwise
5266 	 * we might have to check the whole block array.
5267 	 */
5268 	i = parent->cache_index;	/* SMP RACE OK */
5269 	cpu_ccfence();
5270 	limit = parent->core.live_zero;
5271 	if (i >= limit)
5272 		i = limit - 1;
5273 	if (i < 0)
5274 		i = 0;
5275 	KKASSERT(i < count);
5276 
5277 	/*
5278 	 * Search backwards
5279 	 */
5280 	scan = &base[i];
5281 	while (i > 0 && (scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5282 	    scan->key > key_beg)) {
5283 		--scan;
5284 		--i;
5285 	}
5286 	parent->cache_index = i;
5287 
5288 	/*
5289 	 * Search forwards, stop when we find a scan element which
5290 	 * encloses the key or until we know that there are no further
5291 	 * elements.
5292 	 */
5293 	while (i < count) {
5294 		if (scan->type != HAMMER2_BREF_TYPE_EMPTY) {
5295 			scan_end = scan->key +
5296 				   ((hammer2_key_t)1 << scan->keybits) - 1;
5297 			if (scan->key > key_beg || scan_end >= key_beg)
5298 				break;
5299 		}
5300 		if (i >= limit)
5301 			return (count);
5302 		++scan;
5303 		++i;
5304 	}
5305 	if (i != count) {
5306 		parent->cache_index = i;
5307 		if (i >= limit) {
5308 			i = count;
5309 		} else {
5310 			scan_end = scan->key +
5311 				   ((hammer2_key_t)1 << scan->keybits);
5312 			if (scan_end && (*key_nextp > scan_end ||
5313 					 *key_nextp == 0)) {
5314 				*key_nextp = scan_end;
5315 			}
5316 		}
5317 	}
5318 	return (i);
5319 }
5320 
5321 /*
5322  * Do a combined search and return the next match either from the blockref
5323  * array or from the in-memory chain.  Sets *bresp to the returned bref in
5324  * both cases, or sets it to NULL if the search exhausted.  Only returns
5325  * a non-NULL chain if the search matched from the in-memory chain.
5326  *
5327  * When no in-memory chain has been found and a non-NULL bref is returned
5328  * in *bresp.
5329  *
5330  *
5331  * The returned chain is not locked or referenced.  Use the returned bref
5332  * to determine if the search exhausted or not.  Iterate if the base find
5333  * is chosen but matches a deleted chain.
5334  *
5335  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5336  *	     held through the operation.
5337  */
5338 hammer2_chain_t *
5339 hammer2_combined_find(hammer2_chain_t *parent,
5340 		      hammer2_blockref_t *base, int count,
5341 		      hammer2_key_t *key_nextp,
5342 		      hammer2_key_t key_beg, hammer2_key_t key_end,
5343 		      hammer2_blockref_t **bresp)
5344 {
5345 	hammer2_blockref_t *bref;
5346 	hammer2_chain_t *chain;
5347 	int i;
5348 
5349 	/*
5350 	 * Lookup in block array and in rbtree.
5351 	 */
5352 	*key_nextp = key_end + 1;
5353 	i = hammer2_base_find(parent, base, count, key_nextp,
5354 			      key_beg, key_end);
5355 	chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5356 
5357 	/*
5358 	 * Neither matched
5359 	 */
5360 	if (i == count && chain == NULL) {
5361 		*bresp = NULL;
5362 		return(NULL);
5363 	}
5364 
5365 	/*
5366 	 * Only chain matched.
5367 	 */
5368 	if (i == count) {
5369 		bref = &chain->bref;
5370 		goto found;
5371 	}
5372 
5373 	/*
5374 	 * Only blockref matched.
5375 	 */
5376 	if (chain == NULL) {
5377 		bref = &base[i];
5378 		goto found;
5379 	}
5380 
5381 	/*
5382 	 * Both in-memory and blockref matched, select the nearer element.
5383 	 *
5384 	 * If both are flush with the left-hand side or both are the
5385 	 * same distance away, select the chain.  In this situation the
5386 	 * chain must have been loaded from the matching blockmap.
5387 	 */
5388 	if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5389 	    chain->bref.key == base[i].key) {
5390 		KKASSERT(chain->bref.key == base[i].key);
5391 		bref = &chain->bref;
5392 		goto found;
5393 	}
5394 
5395 	/*
5396 	 * Select the nearer key
5397 	 */
5398 	if (chain->bref.key < base[i].key) {
5399 		bref = &chain->bref;
5400 	} else {
5401 		bref = &base[i];
5402 		chain = NULL;
5403 	}
5404 
5405 	/*
5406 	 * If the bref is out of bounds we've exhausted our search.
5407 	 */
5408 found:
5409 	if (bref->key > key_end) {
5410 		*bresp = NULL;
5411 		chain = NULL;
5412 	} else {
5413 		*bresp = bref;
5414 	}
5415 	return(chain);
5416 }
5417 
5418 /*
5419  * Locate the specified block array element and delete it.  The element
5420  * must exist.
5421  *
5422  * The spin lock on the related chain must be held.
5423  *
5424  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5425  *	 need to be adjusted when we commit the media change.
5426  */
5427 void
5428 hammer2_base_delete(hammer2_chain_t *parent,
5429 		    hammer2_blockref_t *base, int count,
5430 		    hammer2_chain_t *chain,
5431 		    hammer2_blockref_t *obref)
5432 {
5433 	hammer2_blockref_t *elm = &chain->bref;
5434 	hammer2_blockref_t *scan;
5435 	hammer2_key_t key_next;
5436 	int i;
5437 
5438 	/*
5439 	 * Delete element.  Expect the element to exist.
5440 	 *
5441 	 * XXX see caller, flush code not yet sophisticated enough to prevent
5442 	 *     re-flushed in some cases.
5443 	 */
5444 	key_next = 0; /* max range */
5445 	i = hammer2_base_find(parent, base, count, &key_next,
5446 			      elm->key, elm->key);
5447 	scan = &base[i];
5448 	if (i == count || scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5449 	    scan->key != elm->key ||
5450 	    ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
5451 	     scan->keybits != elm->keybits)) {
5452 		hammer2_spin_unex(&parent->core.spin);
5453 		panic("delete base %p element not found at %d/%d elm %p\n",
5454 		      base, i, count, elm);
5455 		return;
5456 	}
5457 
5458 	/*
5459 	 * Update stats and zero the entry.
5460 	 *
5461 	 * NOTE: Handle radix == 0 (0 bytes) case.
5462 	 */
5463 	if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5464 		parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5465 				(int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5466 	}
5467 	switch(scan->type) {
5468 	case HAMMER2_BREF_TYPE_INODE:
5469 		--parent->bref.embed.stats.inode_count;
5470 		/* fall through */
5471 	case HAMMER2_BREF_TYPE_DATA:
5472 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5473 			atomic_set_int(&chain->flags,
5474 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5475 		} else {
5476 			if (parent->bref.leaf_count)
5477 				--parent->bref.leaf_count;
5478 		}
5479 		/* fall through */
5480 	case HAMMER2_BREF_TYPE_INDIRECT:
5481 		if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5482 			parent->bref.embed.stats.data_count -=
5483 				scan->embed.stats.data_count;
5484 			parent->bref.embed.stats.inode_count -=
5485 				scan->embed.stats.inode_count;
5486 		}
5487 		if (scan->type == HAMMER2_BREF_TYPE_INODE)
5488 			break;
5489 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5490 			atomic_set_int(&chain->flags,
5491 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5492 		} else {
5493 			if (parent->bref.leaf_count <= scan->leaf_count)
5494 				parent->bref.leaf_count = 0;
5495 			else
5496 				parent->bref.leaf_count -= scan->leaf_count;
5497 		}
5498 		break;
5499 	case HAMMER2_BREF_TYPE_DIRENT:
5500 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5501 			atomic_set_int(&chain->flags,
5502 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5503 		} else {
5504 			if (parent->bref.leaf_count)
5505 				--parent->bref.leaf_count;
5506 		}
5507 	default:
5508 		break;
5509 	}
5510 
5511 	if (obref)
5512 		*obref = *scan;
5513 	bzero(scan, sizeof(*scan));
5514 
5515 	/*
5516 	 * We can only optimize parent->core.live_zero for live chains.
5517 	 */
5518 	if (parent->core.live_zero == i + 1) {
5519 		while (--i >= 0 && base[i].type == HAMMER2_BREF_TYPE_EMPTY)
5520 			;
5521 		parent->core.live_zero = i + 1;
5522 	}
5523 
5524 	/*
5525 	 * Clear appropriate blockmap flags in chain.
5526 	 */
5527 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
5528 					HAMMER2_CHAIN_BMAPUPD);
5529 }
5530 
5531 /*
5532  * Insert the specified element.  The block array must not already have the
5533  * element and must have space available for the insertion.
5534  *
5535  * The spin lock on the related chain must be held.
5536  *
5537  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5538  *	 need to be adjusted when we commit the media change.
5539  */
5540 void
5541 hammer2_base_insert(hammer2_chain_t *parent,
5542 		    hammer2_blockref_t *base, int count,
5543 		    hammer2_chain_t *chain, hammer2_blockref_t *elm)
5544 {
5545 	hammer2_key_t key_next;
5546 	hammer2_key_t xkey;
5547 	int i;
5548 	int j;
5549 	int k;
5550 	int l;
5551 	int u = 1;
5552 
5553 	/*
5554 	 * Insert new element.  Expect the element to not already exist
5555 	 * unless we are replacing it.
5556 	 *
5557 	 * XXX see caller, flush code not yet sophisticated enough to prevent
5558 	 *     re-flushed in some cases.
5559 	 */
5560 	key_next = 0; /* max range */
5561 	i = hammer2_base_find(parent, base, count, &key_next,
5562 			      elm->key, elm->key);
5563 
5564 	/*
5565 	 * Shortcut fill optimization, typical ordered insertion(s) may not
5566 	 * require a search.
5567 	 */
5568 	KKASSERT(i >= 0 && i <= count);
5569 
5570 	/*
5571 	 * Set appropriate blockmap flags in chain (if not NULL)
5572 	 */
5573 	if (chain)
5574 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
5575 
5576 	/*
5577 	 * Update stats and zero the entry
5578 	 */
5579 	if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5580 		parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5581 				(int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5582 	}
5583 	switch(elm->type) {
5584 	case HAMMER2_BREF_TYPE_INODE:
5585 		++parent->bref.embed.stats.inode_count;
5586 		/* fall through */
5587 	case HAMMER2_BREF_TYPE_DATA:
5588 		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5589 			++parent->bref.leaf_count;
5590 		/* fall through */
5591 	case HAMMER2_BREF_TYPE_INDIRECT:
5592 		if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5593 			parent->bref.embed.stats.data_count +=
5594 				elm->embed.stats.data_count;
5595 			parent->bref.embed.stats.inode_count +=
5596 				elm->embed.stats.inode_count;
5597 		}
5598 		if (elm->type == HAMMER2_BREF_TYPE_INODE)
5599 			break;
5600 		if (parent->bref.leaf_count + elm->leaf_count <
5601 		    HAMMER2_BLOCKREF_LEAF_MAX) {
5602 			parent->bref.leaf_count += elm->leaf_count;
5603 		} else {
5604 			parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5605 		}
5606 		break;
5607 	case HAMMER2_BREF_TYPE_DIRENT:
5608 		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5609 			++parent->bref.leaf_count;
5610 		break;
5611 	default:
5612 		break;
5613 	}
5614 
5615 
5616 	/*
5617 	 * We can only optimize parent->core.live_zero for live chains.
5618 	 */
5619 	if (i == count && parent->core.live_zero < count) {
5620 		i = parent->core.live_zero++;
5621 		base[i] = *elm;
5622 		return;
5623 	}
5624 
5625 	xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5626 	if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5627 		hammer2_spin_unex(&parent->core.spin);
5628 		panic("insert base %p overlapping elements at %d elm %p\n",
5629 		      base, i, elm);
5630 	}
5631 
5632 	/*
5633 	 * Try to find an empty slot before or after.
5634 	 */
5635 	j = i;
5636 	k = i;
5637 	while (j > 0 || k < count) {
5638 		--j;
5639 		if (j >= 0 && base[j].type == HAMMER2_BREF_TYPE_EMPTY) {
5640 			if (j == i - 1) {
5641 				base[j] = *elm;
5642 			} else {
5643 				bcopy(&base[j+1], &base[j],
5644 				      (i - j - 1) * sizeof(*base));
5645 				base[i - 1] = *elm;
5646 			}
5647 			goto validate;
5648 		}
5649 		++k;
5650 		if (k < count && base[k].type == HAMMER2_BREF_TYPE_EMPTY) {
5651 			bcopy(&base[i], &base[i+1],
5652 			      (k - i) * sizeof(hammer2_blockref_t));
5653 			base[i] = *elm;
5654 
5655 			/*
5656 			 * We can only update parent->core.live_zero for live
5657 			 * chains.
5658 			 */
5659 			if (parent->core.live_zero <= k)
5660 				parent->core.live_zero = k + 1;
5661 			u = 2;
5662 			goto validate;
5663 		}
5664 	}
5665 	panic("hammer2_base_insert: no room!");
5666 
5667 	/*
5668 	 * Debugging
5669 	 */
5670 validate:
5671 	key_next = 0;
5672 	for (l = 0; l < count; ++l) {
5673 		if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5674 			key_next = base[l].key +
5675 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5676 			break;
5677 		}
5678 	}
5679 	while (++l < count) {
5680 		if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5681 			if (base[l].key <= key_next)
5682 				panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5683 			key_next = base[l].key +
5684 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5685 
5686 		}
5687 	}
5688 
5689 }
5690 
5691 #if 0
5692 
5693 /*
5694  * Sort the blockref array for the chain.  Used by the flush code to
5695  * sort the blockref[] array.
5696  *
5697  * The chain must be exclusively locked AND spin-locked.
5698  */
5699 typedef hammer2_blockref_t *hammer2_blockref_p;
5700 
5701 static
5702 int
5703 hammer2_base_sort_callback(const void *v1, const void *v2)
5704 {
5705 	hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5706 	hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5707 
5708 	/*
5709 	 * Make sure empty elements are placed at the end of the array
5710 	 */
5711 	if (bref1->type == HAMMER2_BREF_TYPE_EMPTY) {
5712 		if (bref2->type == HAMMER2_BREF_TYPE_EMPTY)
5713 			return(0);
5714 		return(1);
5715 	} else if (bref2->type == HAMMER2_BREF_TYPE_EMPTY) {
5716 		return(-1);
5717 	}
5718 
5719 	/*
5720 	 * Sort by key
5721 	 */
5722 	if (bref1->key < bref2->key)
5723 		return(-1);
5724 	if (bref1->key > bref2->key)
5725 		return(1);
5726 	return(0);
5727 }
5728 
5729 void
5730 hammer2_base_sort(hammer2_chain_t *chain)
5731 {
5732 	hammer2_blockref_t *base;
5733 	int count;
5734 
5735 	switch(chain->bref.type) {
5736 	case HAMMER2_BREF_TYPE_INODE:
5737 		/*
5738 		 * Special shortcut for embedded data returns the inode
5739 		 * itself.  Callers must detect this condition and access
5740 		 * the embedded data (the strategy code does this for us).
5741 		 *
5742 		 * This is only applicable to regular files and softlinks.
5743 		 */
5744 		if (chain->data->ipdata.meta.op_flags &
5745 		    HAMMER2_OPFLAG_DIRECTDATA) {
5746 			return;
5747 		}
5748 		base = &chain->data->ipdata.u.blockset.blockref[0];
5749 		count = HAMMER2_SET_COUNT;
5750 		break;
5751 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5752 	case HAMMER2_BREF_TYPE_INDIRECT:
5753 		/*
5754 		 * Optimize indirect blocks in the INITIAL state to avoid
5755 		 * I/O.
5756 		 */
5757 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5758 		base = &chain->data->npdata[0];
5759 		count = chain->bytes / sizeof(hammer2_blockref_t);
5760 		break;
5761 	case HAMMER2_BREF_TYPE_VOLUME:
5762 		base = &chain->data->voldata.sroot_blockset.blockref[0];
5763 		count = HAMMER2_SET_COUNT;
5764 		break;
5765 	case HAMMER2_BREF_TYPE_FREEMAP:
5766 		base = &chain->data->blkset.blockref[0];
5767 		count = HAMMER2_SET_COUNT;
5768 		break;
5769 	default:
5770 		kprintf("hammer2_chain_lookup: unrecognized "
5771 			"blockref(A) type: %d",
5772 		        chain->bref.type);
5773 		while (1)
5774 			tsleep(&base, 0, "dead", 0);
5775 		panic("hammer2_base_sort: unrecognized "
5776 		      "blockref(A) type: %d",
5777 		      chain->bref.type);
5778 		base = NULL;	/* safety */
5779 		count = 0;	/* safety */
5780 	}
5781 	kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5782 }
5783 
5784 #endif
5785 
5786 /*
5787  * Chain memory management
5788  */
5789 void
5790 hammer2_chain_wait(hammer2_chain_t *chain)
5791 {
5792 	tsleep(chain, 0, "chnflw", 1);
5793 }
5794 
5795 const hammer2_media_data_t *
5796 hammer2_chain_rdata(hammer2_chain_t *chain)
5797 {
5798 	KKASSERT(chain->data != NULL);
5799 	return (chain->data);
5800 }
5801 
5802 hammer2_media_data_t *
5803 hammer2_chain_wdata(hammer2_chain_t *chain)
5804 {
5805 	KKASSERT(chain->data != NULL);
5806 	return (chain->data);
5807 }
5808 
5809 /*
5810  * Set the check data for a chain.  This can be a heavy-weight operation
5811  * and typically only runs on-flush.  For file data check data is calculated
5812  * when the logical buffers are flushed.
5813  */
5814 void
5815 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5816 {
5817 	chain->bref.flags &= ~HAMMER2_BREF_FLAG_ZERO;
5818 
5819 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5820 	case HAMMER2_CHECK_NONE:
5821 		break;
5822 	case HAMMER2_CHECK_DISABLED:
5823 		break;
5824 	case HAMMER2_CHECK_ISCSI32:
5825 		chain->bref.check.iscsi32.value =
5826 			hammer2_icrc32(bdata, chain->bytes);
5827 		break;
5828 	case HAMMER2_CHECK_XXHASH64:
5829 		chain->bref.check.xxhash64.value =
5830 			XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5831 		break;
5832 	case HAMMER2_CHECK_SHA192:
5833 		{
5834 			SHA256_CTX hash_ctx;
5835 			union {
5836 				uint8_t digest[SHA256_DIGEST_LENGTH];
5837 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5838 			} u;
5839 
5840 			SHA256_Init(&hash_ctx);
5841 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5842 			SHA256_Final(u.digest, &hash_ctx);
5843 			u.digest64[2] ^= u.digest64[3];
5844 			bcopy(u.digest,
5845 			      chain->bref.check.sha192.data,
5846 			      sizeof(chain->bref.check.sha192.data));
5847 		}
5848 		break;
5849 	case HAMMER2_CHECK_FREEMAP:
5850 		chain->bref.check.freemap.icrc32 =
5851 			hammer2_icrc32(bdata, chain->bytes);
5852 		break;
5853 	default:
5854 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5855 			chain->bref.methods);
5856 		break;
5857 	}
5858 }
5859 
5860 /*
5861  * Characterize a failed check code and try to trace back to the inode.
5862  */
5863 static void
5864 hammer2_characterize_failed_chain(hammer2_chain_t *chain, uint64_t check,
5865 				  int bits)
5866 {
5867 	hammer2_chain_t *lchain;
5868 	hammer2_chain_t *ochain;
5869 	int did;
5870 
5871 	did = krateprintf(&krate_h2chk,
5872 		"chain %016jx.%02x (%s) meth=%02x CHECK FAIL "
5873 		"(flags=%08x, bref/data ",
5874 		chain->bref.data_off,
5875 		chain->bref.type,
5876 		hammer2_bref_type_str(&chain->bref),
5877 		chain->bref.methods,
5878 		chain->flags);
5879 	if (did == 0)
5880 		return;
5881 
5882 	if (bits == 32) {
5883 		kprintf("%08x/%08x)\n",
5884 			chain->bref.check.iscsi32.value,
5885 			(uint32_t)check);
5886 	} else {
5887 		kprintf("%016jx/%016jx)\n",
5888 			chain->bref.check.xxhash64.value,
5889 			check);
5890 	}
5891 
5892 	/*
5893 	 * Run up the chains to try to find the governing inode so we
5894 	 * can report it.
5895 	 *
5896 	 * XXX This error reporting is not really MPSAFE
5897 	 */
5898 	ochain = chain;
5899 	lchain = chain;
5900 	while (chain && chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
5901 		lchain = chain;
5902 		chain = chain->parent;
5903 	}
5904 
5905 	if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
5906 	    ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) == 0 ||
5907 	     (lchain->bref.key & HAMMER2_DIRHASH_VISIBLE))) {
5908 		kprintf("   Resides at/in inode %ld\n",
5909 			chain->bref.key);
5910 	} else if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5911 		kprintf("   Resides in inode index - CRITICAL!!!\n");
5912 	} else {
5913 		kprintf("   Resides in root index - CRITICAL!!!\n");
5914 	}
5915 	if (ochain->hmp) {
5916 		const char *pfsname = "UNKNOWN";
5917 		int i;
5918 
5919 		if (ochain->pmp) {
5920 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
5921 				if (ochain->pmp->pfs_hmps[i] == ochain->hmp &&
5922 				    ochain->pmp->pfs_names[i]) {
5923 					pfsname = ochain->pmp->pfs_names[i];
5924 					break;
5925 				}
5926 			}
5927 		}
5928 		kprintf("   In pfs %s on device %s\n",
5929 			pfsname, ochain->hmp->devrepname);
5930 	}
5931 }
5932 
5933 /*
5934  * Returns non-zero on success, 0 on failure.
5935  */
5936 int
5937 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5938 {
5939 	uint32_t check32;
5940 	uint64_t check64;
5941 	int r;
5942 
5943 	if (chain->bref.flags & HAMMER2_BREF_FLAG_ZERO)
5944 		return 1;
5945 
5946 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5947 	case HAMMER2_CHECK_NONE:
5948 		r = 1;
5949 		break;
5950 	case HAMMER2_CHECK_DISABLED:
5951 		r = 1;
5952 		break;
5953 	case HAMMER2_CHECK_ISCSI32:
5954 		check32 = hammer2_icrc32(bdata, chain->bytes);
5955 		r = (chain->bref.check.iscsi32.value == check32);
5956 		if (r == 0) {
5957 			hammer2_characterize_failed_chain(chain, check32, 32);
5958 		}
5959 		hammer2_process_icrc32 += chain->bytes;
5960 		break;
5961 	case HAMMER2_CHECK_XXHASH64:
5962 		check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5963 		r = (chain->bref.check.xxhash64.value == check64);
5964 		if (r == 0) {
5965 			hammer2_characterize_failed_chain(chain, check64, 64);
5966 		}
5967 		hammer2_process_xxhash64 += chain->bytes;
5968 		break;
5969 	case HAMMER2_CHECK_SHA192:
5970 		{
5971 			SHA256_CTX hash_ctx;
5972 			union {
5973 				uint8_t digest[SHA256_DIGEST_LENGTH];
5974 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5975 			} u;
5976 
5977 			SHA256_Init(&hash_ctx);
5978 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5979 			SHA256_Final(u.digest, &hash_ctx);
5980 			u.digest64[2] ^= u.digest64[3];
5981 			if (bcmp(u.digest,
5982 				 chain->bref.check.sha192.data,
5983 			         sizeof(chain->bref.check.sha192.data)) == 0) {
5984 				r = 1;
5985 			} else {
5986 				r = 0;
5987 				krateprintf(&krate_h2chk,
5988 					"chain %016jx.%02x meth=%02x "
5989 					"CHECK FAIL\n",
5990 					chain->bref.data_off,
5991 					chain->bref.type,
5992 					chain->bref.methods);
5993 			}
5994 		}
5995 		break;
5996 	case HAMMER2_CHECK_FREEMAP:
5997 		r = (chain->bref.check.freemap.icrc32 ==
5998 		     hammer2_icrc32(bdata, chain->bytes));
5999 		if (r == 0) {
6000 			int did;
6001 
6002 			did = krateprintf(&krate_h2chk,
6003 					  "chain %016jx.%02x meth=%02x "
6004 					  "CHECK FAIL\n",
6005 					  chain->bref.data_off,
6006 					  chain->bref.type,
6007 					  chain->bref.methods);
6008 			if (did) {
6009 				kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
6010 					chain->bref.check.freemap.icrc32,
6011 					hammer2_icrc32(bdata, chain->bytes),
6012 					chain->bytes);
6013 				if (chain->dio) {
6014 					kprintf("dio %p buf %016jx,%d "
6015 						"bdata %p/%p\n",
6016 						chain->dio,
6017 						chain->dio->bp->b_loffset,
6018 						chain->dio->bp->b_bufsize,
6019 						bdata,
6020 						chain->dio->bp->b_data);
6021 				}
6022 			}
6023 		}
6024 		break;
6025 	default:
6026 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
6027 			chain->bref.methods);
6028 		r = 1;
6029 		break;
6030 	}
6031 	return r;
6032 }
6033 
6034 /*
6035  * Acquire the chain and parent representing the specified inode for the
6036  * device at the specified cluster index.
6037  *
6038  * The flags passed in are LOOKUP flags, not RESOLVE flags.
6039  *
6040  * If we are unable to locate the inode, HAMMER2_ERROR_EIO is returned and
6041  * *chainp will be NULL.  *parentp may still be set error or not, or NULL
6042  * if the parent itself could not be resolved.
6043  *
6044  * The caller may pass-in a locked *parentp and/or *chainp, or neither.
6045  * They will be unlocked and released by this function.  The *parentp and
6046  * *chainp representing the located inode are returned locked.
6047  */
6048 int
6049 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
6050 			 int clindex, int flags,
6051 			 hammer2_chain_t **parentp, hammer2_chain_t **chainp)
6052 {
6053 	hammer2_chain_t *parent;
6054 	hammer2_chain_t *rchain;
6055 	hammer2_key_t key_dummy;
6056 	hammer2_inode_t *ip;
6057 	int resolve_flags;
6058 	int error;
6059 
6060 	resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
6061 			HAMMER2_RESOLVE_SHARED : 0;
6062 
6063 	/*
6064 	 * Caller expects us to replace these.
6065 	 */
6066 	if (*chainp) {
6067 		hammer2_chain_unlock(*chainp);
6068 		hammer2_chain_drop(*chainp);
6069 		*chainp = NULL;
6070 	}
6071 	if (*parentp) {
6072 		hammer2_chain_unlock(*parentp);
6073 		hammer2_chain_drop(*parentp);
6074 		*parentp = NULL;
6075 	}
6076 
6077 	/*
6078 	 * Be very careful, this is a backend function and we CANNOT
6079 	 * lock any frontend inode structure we find.  But we have to
6080 	 * look the inode up this way first in case it exists but is
6081 	 * detached from the radix tree.
6082 	 */
6083 	ip = hammer2_inode_lookup(pmp, inum);
6084 	if (ip) {
6085 		*chainp = hammer2_inode_chain_and_parent(ip, clindex,
6086 						       parentp,
6087 						       resolve_flags);
6088 		hammer2_inode_drop(ip);
6089 		if (*chainp)
6090 			return 0;
6091 		hammer2_chain_unlock(*chainp);
6092 		hammer2_chain_drop(*chainp);
6093 		*chainp = NULL;
6094 		if (*parentp) {
6095 			hammer2_chain_unlock(*parentp);
6096 			hammer2_chain_drop(*parentp);
6097 			*parentp = NULL;
6098 		}
6099 	}
6100 
6101 	/*
6102 	 * Inodes hang off of the iroot (bit 63 is clear, differentiating
6103 	 * inodes from root directory entries in the key lookup).
6104 	 */
6105 	parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
6106 	rchain = NULL;
6107 	if (parent) {
6108 		rchain = hammer2_chain_lookup(&parent, &key_dummy,
6109 					      inum, inum,
6110 					      &error, flags);
6111 	} else {
6112 		error = HAMMER2_ERROR_EIO;
6113 	}
6114 	*parentp = parent;
6115 	*chainp = rchain;
6116 
6117 	return error;
6118 }
6119 
6120 /*
6121  * Used by the bulkscan code to snapshot the synchronized storage for
6122  * a volume, allowing it to be scanned concurrently against normal
6123  * operation.
6124  */
6125 hammer2_chain_t *
6126 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
6127 {
6128 	hammer2_chain_t *copy;
6129 
6130 	copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
6131 	copy->data = kmalloc(sizeof(copy->data->voldata),
6132 			     hmp->mchain,
6133 			     M_WAITOK | M_ZERO);
6134 	hammer2_voldata_lock(hmp);
6135 	copy->data->voldata = hmp->volsync;
6136 	hammer2_voldata_unlock(hmp);
6137 
6138 	return copy;
6139 }
6140 
6141 void
6142 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
6143 {
6144 	KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
6145 	KKASSERT(copy->data);
6146 	kfree(copy->data, copy->hmp->mchain);
6147 	copy->data = NULL;
6148 	atomic_add_long(&hammer2_chain_allocs, -1);
6149 	hammer2_chain_drop(copy);
6150 }
6151 
6152 /*
6153  * Returns non-zero if the chain (INODE or DIRENT) matches the
6154  * filename.
6155  */
6156 int
6157 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
6158 			  size_t name_len)
6159 {
6160 	const hammer2_inode_data_t *ripdata;
6161 	const hammer2_dirent_head_t *den;
6162 
6163 	if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
6164 		ripdata = &chain->data->ipdata;
6165 		if (ripdata->meta.name_len == name_len &&
6166 		    bcmp(ripdata->filename, name, name_len) == 0) {
6167 			return 1;
6168 		}
6169 	}
6170 	if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
6171 	   chain->bref.embed.dirent.namlen == name_len) {
6172 		den = &chain->bref.embed.dirent;
6173 		if (name_len > sizeof(chain->bref.check.buf) &&
6174 		    bcmp(chain->data->buf, name, name_len) == 0) {
6175 			return 1;
6176 		}
6177 		if (name_len <= sizeof(chain->bref.check.buf) &&
6178 		    bcmp(chain->bref.check.buf, name, name_len) == 0) {
6179 			return 1;
6180 		}
6181 	}
6182 	return 0;
6183 }
6184