xref: /dragonfly/sys/vfs/hammer2/hammer2_chain.c (revision 5a08817b)
1 /*
2  * Copyright (c) 2011-2015 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62 
63 #include <crypto/sha2/sha2.h>
64 
65 #include "hammer2.h"
66 
67 static int hammer2_indirect_optimize;	/* XXX SYSCTL */
68 
69 static hammer2_chain_t *hammer2_chain_create_indirect(
70 		hammer2_chain_t *parent,
71 		hammer2_key_t key, int keybits,
72 		hammer2_tid_t mtid, int for_type, int *errorp);
73 static void hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop);
74 static hammer2_chain_t *hammer2_combined_find(
75 		hammer2_chain_t *parent,
76 		hammer2_blockref_t *base, int count,
77 		int *cache_indexp, hammer2_key_t *key_nextp,
78 		hammer2_key_t key_beg, hammer2_key_t key_end,
79 		hammer2_blockref_t **bresp);
80 
81 /*
82  * Basic RBTree for chains (core->rbtree and core->dbtree).  Chains cannot
83  * overlap in the RB trees.  Deleted chains are moved from rbtree to either
84  * dbtree or to dbq.
85  *
86  * Chains in delete-duplicate sequences can always iterate through core_entry
87  * to locate the live version of the chain.
88  */
89 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
90 
91 int
92 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
93 {
94 	hammer2_key_t c1_beg;
95 	hammer2_key_t c1_end;
96 	hammer2_key_t c2_beg;
97 	hammer2_key_t c2_end;
98 
99 	/*
100 	 * Compare chains.  Overlaps are not supposed to happen and catch
101 	 * any software issues early we count overlaps as a match.
102 	 */
103 	c1_beg = chain1->bref.key;
104 	c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
105 	c2_beg = chain2->bref.key;
106 	c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
107 
108 	if (c1_end < c2_beg)	/* fully to the left */
109 		return(-1);
110 	if (c1_beg > c2_end)	/* fully to the right */
111 		return(1);
112 	return(0);		/* overlap (must not cross edge boundary) */
113 }
114 
115 static __inline
116 int
117 hammer2_isclusterable(hammer2_chain_t *chain)
118 {
119 	if (hammer2_cluster_enable) {
120 		if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
121 		    chain->bref.type == HAMMER2_BREF_TYPE_INODE ||
122 		    chain->bref.type == HAMMER2_BREF_TYPE_DATA) {
123 			return(1);
124 		}
125 	}
126 	return(0);
127 }
128 
129 /*
130  * Make a chain visible to the flusher.  The flusher needs to be able to
131  * do flushes of subdirectory chains or single files so it does a top-down
132  * recursion using the ONFLUSH flag for the recursion.  It locates MODIFIED
133  * or UPDATE chains and flushes back up the chain to the volume root.
134  *
135  * This routine sets ONFLUSH upward until it hits the volume root.  For
136  * simplicity we ignore PFSROOT boundaries whos rules can be complex.
137  * Extra ONFLUSH flagging doesn't hurt the filesystem.
138  */
139 void
140 hammer2_chain_setflush(hammer2_chain_t *chain)
141 {
142 	hammer2_chain_t *parent;
143 
144 	if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
145 		hammer2_spin_sh(&chain->core.spin);
146 		while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
147 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
148 			if ((parent = chain->parent) == NULL)
149 				break;
150 			hammer2_spin_sh(&parent->core.spin);
151 			hammer2_spin_unsh(&chain->core.spin);
152 			chain = parent;
153 		}
154 		hammer2_spin_unsh(&chain->core.spin);
155 	}
156 }
157 
158 /*
159  * Allocate a new disconnected chain element representing the specified
160  * bref.  chain->refs is set to 1 and the passed bref is copied to
161  * chain->bref.  chain->bytes is derived from the bref.
162  *
163  * chain->pmp inherits pmp unless the chain is an inode (other than the
164  * super-root inode).
165  *
166  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
167  */
168 hammer2_chain_t *
169 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
170 		    hammer2_blockref_t *bref)
171 {
172 	hammer2_chain_t *chain;
173 	u_int bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
174 
175 	/*
176 	 * Construct the appropriate system structure.
177 	 */
178 	switch(bref->type) {
179 	case HAMMER2_BREF_TYPE_INODE:
180 	case HAMMER2_BREF_TYPE_INDIRECT:
181 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
182 	case HAMMER2_BREF_TYPE_DATA:
183 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
184 		/*
185 		 * Chain's are really only associated with the hmp but we
186 		 * maintain a pmp association for per-mount memory tracking
187 		 * purposes.  The pmp can be NULL.
188 		 */
189 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
190 		break;
191 	case HAMMER2_BREF_TYPE_VOLUME:
192 	case HAMMER2_BREF_TYPE_FREEMAP:
193 		/*
194 		 * Only hammer2_chain_bulksnap() calls this function with these
195 		 * types.
196 		 */
197 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
198 		break;
199 	default:
200 		chain = NULL;
201 		panic("hammer2_chain_alloc: unrecognized blockref type: %d",
202 		      bref->type);
203 	}
204 
205 	/*
206 	 * Initialize the new chain structure.  pmp must be set to NULL for
207 	 * chains belonging to the super-root topology of a device mount.
208 	 */
209 	if (pmp == hmp->spmp)
210 		chain->pmp = NULL;
211 	else
212 		chain->pmp = pmp;
213 	chain->hmp = hmp;
214 	chain->bref = *bref;
215 	chain->bytes = bytes;
216 	chain->refs = 1;
217 	chain->flags = HAMMER2_CHAIN_ALLOCATED;
218 
219 	/*
220 	 * Set the PFS boundary flag if this chain represents a PFS root.
221 	 */
222 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
223 		chain->flags |= HAMMER2_CHAIN_PFSBOUNDARY;
224 	hammer2_chain_core_init(chain);
225 
226 	return (chain);
227 }
228 
229 /*
230  * Initialize a chain's core structure.  This structure used to be allocated
231  * but is now embedded.
232  *
233  * The core is not locked.  No additional refs on the chain are made.
234  * (trans) must not be NULL if (core) is not NULL.
235  */
236 void
237 hammer2_chain_core_init(hammer2_chain_t *chain)
238 {
239 	/*
240 	 * Fresh core under nchain (no multi-homing of ochain's
241 	 * sub-tree).
242 	 */
243 	RB_INIT(&chain->core.rbtree);	/* live chains */
244 	hammer2_mtx_init(&chain->lock, "h2chain");
245 }
246 
247 /*
248  * Add a reference to a chain element, preventing its destruction.
249  *
250  * (can be called with spinlock held)
251  */
252 void
253 hammer2_chain_ref(hammer2_chain_t *chain)
254 {
255 	atomic_add_int(&chain->refs, 1);
256 #if 0
257 	kprintf("REFC %p %d %08x\n", chain, chain->refs - 1, chain->flags);
258 	print_backtrace(8);
259 #endif
260 }
261 
262 /*
263  * Insert the chain in the core rbtree.
264  *
265  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
266  * chain is a special case used by the flush code that is placed on the
267  * unstaged deleted list to avoid confusing the live view.
268  */
269 #define HAMMER2_CHAIN_INSERT_SPIN	0x0001
270 #define HAMMER2_CHAIN_INSERT_LIVE	0x0002
271 #define HAMMER2_CHAIN_INSERT_RACE	0x0004
272 
273 static
274 int
275 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
276 		     int flags, int generation)
277 {
278 	hammer2_chain_t *xchain;
279 	int error = 0;
280 
281 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
282 		hammer2_spin_ex(&parent->core.spin);
283 
284 	/*
285 	 * Interlocked by spinlock, check for race
286 	 */
287 	if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
288 	    parent->core.generation != generation) {
289 		error = EAGAIN;
290 		goto failed;
291 	}
292 
293 	/*
294 	 * Insert chain
295 	 */
296 	xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
297 	KASSERT(xchain == NULL,
298 		("hammer2_chain_insert: collision %p %p", chain, xchain));
299 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
300 	chain->parent = parent;
301 	++parent->core.chain_count;
302 	++parent->core.generation;	/* XXX incs for _get() too, XXX */
303 
304 	/*
305 	 * We have to keep track of the effective live-view blockref count
306 	 * so the create code knows when to push an indirect block.
307 	 */
308 	if (flags & HAMMER2_CHAIN_INSERT_LIVE)
309 		atomic_add_int(&parent->core.live_count, 1);
310 failed:
311 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
312 		hammer2_spin_unex(&parent->core.spin);
313 	return error;
314 }
315 
316 /*
317  * Drop the caller's reference to the chain.  When the ref count drops to
318  * zero this function will try to disassociate the chain from its parent and
319  * deallocate it, then recursely drop the parent using the implied ref
320  * from the chain's chain->parent.
321  */
322 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain);
323 
324 void
325 hammer2_chain_drop(hammer2_chain_t *chain)
326 {
327 	u_int refs;
328 	u_int need = 0;
329 
330 	if (hammer2_debug & 0x200000)
331 		Debugger("drop");
332 #if 0
333 	kprintf("DROP %p %d %08x\n", chain, chain->refs - 1, chain->flags);
334 	print_backtrace(8);
335 #endif
336 
337 	if (chain->flags & HAMMER2_CHAIN_UPDATE)
338 		++need;
339 	if (chain->flags & HAMMER2_CHAIN_MODIFIED)
340 		++need;
341 	KKASSERT(chain->refs > need);
342 
343 	while (chain) {
344 		refs = chain->refs;
345 		cpu_ccfence();
346 		KKASSERT(refs > 0);
347 
348 		if (refs == 1) {
349 			chain = hammer2_chain_lastdrop(chain);
350 		} else {
351 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
352 				break;
353 			/* retry the same chain */
354 		}
355 	}
356 }
357 
358 /*
359  * Safe handling of the 1->0 transition on chain.  Returns a chain for
360  * recursive drop or NULL, possibly returning the same chain if the atomic
361  * op fails.
362  *
363  * Whem two chains need to be recursively dropped we use the chain
364  * we would otherwise free to placehold the additional chain.  It's a bit
365  * convoluted but we can't just recurse without potentially blowing out
366  * the kernel stack.
367  *
368  * The chain cannot be freed if it has any children.
369  *
370  * The core spinlock is allowed nest child-to-parent (not parent-to-child).
371  */
372 static
373 hammer2_chain_t *
374 hammer2_chain_lastdrop(hammer2_chain_t *chain)
375 {
376 	hammer2_pfs_t *pmp;
377 	hammer2_dev_t *hmp;
378 	hammer2_chain_t *parent;
379 	hammer2_chain_t *rdrop;
380 
381 	/*
382 	 * Spinlock the core and check to see if it is empty.  If it is
383 	 * not empty we leave chain intact with refs == 0.  The elements
384 	 * in core->rbtree are associated with other chains contemporary
385 	 * with ours but not with our chain directly.
386 	 */
387 	hammer2_spin_ex(&chain->core.spin);
388 
389 	/*
390 	 * We can't free non-stale chains with children until we are
391 	 * able to free the children because there might be a flush
392 	 * dependency.  Flushes of stale children (which should also
393 	 * have their deleted flag set) short-cut recursive flush
394 	 * dependencies and can be freed here.  Any flushes which run
395 	 * through stale children due to the flush synchronization
396 	 * point should have a FLUSH_* bit set in the chain and not
397 	 * reach lastdrop at this time.
398 	 *
399 	 * NOTE: We return (chain) on failure to retry.
400 	 */
401 	if (chain->core.chain_count) {
402 		if (atomic_cmpset_int(&chain->refs, 1, 0)) {
403 			hammer2_spin_unex(&chain->core.spin);
404 			chain = NULL;	/* success */
405 		} else {
406 			hammer2_spin_unex(&chain->core.spin);
407 		}
408 		return(chain);
409 	}
410 	/* no chains left under us */
411 
412 	/*
413 	 * chain->core has no children left so no accessors can get to our
414 	 * chain from there.  Now we have to lock the parent core to interlock
415 	 * remaining possible accessors that might bump chain's refs before
416 	 * we can safely drop chain's refs with intent to free the chain.
417 	 */
418 	hmp = chain->hmp;
419 	pmp = chain->pmp;	/* can be NULL */
420 	rdrop = NULL;
421 
422 	/*
423 	 * Spinlock the parent and try to drop the last ref on chain.
424 	 * On success remove chain from its parent, otherwise return NULL.
425 	 *
426 	 * (normal core locks are top-down recursive but we define core
427 	 *  spinlocks as bottom-up recursive, so this is safe).
428 	 */
429 	if ((parent = chain->parent) != NULL) {
430 		hammer2_spin_ex(&parent->core.spin);
431 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
432 			/* 1->0 transition failed */
433 			hammer2_spin_unex(&parent->core.spin);
434 			hammer2_spin_unex(&chain->core.spin);
435 			return(chain);	/* retry */
436 		}
437 
438 		/*
439 		 * 1->0 transition successful, remove chain from its
440 		 * above core.
441 		 */
442 		if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
443 			RB_REMOVE(hammer2_chain_tree,
444 				  &parent->core.rbtree, chain);
445 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
446 			--parent->core.chain_count;
447 			chain->parent = NULL;
448 		}
449 
450 		/*
451 		 * If our chain was the last chain in the parent's core the
452 		 * core is now empty and its parent might have to be
453 		 * re-dropped if it has 0 refs.
454 		 */
455 		if (parent->core.chain_count == 0) {
456 			rdrop = parent;
457 			if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0) {
458 				rdrop = NULL;
459 			}
460 		}
461 		hammer2_spin_unex(&parent->core.spin);
462 		parent = NULL;	/* safety */
463 	}
464 
465 	/*
466 	 * Successful 1->0 transition and the chain can be destroyed now.
467 	 *
468 	 * We still have the core spinlock, and core's chain_count is 0.
469 	 * Any parent spinlock is gone.
470 	 */
471 	hammer2_spin_unex(&chain->core.spin);
472 	KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
473 		 chain->core.chain_count == 0);
474 
475 	/*
476 	 * All spin locks are gone, finish freeing stuff.
477 	 */
478 	KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
479 				  HAMMER2_CHAIN_MODIFIED)) == 0);
480 	hammer2_chain_drop_data(chain, 1);
481 
482 	KKASSERT(chain->dio == NULL);
483 
484 	/*
485 	 * Once chain resources are gone we can use the now dead chain
486 	 * structure to placehold what might otherwise require a recursive
487 	 * drop, because we have potentially two things to drop and can only
488 	 * return one directly.
489 	 */
490 	if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
491 		chain->flags &= ~HAMMER2_CHAIN_ALLOCATED;
492 		chain->hmp = NULL;
493 		kfree(chain, hmp->mchain);
494 	}
495 
496 	/*
497 	 * Possible chaining loop when parent re-drop needed.
498 	 */
499 	return(rdrop);
500 }
501 
502 /*
503  * On either last lock release or last drop
504  */
505 static void
506 hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop)
507 {
508 	/*hammer2_dev_t *hmp = chain->hmp;*/
509 
510 	switch(chain->bref.type) {
511 	case HAMMER2_BREF_TYPE_VOLUME:
512 	case HAMMER2_BREF_TYPE_FREEMAP:
513 		if (lastdrop)
514 			chain->data = NULL;
515 		break;
516 	default:
517 		KKASSERT(chain->data == NULL);
518 		break;
519 	}
520 }
521 
522 /*
523  * Lock a referenced chain element, acquiring its data with I/O if necessary,
524  * and specify how you would like the data to be resolved.
525  *
526  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
527  *
528  * The lock is allowed to recurse, multiple locking ops will aggregate
529  * the requested resolve types.  Once data is assigned it will not be
530  * removed until the last unlock.
531  *
532  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
533  *			   (typically used to avoid device/logical buffer
534  *			    aliasing for data)
535  *
536  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
537  *			   the INITIAL-create state (indirect blocks only).
538  *
539  *			   Do not resolve data elements for DATA chains.
540  *			   (typically used to avoid device/logical buffer
541  *			    aliasing for data)
542  *
543  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
544  *
545  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
546  *			   it will be locked exclusive.
547  *
548  * NOTE: Embedded elements (volume header, inodes) are always resolved
549  *	 regardless.
550  *
551  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
552  *	 element will instantiate and zero its buffer, and flush it on
553  *	 release.
554  *
555  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
556  *	 so as not to instantiate a device buffer, which could alias against
557  *	 a logical file buffer.  However, if ALWAYS is specified the
558  *	 device buffer will be instantiated anyway.
559  *
560  * WARNING! This function blocks on I/O if data needs to be fetched.  This
561  *	    blocking can run concurrent with other compatible lock holders
562  *	    who do not need data returning.  The lock is not upgraded to
563  *	    exclusive during a data fetch, a separate bit is used to
564  *	    interlock I/O.  However, an exclusive lock holder can still count
565  *	    on being interlocked against an I/O fetch managed by a shared
566  *	    lock holder.
567  */
568 void
569 hammer2_chain_lock(hammer2_chain_t *chain, int how)
570 {
571 	/*
572 	 * Ref and lock the element.  Recursive locks are allowed.
573 	 */
574 	KKASSERT(chain->refs > 0);
575 	atomic_add_int(&chain->lockcnt, 1);
576 
577 	/*
578 	 * Get the appropriate lock.
579 	 */
580 	if (how & HAMMER2_RESOLVE_SHARED)
581 		hammer2_mtx_sh(&chain->lock);
582 	else
583 		hammer2_mtx_ex(&chain->lock);
584 
585 	/*
586 	 * If we already have a valid data pointer no further action is
587 	 * necessary.
588 	 */
589 	if (chain->data)
590 		return;
591 
592 	/*
593 	 * Do we have to resolve the data?
594 	 */
595 	switch(how & HAMMER2_RESOLVE_MASK) {
596 	case HAMMER2_RESOLVE_NEVER:
597 		return;
598 	case HAMMER2_RESOLVE_MAYBE:
599 		if (chain->flags & HAMMER2_CHAIN_INITIAL)
600 			return;
601 		if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
602 			return;
603 #if 0
604 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
605 			return;
606 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
607 			return;
608 #endif
609 		/* fall through */
610 	case HAMMER2_RESOLVE_ALWAYS:
611 	default:
612 		break;
613 	}
614 
615 	/*
616 	 * Caller requires data
617 	 */
618 	hammer2_chain_load_data(chain);
619 }
620 
621 /*
622  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
623  * may be of any type.
624  *
625  * Once chain->data is set it cannot be disposed of until all locks are
626  * released.
627  */
628 void
629 hammer2_chain_load_data(hammer2_chain_t *chain)
630 {
631 	hammer2_blockref_t *bref;
632 	hammer2_dev_t *hmp;
633 	char *bdata;
634 	int error;
635 
636 	/*
637 	 * Degenerate case, data already present.
638 	 */
639 	if (chain->data)
640 		return;
641 
642 	hmp = chain->hmp;
643 	KKASSERT(hmp != NULL);
644 
645 	/*
646 	 * Gain the IOINPROG bit, interlocked block.
647 	 */
648 	for (;;) {
649 		u_int oflags;
650 		u_int nflags;
651 
652 		oflags = chain->flags;
653 		cpu_ccfence();
654 		if (oflags & HAMMER2_CHAIN_IOINPROG) {
655 			nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
656 			tsleep_interlock(&chain->flags, 0);
657 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
658 				tsleep(&chain->flags, PINTERLOCKED,
659 					"h2iocw", 0);
660 			}
661 			/* retry */
662 		} else {
663 			nflags = oflags | HAMMER2_CHAIN_IOINPROG;
664 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
665 				break;
666 			}
667 			/* retry */
668 		}
669 	}
670 
671 	/*
672 	 * We own CHAIN_IOINPROG
673 	 *
674 	 * Degenerate case if we raced another load.
675 	 */
676 	if (chain->data)
677 		goto done;
678 
679 	/*
680 	 * We must resolve to a device buffer, either by issuing I/O or
681 	 * by creating a zero-fill element.  We do not mark the buffer
682 	 * dirty when creating a zero-fill element (the hammer2_chain_modify()
683 	 * API must still be used to do that).
684 	 *
685 	 * The device buffer is variable-sized in powers of 2 down
686 	 * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
687 	 * chunk always contains buffers of the same size. (XXX)
688 	 *
689 	 * The minimum physical IO size may be larger than the variable
690 	 * block size.
691 	 */
692 	bref = &chain->bref;
693 
694 	/*
695 	 * The getblk() optimization can only be used on newly created
696 	 * elements if the physical block size matches the request.
697 	 */
698 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
699 		error = hammer2_io_new(hmp, bref->data_off, chain->bytes,
700 					&chain->dio);
701 	} else {
702 		error = hammer2_io_bread(hmp, bref->data_off, chain->bytes,
703 					 &chain->dio);
704 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
705 	}
706 	if (error) {
707 		chain->error = HAMMER2_ERROR_IO;
708 		kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
709 			(intmax_t)bref->data_off, error);
710 		hammer2_io_bqrelse(&chain->dio);
711 		goto done;
712 	}
713 	chain->error = 0;
714 
715 	/*
716 	 * NOTE: A locked chain's data cannot be modified without first
717 	 *	 calling hammer2_chain_modify().
718 	 */
719 
720 	/*
721 	 * Clear INITIAL.  In this case we used io_new() and the buffer has
722 	 * been zero'd and marked dirty.
723 	 */
724 	bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
725 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
726 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
727 		chain->bref.flags |= HAMMER2_BREF_FLAG_ZERO;
728 	} else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
729 		/*
730 		 * check data not currently synchronized due to
731 		 * modification.  XXX assumes data stays in the buffer
732 		 * cache, which might not be true (need biodep on flush
733 		 * to calculate crc?  or simple crc?).
734 		 */
735 	} else {
736 		if (hammer2_chain_testcheck(chain, bdata) == 0) {
737 			kprintf("chain %016jx.%02x meth=%02x "
738 				"CHECK FAIL %08x (flags=%08x)\n",
739 				chain->bref.data_off,
740 				chain->bref.type,
741 				chain->bref.methods,
742 				hammer2_icrc32(bdata, chain->bytes),
743 				chain->flags);
744 			chain->error = HAMMER2_ERROR_CHECK;
745 		}
746 	}
747 
748 	/*
749 	 * Setup the data pointer, either pointing it to an embedded data
750 	 * structure and copying the data from the buffer, or pointing it
751 	 * into the buffer.
752 	 *
753 	 * The buffer is not retained when copying to an embedded data
754 	 * structure in order to avoid potential deadlocks or recursions
755 	 * on the same physical buffer.
756 	 *
757 	 * WARNING! Other threads can start using the data the instant we
758 	 *	    set chain->data non-NULL.
759 	 */
760 	switch (bref->type) {
761 	case HAMMER2_BREF_TYPE_VOLUME:
762 	case HAMMER2_BREF_TYPE_FREEMAP:
763 		/*
764 		 * Copy data from bp to embedded buffer
765 		 */
766 		panic("hammer2_chain_lock: called on unresolved volume header");
767 		break;
768 	case HAMMER2_BREF_TYPE_INODE:
769 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
770 	case HAMMER2_BREF_TYPE_INDIRECT:
771 	case HAMMER2_BREF_TYPE_DATA:
772 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
773 	default:
774 		/*
775 		 * Point data at the device buffer and leave dio intact.
776 		 */
777 		chain->data = (void *)bdata;
778 		break;
779 	}
780 
781 	/*
782 	 * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
783 	 */
784 done:
785 	for (;;) {
786 		u_int oflags;
787 		u_int nflags;
788 
789 		oflags = chain->flags;
790 		nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
791 				    HAMMER2_CHAIN_IOSIGNAL);
792 		KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
793 		if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
794 			if (oflags & HAMMER2_CHAIN_IOSIGNAL)
795 				wakeup(&chain->flags);
796 			break;
797 		}
798 	}
799 }
800 
801 /*
802  * Unlock and deref a chain element.
803  *
804  * On the last lock release any non-embedded data (chain->dio) will be
805  * retired.
806  */
807 void
808 hammer2_chain_unlock(hammer2_chain_t *chain)
809 {
810 	hammer2_mtx_state_t ostate;
811 	long *counterp;
812 	u_int lockcnt;
813 
814 	/*
815 	 * If multiple locks are present (or being attempted) on this
816 	 * particular chain we can just unlock, drop refs, and return.
817 	 *
818 	 * Otherwise fall-through on the 1->0 transition.
819 	 */
820 	for (;;) {
821 		lockcnt = chain->lockcnt;
822 		KKASSERT(lockcnt > 0);
823 		cpu_ccfence();
824 		if (lockcnt > 1) {
825 			if (atomic_cmpset_int(&chain->lockcnt,
826 					      lockcnt, lockcnt - 1)) {
827 				hammer2_mtx_unlock(&chain->lock);
828 				return;
829 			}
830 		} else {
831 			if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
832 				break;
833 		}
834 		/* retry */
835 	}
836 
837 	/*
838 	 * On the 1->0 transition we upgrade the core lock (if necessary)
839 	 * to exclusive for terminal processing.  If after upgrading we find
840 	 * that lockcnt is non-zero, another thread is racing us and will
841 	 * handle the unload for us later on, so just cleanup and return
842 	 * leaving the data/io intact
843 	 *
844 	 * Otherwise if lockcnt is still 0 it is possible for it to become
845 	 * non-zero and race, but since we hold the core->lock exclusively
846 	 * all that will happen is that the chain will be reloaded after we
847 	 * unload it.
848 	 */
849 	ostate = hammer2_mtx_upgrade(&chain->lock);
850 	if (chain->lockcnt) {
851 		hammer2_mtx_unlock(&chain->lock);
852 		return;
853 	}
854 
855 	/*
856 	 * Shortcut the case if the data is embedded or not resolved.
857 	 *
858 	 * Do NOT NULL out chain->data (e.g. inode data), it might be
859 	 * dirty.
860 	 */
861 	if (chain->dio == NULL) {
862 		if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0)
863 			hammer2_chain_drop_data(chain, 0);
864 		hammer2_mtx_unlock(&chain->lock);
865 		return;
866 	}
867 
868 	/*
869 	 * Statistics
870 	 */
871 	if (hammer2_io_isdirty(chain->dio)) {
872 		switch(chain->bref.type) {
873 		case HAMMER2_BREF_TYPE_DATA:
874 			counterp = &hammer2_iod_file_write;
875 			break;
876 		case HAMMER2_BREF_TYPE_INODE:
877 			counterp = &hammer2_iod_meta_write;
878 			break;
879 		case HAMMER2_BREF_TYPE_INDIRECT:
880 			counterp = &hammer2_iod_indr_write;
881 			break;
882 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
883 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
884 			counterp = &hammer2_iod_fmap_write;
885 			break;
886 		default:
887 			counterp = &hammer2_iod_volu_write;
888 			break;
889 		}
890 		*counterp += chain->bytes;
891 	}
892 
893 	/*
894 	 * Clean out the dio.
895 	 *
896 	 * NOTE: Freemap leaf's use reserved blocks and thus no aliasing
897 	 *	 is possible.
898 	 */
899 	chain->data = NULL;
900 	hammer2_io_bqrelse(&chain->dio);
901 	hammer2_mtx_unlock(&chain->lock);
902 }
903 
904 /*
905  * This counts the number of live blockrefs in a block array and
906  * also calculates the point at which all remaining blockrefs are empty.
907  * This routine can only be called on a live chain (DUPLICATED flag not set).
908  *
909  * NOTE: Flag is not set until after the count is complete, allowing
910  *	 callers to test the flag without holding the spinlock.
911  *
912  * NOTE: If base is NULL the related chain is still in the INITIAL
913  *	 state and there are no blockrefs to count.
914  *
915  * NOTE: live_count may already have some counts accumulated due to
916  *	 creation and deletion and could even be initially negative.
917  */
918 void
919 hammer2_chain_countbrefs(hammer2_chain_t *chain,
920 			 hammer2_blockref_t *base, int count)
921 {
922 	hammer2_spin_ex(&chain->core.spin);
923         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
924 		if (base) {
925 			while (--count >= 0) {
926 				if (base[count].type)
927 					break;
928 			}
929 			chain->core.live_zero = count + 1;
930 			while (count >= 0) {
931 				if (base[count].type)
932 					atomic_add_int(&chain->core.live_count,
933 						       1);
934 				--count;
935 			}
936 		} else {
937 			chain->core.live_zero = 0;
938 		}
939 		/* else do not modify live_count */
940 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
941 	}
942 	hammer2_spin_unex(&chain->core.spin);
943 }
944 
945 /*
946  * Resize the chain's physical storage allocation in-place.  This function does
947  * not adjust the data pointer and must be followed by (typically) a
948  * hammer2_chain_modify() call to copy any old data over and adjust the
949  * data pointer.
950  *
951  * Chains can be resized smaller without reallocating the storage.  Resizing
952  * larger will reallocate the storage.  Excess or prior storage is reclaimed
953  * asynchronously at a later time.
954  *
955  * Must be passed an exclusively locked parent and chain.
956  *
957  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
958  * to avoid instantiating a device buffer that conflicts with the vnode data
959  * buffer.  However, because H2 can compress or encrypt data, the chain may
960  * have a dio assigned to it in those situations, and they do not conflict.
961  *
962  * XXX return error if cannot resize.
963  */
964 void
965 hammer2_chain_resize(hammer2_inode_t *ip,
966 		     hammer2_chain_t *parent, hammer2_chain_t *chain,
967 		     hammer2_tid_t mtid, hammer2_off_t dedup_off,
968 		     int nradix, int flags)
969 {
970 	hammer2_dev_t *hmp;
971 	size_t obytes;
972 	size_t nbytes;
973 
974 	hmp = chain->hmp;
975 
976 	/*
977 	 * Only data and indirect blocks can be resized for now.
978 	 * (The volu root, inodes, and freemap elements use a fixed size).
979 	 */
980 	KKASSERT(chain != &hmp->vchain);
981 	KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
982 		 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT);
983 	KKASSERT(chain->parent == parent);
984 
985 	/*
986 	 * Nothing to do if the element is already the proper size
987 	 */
988 	obytes = chain->bytes;
989 	nbytes = 1U << nradix;
990 	if (obytes == nbytes)
991 		return;
992 
993 	/*
994 	 * Make sure the old data is instantiated so we can copy it.  If this
995 	 * is a data block, the device data may be superfluous since the data
996 	 * might be in a logical block, but compressed or encrypted data is
997 	 * another matter.
998 	 *
999 	 * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1000 	 */
1001 	hammer2_chain_modify(chain, mtid, dedup_off, 0);
1002 
1003 	/*
1004 	 * Relocate the block, even if making it smaller (because different
1005 	 * block sizes may be in different regions).
1006 	 *
1007 	 * (data blocks only, we aren't copying the storage here).
1008 	 */
1009 	hammer2_freemap_alloc(chain, nbytes);
1010 	chain->bytes = nbytes;
1011 	/*ip->delta_dcount += (ssize_t)(nbytes - obytes);*/ /* XXX atomic */
1012 
1013 	/*
1014 	 * We don't want the followup chain_modify() to try to copy data
1015 	 * from the old (wrong-sized) buffer.  It won't know how much to
1016 	 * copy.  This case should only occur during writes when the
1017 	 * originator already has the data to write in-hand.
1018 	 */
1019 	if (chain->dio) {
1020 		KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA);
1021 		hammer2_io_brelse(&chain->dio);
1022 		chain->data = NULL;
1023 	}
1024 }
1025 
1026 /*
1027  * Set the chain modified so its data can be changed by the caller.
1028  *
1029  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1030  * is a CLC (cluster level change) field and is not updated by parent
1031  * propagation during a flush.
1032  *
1033  * If the caller passes a non-zero dedup_off we assign data_off to that
1034  * instead of allocating a ne block.  Caller must not modify the data already
1035  * present at the target offset.
1036  */
1037 void
1038 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1039 		     hammer2_off_t dedup_off, int flags)
1040 {
1041 	hammer2_blockref_t obref;
1042 	hammer2_dev_t *hmp;
1043 	hammer2_io_t *dio;
1044 	int error;
1045 	int wasinitial;
1046 	int newmod;
1047 	char *bdata;
1048 
1049 	hmp = chain->hmp;
1050 	obref = chain->bref;
1051 	KKASSERT((chain->flags & HAMMER2_CHAIN_FICTITIOUS) == 0);
1052 
1053 	/*
1054 	 * Data is not optional for freemap chains (we must always be sure
1055 	 * to copy the data on COW storage allocations).
1056 	 */
1057 	if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1058 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1059 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1060 			 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1061 	}
1062 
1063 	/*
1064 	 * Data must be resolved if already assigned, unless explicitly
1065 	 * flagged otherwise.
1066 	 */
1067 	if (chain->data == NULL && (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1068 	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1069 		hammer2_chain_load_data(chain);
1070 	}
1071 
1072 	/*
1073 	 * Set MODIFIED to indicate that the chain has been modified.
1074 	 * Set UPDATE to ensure that the blockref is updated in the parent.
1075 	 */
1076 	if ((chain->flags & (HAMMER2_CHAIN_DEDUP | HAMMER2_CHAIN_MODIFIED)) ==
1077 	    (HAMMER2_CHAIN_DEDUP | HAMMER2_CHAIN_MODIFIED)) {
1078 		newmod = 1;
1079 	} else if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1080 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1081 		hammer2_chain_ref(chain);
1082 		hammer2_pfs_memory_inc(chain->pmp);	/* can be NULL */
1083 		newmod = 1;
1084 	} else {
1085 		newmod = 0;
1086 	}
1087 	if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1088 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1089 		hammer2_chain_ref(chain);
1090 	}
1091 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DEDUP);
1092 
1093 	/*
1094 	 * The modification or re-modification requires an allocation and
1095 	 * possible COW.
1096 	 *
1097 	 * If dedup_off is non-zero, caller already has a data offset
1098 	 * containing the caller's desired data.  The dedup offset is
1099 	 * allowed to be in a partially free state and we must be sure
1100 	 * to reset it to a fully allocated state to force two bulkfree
1101 	 * passes to free it again.
1102 	 *
1103 	 * XXX can a chain already be marked MODIFIED without a data
1104 	 * assignment?  If not, assert here instead of testing the case.
1105 	 */
1106 	if (chain != &hmp->vchain && chain != &hmp->fchain) {
1107 		if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1108 		     newmod
1109 		) {
1110 			if (dedup_off) {
1111 				chain->bref.data_off = dedup_off;
1112 				chain->bytes = 1 << (dedup_off &
1113 						     HAMMER2_OFF_MASK_RADIX);
1114 				atomic_set_int(&chain->flags,
1115 					       HAMMER2_CHAIN_DEDUP);
1116 				hammer2_freemap_adjust(hmp, &chain->bref,
1117 						HAMMER2_FREEMAP_DORECOVER);
1118 			} else {
1119 				hammer2_freemap_alloc(chain, chain->bytes);
1120 			}
1121 			/* XXX failed allocation */
1122 		}
1123 	}
1124 
1125 	/*
1126 	 * Update mirror_tid and modify_tid.  modify_tid is only updated
1127 	 * if not passed as zero (during flushes, parent propagation passes
1128 	 * the value 0).
1129 	 *
1130 	 * NOTE: chain->pmp could be the device spmp.
1131 	 */
1132 	chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1133 	if (mtid)
1134 		chain->bref.modify_tid = mtid;
1135 
1136 	/*
1137 	 * Set BMAPUPD to tell the flush code that an existing blockmap entry
1138 	 * requires updating as well as to tell the delete code that the
1139 	 * chain's blockref might not exactly match (in terms of physical size
1140 	 * or block offset) the one in the parent's blocktable.  The base key
1141 	 * of course will still match.
1142 	 */
1143 	if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1144 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1145 
1146 	/*
1147 	 * Short-cut data blocks which the caller does not need an actual
1148 	 * data reference to (aka OPTDATA), as long as the chain does not
1149 	 * already have a data pointer to the data.  This generally means
1150 	 * that the modifications are being done via the logical buffer cache.
1151 	 * The INITIAL flag relates only to the device data buffer and thus
1152 	 * remains unchange in this situation.
1153 	 */
1154 	if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1155 	    (flags & HAMMER2_MODIFY_OPTDATA) &&
1156 	    chain->data == NULL) {
1157 		goto skip2;
1158 	}
1159 
1160 	/*
1161 	 * Clearing the INITIAL flag (for indirect blocks) indicates that
1162 	 * we've processed the uninitialized storage allocation.
1163 	 *
1164 	 * If this flag is already clear we are likely in a copy-on-write
1165 	 * situation but we have to be sure NOT to bzero the storage if
1166 	 * no data is present.
1167 	 */
1168 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1169 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1170 		wasinitial = 1;
1171 	} else {
1172 		wasinitial = 0;
1173 	}
1174 
1175 	/*
1176 	 * Instantiate data buffer and possibly execute COW operation
1177 	 */
1178 	switch(chain->bref.type) {
1179 	case HAMMER2_BREF_TYPE_VOLUME:
1180 	case HAMMER2_BREF_TYPE_FREEMAP:
1181 		/*
1182 		 * The data is embedded, no copy-on-write operation is
1183 		 * needed.
1184 		 */
1185 		KKASSERT(chain->dio == NULL);
1186 		break;
1187 	case HAMMER2_BREF_TYPE_INODE:
1188 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1189 	case HAMMER2_BREF_TYPE_DATA:
1190 	case HAMMER2_BREF_TYPE_INDIRECT:
1191 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1192 		/*
1193 		 * Perform the copy-on-write operation
1194 		 *
1195 		 * zero-fill or copy-on-write depending on whether
1196 		 * chain->data exists or not and set the dirty state for
1197 		 * the new buffer.  hammer2_io_new() will handle the
1198 		 * zero-fill.
1199 		 *
1200 		 * If a dedup_off was supplied this is an existing block
1201 		 * and no COW, copy, or further modification is required.
1202 		 */
1203 		KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
1204 
1205 		if (wasinitial && dedup_off == 0) {
1206 			error = hammer2_io_new(hmp, chain->bref.data_off,
1207 					       chain->bytes, &dio);
1208 		} else {
1209 			error = hammer2_io_bread(hmp, chain->bref.data_off,
1210 						 chain->bytes, &dio);
1211 		}
1212 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
1213 
1214 		/*
1215 		 * If an I/O error occurs make sure callers cannot accidently
1216 		 * modify the old buffer's contents and corrupt the filesystem.
1217 		 */
1218 		if (error) {
1219 			kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
1220 				hmp);
1221 			chain->error = HAMMER2_ERROR_IO;
1222 			hammer2_io_brelse(&dio);
1223 			hammer2_io_brelse(&chain->dio);
1224 			chain->data = NULL;
1225 			break;
1226 		}
1227 		chain->error = 0;
1228 		bdata = hammer2_io_data(dio, chain->bref.data_off);
1229 
1230 		if (chain->data) {
1231 			/*
1232 			 * COW (unless a dedup).
1233 			 */
1234 			KKASSERT(chain->dio != NULL);
1235 			if (chain->data != (void *)bdata && dedup_off == 0) {
1236 				bcopy(chain->data, bdata, chain->bytes);
1237 			}
1238 		} else if (wasinitial == 0) {
1239 			/*
1240 			 * We have a problem.  We were asked to COW but
1241 			 * we don't have any data to COW with!
1242 			 */
1243 			panic("hammer2_chain_modify: having a COW %p\n",
1244 			      chain);
1245 		}
1246 
1247 		/*
1248 		 * Retire the old buffer, replace with the new.  Dirty or
1249 		 * redirty the new buffer.
1250 		 *
1251 		 * WARNING! The system buffer cache may have already flushed
1252 		 *	    the buffer, so we must be sure to [re]dirty it
1253 		 *	    for further modification.
1254 		 *
1255 		 *	    If dedup_off was supplied, the caller is not
1256 		 *	    expected to make any further modification to the
1257 		 *	    buffer.
1258 		 */
1259 		if (chain->dio)
1260 			hammer2_io_bqrelse(&chain->dio);
1261 		chain->data = (void *)bdata;
1262 		chain->dio = dio;
1263 		if (dedup_off == 0)
1264 			hammer2_io_setdirty(dio);
1265 		break;
1266 	default:
1267 		panic("hammer2_chain_modify: illegal non-embedded type %d",
1268 		      chain->bref.type);
1269 		break;
1270 
1271 	}
1272 skip2:
1273 	/*
1274 	 * setflush on parent indicating that the parent must recurse down
1275 	 * to us.  Do not call on chain itself which might already have it
1276 	 * set.
1277 	 */
1278 	if (chain->parent)
1279 		hammer2_chain_setflush(chain->parent);
1280 }
1281 
1282 /*
1283  * Modify the chain associated with an inode.
1284  */
1285 void
1286 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
1287 			hammer2_tid_t mtid, int flags)
1288 {
1289 	hammer2_inode_modify(ip);
1290 	hammer2_chain_modify(chain, mtid, 0, flags);
1291 }
1292 
1293 /*
1294  * Volume header data locks
1295  */
1296 void
1297 hammer2_voldata_lock(hammer2_dev_t *hmp)
1298 {
1299 	lockmgr(&hmp->vollk, LK_EXCLUSIVE);
1300 }
1301 
1302 void
1303 hammer2_voldata_unlock(hammer2_dev_t *hmp)
1304 {
1305 	lockmgr(&hmp->vollk, LK_RELEASE);
1306 }
1307 
1308 void
1309 hammer2_voldata_modify(hammer2_dev_t *hmp)
1310 {
1311 	if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1312 		atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1313 		hammer2_chain_ref(&hmp->vchain);
1314 		hammer2_pfs_memory_inc(hmp->vchain.pmp);
1315 	}
1316 }
1317 
1318 /*
1319  * This function returns the chain at the nearest key within the specified
1320  * range.  The returned chain will be referenced but not locked.
1321  *
1322  * This function will recurse through chain->rbtree as necessary and will
1323  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
1324  * the iteration value is less than the current value of *key_nextp.
1325  *
1326  * The caller should use (*key_nextp) to calculate the actual range of
1327  * the returned element, which will be (key_beg to *key_nextp - 1), because
1328  * there might be another element which is superior to the returned element
1329  * and overlaps it.
1330  *
1331  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
1332  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
1333  * it will wind up being (key_end + 1).
1334  *
1335  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
1336  *	     held through the operation.
1337  */
1338 struct hammer2_chain_find_info {
1339 	hammer2_chain_t		*best;
1340 	hammer2_key_t		key_beg;
1341 	hammer2_key_t		key_end;
1342 	hammer2_key_t		key_next;
1343 };
1344 
1345 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
1346 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
1347 
1348 static
1349 hammer2_chain_t *
1350 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
1351 			  hammer2_key_t key_beg, hammer2_key_t key_end)
1352 {
1353 	struct hammer2_chain_find_info info;
1354 
1355 	info.best = NULL;
1356 	info.key_beg = key_beg;
1357 	info.key_end = key_end;
1358 	info.key_next = *key_nextp;
1359 
1360 	RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
1361 		hammer2_chain_find_cmp, hammer2_chain_find_callback,
1362 		&info);
1363 	*key_nextp = info.key_next;
1364 #if 0
1365 	kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
1366 		parent, key_beg, key_end, *key_nextp);
1367 #endif
1368 
1369 	return (info.best);
1370 }
1371 
1372 static
1373 int
1374 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
1375 {
1376 	struct hammer2_chain_find_info *info = data;
1377 	hammer2_key_t child_beg;
1378 	hammer2_key_t child_end;
1379 
1380 	child_beg = child->bref.key;
1381 	child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
1382 
1383 	if (child_end < info->key_beg)
1384 		return(-1);
1385 	if (child_beg > info->key_end)
1386 		return(1);
1387 	return(0);
1388 }
1389 
1390 static
1391 int
1392 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
1393 {
1394 	struct hammer2_chain_find_info *info = data;
1395 	hammer2_chain_t *best;
1396 	hammer2_key_t child_end;
1397 
1398 	/*
1399 	 * WARNING! Do not discard DUPLICATED chains, it is possible that
1400 	 *	    we are catching an insertion half-way done.  If a
1401 	 *	    duplicated chain turns out to be the best choice the
1402 	 *	    caller will re-check its flags after locking it.
1403 	 *
1404 	 * WARNING! Layerq is scanned forwards, exact matches should keep
1405 	 *	    the existing info->best.
1406 	 */
1407 	if ((best = info->best) == NULL) {
1408 		/*
1409 		 * No previous best.  Assign best
1410 		 */
1411 		info->best = child;
1412 	} else if (best->bref.key <= info->key_beg &&
1413 		   child->bref.key <= info->key_beg) {
1414 		/*
1415 		 * Illegal overlap.
1416 		 */
1417 		KKASSERT(0);
1418 		/*info->best = child;*/
1419 	} else if (child->bref.key < best->bref.key) {
1420 		/*
1421 		 * Child has a nearer key and best is not flush with key_beg.
1422 		 * Set best to child.  Truncate key_next to the old best key.
1423 		 */
1424 		info->best = child;
1425 		if (info->key_next > best->bref.key || info->key_next == 0)
1426 			info->key_next = best->bref.key;
1427 	} else if (child->bref.key == best->bref.key) {
1428 		/*
1429 		 * If our current best is flush with the child then this
1430 		 * is an illegal overlap.
1431 		 *
1432 		 * key_next will automatically be limited to the smaller of
1433 		 * the two end-points.
1434 		 */
1435 		KKASSERT(0);
1436 		info->best = child;
1437 	} else {
1438 		/*
1439 		 * Keep the current best but truncate key_next to the child's
1440 		 * base.
1441 		 *
1442 		 * key_next will also automatically be limited to the smaller
1443 		 * of the two end-points (probably not necessary for this case
1444 		 * but we do it anyway).
1445 		 */
1446 		if (info->key_next > child->bref.key || info->key_next == 0)
1447 			info->key_next = child->bref.key;
1448 	}
1449 
1450 	/*
1451 	 * Always truncate key_next based on child's end-of-range.
1452 	 */
1453 	child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
1454 	if (child_end && (info->key_next > child_end || info->key_next == 0))
1455 		info->key_next = child_end;
1456 
1457 	return(0);
1458 }
1459 
1460 /*
1461  * Retrieve the specified chain from a media blockref, creating the
1462  * in-memory chain structure which reflects it.
1463  *
1464  * To handle insertion races pass the INSERT_RACE flag along with the
1465  * generation number of the core.  NULL will be returned if the generation
1466  * number changes before we have a chance to insert the chain.  Insert
1467  * races can occur because the parent might be held shared.
1468  *
1469  * Caller must hold the parent locked shared or exclusive since we may
1470  * need the parent's bref array to find our block.
1471  *
1472  * WARNING! chain->pmp is always set to NULL for any chain representing
1473  *	    part of the super-root topology.
1474  */
1475 hammer2_chain_t *
1476 hammer2_chain_get(hammer2_chain_t *parent, int generation,
1477 		  hammer2_blockref_t *bref)
1478 {
1479 	hammer2_dev_t *hmp = parent->hmp;
1480 	hammer2_chain_t *chain;
1481 	int error;
1482 
1483 	/*
1484 	 * Allocate a chain structure representing the existing media
1485 	 * entry.  Resulting chain has one ref and is not locked.
1486 	 */
1487 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
1488 		chain = hammer2_chain_alloc(hmp, NULL, bref);
1489 	else
1490 		chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
1491 	/* ref'd chain returned */
1492 
1493 	/*
1494 	 * Flag that the chain is in the parent's blockmap so delete/flush
1495 	 * knows what to do with it.
1496 	 */
1497 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
1498 
1499 	/*
1500 	 * Link the chain into its parent.  A spinlock is required to safely
1501 	 * access the RBTREE, and it is possible to collide with another
1502 	 * hammer2_chain_get() operation because the caller might only hold
1503 	 * a shared lock on the parent.
1504 	 */
1505 	KKASSERT(parent->refs > 0);
1506 	error = hammer2_chain_insert(parent, chain,
1507 				     HAMMER2_CHAIN_INSERT_SPIN |
1508 				     HAMMER2_CHAIN_INSERT_RACE,
1509 				     generation);
1510 	if (error) {
1511 		KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
1512 		kprintf("chain %p get race\n", chain);
1513 		hammer2_chain_drop(chain);
1514 		chain = NULL;
1515 	} else {
1516 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
1517 	}
1518 
1519 	/*
1520 	 * Return our new chain referenced but not locked, or NULL if
1521 	 * a race occurred.
1522 	 */
1523 	return (chain);
1524 }
1525 
1526 /*
1527  * Lookup initialization/completion API
1528  */
1529 hammer2_chain_t *
1530 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
1531 {
1532 	hammer2_chain_ref(parent);
1533 	if (flags & HAMMER2_LOOKUP_SHARED) {
1534 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
1535 					   HAMMER2_RESOLVE_SHARED);
1536 	} else {
1537 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
1538 	}
1539 	return (parent);
1540 }
1541 
1542 void
1543 hammer2_chain_lookup_done(hammer2_chain_t *parent)
1544 {
1545 	if (parent) {
1546 		hammer2_chain_unlock(parent);
1547 		hammer2_chain_drop(parent);
1548 	}
1549 }
1550 
1551 hammer2_chain_t *
1552 hammer2_chain_getparent(hammer2_chain_t **parentp, int how)
1553 {
1554 	hammer2_chain_t *oparent;
1555 	hammer2_chain_t *nparent;
1556 
1557 	/*
1558 	 * Be careful of order, oparent must be unlocked before nparent
1559 	 * is locked below to avoid a deadlock.
1560 	 */
1561 	oparent = *parentp;
1562 	hammer2_spin_ex(&oparent->core.spin);
1563 	nparent = oparent->parent;
1564 	hammer2_chain_ref(nparent);
1565 	hammer2_spin_unex(&oparent->core.spin);
1566 	if (oparent) {
1567 		hammer2_chain_unlock(oparent);
1568 		hammer2_chain_drop(oparent);
1569 		oparent = NULL;
1570 	}
1571 
1572 	hammer2_chain_lock(nparent, how);
1573 	*parentp = nparent;
1574 
1575 	return (nparent);
1576 }
1577 
1578 /*
1579  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
1580  * (*parentp) typically points to an inode but can also point to a related
1581  * indirect block and this function will recurse upwards and find the inode
1582  * again.
1583  *
1584  * (*parentp) must be exclusively locked and referenced and can be an inode
1585  * or an existing indirect block within the inode.
1586  *
1587  * On return (*parentp) will be modified to point at the deepest parent chain
1588  * element encountered during the search, as a helper for an insertion or
1589  * deletion.   The new (*parentp) will be locked and referenced and the old
1590  * will be unlocked and dereferenced (no change if they are both the same).
1591  *
1592  * The matching chain will be returned exclusively locked.  If NOLOCK is
1593  * requested the chain will be returned only referenced.  Note that the
1594  * parent chain must always be locked shared or exclusive, matching the
1595  * HAMMER2_LOOKUP_SHARED flag.  We can conceivably lock it SHARED temporarily
1596  * when NOLOCK is specified but that complicates matters if *parentp must
1597  * inherit the chain.
1598  *
1599  * NOLOCK also implies NODATA, since an unlocked chain usually has a NULL
1600  * data pointer or can otherwise be in flux.
1601  *
1602  * NULL is returned if no match was found, but (*parentp) will still
1603  * potentially be adjusted.
1604  *
1605  * If a fatal error occurs (typically an I/O error), a dummy chain is
1606  * returned with chain->error and error-identifying information set.  This
1607  * chain will assert if you try to do anything fancy with it.
1608  *
1609  * XXX Depending on where the error occurs we should allow continued iteration.
1610  *
1611  * On return (*key_nextp) will point to an iterative value for key_beg.
1612  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
1613  *
1614  * This function will also recurse up the chain if the key is not within the
1615  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
1616  * can simply allow (*parentp) to float inside the loop.
1617  *
1618  * NOTE!  chain->data is not always resolved.  By default it will not be
1619  *	  resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
1620  *	  HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
1621  *	  BREF_TYPE_DATA as the device buffer can alias the logical file
1622  *	  buffer).
1623  */
1624 hammer2_chain_t *
1625 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
1626 		     hammer2_key_t key_beg, hammer2_key_t key_end,
1627 		     int *cache_indexp, int flags)
1628 {
1629 	hammer2_dev_t *hmp;
1630 	hammer2_chain_t *parent;
1631 	hammer2_chain_t *chain;
1632 	hammer2_blockref_t *base;
1633 	hammer2_blockref_t *bref;
1634 	hammer2_blockref_t bcopy;
1635 	hammer2_key_t scan_beg;
1636 	hammer2_key_t scan_end;
1637 	int count = 0;
1638 	int how_always = HAMMER2_RESOLVE_ALWAYS;
1639 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
1640 	int how;
1641 	int generation;
1642 	int maxloops = 300000;
1643 
1644 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
1645 		how_maybe = how_always;
1646 		how = HAMMER2_RESOLVE_ALWAYS;
1647 	} else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
1648 		how = HAMMER2_RESOLVE_NEVER;
1649 	} else {
1650 		how = HAMMER2_RESOLVE_MAYBE;
1651 	}
1652 	if (flags & HAMMER2_LOOKUP_SHARED) {
1653 		how_maybe |= HAMMER2_RESOLVE_SHARED;
1654 		how_always |= HAMMER2_RESOLVE_SHARED;
1655 		how |= HAMMER2_RESOLVE_SHARED;
1656 	}
1657 
1658 	/*
1659 	 * Recurse (*parentp) upward if necessary until the parent completely
1660 	 * encloses the key range or we hit the inode.
1661 	 *
1662 	 * This function handles races against the flusher doing a delete-
1663 	 * duplicate above us and re-homes the parent to the duplicate in
1664 	 * that case, otherwise we'd wind up recursing down a stale chain.
1665 	 */
1666 	parent = *parentp;
1667 	hmp = parent->hmp;
1668 
1669 	while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1670 	       parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1671 		scan_beg = parent->bref.key;
1672 		scan_end = scan_beg +
1673 			   ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1674 		if (key_beg >= scan_beg && key_end <= scan_end)
1675 			break;
1676 		parent = hammer2_chain_getparent(parentp, how_maybe);
1677 	}
1678 
1679 again:
1680 	if (--maxloops == 0)
1681 		panic("hammer2_chain_lookup: maxloops");
1682 	/*
1683 	 * Locate the blockref array.  Currently we do a fully associative
1684 	 * search through the array.
1685 	 */
1686 	switch(parent->bref.type) {
1687 	case HAMMER2_BREF_TYPE_INODE:
1688 		/*
1689 		 * Special shortcut for embedded data returns the inode
1690 		 * itself.  Callers must detect this condition and access
1691 		 * the embedded data (the strategy code does this for us).
1692 		 *
1693 		 * This is only applicable to regular files and softlinks.
1694 		 */
1695 		if (parent->data->ipdata.meta.op_flags &
1696 		    HAMMER2_OPFLAG_DIRECTDATA) {
1697 			if (flags & HAMMER2_LOOKUP_NODIRECT) {
1698 				chain = NULL;
1699 				*key_nextp = key_end + 1;
1700 				goto done;
1701 			}
1702 			hammer2_chain_ref(parent);
1703 			if ((flags & HAMMER2_LOOKUP_NOLOCK) == 0)
1704 				hammer2_chain_lock(parent, how_always);
1705 			*key_nextp = key_end + 1;
1706 			return (parent);
1707 		}
1708 		base = &parent->data->ipdata.u.blockset.blockref[0];
1709 		count = HAMMER2_SET_COUNT;
1710 		break;
1711 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1712 	case HAMMER2_BREF_TYPE_INDIRECT:
1713 		/*
1714 		 * Handle MATCHIND on the parent
1715 		 */
1716 		if (flags & HAMMER2_LOOKUP_MATCHIND) {
1717 			scan_beg = parent->bref.key;
1718 			scan_end = scan_beg +
1719 			       ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1720 			if (key_beg == scan_beg && key_end == scan_end) {
1721 				chain = parent;
1722 				hammer2_chain_ref(chain);
1723 				hammer2_chain_lock(chain, how_maybe);
1724 				*key_nextp = scan_end + 1;
1725 				goto done;
1726 			}
1727 		}
1728 		/*
1729 		 * Optimize indirect blocks in the INITIAL state to avoid
1730 		 * I/O.
1731 		 */
1732 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1733 			base = NULL;
1734 		} else {
1735 			if (parent->data == NULL)
1736 				panic("parent->data is NULL");
1737 			base = &parent->data->npdata[0];
1738 		}
1739 		count = parent->bytes / sizeof(hammer2_blockref_t);
1740 		break;
1741 	case HAMMER2_BREF_TYPE_VOLUME:
1742 		base = &parent->data->voldata.sroot_blockset.blockref[0];
1743 		count = HAMMER2_SET_COUNT;
1744 		break;
1745 	case HAMMER2_BREF_TYPE_FREEMAP:
1746 		base = &parent->data->blkset.blockref[0];
1747 		count = HAMMER2_SET_COUNT;
1748 		break;
1749 	default:
1750 		kprintf("hammer2_chain_lookup: unrecognized "
1751 			"blockref(B) type: %d",
1752 			parent->bref.type);
1753 		while (1)
1754 			tsleep(&base, 0, "dead", 0);
1755 		panic("hammer2_chain_lookup: unrecognized "
1756 		      "blockref(B) type: %d",
1757 		      parent->bref.type);
1758 		base = NULL;	/* safety */
1759 		count = 0;	/* safety */
1760 	}
1761 
1762 	/*
1763 	 * Merged scan to find next candidate.
1764 	 *
1765 	 * hammer2_base_*() functions require the parent->core.live_* fields
1766 	 * to be synchronized.
1767 	 *
1768 	 * We need to hold the spinlock to access the block array and RB tree
1769 	 * and to interlock chain creation.
1770 	 */
1771 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
1772 		hammer2_chain_countbrefs(parent, base, count);
1773 
1774 	/*
1775 	 * Combined search
1776 	 */
1777 	hammer2_spin_ex(&parent->core.spin);
1778 	chain = hammer2_combined_find(parent, base, count,
1779 				      cache_indexp, key_nextp,
1780 				      key_beg, key_end,
1781 				      &bref);
1782 	generation = parent->core.generation;
1783 
1784 	/*
1785 	 * Exhausted parent chain, iterate.
1786 	 */
1787 	if (bref == NULL) {
1788 		hammer2_spin_unex(&parent->core.spin);
1789 		if (key_beg == key_end)	/* short cut single-key case */
1790 			return (NULL);
1791 
1792 		/*
1793 		 * Stop if we reached the end of the iteration.
1794 		 */
1795 		if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
1796 		    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1797 			return (NULL);
1798 		}
1799 
1800 		/*
1801 		 * Calculate next key, stop if we reached the end of the
1802 		 * iteration, otherwise go up one level and loop.
1803 		 */
1804 		key_beg = parent->bref.key +
1805 			  ((hammer2_key_t)1 << parent->bref.keybits);
1806 		if (key_beg == 0 || key_beg > key_end)
1807 			return (NULL);
1808 		parent = hammer2_chain_getparent(parentp, how_maybe);
1809 		goto again;
1810 	}
1811 
1812 	/*
1813 	 * Selected from blockref or in-memory chain.
1814 	 */
1815 	if (chain == NULL) {
1816 		bcopy = *bref;
1817 		hammer2_spin_unex(&parent->core.spin);
1818 		chain = hammer2_chain_get(parent, generation,
1819 					  &bcopy);
1820 		if (chain == NULL) {
1821 			kprintf("retry lookup parent %p keys %016jx:%016jx\n",
1822 				parent, key_beg, key_end);
1823 			goto again;
1824 		}
1825 		if (bcmp(&bcopy, bref, sizeof(bcopy))) {
1826 			hammer2_chain_drop(chain);
1827 			goto again;
1828 		}
1829 	} else {
1830 		hammer2_chain_ref(chain);
1831 		hammer2_spin_unex(&parent->core.spin);
1832 	}
1833 
1834 	/*
1835 	 * chain is referenced but not locked.  We must lock the chain
1836 	 * to obtain definitive DUPLICATED/DELETED state
1837 	 */
1838 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1839 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1840 		hammer2_chain_lock(chain, how_maybe);
1841 	} else {
1842 		hammer2_chain_lock(chain, how);
1843 	}
1844 
1845 	/*
1846 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
1847 	 *
1848 	 * NOTE: Chain's key range is not relevant as there might be
1849 	 *	 one-offs within the range that are not deleted.
1850 	 *
1851 	 * NOTE: Lookups can race delete-duplicate because
1852 	 *	 delete-duplicate does not lock the parent's core
1853 	 *	 (they just use the spinlock on the core).  We must
1854 	 *	 check for races by comparing the DUPLICATED flag before
1855 	 *	 releasing the spinlock with the flag after locking the
1856 	 *	 chain.
1857 	 */
1858 	if (chain->flags & HAMMER2_CHAIN_DELETED) {
1859 		hammer2_chain_unlock(chain);
1860 		hammer2_chain_drop(chain);
1861 		key_beg = *key_nextp;
1862 		if (key_beg == 0 || key_beg > key_end)
1863 			return(NULL);
1864 		goto again;
1865 	}
1866 
1867 	/*
1868 	 * If the chain element is an indirect block it becomes the new
1869 	 * parent and we loop on it.  We must maintain our top-down locks
1870 	 * to prevent the flusher from interfering (i.e. doing a
1871 	 * delete-duplicate and leaving us recursing down a deleted chain).
1872 	 *
1873 	 * The parent always has to be locked with at least RESOLVE_MAYBE
1874 	 * so we can access its data.  It might need a fixup if the caller
1875 	 * passed incompatible flags.  Be careful not to cause a deadlock
1876 	 * as a data-load requires an exclusive lock.
1877 	 *
1878 	 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
1879 	 * range is within the requested key range we return the indirect
1880 	 * block and do NOT loop.  This is usually only used to acquire
1881 	 * freemap nodes.
1882 	 */
1883 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1884 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1885 		hammer2_chain_unlock(parent);
1886 		hammer2_chain_drop(parent);
1887 		*parentp = parent = chain;
1888 		goto again;
1889 	}
1890 done:
1891 	/*
1892 	 * All done, return the chain.
1893 	 *
1894 	 * If the caller does not want a locked chain, replace the lock with
1895 	 * a ref.  Perhaps this can eventually be optimized to not obtain the
1896 	 * lock in the first place for situations where the data does not
1897 	 * need to be resolved.
1898 	 */
1899 	if (chain) {
1900 		if (flags & HAMMER2_LOOKUP_NOLOCK)
1901 			hammer2_chain_unlock(chain);
1902 	}
1903 
1904 	return (chain);
1905 }
1906 
1907 /*
1908  * After having issued a lookup we can iterate all matching keys.
1909  *
1910  * If chain is non-NULL we continue the iteration from just after it's index.
1911  *
1912  * If chain is NULL we assume the parent was exhausted and continue the
1913  * iteration at the next parent.
1914  *
1915  * If a fatal error occurs (typically an I/O error), a dummy chain is
1916  * returned with chain->error and error-identifying information set.  This
1917  * chain will assert if you try to do anything fancy with it.
1918  *
1919  * XXX Depending on where the error occurs we should allow continued iteration.
1920  *
1921  * parent must be locked on entry and remains locked throughout.  chain's
1922  * lock status must match flags.  Chain is always at least referenced.
1923  *
1924  * WARNING!  The MATCHIND flag does not apply to this function.
1925  */
1926 hammer2_chain_t *
1927 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
1928 		   hammer2_key_t *key_nextp,
1929 		   hammer2_key_t key_beg, hammer2_key_t key_end,
1930 		   int *cache_indexp, int flags)
1931 {
1932 	hammer2_chain_t *parent;
1933 	int how_maybe;
1934 
1935 	/*
1936 	 * Calculate locking flags for upward recursion.
1937 	 */
1938 	how_maybe = HAMMER2_RESOLVE_MAYBE;
1939 	if (flags & HAMMER2_LOOKUP_SHARED)
1940 		how_maybe |= HAMMER2_RESOLVE_SHARED;
1941 
1942 	parent = *parentp;
1943 
1944 	/*
1945 	 * Calculate the next index and recalculate the parent if necessary.
1946 	 */
1947 	if (chain) {
1948 		key_beg = chain->bref.key +
1949 			  ((hammer2_key_t)1 << chain->bref.keybits);
1950 		if ((flags & (HAMMER2_LOOKUP_NOLOCK |
1951 			      HAMMER2_LOOKUP_NOUNLOCK)) == 0) {
1952 			hammer2_chain_unlock(chain);
1953 		}
1954 		hammer2_chain_drop(chain);
1955 
1956 		/*
1957 		 * chain invalid past this point, but we can still do a
1958 		 * pointer comparison w/parent.
1959 		 *
1960 		 * Any scan where the lookup returned degenerate data embedded
1961 		 * in the inode has an invalid index and must terminate.
1962 		 */
1963 		if (chain == parent)
1964 			return(NULL);
1965 		if (key_beg == 0 || key_beg > key_end)
1966 			return(NULL);
1967 		chain = NULL;
1968 	} else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
1969 		   parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1970 		/*
1971 		 * We reached the end of the iteration.
1972 		 */
1973 		return (NULL);
1974 	} else {
1975 		/*
1976 		 * Continue iteration with next parent unless the current
1977 		 * parent covers the range.
1978 		 */
1979 		key_beg = parent->bref.key +
1980 			  ((hammer2_key_t)1 << parent->bref.keybits);
1981 		if (key_beg == 0 || key_beg > key_end)
1982 			return (NULL);
1983 		parent = hammer2_chain_getparent(parentp, how_maybe);
1984 	}
1985 
1986 	/*
1987 	 * And execute
1988 	 */
1989 	return (hammer2_chain_lookup(parentp, key_nextp,
1990 				     key_beg, key_end,
1991 				     cache_indexp, flags));
1992 }
1993 
1994 /*
1995  * The raw scan function is similar to lookup/next but does not seek to a key.
1996  * Blockrefs are iterated via first_bref = (parent, NULL) and
1997  * next_chain = (parent, bref).
1998  *
1999  * The passed-in parent must be locked and its data resolved.  The function
2000  * nominally returns a locked and referenced *chainp != NULL for chains
2001  * the caller might need to recurse on (and will dipose of any *chainp passed
2002  * in).  The caller must check the chain->bref.type either way.
2003  *
2004  * *chainp is not set for leaf elements.
2005  *
2006  * This function takes a pointer to a stack-based bref structure whos
2007  * contents is updated for each iteration.  The same pointer is returned,
2008  * or NULL when the iteration is complete.  *firstp must be set to 1 for
2009  * the first ieration.  This function will set it to 0.
2010  */
2011 hammer2_blockref_t *
2012 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
2013 		   hammer2_blockref_t *bref, int *firstp,
2014 		   int *cache_indexp, int flags)
2015 {
2016 	hammer2_dev_t *hmp;
2017 	hammer2_blockref_t *base;
2018 	hammer2_blockref_t *bref_ptr;
2019 	hammer2_key_t key;
2020 	hammer2_key_t next_key;
2021 	hammer2_chain_t *chain = NULL;
2022 	int count = 0;
2023 	int how_always = HAMMER2_RESOLVE_ALWAYS;
2024 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
2025 	int how;
2026 	int generation;
2027 	int maxloops = 300000;
2028 
2029 	hmp = parent->hmp;
2030 
2031 	/*
2032 	 * Scan flags borrowed from lookup.
2033 	 */
2034 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
2035 		how_maybe = how_always;
2036 		how = HAMMER2_RESOLVE_ALWAYS;
2037 	} else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
2038 		how = HAMMER2_RESOLVE_NEVER;
2039 	} else {
2040 		how = HAMMER2_RESOLVE_MAYBE;
2041 	}
2042 	if (flags & HAMMER2_LOOKUP_SHARED) {
2043 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2044 		how_always |= HAMMER2_RESOLVE_SHARED;
2045 		how |= HAMMER2_RESOLVE_SHARED;
2046 	}
2047 
2048 	/*
2049 	 * Calculate key to locate first/next element, unlocking the previous
2050 	 * element as we go.  Be careful, the key calculation can overflow.
2051 	 *
2052 	 * (also reset bref to NULL)
2053 	 */
2054 	if (*firstp) {
2055 		key = 0;
2056 		*firstp = 0;
2057 	} else {
2058 		key = bref->key + ((hammer2_key_t)1 << bref->keybits);
2059 		if ((chain = *chainp) != NULL) {
2060 			*chainp = NULL;
2061 			hammer2_chain_unlock(chain);
2062 			hammer2_chain_drop(chain);
2063 			chain = NULL;
2064 		}
2065 		if (key == 0) {
2066 			bref = NULL;
2067 			goto done;
2068 		}
2069 	}
2070 
2071 again:
2072 	KKASSERT(parent->error == 0);	/* XXX case not handled yet */
2073 	if (--maxloops == 0)
2074 		panic("hammer2_chain_scan: maxloops");
2075 	/*
2076 	 * Locate the blockref array.  Currently we do a fully associative
2077 	 * search through the array.
2078 	 */
2079 	switch(parent->bref.type) {
2080 	case HAMMER2_BREF_TYPE_INODE:
2081 		/*
2082 		 * An inode with embedded data has no sub-chains.
2083 		 *
2084 		 * WARNING! Bulk scan code may pass a static chain marked
2085 		 *	    as BREF_TYPE_INODE with a copy of the volume
2086 		 *	    root blockset to snapshot the volume.
2087 		 */
2088 		if (parent->data->ipdata.meta.op_flags &
2089 		    HAMMER2_OPFLAG_DIRECTDATA) {
2090 			bref = NULL;
2091 			goto done;
2092 		}
2093 		base = &parent->data->ipdata.u.blockset.blockref[0];
2094 		count = HAMMER2_SET_COUNT;
2095 		break;
2096 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2097 	case HAMMER2_BREF_TYPE_INDIRECT:
2098 		/*
2099 		 * Optimize indirect blocks in the INITIAL state to avoid
2100 		 * I/O.
2101 		 */
2102 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2103 			base = NULL;
2104 		} else {
2105 			if (parent->data == NULL)
2106 				panic("parent->data is NULL");
2107 			base = &parent->data->npdata[0];
2108 		}
2109 		count = parent->bytes / sizeof(hammer2_blockref_t);
2110 		break;
2111 	case HAMMER2_BREF_TYPE_VOLUME:
2112 		base = &parent->data->voldata.sroot_blockset.blockref[0];
2113 		count = HAMMER2_SET_COUNT;
2114 		break;
2115 	case HAMMER2_BREF_TYPE_FREEMAP:
2116 		base = &parent->data->blkset.blockref[0];
2117 		count = HAMMER2_SET_COUNT;
2118 		break;
2119 	default:
2120 		panic("hammer2_chain_lookup: unrecognized blockref type: %d",
2121 		      parent->bref.type);
2122 		base = NULL;	/* safety */
2123 		count = 0;	/* safety */
2124 	}
2125 
2126 	/*
2127 	 * Merged scan to find next candidate.
2128 	 *
2129 	 * hammer2_base_*() functions require the parent->core.live_* fields
2130 	 * to be synchronized.
2131 	 *
2132 	 * We need to hold the spinlock to access the block array and RB tree
2133 	 * and to interlock chain creation.
2134 	 */
2135 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2136 		hammer2_chain_countbrefs(parent, base, count);
2137 
2138 	next_key = 0;
2139 	bref_ptr = NULL;
2140 	hammer2_spin_ex(&parent->core.spin);
2141 	chain = hammer2_combined_find(parent, base, count,
2142 				      cache_indexp, &next_key,
2143 				      key, HAMMER2_KEY_MAX,
2144 				      &bref_ptr);
2145 	generation = parent->core.generation;
2146 
2147 	/*
2148 	 * Exhausted parent chain, we're done.
2149 	 */
2150 	if (bref_ptr == NULL) {
2151 		hammer2_spin_unex(&parent->core.spin);
2152 		KKASSERT(chain == NULL);
2153 		bref = NULL;
2154 		goto done;
2155 	}
2156 
2157 	/*
2158 	 * Copy into the supplied stack-based blockref.
2159 	 */
2160 	*bref = *bref_ptr;
2161 
2162 	/*
2163 	 * Selected from blockref or in-memory chain.
2164 	 */
2165 	if (chain == NULL) {
2166 		switch(bref->type) {
2167 		case HAMMER2_BREF_TYPE_INODE:
2168 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2169 		case HAMMER2_BREF_TYPE_INDIRECT:
2170 		case HAMMER2_BREF_TYPE_VOLUME:
2171 		case HAMMER2_BREF_TYPE_FREEMAP:
2172 			/*
2173 			 * Recursion, always get the chain
2174 			 */
2175 			hammer2_spin_unex(&parent->core.spin);
2176 			chain = hammer2_chain_get(parent, generation, bref);
2177 			if (chain == NULL) {
2178 				kprintf("retry scan parent %p keys %016jx\n",
2179 					parent, key);
2180 				goto again;
2181 			}
2182 			if (bcmp(bref, bref_ptr, sizeof(*bref))) {
2183 				hammer2_chain_drop(chain);
2184 				chain = NULL;
2185 				goto again;
2186 			}
2187 			break;
2188 		default:
2189 			/*
2190 			 * No recursion, do not waste time instantiating
2191 			 * a chain, just iterate using the bref.
2192 			 */
2193 			hammer2_spin_unex(&parent->core.spin);
2194 			break;
2195 		}
2196 	} else {
2197 		/*
2198 		 * Recursion or not we need the chain in order to supply
2199 		 * the bref.
2200 		 */
2201 		hammer2_chain_ref(chain);
2202 		hammer2_spin_unex(&parent->core.spin);
2203 	}
2204 
2205 	/*
2206 	 * chain is referenced but not locked.  We must lock the chain
2207 	 * to obtain definitive DUPLICATED/DELETED state
2208 	 */
2209 	if (chain)
2210 		hammer2_chain_lock(chain, how);
2211 
2212 	/*
2213 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2214 	 *
2215 	 * NOTE: chain's key range is not relevant as there might be
2216 	 *	 one-offs within the range that are not deleted.
2217 	 *
2218 	 * NOTE: XXX this could create problems with scans used in
2219 	 *	 situations other than mount-time recovery.
2220 	 *
2221 	 * NOTE: Lookups can race delete-duplicate because
2222 	 *	 delete-duplicate does not lock the parent's core
2223 	 *	 (they just use the spinlock on the core).  We must
2224 	 *	 check for races by comparing the DUPLICATED flag before
2225 	 *	 releasing the spinlock with the flag after locking the
2226 	 *	 chain.
2227 	 */
2228 	if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
2229 		hammer2_chain_unlock(chain);
2230 		hammer2_chain_drop(chain);
2231 		chain = NULL;
2232 
2233 		key = next_key;
2234 		if (key == 0) {
2235 			bref = NULL;
2236 			goto done;
2237 		}
2238 		goto again;
2239 	}
2240 
2241 done:
2242 	/*
2243 	 * All done, return the bref or NULL, supply chain if necessary.
2244 	 */
2245 	if (chain)
2246 		*chainp = chain;
2247 	return (bref);
2248 }
2249 
2250 /*
2251  * Create and return a new hammer2 system memory structure of the specified
2252  * key, type and size and insert it under (*parentp).  This is a full
2253  * insertion, based on the supplied key/keybits, and may involve creating
2254  * indirect blocks and moving other chains around via delete/duplicate.
2255  *
2256  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
2257  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
2258  * FULL.  This typically means that the caller is creating the chain after
2259  * doing a hammer2_chain_lookup().
2260  *
2261  * (*parentp) must be exclusive locked and may be replaced on return
2262  * depending on how much work the function had to do.
2263  *
2264  * (*parentp) must not be errored or this function will assert.
2265  *
2266  * (*chainp) usually starts out NULL and returns the newly created chain,
2267  * but if the caller desires the caller may allocate a disconnected chain
2268  * and pass it in instead.
2269  *
2270  * This function should NOT be used to insert INDIRECT blocks.  It is
2271  * typically used to create/insert inodes and data blocks.
2272  *
2273  * Caller must pass-in an exclusively locked parent the new chain is to
2274  * be inserted under, and optionally pass-in a disconnected, exclusively
2275  * locked chain to insert (else we create a new chain).  The function will
2276  * adjust (*parentp) as necessary, create or connect the chain, and
2277  * return an exclusively locked chain in *chainp.
2278  *
2279  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
2280  * and will be reassigned.
2281  */
2282 int
2283 hammer2_chain_create(hammer2_chain_t **parentp,
2284 		     hammer2_chain_t **chainp, hammer2_pfs_t *pmp,
2285 		     hammer2_key_t key, int keybits, int type, size_t bytes,
2286 		     hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
2287 {
2288 	hammer2_dev_t *hmp;
2289 	hammer2_chain_t *chain;
2290 	hammer2_chain_t *parent;
2291 	hammer2_blockref_t *base;
2292 	hammer2_blockref_t dummy;
2293 	int allocated = 0;
2294 	int error = 0;
2295 	int count;
2296 	int maxloops = 300000;
2297 
2298 	/*
2299 	 * Topology may be crossing a PFS boundary.
2300 	 */
2301 	parent = *parentp;
2302 	KKASSERT(hammer2_mtx_owned(&parent->lock));
2303 	KKASSERT(parent->error == 0);
2304 	hmp = parent->hmp;
2305 	chain = *chainp;
2306 
2307 	if (chain == NULL) {
2308 		/*
2309 		 * First allocate media space and construct the dummy bref,
2310 		 * then allocate the in-memory chain structure.  Set the
2311 		 * INITIAL flag for fresh chains which do not have embedded
2312 		 * data.
2313 		 *
2314 		 * XXX for now set the check mode of the child based on
2315 		 *     the parent or, if the parent is an inode, the
2316 		 *     specification in the inode.
2317 		 */
2318 		bzero(&dummy, sizeof(dummy));
2319 		dummy.type = type;
2320 		dummy.key = key;
2321 		dummy.keybits = keybits;
2322 		dummy.data_off = hammer2_getradix(bytes);
2323 		dummy.methods = parent->bref.methods;
2324 		if (parent->bref.type == HAMMER2_BREF_TYPE_INODE &&
2325 		    parent->data) {
2326 			dummy.methods &= ~HAMMER2_ENC_CHECK(-1);
2327 			dummy.methods |= HAMMER2_ENC_CHECK(
2328 					  parent->data->ipdata.meta.check_algo);
2329 		}
2330 
2331 		chain = hammer2_chain_alloc(hmp, pmp, &dummy);
2332 
2333 		/*
2334 		 * Lock the chain manually, chain_lock will load the chain
2335 		 * which we do NOT want to do.  (note: chain->refs is set
2336 		 * to 1 by chain_alloc() for us, but lockcnt is not).
2337 		 */
2338 		chain->lockcnt = 1;
2339 		hammer2_mtx_ex(&chain->lock);
2340 		allocated = 1;
2341 
2342 		/*
2343 		 * Set INITIAL to optimize I/O.  The flag will generally be
2344 		 * processed when we call hammer2_chain_modify().
2345 		 *
2346 		 * Recalculate bytes to reflect the actual media block
2347 		 * allocation.
2348 		 */
2349 		bytes = (hammer2_off_t)1 <<
2350 			(int)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
2351 		chain->bytes = bytes;
2352 
2353 		switch(type) {
2354 		case HAMMER2_BREF_TYPE_VOLUME:
2355 		case HAMMER2_BREF_TYPE_FREEMAP:
2356 			panic("hammer2_chain_create: called with volume type");
2357 			break;
2358 		case HAMMER2_BREF_TYPE_INDIRECT:
2359 			panic("hammer2_chain_create: cannot be used to"
2360 			      "create indirect block");
2361 			break;
2362 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2363 			panic("hammer2_chain_create: cannot be used to"
2364 			      "create freemap root or node");
2365 			break;
2366 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2367 			KKASSERT(bytes == sizeof(chain->data->bmdata));
2368 			/* fall through */
2369 		case HAMMER2_BREF_TYPE_INODE:
2370 		case HAMMER2_BREF_TYPE_DATA:
2371 		default:
2372 			/*
2373 			 * leave chain->data NULL, set INITIAL
2374 			 */
2375 			KKASSERT(chain->data == NULL);
2376 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
2377 			break;
2378 		}
2379 	} else {
2380 		/*
2381 		 * We are reattaching a previously deleted chain, possibly
2382 		 * under a new parent and possibly with a new key/keybits.
2383 		 * The chain does not have to be in a modified state.  The
2384 		 * UPDATE flag will be set later on in this routine.
2385 		 *
2386 		 * Do NOT mess with the current state of the INITIAL flag.
2387 		 */
2388 		chain->bref.key = key;
2389 		chain->bref.keybits = keybits;
2390 		if (chain->flags & HAMMER2_CHAIN_DELETED)
2391 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2392 		KKASSERT(chain->parent == NULL);
2393 	}
2394 	if (flags & HAMMER2_INSERT_PFSROOT)
2395 		chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
2396 	else
2397 		chain->bref.flags &= ~HAMMER2_BREF_FLAG_PFSROOT;
2398 
2399 	/*
2400 	 * Calculate how many entries we have in the blockref array and
2401 	 * determine if an indirect block is required.
2402 	 */
2403 again:
2404 	if (--maxloops == 0)
2405 		panic("hammer2_chain_create: maxloops");
2406 
2407 	switch(parent->bref.type) {
2408 	case HAMMER2_BREF_TYPE_INODE:
2409 		KKASSERT((parent->data->ipdata.meta.op_flags &
2410 			  HAMMER2_OPFLAG_DIRECTDATA) == 0);
2411 		KKASSERT(parent->data != NULL);
2412 		base = &parent->data->ipdata.u.blockset.blockref[0];
2413 		count = HAMMER2_SET_COUNT;
2414 		break;
2415 	case HAMMER2_BREF_TYPE_INDIRECT:
2416 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2417 		if (parent->flags & HAMMER2_CHAIN_INITIAL)
2418 			base = NULL;
2419 		else
2420 			base = &parent->data->npdata[0];
2421 		count = parent->bytes / sizeof(hammer2_blockref_t);
2422 		break;
2423 	case HAMMER2_BREF_TYPE_VOLUME:
2424 		KKASSERT(parent->data != NULL);
2425 		base = &parent->data->voldata.sroot_blockset.blockref[0];
2426 		count = HAMMER2_SET_COUNT;
2427 		break;
2428 	case HAMMER2_BREF_TYPE_FREEMAP:
2429 		KKASSERT(parent->data != NULL);
2430 		base = &parent->data->blkset.blockref[0];
2431 		count = HAMMER2_SET_COUNT;
2432 		break;
2433 	default:
2434 		panic("hammer2_chain_create: unrecognized blockref type: %d",
2435 		      parent->bref.type);
2436 		base = NULL;
2437 		count = 0;
2438 		break;
2439 	}
2440 
2441 	/*
2442 	 * Make sure we've counted the brefs
2443 	 */
2444 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2445 		hammer2_chain_countbrefs(parent, base, count);
2446 
2447 	KKASSERT(parent->core.live_count >= 0 &&
2448 		 parent->core.live_count <= count);
2449 
2450 	/*
2451 	 * If no free blockref could be found we must create an indirect
2452 	 * block and move a number of blockrefs into it.  With the parent
2453 	 * locked we can safely lock each child in order to delete+duplicate
2454 	 * it without causing a deadlock.
2455 	 *
2456 	 * This may return the new indirect block or the old parent depending
2457 	 * on where the key falls.  NULL is returned on error.
2458 	 */
2459 	if (parent->core.live_count == count) {
2460 		hammer2_chain_t *nparent;
2461 
2462 		nparent = hammer2_chain_create_indirect(parent, key, keybits,
2463 							mtid, type, &error);
2464 		if (nparent == NULL) {
2465 			if (allocated)
2466 				hammer2_chain_drop(chain);
2467 			chain = NULL;
2468 			goto done;
2469 		}
2470 		if (parent != nparent) {
2471 			hammer2_chain_unlock(parent);
2472 			hammer2_chain_drop(parent);
2473 			parent = *parentp = nparent;
2474 		}
2475 		goto again;
2476 	}
2477 
2478 	/*
2479 	 * Link the chain into its parent.
2480 	 */
2481 	if (chain->parent != NULL)
2482 		panic("hammer2: hammer2_chain_create: chain already connected");
2483 	KKASSERT(chain->parent == NULL);
2484 	hammer2_chain_insert(parent, chain,
2485 			     HAMMER2_CHAIN_INSERT_SPIN |
2486 			     HAMMER2_CHAIN_INSERT_LIVE,
2487 			     0);
2488 
2489 	if (allocated) {
2490 		/*
2491 		 * Mark the newly created chain modified.  This will cause
2492 		 * UPDATE to be set and process the INITIAL flag.
2493 		 *
2494 		 * Device buffers are not instantiated for DATA elements
2495 		 * as these are handled by logical buffers.
2496 		 *
2497 		 * Indirect and freemap node indirect blocks are handled
2498 		 * by hammer2_chain_create_indirect() and not by this
2499 		 * function.
2500 		 *
2501 		 * Data for all other bref types is expected to be
2502 		 * instantiated (INODE, LEAF).
2503 		 */
2504 		switch(chain->bref.type) {
2505 		case HAMMER2_BREF_TYPE_DATA:
2506 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2507 		case HAMMER2_BREF_TYPE_INODE:
2508 			hammer2_chain_modify(chain, mtid, dedup_off,
2509 					     HAMMER2_MODIFY_OPTDATA);
2510 			break;
2511 		default:
2512 			/*
2513 			 * Remaining types are not supported by this function.
2514 			 * In particular, INDIRECT and LEAF_NODE types are
2515 			 * handled by create_indirect().
2516 			 */
2517 			panic("hammer2_chain_create: bad type: %d",
2518 			      chain->bref.type);
2519 			/* NOT REACHED */
2520 			break;
2521 		}
2522 	} else {
2523 		/*
2524 		 * When reconnecting a chain we must set UPDATE and
2525 		 * setflush so the flush recognizes that it must update
2526 		 * the bref in the parent.
2527 		 */
2528 		if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
2529 			hammer2_chain_ref(chain);
2530 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
2531 		}
2532 	}
2533 
2534 	/*
2535 	 * We must setflush(parent) to ensure that it recurses through to
2536 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
2537 	 * already set in the chain (so it won't recurse up to set it in the
2538 	 * parent).
2539 	 */
2540 	hammer2_chain_setflush(parent);
2541 
2542 done:
2543 	*chainp = chain;
2544 
2545 	return (error);
2546 }
2547 
2548 /*
2549  * Move the chain from its old parent to a new parent.  The chain must have
2550  * already been deleted or already disconnected (or never associated) with
2551  * a parent.  The chain is reassociated with the new parent and the deleted
2552  * flag will be cleared (no longer deleted).  The chain's modification state
2553  * is not altered.
2554  *
2555  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
2556  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
2557  * FULL.  This typically means that the caller is creating the chain after
2558  * doing a hammer2_chain_lookup().
2559  *
2560  * A non-NULL bref is typically passed when key and keybits must be overridden.
2561  * Note that hammer2_cluster_duplicate() *ONLY* uses the key and keybits fields
2562  * from a passed-in bref and uses the old chain's bref for everything else.
2563  *
2564  * Neither (parent) or (chain) can be errored.
2565  *
2566  * If (parent) is non-NULL then the new duplicated chain is inserted under
2567  * the parent.
2568  *
2569  * If (parent) is NULL then the newly duplicated chain is not inserted
2570  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
2571  * passing into hammer2_chain_create() after this function returns).
2572  *
2573  * WARNING! This function calls create which means it can insert indirect
2574  *	    blocks.  This can cause other unrelated chains in the parent to
2575  *	    be moved to a newly inserted indirect block in addition to the
2576  *	    specific chain.
2577  */
2578 void
2579 hammer2_chain_rename(hammer2_blockref_t *bref,
2580 		     hammer2_chain_t **parentp, hammer2_chain_t *chain,
2581 		     hammer2_tid_t mtid, int flags)
2582 {
2583 	hammer2_dev_t *hmp;
2584 	hammer2_chain_t *parent;
2585 	size_t bytes;
2586 
2587 	/*
2588 	 * WARNING!  We should never resolve DATA to device buffers
2589 	 *	     (XXX allow it if the caller did?), and since
2590 	 *	     we currently do not have the logical buffer cache
2591 	 *	     buffer in-hand to fix its cached physical offset
2592 	 *	     we also force the modify code to not COW it. XXX
2593 	 */
2594 	hmp = chain->hmp;
2595 	KKASSERT(chain->parent == NULL);
2596 	KKASSERT(chain->error == 0);
2597 
2598 	/*
2599 	 * Now create a duplicate of the chain structure, associating
2600 	 * it with the same core, making it the same size, pointing it
2601 	 * to the same bref (the same media block).
2602 	 */
2603 	if (bref == NULL)
2604 		bref = &chain->bref;
2605 	bytes = (hammer2_off_t)1 <<
2606 		(int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
2607 
2608 	/*
2609 	 * If parent is not NULL the duplicated chain will be entered under
2610 	 * the parent and the UPDATE bit set to tell flush to update
2611 	 * the blockref.
2612 	 *
2613 	 * We must setflush(parent) to ensure that it recurses through to
2614 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
2615 	 * already set in the chain (so it won't recurse up to set it in the
2616 	 * parent).
2617 	 *
2618 	 * Having both chains locked is extremely important for atomicy.
2619 	 */
2620 	if (parentp && (parent = *parentp) != NULL) {
2621 		KKASSERT(hammer2_mtx_owned(&parent->lock));
2622 		KKASSERT(parent->refs > 0);
2623 		KKASSERT(parent->error == 0);
2624 
2625 		hammer2_chain_create(parentp, &chain, chain->pmp,
2626 				     bref->key, bref->keybits, bref->type,
2627 				     chain->bytes, mtid, 0, flags);
2628 		KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
2629 		hammer2_chain_setflush(*parentp);
2630 	}
2631 }
2632 
2633 /*
2634  * Helper function for deleting chains.
2635  *
2636  * The chain is removed from the live view (the RBTREE) as well as the parent's
2637  * blockmap.  Both chain and its parent must be locked.
2638  *
2639  * parent may not be errored.  chain can be errored.
2640  */
2641 static void
2642 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
2643 			     hammer2_tid_t mtid, int flags)
2644 {
2645 	hammer2_dev_t *hmp;
2646 
2647 	KKASSERT((chain->flags & (HAMMER2_CHAIN_DELETED |
2648 				  HAMMER2_CHAIN_FICTITIOUS)) == 0);
2649 	KKASSERT(chain->parent == parent);
2650 	hmp = chain->hmp;
2651 
2652 	if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
2653 		/*
2654 		 * Chain is blockmapped, so there must be a parent.
2655 		 * Atomically remove the chain from the parent and remove
2656 		 * the blockmap entry.
2657 		 */
2658 		hammer2_blockref_t *base;
2659 		int count;
2660 
2661 		KKASSERT(parent != NULL);
2662 		KKASSERT(parent->error == 0);
2663 		KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
2664 		hammer2_chain_modify(parent, mtid, 0, HAMMER2_MODIFY_OPTDATA);
2665 
2666 		/*
2667 		 * Calculate blockmap pointer
2668 		 */
2669 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2670 		hammer2_spin_ex(&parent->core.spin);
2671 
2672 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2673 		atomic_add_int(&parent->core.live_count, -1);
2674 		++parent->core.generation;
2675 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
2676 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
2677 		--parent->core.chain_count;
2678 		chain->parent = NULL;
2679 
2680 		switch(parent->bref.type) {
2681 		case HAMMER2_BREF_TYPE_INODE:
2682 			/*
2683 			 * Access the inode's block array.  However, there
2684 			 * is no block array if the inode is flagged
2685 			 * DIRECTDATA.  The DIRECTDATA case typicaly only
2686 			 * occurs when a hardlink has been shifted up the
2687 			 * tree and the original inode gets replaced with
2688 			 * an OBJTYPE_HARDLINK placeholding inode.
2689 			 */
2690 			if (parent->data &&
2691 			    (parent->data->ipdata.meta.op_flags &
2692 			     HAMMER2_OPFLAG_DIRECTDATA) == 0) {
2693 				base =
2694 				   &parent->data->ipdata.u.blockset.blockref[0];
2695 			} else {
2696 				base = NULL;
2697 			}
2698 			count = HAMMER2_SET_COUNT;
2699 			break;
2700 		case HAMMER2_BREF_TYPE_INDIRECT:
2701 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2702 			if (parent->data)
2703 				base = &parent->data->npdata[0];
2704 			else
2705 				base = NULL;
2706 			count = parent->bytes / sizeof(hammer2_blockref_t);
2707 			break;
2708 		case HAMMER2_BREF_TYPE_VOLUME:
2709 			base = &parent->data->voldata.
2710 					sroot_blockset.blockref[0];
2711 			count = HAMMER2_SET_COUNT;
2712 			break;
2713 		case HAMMER2_BREF_TYPE_FREEMAP:
2714 			base = &parent->data->blkset.blockref[0];
2715 			count = HAMMER2_SET_COUNT;
2716 			break;
2717 		default:
2718 			base = NULL;
2719 			count = 0;
2720 			panic("hammer2_flush_pass2: "
2721 			      "unrecognized blockref type: %d",
2722 			      parent->bref.type);
2723 		}
2724 
2725 		/*
2726 		 * delete blockmapped chain from its parent.
2727 		 *
2728 		 * The parent is not affected by any statistics in chain
2729 		 * which are pending synchronization.  That is, there is
2730 		 * nothing to undo in the parent since they have not yet
2731 		 * been incorporated into the parent.
2732 		 *
2733 		 * The parent is affected by statistics stored in inodes.
2734 		 * Those have already been synchronized, so they must be
2735 		 * undone.  XXX split update possible w/delete in middle?
2736 		 */
2737 		if (base) {
2738 			int cache_index = -1;
2739 			hammer2_base_delete(parent, base, count,
2740 					    &cache_index, chain);
2741 		}
2742 		hammer2_spin_unex(&parent->core.spin);
2743 	} else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
2744 		/*
2745 		 * Chain is not blockmapped but a parent is present.
2746 		 * Atomically remove the chain from the parent.  There is
2747 		 * no blockmap entry to remove.
2748 		 *
2749 		 * Because chain was associated with a parent but not
2750 		 * synchronized, the chain's *_count_up fields contain
2751 		 * inode adjustment statistics which must be undone.
2752 		 */
2753 		hammer2_spin_ex(&parent->core.spin);
2754 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2755 		atomic_add_int(&parent->core.live_count, -1);
2756 		++parent->core.generation;
2757 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
2758 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
2759 		--parent->core.chain_count;
2760 		chain->parent = NULL;
2761 		hammer2_spin_unex(&parent->core.spin);
2762 	} else {
2763 		/*
2764 		 * Chain is not blockmapped and has no parent.  This
2765 		 * is a degenerate case.
2766 		 */
2767 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2768 	}
2769 }
2770 
2771 /*
2772  * Create an indirect block that covers one or more of the elements in the
2773  * current parent.  Either returns the existing parent with no locking or
2774  * ref changes or returns the new indirect block locked and referenced
2775  * and leaving the original parent lock/ref intact as well.
2776  *
2777  * If an error occurs, NULL is returned and *errorp is set to the error.
2778  *
2779  * The returned chain depends on where the specified key falls.
2780  *
2781  * The key/keybits for the indirect mode only needs to follow three rules:
2782  *
2783  * (1) That all elements underneath it fit within its key space and
2784  *
2785  * (2) That all elements outside it are outside its key space.
2786  *
2787  * (3) When creating the new indirect block any elements in the current
2788  *     parent that fit within the new indirect block's keyspace must be
2789  *     moved into the new indirect block.
2790  *
2791  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
2792  *     keyspace the the current parent, but lookup/iteration rules will
2793  *     ensure (and must ensure) that rule (2) for all parents leading up
2794  *     to the nearest inode or the root volume header is adhered to.  This
2795  *     is accomplished by always recursing through matching keyspaces in
2796  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
2797  *
2798  * The current implementation calculates the current worst-case keyspace by
2799  * iterating the current parent and then divides it into two halves, choosing
2800  * whichever half has the most elements (not necessarily the half containing
2801  * the requested key).
2802  *
2803  * We can also opt to use the half with the least number of elements.  This
2804  * causes lower-numbered keys (aka logical file offsets) to recurse through
2805  * fewer indirect blocks and higher-numbered keys to recurse through more.
2806  * This also has the risk of not moving enough elements to the new indirect
2807  * block and being forced to create several indirect blocks before the element
2808  * can be inserted.
2809  *
2810  * Must be called with an exclusively locked parent.
2811  */
2812 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
2813 				hammer2_key_t *keyp, int keybits,
2814 				hammer2_blockref_t *base, int count);
2815 static int hammer2_chain_indkey_normal(hammer2_chain_t *parent,
2816 				hammer2_key_t *keyp, int keybits,
2817 				hammer2_blockref_t *base, int count);
2818 static
2819 hammer2_chain_t *
2820 hammer2_chain_create_indirect(hammer2_chain_t *parent,
2821 			      hammer2_key_t create_key, int create_bits,
2822 			      hammer2_tid_t mtid, int for_type, int *errorp)
2823 {
2824 	hammer2_dev_t *hmp;
2825 	hammer2_blockref_t *base;
2826 	hammer2_blockref_t *bref;
2827 	hammer2_blockref_t bcopy;
2828 	hammer2_chain_t *chain;
2829 	hammer2_chain_t *ichain;
2830 	hammer2_chain_t dummy;
2831 	hammer2_key_t key = create_key;
2832 	hammer2_key_t key_beg;
2833 	hammer2_key_t key_end;
2834 	hammer2_key_t key_next;
2835 	int keybits = create_bits;
2836 	int count;
2837 	int nbytes;
2838 	int cache_index;
2839 	int loops;
2840 	int reason;
2841 	int generation;
2842 	int maxloops = 300000;
2843 
2844 	/*
2845 	 * Calculate the base blockref pointer or NULL if the chain
2846 	 * is known to be empty.  We need to calculate the array count
2847 	 * for RB lookups either way.
2848 	 */
2849 	hmp = parent->hmp;
2850 	*errorp = 0;
2851 	KKASSERT(hammer2_mtx_owned(&parent->lock));
2852 
2853 	/*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
2854 	if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2855 		base = NULL;
2856 
2857 		switch(parent->bref.type) {
2858 		case HAMMER2_BREF_TYPE_INODE:
2859 			count = HAMMER2_SET_COUNT;
2860 			break;
2861 		case HAMMER2_BREF_TYPE_INDIRECT:
2862 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2863 			count = parent->bytes / sizeof(hammer2_blockref_t);
2864 			break;
2865 		case HAMMER2_BREF_TYPE_VOLUME:
2866 			count = HAMMER2_SET_COUNT;
2867 			break;
2868 		case HAMMER2_BREF_TYPE_FREEMAP:
2869 			count = HAMMER2_SET_COUNT;
2870 			break;
2871 		default:
2872 			panic("hammer2_chain_create_indirect: "
2873 			      "unrecognized blockref type: %d",
2874 			      parent->bref.type);
2875 			count = 0;
2876 			break;
2877 		}
2878 	} else {
2879 		switch(parent->bref.type) {
2880 		case HAMMER2_BREF_TYPE_INODE:
2881 			base = &parent->data->ipdata.u.blockset.blockref[0];
2882 			count = HAMMER2_SET_COUNT;
2883 			break;
2884 		case HAMMER2_BREF_TYPE_INDIRECT:
2885 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2886 			base = &parent->data->npdata[0];
2887 			count = parent->bytes / sizeof(hammer2_blockref_t);
2888 			break;
2889 		case HAMMER2_BREF_TYPE_VOLUME:
2890 			base = &parent->data->voldata.
2891 					sroot_blockset.blockref[0];
2892 			count = HAMMER2_SET_COUNT;
2893 			break;
2894 		case HAMMER2_BREF_TYPE_FREEMAP:
2895 			base = &parent->data->blkset.blockref[0];
2896 			count = HAMMER2_SET_COUNT;
2897 			break;
2898 		default:
2899 			panic("hammer2_chain_create_indirect: "
2900 			      "unrecognized blockref type: %d",
2901 			      parent->bref.type);
2902 			count = 0;
2903 			break;
2904 		}
2905 	}
2906 
2907 	/*
2908 	 * dummy used in later chain allocation (no longer used for lookups).
2909 	 */
2910 	bzero(&dummy, sizeof(dummy));
2911 
2912 	/*
2913 	 * When creating an indirect block for a freemap node or leaf
2914 	 * the key/keybits must be fitted to static radix levels because
2915 	 * particular radix levels use particular reserved blocks in the
2916 	 * related zone.
2917 	 *
2918 	 * This routine calculates the key/radix of the indirect block
2919 	 * we need to create, and whether it is on the high-side or the
2920 	 * low-side.
2921 	 */
2922 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
2923 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
2924 		keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
2925 						       base, count);
2926 	} else {
2927 		keybits = hammer2_chain_indkey_normal(parent, &key, keybits,
2928 						      base, count);
2929 	}
2930 
2931 	/*
2932 	 * Normalize the key for the radix being represented, keeping the
2933 	 * high bits and throwing away the low bits.
2934 	 */
2935 	key &= ~(((hammer2_key_t)1 << keybits) - 1);
2936 
2937 	/*
2938 	 * How big should our new indirect block be?  It has to be at least
2939 	 * as large as its parent.
2940 	 *
2941 	 * The freemap uses a specific indirect block size.
2942 	 *
2943 	 * The first indirect block level down from an inode typically
2944 	 * uses LBUFSIZE (16384), else it uses PBUFSIZE (65536).
2945 	 */
2946 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
2947 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
2948 		nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
2949 	} else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
2950 		nbytes = HAMMER2_IND_BYTES_MIN;
2951 	} else {
2952 		nbytes = HAMMER2_IND_BYTES_MAX;
2953 	}
2954 	if (nbytes < count * sizeof(hammer2_blockref_t)) {
2955 		KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
2956 			 for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
2957 		nbytes = count * sizeof(hammer2_blockref_t);
2958 	}
2959 
2960 	/*
2961 	 * Ok, create our new indirect block
2962 	 */
2963 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
2964 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
2965 		dummy.bref.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
2966 	} else {
2967 		dummy.bref.type = HAMMER2_BREF_TYPE_INDIRECT;
2968 	}
2969 	dummy.bref.key = key;
2970 	dummy.bref.keybits = keybits;
2971 	dummy.bref.data_off = hammer2_getradix(nbytes);
2972 	dummy.bref.methods = parent->bref.methods;
2973 
2974 	ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy.bref);
2975 	atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
2976 	hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
2977 	/* ichain has one ref at this point */
2978 
2979 	/*
2980 	 * We have to mark it modified to allocate its block, but use
2981 	 * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
2982 	 * it won't be acted upon by the flush code.
2983 	 */
2984 	hammer2_chain_modify(ichain, mtid, 0, HAMMER2_MODIFY_OPTDATA);
2985 
2986 	/*
2987 	 * Iterate the original parent and move the matching brefs into
2988 	 * the new indirect block.
2989 	 *
2990 	 * XXX handle flushes.
2991 	 */
2992 	key_beg = 0;
2993 	key_end = HAMMER2_KEY_MAX;
2994 	cache_index = 0;
2995 	hammer2_spin_ex(&parent->core.spin);
2996 	loops = 0;
2997 	reason = 0;
2998 
2999 	for (;;) {
3000 		if (++loops > 100000) {
3001 		    hammer2_spin_unex(&parent->core.spin);
3002 		    panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
3003 			  reason, parent, base, count, key_next);
3004 		}
3005 
3006 		/*
3007 		 * NOTE: spinlock stays intact, returned chain (if not NULL)
3008 		 *	 is not referenced or locked which means that we
3009 		 *	 cannot safely check its flagged / deletion status
3010 		 *	 until we lock it.
3011 		 */
3012 		chain = hammer2_combined_find(parent, base, count,
3013 					      &cache_index, &key_next,
3014 					      key_beg, key_end,
3015 					      &bref);
3016 		generation = parent->core.generation;
3017 		if (bref == NULL)
3018 			break;
3019 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3020 
3021 		/*
3022 		 * Skip keys that are not within the key/radix of the new
3023 		 * indirect block.  They stay in the parent.
3024 		 */
3025 		if ((~(((hammer2_key_t)1 << keybits) - 1) &
3026 		    (key ^ bref->key)) != 0) {
3027 			goto next_key_spinlocked;
3028 		}
3029 
3030 		/*
3031 		 * Load the new indirect block by acquiring the related
3032 		 * chains (potentially from media as it might not be
3033 		 * in-memory).  Then move it to the new parent (ichain)
3034 		 * via DELETE-DUPLICATE.
3035 		 *
3036 		 * chain is referenced but not locked.  We must lock the
3037 		 * chain to obtain definitive DUPLICATED/DELETED state
3038 		 */
3039 		if (chain) {
3040 			/*
3041 			 * Use chain already present in the RBTREE
3042 			 */
3043 			hammer2_chain_ref(chain);
3044 			hammer2_spin_unex(&parent->core.spin);
3045 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
3046 		} else {
3047 			/*
3048 			 * Get chain for blockref element.  _get returns NULL
3049 			 * on insertion race.
3050 			 */
3051 			bcopy = *bref;
3052 			hammer2_spin_unex(&parent->core.spin);
3053 			chain = hammer2_chain_get(parent, generation, &bcopy);
3054 			if (chain == NULL) {
3055 				reason = 1;
3056 				hammer2_spin_ex(&parent->core.spin);
3057 				continue;
3058 			}
3059 			if (bcmp(&bcopy, bref, sizeof(bcopy))) {
3060 				kprintf("REASON 2\n");
3061 				reason = 2;
3062 				hammer2_chain_drop(chain);
3063 				hammer2_spin_ex(&parent->core.spin);
3064 				continue;
3065 			}
3066 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
3067 		}
3068 
3069 		/*
3070 		 * This is always live so if the chain has been deleted
3071 		 * we raced someone and we have to retry.
3072 		 *
3073 		 * NOTE: Lookups can race delete-duplicate because
3074 		 *	 delete-duplicate does not lock the parent's core
3075 		 *	 (they just use the spinlock on the core).  We must
3076 		 *	 check for races by comparing the DUPLICATED flag before
3077 		 *	 releasing the spinlock with the flag after locking the
3078 		 *	 chain.
3079 		 *
3080 		 *	 (note reversed logic for this one)
3081 		 */
3082 		if (chain->flags & HAMMER2_CHAIN_DELETED) {
3083 			hammer2_chain_unlock(chain);
3084 			hammer2_chain_drop(chain);
3085 			goto next_key;
3086 		}
3087 
3088 		/*
3089 		 * Shift the chain to the indirect block.
3090 		 *
3091 		 * WARNING! No reason for us to load chain data, pass NOSTATS
3092 		 *	    to prevent delete/insert from trying to access
3093 		 *	    inode stats (and thus asserting if there is no
3094 		 *	    chain->data loaded).
3095 		 */
3096 		hammer2_chain_delete(parent, chain, mtid, 0);
3097 		hammer2_chain_rename(NULL, &ichain, chain, mtid, 0);
3098 		hammer2_chain_unlock(chain);
3099 		hammer2_chain_drop(chain);
3100 		KKASSERT(parent->refs > 0);
3101 		chain = NULL;
3102 next_key:
3103 		hammer2_spin_ex(&parent->core.spin);
3104 next_key_spinlocked:
3105 		if (--maxloops == 0)
3106 			panic("hammer2_chain_create_indirect: maxloops");
3107 		reason = 4;
3108 		if (key_next == 0 || key_next > key_end)
3109 			break;
3110 		key_beg = key_next;
3111 		/* loop */
3112 	}
3113 	hammer2_spin_unex(&parent->core.spin);
3114 
3115 	/*
3116 	 * Insert the new indirect block into the parent now that we've
3117 	 * cleared out some entries in the parent.  We calculated a good
3118 	 * insertion index in the loop above (ichain->index).
3119 	 *
3120 	 * We don't have to set UPDATE here because we mark ichain
3121 	 * modified down below (so the normal modified -> flush -> set-moved
3122 	 * sequence applies).
3123 	 *
3124 	 * The insertion shouldn't race as this is a completely new block
3125 	 * and the parent is locked.
3126 	 */
3127 	KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
3128 	hammer2_chain_insert(parent, ichain,
3129 			     HAMMER2_CHAIN_INSERT_SPIN |
3130 			     HAMMER2_CHAIN_INSERT_LIVE,
3131 			     0);
3132 
3133 	/*
3134 	 * Make sure flushes propogate after our manual insertion.
3135 	 */
3136 	hammer2_chain_setflush(ichain);
3137 	hammer2_chain_setflush(parent);
3138 
3139 	/*
3140 	 * Figure out what to return.
3141 	 */
3142 	if (~(((hammer2_key_t)1 << keybits) - 1) &
3143 		   (create_key ^ key)) {
3144 		/*
3145 		 * Key being created is outside the key range,
3146 		 * return the original parent.
3147 		 */
3148 		hammer2_chain_unlock(ichain);
3149 		hammer2_chain_drop(ichain);
3150 	} else {
3151 		/*
3152 		 * Otherwise its in the range, return the new parent.
3153 		 * (leave both the new and old parent locked).
3154 		 */
3155 		parent = ichain;
3156 	}
3157 
3158 	return(parent);
3159 }
3160 
3161 /*
3162  * Calculate the keybits and highside/lowside of the freemap node the
3163  * caller is creating.
3164  *
3165  * This routine will specify the next higher-level freemap key/radix
3166  * representing the lowest-ordered set.  By doing so, eventually all
3167  * low-ordered sets will be moved one level down.
3168  *
3169  * We have to be careful here because the freemap reserves a limited
3170  * number of blocks for a limited number of levels.  So we can't just
3171  * push indiscriminately.
3172  */
3173 int
3174 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
3175 			     int keybits, hammer2_blockref_t *base, int count)
3176 {
3177 	hammer2_chain_t *chain;
3178 	hammer2_blockref_t *bref;
3179 	hammer2_key_t key;
3180 	hammer2_key_t key_beg;
3181 	hammer2_key_t key_end;
3182 	hammer2_key_t key_next;
3183 	int cache_index;
3184 	int locount;
3185 	int hicount;
3186 	int maxloops = 300000;
3187 
3188 	key = *keyp;
3189 	locount = 0;
3190 	hicount = 0;
3191 	keybits = 64;
3192 
3193 	/*
3194 	 * Calculate the range of keys in the array being careful to skip
3195 	 * slots which are overridden with a deletion.
3196 	 */
3197 	key_beg = 0;
3198 	key_end = HAMMER2_KEY_MAX;
3199 	cache_index = 0;
3200 	hammer2_spin_ex(&parent->core.spin);
3201 
3202 	for (;;) {
3203 		if (--maxloops == 0) {
3204 			panic("indkey_freemap shit %p %p:%d\n",
3205 			      parent, base, count);
3206 		}
3207 		chain = hammer2_combined_find(parent, base, count,
3208 					      &cache_index, &key_next,
3209 					      key_beg, key_end,
3210 					      &bref);
3211 
3212 		/*
3213 		 * Exhausted search
3214 		 */
3215 		if (bref == NULL)
3216 			break;
3217 
3218 		/*
3219 		 * Skip deleted chains.
3220 		 */
3221 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3222 			if (key_next == 0 || key_next > key_end)
3223 				break;
3224 			key_beg = key_next;
3225 			continue;
3226 		}
3227 
3228 		/*
3229 		 * Use the full live (not deleted) element for the scan
3230 		 * iteration.  HAMMER2 does not allow partial replacements.
3231 		 *
3232 		 * XXX should be built into hammer2_combined_find().
3233 		 */
3234 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3235 
3236 		if (keybits > bref->keybits) {
3237 			key = bref->key;
3238 			keybits = bref->keybits;
3239 		} else if (keybits == bref->keybits && bref->key < key) {
3240 			key = bref->key;
3241 		}
3242 		if (key_next == 0)
3243 			break;
3244 		key_beg = key_next;
3245 	}
3246 	hammer2_spin_unex(&parent->core.spin);
3247 
3248 	/*
3249 	 * Return the keybits for a higher-level FREEMAP_NODE covering
3250 	 * this node.
3251 	 */
3252 	switch(keybits) {
3253 	case HAMMER2_FREEMAP_LEVEL0_RADIX:
3254 		keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
3255 		break;
3256 	case HAMMER2_FREEMAP_LEVEL1_RADIX:
3257 		keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
3258 		break;
3259 	case HAMMER2_FREEMAP_LEVEL2_RADIX:
3260 		keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
3261 		break;
3262 	case HAMMER2_FREEMAP_LEVEL3_RADIX:
3263 		keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
3264 		break;
3265 	case HAMMER2_FREEMAP_LEVEL4_RADIX:
3266 		keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
3267 		break;
3268 	case HAMMER2_FREEMAP_LEVEL5_RADIX:
3269 		panic("hammer2_chain_indkey_freemap: level too high");
3270 		break;
3271 	default:
3272 		panic("hammer2_chain_indkey_freemap: bad radix");
3273 		break;
3274 	}
3275 	*keyp = key;
3276 
3277 	return (keybits);
3278 }
3279 
3280 /*
3281  * Calculate the keybits and highside/lowside of the indirect block the
3282  * caller is creating.
3283  */
3284 static int
3285 hammer2_chain_indkey_normal(hammer2_chain_t *parent, hammer2_key_t *keyp,
3286 			    int keybits, hammer2_blockref_t *base, int count)
3287 {
3288 	hammer2_blockref_t *bref;
3289 	hammer2_chain_t	*chain;
3290 	hammer2_key_t key_beg;
3291 	hammer2_key_t key_end;
3292 	hammer2_key_t key_next;
3293 	hammer2_key_t key;
3294 	int nkeybits;
3295 	int locount;
3296 	int hicount;
3297 	int cache_index;
3298 	int maxloops = 300000;
3299 
3300 	key = *keyp;
3301 	locount = 0;
3302 	hicount = 0;
3303 
3304 	/*
3305 	 * Calculate the range of keys in the array being careful to skip
3306 	 * slots which are overridden with a deletion.  Once the scan
3307 	 * completes we will cut the key range in half and shift half the
3308 	 * range into the new indirect block.
3309 	 */
3310 	key_beg = 0;
3311 	key_end = HAMMER2_KEY_MAX;
3312 	cache_index = 0;
3313 	hammer2_spin_ex(&parent->core.spin);
3314 
3315 	for (;;) {
3316 		if (--maxloops == 0) {
3317 			panic("indkey_freemap shit %p %p:%d\n",
3318 			      parent, base, count);
3319 		}
3320 		chain = hammer2_combined_find(parent, base, count,
3321 					      &cache_index, &key_next,
3322 					      key_beg, key_end,
3323 					      &bref);
3324 
3325 		/*
3326 		 * Exhausted search
3327 		 */
3328 		if (bref == NULL)
3329 			break;
3330 
3331 		/*
3332 		 * NOTE: No need to check DUPLICATED here because we do
3333 		 *	 not release the spinlock.
3334 		 */
3335 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3336 			if (key_next == 0 || key_next > key_end)
3337 				break;
3338 			key_beg = key_next;
3339 			continue;
3340 		}
3341 
3342 		/*
3343 		 * Use the full live (not deleted) element for the scan
3344 		 * iteration.  HAMMER2 does not allow partial replacements.
3345 		 *
3346 		 * XXX should be built into hammer2_combined_find().
3347 		 */
3348 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3349 
3350 		/*
3351 		 * Expand our calculated key range (key, keybits) to fit
3352 		 * the scanned key.  nkeybits represents the full range
3353 		 * that we will later cut in half (two halves @ nkeybits - 1).
3354 		 */
3355 		nkeybits = keybits;
3356 		if (nkeybits < bref->keybits) {
3357 			if (bref->keybits > 64) {
3358 				kprintf("bad bref chain %p bref %p\n",
3359 					chain, bref);
3360 				Debugger("fubar");
3361 			}
3362 			nkeybits = bref->keybits;
3363 		}
3364 		while (nkeybits < 64 &&
3365 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
3366 		        (key ^ bref->key)) != 0) {
3367 			++nkeybits;
3368 		}
3369 
3370 		/*
3371 		 * If the new key range is larger we have to determine
3372 		 * which side of the new key range the existing keys fall
3373 		 * under by checking the high bit, then collapsing the
3374 		 * locount into the hicount or vise-versa.
3375 		 */
3376 		if (keybits != nkeybits) {
3377 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
3378 				hicount += locount;
3379 				locount = 0;
3380 			} else {
3381 				locount += hicount;
3382 				hicount = 0;
3383 			}
3384 			keybits = nkeybits;
3385 		}
3386 
3387 		/*
3388 		 * The newly scanned key will be in the lower half or the
3389 		 * upper half of the (new) key range.
3390 		 */
3391 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
3392 			++hicount;
3393 		else
3394 			++locount;
3395 
3396 		if (key_next == 0)
3397 			break;
3398 		key_beg = key_next;
3399 	}
3400 	hammer2_spin_unex(&parent->core.spin);
3401 	bref = NULL;	/* now invalid (safety) */
3402 
3403 	/*
3404 	 * Adjust keybits to represent half of the full range calculated
3405 	 * above (radix 63 max)
3406 	 */
3407 	--keybits;
3408 
3409 	/*
3410 	 * Select whichever half contains the most elements.  Theoretically
3411 	 * we can select either side as long as it contains at least one
3412 	 * element (in order to ensure that a free slot is present to hold
3413 	 * the indirect block).
3414 	 */
3415 	if (hammer2_indirect_optimize) {
3416 		/*
3417 		 * Insert node for least number of keys, this will arrange
3418 		 * the first few blocks of a large file or the first few
3419 		 * inodes in a directory with fewer indirect blocks when
3420 		 * created linearly.
3421 		 */
3422 		if (hicount < locount && hicount != 0)
3423 			key |= (hammer2_key_t)1 << keybits;
3424 		else
3425 			key &= ~(hammer2_key_t)1 << keybits;
3426 	} else {
3427 		/*
3428 		 * Insert node for most number of keys, best for heavily
3429 		 * fragmented files.
3430 		 */
3431 		if (hicount > locount)
3432 			key |= (hammer2_key_t)1 << keybits;
3433 		else
3434 			key &= ~(hammer2_key_t)1 << keybits;
3435 	}
3436 	*keyp = key;
3437 
3438 	return (keybits);
3439 }
3440 
3441 /*
3442  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
3443  * it exists.
3444  *
3445  * Both parent and chain must be locked exclusively.
3446  *
3447  * This function will modify the parent if the blockref requires removal
3448  * from the parent's block table.
3449  *
3450  * This function is NOT recursive.  Any entity already pushed into the
3451  * chain (such as an inode) may still need visibility into its contents,
3452  * as well as the ability to read and modify the contents.  For example,
3453  * for an unlinked file which is still open.
3454  */
3455 void
3456 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
3457 		     hammer2_tid_t mtid, int flags)
3458 {
3459 	KKASSERT(hammer2_mtx_owned(&chain->lock));
3460 
3461 	/*
3462 	 * Nothing to do if already marked.
3463 	 *
3464 	 * We need the spinlock on the core whos RBTREE contains chain
3465 	 * to protect against races.
3466 	 */
3467 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
3468 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
3469 			 chain->parent == parent);
3470 		_hammer2_chain_delete_helper(parent, chain, mtid, flags);
3471 	}
3472 
3473 	/*
3474 	 * To avoid losing track of a permanent deletion we add the chain
3475 	 * to the delayed flush queue.  If were to flush it right now the
3476 	 * parent would end up in a modified state and generate I/O.
3477 	 * The delayed queue gives the parent a chance to be deleted to
3478 	 * (e.g. rm -rf).
3479 	 */
3480 	if (flags & HAMMER2_DELETE_PERMANENT) {
3481 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
3482 		hammer2_delayed_flush(chain);
3483 	} else {
3484 		/* XXX might not be needed */
3485 		hammer2_chain_setflush(chain);
3486 	}
3487 }
3488 
3489 /*
3490  * Returns the index of the nearest element in the blockref array >= elm.
3491  * Returns (count) if no element could be found.
3492  *
3493  * Sets *key_nextp to the next key for loop purposes but does not modify
3494  * it if the next key would be higher than the current value of *key_nextp.
3495  * Note that *key_nexp can overflow to 0, which should be tested by the
3496  * caller.
3497  *
3498  * (*cache_indexp) is a heuristic and can be any value without effecting
3499  * the result.
3500  *
3501  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
3502  *	     held through the operation.
3503  */
3504 static int
3505 hammer2_base_find(hammer2_chain_t *parent,
3506 		  hammer2_blockref_t *base, int count,
3507 		  int *cache_indexp, hammer2_key_t *key_nextp,
3508 		  hammer2_key_t key_beg, hammer2_key_t key_end)
3509 {
3510 	hammer2_blockref_t *scan;
3511 	hammer2_key_t scan_end;
3512 	int i;
3513 	int limit;
3514 
3515 	/*
3516 	 * Require the live chain's already have their core's counted
3517 	 * so we can optimize operations.
3518 	 */
3519         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
3520 
3521 	/*
3522 	 * Degenerate case
3523 	 */
3524 	if (count == 0 || base == NULL)
3525 		return(count);
3526 
3527 	/*
3528 	 * Sequential optimization using *cache_indexp.  This is the most
3529 	 * likely scenario.
3530 	 *
3531 	 * We can avoid trailing empty entries on live chains, otherwise
3532 	 * we might have to check the whole block array.
3533 	 */
3534 	i = *cache_indexp;
3535 	cpu_ccfence();
3536 	limit = parent->core.live_zero;
3537 	if (i >= limit)
3538 		i = limit - 1;
3539 	if (i < 0)
3540 		i = 0;
3541 	KKASSERT(i < count);
3542 
3543 	/*
3544 	 * Search backwards
3545 	 */
3546 	scan = &base[i];
3547 	while (i > 0 && (scan->type == 0 || scan->key > key_beg)) {
3548 		--scan;
3549 		--i;
3550 	}
3551 	*cache_indexp = i;
3552 
3553 	/*
3554 	 * Search forwards, stop when we find a scan element which
3555 	 * encloses the key or until we know that there are no further
3556 	 * elements.
3557 	 */
3558 	while (i < count) {
3559 		if (scan->type != 0) {
3560 			scan_end = scan->key +
3561 				   ((hammer2_key_t)1 << scan->keybits) - 1;
3562 			if (scan->key > key_beg || scan_end >= key_beg)
3563 				break;
3564 		}
3565 		if (i >= limit)
3566 			return (count);
3567 		++scan;
3568 		++i;
3569 	}
3570 	if (i != count) {
3571 		*cache_indexp = i;
3572 		if (i >= limit) {
3573 			i = count;
3574 		} else {
3575 			scan_end = scan->key +
3576 				   ((hammer2_key_t)1 << scan->keybits);
3577 			if (scan_end && (*key_nextp > scan_end ||
3578 					 *key_nextp == 0)) {
3579 				*key_nextp = scan_end;
3580 			}
3581 		}
3582 	}
3583 	return (i);
3584 }
3585 
3586 /*
3587  * Do a combined search and return the next match either from the blockref
3588  * array or from the in-memory chain.  Sets *bresp to the returned bref in
3589  * both cases, or sets it to NULL if the search exhausted.  Only returns
3590  * a non-NULL chain if the search matched from the in-memory chain.
3591  *
3592  * When no in-memory chain has been found and a non-NULL bref is returned
3593  * in *bresp.
3594  *
3595  *
3596  * The returned chain is not locked or referenced.  Use the returned bref
3597  * to determine if the search exhausted or not.  Iterate if the base find
3598  * is chosen but matches a deleted chain.
3599  *
3600  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
3601  *	     held through the operation.
3602  */
3603 static hammer2_chain_t *
3604 hammer2_combined_find(hammer2_chain_t *parent,
3605 		      hammer2_blockref_t *base, int count,
3606 		      int *cache_indexp, hammer2_key_t *key_nextp,
3607 		      hammer2_key_t key_beg, hammer2_key_t key_end,
3608 		      hammer2_blockref_t **bresp)
3609 {
3610 	hammer2_blockref_t *bref;
3611 	hammer2_chain_t *chain;
3612 	int i;
3613 
3614 	/*
3615 	 * Lookup in block array and in rbtree.
3616 	 */
3617 	*key_nextp = key_end + 1;
3618 	i = hammer2_base_find(parent, base, count, cache_indexp,
3619 			      key_nextp, key_beg, key_end);
3620 	chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
3621 
3622 	/*
3623 	 * Neither matched
3624 	 */
3625 	if (i == count && chain == NULL) {
3626 		*bresp = NULL;
3627 		return(NULL);
3628 	}
3629 
3630 	/*
3631 	 * Only chain matched.
3632 	 */
3633 	if (i == count) {
3634 		bref = &chain->bref;
3635 		goto found;
3636 	}
3637 
3638 	/*
3639 	 * Only blockref matched.
3640 	 */
3641 	if (chain == NULL) {
3642 		bref = &base[i];
3643 		goto found;
3644 	}
3645 
3646 	/*
3647 	 * Both in-memory and blockref matched, select the nearer element.
3648 	 *
3649 	 * If both are flush with the left-hand side or both are the
3650 	 * same distance away, select the chain.  In this situation the
3651 	 * chain must have been loaded from the matching blockmap.
3652 	 */
3653 	if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
3654 	    chain->bref.key == base[i].key) {
3655 		KKASSERT(chain->bref.key == base[i].key);
3656 		bref = &chain->bref;
3657 		goto found;
3658 	}
3659 
3660 	/*
3661 	 * Select the nearer key
3662 	 */
3663 	if (chain->bref.key < base[i].key) {
3664 		bref = &chain->bref;
3665 	} else {
3666 		bref = &base[i];
3667 		chain = NULL;
3668 	}
3669 
3670 	/*
3671 	 * If the bref is out of bounds we've exhausted our search.
3672 	 */
3673 found:
3674 	if (bref->key > key_end) {
3675 		*bresp = NULL;
3676 		chain = NULL;
3677 	} else {
3678 		*bresp = bref;
3679 	}
3680 	return(chain);
3681 }
3682 
3683 /*
3684  * Locate the specified block array element and delete it.  The element
3685  * must exist.
3686  *
3687  * The spin lock on the related chain must be held.
3688  *
3689  * NOTE: live_count was adjusted when the chain was deleted, so it does not
3690  *	 need to be adjusted when we commit the media change.
3691  */
3692 void
3693 hammer2_base_delete(hammer2_chain_t *parent,
3694 		    hammer2_blockref_t *base, int count,
3695 		    int *cache_indexp, hammer2_chain_t *chain)
3696 {
3697 	hammer2_blockref_t *elm = &chain->bref;
3698 	hammer2_key_t key_next;
3699 	int i;
3700 
3701 	/*
3702 	 * Delete element.  Expect the element to exist.
3703 	 *
3704 	 * XXX see caller, flush code not yet sophisticated enough to prevent
3705 	 *     re-flushed in some cases.
3706 	 */
3707 	key_next = 0; /* max range */
3708 	i = hammer2_base_find(parent, base, count, cache_indexp,
3709 			      &key_next, elm->key, elm->key);
3710 	if (i == count || base[i].type == 0 ||
3711 	    base[i].key != elm->key ||
3712 	    ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
3713 	     base[i].keybits != elm->keybits)) {
3714 		hammer2_spin_unex(&parent->core.spin);
3715 		panic("delete base %p element not found at %d/%d elm %p\n",
3716 		      base, i, count, elm);
3717 		return;
3718 	}
3719 
3720 	/*
3721 	 * Update stats and zero the entry
3722 	 */
3723 	parent->bref.data_count -= base[i].data_count;
3724 	parent->bref.data_count -= (hammer2_off_t)1 <<
3725 			(int)(base[i].data_off & HAMMER2_OFF_MASK_RADIX);
3726 	parent->bref.inode_count -= base[i].inode_count;
3727 	if (base[i].type == HAMMER2_BREF_TYPE_INODE)
3728 		parent->bref.inode_count -= 1;
3729 
3730 	bzero(&base[i], sizeof(*base));
3731 
3732 	/*
3733 	 * We can only optimize parent->core.live_zero for live chains.
3734 	 */
3735 	if (parent->core.live_zero == i + 1) {
3736 		while (--i >= 0 && base[i].type == 0)
3737 			;
3738 		parent->core.live_zero = i + 1;
3739 	}
3740 
3741 	/*
3742 	 * Clear appropriate blockmap flags in chain.
3743 	 */
3744 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
3745 					HAMMER2_CHAIN_BMAPUPD);
3746 }
3747 
3748 /*
3749  * Insert the specified element.  The block array must not already have the
3750  * element and must have space available for the insertion.
3751  *
3752  * The spin lock on the related chain must be held.
3753  *
3754  * NOTE: live_count was adjusted when the chain was deleted, so it does not
3755  *	 need to be adjusted when we commit the media change.
3756  */
3757 void
3758 hammer2_base_insert(hammer2_chain_t *parent,
3759 		    hammer2_blockref_t *base, int count,
3760 		    int *cache_indexp, hammer2_chain_t *chain)
3761 {
3762 	hammer2_blockref_t *elm = &chain->bref;
3763 	hammer2_key_t key_next;
3764 	hammer2_key_t xkey;
3765 	int i;
3766 	int j;
3767 	int k;
3768 	int l;
3769 	int u = 1;
3770 
3771 	/*
3772 	 * Insert new element.  Expect the element to not already exist
3773 	 * unless we are replacing it.
3774 	 *
3775 	 * XXX see caller, flush code not yet sophisticated enough to prevent
3776 	 *     re-flushed in some cases.
3777 	 */
3778 	key_next = 0; /* max range */
3779 	i = hammer2_base_find(parent, base, count, cache_indexp,
3780 			      &key_next, elm->key, elm->key);
3781 
3782 	/*
3783 	 * Shortcut fill optimization, typical ordered insertion(s) may not
3784 	 * require a search.
3785 	 */
3786 	KKASSERT(i >= 0 && i <= count);
3787 
3788 	/*
3789 	 * Set appropriate blockmap flags in chain.
3790 	 */
3791 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
3792 
3793 	/*
3794 	 * Update stats and zero the entry
3795 	 */
3796 	parent->bref.data_count += elm->data_count;
3797 	parent->bref.data_count += (hammer2_off_t)1 <<
3798 			(int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
3799 	parent->bref.inode_count += elm->inode_count;
3800 	if (elm->type == HAMMER2_BREF_TYPE_INODE)
3801 		parent->bref.inode_count += 1;
3802 
3803 
3804 	/*
3805 	 * We can only optimize parent->core.live_zero for live chains.
3806 	 */
3807 	if (i == count && parent->core.live_zero < count) {
3808 		i = parent->core.live_zero++;
3809 		base[i] = *elm;
3810 		return;
3811 	}
3812 
3813 	xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
3814 	if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
3815 		hammer2_spin_unex(&parent->core.spin);
3816 		panic("insert base %p overlapping elements at %d elm %p\n",
3817 		      base, i, elm);
3818 	}
3819 
3820 	/*
3821 	 * Try to find an empty slot before or after.
3822 	 */
3823 	j = i;
3824 	k = i;
3825 	while (j > 0 || k < count) {
3826 		--j;
3827 		if (j >= 0 && base[j].type == 0) {
3828 			if (j == i - 1) {
3829 				base[j] = *elm;
3830 			} else {
3831 				bcopy(&base[j+1], &base[j],
3832 				      (i - j - 1) * sizeof(*base));
3833 				base[i - 1] = *elm;
3834 			}
3835 			goto validate;
3836 		}
3837 		++k;
3838 		if (k < count && base[k].type == 0) {
3839 			bcopy(&base[i], &base[i+1],
3840 			      (k - i) * sizeof(hammer2_blockref_t));
3841 			base[i] = *elm;
3842 
3843 			/*
3844 			 * We can only update parent->core.live_zero for live
3845 			 * chains.
3846 			 */
3847 			if (parent->core.live_zero <= k)
3848 				parent->core.live_zero = k + 1;
3849 			u = 2;
3850 			goto validate;
3851 		}
3852 	}
3853 	panic("hammer2_base_insert: no room!");
3854 
3855 	/*
3856 	 * Debugging
3857 	 */
3858 validate:
3859 	key_next = 0;
3860 	for (l = 0; l < count; ++l) {
3861 		if (base[l].type) {
3862 			key_next = base[l].key +
3863 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
3864 			break;
3865 		}
3866 	}
3867 	while (++l < count) {
3868 		if (base[l].type) {
3869 			if (base[l].key <= key_next)
3870 				panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
3871 			key_next = base[l].key +
3872 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
3873 
3874 		}
3875 	}
3876 
3877 }
3878 
3879 #if 0
3880 
3881 /*
3882  * Sort the blockref array for the chain.  Used by the flush code to
3883  * sort the blockref[] array.
3884  *
3885  * The chain must be exclusively locked AND spin-locked.
3886  */
3887 typedef hammer2_blockref_t *hammer2_blockref_p;
3888 
3889 static
3890 int
3891 hammer2_base_sort_callback(const void *v1, const void *v2)
3892 {
3893 	hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
3894 	hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
3895 
3896 	/*
3897 	 * Make sure empty elements are placed at the end of the array
3898 	 */
3899 	if (bref1->type == 0) {
3900 		if (bref2->type == 0)
3901 			return(0);
3902 		return(1);
3903 	} else if (bref2->type == 0) {
3904 		return(-1);
3905 	}
3906 
3907 	/*
3908 	 * Sort by key
3909 	 */
3910 	if (bref1->key < bref2->key)
3911 		return(-1);
3912 	if (bref1->key > bref2->key)
3913 		return(1);
3914 	return(0);
3915 }
3916 
3917 void
3918 hammer2_base_sort(hammer2_chain_t *chain)
3919 {
3920 	hammer2_blockref_t *base;
3921 	int count;
3922 
3923 	switch(chain->bref.type) {
3924 	case HAMMER2_BREF_TYPE_INODE:
3925 		/*
3926 		 * Special shortcut for embedded data returns the inode
3927 		 * itself.  Callers must detect this condition and access
3928 		 * the embedded data (the strategy code does this for us).
3929 		 *
3930 		 * This is only applicable to regular files and softlinks.
3931 		 */
3932 		if (chain->data->ipdata.meta.op_flags &
3933 		    HAMMER2_OPFLAG_DIRECTDATA) {
3934 			return;
3935 		}
3936 		base = &chain->data->ipdata.u.blockset.blockref[0];
3937 		count = HAMMER2_SET_COUNT;
3938 		break;
3939 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3940 	case HAMMER2_BREF_TYPE_INDIRECT:
3941 		/*
3942 		 * Optimize indirect blocks in the INITIAL state to avoid
3943 		 * I/O.
3944 		 */
3945 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
3946 		base = &chain->data->npdata[0];
3947 		count = chain->bytes / sizeof(hammer2_blockref_t);
3948 		break;
3949 	case HAMMER2_BREF_TYPE_VOLUME:
3950 		base = &chain->data->voldata.sroot_blockset.blockref[0];
3951 		count = HAMMER2_SET_COUNT;
3952 		break;
3953 	case HAMMER2_BREF_TYPE_FREEMAP:
3954 		base = &chain->data->blkset.blockref[0];
3955 		count = HAMMER2_SET_COUNT;
3956 		break;
3957 	default:
3958 		kprintf("hammer2_chain_lookup: unrecognized "
3959 			"blockref(A) type: %d",
3960 		        chain->bref.type);
3961 		while (1)
3962 			tsleep(&base, 0, "dead", 0);
3963 		panic("hammer2_chain_lookup: unrecognized "
3964 		      "blockref(A) type: %d",
3965 		      chain->bref.type);
3966 		base = NULL;	/* safety */
3967 		count = 0;	/* safety */
3968 	}
3969 	kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
3970 }
3971 
3972 #endif
3973 
3974 /*
3975  * Chain memory management
3976  */
3977 void
3978 hammer2_chain_wait(hammer2_chain_t *chain)
3979 {
3980 	tsleep(chain, 0, "chnflw", 1);
3981 }
3982 
3983 const hammer2_media_data_t *
3984 hammer2_chain_rdata(hammer2_chain_t *chain)
3985 {
3986 	KKASSERT(chain->data != NULL);
3987 	return (chain->data);
3988 }
3989 
3990 hammer2_media_data_t *
3991 hammer2_chain_wdata(hammer2_chain_t *chain)
3992 {
3993 	KKASSERT(chain->data != NULL);
3994 	return (chain->data);
3995 }
3996 
3997 /*
3998  * Set the check data for a chain.  This can be a heavy-weight operation
3999  * and typically only runs on-flush.  For file data check data is calculated
4000  * when the logical buffers are flushed.
4001  */
4002 void
4003 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
4004 {
4005 	chain->bref.flags &= ~HAMMER2_BREF_FLAG_ZERO;
4006 
4007 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
4008 	case HAMMER2_CHECK_NONE:
4009 		break;
4010 	case HAMMER2_CHECK_DISABLED:
4011 		break;
4012 	case HAMMER2_CHECK_ISCSI32:
4013 		chain->bref.check.iscsi32.value =
4014 			hammer2_icrc32(bdata, chain->bytes);
4015 		break;
4016 	case HAMMER2_CHECK_CRC64:
4017 		chain->bref.check.crc64.value = 0;
4018 		/* XXX */
4019 		break;
4020 	case HAMMER2_CHECK_SHA192:
4021 		{
4022 			SHA256_CTX hash_ctx;
4023 			union {
4024 				uint8_t digest[SHA256_DIGEST_LENGTH];
4025 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
4026 			} u;
4027 
4028 			SHA256_Init(&hash_ctx);
4029 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
4030 			SHA256_Final(u.digest, &hash_ctx);
4031 			u.digest64[2] ^= u.digest64[3];
4032 			bcopy(u.digest,
4033 			      chain->bref.check.sha192.data,
4034 			      sizeof(chain->bref.check.sha192.data));
4035 		}
4036 		break;
4037 	case HAMMER2_CHECK_FREEMAP:
4038 		chain->bref.check.freemap.icrc32 =
4039 			hammer2_icrc32(bdata, chain->bytes);
4040 		break;
4041 	default:
4042 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
4043 			chain->bref.methods);
4044 		break;
4045 	}
4046 }
4047 
4048 int
4049 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
4050 {
4051 	int r;
4052 
4053 	if (chain->bref.flags & HAMMER2_BREF_FLAG_ZERO)
4054 		return 1;
4055 
4056 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
4057 	case HAMMER2_CHECK_NONE:
4058 		r = 1;
4059 		break;
4060 	case HAMMER2_CHECK_DISABLED:
4061 		r = 1;
4062 		break;
4063 	case HAMMER2_CHECK_ISCSI32:
4064 		r = (chain->bref.check.iscsi32.value ==
4065 		     hammer2_icrc32(bdata, chain->bytes));
4066 		break;
4067 	case HAMMER2_CHECK_CRC64:
4068 		r = (chain->bref.check.crc64.value == 0);
4069 		/* XXX */
4070 		break;
4071 	case HAMMER2_CHECK_SHA192:
4072 		{
4073 			SHA256_CTX hash_ctx;
4074 			union {
4075 				uint8_t digest[SHA256_DIGEST_LENGTH];
4076 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
4077 			} u;
4078 
4079 			SHA256_Init(&hash_ctx);
4080 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
4081 			SHA256_Final(u.digest, &hash_ctx);
4082 			u.digest64[2] ^= u.digest64[3];
4083 			if (bcmp(u.digest,
4084 				 chain->bref.check.sha192.data,
4085 			         sizeof(chain->bref.check.sha192.data)) == 0) {
4086 				r = 1;
4087 			} else {
4088 				r = 0;
4089 			}
4090 		}
4091 		break;
4092 	case HAMMER2_CHECK_FREEMAP:
4093 		r = (chain->bref.check.freemap.icrc32 ==
4094 		     hammer2_icrc32(bdata, chain->bytes));
4095 		if (r == 0) {
4096 			kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
4097 				chain->bref.check.freemap.icrc32,
4098 				hammer2_icrc32(bdata, chain->bytes), chain->bytes);
4099 			if (chain->dio)
4100 				kprintf("dio %p buf %016jx,%d bdata %p/%p\n",
4101 					chain->dio, chain->dio->bp->b_loffset, chain->dio->bp->b_bufsize, bdata, chain->dio->bp->b_data);
4102 		}
4103 
4104 		break;
4105 	default:
4106 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
4107 			chain->bref.methods);
4108 		r = 1;
4109 		break;
4110 	}
4111 	return r;
4112 }
4113 
4114 /*
4115  * The caller presents a shared-locked (parent, chain) where the chain
4116  * is of type HAMMER2_OBJTYPE_HARDLINK.  The caller must hold the ip
4117  * structure representing the inode locked to prevent
4118  * consolidation/deconsolidation races.
4119  *
4120  * We locate the hardlink in the current or a common parent directory.
4121  *
4122  * If we are unable to locate the hardlink, EIO is returned and
4123  * (*chainp) is unlocked and dropped.
4124  */
4125 int
4126 hammer2_chain_hardlink_find(hammer2_inode_t *dip,
4127 			hammer2_chain_t **parentp,
4128 			hammer2_chain_t **chainp,
4129 			int flags)
4130 {
4131 	hammer2_chain_t *parent;
4132 	hammer2_chain_t *rchain;
4133 	hammer2_key_t key_dummy;
4134 	hammer2_key_t lhc;
4135 	int cache_index = -1;
4136 
4137 	/*
4138 	 * Obtain the key for the hardlink from *chainp.
4139 	 */
4140 	rchain = *chainp;
4141 	lhc = rchain->data->ipdata.meta.inum;
4142 	hammer2_chain_unlock(rchain);
4143 	hammer2_chain_drop(rchain);
4144 	rchain = NULL;
4145 
4146 	for (;;) {
4147 		int nloops;
4148 		rchain = hammer2_chain_lookup(parentp, &key_dummy,
4149 					      lhc, lhc,
4150 					      &cache_index, flags);
4151 		if (rchain)
4152 			break;
4153 
4154 		/*
4155 		 * Iterate parents, handle parent rename races by retrying
4156 		 * the operation.
4157 		 */
4158 		nloops = -1;
4159 		while (nloops) {
4160 			--nloops;
4161 			parent = *parentp;
4162 			if (nloops < 0 &&
4163 			    parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4164 				nloops = 1;
4165 			}
4166 			if (parent->bref.flags & HAMMER2_BREF_FLAG_PFSROOT)
4167 				goto done;
4168 			if (parent->parent == NULL)
4169 				goto done;
4170 			parent = parent->parent;
4171 			hammer2_chain_ref(parent);
4172 			hammer2_chain_unlock(*parentp);
4173 			hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
4174 						   flags);
4175 			if ((*parentp)->parent == parent) {
4176 				hammer2_chain_drop(*parentp);
4177 				*parentp = parent;
4178 			} else {
4179 				hammer2_chain_unlock(parent);
4180 				hammer2_chain_drop(parent);
4181 				hammer2_chain_lock(*parentp,
4182 						   HAMMER2_RESOLVE_ALWAYS |
4183 						   flags);
4184 				parent = NULL;	/* safety */
4185 				/* retry */
4186 			}
4187 		}
4188 	}
4189 done:
4190 
4191 	*chainp = rchain;
4192 	return (rchain ? EINVAL : 0);
4193 }
4194 
4195 /*
4196  * Used by the bulkscan code to snapshot the synchronized storage for
4197  * a volume, allowing it to be scanned concurrently against normal
4198  * operation.
4199  */
4200 hammer2_chain_t *
4201 hammer2_chain_bulksnap(hammer2_chain_t *chain)
4202 {
4203 	hammer2_chain_t *copy;
4204 
4205 	copy = hammer2_chain_alloc(chain->hmp, chain->pmp, &chain->bref);
4206 	switch(chain->bref.type) {
4207 	case HAMMER2_BREF_TYPE_VOLUME:
4208 		copy->data = kmalloc(sizeof(copy->data->voldata),
4209 				     chain->hmp->mchain,
4210 				     M_WAITOK | M_ZERO);
4211 		hammer2_spin_ex(&chain->core.spin);
4212 		copy->data->voldata = chain->data->voldata;
4213 		hammer2_spin_unex(&chain->core.spin);
4214 		break;
4215 	case HAMMER2_BREF_TYPE_FREEMAP:
4216 		copy->data = kmalloc(sizeof(hammer2_blockset_t),
4217 				     chain->hmp->mchain,
4218 				     M_WAITOK | M_ZERO);
4219 		hammer2_spin_ex(&chain->core.spin);
4220 		copy->data->blkset = chain->data->blkset;
4221 		hammer2_spin_unex(&chain->core.spin);
4222 		break;
4223 	default:
4224 		break;
4225 	}
4226 	return copy;
4227 }
4228 
4229 void
4230 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
4231 {
4232 	switch(copy->bref.type) {
4233 	case HAMMER2_BREF_TYPE_VOLUME:
4234 	case HAMMER2_BREF_TYPE_FREEMAP:
4235 		KKASSERT(copy->data);
4236 		kfree(copy->data, copy->hmp->mchain);
4237 		copy->data = NULL;
4238 	default:
4239 		break;
4240 	}
4241 	hammer2_chain_drop(copy);
4242 }
4243 
4244 /*
4245  * Create a snapshot of the specified {parent, ochain} with the specified
4246  * label.  The originating hammer2_inode must be exclusively locked for
4247  * safety.
4248  *
4249  * The ioctl code has already synced the filesystem.
4250  */
4251 int
4252 hammer2_chain_snapshot(hammer2_chain_t *chain, hammer2_ioc_pfs_t *pmp,
4253 		       hammer2_tid_t mtid)
4254 {
4255 	hammer2_dev_t *hmp;
4256 	const hammer2_inode_data_t *ripdata;
4257 	hammer2_inode_data_t *wipdata;
4258 	hammer2_chain_t *nchain;
4259 	hammer2_inode_t *nip;
4260 	size_t name_len;
4261 	hammer2_key_t lhc;
4262 	struct vattr vat;
4263 #if 0
4264 	uuid_t opfs_clid;
4265 #endif
4266 	int error;
4267 
4268 	kprintf("snapshot %s\n", pmp->name);
4269 
4270 	name_len = strlen(pmp->name);
4271 	lhc = hammer2_dirhash(pmp->name, name_len);
4272 
4273 	/*
4274 	 * Get the clid
4275 	 */
4276 	ripdata = &chain->data->ipdata;
4277 #if 0
4278 	opfs_clid = ripdata->meta.pfs_clid;
4279 #endif
4280 	hmp = chain->hmp;
4281 
4282 	/*
4283 	 * Create the snapshot directory under the super-root
4284 	 *
4285 	 * Set PFS type, generate a unique filesystem id, and generate
4286 	 * a cluster id.  Use the same clid when snapshotting a PFS root,
4287 	 * which theoretically allows the snapshot to be used as part of
4288 	 * the same cluster (perhaps as a cache).
4289 	 *
4290 	 * Copy the (flushed) blockref array.  Theoretically we could use
4291 	 * chain_duplicate() but it becomes difficult to disentangle
4292 	 * the shared core so for now just brute-force it.
4293 	 */
4294 	VATTR_NULL(&vat);
4295 	vat.va_type = VDIR;
4296 	vat.va_mode = 0755;
4297 	nip = hammer2_inode_create(hmp->spmp->iroot, &vat, proc0.p_ucred,
4298 				   pmp->name, name_len, 0,
4299 				   1, 0, 0,
4300 				   HAMMER2_INSERT_PFSROOT, &error);
4301 
4302 	if (nip) {
4303 		hammer2_inode_modify(nip);
4304 		nchain = hammer2_inode_chain(nip, 0, HAMMER2_RESOLVE_ALWAYS);
4305 		hammer2_chain_modify(nchain, mtid, 0, 0);
4306 		wipdata = &nchain->data->ipdata;
4307 
4308 		nip->meta.pfs_type = HAMMER2_PFSTYPE_MASTER;
4309 		nip->meta.pfs_subtype = HAMMER2_PFSSUBTYPE_SNAPSHOT;
4310 		nip->meta.op_flags |= HAMMER2_OPFLAG_PFSROOT;
4311 		kern_uuidgen(&nip->meta.pfs_fsid, 1);
4312 
4313 		/*
4314 		 * Give the snapshot its own private cluster id.  As a
4315 		 * snapshot no further synchronization with the original
4316 		 * cluster will be done.
4317 		 */
4318 #if 0
4319 		if (chain->flags & HAMMER2_CHAIN_PFSBOUNDARY)
4320 			nip->meta.pfs_clid = opfs_clid;
4321 		else
4322 			kern_uuidgen(&nip->meta.pfs_clid, 1);
4323 #endif
4324 		kern_uuidgen(&nip->meta.pfs_clid, 1);
4325 		nchain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
4326 
4327 		/* XXX hack blockset copy */
4328 		/* XXX doesn't work with real cluster */
4329 		wipdata->meta = nip->meta;
4330 		wipdata->u.blockset = ripdata->u.blockset;
4331 		hammer2_flush(nchain, 1);
4332 		hammer2_chain_unlock(nchain);
4333 		hammer2_chain_drop(nchain);
4334 		hammer2_inode_unlock(nip);
4335 	}
4336 	return (error);
4337 }
4338