xref: /dragonfly/sys/vfs/hammer2/hammer2_chain.c (revision 64355093)
1 /*
2  * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62 
63 #include <crypto/sha2/sha2.h>
64 
65 #include "hammer2.h"
66 
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68 		hammer2_chain_t *parent,
69 		hammer2_key_t key, int keybits,
70 		hammer2_tid_t mtid, int for_type, int *errorp);
71 static void hammer2_chain_rename_obref(hammer2_chain_t **parentp,
72 		hammer2_chain_t *chain, hammer2_tid_t mtid,
73 		int flags, hammer2_blockref_t *obref);
74 static int hammer2_chain_delete_obref(hammer2_chain_t *parent,
75 		hammer2_chain_t *chain,
76 		hammer2_tid_t mtid, int flags,
77 		hammer2_blockref_t *obref);
78 static hammer2_io_t *hammer2_chain_drop_data(hammer2_chain_t *chain);
79 static hammer2_chain_t *hammer2_combined_find(
80 		hammer2_chain_t *parent,
81 		hammer2_blockref_t *base, int count,
82 		hammer2_key_t *key_nextp,
83 		hammer2_key_t key_beg, hammer2_key_t key_end,
84 		hammer2_blockref_t **bresp);
85 
86 static struct krate krate_h2me = { .freq = 1 };
87 
88 /*
89  * Basic RBTree for chains (core.rbtree).
90  */
91 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
92 
93 int
94 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
95 {
96 	hammer2_key_t c1_beg;
97 	hammer2_key_t c1_end;
98 	hammer2_key_t c2_beg;
99 	hammer2_key_t c2_end;
100 
101 	/*
102 	 * Compare chains.  Overlaps are not supposed to happen and catch
103 	 * any software issues early we count overlaps as a match.
104 	 */
105 	c1_beg = chain1->bref.key;
106 	c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
107 	c2_beg = chain2->bref.key;
108 	c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
109 
110 	if (c1_end < c2_beg)	/* fully to the left */
111 		return(-1);
112 	if (c1_beg > c2_end)	/* fully to the right */
113 		return(1);
114 	return(0);		/* overlap (must not cross edge boundary) */
115 }
116 
117 /*
118  * Assert that a chain has no media data associated with it.
119  */
120 static __inline void
121 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
122 {
123 	KKASSERT(chain->dio == NULL);
124 	if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
125 	    chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
126 	    chain->data) {
127 		panic("hammer2_chain_assert_no_data: chain %p still has data",
128 		    chain);
129 	}
130 }
131 
132 /*
133  * Make a chain visible to the flusher.  The flusher operates using a top-down
134  * recursion based on the ONFLUSH flag.  It locates MODIFIED and UPDATE chains,
135  * flushes them, and updates blocks back to the volume root.
136  *
137  * This routine sets the ONFLUSH flag upward from the triggering chain until
138  * it hits an inode root or the volume root.  Inode chains serve as inflection
139  * points, requiring the flusher to bridge across trees.  Inodes include
140  * regular inodes, PFS roots (pmp->iroot), and the media super root
141  * (spmp->iroot).
142  */
143 void
144 hammer2_chain_setflush(hammer2_chain_t *chain)
145 {
146 	hammer2_chain_t *parent;
147 
148 	if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
149 		hammer2_spin_sh(&chain->core.spin);
150 		while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
151 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
152 			if (chain->bref.type == HAMMER2_BREF_TYPE_INODE)
153 				break;
154 			if ((parent = chain->parent) == NULL)
155 				break;
156 			hammer2_spin_sh(&parent->core.spin);
157 			hammer2_spin_unsh(&chain->core.spin);
158 			chain = parent;
159 		}
160 		hammer2_spin_unsh(&chain->core.spin);
161 	}
162 }
163 
164 /*
165  * Allocate a new disconnected chain element representing the specified
166  * bref.  chain->refs is set to 1 and the passed bref is copied to
167  * chain->bref.  chain->bytes is derived from the bref.
168  *
169  * chain->pmp inherits pmp unless the chain is an inode (other than the
170  * super-root inode).
171  *
172  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
173  */
174 hammer2_chain_t *
175 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
176 		    hammer2_blockref_t *bref)
177 {
178 	hammer2_chain_t *chain;
179 	u_int bytes;
180 
181 	/*
182 	 * Special case - radix of 0 indicates a chain that does not
183 	 * need a data reference (context is completely embedded in the
184 	 * bref).
185 	 */
186 	if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
187 		bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
188 	else
189 		bytes = 0;
190 
191 	atomic_add_long(&hammer2_chain_allocs, 1);
192 
193 	/*
194 	 * Construct the appropriate system structure.
195 	 */
196 	switch(bref->type) {
197 	case HAMMER2_BREF_TYPE_DIRENT:
198 	case HAMMER2_BREF_TYPE_INODE:
199 	case HAMMER2_BREF_TYPE_INDIRECT:
200 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
201 	case HAMMER2_BREF_TYPE_DATA:
202 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
203 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
204 		break;
205 	case HAMMER2_BREF_TYPE_VOLUME:
206 	case HAMMER2_BREF_TYPE_FREEMAP:
207 		/*
208 		 * Only hammer2_chain_bulksnap() calls this function with these
209 		 * types.
210 		 */
211 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
212 		break;
213 	default:
214 		chain = NULL;
215 		panic("hammer2_chain_alloc: unrecognized blockref type: %d",
216 		      bref->type);
217 	}
218 
219 	/*
220 	 * Initialize the new chain structure.  pmp must be set to NULL for
221 	 * chains belonging to the super-root topology of a device mount.
222 	 */
223 	if (pmp == hmp->spmp)
224 		chain->pmp = NULL;
225 	else
226 		chain->pmp = pmp;
227 
228 	chain->hmp = hmp;
229 	chain->bref = *bref;
230 	chain->bytes = bytes;
231 	chain->refs = 1;
232 	chain->flags = HAMMER2_CHAIN_ALLOCATED;
233 	lockinit(&chain->diolk, "chdio", 0, 0);
234 
235 	/*
236 	 * Set the PFS boundary flag if this chain represents a PFS root.
237 	 */
238 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
239 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
240 	hammer2_chain_core_init(chain);
241 
242 	return (chain);
243 }
244 
245 /*
246  * Initialize a chain's core structure.  This structure used to be allocated
247  * but is now embedded.
248  *
249  * The core is not locked.  No additional refs on the chain are made.
250  * (trans) must not be NULL if (core) is not NULL.
251  */
252 void
253 hammer2_chain_core_init(hammer2_chain_t *chain)
254 {
255 	/*
256 	 * Fresh core under nchain (no multi-homing of ochain's
257 	 * sub-tree).
258 	 */
259 	RB_INIT(&chain->core.rbtree);	/* live chains */
260 	hammer2_mtx_init(&chain->lock, "h2chain");
261 }
262 
263 /*
264  * Add a reference to a chain element, preventing its destruction.
265  *
266  * (can be called with spinlock held)
267  */
268 void
269 hammer2_chain_ref(hammer2_chain_t *chain)
270 {
271 	if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
272 		/*
273 		 * Just flag that the chain was used and should be recycled
274 		 * on the LRU if it encounters it later.
275 		 */
276 		if (chain->flags & HAMMER2_CHAIN_ONLRU)
277 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
278 
279 #if 0
280 		/*
281 		 * REMOVED - reduces contention, lru_list is more heuristical
282 		 * now.
283 		 *
284 		 * 0->non-zero transition must ensure that chain is removed
285 		 * from the LRU list.
286 		 *
287 		 * NOTE: Already holding lru_spin here so we cannot call
288 		 *	 hammer2_chain_ref() to get it off lru_list, do
289 		 *	 it manually.
290 		 */
291 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
292 			hammer2_pfs_t *pmp = chain->pmp;
293 			hammer2_spin_ex(&pmp->lru_spin);
294 			if (chain->flags & HAMMER2_CHAIN_ONLRU) {
295 				atomic_add_int(&pmp->lru_count, -1);
296 				atomic_clear_int(&chain->flags,
297 						 HAMMER2_CHAIN_ONLRU);
298 				TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
299 			}
300 			hammer2_spin_unex(&pmp->lru_spin);
301 		}
302 #endif
303 	}
304 }
305 
306 /*
307  * Ref a locked chain and force the data to be held across an unlock.
308  * Chain must be currently locked.  The user of the chain who desires
309  * to release the hold must call hammer2_chain_lock_unhold() to relock
310  * and unhold the chain, then unlock normally, or may simply call
311  * hammer2_chain_drop_unhold() (which is safer against deadlocks).
312  */
313 void
314 hammer2_chain_ref_hold(hammer2_chain_t *chain)
315 {
316 	atomic_add_int(&chain->lockcnt, 1);
317 	hammer2_chain_ref(chain);
318 }
319 
320 /*
321  * Insert the chain in the core rbtree.
322  *
323  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
324  * chain is a special case used by the flush code that is placed on the
325  * unstaged deleted list to avoid confusing the live view.
326  */
327 #define HAMMER2_CHAIN_INSERT_SPIN	0x0001
328 #define HAMMER2_CHAIN_INSERT_LIVE	0x0002
329 #define HAMMER2_CHAIN_INSERT_RACE	0x0004
330 
331 static
332 int
333 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
334 		     int flags, int generation)
335 {
336 	hammer2_chain_t *xchain;
337 	int error = 0;
338 
339 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
340 		hammer2_spin_ex(&parent->core.spin);
341 
342 	/*
343 	 * Interlocked by spinlock, check for race
344 	 */
345 	if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
346 	    parent->core.generation != generation) {
347 		error = HAMMER2_ERROR_EAGAIN;
348 		goto failed;
349 	}
350 
351 	/*
352 	 * Insert chain
353 	 */
354 	xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
355 	KASSERT(xchain == NULL,
356 		("hammer2_chain_insert: collision %p %p (key=%016jx)",
357 		chain, xchain, chain->bref.key));
358 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
359 	chain->parent = parent;
360 	++parent->core.chain_count;
361 	++parent->core.generation;	/* XXX incs for _get() too, XXX */
362 
363 	/*
364 	 * We have to keep track of the effective live-view blockref count
365 	 * so the create code knows when to push an indirect block.
366 	 */
367 	if (flags & HAMMER2_CHAIN_INSERT_LIVE)
368 		atomic_add_int(&parent->core.live_count, 1);
369 failed:
370 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
371 		hammer2_spin_unex(&parent->core.spin);
372 	return error;
373 }
374 
375 /*
376  * Drop the caller's reference to the chain.  When the ref count drops to
377  * zero this function will try to disassociate the chain from its parent and
378  * deallocate it, then recursely drop the parent using the implied ref
379  * from the chain's chain->parent.
380  *
381  * Nobody should own chain's mutex on the 1->0 transition, unless this drop
382  * races an acquisition by another cpu.  Therefore we can loop if we are
383  * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
384  * race against another drop.
385  */
386 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
387 				int depth);
388 static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
389 
390 void
391 hammer2_chain_drop(hammer2_chain_t *chain)
392 {
393 	u_int refs;
394 
395 	if (hammer2_debug & 0x200000)
396 		Debugger("drop");
397 
398 	KKASSERT(chain->refs > 0);
399 
400 	while (chain) {
401 		refs = chain->refs;
402 		cpu_ccfence();
403 		KKASSERT(refs > 0);
404 
405 		if (refs == 1) {
406 			if (hammer2_mtx_ex_try(&chain->lock) == 0)
407 				chain = hammer2_chain_lastdrop(chain, 0);
408 			/* retry the same chain, or chain from lastdrop */
409 		} else {
410 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
411 				break;
412 			/* retry the same chain */
413 		}
414 		cpu_pause();
415 	}
416 }
417 
418 /*
419  * Unhold a held and probably not-locked chain, ensure that the data is
420  * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
421  * lock and then simply unlocking the chain.
422  */
423 void
424 hammer2_chain_unhold(hammer2_chain_t *chain)
425 {
426 	u_int lockcnt;
427 	int iter = 0;
428 
429 	for (;;) {
430 		lockcnt = chain->lockcnt;
431 		cpu_ccfence();
432 		if (lockcnt > 1) {
433 			if (atomic_cmpset_int(&chain->lockcnt,
434 					      lockcnt, lockcnt - 1)) {
435 				break;
436 			}
437 		} else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
438 			hammer2_chain_unlock(chain);
439 			break;
440 		} else {
441 			/*
442 			 * This situation can easily occur on SMP due to
443 			 * the gap inbetween the 1->0 transition and the
444 			 * final unlock.  We cannot safely block on the
445 			 * mutex because lockcnt might go above 1.
446 			 *
447 			 * XXX Sleep for one tick if it takes too long.
448 			 */
449 			if (++iter > 1000) {
450 				if (iter > 1000 + hz) {
451 					kprintf("hammer2: h2race1 %p\n", chain);
452 					iter = 1000;
453 				}
454 				tsleep(&iter, 0, "h2race1", 1);
455 			}
456 			cpu_pause();
457 		}
458 	}
459 }
460 
461 void
462 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
463 {
464 	hammer2_chain_unhold(chain);
465 	hammer2_chain_drop(chain);
466 }
467 
468 void
469 hammer2_chain_rehold(hammer2_chain_t *chain)
470 {
471 	hammer2_chain_lock(chain, HAMMER2_RESOLVE_SHARED);
472 	atomic_add_int(&chain->lockcnt, 1);
473 	hammer2_chain_unlock(chain);
474 }
475 
476 /*
477  * Handles the (potential) last drop of chain->refs from 1->0.  Called with
478  * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
479  * possible against refs and lockcnt.  We must dispose of the mutex on chain.
480  *
481  * This function returns an unlocked chain for recursive drop or NULL.  It
482  * can return the same chain if it determines it has raced another ref.
483  *
484  * --
485  *
486  * When two chains need to be recursively dropped we use the chain we
487  * would otherwise free to placehold the additional chain.  It's a bit
488  * convoluted but we can't just recurse without potentially blowing out
489  * the kernel stack.
490  *
491  * The chain cannot be freed if it has any children.
492  * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
493  * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
494  * Any dedup registration can remain intact.
495  *
496  * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
497  */
498 static
499 hammer2_chain_t *
500 hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
501 {
502 	hammer2_pfs_t *pmp;
503 	hammer2_dev_t *hmp;
504 	hammer2_chain_t *parent;
505 	hammer2_chain_t *rdrop;
506 
507 	/*
508 	 * We need chain's spinlock to interlock the sub-tree test.
509 	 * We already have chain's mutex, protecting chain->parent.
510 	 *
511 	 * Remember that chain->refs can be in flux.
512 	 */
513 	hammer2_spin_ex(&chain->core.spin);
514 
515 	if (chain->parent != NULL) {
516 		/*
517 		 * If the chain has a parent the UPDATE bit prevents scrapping
518 		 * as the chain is needed to properly flush the parent.  Try
519 		 * to complete the 1->0 transition and return NULL.  Retry
520 		 * (return chain) if we are unable to complete the 1->0
521 		 * transition, else return NULL (nothing more to do).
522 		 *
523 		 * If the chain has a parent the MODIFIED bit prevents
524 		 * scrapping.
525 		 *
526 		 * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
527 		 */
528 		if (chain->flags & (HAMMER2_CHAIN_UPDATE |
529 				    HAMMER2_CHAIN_MODIFIED)) {
530 			if (atomic_cmpset_int(&chain->refs, 1, 0)) {
531 				hammer2_spin_unex(&chain->core.spin);
532 				hammer2_chain_assert_no_data(chain);
533 				hammer2_mtx_unlock(&chain->lock);
534 				chain = NULL;
535 			} else {
536 				hammer2_spin_unex(&chain->core.spin);
537 				hammer2_mtx_unlock(&chain->lock);
538 			}
539 			return (chain);
540 		}
541 		/* spinlock still held */
542 	} else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
543 		   chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
544 		/*
545 		 * Retain the static vchain and fchain.  Clear bits that
546 		 * are not relevant.  Do not clear the MODIFIED bit,
547 		 * and certainly do not put it on the delayed-flush queue.
548 		 */
549 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
550 	} else {
551 		/*
552 		 * The chain has no parent and can be flagged for destruction.
553 		 * Since it has no parent, UPDATE can also be cleared.
554 		 */
555 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
556 		if (chain->flags & HAMMER2_CHAIN_UPDATE)
557 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
558 
559 		/*
560 		 * If the chain has children we must propagate the DESTROY
561 		 * flag downward and rip the disconnected topology apart.
562 		 * This is accomplished by calling hammer2_flush() on the
563 		 * chain.
564 		 *
565 		 * Any dedup is already handled by the underlying DIO, so
566 		 * we do not have to specifically flush it here.
567 		 */
568 		if (chain->core.chain_count) {
569 			hammer2_spin_unex(&chain->core.spin);
570 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
571 					     HAMMER2_FLUSH_ALL);
572 			hammer2_mtx_unlock(&chain->lock);
573 
574 			return(chain);	/* retry drop */
575 		}
576 
577 		/*
578 		 * Otherwise we can scrap the MODIFIED bit if it is set,
579 		 * and continue along the freeing path.
580 		 *
581 		 * Be sure to clean-out any dedup bits.  Without a parent
582 		 * this chain will no longer be visible to the flush code.
583 		 * Easy check data_off to avoid the volume root.
584 		 */
585 		if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
586 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
587 			atomic_add_long(&hammer2_count_modified_chains, -1);
588 			if (chain->pmp)
589 				hammer2_pfs_memory_wakeup(chain->pmp);
590 		}
591 		/* spinlock still held */
592 	}
593 
594 	/* spinlock still held */
595 
596 	/*
597 	 * If any children exist we must leave the chain intact with refs == 0.
598 	 * They exist because chains are retained below us which have refs or
599 	 * may require flushing.
600 	 *
601 	 * Retry (return chain) if we fail to transition the refs to 0, else
602 	 * return NULL indication nothing more to do.
603 	 *
604 	 * Chains with children are NOT put on the LRU list.
605 	 */
606 	if (chain->core.chain_count) {
607 		if (atomic_cmpset_int(&chain->refs, 1, 0)) {
608 			hammer2_spin_unex(&chain->core.spin);
609 			hammer2_chain_assert_no_data(chain);
610 			hammer2_mtx_unlock(&chain->lock);
611 			chain = NULL;
612 		} else {
613 			hammer2_spin_unex(&chain->core.spin);
614 			hammer2_mtx_unlock(&chain->lock);
615 		}
616 		return (chain);
617 	}
618 	/* spinlock still held */
619 	/* no chains left under us */
620 
621 	/*
622 	 * chain->core has no children left so no accessors can get to our
623 	 * chain from there.  Now we have to lock the parent core to interlock
624 	 * remaining possible accessors that might bump chain's refs before
625 	 * we can safely drop chain's refs with intent to free the chain.
626 	 */
627 	hmp = chain->hmp;
628 	pmp = chain->pmp;	/* can be NULL */
629 	rdrop = NULL;
630 
631 	parent = chain->parent;
632 
633 	/*
634 	 * WARNING! chain's spin lock is still held here, and other spinlocks
635 	 *	    will be acquired and released in the code below.  We
636 	 *	    cannot be making fancy procedure calls!
637 	 */
638 
639 	/*
640 	 * We can cache the chain if it is associated with a pmp
641 	 * and not flagged as being destroyed or requesting a full
642 	 * release.  In this situation the chain is not removed
643 	 * from its parent, i.e. it can still be looked up.
644 	 *
645 	 * We intentionally do not cache DATA chains because these
646 	 * were likely used to load data into the logical buffer cache
647 	 * and will not be accessed again for some time.
648 	 */
649 	if ((chain->flags &
650 	     (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
651 	    chain->pmp &&
652 	    chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
653 		if (parent)
654 			hammer2_spin_ex(&parent->core.spin);
655 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
656 			/*
657 			 * 1->0 transition failed, retry.  Do not drop
658 			 * the chain's data yet!
659 			 */
660 			if (parent)
661 				hammer2_spin_unex(&parent->core.spin);
662 			hammer2_spin_unex(&chain->core.spin);
663 			hammer2_mtx_unlock(&chain->lock);
664 
665 			return(chain);
666 		}
667 
668 		/*
669 		 * Success
670 		 */
671 		hammer2_chain_assert_no_data(chain);
672 
673 		/*
674 		 * Make sure we are on the LRU list, clean up excessive
675 		 * LRU entries.  We can only really drop one but there might
676 		 * be other entries that we can remove from the lru_list
677 		 * without dropping.
678 		 *
679 		 * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
680 		 *	 chain->core.spin AND pmp->lru_spin are held, but
681 		 *	 can be safely cleared only holding pmp->lru_spin.
682 		 */
683 		if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
684 			hammer2_spin_ex(&pmp->lru_spin);
685 			if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
686 				atomic_set_int(&chain->flags,
687 					       HAMMER2_CHAIN_ONLRU);
688 				TAILQ_INSERT_TAIL(&pmp->lru_list,
689 						  chain, lru_node);
690 				atomic_add_int(&pmp->lru_count, 1);
691 			}
692 			if (pmp->lru_count < HAMMER2_LRU_LIMIT)
693 				depth = 1;	/* disable lru_list flush */
694 			hammer2_spin_unex(&pmp->lru_spin);
695 		} else {
696 			/* disable lru flush */
697 			depth = 1;
698 		}
699 
700 		if (parent) {
701 			hammer2_spin_unex(&parent->core.spin);
702 			parent = NULL;	/* safety */
703 		}
704 		hammer2_spin_unex(&chain->core.spin);
705 		hammer2_mtx_unlock(&chain->lock);
706 
707 		/*
708 		 * lru_list hysteresis (see above for depth overrides).
709 		 * Note that depth also prevents excessive lastdrop recursion.
710 		 */
711 		if (depth == 0)
712 			hammer2_chain_lru_flush(pmp);
713 
714 		return NULL;
715 		/* NOT REACHED */
716 	}
717 
718 	/*
719 	 * Make sure we are not on the LRU list.
720 	 */
721 	if (chain->flags & HAMMER2_CHAIN_ONLRU) {
722 		hammer2_spin_ex(&pmp->lru_spin);
723 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
724 			atomic_add_int(&pmp->lru_count, -1);
725 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
726 			TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
727 		}
728 		hammer2_spin_unex(&pmp->lru_spin);
729 	}
730 
731 	/*
732 	 * Spinlock the parent and try to drop the last ref on chain.
733 	 * On success determine if we should dispose of the chain
734 	 * (remove the chain from its parent, etc).
735 	 *
736 	 * (normal core locks are top-down recursive but we define
737 	 * core spinlocks as bottom-up recursive, so this is safe).
738 	 */
739 	if (parent) {
740 		hammer2_spin_ex(&parent->core.spin);
741 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
742 			/*
743 			 * 1->0 transition failed, retry.
744 			 */
745 			hammer2_spin_unex(&parent->core.spin);
746 			hammer2_spin_unex(&chain->core.spin);
747 			hammer2_mtx_unlock(&chain->lock);
748 
749 			return(chain);
750 		}
751 
752 		/*
753 		 * 1->0 transition successful, parent spin held to prevent
754 		 * new lookups, chain spinlock held to protect parent field.
755 		 * Remove chain from the parent.
756 		 *
757 		 * If the chain is being removed from the parent's btree but
758 		 * is not bmapped, we have to adjust live_count downward.  If
759 		 * it is bmapped then the blockref is retained in the parent
760 		 * as is its associated live_count.  This case can occur when
761 		 * a chain added to the topology is unable to flush and is
762 		 * then later deleted.
763 		 */
764 		if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
765 			if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
766 			    (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
767 				atomic_add_int(&parent->core.live_count, -1);
768 			}
769 			RB_REMOVE(hammer2_chain_tree,
770 				  &parent->core.rbtree, chain);
771 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
772 			--parent->core.chain_count;
773 			chain->parent = NULL;
774 		}
775 
776 		/*
777 		 * If our chain was the last chain in the parent's core the
778 		 * core is now empty and its parent might have to be
779 		 * re-dropped if it has 0 refs.
780 		 */
781 		if (parent->core.chain_count == 0) {
782 			rdrop = parent;
783 			atomic_add_int(&rdrop->refs, 1);
784 			/*
785 			if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
786 				rdrop = NULL;
787 			*/
788 		}
789 		hammer2_spin_unex(&parent->core.spin);
790 		parent = NULL;	/* safety */
791 		/* FALL THROUGH */
792 	} else {
793 		/*
794 		 * No-parent case.
795 		 */
796 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
797 			/*
798 			 * 1->0 transition failed, retry.
799 			 */
800 			hammer2_spin_unex(&parent->core.spin);
801 			hammer2_spin_unex(&chain->core.spin);
802 			hammer2_mtx_unlock(&chain->lock);
803 
804 			return(chain);
805 		}
806 	}
807 
808 	/*
809 	 * Successful 1->0 transition, no parent, no children... no way for
810 	 * anyone to ref this chain any more.  We can clean-up and free it.
811 	 *
812 	 * We still have the core spinlock, and core's chain_count is 0.
813 	 * Any parent spinlock is gone.
814 	 */
815 	hammer2_spin_unex(&chain->core.spin);
816 	hammer2_chain_assert_no_data(chain);
817 	hammer2_mtx_unlock(&chain->lock);
818 	KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
819 		 chain->core.chain_count == 0);
820 
821 	/*
822 	 * All locks are gone, no pointers remain to the chain, finish
823 	 * freeing it.
824 	 */
825 	KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
826 				  HAMMER2_CHAIN_MODIFIED)) == 0);
827 
828 	/*
829 	 * Once chain resources are gone we can use the now dead chain
830 	 * structure to placehold what might otherwise require a recursive
831 	 * drop, because we have potentially two things to drop and can only
832 	 * return one directly.
833 	 */
834 	if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
835 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
836 		chain->hmp = NULL;
837 		kfree(chain, hmp->mchain);
838 	}
839 
840 	/*
841 	 * Possible chaining loop when parent re-drop needed.
842 	 */
843 	return(rdrop);
844 }
845 
846 /*
847  * Heuristical flush of the LRU, try to reduce the number of entries
848  * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3).  This procedure is called
849  * only when lru_count exceeds HAMMER2_LRU_LIMIT.
850  */
851 static
852 void
853 hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
854 {
855 	hammer2_chain_t *chain;
856 
857 again:
858 	chain = NULL;
859 	hammer2_spin_ex(&pmp->lru_spin);
860 	while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
861 		/*
862 		 * Pick a chain off the lru_list, just recycle it quickly
863 		 * if LRUHINT is set (the chain was ref'd but left on
864 		 * the lru_list, so cycle to the end).
865 		 */
866 		chain = TAILQ_FIRST(&pmp->lru_list);
867 		TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
868 
869 		if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
870 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
871 			TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
872 			chain = NULL;
873 			continue;
874 		}
875 
876 		/*
877 		 * Ok, we are off the LRU.  We must adjust refs before we
878 		 * can safely clear the ONLRU flag.
879 		 */
880 		atomic_add_int(&pmp->lru_count, -1);
881 		if (atomic_cmpset_int(&chain->refs, 0, 1)) {
882 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
883 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
884 			break;
885 		}
886 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
887 		chain = NULL;
888 	}
889 	hammer2_spin_unex(&pmp->lru_spin);
890 	if (chain == NULL)
891 		return;
892 
893 	/*
894 	 * If we picked a chain off the lru list we may be able to lastdrop
895 	 * it.  Use a depth of 1 to prevent excessive lastdrop recursion.
896 	 */
897 	while (chain) {
898 		u_int refs;
899 
900 		refs = chain->refs;
901 		cpu_ccfence();
902 		KKASSERT(refs > 0);
903 
904 		if (refs == 1) {
905 			if (hammer2_mtx_ex_try(&chain->lock) == 0)
906 				chain = hammer2_chain_lastdrop(chain, 1);
907 			/* retry the same chain, or chain from lastdrop */
908 		} else {
909 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
910 				break;
911 			/* retry the same chain */
912 		}
913 		cpu_pause();
914 	}
915 	goto again;
916 }
917 
918 /*
919  * On last lock release.
920  */
921 static hammer2_io_t *
922 hammer2_chain_drop_data(hammer2_chain_t *chain)
923 {
924 	hammer2_io_t *dio;
925 
926 	if ((dio = chain->dio) != NULL) {
927 		chain->dio = NULL;
928 		chain->data = NULL;
929 	} else {
930 		switch(chain->bref.type) {
931 		case HAMMER2_BREF_TYPE_VOLUME:
932 		case HAMMER2_BREF_TYPE_FREEMAP:
933 			break;
934 		default:
935 			if (chain->data != NULL) {
936 				hammer2_spin_unex(&chain->core.spin);
937 				panic("chain data not null: "
938 				      "chain %p bref %016jx.%02x "
939 				      "refs %d parent %p dio %p data %p",
940 				      chain, chain->bref.data_off,
941 				      chain->bref.type, chain->refs,
942 				      chain->parent,
943 				      chain->dio, chain->data);
944 			}
945 			KKASSERT(chain->data == NULL);
946 			break;
947 		}
948 	}
949 	return dio;
950 }
951 
952 /*
953  * Lock a referenced chain element, acquiring its data with I/O if necessary,
954  * and specify how you would like the data to be resolved.
955  *
956  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
957  *
958  * The lock is allowed to recurse, multiple locking ops will aggregate
959  * the requested resolve types.  Once data is assigned it will not be
960  * removed until the last unlock.
961  *
962  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
963  *			   (typically used to avoid device/logical buffer
964  *			    aliasing for data)
965  *
966  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
967  *			   the INITIAL-create state (indirect blocks only).
968  *
969  *			   Do not resolve data elements for DATA chains.
970  *			   (typically used to avoid device/logical buffer
971  *			    aliasing for data)
972  *
973  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
974  *
975  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
976  *			   it will be locked exclusive.
977  *
978  * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking.  If
979  *			   the lock fails, EAGAIN is returned.
980  *
981  * NOTE: Embedded elements (volume header, inodes) are always resolved
982  *	 regardless.
983  *
984  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
985  *	 element will instantiate and zero its buffer, and flush it on
986  *	 release.
987  *
988  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
989  *	 so as not to instantiate a device buffer, which could alias against
990  *	 a logical file buffer.  However, if ALWAYS is specified the
991  *	 device buffer will be instantiated anyway.
992  *
993  * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
994  *	 case it can be either 0 or EAGAIN.
995  *
996  * WARNING! This function blocks on I/O if data needs to be fetched.  This
997  *	    blocking can run concurrent with other compatible lock holders
998  *	    who do not need data returning.  The lock is not upgraded to
999  *	    exclusive during a data fetch, a separate bit is used to
1000  *	    interlock I/O.  However, an exclusive lock holder can still count
1001  *	    on being interlocked against an I/O fetch managed by a shared
1002  *	    lock holder.
1003  */
1004 int
1005 hammer2_chain_lock(hammer2_chain_t *chain, int how)
1006 {
1007 	KKASSERT(chain->refs > 0);
1008 
1009 	if (how & HAMMER2_RESOLVE_NONBLOCK) {
1010 		/*
1011 		 * We still have to bump lockcnt before acquiring the lock,
1012 		 * even for non-blocking operation, because the unlock code
1013 		 * live-loops on lockcnt == 1 when dropping the last lock.
1014 		 *
1015 		 * If the non-blocking operation fails we have to use an
1016 		 * unhold sequence to undo the mess.
1017 		 *
1018 		 * NOTE: LOCKAGAIN must always succeed without blocking,
1019 		 *	 even if NONBLOCK is specified.
1020 		 */
1021 		atomic_add_int(&chain->lockcnt, 1);
1022 		if (how & HAMMER2_RESOLVE_SHARED) {
1023 			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1024 				hammer2_mtx_sh_again(&chain->lock);
1025 			} else {
1026 				if (hammer2_mtx_sh_try(&chain->lock) != 0) {
1027 					hammer2_chain_unhold(chain);
1028 					return EAGAIN;
1029 				}
1030 			}
1031 		} else {
1032 			if (hammer2_mtx_ex_try(&chain->lock) != 0) {
1033 				hammer2_chain_unhold(chain);
1034 				return EAGAIN;
1035 			}
1036 		}
1037 		++curthread->td_tracker;
1038 	} else {
1039 		/*
1040 		 * Get the appropriate lock.  If LOCKAGAIN is flagged with
1041 		 * SHARED the caller expects a shared lock to already be
1042 		 * present and we are giving it another ref.  This case must
1043 		 * importantly not block if there is a pending exclusive lock
1044 		 * request.
1045 		 */
1046 		atomic_add_int(&chain->lockcnt, 1);
1047 		if (how & HAMMER2_RESOLVE_SHARED) {
1048 			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1049 				hammer2_mtx_sh_again(&chain->lock);
1050 			} else {
1051 				hammer2_mtx_sh(&chain->lock);
1052 			}
1053 		} else {
1054 			hammer2_mtx_ex(&chain->lock);
1055 		}
1056 		++curthread->td_tracker;
1057 	}
1058 
1059 	/*
1060 	 * If we already have a valid data pointer make sure the data is
1061 	 * synchronized to the current cpu, and then no further action is
1062 	 * necessary.
1063 	 */
1064 	if (chain->data) {
1065 		if (chain->dio)
1066 			hammer2_io_bkvasync(chain->dio);
1067 		return 0;
1068 	}
1069 
1070 	/*
1071 	 * Do we have to resolve the data?  This is generally only
1072 	 * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1073 	 * Other BREF types expects the data to be there.
1074 	 */
1075 	switch(how & HAMMER2_RESOLVE_MASK) {
1076 	case HAMMER2_RESOLVE_NEVER:
1077 		return 0;
1078 	case HAMMER2_RESOLVE_MAYBE:
1079 		if (chain->flags & HAMMER2_CHAIN_INITIAL)
1080 			return 0;
1081 		if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1082 			return 0;
1083 #if 0
1084 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1085 			return 0;
1086 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1087 			return 0;
1088 #endif
1089 		/* fall through */
1090 	case HAMMER2_RESOLVE_ALWAYS:
1091 	default:
1092 		break;
1093 	}
1094 
1095 	/*
1096 	 * Caller requires data
1097 	 */
1098 	hammer2_chain_load_data(chain);
1099 
1100 	return 0;
1101 }
1102 
1103 /*
1104  * Lock the chain, retain the hold, and drop the data persistence count.
1105  * The data should remain valid because we never transitioned lockcnt
1106  * through 0.
1107  */
1108 void
1109 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1110 {
1111 	hammer2_chain_lock(chain, how);
1112 	atomic_add_int(&chain->lockcnt, -1);
1113 }
1114 
1115 #if 0
1116 /*
1117  * Downgrade an exclusive chain lock to a shared chain lock.
1118  *
1119  * NOTE: There is no upgrade equivalent due to the ease of
1120  *	 deadlocks in that direction.
1121  */
1122 void
1123 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1124 {
1125 	hammer2_mtx_downgrade(&chain->lock);
1126 }
1127 #endif
1128 
1129 /*
1130  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1131  * may be of any type.
1132  *
1133  * Once chain->data is set it cannot be disposed of until all locks are
1134  * released.
1135  *
1136  * Make sure the data is synchronized to the current cpu.
1137  */
1138 void
1139 hammer2_chain_load_data(hammer2_chain_t *chain)
1140 {
1141 	hammer2_blockref_t *bref;
1142 	hammer2_dev_t *hmp;
1143 	hammer2_io_t *dio;
1144 	char *bdata;
1145 	int error;
1146 
1147 	/*
1148 	 * Degenerate case, data already present, or chain has no media
1149 	 * reference to load.
1150 	 */
1151 	KKASSERT(chain->lock.mtx_lock & MTX_MASK);
1152 	if (chain->data) {
1153 		if (chain->dio)
1154 			hammer2_io_bkvasync(chain->dio);
1155 		return;
1156 	}
1157 	if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1158 		return;
1159 
1160 	hmp = chain->hmp;
1161 	KKASSERT(hmp != NULL);
1162 
1163 	/*
1164 	 * Gain the IOINPROG bit, interlocked block.
1165 	 */
1166 	for (;;) {
1167 		u_int oflags;
1168 		u_int nflags;
1169 
1170 		oflags = chain->flags;
1171 		cpu_ccfence();
1172 		if (oflags & HAMMER2_CHAIN_IOINPROG) {
1173 			nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1174 			tsleep_interlock(&chain->flags, 0);
1175 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1176 				tsleep(&chain->flags, PINTERLOCKED,
1177 					"h2iocw", 0);
1178 			}
1179 			/* retry */
1180 		} else {
1181 			nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1182 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1183 				break;
1184 			}
1185 			/* retry */
1186 		}
1187 	}
1188 
1189 	/*
1190 	 * We own CHAIN_IOINPROG
1191 	 *
1192 	 * Degenerate case if we raced another load.
1193 	 */
1194 	if (chain->data) {
1195 		if (chain->dio)
1196 			hammer2_io_bkvasync(chain->dio);
1197 		goto done;
1198 	}
1199 
1200 	/*
1201 	 * We must resolve to a device buffer, either by issuing I/O or
1202 	 * by creating a zero-fill element.  We do not mark the buffer
1203 	 * dirty when creating a zero-fill element (the hammer2_chain_modify()
1204 	 * API must still be used to do that).
1205 	 *
1206 	 * The device buffer is variable-sized in powers of 2 down
1207 	 * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1208 	 * chunk always contains buffers of the same size. (XXX)
1209 	 *
1210 	 * The minimum physical IO size may be larger than the variable
1211 	 * block size.
1212 	 */
1213 	bref = &chain->bref;
1214 
1215 	/*
1216 	 * The getblk() optimization can only be used on newly created
1217 	 * elements if the physical block size matches the request.
1218 	 */
1219 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1220 		error = hammer2_io_new(hmp, bref->type,
1221 				       bref->data_off, chain->bytes,
1222 				       &chain->dio);
1223 	} else {
1224 		error = hammer2_io_bread(hmp, bref->type,
1225 					 bref->data_off, chain->bytes,
1226 					 &chain->dio);
1227 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
1228 	}
1229 	if (error) {
1230 		chain->error = HAMMER2_ERROR_EIO;
1231 		kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
1232 			(intmax_t)bref->data_off, error);
1233 		hammer2_io_bqrelse(&chain->dio);
1234 		goto done;
1235 	}
1236 	chain->error = 0;
1237 
1238 	/*
1239 	 * This isn't perfect and can be ignored on OSs which do not have
1240 	 * an indication as to whether a buffer is coming from cache or
1241 	 * if I/O was actually issued for the read.  TESTEDGOOD will work
1242 	 * pretty well without the B_IOISSUED logic because chains are
1243 	 * cached, but in that situation (without B_IOISSUED) it will not
1244 	 * detect whether a re-read via I/O is corrupted verses the original
1245 	 * read.
1246 	 *
1247 	 * We can't re-run the CRC on every fresh lock.  That would be
1248 	 * insanely expensive.
1249 	 *
1250 	 * If the underlying kernel buffer covers the entire chain we can
1251 	 * use the B_IOISSUED indication to determine if we have to re-run
1252 	 * the CRC on chain data for chains that managed to stay cached
1253 	 * across the kernel disposal of the original buffer.
1254 	 */
1255 	if ((dio = chain->dio) != NULL && dio->bp) {
1256 		struct buf *bp = dio->bp;
1257 
1258 		if (dio->psize == chain->bytes &&
1259 		    (bp->b_flags & B_IOISSUED)) {
1260 			atomic_clear_int(&chain->flags,
1261 					 HAMMER2_CHAIN_TESTEDGOOD);
1262 			bp->b_flags &= ~B_IOISSUED;
1263 		}
1264 	}
1265 
1266 	/*
1267 	 * NOTE: A locked chain's data cannot be modified without first
1268 	 *	 calling hammer2_chain_modify().
1269 	 */
1270 
1271 	/*
1272 	 * Clear INITIAL.  In this case we used io_new() and the buffer has
1273 	 * been zero'd and marked dirty.
1274 	 *
1275 	 * NOTE: hammer2_io_data() call issues bkvasync()
1276 	 */
1277 	bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1278 
1279 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1280 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1281 		chain->bref.flags |= HAMMER2_BREF_FLAG_ZERO;
1282 	} else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1283 		/*
1284 		 * check data not currently synchronized due to
1285 		 * modification.  XXX assumes data stays in the buffer
1286 		 * cache, which might not be true (need biodep on flush
1287 		 * to calculate crc?  or simple crc?).
1288 		 */
1289 	} else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1290 		if (hammer2_chain_testcheck(chain, bdata) == 0) {
1291 			chain->error = HAMMER2_ERROR_CHECK;
1292 		} else {
1293 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1294 		}
1295 	}
1296 
1297 	/*
1298 	 * Setup the data pointer, either pointing it to an embedded data
1299 	 * structure and copying the data from the buffer, or pointing it
1300 	 * into the buffer.
1301 	 *
1302 	 * The buffer is not retained when copying to an embedded data
1303 	 * structure in order to avoid potential deadlocks or recursions
1304 	 * on the same physical buffer.
1305 	 *
1306 	 * WARNING! Other threads can start using the data the instant we
1307 	 *	    set chain->data non-NULL.
1308 	 */
1309 	switch (bref->type) {
1310 	case HAMMER2_BREF_TYPE_VOLUME:
1311 	case HAMMER2_BREF_TYPE_FREEMAP:
1312 		/*
1313 		 * Copy data from bp to embedded buffer
1314 		 */
1315 		panic("hammer2_chain_load_data: unresolved volume header");
1316 		break;
1317 	case HAMMER2_BREF_TYPE_DIRENT:
1318 		KKASSERT(chain->bytes != 0);
1319 		/* fall through */
1320 	case HAMMER2_BREF_TYPE_INODE:
1321 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1322 	case HAMMER2_BREF_TYPE_INDIRECT:
1323 	case HAMMER2_BREF_TYPE_DATA:
1324 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1325 	default:
1326 		/*
1327 		 * Point data at the device buffer and leave dio intact.
1328 		 */
1329 		chain->data = (void *)bdata;
1330 		break;
1331 	}
1332 
1333 	/*
1334 	 * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1335 	 */
1336 done:
1337 	for (;;) {
1338 		u_int oflags;
1339 		u_int nflags;
1340 
1341 		oflags = chain->flags;
1342 		nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1343 				    HAMMER2_CHAIN_IOSIGNAL);
1344 		KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1345 		if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1346 			if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1347 				wakeup(&chain->flags);
1348 			break;
1349 		}
1350 	}
1351 }
1352 
1353 /*
1354  * Unlock and deref a chain element.
1355  *
1356  * Remember that the presence of children under chain prevent the chain's
1357  * destruction but do not add additional references, so the dio will still
1358  * be dropped.
1359  */
1360 void
1361 hammer2_chain_unlock(hammer2_chain_t *chain)
1362 {
1363 	hammer2_io_t *dio;
1364 	u_int lockcnt;
1365 	int iter = 0;
1366 
1367 	--curthread->td_tracker;
1368 
1369 	/*
1370 	 * If multiple locks are present (or being attempted) on this
1371 	 * particular chain we can just unlock, drop refs, and return.
1372 	 *
1373 	 * Otherwise fall-through on the 1->0 transition.
1374 	 */
1375 	for (;;) {
1376 		lockcnt = chain->lockcnt;
1377 		KKASSERT(lockcnt > 0);
1378 		cpu_ccfence();
1379 		if (lockcnt > 1) {
1380 			if (atomic_cmpset_int(&chain->lockcnt,
1381 					      lockcnt, lockcnt - 1)) {
1382 				hammer2_mtx_unlock(&chain->lock);
1383 				return;
1384 			}
1385 		} else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1386 			/* while holding the mutex exclusively */
1387 			if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1388 				break;
1389 		} else {
1390 			/*
1391 			 * This situation can easily occur on SMP due to
1392 			 * the gap inbetween the 1->0 transition and the
1393 			 * final unlock.  We cannot safely block on the
1394 			 * mutex because lockcnt might go above 1.
1395 			 *
1396 			 * XXX Sleep for one tick if it takes too long.
1397 			 */
1398 			if (++iter > 1000) {
1399 				if (iter > 1000 + hz) {
1400 					kprintf("hammer2: h2race2 %p\n", chain);
1401 					iter = 1000;
1402 				}
1403 				tsleep(&iter, 0, "h2race2", 1);
1404 			}
1405 			cpu_pause();
1406 		}
1407 		/* retry */
1408 	}
1409 
1410 	/*
1411 	 * Last unlock / mutex upgraded to exclusive.  Drop the data
1412 	 * reference.
1413 	 */
1414 	dio = hammer2_chain_drop_data(chain);
1415 	if (dio)
1416 		hammer2_io_bqrelse(&dio);
1417 	hammer2_mtx_unlock(&chain->lock);
1418 }
1419 
1420 /*
1421  * Unlock and hold chain data intact
1422  */
1423 void
1424 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1425 {
1426 	atomic_add_int(&chain->lockcnt, 1);
1427 	hammer2_chain_unlock(chain);
1428 }
1429 
1430 /*
1431  * Helper to obtain the blockref[] array base and count for a chain.
1432  *
1433  * XXX Not widely used yet, various use cases need to be validated and
1434  *     converted to use this function.
1435  */
1436 static
1437 hammer2_blockref_t *
1438 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1439 {
1440 	hammer2_blockref_t *base;
1441 	int count;
1442 
1443 	if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1444 		base = NULL;
1445 
1446 		switch(parent->bref.type) {
1447 		case HAMMER2_BREF_TYPE_INODE:
1448 			count = HAMMER2_SET_COUNT;
1449 			break;
1450 		case HAMMER2_BREF_TYPE_INDIRECT:
1451 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1452 			count = parent->bytes / sizeof(hammer2_blockref_t);
1453 			break;
1454 		case HAMMER2_BREF_TYPE_VOLUME:
1455 			count = HAMMER2_SET_COUNT;
1456 			break;
1457 		case HAMMER2_BREF_TYPE_FREEMAP:
1458 			count = HAMMER2_SET_COUNT;
1459 			break;
1460 		default:
1461 			panic("hammer2_chain_base_and_count: "
1462 			      "unrecognized blockref type: %d",
1463 			      parent->bref.type);
1464 			count = 0;
1465 			break;
1466 		}
1467 	} else {
1468 		switch(parent->bref.type) {
1469 		case HAMMER2_BREF_TYPE_INODE:
1470 			base = &parent->data->ipdata.u.blockset.blockref[0];
1471 			count = HAMMER2_SET_COUNT;
1472 			break;
1473 		case HAMMER2_BREF_TYPE_INDIRECT:
1474 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1475 			base = &parent->data->npdata[0];
1476 			count = parent->bytes / sizeof(hammer2_blockref_t);
1477 			break;
1478 		case HAMMER2_BREF_TYPE_VOLUME:
1479 			base = &parent->data->voldata.
1480 					sroot_blockset.blockref[0];
1481 			count = HAMMER2_SET_COUNT;
1482 			break;
1483 		case HAMMER2_BREF_TYPE_FREEMAP:
1484 			base = &parent->data->blkset.blockref[0];
1485 			count = HAMMER2_SET_COUNT;
1486 			break;
1487 		default:
1488 			panic("hammer2_chain_base_and_count: "
1489 			      "unrecognized blockref type: %d",
1490 			      parent->bref.type);
1491 			count = 0;
1492 			break;
1493 		}
1494 	}
1495 	*countp = count;
1496 
1497 	return base;
1498 }
1499 
1500 /*
1501  * This counts the number of live blockrefs in a block array and
1502  * also calculates the point at which all remaining blockrefs are empty.
1503  * This routine can only be called on a live chain.
1504  *
1505  * Caller holds the chain locked, but possibly with a shared lock.  We
1506  * must use an exclusive spinlock to prevent corruption.
1507  *
1508  * NOTE: Flag is not set until after the count is complete, allowing
1509  *	 callers to test the flag without holding the spinlock.
1510  *
1511  * NOTE: If base is NULL the related chain is still in the INITIAL
1512  *	 state and there are no blockrefs to count.
1513  *
1514  * NOTE: live_count may already have some counts accumulated due to
1515  *	 creation and deletion and could even be initially negative.
1516  */
1517 void
1518 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1519 			 hammer2_blockref_t *base, int count)
1520 {
1521 	hammer2_spin_ex(&chain->core.spin);
1522         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1523 		if (base) {
1524 			while (--count >= 0) {
1525 				if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1526 					break;
1527 			}
1528 			chain->core.live_zero = count + 1;
1529 			while (count >= 0) {
1530 				if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1531 					atomic_add_int(&chain->core.live_count,
1532 						       1);
1533 				--count;
1534 			}
1535 		} else {
1536 			chain->core.live_zero = 0;
1537 		}
1538 		/* else do not modify live_count */
1539 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1540 	}
1541 	hammer2_spin_unex(&chain->core.spin);
1542 }
1543 
1544 /*
1545  * Resize the chain's physical storage allocation in-place.  This function does
1546  * not usually adjust the data pointer and must be followed by (typically) a
1547  * hammer2_chain_modify() call to copy any old data over and adjust the
1548  * data pointer.
1549  *
1550  * Chains can be resized smaller without reallocating the storage.  Resizing
1551  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1552  * asynchronously at a later time.
1553  *
1554  * An nradix value of 0 is special-cased to mean that the storage should
1555  * be disassociated, that is the chain is being resized to 0 bytes (not 1
1556  * byte).
1557  *
1558  * Must be passed an exclusively locked parent and chain.
1559  *
1560  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1561  * to avoid instantiating a device buffer that conflicts with the vnode data
1562  * buffer.  However, because H2 can compress or encrypt data, the chain may
1563  * have a dio assigned to it in those situations, and they do not conflict.
1564  *
1565  * XXX return error if cannot resize.
1566  */
1567 int
1568 hammer2_chain_resize(hammer2_chain_t *chain,
1569 		     hammer2_tid_t mtid, hammer2_off_t dedup_off,
1570 		     int nradix, int flags)
1571 {
1572 	hammer2_dev_t *hmp;
1573 	size_t obytes;
1574 	size_t nbytes;
1575 	int error;
1576 
1577 	hmp = chain->hmp;
1578 
1579 	/*
1580 	 * Only data and indirect blocks can be resized for now.
1581 	 * (The volu root, inodes, and freemap elements use a fixed size).
1582 	 */
1583 	KKASSERT(chain != &hmp->vchain);
1584 	KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1585 		 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1586 		 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1587 
1588 	/*
1589 	 * Nothing to do if the element is already the proper size
1590 	 */
1591 	obytes = chain->bytes;
1592 	nbytes = (nradix) ? (1U << nradix) : 0;
1593 	if (obytes == nbytes)
1594 		return (chain->error);
1595 
1596 	/*
1597 	 * Make sure the old data is instantiated so we can copy it.  If this
1598 	 * is a data block, the device data may be superfluous since the data
1599 	 * might be in a logical block, but compressed or encrypted data is
1600 	 * another matter.
1601 	 *
1602 	 * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1603 	 */
1604 	error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1605 	if (error)
1606 		return error;
1607 
1608 	/*
1609 	 * Relocate the block, even if making it smaller (because different
1610 	 * block sizes may be in different regions).
1611 	 *
1612 	 * NOTE: Operation does not copy the data and may only be used
1613 	 *	  to resize data blocks in-place, or directory entry blocks
1614 	 *	  which are about to be modified in some manner.
1615 	 */
1616 	error = hammer2_freemap_alloc(chain, nbytes);
1617 	if (error)
1618 		return error;
1619 
1620 	chain->bytes = nbytes;
1621 
1622 	/*
1623 	 * We don't want the followup chain_modify() to try to copy data
1624 	 * from the old (wrong-sized) buffer.  It won't know how much to
1625 	 * copy.  This case should only occur during writes when the
1626 	 * originator already has the data to write in-hand.
1627 	 */
1628 	if (chain->dio) {
1629 		KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1630 			 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1631 		hammer2_io_brelse(&chain->dio);
1632 		chain->data = NULL;
1633 	}
1634 	return (chain->error);
1635 }
1636 
1637 /*
1638  * Set the chain modified so its data can be changed by the caller, or
1639  * install deduplicated data.  The caller must call this routine for each
1640  * set of modifications it makes, even if the chain is already flagged
1641  * MODIFIED.
1642  *
1643  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1644  * is a CLC (cluster level change) field and is not updated by parent
1645  * propagation during a flush.
1646  *
1647  * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1648  * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1649  * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1650  * remains unmodified with its old data ref intact and chain->error
1651  * unchanged.
1652  *
1653  *				 Dedup Handling
1654  *
1655  * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1656  * even if the chain is still flagged MODIFIED.  In this case the chain's
1657  * DEDUPABLE flag will be cleared once the new storage has been assigned.
1658  *
1659  * If the caller passes a non-zero dedup_off we will use it to assign the
1660  * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1661  * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1662  * must not modify the data content upon return.
1663  */
1664 int
1665 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1666 		     hammer2_off_t dedup_off, int flags)
1667 {
1668 	hammer2_blockref_t obref;
1669 	hammer2_dev_t *hmp;
1670 	hammer2_io_t *dio;
1671 	int error;
1672 	int wasinitial;
1673 	int setmodified;
1674 	int setupdate;
1675 	int newmod;
1676 	char *bdata;
1677 
1678 	hmp = chain->hmp;
1679 	obref = chain->bref;
1680 	KKASSERT((chain->flags & HAMMER2_CHAIN_FICTITIOUS) == 0);
1681 	KKASSERT(chain->lock.mtx_lock & MTX_EXCLUSIVE);
1682 
1683 	/*
1684 	 * Data is not optional for freemap chains (we must always be sure
1685 	 * to copy the data on COW storage allocations).
1686 	 */
1687 	if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1688 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1689 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1690 			 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1691 	}
1692 
1693 	/*
1694 	 * Data must be resolved if already assigned, unless explicitly
1695 	 * flagged otherwise.  If we cannot safety load the data the
1696 	 * modification fails and we return early.
1697 	 */
1698 	if (chain->data == NULL && chain->bytes != 0 &&
1699 	    (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1700 	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1701 		hammer2_chain_load_data(chain);
1702 		if (chain->error)
1703 			return (chain->error);
1704 	}
1705 	error = 0;
1706 
1707 	/*
1708 	 * Set MODIFIED to indicate that the chain has been modified.  A new
1709 	 * allocation is required when modifying a chain.
1710 	 *
1711 	 * Set UPDATE to ensure that the blockref is updated in the parent.
1712 	 *
1713 	 * If MODIFIED is already set determine if we can reuse the assigned
1714 	 * data block or if we need a new data block.
1715 	 */
1716 	if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1717 		/*
1718 		 * Must set modified bit.
1719 		 */
1720 		atomic_add_long(&hammer2_count_modified_chains, 1);
1721 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1722 		hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1723 		setmodified = 1;
1724 
1725 		/*
1726 		 * We may be able to avoid a copy-on-write if the chain's
1727 		 * check mode is set to NONE and the chain's current
1728 		 * modify_tid is beyond the last explicit snapshot tid.
1729 		 *
1730 		 * This implements HAMMER2's overwrite-in-place feature.
1731 		 *
1732 		 * NOTE! This data-block cannot be used as a de-duplication
1733 		 *	 source when the check mode is set to NONE.
1734 		 */
1735 		if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1736 		     chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1737 		    (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1738 		    (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1739 		    HAMMER2_DEC_CHECK(chain->bref.methods) ==
1740 		     HAMMER2_CHECK_NONE &&
1741 		    chain->pmp &&
1742 		    chain->bref.modify_tid >
1743 		     chain->pmp->iroot->meta.pfs_lsnap_tid) {
1744 			/*
1745 			 * Sector overwrite allowed.
1746 			 */
1747 			newmod = 0;
1748 		} else {
1749 			/*
1750 			 * Sector overwrite not allowed, must copy-on-write.
1751 			 */
1752 			newmod = 1;
1753 		}
1754 	} else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1755 		/*
1756 		 * If the modified chain was registered for dedup we need
1757 		 * a new allocation.  This only happens for delayed-flush
1758 		 * chains (i.e. which run through the front-end buffer
1759 		 * cache).
1760 		 */
1761 		newmod = 1;
1762 		setmodified = 0;
1763 	} else {
1764 		/*
1765 		 * Already flagged modified, no new allocation is needed.
1766 		 */
1767 		newmod = 0;
1768 		setmodified = 0;
1769 	}
1770 
1771 	/*
1772 	 * Flag parent update required.
1773 	 */
1774 	if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1775 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1776 		setupdate = 1;
1777 	} else {
1778 		setupdate = 0;
1779 	}
1780 
1781 	/*
1782 	 * The XOP code returns held but unlocked focus chains.  This
1783 	 * prevents the chain from being destroyed but does not prevent
1784 	 * it from being modified.  diolk is used to interlock modifications
1785 	 * against XOP frontend accesses to the focus.
1786 	 *
1787 	 * This allows us to theoretically avoid deadlocking the frontend
1788 	 * if one of the backends lock up by not formally locking the
1789 	 * focused chain in the frontend.  In addition, the synchronization
1790 	 * code relies on this mechanism to avoid deadlocking concurrent
1791 	 * synchronization threads.
1792 	 */
1793 	lockmgr(&chain->diolk, LK_EXCLUSIVE);
1794 
1795 	/*
1796 	 * The modification or re-modification requires an allocation and
1797 	 * possible COW.  If an error occurs, the previous content and data
1798 	 * reference is retained and the modification fails.
1799 	 *
1800 	 * If dedup_off is non-zero, the caller is requesting a deduplication
1801 	 * rather than a modification.  The MODIFIED bit is not set and the
1802 	 * data offset is set to the deduplication offset.  The data cannot
1803 	 * be modified.
1804 	 *
1805 	 * NOTE: The dedup offset is allowed to be in a partially free state
1806 	 *	 and we must be sure to reset it to a fully allocated state
1807 	 *	 to force two bulkfree passes to free it again.
1808 	 *
1809 	 * NOTE: Only applicable when chain->bytes != 0.
1810 	 *
1811 	 * XXX can a chain already be marked MODIFIED without a data
1812 	 * assignment?  If not, assert here instead of testing the case.
1813 	 */
1814 	if (chain != &hmp->vchain && chain != &hmp->fchain &&
1815 	    chain->bytes) {
1816 		if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1817 		     newmod
1818 		) {
1819 			/*
1820 			 * NOTE: We do not have to remove the dedup
1821 			 *	 registration because the area is still
1822 			 *	 allocated and the underlying DIO will
1823 			 *	 still be flushed.
1824 			 */
1825 			if (dedup_off) {
1826 				chain->bref.data_off = dedup_off;
1827 				chain->bytes = 1 << (dedup_off &
1828 						     HAMMER2_OFF_MASK_RADIX);
1829 				chain->error = 0;
1830 				atomic_clear_int(&chain->flags,
1831 						 HAMMER2_CHAIN_MODIFIED);
1832 				atomic_add_long(&hammer2_count_modified_chains,
1833 						-1);
1834 				if (chain->pmp)
1835 					hammer2_pfs_memory_wakeup(chain->pmp);
1836 				hammer2_freemap_adjust(hmp, &chain->bref,
1837 						HAMMER2_FREEMAP_DORECOVER);
1838 				atomic_set_int(&chain->flags,
1839 						HAMMER2_CHAIN_DEDUPABLE);
1840 			} else {
1841 				error = hammer2_freemap_alloc(chain,
1842 							      chain->bytes);
1843 				atomic_clear_int(&chain->flags,
1844 						HAMMER2_CHAIN_DEDUPABLE);
1845 			}
1846 		}
1847 	}
1848 
1849 	/*
1850 	 * Stop here if error.  We have to undo any flag bits we might
1851 	 * have set above.
1852 	 */
1853 	if (error) {
1854 		if (setmodified) {
1855 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1856 			atomic_add_long(&hammer2_count_modified_chains, -1);
1857 			if (chain->pmp)
1858 				hammer2_pfs_memory_wakeup(chain->pmp);
1859 		}
1860 		if (setupdate) {
1861 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1862 		}
1863 		lockmgr(&chain->diolk, LK_RELEASE);
1864 
1865 		return error;
1866 	}
1867 
1868 	/*
1869 	 * Update mirror_tid and modify_tid.  modify_tid is only updated
1870 	 * if not passed as zero (during flushes, parent propagation passes
1871 	 * the value 0).
1872 	 *
1873 	 * NOTE: chain->pmp could be the device spmp.
1874 	 */
1875 	chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1876 	if (mtid)
1877 		chain->bref.modify_tid = mtid;
1878 
1879 	/*
1880 	 * Set BMAPUPD to tell the flush code that an existing blockmap entry
1881 	 * requires updating as well as to tell the delete code that the
1882 	 * chain's blockref might not exactly match (in terms of physical size
1883 	 * or block offset) the one in the parent's blocktable.  The base key
1884 	 * of course will still match.
1885 	 */
1886 	if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1887 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1888 
1889 	/*
1890 	 * Short-cut data blocks which the caller does not need an actual
1891 	 * data reference to (aka OPTDATA), as long as the chain does not
1892 	 * already have a data pointer to the data.  This generally means
1893 	 * that the modifications are being done via the logical buffer cache.
1894 	 * The INITIAL flag relates only to the device data buffer and thus
1895 	 * remains unchange in this situation.
1896 	 *
1897 	 * This code also handles bytes == 0 (most dirents).
1898 	 */
1899 	if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1900 	    (flags & HAMMER2_MODIFY_OPTDATA) &&
1901 	    chain->data == NULL) {
1902 		KKASSERT(chain->dio == NULL);
1903 		goto skip2;
1904 	}
1905 
1906 	/*
1907 	 * Clearing the INITIAL flag (for indirect blocks) indicates that
1908 	 * we've processed the uninitialized storage allocation.
1909 	 *
1910 	 * If this flag is already clear we are likely in a copy-on-write
1911 	 * situation but we have to be sure NOT to bzero the storage if
1912 	 * no data is present.
1913 	 */
1914 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1915 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1916 		wasinitial = 1;
1917 	} else {
1918 		wasinitial = 0;
1919 	}
1920 
1921 	/*
1922 	 * Instantiate data buffer and possibly execute COW operation
1923 	 */
1924 	switch(chain->bref.type) {
1925 	case HAMMER2_BREF_TYPE_VOLUME:
1926 	case HAMMER2_BREF_TYPE_FREEMAP:
1927 		/*
1928 		 * The data is embedded, no copy-on-write operation is
1929 		 * needed.
1930 		 */
1931 		KKASSERT(chain->dio == NULL);
1932 		break;
1933 	case HAMMER2_BREF_TYPE_DIRENT:
1934 		/*
1935 		 * The data might be fully embedded.
1936 		 */
1937 		if (chain->bytes == 0) {
1938 			KKASSERT(chain->dio == NULL);
1939 			break;
1940 		}
1941 		/* fall through */
1942 	case HAMMER2_BREF_TYPE_INODE:
1943 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1944 	case HAMMER2_BREF_TYPE_DATA:
1945 	case HAMMER2_BREF_TYPE_INDIRECT:
1946 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1947 		/*
1948 		 * Perform the copy-on-write operation
1949 		 *
1950 		 * zero-fill or copy-on-write depending on whether
1951 		 * chain->data exists or not and set the dirty state for
1952 		 * the new buffer.  hammer2_io_new() will handle the
1953 		 * zero-fill.
1954 		 *
1955 		 * If a dedup_off was supplied this is an existing block
1956 		 * and no COW, copy, or further modification is required.
1957 		 */
1958 		KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
1959 
1960 		if (wasinitial && dedup_off == 0) {
1961 			error = hammer2_io_new(hmp, chain->bref.type,
1962 					       chain->bref.data_off,
1963 					       chain->bytes, &dio);
1964 		} else {
1965 			error = hammer2_io_bread(hmp, chain->bref.type,
1966 						 chain->bref.data_off,
1967 						 chain->bytes, &dio);
1968 		}
1969 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
1970 
1971 		/*
1972 		 * If an I/O error occurs make sure callers cannot accidently
1973 		 * modify the old buffer's contents and corrupt the filesystem.
1974 		 *
1975 		 * NOTE: hammer2_io_data() call issues bkvasync()
1976 		 */
1977 		if (error) {
1978 			kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
1979 				hmp);
1980 			chain->error = HAMMER2_ERROR_EIO;
1981 			hammer2_io_brelse(&dio);
1982 			hammer2_io_brelse(&chain->dio);
1983 			chain->data = NULL;
1984 			break;
1985 		}
1986 		chain->error = 0;
1987 		bdata = hammer2_io_data(dio, chain->bref.data_off);
1988 
1989 		if (chain->data) {
1990 			/*
1991 			 * COW (unless a dedup).
1992 			 */
1993 			KKASSERT(chain->dio != NULL);
1994 			if (chain->data != (void *)bdata && dedup_off == 0) {
1995 				bcopy(chain->data, bdata, chain->bytes);
1996 			}
1997 		} else if (wasinitial == 0) {
1998 			/*
1999 			 * We have a problem.  We were asked to COW but
2000 			 * we don't have any data to COW with!
2001 			 */
2002 			panic("hammer2_chain_modify: having a COW %p\n",
2003 			      chain);
2004 		}
2005 
2006 		/*
2007 		 * Retire the old buffer, replace with the new.  Dirty or
2008 		 * redirty the new buffer.
2009 		 *
2010 		 * WARNING! The system buffer cache may have already flushed
2011 		 *	    the buffer, so we must be sure to [re]dirty it
2012 		 *	    for further modification.
2013 		 *
2014 		 *	    If dedup_off was supplied, the caller is not
2015 		 *	    expected to make any further modification to the
2016 		 *	    buffer.
2017 		 *
2018 		 * WARNING! hammer2_get_gdata() assumes dio never transitions
2019 		 *	    through NULL in order to optimize away unnecessary
2020 		 *	    diolk operations.
2021 		 */
2022 		{
2023 			hammer2_io_t *tio;
2024 
2025 			if ((tio = chain->dio) != NULL)
2026 				hammer2_io_bqrelse(&tio);
2027 			chain->data = (void *)bdata;
2028 			chain->dio = dio;
2029 			if (dedup_off == 0)
2030 				hammer2_io_setdirty(dio);
2031 		}
2032 		break;
2033 	default:
2034 		panic("hammer2_chain_modify: illegal non-embedded type %d",
2035 		      chain->bref.type);
2036 		break;
2037 
2038 	}
2039 skip2:
2040 	/*
2041 	 * setflush on parent indicating that the parent must recurse down
2042 	 * to us.  Do not call on chain itself which might already have it
2043 	 * set.
2044 	 */
2045 	if (chain->parent)
2046 		hammer2_chain_setflush(chain->parent);
2047 	lockmgr(&chain->diolk, LK_RELEASE);
2048 
2049 	return (chain->error);
2050 }
2051 
2052 /*
2053  * Modify the chain associated with an inode.
2054  */
2055 int
2056 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2057 			hammer2_tid_t mtid, int flags)
2058 {
2059 	int error;
2060 
2061 	hammer2_inode_modify(ip);
2062 	error = hammer2_chain_modify(chain, mtid, 0, flags);
2063 
2064 	return error;
2065 }
2066 
2067 /*
2068  * Volume header data locks
2069  */
2070 void
2071 hammer2_voldata_lock(hammer2_dev_t *hmp)
2072 {
2073 	lockmgr(&hmp->vollk, LK_EXCLUSIVE);
2074 }
2075 
2076 void
2077 hammer2_voldata_unlock(hammer2_dev_t *hmp)
2078 {
2079 	lockmgr(&hmp->vollk, LK_RELEASE);
2080 }
2081 
2082 void
2083 hammer2_voldata_modify(hammer2_dev_t *hmp)
2084 {
2085 	if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
2086 		atomic_add_long(&hammer2_count_modified_chains, 1);
2087 		atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
2088 		hammer2_pfs_memory_inc(hmp->vchain.pmp);
2089 	}
2090 }
2091 
2092 /*
2093  * This function returns the chain at the nearest key within the specified
2094  * range.  The returned chain will be referenced but not locked.
2095  *
2096  * This function will recurse through chain->rbtree as necessary and will
2097  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
2098  * the iteration value is less than the current value of *key_nextp.
2099  *
2100  * The caller should use (*key_nextp) to calculate the actual range of
2101  * the returned element, which will be (key_beg to *key_nextp - 1), because
2102  * there might be another element which is superior to the returned element
2103  * and overlaps it.
2104  *
2105  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2106  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
2107  * it will wind up being (key_end + 1).
2108  *
2109  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
2110  *	     held through the operation.
2111  */
2112 struct hammer2_chain_find_info {
2113 	hammer2_chain_t		*best;
2114 	hammer2_key_t		key_beg;
2115 	hammer2_key_t		key_end;
2116 	hammer2_key_t		key_next;
2117 };
2118 
2119 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2120 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2121 
2122 static
2123 hammer2_chain_t *
2124 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2125 			  hammer2_key_t key_beg, hammer2_key_t key_end)
2126 {
2127 	struct hammer2_chain_find_info info;
2128 
2129 	info.best = NULL;
2130 	info.key_beg = key_beg;
2131 	info.key_end = key_end;
2132 	info.key_next = *key_nextp;
2133 
2134 	RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2135 		hammer2_chain_find_cmp, hammer2_chain_find_callback,
2136 		&info);
2137 	*key_nextp = info.key_next;
2138 #if 0
2139 	kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2140 		parent, key_beg, key_end, *key_nextp);
2141 #endif
2142 
2143 	return (info.best);
2144 }
2145 
2146 static
2147 int
2148 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2149 {
2150 	struct hammer2_chain_find_info *info = data;
2151 	hammer2_key_t child_beg;
2152 	hammer2_key_t child_end;
2153 
2154 	child_beg = child->bref.key;
2155 	child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2156 
2157 	if (child_end < info->key_beg)
2158 		return(-1);
2159 	if (child_beg > info->key_end)
2160 		return(1);
2161 	return(0);
2162 }
2163 
2164 static
2165 int
2166 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2167 {
2168 	struct hammer2_chain_find_info *info = data;
2169 	hammer2_chain_t *best;
2170 	hammer2_key_t child_end;
2171 
2172 	/*
2173 	 * WARNING! Layerq is scanned forwards, exact matches should keep
2174 	 *	    the existing info->best.
2175 	 */
2176 	if ((best = info->best) == NULL) {
2177 		/*
2178 		 * No previous best.  Assign best
2179 		 */
2180 		info->best = child;
2181 	} else if (best->bref.key <= info->key_beg &&
2182 		   child->bref.key <= info->key_beg) {
2183 		/*
2184 		 * Illegal overlap.
2185 		 */
2186 		KKASSERT(0);
2187 		/*info->best = child;*/
2188 	} else if (child->bref.key < best->bref.key) {
2189 		/*
2190 		 * Child has a nearer key and best is not flush with key_beg.
2191 		 * Set best to child.  Truncate key_next to the old best key.
2192 		 */
2193 		info->best = child;
2194 		if (info->key_next > best->bref.key || info->key_next == 0)
2195 			info->key_next = best->bref.key;
2196 	} else if (child->bref.key == best->bref.key) {
2197 		/*
2198 		 * If our current best is flush with the child then this
2199 		 * is an illegal overlap.
2200 		 *
2201 		 * key_next will automatically be limited to the smaller of
2202 		 * the two end-points.
2203 		 */
2204 		KKASSERT(0);
2205 		info->best = child;
2206 	} else {
2207 		/*
2208 		 * Keep the current best but truncate key_next to the child's
2209 		 * base.
2210 		 *
2211 		 * key_next will also automatically be limited to the smaller
2212 		 * of the two end-points (probably not necessary for this case
2213 		 * but we do it anyway).
2214 		 */
2215 		if (info->key_next > child->bref.key || info->key_next == 0)
2216 			info->key_next = child->bref.key;
2217 	}
2218 
2219 	/*
2220 	 * Always truncate key_next based on child's end-of-range.
2221 	 */
2222 	child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2223 	if (child_end && (info->key_next > child_end || info->key_next == 0))
2224 		info->key_next = child_end;
2225 
2226 	return(0);
2227 }
2228 
2229 /*
2230  * Retrieve the specified chain from a media blockref, creating the
2231  * in-memory chain structure which reflects it.  The returned chain is
2232  * held and locked according to (how) (HAMMER2_RESOLVE_*).  The caller must
2233  * handle crc-checks and so forth, and should check chain->error before
2234  * assuming that the data is good.
2235  *
2236  * To handle insertion races pass the INSERT_RACE flag along with the
2237  * generation number of the core.  NULL will be returned if the generation
2238  * number changes before we have a chance to insert the chain.  Insert
2239  * races can occur because the parent might be held shared.
2240  *
2241  * Caller must hold the parent locked shared or exclusive since we may
2242  * need the parent's bref array to find our block.
2243  *
2244  * WARNING! chain->pmp is always set to NULL for any chain representing
2245  *	    part of the super-root topology.
2246  */
2247 hammer2_chain_t *
2248 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2249 		  hammer2_blockref_t *bref, int how)
2250 {
2251 	hammer2_dev_t *hmp = parent->hmp;
2252 	hammer2_chain_t *chain;
2253 	int error;
2254 
2255 	/*
2256 	 * Allocate a chain structure representing the existing media
2257 	 * entry.  Resulting chain has one ref and is not locked.
2258 	 */
2259 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2260 		chain = hammer2_chain_alloc(hmp, NULL, bref);
2261 	else
2262 		chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2263 	/* ref'd chain returned */
2264 
2265 	/*
2266 	 * Flag that the chain is in the parent's blockmap so delete/flush
2267 	 * knows what to do with it.
2268 	 */
2269 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2270 
2271 	/*
2272 	 * chain must be locked to avoid unexpected ripouts
2273 	 */
2274 	hammer2_chain_lock(chain, how);
2275 
2276 	/*
2277 	 * Link the chain into its parent.  A spinlock is required to safely
2278 	 * access the RBTREE, and it is possible to collide with another
2279 	 * hammer2_chain_get() operation because the caller might only hold
2280 	 * a shared lock on the parent.
2281 	 *
2282 	 * NOTE: Get races can occur quite often when we distribute
2283 	 *	 asynchronous read-aheads across multiple threads.
2284 	 */
2285 	KKASSERT(parent->refs > 0);
2286 	error = hammer2_chain_insert(parent, chain,
2287 				     HAMMER2_CHAIN_INSERT_SPIN |
2288 				     HAMMER2_CHAIN_INSERT_RACE,
2289 				     generation);
2290 	if (error) {
2291 		KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2292 		/*kprintf("chain %p get race\n", chain);*/
2293 		hammer2_chain_unlock(chain);
2294 		hammer2_chain_drop(chain);
2295 		chain = NULL;
2296 	} else {
2297 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2298 	}
2299 
2300 	/*
2301 	 * Return our new chain referenced but not locked, or NULL if
2302 	 * a race occurred.
2303 	 */
2304 	return (chain);
2305 }
2306 
2307 /*
2308  * Lookup initialization/completion API
2309  */
2310 hammer2_chain_t *
2311 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2312 {
2313 	hammer2_chain_ref(parent);
2314 	if (flags & HAMMER2_LOOKUP_SHARED) {
2315 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2316 					   HAMMER2_RESOLVE_SHARED);
2317 	} else {
2318 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2319 	}
2320 	return (parent);
2321 }
2322 
2323 void
2324 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2325 {
2326 	if (parent) {
2327 		hammer2_chain_unlock(parent);
2328 		hammer2_chain_drop(parent);
2329 	}
2330 }
2331 
2332 /*
2333  * Take the locked chain and return a locked parent.  The chain remains
2334  * locked on return, but may have to be temporarily unlocked to acquire
2335  * the parent.  Because of this, (chain) must be stable and cannot be
2336  * deleted while it was temporarily unlocked (typically means that (chain)
2337  * is an inode).
2338  *
2339  * Pass HAMMER2_RESOLVE_* flags in flags.
2340  *
2341  * This will work even if the chain is errored, and the caller can check
2342  * parent->error on return if desired since the parent will be locked.
2343  *
2344  * This function handles the lock order reversal.
2345  */
2346 hammer2_chain_t *
2347 hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2348 {
2349 	hammer2_chain_t *parent;
2350 
2351 	/*
2352 	 * Be careful of order, chain must be unlocked before parent
2353 	 * is locked below to avoid a deadlock.  Try it trivially first.
2354 	 */
2355 	parent = chain->parent;
2356 	if (parent == NULL)
2357 		panic("hammer2_chain_getparent: no parent");
2358 	hammer2_chain_ref(parent);
2359 	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2360 		return parent;
2361 
2362 	for (;;) {
2363 		hammer2_chain_unlock(chain);
2364 		hammer2_chain_lock(parent, flags);
2365 		hammer2_chain_lock(chain, flags);
2366 
2367 		/*
2368 		 * Parent relinking races are quite common.  We have to get
2369 		 * it right or we will blow up the block table.
2370 		 */
2371 		if (chain->parent == parent)
2372 			break;
2373 		hammer2_chain_unlock(parent);
2374 		hammer2_chain_drop(parent);
2375 		cpu_ccfence();
2376 		parent = chain->parent;
2377 		if (parent == NULL)
2378 			panic("hammer2_chain_getparent: no parent");
2379 		hammer2_chain_ref(parent);
2380 	}
2381 	return parent;
2382 }
2383 
2384 /*
2385  * Take the locked chain and return a locked parent.  The chain is unlocked
2386  * and dropped.  *chainp is set to the returned parent as a convenience.
2387  * Pass HAMMER2_RESOLVE_* flags in flags.
2388  *
2389  * This will work even if the chain is errored, and the caller can check
2390  * parent->error on return if desired since the parent will be locked.
2391  *
2392  * The chain does NOT need to be stable.  We use a tracking structure
2393  * to track the expected parent if the chain is deleted out from under us.
2394  *
2395  * This function handles the lock order reversal.
2396  */
2397 hammer2_chain_t *
2398 hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2399 {
2400 	hammer2_chain_t *chain;
2401 	hammer2_chain_t *parent;
2402 	struct hammer2_reptrack reptrack;
2403 	struct hammer2_reptrack **repp;
2404 
2405 	/*
2406 	 * Be careful of order, chain must be unlocked before parent
2407 	 * is locked below to avoid a deadlock.  Try it trivially first.
2408 	 */
2409 	chain = *chainp;
2410 	parent = chain->parent;
2411 	if (parent == NULL) {
2412 		hammer2_spin_unex(&chain->core.spin);
2413 		panic("hammer2_chain_repparent: no parent");
2414 	}
2415 	hammer2_chain_ref(parent);
2416 	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2417 		hammer2_chain_unlock(chain);
2418 		hammer2_chain_drop(chain);
2419 		*chainp = parent;
2420 
2421 		return parent;
2422 	}
2423 
2424 	/*
2425 	 * Ok, now it gets a bit nasty.  There are multiple situations where
2426 	 * the parent might be in the middle of a deletion, or where the child
2427 	 * (chain) might be deleted the instant we let go of its lock.
2428 	 * We can potentially end up in a no-win situation!
2429 	 *
2430 	 * In particular, the indirect_maintenance() case can cause these
2431 	 * situations.
2432 	 *
2433 	 * To deal with this we install a reptrack structure in the parent
2434 	 * This reptrack structure 'owns' the parent ref and will automatically
2435 	 * migrate to the parent's parent if the parent is deleted permanently.
2436 	 */
2437 	hammer2_spin_init(&reptrack.spin, "h2reptrk");
2438 	reptrack.chain = parent;
2439 	hammer2_chain_ref(parent);		/* for the reptrack */
2440 
2441 	hammer2_spin_ex(&parent->core.spin);
2442 	reptrack.next = parent->core.reptrack;
2443 	parent->core.reptrack = &reptrack;
2444 	hammer2_spin_unex(&parent->core.spin);
2445 
2446 	hammer2_chain_unlock(chain);
2447 	hammer2_chain_drop(chain);
2448 	chain = NULL;	/* gone */
2449 
2450 	/*
2451 	 * At the top of this loop, chain is gone and parent is refd both
2452 	 * by us explicitly AND via our reptrack.  We are attempting to
2453 	 * lock parent.
2454 	 */
2455 	for (;;) {
2456 		hammer2_chain_lock(parent, flags);
2457 
2458 		if (reptrack.chain == parent)
2459 			break;
2460 		hammer2_chain_unlock(parent);
2461 		hammer2_chain_drop(parent);
2462 
2463 		kprintf("hammer2: debug REPTRACK %p->%p\n",
2464 			parent, reptrack.chain);
2465 		hammer2_spin_ex(&reptrack.spin);
2466 		parent = reptrack.chain;
2467 		hammer2_chain_ref(parent);
2468 		hammer2_spin_unex(&reptrack.spin);
2469 	}
2470 
2471 	/*
2472 	 * Once parent is locked and matches our reptrack, our reptrack
2473 	 * will be stable and we have our parent.  We can unlink our
2474 	 * reptrack.
2475 	 *
2476 	 * WARNING!  Remember that the chain lock might be shared.  Chains
2477 	 *	     locked shared have stable parent linkages.
2478 	 */
2479 	hammer2_spin_ex(&parent->core.spin);
2480 	repp = &parent->core.reptrack;
2481 	while (*repp != &reptrack)
2482 		repp = &(*repp)->next;
2483 	*repp = reptrack.next;
2484 	hammer2_spin_unex(&parent->core.spin);
2485 
2486 	hammer2_chain_drop(parent);	/* reptrack ref */
2487 	*chainp = parent;		/* return parent lock+ref */
2488 
2489 	return parent;
2490 }
2491 
2492 /*
2493  * Dispose of any linked reptrack structures in (chain) by shifting them to
2494  * (parent).  Both (chain) and (parent) must be exclusively locked.
2495  *
2496  * This is interlocked against any children of (chain) on the other side.
2497  * No children so remain as-of when this is called so we can test
2498  * core.reptrack without holding the spin-lock.
2499  *
2500  * Used whenever the caller intends to permanently delete chains related
2501  * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2502  * where the chains underneath the node being deleted are given a new parent
2503  * above the node being deleted.
2504  */
2505 static
2506 void
2507 hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2508 {
2509 	struct hammer2_reptrack *reptrack;
2510 
2511 	KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2512 	while (chain->core.reptrack) {
2513 		hammer2_spin_ex(&parent->core.spin);
2514 		hammer2_spin_ex(&chain->core.spin);
2515 		reptrack = chain->core.reptrack;
2516 		if (reptrack == NULL) {
2517 			hammer2_spin_unex(&chain->core.spin);
2518 			hammer2_spin_unex(&parent->core.spin);
2519 			break;
2520 		}
2521 		hammer2_spin_ex(&reptrack->spin);
2522 		chain->core.reptrack = reptrack->next;
2523 		reptrack->chain = parent;
2524 		reptrack->next = parent->core.reptrack;
2525 		parent->core.reptrack = reptrack;
2526 		hammer2_chain_ref(parent);		/* reptrack */
2527 
2528 		hammer2_spin_unex(&chain->core.spin);
2529 		hammer2_spin_unex(&parent->core.spin);
2530 		kprintf("hammer2: debug repchange %p %p->%p\n",
2531 			reptrack, chain, parent);
2532 		hammer2_chain_drop(chain);		/* reptrack */
2533 	}
2534 }
2535 
2536 /*
2537  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2538  * (*parentp) typically points to an inode but can also point to a related
2539  * indirect block and this function will recurse upwards and find the inode
2540  * or the nearest undeleted indirect block covering the key range.
2541  *
2542  * This function unconditionally sets *errorp, replacing any previous value.
2543  *
2544  * (*parentp) must be exclusive or shared locked (depending on flags) and
2545  * referenced and can be an inode or an existing indirect block within the
2546  * inode.
2547  *
2548  * If (*parent) is errored out, this function will not attempt to recurse
2549  * the radix tree and will return NULL along with an appropriate *errorp.
2550  * If NULL is returned and *errorp is 0, the requested lookup could not be
2551  * located.
2552  *
2553  * On return (*parentp) will be modified to point at the deepest parent chain
2554  * element encountered during the search, as a helper for an insertion or
2555  * deletion.
2556  *
2557  * The new (*parentp) will be locked shared or exclusive (depending on flags),
2558  * and referenced, and the old will be unlocked and dereferenced (no change
2559  * if they are both the same).  This is particularly important if the caller
2560  * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2561  * is returned, as long as no error occurred.
2562  *
2563  * The matching chain will be returned locked according to flags.
2564  *
2565  * --
2566  *
2567  * NULL is returned if no match was found, but (*parentp) will still
2568  * potentially be adjusted.
2569  *
2570  * On return (*key_nextp) will point to an iterative value for key_beg.
2571  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2572  *
2573  * This function will also recurse up the chain if the key is not within the
2574  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2575  * can simply allow (*parentp) to float inside the loop.
2576  *
2577  * NOTE!  chain->data is not always resolved.  By default it will not be
2578  *	  resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2579  *	  HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2580  *	  BREF_TYPE_DATA as the device buffer can alias the logical file
2581  *	  buffer).
2582  */
2583 
2584 hammer2_chain_t *
2585 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2586 		     hammer2_key_t key_beg, hammer2_key_t key_end,
2587 		     int *errorp, int flags)
2588 {
2589 	hammer2_dev_t *hmp;
2590 	hammer2_chain_t *parent;
2591 	hammer2_chain_t *chain;
2592 	hammer2_blockref_t *base;
2593 	hammer2_blockref_t *bref;
2594 	hammer2_blockref_t bcopy;
2595 	hammer2_key_t scan_beg;
2596 	hammer2_key_t scan_end;
2597 	int count = 0;
2598 	int how_always = HAMMER2_RESOLVE_ALWAYS;
2599 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
2600 	int how;
2601 	int generation;
2602 	int maxloops = 300000;
2603 	volatile hammer2_mtx_t save_mtx;
2604 
2605 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
2606 		how_maybe = how_always;
2607 		how = HAMMER2_RESOLVE_ALWAYS;
2608 	} else if (flags & HAMMER2_LOOKUP_NODATA) {
2609 		how = HAMMER2_RESOLVE_NEVER;
2610 	} else {
2611 		how = HAMMER2_RESOLVE_MAYBE;
2612 	}
2613 	if (flags & HAMMER2_LOOKUP_SHARED) {
2614 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2615 		how_always |= HAMMER2_RESOLVE_SHARED;
2616 		how |= HAMMER2_RESOLVE_SHARED;
2617 	}
2618 
2619 	/*
2620 	 * Recurse (*parentp) upward if necessary until the parent completely
2621 	 * encloses the key range or we hit the inode.
2622 	 *
2623 	 * Handle races against the flusher deleting indirect nodes on its
2624 	 * way back up by continuing to recurse upward past the deletion.
2625 	 */
2626 	parent = *parentp;
2627 	hmp = parent->hmp;
2628 	*errorp = 0;
2629 
2630 	while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2631 	       parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2632 		scan_beg = parent->bref.key;
2633 		scan_end = scan_beg +
2634 			   ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2635 		if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2636 			if (key_beg >= scan_beg && key_end <= scan_end)
2637 				break;
2638 		}
2639 		parent = hammer2_chain_repparent(parentp, how_maybe);
2640 	}
2641 again:
2642 	if (--maxloops == 0)
2643 		panic("hammer2_chain_lookup: maxloops");
2644 	/*
2645 	 * Locate the blockref array.  Currently we do a fully associative
2646 	 * search through the array.
2647 	 */
2648 	switch(parent->bref.type) {
2649 	case HAMMER2_BREF_TYPE_INODE:
2650 		/*
2651 		 * Special shortcut for embedded data returns the inode
2652 		 * itself.  Callers must detect this condition and access
2653 		 * the embedded data (the strategy code does this for us).
2654 		 *
2655 		 * This is only applicable to regular files and softlinks.
2656 		 *
2657 		 * We need a second lock on parent.  Since we already have
2658 		 * a lock we must pass LOCKAGAIN to prevent unexpected
2659 		 * blocking (we don't want to block on a second shared
2660 		 * ref if an exclusive lock is pending)
2661 		 */
2662 		if (parent->data->ipdata.meta.op_flags &
2663 		    HAMMER2_OPFLAG_DIRECTDATA) {
2664 			if (flags & HAMMER2_LOOKUP_NODIRECT) {
2665 				chain = NULL;
2666 				*key_nextp = key_end + 1;
2667 				goto done;
2668 			}
2669 			hammer2_chain_ref(parent);
2670 			hammer2_chain_lock(parent, how_always |
2671 						   HAMMER2_RESOLVE_LOCKAGAIN);
2672 			*key_nextp = key_end + 1;
2673 			return (parent);
2674 		}
2675 		base = &parent->data->ipdata.u.blockset.blockref[0];
2676 		count = HAMMER2_SET_COUNT;
2677 		break;
2678 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2679 	case HAMMER2_BREF_TYPE_INDIRECT:
2680 		/*
2681 		 * Handle MATCHIND on the parent
2682 		 */
2683 		if (flags & HAMMER2_LOOKUP_MATCHIND) {
2684 			scan_beg = parent->bref.key;
2685 			scan_end = scan_beg +
2686 			       ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2687 			if (key_beg == scan_beg && key_end == scan_end) {
2688 				chain = parent;
2689 				hammer2_chain_ref(chain);
2690 				hammer2_chain_lock(chain, how_maybe);
2691 				*key_nextp = scan_end + 1;
2692 				goto done;
2693 			}
2694 		}
2695 
2696 		/*
2697 		 * Optimize indirect blocks in the INITIAL state to avoid
2698 		 * I/O.
2699 		 */
2700 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2701 			base = NULL;
2702 		} else {
2703 			if (parent->data == NULL) {
2704 				kprintf("parent->data is NULL %p\n", parent);
2705 				while (1)
2706 					tsleep(parent, 0, "xxx", 0);
2707 			}
2708 			base = &parent->data->npdata[0];
2709 		}
2710 		count = parent->bytes / sizeof(hammer2_blockref_t);
2711 		break;
2712 	case HAMMER2_BREF_TYPE_VOLUME:
2713 		base = &parent->data->voldata.sroot_blockset.blockref[0];
2714 		count = HAMMER2_SET_COUNT;
2715 		break;
2716 	case HAMMER2_BREF_TYPE_FREEMAP:
2717 		base = &parent->data->blkset.blockref[0];
2718 		count = HAMMER2_SET_COUNT;
2719 		break;
2720 	default:
2721 		kprintf("hammer2_chain_lookup: unrecognized "
2722 			"blockref(B) type: %d",
2723 			parent->bref.type);
2724 		while (1)
2725 			tsleep(&base, 0, "dead", 0);
2726 		panic("hammer2_chain_lookup: unrecognized "
2727 		      "blockref(B) type: %d",
2728 		      parent->bref.type);
2729 		base = NULL;	/* safety */
2730 		count = 0;	/* safety */
2731 	}
2732 
2733 	/*
2734 	 * No lookup is possible if the parent is errored.  We delayed
2735 	 * this check as long as we could to ensure that the parent backup,
2736 	 * embedded data, and MATCHIND code could still execute.
2737 	 */
2738 	if (parent->error) {
2739 		*errorp = parent->error;
2740 		return NULL;
2741 	}
2742 
2743 	/*
2744 	 * Merged scan to find next candidate.
2745 	 *
2746 	 * hammer2_base_*() functions require the parent->core.live_* fields
2747 	 * to be synchronized.
2748 	 *
2749 	 * We need to hold the spinlock to access the block array and RB tree
2750 	 * and to interlock chain creation.
2751 	 */
2752 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2753 		hammer2_chain_countbrefs(parent, base, count);
2754 
2755 	/*
2756 	 * Combined search
2757 	 */
2758 	hammer2_spin_ex(&parent->core.spin);
2759 	chain = hammer2_combined_find(parent, base, count,
2760 				      key_nextp,
2761 				      key_beg, key_end,
2762 				      &bref);
2763 	generation = parent->core.generation;
2764 
2765 	/*
2766 	 * Exhausted parent chain, iterate.
2767 	 */
2768 	if (bref == NULL) {
2769 		KKASSERT(chain == NULL);
2770 		hammer2_spin_unex(&parent->core.spin);
2771 		if (key_beg == key_end)	/* short cut single-key case */
2772 			return (NULL);
2773 
2774 		/*
2775 		 * Stop if we reached the end of the iteration.
2776 		 */
2777 		if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2778 		    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2779 			return (NULL);
2780 		}
2781 
2782 		/*
2783 		 * Calculate next key, stop if we reached the end of the
2784 		 * iteration, otherwise go up one level and loop.
2785 		 */
2786 		key_beg = parent->bref.key +
2787 			  ((hammer2_key_t)1 << parent->bref.keybits);
2788 		if (key_beg == 0 || key_beg > key_end)
2789 			return (NULL);
2790 		parent = hammer2_chain_repparent(parentp, how_maybe);
2791 		goto again;
2792 	}
2793 
2794 	/*
2795 	 * Selected from blockref or in-memory chain.
2796 	 */
2797 	bcopy = *bref;
2798 	if (chain == NULL) {
2799 		hammer2_spin_unex(&parent->core.spin);
2800 		if (bcopy.type == HAMMER2_BREF_TYPE_INDIRECT ||
2801 		    bcopy.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2802 			chain = hammer2_chain_get(parent, generation,
2803 						  &bcopy, how_maybe);
2804 		} else {
2805 			chain = hammer2_chain_get(parent, generation,
2806 						  &bcopy, how);
2807 		}
2808 		if (chain == NULL)
2809 			goto again;
2810 	} else {
2811 		hammer2_chain_ref(chain);
2812 		hammer2_spin_unex(&parent->core.spin);
2813 
2814 		/*
2815 		 * chain is referenced but not locked.  We must lock the
2816 		 * chain to obtain definitive state.
2817 		 */
2818 		if (bcopy.type == HAMMER2_BREF_TYPE_INDIRECT ||
2819 		    bcopy.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2820 			hammer2_chain_lock(chain, how_maybe);
2821 		} else {
2822 			hammer2_chain_lock(chain, how);
2823 		}
2824 		KKASSERT(chain->parent == parent);
2825 	}
2826 	if (bcmp(&bcopy, &chain->bref, sizeof(bcopy)) ||
2827 	    chain->parent != parent) {
2828 		hammer2_chain_unlock(chain);
2829 		hammer2_chain_drop(chain);
2830 		chain = NULL;	/* SAFETY */
2831 		goto again;
2832 	}
2833 
2834 
2835 	/*
2836 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2837 	 *
2838 	 * NOTE: Chain's key range is not relevant as there might be
2839 	 *	 one-offs within the range that are not deleted.
2840 	 *
2841 	 * NOTE: Lookups can race delete-duplicate because
2842 	 *	 delete-duplicate does not lock the parent's core
2843 	 *	 (they just use the spinlock on the core).
2844 	 */
2845 	if (chain->flags & HAMMER2_CHAIN_DELETED) {
2846 		kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2847 			chain->bref.data_off, chain->bref.type,
2848 			chain->bref.key);
2849 		hammer2_chain_unlock(chain);
2850 		hammer2_chain_drop(chain);
2851 		chain = NULL;	/* SAFETY */
2852 		key_beg = *key_nextp;
2853 		if (key_beg == 0 || key_beg > key_end)
2854 			return(NULL);
2855 		goto again;
2856 	}
2857 
2858 	/*
2859 	 * If the chain element is an indirect block it becomes the new
2860 	 * parent and we loop on it.  We must maintain our top-down locks
2861 	 * to prevent the flusher from interfering (i.e. doing a
2862 	 * delete-duplicate and leaving us recursing down a deleted chain).
2863 	 *
2864 	 * The parent always has to be locked with at least RESOLVE_MAYBE
2865 	 * so we can access its data.  It might need a fixup if the caller
2866 	 * passed incompatible flags.  Be careful not to cause a deadlock
2867 	 * as a data-load requires an exclusive lock.
2868 	 *
2869 	 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2870 	 * range is within the requested key range we return the indirect
2871 	 * block and do NOT loop.  This is usually only used to acquire
2872 	 * freemap nodes.
2873 	 */
2874 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2875 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2876 		save_mtx = parent->lock;
2877 		hammer2_chain_unlock(parent);
2878 		hammer2_chain_drop(parent);
2879 		*parentp = parent = chain;
2880 		chain = NULL;	/* SAFETY */
2881 		goto again;
2882 	}
2883 done:
2884 	/*
2885 	 * All done, return the locked chain.
2886 	 *
2887 	 * If the caller does not want a locked chain, replace the lock with
2888 	 * a ref.  Perhaps this can eventually be optimized to not obtain the
2889 	 * lock in the first place for situations where the data does not
2890 	 * need to be resolved.
2891 	 *
2892 	 * NOTE! A chain->error must be tested by the caller upon return.
2893 	 *	 *errorp is only set based on issues which occur while
2894 	 *	 trying to reach the chain.
2895 	 */
2896 	return (chain);
2897 }
2898 
2899 /*
2900  * After having issued a lookup we can iterate all matching keys.
2901  *
2902  * If chain is non-NULL we continue the iteration from just after it's index.
2903  *
2904  * If chain is NULL we assume the parent was exhausted and continue the
2905  * iteration at the next parent.
2906  *
2907  * If a fatal error occurs (typically an I/O error), a dummy chain is
2908  * returned with chain->error and error-identifying information set.  This
2909  * chain will assert if you try to do anything fancy with it.
2910  *
2911  * XXX Depending on where the error occurs we should allow continued iteration.
2912  *
2913  * parent must be locked on entry and remains locked throughout.  chain's
2914  * lock status must match flags.  Chain is always at least referenced.
2915  *
2916  * WARNING!  The MATCHIND flag does not apply to this function.
2917  */
2918 hammer2_chain_t *
2919 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2920 		   hammer2_key_t *key_nextp,
2921 		   hammer2_key_t key_beg, hammer2_key_t key_end,
2922 		   int *errorp, int flags)
2923 {
2924 	hammer2_chain_t *parent;
2925 	int how_maybe;
2926 
2927 	/*
2928 	 * Calculate locking flags for upward recursion.
2929 	 */
2930 	how_maybe = HAMMER2_RESOLVE_MAYBE;
2931 	if (flags & HAMMER2_LOOKUP_SHARED)
2932 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2933 
2934 	parent = *parentp;
2935 	*errorp = 0;
2936 
2937 	/*
2938 	 * Calculate the next index and recalculate the parent if necessary.
2939 	 */
2940 	if (chain) {
2941 		key_beg = chain->bref.key +
2942 			  ((hammer2_key_t)1 << chain->bref.keybits);
2943 		hammer2_chain_unlock(chain);
2944 		hammer2_chain_drop(chain);
2945 
2946 		/*
2947 		 * chain invalid past this point, but we can still do a
2948 		 * pointer comparison w/parent.
2949 		 *
2950 		 * Any scan where the lookup returned degenerate data embedded
2951 		 * in the inode has an invalid index and must terminate.
2952 		 */
2953 		if (chain == parent)
2954 			return(NULL);
2955 		if (key_beg == 0 || key_beg > key_end)
2956 			return(NULL);
2957 		chain = NULL;
2958 	} else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2959 		   parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2960 		/*
2961 		 * We reached the end of the iteration.
2962 		 */
2963 		return (NULL);
2964 	} else {
2965 		/*
2966 		 * Continue iteration with next parent unless the current
2967 		 * parent covers the range.
2968 		 *
2969 		 * (This also handles the case of a deleted, empty indirect
2970 		 * node).
2971 		 */
2972 		key_beg = parent->bref.key +
2973 			  ((hammer2_key_t)1 << parent->bref.keybits);
2974 		if (key_beg == 0 || key_beg > key_end)
2975 			return (NULL);
2976 		parent = hammer2_chain_repparent(parentp, how_maybe);
2977 	}
2978 
2979 	/*
2980 	 * And execute
2981 	 */
2982 	return (hammer2_chain_lookup(parentp, key_nextp,
2983 				     key_beg, key_end,
2984 				     errorp, flags));
2985 }
2986 
2987 /*
2988  * Caller wishes to iterate chains under parent, loading new chains into
2989  * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
2990  * then call hammer2_chain_scan() repeatedly until a non-zero return.
2991  * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
2992  * with the returned chain for the scan.  The returned *chainp will be
2993  * locked and referenced.  Any prior contents will be unlocked and dropped.
2994  *
2995  * Caller should check the return value.  A normal scan EOF will return
2996  * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
2997  * error trying to access parent data.  Any error in the returned chain
2998  * must be tested separately by the caller.
2999  *
3000  * (*chainp) is dropped on each scan, but will only be set if the returned
3001  * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
3002  * returned via *chainp.  The caller will get their bref only.
3003  *
3004  * The raw scan function is similar to lookup/next but does not seek to a key.
3005  * Blockrefs are iterated via first_bref = (parent, NULL) and
3006  * next_chain = (parent, bref).
3007  *
3008  * The passed-in parent must be locked and its data resolved.  The function
3009  * nominally returns a locked and referenced *chainp != NULL for chains
3010  * the caller might need to recurse on (and will dipose of any *chainp passed
3011  * in).  The caller must check the chain->bref.type either way.
3012  */
3013 int
3014 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3015 		   hammer2_blockref_t *bref, int *firstp,
3016 		   int flags)
3017 {
3018 	hammer2_dev_t *hmp;
3019 	hammer2_blockref_t *base;
3020 	hammer2_blockref_t *bref_ptr;
3021 	hammer2_key_t key;
3022 	hammer2_key_t next_key;
3023 	hammer2_chain_t *chain = NULL;
3024 	int count = 0;
3025 	int how_always = HAMMER2_RESOLVE_ALWAYS;
3026 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
3027 	int how;
3028 	int generation;
3029 	int maxloops = 300000;
3030 	int error;
3031 
3032 	hmp = parent->hmp;
3033 	error = 0;
3034 
3035 	/*
3036 	 * Scan flags borrowed from lookup.
3037 	 */
3038 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
3039 		how_maybe = how_always;
3040 		how = HAMMER2_RESOLVE_ALWAYS;
3041 	} else if (flags & HAMMER2_LOOKUP_NODATA) {
3042 		how = HAMMER2_RESOLVE_NEVER;
3043 	} else {
3044 		how = HAMMER2_RESOLVE_MAYBE;
3045 	}
3046 	if (flags & HAMMER2_LOOKUP_SHARED) {
3047 		how_maybe |= HAMMER2_RESOLVE_SHARED;
3048 		how_always |= HAMMER2_RESOLVE_SHARED;
3049 		how |= HAMMER2_RESOLVE_SHARED;
3050 	}
3051 
3052 	/*
3053 	 * Calculate key to locate first/next element, unlocking the previous
3054 	 * element as we go.  Be careful, the key calculation can overflow.
3055 	 *
3056 	 * (also reset bref to NULL)
3057 	 */
3058 	if (*firstp) {
3059 		key = 0;
3060 		*firstp = 0;
3061 	} else {
3062 		key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3063 		if ((chain = *chainp) != NULL) {
3064 			*chainp = NULL;
3065 			hammer2_chain_unlock(chain);
3066 			hammer2_chain_drop(chain);
3067 			chain = NULL;
3068 		}
3069 		if (key == 0) {
3070 			error |= HAMMER2_ERROR_EOF;
3071 			goto done;
3072 		}
3073 	}
3074 
3075 again:
3076 	if (parent->error) {
3077 		error = parent->error;
3078 		goto done;
3079 	}
3080 	if (--maxloops == 0)
3081 		panic("hammer2_chain_scan: maxloops");
3082 
3083 	/*
3084 	 * Locate the blockref array.  Currently we do a fully associative
3085 	 * search through the array.
3086 	 */
3087 	switch(parent->bref.type) {
3088 	case HAMMER2_BREF_TYPE_INODE:
3089 		/*
3090 		 * An inode with embedded data has no sub-chains.
3091 		 *
3092 		 * WARNING! Bulk scan code may pass a static chain marked
3093 		 *	    as BREF_TYPE_INODE with a copy of the volume
3094 		 *	    root blockset to snapshot the volume.
3095 		 */
3096 		if (parent->data->ipdata.meta.op_flags &
3097 		    HAMMER2_OPFLAG_DIRECTDATA) {
3098 			error |= HAMMER2_ERROR_EOF;
3099 			goto done;
3100 		}
3101 		base = &parent->data->ipdata.u.blockset.blockref[0];
3102 		count = HAMMER2_SET_COUNT;
3103 		break;
3104 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3105 	case HAMMER2_BREF_TYPE_INDIRECT:
3106 		/*
3107 		 * Optimize indirect blocks in the INITIAL state to avoid
3108 		 * I/O.
3109 		 */
3110 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3111 			base = NULL;
3112 		} else {
3113 			if (parent->data == NULL)
3114 				panic("parent->data is NULL");
3115 			base = &parent->data->npdata[0];
3116 		}
3117 		count = parent->bytes / sizeof(hammer2_blockref_t);
3118 		break;
3119 	case HAMMER2_BREF_TYPE_VOLUME:
3120 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3121 		count = HAMMER2_SET_COUNT;
3122 		break;
3123 	case HAMMER2_BREF_TYPE_FREEMAP:
3124 		base = &parent->data->blkset.blockref[0];
3125 		count = HAMMER2_SET_COUNT;
3126 		break;
3127 	default:
3128 		panic("hammer2_chain_scan: unrecognized blockref type: %d",
3129 		      parent->bref.type);
3130 		base = NULL;	/* safety */
3131 		count = 0;	/* safety */
3132 	}
3133 
3134 	/*
3135 	 * Merged scan to find next candidate.
3136 	 *
3137 	 * hammer2_base_*() functions require the parent->core.live_* fields
3138 	 * to be synchronized.
3139 	 *
3140 	 * We need to hold the spinlock to access the block array and RB tree
3141 	 * and to interlock chain creation.
3142 	 */
3143 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3144 		hammer2_chain_countbrefs(parent, base, count);
3145 
3146 	next_key = 0;
3147 	bref_ptr = NULL;
3148 	hammer2_spin_ex(&parent->core.spin);
3149 	chain = hammer2_combined_find(parent, base, count,
3150 				      &next_key,
3151 				      key, HAMMER2_KEY_MAX,
3152 				      &bref_ptr);
3153 	generation = parent->core.generation;
3154 
3155 	/*
3156 	 * Exhausted parent chain, we're done.
3157 	 */
3158 	if (bref_ptr == NULL) {
3159 		hammer2_spin_unex(&parent->core.spin);
3160 		KKASSERT(chain == NULL);
3161 		error |= HAMMER2_ERROR_EOF;
3162 		goto done;
3163 	}
3164 
3165 	/*
3166 	 * Copy into the supplied stack-based blockref.
3167 	 */
3168 	*bref = *bref_ptr;
3169 
3170 	/*
3171 	 * Selected from blockref or in-memory chain.
3172 	 */
3173 	if (chain == NULL) {
3174 		switch(bref->type) {
3175 		case HAMMER2_BREF_TYPE_INODE:
3176 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3177 		case HAMMER2_BREF_TYPE_INDIRECT:
3178 		case HAMMER2_BREF_TYPE_VOLUME:
3179 		case HAMMER2_BREF_TYPE_FREEMAP:
3180 			/*
3181 			 * Recursion, always get the chain
3182 			 */
3183 			hammer2_spin_unex(&parent->core.spin);
3184 			chain = hammer2_chain_get(parent, generation,
3185 						  bref, how);
3186 			if (chain == NULL)
3187 				goto again;
3188 			break;
3189 		default:
3190 			/*
3191 			 * No recursion, do not waste time instantiating
3192 			 * a chain, just iterate using the bref.
3193 			 */
3194 			hammer2_spin_unex(&parent->core.spin);
3195 			break;
3196 		}
3197 	} else {
3198 		/*
3199 		 * Recursion or not we need the chain in order to supply
3200 		 * the bref.
3201 		 */
3202 		hammer2_chain_ref(chain);
3203 		hammer2_spin_unex(&parent->core.spin);
3204 		hammer2_chain_lock(chain, how);
3205 	}
3206 	if (chain &&
3207 	    (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3208 	     chain->parent != parent)) {
3209 		hammer2_chain_unlock(chain);
3210 		hammer2_chain_drop(chain);
3211 		chain = NULL;
3212 		goto again;
3213 	}
3214 
3215 	/*
3216 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3217 	 *
3218 	 * NOTE: chain's key range is not relevant as there might be
3219 	 *	 one-offs within the range that are not deleted.
3220 	 *
3221 	 * NOTE: XXX this could create problems with scans used in
3222 	 *	 situations other than mount-time recovery.
3223 	 *
3224 	 * NOTE: Lookups can race delete-duplicate because
3225 	 *	 delete-duplicate does not lock the parent's core
3226 	 *	 (they just use the spinlock on the core).
3227 	 */
3228 	if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3229 		hammer2_chain_unlock(chain);
3230 		hammer2_chain_drop(chain);
3231 		chain = NULL;
3232 
3233 		key = next_key;
3234 		if (key == 0) {
3235 			error |= HAMMER2_ERROR_EOF;
3236 			goto done;
3237 		}
3238 		goto again;
3239 	}
3240 
3241 done:
3242 	/*
3243 	 * All done, return the bref or NULL, supply chain if necessary.
3244 	 */
3245 	if (chain)
3246 		*chainp = chain;
3247 	return (error);
3248 }
3249 
3250 /*
3251  * Create and return a new hammer2 system memory structure of the specified
3252  * key, type and size and insert it under (*parentp).  This is a full
3253  * insertion, based on the supplied key/keybits, and may involve creating
3254  * indirect blocks and moving other chains around via delete/duplicate.
3255  *
3256  * This call can be made with parent == NULL as long as a non -1 methods
3257  * is supplied.  hmp must also be supplied in this situation (otherwise
3258  * hmp is extracted from the supplied parent).  The chain will be detached
3259  * from the topology.  A later call with both parent and chain can be made
3260  * to attach it.
3261  *
3262  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3263  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3264  * FULL.  This typically means that the caller is creating the chain after
3265  * doing a hammer2_chain_lookup().
3266  *
3267  * (*parentp) must be exclusive locked and may be replaced on return
3268  * depending on how much work the function had to do.
3269  *
3270  * (*parentp) must not be errored or this function will assert.
3271  *
3272  * (*chainp) usually starts out NULL and returns the newly created chain,
3273  * but if the caller desires the caller may allocate a disconnected chain
3274  * and pass it in instead.
3275  *
3276  * This function should NOT be used to insert INDIRECT blocks.  It is
3277  * typically used to create/insert inodes and data blocks.
3278  *
3279  * Caller must pass-in an exclusively locked parent the new chain is to
3280  * be inserted under, and optionally pass-in a disconnected, exclusively
3281  * locked chain to insert (else we create a new chain).  The function will
3282  * adjust (*parentp) as necessary, create or connect the chain, and
3283  * return an exclusively locked chain in *chainp.
3284  *
3285  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3286  * and will be reassigned.
3287  *
3288  * NOTE: returns HAMMER_ERROR_* flags
3289  */
3290 int
3291 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3292 		     hammer2_dev_t *hmp, hammer2_pfs_t *pmp, int methods,
3293 		     hammer2_key_t key, int keybits, int type, size_t bytes,
3294 		     hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3295 {
3296 	hammer2_chain_t *chain;
3297 	hammer2_chain_t *parent;
3298 	hammer2_blockref_t *base;
3299 	hammer2_blockref_t dummy;
3300 	int allocated = 0;
3301 	int error = 0;
3302 	int count;
3303 	int maxloops = 300000;
3304 
3305 	/*
3306 	 * Topology may be crossing a PFS boundary.
3307 	 */
3308 	parent = *parentp;
3309 	if (parent) {
3310 		KKASSERT(hammer2_mtx_owned(&parent->lock));
3311 		KKASSERT(parent->error == 0);
3312 		hmp = parent->hmp;
3313 	}
3314 	chain = *chainp;
3315 
3316 	if (chain == NULL) {
3317 		/*
3318 		 * First allocate media space and construct the dummy bref,
3319 		 * then allocate the in-memory chain structure.  Set the
3320 		 * INITIAL flag for fresh chains which do not have embedded
3321 		 * data.
3322 		 *
3323 		 * XXX for now set the check mode of the child based on
3324 		 *     the parent or, if the parent is an inode, the
3325 		 *     specification in the inode.
3326 		 */
3327 		bzero(&dummy, sizeof(dummy));
3328 		dummy.type = type;
3329 		dummy.key = key;
3330 		dummy.keybits = keybits;
3331 		dummy.data_off = hammer2_getradix(bytes);
3332 
3333 		/*
3334 		 * Inherit methods from parent by default.  Primarily used
3335 		 * for BREF_TYPE_DATA.  Non-data types *must* be set to
3336 		 * a non-NONE check algorithm.
3337 		 */
3338 		if (methods == -1)
3339 			dummy.methods = parent->bref.methods;
3340 		else
3341 			dummy.methods = (uint8_t)methods;
3342 
3343 		if (type != HAMMER2_BREF_TYPE_DATA &&
3344 		    HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3345 			dummy.methods |=
3346 				HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3347 		}
3348 
3349 		chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3350 
3351 		/*
3352 		 * Lock the chain manually, chain_lock will load the chain
3353 		 * which we do NOT want to do.  (note: chain->refs is set
3354 		 * to 1 by chain_alloc() for us, but lockcnt is not).
3355 		 */
3356 		chain->lockcnt = 1;
3357 		hammer2_mtx_ex(&chain->lock);
3358 		allocated = 1;
3359 		++curthread->td_tracker;
3360 
3361 		/*
3362 		 * Set INITIAL to optimize I/O.  The flag will generally be
3363 		 * processed when we call hammer2_chain_modify().
3364 		 *
3365 		 * Recalculate bytes to reflect the actual media block
3366 		 * allocation.  Handle special case radix 0 == 0 bytes.
3367 		 */
3368 		bytes = (size_t)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
3369 		if (bytes)
3370 			bytes = (hammer2_off_t)1 << bytes;
3371 		chain->bytes = bytes;
3372 
3373 		switch(type) {
3374 		case HAMMER2_BREF_TYPE_VOLUME:
3375 		case HAMMER2_BREF_TYPE_FREEMAP:
3376 			panic("hammer2_chain_create: called with volume type");
3377 			break;
3378 		case HAMMER2_BREF_TYPE_INDIRECT:
3379 			panic("hammer2_chain_create: cannot be used to"
3380 			      "create indirect block");
3381 			break;
3382 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3383 			panic("hammer2_chain_create: cannot be used to"
3384 			      "create freemap root or node");
3385 			break;
3386 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3387 			KKASSERT(bytes == sizeof(chain->data->bmdata));
3388 			/* fall through */
3389 		case HAMMER2_BREF_TYPE_DIRENT:
3390 		case HAMMER2_BREF_TYPE_INODE:
3391 		case HAMMER2_BREF_TYPE_DATA:
3392 		default:
3393 			/*
3394 			 * leave chain->data NULL, set INITIAL
3395 			 */
3396 			KKASSERT(chain->data == NULL);
3397 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3398 			break;
3399 		}
3400 	} else {
3401 		/*
3402 		 * We are reattaching a previously deleted chain, possibly
3403 		 * under a new parent and possibly with a new key/keybits.
3404 		 * The chain does not have to be in a modified state.  The
3405 		 * UPDATE flag will be set later on in this routine.
3406 		 *
3407 		 * Do NOT mess with the current state of the INITIAL flag.
3408 		 */
3409 		chain->bref.key = key;
3410 		chain->bref.keybits = keybits;
3411 		if (chain->flags & HAMMER2_CHAIN_DELETED)
3412 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3413 		KKASSERT(chain->parent == NULL);
3414 	}
3415 
3416 	/*
3417 	 * Set the appropriate bref flag if requested.
3418 	 *
3419 	 * NOTE! Callers can call this function to move chains without
3420 	 *	 knowing about special flags, so don't clear bref flags
3421 	 *	 here!
3422 	 */
3423 	if (flags & HAMMER2_INSERT_PFSROOT)
3424 		chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3425 
3426 	if (parent == NULL)
3427 		goto skip;
3428 
3429 	/*
3430 	 * Calculate how many entries we have in the blockref array and
3431 	 * determine if an indirect block is required when inserting into
3432 	 * the parent.
3433 	 */
3434 again:
3435 	if (--maxloops == 0)
3436 		panic("hammer2_chain_create: maxloops");
3437 
3438 	switch(parent->bref.type) {
3439 	case HAMMER2_BREF_TYPE_INODE:
3440 		if ((parent->data->ipdata.meta.op_flags &
3441 		     HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3442 			kprintf("hammer2: parent set for direct-data! "
3443 				"pkey=%016jx ckey=%016jx\n",
3444 				parent->bref.key,
3445 				chain->bref.key);
3446 	        }
3447 		KKASSERT((parent->data->ipdata.meta.op_flags &
3448 			  HAMMER2_OPFLAG_DIRECTDATA) == 0);
3449 		KKASSERT(parent->data != NULL);
3450 		base = &parent->data->ipdata.u.blockset.blockref[0];
3451 		count = HAMMER2_SET_COUNT;
3452 		break;
3453 	case HAMMER2_BREF_TYPE_INDIRECT:
3454 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3455 		if (parent->flags & HAMMER2_CHAIN_INITIAL)
3456 			base = NULL;
3457 		else
3458 			base = &parent->data->npdata[0];
3459 		count = parent->bytes / sizeof(hammer2_blockref_t);
3460 		break;
3461 	case HAMMER2_BREF_TYPE_VOLUME:
3462 		KKASSERT(parent->data != NULL);
3463 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3464 		count = HAMMER2_SET_COUNT;
3465 		break;
3466 	case HAMMER2_BREF_TYPE_FREEMAP:
3467 		KKASSERT(parent->data != NULL);
3468 		base = &parent->data->blkset.blockref[0];
3469 		count = HAMMER2_SET_COUNT;
3470 		break;
3471 	default:
3472 		panic("hammer2_chain_create: unrecognized blockref type: %d",
3473 		      parent->bref.type);
3474 		base = NULL;
3475 		count = 0;
3476 		break;
3477 	}
3478 
3479 	/*
3480 	 * Make sure we've counted the brefs
3481 	 */
3482 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3483 		hammer2_chain_countbrefs(parent, base, count);
3484 
3485 	KASSERT(parent->core.live_count >= 0 &&
3486 		parent->core.live_count <= count,
3487 		("bad live_count %d/%d (%02x, %d)",
3488 			parent->core.live_count, count,
3489 			parent->bref.type, parent->bytes));
3490 
3491 	/*
3492 	 * If no free blockref could be found we must create an indirect
3493 	 * block and move a number of blockrefs into it.  With the parent
3494 	 * locked we can safely lock each child in order to delete+duplicate
3495 	 * it without causing a deadlock.
3496 	 *
3497 	 * This may return the new indirect block or the old parent depending
3498 	 * on where the key falls.  NULL is returned on error.
3499 	 */
3500 	if (parent->core.live_count == count) {
3501 		hammer2_chain_t *nparent;
3502 
3503 		KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3504 
3505 		nparent = hammer2_chain_create_indirect(parent, key, keybits,
3506 							mtid, type, &error);
3507 		if (nparent == NULL) {
3508 			if (allocated)
3509 				hammer2_chain_drop(chain);
3510 			chain = NULL;
3511 			goto done;
3512 		}
3513 		if (parent != nparent) {
3514 			hammer2_chain_unlock(parent);
3515 			hammer2_chain_drop(parent);
3516 			parent = *parentp = nparent;
3517 		}
3518 		goto again;
3519 	}
3520 
3521 	/*
3522 	 * fall through if parent, or skip to here if no parent.
3523 	 */
3524 skip:
3525 	if (chain->flags & HAMMER2_CHAIN_DELETED)
3526 		kprintf("Inserting deleted chain @%016jx\n",
3527 			chain->bref.key);
3528 
3529 	/*
3530 	 * Link the chain into its parent.
3531 	 */
3532 	if (chain->parent != NULL)
3533 		panic("hammer2: hammer2_chain_create: chain already connected");
3534 	KKASSERT(chain->parent == NULL);
3535 	if (parent) {
3536 		KKASSERT(parent->core.live_count < count);
3537 		hammer2_chain_insert(parent, chain,
3538 				     HAMMER2_CHAIN_INSERT_SPIN |
3539 				     HAMMER2_CHAIN_INSERT_LIVE,
3540 				     0);
3541 	}
3542 
3543 	if (allocated) {
3544 		/*
3545 		 * Mark the newly created chain modified.  This will cause
3546 		 * UPDATE to be set and process the INITIAL flag.
3547 		 *
3548 		 * Device buffers are not instantiated for DATA elements
3549 		 * as these are handled by logical buffers.
3550 		 *
3551 		 * Indirect and freemap node indirect blocks are handled
3552 		 * by hammer2_chain_create_indirect() and not by this
3553 		 * function.
3554 		 *
3555 		 * Data for all other bref types is expected to be
3556 		 * instantiated (INODE, LEAF).
3557 		 */
3558 		switch(chain->bref.type) {
3559 		case HAMMER2_BREF_TYPE_DATA:
3560 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3561 		case HAMMER2_BREF_TYPE_DIRENT:
3562 		case HAMMER2_BREF_TYPE_INODE:
3563 			error = hammer2_chain_modify(chain, mtid, dedup_off,
3564 						     HAMMER2_MODIFY_OPTDATA);
3565 			break;
3566 		default:
3567 			/*
3568 			 * Remaining types are not supported by this function.
3569 			 * In particular, INDIRECT and LEAF_NODE types are
3570 			 * handled by create_indirect().
3571 			 */
3572 			panic("hammer2_chain_create: bad type: %d",
3573 			      chain->bref.type);
3574 			/* NOT REACHED */
3575 			break;
3576 		}
3577 	} else {
3578 		/*
3579 		 * When reconnecting a chain we must set UPDATE and
3580 		 * setflush so the flush recognizes that it must update
3581 		 * the bref in the parent.
3582 		 */
3583 		if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3584 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3585 	}
3586 
3587 	/*
3588 	 * We must setflush(parent) to ensure that it recurses through to
3589 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3590 	 * already set in the chain (so it won't recurse up to set it in the
3591 	 * parent).
3592 	 */
3593 	if (parent)
3594 		hammer2_chain_setflush(parent);
3595 
3596 done:
3597 	*chainp = chain;
3598 
3599 	return (error);
3600 }
3601 
3602 /*
3603  * Move the chain from its old parent to a new parent.  The chain must have
3604  * already been deleted or already disconnected (or never associated) with
3605  * a parent.  The chain is reassociated with the new parent and the deleted
3606  * flag will be cleared (no longer deleted).  The chain's modification state
3607  * is not altered.
3608  *
3609  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3610  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3611  * FULL.  This typically means that the caller is creating the chain after
3612  * doing a hammer2_chain_lookup().
3613  *
3614  * Neither (parent) or (chain) can be errored.
3615  *
3616  * If (parent) is non-NULL then the chain is inserted under the parent.
3617  *
3618  * If (parent) is NULL then the newly duplicated chain is not inserted
3619  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3620  * passing into hammer2_chain_create() after this function returns).
3621  *
3622  * WARNING! This function calls create which means it can insert indirect
3623  *	    blocks.  This can cause other unrelated chains in the parent to
3624  *	    be moved to a newly inserted indirect block in addition to the
3625  *	    specific chain.
3626  */
3627 void
3628 hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3629 		     hammer2_tid_t mtid, int flags)
3630 {
3631 	hammer2_blockref_t *bref;
3632 	hammer2_dev_t *hmp;
3633 	hammer2_chain_t *parent;
3634 	size_t bytes;
3635 
3636 	/*
3637 	 * WARNING!  We should never resolve DATA to device buffers
3638 	 *	     (XXX allow it if the caller did?), and since
3639 	 *	     we currently do not have the logical buffer cache
3640 	 *	     buffer in-hand to fix its cached physical offset
3641 	 *	     we also force the modify code to not COW it. XXX
3642 	 *
3643 	 * NOTE!     We allow error'd chains to be renamed.  The bref itself
3644 	 *	     is good and can be renamed.  The content, however, may
3645 	 *	     be inaccessible.
3646 	 */
3647 	hmp = chain->hmp;
3648 	KKASSERT(chain->parent == NULL);
3649 	/*KKASSERT(chain->error == 0); allow */
3650 
3651 	/*
3652 	 * Now create a duplicate of the chain structure, associating
3653 	 * it with the same core, making it the same size, pointing it
3654 	 * to the same bref (the same media block).
3655 	 *
3656 	 * NOTE: Handle special radix == 0 case (means 0 bytes).
3657 	 */
3658 	bref = &chain->bref;
3659 	bytes = (size_t)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
3660 	if (bytes)
3661 		bytes = (hammer2_off_t)1 << bytes;
3662 
3663 	/*
3664 	 * If parent is not NULL the duplicated chain will be entered under
3665 	 * the parent and the UPDATE bit set to tell flush to update
3666 	 * the blockref.
3667 	 *
3668 	 * We must setflush(parent) to ensure that it recurses through to
3669 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3670 	 * already set in the chain (so it won't recurse up to set it in the
3671 	 * parent).
3672 	 *
3673 	 * Having both chains locked is extremely important for atomicy.
3674 	 */
3675 	if (parentp && (parent = *parentp) != NULL) {
3676 		KKASSERT(hammer2_mtx_owned(&parent->lock));
3677 		KKASSERT(parent->refs > 0);
3678 		KKASSERT(parent->error == 0);
3679 
3680 		hammer2_chain_create(parentp, &chain, NULL, chain->pmp,
3681 				     HAMMER2_METH_DEFAULT,
3682 				     bref->key, bref->keybits, bref->type,
3683 				     chain->bytes, mtid, 0, flags);
3684 		KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3685 		hammer2_chain_setflush(*parentp);
3686 	}
3687 }
3688 
3689 /*
3690  * This works in tandem with delete_obref() to install a blockref in
3691  * (typically) an indirect block that is associated with the chain being
3692  * moved to *parentp.
3693  *
3694  * The reason we need this function is that the caller needs to maintain
3695  * the blockref as it was, and not generate a new blockref for what might
3696  * be a modified chain.  Otherwise stuff will leak into the flush that
3697  * the flush code's FLUSH_INODE_STOP flag is unable to catch.
3698  *
3699  * It is EXTREMELY important that we properly set CHAIN_BMAPUPD and
3700  * CHAIN_UPDATE.  We must set BMAPUPD if the bref does not match, and
3701  * we must clear CHAIN_UPDATE (that was likely set by the chain_rename) if
3702  * it does.  Otherwise we can end up in a situation where H2 is unable to
3703  * clean up the in-memory chain topology.
3704  *
3705  * The reason for this is that flushes do not generally flush through
3706  * BREF_TYPE_INODE chains and depend on a hammer2_inode_t queued to syncq
3707  * or sideq to properly flush and dispose of the related inode chain's flags.
3708  * Situations where the inode is not actually modified by the frontend,
3709  * but where we have to move the related chains around as we insert or cleanup
3710  * indirect blocks, can leave us with a 'dirty' (non-disposable) in-memory
3711  * inode chain that does not have a hammer2_inode_t associated with it.
3712  */
3713 void
3714 hammer2_chain_rename_obref(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3715 			   hammer2_tid_t mtid, int flags,
3716 			   hammer2_blockref_t *obref)
3717 {
3718 	hammer2_chain_rename(parentp, chain, mtid, flags);
3719 
3720 	if (obref->type != HAMMER2_BREF_TYPE_EMPTY) {
3721 		hammer2_blockref_t *tbase;
3722 		int tcount;
3723 
3724 		KKASSERT((chain->flags & HAMMER2_CHAIN_BMAPPED) == 0);
3725 		hammer2_chain_modify(*parentp, mtid, 0, 0);
3726 		tbase = hammer2_chain_base_and_count(*parentp, &tcount);
3727 		hammer2_base_insert(*parentp, tbase, tcount, chain, obref);
3728 		if (bcmp(obref, &chain->bref, sizeof(chain->bref))) {
3729 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD |
3730 						      HAMMER2_CHAIN_UPDATE);
3731 		} else {
3732 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3733 		}
3734 	}
3735 }
3736 
3737 /*
3738  * Helper function for deleting chains.
3739  *
3740  * The chain is removed from the live view (the RBTREE) as well as the parent's
3741  * blockmap.  Both chain and its parent must be locked.
3742  *
3743  * parent may not be errored.  chain can be errored.
3744  */
3745 static int
3746 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3747 			     hammer2_tid_t mtid, int flags,
3748 			     hammer2_blockref_t *obref)
3749 {
3750 	hammer2_dev_t *hmp;
3751 	int error = 0;
3752 
3753 	KKASSERT((chain->flags & (HAMMER2_CHAIN_DELETED |
3754 				  HAMMER2_CHAIN_FICTITIOUS)) == 0);
3755 	KKASSERT(chain->parent == parent);
3756 	hmp = chain->hmp;
3757 
3758 	if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3759 		/*
3760 		 * Chain is blockmapped, so there must be a parent.
3761 		 * Atomically remove the chain from the parent and remove
3762 		 * the blockmap entry.  The parent must be set modified
3763 		 * to remove the blockmap entry.
3764 		 */
3765 		hammer2_blockref_t *base;
3766 		int count;
3767 
3768 		KKASSERT(parent != NULL);
3769 		KKASSERT(parent->error == 0);
3770 		KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3771 		error = hammer2_chain_modify(parent, mtid, 0, 0);
3772 		if (error)
3773 			goto done;
3774 
3775 		/*
3776 		 * Calculate blockmap pointer
3777 		 */
3778 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3779 		hammer2_spin_ex(&chain->core.spin);
3780 		hammer2_spin_ex(&parent->core.spin);
3781 
3782 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3783 		atomic_add_int(&parent->core.live_count, -1);
3784 		++parent->core.generation;
3785 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3786 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3787 		--parent->core.chain_count;
3788 		chain->parent = NULL;
3789 
3790 		switch(parent->bref.type) {
3791 		case HAMMER2_BREF_TYPE_INODE:
3792 			/*
3793 			 * Access the inode's block array.  However, there
3794 			 * is no block array if the inode is flagged
3795 			 * DIRECTDATA.
3796 			 */
3797 			if (parent->data &&
3798 			    (parent->data->ipdata.meta.op_flags &
3799 			     HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3800 				base =
3801 				   &parent->data->ipdata.u.blockset.blockref[0];
3802 			} else {
3803 				base = NULL;
3804 			}
3805 			count = HAMMER2_SET_COUNT;
3806 			break;
3807 		case HAMMER2_BREF_TYPE_INDIRECT:
3808 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3809 			if (parent->data)
3810 				base = &parent->data->npdata[0];
3811 			else
3812 				base = NULL;
3813 			count = parent->bytes / sizeof(hammer2_blockref_t);
3814 			break;
3815 		case HAMMER2_BREF_TYPE_VOLUME:
3816 			base = &parent->data->voldata.
3817 					sroot_blockset.blockref[0];
3818 			count = HAMMER2_SET_COUNT;
3819 			break;
3820 		case HAMMER2_BREF_TYPE_FREEMAP:
3821 			base = &parent->data->blkset.blockref[0];
3822 			count = HAMMER2_SET_COUNT;
3823 			break;
3824 		default:
3825 			base = NULL;
3826 			count = 0;
3827 			panic("_hammer2_chain_delete_helper: "
3828 			      "unrecognized blockref type: %d",
3829 			      parent->bref.type);
3830 		}
3831 
3832 		/*
3833 		 * delete blockmapped chain from its parent.
3834 		 *
3835 		 * The parent is not affected by any statistics in chain
3836 		 * which are pending synchronization.  That is, there is
3837 		 * nothing to undo in the parent since they have not yet
3838 		 * been incorporated into the parent.
3839 		 *
3840 		 * The parent is affected by statistics stored in inodes.
3841 		 * Those have already been synchronized, so they must be
3842 		 * undone.  XXX split update possible w/delete in middle?
3843 		 */
3844 		if (base) {
3845 			hammer2_base_delete(parent, base, count, chain, obref);
3846 		}
3847 		hammer2_spin_unex(&parent->core.spin);
3848 		hammer2_spin_unex(&chain->core.spin);
3849 	} else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3850 		/*
3851 		 * Chain is not blockmapped but a parent is present.
3852 		 * Atomically remove the chain from the parent.  There is
3853 		 * no blockmap entry to remove.
3854 		 *
3855 		 * Because chain was associated with a parent but not
3856 		 * synchronized, the chain's *_count_up fields contain
3857 		 * inode adjustment statistics which must be undone.
3858 		 */
3859 		hammer2_spin_ex(&chain->core.spin);
3860 		hammer2_spin_ex(&parent->core.spin);
3861 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3862 		atomic_add_int(&parent->core.live_count, -1);
3863 		++parent->core.generation;
3864 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3865 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3866 		--parent->core.chain_count;
3867 		chain->parent = NULL;
3868 		hammer2_spin_unex(&parent->core.spin);
3869 		hammer2_spin_unex(&chain->core.spin);
3870 	} else {
3871 		/*
3872 		 * Chain is not blockmapped and has no parent.  This
3873 		 * is a degenerate case.
3874 		 */
3875 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3876 	}
3877 done:
3878 	return error;
3879 }
3880 
3881 /*
3882  * Create an indirect block that covers one or more of the elements in the
3883  * current parent.  Either returns the existing parent with no locking or
3884  * ref changes or returns the new indirect block locked and referenced
3885  * and leaving the original parent lock/ref intact as well.
3886  *
3887  * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3888  *
3889  * The returned chain depends on where the specified key falls.
3890  *
3891  * The key/keybits for the indirect mode only needs to follow three rules:
3892  *
3893  * (1) That all elements underneath it fit within its key space and
3894  *
3895  * (2) That all elements outside it are outside its key space.
3896  *
3897  * (3) When creating the new indirect block any elements in the current
3898  *     parent that fit within the new indirect block's keyspace must be
3899  *     moved into the new indirect block.
3900  *
3901  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3902  *     keyspace the the current parent, but lookup/iteration rules will
3903  *     ensure (and must ensure) that rule (2) for all parents leading up
3904  *     to the nearest inode or the root volume header is adhered to.  This
3905  *     is accomplished by always recursing through matching keyspaces in
3906  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3907  *
3908  * The current implementation calculates the current worst-case keyspace by
3909  * iterating the current parent and then divides it into two halves, choosing
3910  * whichever half has the most elements (not necessarily the half containing
3911  * the requested key).
3912  *
3913  * We can also opt to use the half with the least number of elements.  This
3914  * causes lower-numbered keys (aka logical file offsets) to recurse through
3915  * fewer indirect blocks and higher-numbered keys to recurse through more.
3916  * This also has the risk of not moving enough elements to the new indirect
3917  * block and being forced to create several indirect blocks before the element
3918  * can be inserted.
3919  *
3920  * Must be called with an exclusively locked parent.
3921  *
3922  * NOTE: *errorp set to HAMMER_ERROR_* flags
3923  */
3924 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3925 				hammer2_key_t *keyp, int keybits,
3926 				hammer2_blockref_t *base, int count);
3927 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
3928 				hammer2_key_t *keyp, int keybits,
3929 				hammer2_blockref_t *base, int count,
3930 				int ncount);
3931 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
3932 				hammer2_key_t *keyp, int keybits,
3933 				hammer2_blockref_t *base, int count,
3934 				int ncount);
3935 static
3936 hammer2_chain_t *
3937 hammer2_chain_create_indirect(hammer2_chain_t *parent,
3938 			      hammer2_key_t create_key, int create_bits,
3939 			      hammer2_tid_t mtid, int for_type, int *errorp)
3940 {
3941 	hammer2_dev_t *hmp;
3942 	hammer2_blockref_t *base;
3943 	hammer2_blockref_t *bref;
3944 	hammer2_blockref_t bcopy;
3945 	hammer2_chain_t *chain;
3946 	hammer2_chain_t *ichain;
3947 	hammer2_chain_t dummy;
3948 	hammer2_key_t key = create_key;
3949 	hammer2_key_t key_beg;
3950 	hammer2_key_t key_end;
3951 	hammer2_key_t key_next;
3952 	int keybits = create_bits;
3953 	int count;
3954 	int ncount;
3955 	int nbytes;
3956 	int loops;
3957 	int error;
3958 	int reason;
3959 	int generation;
3960 	int maxloops = 300000;
3961 
3962 	/*
3963 	 * Calculate the base blockref pointer or NULL if the chain
3964 	 * is known to be empty.  We need to calculate the array count
3965 	 * for RB lookups either way.
3966 	 */
3967 	hmp = parent->hmp;
3968 	KKASSERT(hammer2_mtx_owned(&parent->lock));
3969 
3970 	/*
3971 	 * Pre-modify the parent now to avoid having to deal with error
3972 	 * processing if we tried to later (in the middle of our loop).
3973 	 *
3974 	 * We are going to be moving bref's around, the indirect blocks
3975 	 * cannot be in an initial state.  Do not pass MODIFY_OPTDATA.
3976 	 */
3977 	*errorp = hammer2_chain_modify(parent, mtid, 0, 0);
3978 	if (*errorp) {
3979 		kprintf("hammer2_create_indirect: error %08x %s\n",
3980 			*errorp, hammer2_error_str(*errorp));
3981 		return NULL;
3982 	}
3983 	KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3984 
3985 	/*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
3986 	base = hammer2_chain_base_and_count(parent, &count);
3987 
3988 	/*
3989 	 * dummy used in later chain allocation (no longer used for lookups).
3990 	 */
3991 	bzero(&dummy, sizeof(dummy));
3992 
3993 	/*
3994 	 * How big should our new indirect block be?  It has to be at least
3995 	 * as large as its parent for splits to work properly.
3996 	 *
3997 	 * The freemap uses a specific indirect block size.  The number of
3998 	 * levels are built dynamically and ultimately depend on the size
3999 	 * volume.  Because freemap blocks are taken from the reserved areas
4000 	 * of the volume our goal is efficiency (fewer levels) and not so
4001 	 * much to save disk space.
4002 	 *
4003 	 * The first indirect block level for a directory usually uses
4004 	 * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
4005 	 * the hash mechanism, this typically gives us a nominal
4006 	 * 32 * 4 entries with one level of indirection.
4007 	 *
4008 	 * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
4009 	 * indirect blocks.  The initial 4 entries in the inode gives us
4010 	 * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
4011 	 * of indirection gives us 137GB, and so forth.  H2 can support
4012 	 * huge file sizes but they are not typical, so we try to stick
4013 	 * with compactness and do not use a larger indirect block size.
4014 	 *
4015 	 * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
4016 	 * due to the way indirect blocks are created this usually winds
4017 	 * up being extremely inefficient for small files.  Even though
4018 	 * 16KB requires more levels of indirection for very large files,
4019 	 * the 16KB records can be ganged together into 64KB DIOs.
4020 	 */
4021 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4022 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4023 		nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
4024 	} else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4025 		if (parent->data->ipdata.meta.type ==
4026 		    HAMMER2_OBJTYPE_DIRECTORY)
4027 			nbytes = HAMMER2_IND_BYTES_MIN;	/* 4KB = 32 entries */
4028 		else
4029 			nbytes = HAMMER2_IND_BYTES_NOM;	/* 16KB = ~8MB file */
4030 
4031 	} else {
4032 		nbytes = HAMMER2_IND_BYTES_NOM;
4033 	}
4034 	if (nbytes < count * sizeof(hammer2_blockref_t)) {
4035 		KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
4036 			 for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
4037 		nbytes = count * sizeof(hammer2_blockref_t);
4038 	}
4039 	ncount = nbytes / sizeof(hammer2_blockref_t);
4040 
4041 	/*
4042 	 * When creating an indirect block for a freemap node or leaf
4043 	 * the key/keybits must be fitted to static radix levels because
4044 	 * particular radix levels use particular reserved blocks in the
4045 	 * related zone.
4046 	 *
4047 	 * This routine calculates the key/radix of the indirect block
4048 	 * we need to create, and whether it is on the high-side or the
4049 	 * low-side.
4050 	 */
4051 	switch(for_type) {
4052 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4053 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4054 		keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
4055 						       base, count);
4056 		break;
4057 	case HAMMER2_BREF_TYPE_DATA:
4058 		keybits = hammer2_chain_indkey_file(parent, &key, keybits,
4059 						    base, count, ncount);
4060 		break;
4061 	case HAMMER2_BREF_TYPE_DIRENT:
4062 	case HAMMER2_BREF_TYPE_INODE:
4063 		keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
4064 						   base, count, ncount);
4065 		break;
4066 	default:
4067 		panic("illegal indirect block for bref type %d", for_type);
4068 		break;
4069 	}
4070 
4071 	/*
4072 	 * Normalize the key for the radix being represented, keeping the
4073 	 * high bits and throwing away the low bits.
4074 	 */
4075 	key &= ~(((hammer2_key_t)1 << keybits) - 1);
4076 
4077 	/*
4078 	 * Ok, create our new indirect block
4079 	 */
4080 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4081 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4082 		dummy.bref.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4083 	} else {
4084 		dummy.bref.type = HAMMER2_BREF_TYPE_INDIRECT;
4085 	}
4086 	dummy.bref.key = key;
4087 	dummy.bref.keybits = keybits;
4088 	dummy.bref.data_off = hammer2_getradix(nbytes);
4089 	dummy.bref.methods =
4090 		HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4091 		HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4092 
4093 	ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy.bref);
4094 	atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4095 	hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4096 	/* ichain has one ref at this point */
4097 
4098 	/*
4099 	 * We have to mark it modified to allocate its block, but use
4100 	 * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
4101 	 * it won't be acted upon by the flush code.
4102 	 *
4103 	 * XXX remove OPTDATA, we need a fully initialized indirect block to
4104 	 * be able to move the original blockref.
4105 	 */
4106 	*errorp = hammer2_chain_modify(ichain, mtid, 0, 0);
4107 	if (*errorp) {
4108 		kprintf("hammer2_alloc_indirect: error %08x %s\n",
4109 			*errorp, hammer2_error_str(*errorp));
4110 		hammer2_chain_unlock(ichain);
4111 		hammer2_chain_drop(ichain);
4112 		return NULL;
4113 	}
4114 	KKASSERT((ichain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4115 
4116 	/*
4117 	 * Iterate the original parent and move the matching brefs into
4118 	 * the new indirect block.
4119 	 *
4120 	 * XXX handle flushes.
4121 	 */
4122 	key_beg = 0;
4123 	key_end = HAMMER2_KEY_MAX;
4124 	key_next = 0;	/* avoid gcc warnings */
4125 	hammer2_spin_ex(&parent->core.spin);
4126 	loops = 0;
4127 	reason = 0;
4128 
4129 	for (;;) {
4130 		/*
4131 		 * Parent may have been modified, relocating its block array.
4132 		 * Reload the base pointer.
4133 		 */
4134 		base = hammer2_chain_base_and_count(parent, &count);
4135 
4136 		if (++loops > 100000) {
4137 		    hammer2_spin_unex(&parent->core.spin);
4138 		    panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4139 			  reason, parent, base, count, key_next);
4140 		}
4141 
4142 		/*
4143 		 * NOTE: spinlock stays intact, returned chain (if not NULL)
4144 		 *	 is not referenced or locked which means that we
4145 		 *	 cannot safely check its flagged / deletion status
4146 		 *	 until we lock it.
4147 		 */
4148 		chain = hammer2_combined_find(parent, base, count,
4149 					      &key_next,
4150 					      key_beg, key_end,
4151 					      &bref);
4152 		generation = parent->core.generation;
4153 		if (bref == NULL)
4154 			break;
4155 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4156 
4157 		/*
4158 		 * Skip keys that are not within the key/radix of the new
4159 		 * indirect block.  They stay in the parent.
4160 		 */
4161 		if ((~(((hammer2_key_t)1 << keybits) - 1) &
4162 		    (key ^ bref->key)) != 0) {
4163 			goto next_key_spinlocked;
4164 		}
4165 
4166 		/*
4167 		 * Load the new indirect block by acquiring the related
4168 		 * chains (potentially from media as it might not be
4169 		 * in-memory).  Then move it to the new parent (ichain).
4170 		 *
4171 		 * chain is referenced but not locked.  We must lock the
4172 		 * chain to obtain definitive state.
4173 		 */
4174 		bcopy = *bref;
4175 		if (chain) {
4176 			/*
4177 			 * Use chain already present in the RBTREE
4178 			 */
4179 			hammer2_chain_ref(chain);
4180 			hammer2_spin_unex(&parent->core.spin);
4181 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4182 		} else {
4183 			/*
4184 			 * Get chain for blockref element.  _get returns NULL
4185 			 * on insertion race.
4186 			 */
4187 			hammer2_spin_unex(&parent->core.spin);
4188 			chain = hammer2_chain_get(parent, generation, &bcopy,
4189 						  HAMMER2_RESOLVE_NEVER);
4190 			if (chain == NULL) {
4191 				reason = 1;
4192 				hammer2_spin_ex(&parent->core.spin);
4193 				continue;
4194 			}
4195 		}
4196 
4197 		/*
4198 		 * This is always live so if the chain has been deleted
4199 		 * we raced someone and we have to retry.
4200 		 *
4201 		 * NOTE: Lookups can race delete-duplicate because
4202 		 *	 delete-duplicate does not lock the parent's core
4203 		 *	 (they just use the spinlock on the core).
4204 		 *
4205 		 *	 (note reversed logic for this one)
4206 		 */
4207 		if (bcmp(&bcopy, &chain->bref, sizeof(bcopy)) ||
4208 		    chain->parent != parent ||
4209 		    (chain->flags & HAMMER2_CHAIN_DELETED)) {
4210 			hammer2_chain_unlock(chain);
4211 			hammer2_chain_drop(chain);
4212 			if (hammer2_debug & 0x0040) {
4213 				kprintf("LOST PARENT RETRY "
4214 				"RETRY (%p,%p)->%p %08x\n",
4215 				parent, chain->parent, chain, chain->flags);
4216 			}
4217 			hammer2_spin_ex(&parent->core.spin);
4218 			continue;
4219 		}
4220 
4221 		/*
4222 		 * Shift the chain to the indirect block.
4223 		 *
4224 		 * WARNING! No reason for us to load chain data, pass NOSTATS
4225 		 *	    to prevent delete/insert from trying to access
4226 		 *	    inode stats (and thus asserting if there is no
4227 		 *	    chain->data loaded).
4228 		 *
4229 		 * WARNING! The (parent, chain) deletion may modify the parent
4230 		 *	    and invalidate the base pointer.
4231 		 *
4232 		 * WARNING! Parent must already be marked modified, so we
4233 		 *	    can assume that chain_delete always suceeds.
4234 		 *
4235 		 * WARNING! hammer2_chain_repchange() does not have to be
4236 		 *	    called (and doesn't work anyway because we are
4237 		 *	    only doing a partial shift).  A recursion that is
4238 		 *	    in-progress can continue at the current parent
4239 		 *	    and will be able to properly find its next key.
4240 		 */
4241 		error = hammer2_chain_delete_obref(parent, chain, mtid, 0,
4242 						   &bcopy);
4243 		KKASSERT(error == 0);
4244 		hammer2_chain_rename_obref(&ichain, chain, mtid, 0, &bcopy);
4245 		hammer2_chain_unlock(chain);
4246 		hammer2_chain_drop(chain);
4247 		KKASSERT(parent->refs > 0);
4248 		chain = NULL;
4249 		base = NULL;	/* safety */
4250 		hammer2_spin_ex(&parent->core.spin);
4251 next_key_spinlocked:
4252 		if (--maxloops == 0)
4253 			panic("hammer2_chain_create_indirect: maxloops");
4254 		reason = 4;
4255 		if (key_next == 0 || key_next > key_end)
4256 			break;
4257 		key_beg = key_next;
4258 		/* loop */
4259 	}
4260 	hammer2_spin_unex(&parent->core.spin);
4261 
4262 	/*
4263 	 * Insert the new indirect block into the parent now that we've
4264 	 * cleared out some entries in the parent.  We calculated a good
4265 	 * insertion index in the loop above (ichain->index).
4266 	 *
4267 	 * We don't have to set UPDATE here because we mark ichain
4268 	 * modified down below (so the normal modified -> flush -> set-moved
4269 	 * sequence applies).
4270 	 *
4271 	 * The insertion shouldn't race as this is a completely new block
4272 	 * and the parent is locked.
4273 	 */
4274 	base = NULL;	/* safety, parent modify may change address */
4275 	KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4276 	KKASSERT(parent->core.live_count < count);
4277 	hammer2_chain_insert(parent, ichain,
4278 			     HAMMER2_CHAIN_INSERT_SPIN |
4279 			     HAMMER2_CHAIN_INSERT_LIVE,
4280 			     0);
4281 
4282 	/*
4283 	 * Make sure flushes propogate after our manual insertion.
4284 	 */
4285 	hammer2_chain_setflush(ichain);
4286 	hammer2_chain_setflush(parent);
4287 
4288 	/*
4289 	 * Figure out what to return.
4290 	 */
4291 	if (~(((hammer2_key_t)1 << keybits) - 1) &
4292 		   (create_key ^ key)) {
4293 		/*
4294 		 * Key being created is outside the key range,
4295 		 * return the original parent.
4296 		 */
4297 		hammer2_chain_unlock(ichain);
4298 		hammer2_chain_drop(ichain);
4299 	} else {
4300 		/*
4301 		 * Otherwise its in the range, return the new parent.
4302 		 * (leave both the new and old parent locked).
4303 		 */
4304 		parent = ichain;
4305 	}
4306 
4307 	return(parent);
4308 }
4309 
4310 /*
4311  * Do maintenance on an indirect chain.  Both parent and chain are locked.
4312  *
4313  * Returns non-zero if (chain) is deleted, either due to being empty or
4314  * because its children were safely moved into the parent.
4315  */
4316 int
4317 hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4318 				   hammer2_chain_t *chain)
4319 {
4320 	hammer2_blockref_t *chain_base;
4321 	hammer2_blockref_t *base;
4322 	hammer2_blockref_t *bref;
4323 	hammer2_blockref_t bcopy;
4324 	hammer2_key_t key_next;
4325 	hammer2_key_t key_beg;
4326 	hammer2_key_t key_end;
4327 	hammer2_chain_t *sub;
4328 	int chain_count;
4329 	int count;
4330 	int error;
4331 	int generation;
4332 
4333 	/*
4334 	 * Make sure we have an accurate live_count
4335 	 */
4336 	if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4337 			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4338 		base = &chain->data->npdata[0];
4339 		count = chain->bytes / sizeof(hammer2_blockref_t);
4340 		hammer2_chain_countbrefs(chain, base, count);
4341 	}
4342 
4343 	/*
4344 	 * If the indirect block is empty we can delete it.
4345 	 * (ignore deletion error)
4346 	 */
4347 	if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4348 		hammer2_chain_delete(parent, chain,
4349 				     chain->bref.modify_tid,
4350 				     HAMMER2_DELETE_PERMANENT);
4351 		hammer2_chain_repchange(parent, chain);
4352 		return 1;
4353 	}
4354 
4355 	base = hammer2_chain_base_and_count(parent, &count);
4356 
4357 	if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4358 			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4359 		hammer2_chain_countbrefs(parent, base, count);
4360 	}
4361 
4362 	/*
4363 	 * Determine if we can collapse chain into parent, calculate
4364 	 * hysteresis for chain emptiness.
4365 	 */
4366 	if (parent->core.live_count + chain->core.live_count - 1 > count)
4367 		return 0;
4368 	chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4369 	if (chain->core.live_count > chain_count * 3 / 4)
4370 		return 0;
4371 
4372 	/*
4373 	 * Ok, theoretically we can collapse chain's contents into
4374 	 * parent.  chain is locked, but any in-memory children of chain
4375 	 * are not.  For this to work, we must be able to dispose of any
4376 	 * in-memory children of chain.
4377 	 *
4378 	 * For now require that there are no in-memory children of chain.
4379 	 *
4380 	 * WARNING! Both chain and parent must remain locked across this
4381 	 *	    entire operation.
4382 	 */
4383 
4384 	/*
4385 	 * Parent must be marked modified.  Don't try to collapse it if we
4386 	 * can't mark it modified.  Once modified, destroy chain to make room
4387 	 * and to get rid of what will be a conflicting key (this is included
4388 	 * in the calculation above).  Finally, move the children of chain
4389 	 * into chain's parent.
4390 	 *
4391 	 * This order creates an accounting problem for bref.embed.stats
4392 	 * because we destroy chain before we remove its children.  Any
4393 	 * elements whos blockref is already synchronized will be counted
4394 	 * twice.  To deal with the problem we clean out chain's stats prior
4395 	 * to deleting it.
4396 	 */
4397 	error = hammer2_chain_modify(parent, 0, 0, 0);
4398 	if (error) {
4399 		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4400 			    hammer2_error_str(error));
4401 		return 0;
4402 	}
4403 	error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4404 	if (error) {
4405 		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4406 			    hammer2_error_str(error));
4407 		return 0;
4408 	}
4409 
4410 	chain->bref.embed.stats.inode_count = 0;
4411 	chain->bref.embed.stats.data_count = 0;
4412 	error = hammer2_chain_delete(parent, chain,
4413 				     chain->bref.modify_tid,
4414 				     HAMMER2_DELETE_PERMANENT);
4415 	KKASSERT(error == 0);
4416 
4417 	/*
4418 	 * The combined_find call requires core.spin to be held.  One would
4419 	 * think there wouldn't be any conflicts since we hold chain
4420 	 * exclusively locked, but the caching mechanism for 0-ref children
4421 	 * does not require a chain lock.
4422 	 */
4423 	hammer2_spin_ex(&chain->core.spin);
4424 
4425 	key_next = 0;
4426 	key_beg = 0;
4427 	key_end = HAMMER2_KEY_MAX;
4428 	for (;;) {
4429 		chain_base = &chain->data->npdata[0];
4430 		chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4431 		sub = hammer2_combined_find(chain, chain_base, chain_count,
4432 					    &key_next,
4433 					    key_beg, key_end,
4434 					    &bref);
4435 		generation = chain->core.generation;
4436 		if (bref == NULL)
4437 			break;
4438 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4439 
4440 		bcopy = *bref;
4441 		if (sub) {
4442 			hammer2_chain_ref(sub);
4443 			hammer2_spin_unex(&chain->core.spin);
4444 			hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4445 		} else {
4446 			hammer2_spin_unex(&chain->core.spin);
4447 			sub = hammer2_chain_get(chain, generation, &bcopy,
4448 						HAMMER2_RESOLVE_NEVER);
4449 			if (sub == NULL) {
4450 				hammer2_spin_ex(&chain->core.spin);
4451 				continue;
4452 			}
4453 		}
4454 		if (bcmp(&bcopy, &sub->bref, sizeof(bcopy)) ||
4455 		    sub->parent != chain ||
4456 		    (sub->flags & HAMMER2_CHAIN_DELETED)) {
4457 			hammer2_chain_unlock(sub);
4458 			hammer2_chain_drop(sub);
4459 			hammer2_spin_ex(&chain->core.spin);
4460 			sub = NULL;	/* safety */
4461 			continue;
4462 		}
4463 		error = hammer2_chain_delete_obref(chain, sub,
4464 						   sub->bref.modify_tid, 0,
4465 						   &bcopy);
4466 		KKASSERT(error == 0);
4467 		hammer2_chain_rename_obref(&parent, sub,
4468 				     sub->bref.modify_tid,
4469 				     HAMMER2_INSERT_SAMEPARENT, &bcopy);
4470 		hammer2_chain_unlock(sub);
4471 		hammer2_chain_drop(sub);
4472 		hammer2_spin_ex(&chain->core.spin);
4473 
4474 		if (key_next == 0)
4475 			break;
4476 		key_beg = key_next;
4477 	}
4478 	hammer2_spin_unex(&chain->core.spin);
4479 
4480 	hammer2_chain_repchange(parent, chain);
4481 
4482 	return 1;
4483 }
4484 
4485 /*
4486  * Freemap indirect blocks
4487  *
4488  * Calculate the keybits and highside/lowside of the freemap node the
4489  * caller is creating.
4490  *
4491  * This routine will specify the next higher-level freemap key/radix
4492  * representing the lowest-ordered set.  By doing so, eventually all
4493  * low-ordered sets will be moved one level down.
4494  *
4495  * We have to be careful here because the freemap reserves a limited
4496  * number of blocks for a limited number of levels.  So we can't just
4497  * push indiscriminately.
4498  */
4499 int
4500 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4501 			     int keybits, hammer2_blockref_t *base, int count)
4502 {
4503 	hammer2_chain_t *chain;
4504 	hammer2_blockref_t *bref;
4505 	hammer2_key_t key;
4506 	hammer2_key_t key_beg;
4507 	hammer2_key_t key_end;
4508 	hammer2_key_t key_next;
4509 	int locount;
4510 	int hicount;
4511 	int maxloops = 300000;
4512 
4513 	key = *keyp;
4514 	locount = 0;
4515 	hicount = 0;
4516 	keybits = 64;
4517 
4518 	/*
4519 	 * Calculate the range of keys in the array being careful to skip
4520 	 * slots which are overridden with a deletion.
4521 	 */
4522 	key_beg = 0;
4523 	key_end = HAMMER2_KEY_MAX;
4524 	hammer2_spin_ex(&parent->core.spin);
4525 
4526 	for (;;) {
4527 		if (--maxloops == 0) {
4528 			panic("indkey_freemap shit %p %p:%d\n",
4529 			      parent, base, count);
4530 		}
4531 		chain = hammer2_combined_find(parent, base, count,
4532 					      &key_next,
4533 					      key_beg, key_end,
4534 					      &bref);
4535 
4536 		/*
4537 		 * Exhausted search
4538 		 */
4539 		if (bref == NULL)
4540 			break;
4541 
4542 		/*
4543 		 * Skip deleted chains.
4544 		 */
4545 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4546 			if (key_next == 0 || key_next > key_end)
4547 				break;
4548 			key_beg = key_next;
4549 			continue;
4550 		}
4551 
4552 		/*
4553 		 * Use the full live (not deleted) element for the scan
4554 		 * iteration.  HAMMER2 does not allow partial replacements.
4555 		 *
4556 		 * XXX should be built into hammer2_combined_find().
4557 		 */
4558 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4559 
4560 		if (keybits > bref->keybits) {
4561 			key = bref->key;
4562 			keybits = bref->keybits;
4563 		} else if (keybits == bref->keybits && bref->key < key) {
4564 			key = bref->key;
4565 		}
4566 		if (key_next == 0)
4567 			break;
4568 		key_beg = key_next;
4569 	}
4570 	hammer2_spin_unex(&parent->core.spin);
4571 
4572 	/*
4573 	 * Return the keybits for a higher-level FREEMAP_NODE covering
4574 	 * this node.
4575 	 */
4576 	switch(keybits) {
4577 	case HAMMER2_FREEMAP_LEVEL0_RADIX:
4578 		keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4579 		break;
4580 	case HAMMER2_FREEMAP_LEVEL1_RADIX:
4581 		keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4582 		break;
4583 	case HAMMER2_FREEMAP_LEVEL2_RADIX:
4584 		keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4585 		break;
4586 	case HAMMER2_FREEMAP_LEVEL3_RADIX:
4587 		keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4588 		break;
4589 	case HAMMER2_FREEMAP_LEVEL4_RADIX:
4590 		keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4591 		break;
4592 	case HAMMER2_FREEMAP_LEVEL5_RADIX:
4593 		panic("hammer2_chain_indkey_freemap: level too high");
4594 		break;
4595 	default:
4596 		panic("hammer2_chain_indkey_freemap: bad radix");
4597 		break;
4598 	}
4599 	*keyp = key;
4600 
4601 	return (keybits);
4602 }
4603 
4604 /*
4605  * File indirect blocks
4606  *
4607  * Calculate the key/keybits for the indirect block to create by scanning
4608  * existing keys.  The key being created is also passed in *keyp and can be
4609  * inside or outside the indirect block.  Regardless, the indirect block
4610  * must hold at least two keys in order to guarantee sufficient space.
4611  *
4612  * We use a modified version of the freemap's fixed radix tree, but taylored
4613  * for file data.  Basically we configure an indirect block encompassing the
4614  * smallest key.
4615  */
4616 static int
4617 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4618 			    int keybits, hammer2_blockref_t *base, int count,
4619 			    int ncount)
4620 {
4621 	hammer2_chain_t *chain;
4622 	hammer2_blockref_t *bref;
4623 	hammer2_key_t key;
4624 	hammer2_key_t key_beg;
4625 	hammer2_key_t key_end;
4626 	hammer2_key_t key_next;
4627 	int nradix;
4628 	int locount;
4629 	int hicount;
4630 	int maxloops = 300000;
4631 
4632 	key = *keyp;
4633 	locount = 0;
4634 	hicount = 0;
4635 	keybits = 64;
4636 
4637 	/*
4638 	 * Calculate the range of keys in the array being careful to skip
4639 	 * slots which are overridden with a deletion.
4640 	 *
4641 	 * Locate the smallest key.
4642 	 */
4643 	key_beg = 0;
4644 	key_end = HAMMER2_KEY_MAX;
4645 	hammer2_spin_ex(&parent->core.spin);
4646 
4647 	for (;;) {
4648 		if (--maxloops == 0) {
4649 			panic("indkey_freemap shit %p %p:%d\n",
4650 			      parent, base, count);
4651 		}
4652 		chain = hammer2_combined_find(parent, base, count,
4653 					      &key_next,
4654 					      key_beg, key_end,
4655 					      &bref);
4656 
4657 		/*
4658 		 * Exhausted search
4659 		 */
4660 		if (bref == NULL)
4661 			break;
4662 
4663 		/*
4664 		 * Skip deleted chains.
4665 		 */
4666 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4667 			if (key_next == 0 || key_next > key_end)
4668 				break;
4669 			key_beg = key_next;
4670 			continue;
4671 		}
4672 
4673 		/*
4674 		 * Use the full live (not deleted) element for the scan
4675 		 * iteration.  HAMMER2 does not allow partial replacements.
4676 		 *
4677 		 * XXX should be built into hammer2_combined_find().
4678 		 */
4679 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4680 
4681 		if (keybits > bref->keybits) {
4682 			key = bref->key;
4683 			keybits = bref->keybits;
4684 		} else if (keybits == bref->keybits && bref->key < key) {
4685 			key = bref->key;
4686 		}
4687 		if (key_next == 0)
4688 			break;
4689 		key_beg = key_next;
4690 	}
4691 	hammer2_spin_unex(&parent->core.spin);
4692 
4693 	/*
4694 	 * Calculate the static keybits for a higher-level indirect block
4695 	 * that contains the key.
4696 	 */
4697 	*keyp = key;
4698 
4699 	switch(ncount) {
4700 	case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4701 		nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4702 		break;
4703 	case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4704 		nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4705 		break;
4706 	case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4707 		nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4708 		break;
4709 	default:
4710 		panic("bad ncount %d\n", ncount);
4711 		nradix = 0;
4712 		break;
4713 	}
4714 
4715 	/*
4716 	 * The largest radix that can be returned for an indirect block is
4717 	 * 63 bits.  (The largest practical indirect block radix is actually
4718 	 * 62 bits because the top-level inode or volume root contains four
4719 	 * entries, but allow 63 to be returned).
4720 	 */
4721 	if (nradix >= 64)
4722 		nradix = 63;
4723 
4724 	return keybits + nradix;
4725 }
4726 
4727 #if 1
4728 
4729 /*
4730  * Directory indirect blocks.
4731  *
4732  * Covers both the inode index (directory of inodes), and directory contents
4733  * (filenames hardlinked to inodes).
4734  *
4735  * Because directory keys are hashed we generally try to cut the space in
4736  * half.  We accomodate the inode index (which tends to have linearly
4737  * increasing inode numbers) by ensuring that the keyspace is at least large
4738  * enough to fill up the indirect block being created.
4739  */
4740 static int
4741 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4742 			 int keybits, hammer2_blockref_t *base, int count,
4743 			 int ncount)
4744 {
4745 	hammer2_blockref_t *bref;
4746 	hammer2_chain_t	*chain;
4747 	hammer2_key_t key_beg;
4748 	hammer2_key_t key_end;
4749 	hammer2_key_t key_next;
4750 	hammer2_key_t key;
4751 	int nkeybits;
4752 	int locount;
4753 	int hicount;
4754 	int maxloops = 300000;
4755 
4756 	/*
4757 	 * NOTE: We can't take a shortcut here anymore for inodes because
4758 	 *	 the root directory can contain a mix of inodes and directory
4759 	 *	 entries (we used to just return 63 if parent->bref.type was
4760 	 *	 HAMMER2_BREF_TYPE_INODE.
4761 	 */
4762 	key = *keyp;
4763 	locount = 0;
4764 	hicount = 0;
4765 
4766 	/*
4767 	 * Calculate the range of keys in the array being careful to skip
4768 	 * slots which are overridden with a deletion.
4769 	 */
4770 	key_beg = 0;
4771 	key_end = HAMMER2_KEY_MAX;
4772 	hammer2_spin_ex(&parent->core.spin);
4773 
4774 	for (;;) {
4775 		if (--maxloops == 0) {
4776 			panic("indkey_freemap shit %p %p:%d\n",
4777 			      parent, base, count);
4778 		}
4779 		chain = hammer2_combined_find(parent, base, count,
4780 					      &key_next,
4781 					      key_beg, key_end,
4782 					      &bref);
4783 
4784 		/*
4785 		 * Exhausted search
4786 		 */
4787 		if (bref == NULL)
4788 			break;
4789 
4790 		/*
4791 		 * Deleted object
4792 		 */
4793 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4794 			if (key_next == 0 || key_next > key_end)
4795 				break;
4796 			key_beg = key_next;
4797 			continue;
4798 		}
4799 
4800 		/*
4801 		 * Use the full live (not deleted) element for the scan
4802 		 * iteration.  HAMMER2 does not allow partial replacements.
4803 		 *
4804 		 * XXX should be built into hammer2_combined_find().
4805 		 */
4806 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4807 
4808 		/*
4809 		 * Expand our calculated key range (key, keybits) to fit
4810 		 * the scanned key.  nkeybits represents the full range
4811 		 * that we will later cut in half (two halves @ nkeybits - 1).
4812 		 */
4813 		nkeybits = keybits;
4814 		if (nkeybits < bref->keybits) {
4815 			if (bref->keybits > 64) {
4816 				kprintf("bad bref chain %p bref %p\n",
4817 					chain, bref);
4818 				Debugger("fubar");
4819 			}
4820 			nkeybits = bref->keybits;
4821 		}
4822 		while (nkeybits < 64 &&
4823 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
4824 		        (key ^ bref->key)) != 0) {
4825 			++nkeybits;
4826 		}
4827 
4828 		/*
4829 		 * If the new key range is larger we have to determine
4830 		 * which side of the new key range the existing keys fall
4831 		 * under by checking the high bit, then collapsing the
4832 		 * locount into the hicount or vise-versa.
4833 		 */
4834 		if (keybits != nkeybits) {
4835 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4836 				hicount += locount;
4837 				locount = 0;
4838 			} else {
4839 				locount += hicount;
4840 				hicount = 0;
4841 			}
4842 			keybits = nkeybits;
4843 		}
4844 
4845 		/*
4846 		 * The newly scanned key will be in the lower half or the
4847 		 * upper half of the (new) key range.
4848 		 */
4849 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4850 			++hicount;
4851 		else
4852 			++locount;
4853 
4854 		if (key_next == 0)
4855 			break;
4856 		key_beg = key_next;
4857 	}
4858 	hammer2_spin_unex(&parent->core.spin);
4859 	bref = NULL;	/* now invalid (safety) */
4860 
4861 	/*
4862 	 * Adjust keybits to represent half of the full range calculated
4863 	 * above (radix 63 max) for our new indirect block.
4864 	 */
4865 	--keybits;
4866 
4867 	/*
4868 	 * Expand keybits to hold at least ncount elements.  ncount will be
4869 	 * a power of 2.  This is to try to completely fill leaf nodes (at
4870 	 * least for keys which are not hashes).
4871 	 *
4872 	 * We aren't counting 'in' or 'out', we are counting 'high side'
4873 	 * and 'low side' based on the bit at (1LL << keybits).  We want
4874 	 * everything to be inside in these cases so shift it all to
4875 	 * the low or high side depending on the new high bit.
4876 	 */
4877 	while (((hammer2_key_t)1 << keybits) < ncount) {
4878 		++keybits;
4879 		if (key & ((hammer2_key_t)1 << keybits)) {
4880 			hicount += locount;
4881 			locount = 0;
4882 		} else {
4883 			locount += hicount;
4884 			hicount = 0;
4885 		}
4886 	}
4887 
4888 	if (hicount > locount)
4889 		key |= (hammer2_key_t)1 << keybits;
4890 	else
4891 		key &= ~(hammer2_key_t)1 << keybits;
4892 
4893 	*keyp = key;
4894 
4895 	return (keybits);
4896 }
4897 
4898 #else
4899 
4900 /*
4901  * Directory indirect blocks.
4902  *
4903  * Covers both the inode index (directory of inodes), and directory contents
4904  * (filenames hardlinked to inodes).
4905  *
4906  * Because directory keys are hashed we generally try to cut the space in
4907  * half.  We accomodate the inode index (which tends to have linearly
4908  * increasing inode numbers) by ensuring that the keyspace is at least large
4909  * enough to fill up the indirect block being created.
4910  */
4911 static int
4912 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4913 			 int keybits, hammer2_blockref_t *base, int count,
4914 			 int ncount)
4915 {
4916 	hammer2_blockref_t *bref;
4917 	hammer2_chain_t	*chain;
4918 	hammer2_key_t key_beg;
4919 	hammer2_key_t key_end;
4920 	hammer2_key_t key_next;
4921 	hammer2_key_t key;
4922 	int nkeybits;
4923 	int locount;
4924 	int hicount;
4925 	int maxloops = 300000;
4926 
4927 	/*
4928 	 * Shortcut if the parent is the inode.  In this situation the
4929 	 * parent has 4+1 directory entries and we are creating an indirect
4930 	 * block capable of holding many more.
4931 	 */
4932 	if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4933 		return 63;
4934 	}
4935 
4936 	key = *keyp;
4937 	locount = 0;
4938 	hicount = 0;
4939 
4940 	/*
4941 	 * Calculate the range of keys in the array being careful to skip
4942 	 * slots which are overridden with a deletion.
4943 	 */
4944 	key_beg = 0;
4945 	key_end = HAMMER2_KEY_MAX;
4946 	hammer2_spin_ex(&parent->core.spin);
4947 
4948 	for (;;) {
4949 		if (--maxloops == 0) {
4950 			panic("indkey_freemap shit %p %p:%d\n",
4951 			      parent, base, count);
4952 		}
4953 		chain = hammer2_combined_find(parent, base, count,
4954 					      &key_next,
4955 					      key_beg, key_end,
4956 					      &bref);
4957 
4958 		/*
4959 		 * Exhausted search
4960 		 */
4961 		if (bref == NULL)
4962 			break;
4963 
4964 		/*
4965 		 * Deleted object
4966 		 */
4967 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4968 			if (key_next == 0 || key_next > key_end)
4969 				break;
4970 			key_beg = key_next;
4971 			continue;
4972 		}
4973 
4974 		/*
4975 		 * Use the full live (not deleted) element for the scan
4976 		 * iteration.  HAMMER2 does not allow partial replacements.
4977 		 *
4978 		 * XXX should be built into hammer2_combined_find().
4979 		 */
4980 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4981 
4982 		/*
4983 		 * Expand our calculated key range (key, keybits) to fit
4984 		 * the scanned key.  nkeybits represents the full range
4985 		 * that we will later cut in half (two halves @ nkeybits - 1).
4986 		 */
4987 		nkeybits = keybits;
4988 		if (nkeybits < bref->keybits) {
4989 			if (bref->keybits > 64) {
4990 				kprintf("bad bref chain %p bref %p\n",
4991 					chain, bref);
4992 				Debugger("fubar");
4993 			}
4994 			nkeybits = bref->keybits;
4995 		}
4996 		while (nkeybits < 64 &&
4997 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
4998 		        (key ^ bref->key)) != 0) {
4999 			++nkeybits;
5000 		}
5001 
5002 		/*
5003 		 * If the new key range is larger we have to determine
5004 		 * which side of the new key range the existing keys fall
5005 		 * under by checking the high bit, then collapsing the
5006 		 * locount into the hicount or vise-versa.
5007 		 */
5008 		if (keybits != nkeybits) {
5009 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
5010 				hicount += locount;
5011 				locount = 0;
5012 			} else {
5013 				locount += hicount;
5014 				hicount = 0;
5015 			}
5016 			keybits = nkeybits;
5017 		}
5018 
5019 		/*
5020 		 * The newly scanned key will be in the lower half or the
5021 		 * upper half of the (new) key range.
5022 		 */
5023 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
5024 			++hicount;
5025 		else
5026 			++locount;
5027 
5028 		if (key_next == 0)
5029 			break;
5030 		key_beg = key_next;
5031 	}
5032 	hammer2_spin_unex(&parent->core.spin);
5033 	bref = NULL;	/* now invalid (safety) */
5034 
5035 	/*
5036 	 * Adjust keybits to represent half of the full range calculated
5037 	 * above (radix 63 max) for our new indirect block.
5038 	 */
5039 	--keybits;
5040 
5041 	/*
5042 	 * Expand keybits to hold at least ncount elements.  ncount will be
5043 	 * a power of 2.  This is to try to completely fill leaf nodes (at
5044 	 * least for keys which are not hashes).
5045 	 *
5046 	 * We aren't counting 'in' or 'out', we are counting 'high side'
5047 	 * and 'low side' based on the bit at (1LL << keybits).  We want
5048 	 * everything to be inside in these cases so shift it all to
5049 	 * the low or high side depending on the new high bit.
5050 	 */
5051 	while (((hammer2_key_t)1 << keybits) < ncount) {
5052 		++keybits;
5053 		if (key & ((hammer2_key_t)1 << keybits)) {
5054 			hicount += locount;
5055 			locount = 0;
5056 		} else {
5057 			locount += hicount;
5058 			hicount = 0;
5059 		}
5060 	}
5061 
5062 	if (hicount > locount)
5063 		key |= (hammer2_key_t)1 << keybits;
5064 	else
5065 		key &= ~(hammer2_key_t)1 << keybits;
5066 
5067 	*keyp = key;
5068 
5069 	return (keybits);
5070 }
5071 
5072 #endif
5073 
5074 /*
5075  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5076  * it exists.
5077  *
5078  * Both parent and chain must be locked exclusively.
5079  *
5080  * This function will modify the parent if the blockref requires removal
5081  * from the parent's block table.
5082  *
5083  * This function is NOT recursive.  Any entity already pushed into the
5084  * chain (such as an inode) may still need visibility into its contents,
5085  * as well as the ability to read and modify the contents.  For example,
5086  * for an unlinked file which is still open.
5087  *
5088  * Also note that the flusher is responsible for cleaning up empty
5089  * indirect blocks.
5090  */
5091 int
5092 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5093 		     hammer2_tid_t mtid, int flags)
5094 {
5095 	int error = 0;
5096 
5097 	KKASSERT(hammer2_mtx_owned(&chain->lock));
5098 
5099 	/*
5100 	 * Nothing to do if already marked.
5101 	 *
5102 	 * We need the spinlock on the core whos RBTREE contains chain
5103 	 * to protect against races.
5104 	 */
5105 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5106 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5107 			 chain->parent == parent);
5108 		error = _hammer2_chain_delete_helper(parent, chain,
5109 						     mtid, flags, NULL);
5110 	}
5111 
5112 	/*
5113 	 * Permanent deletions mark the chain as destroyed.
5114 	 *
5115 	 * NOTE: We do not setflush the chain unless the deletion is
5116 	 *	 permanent, since the deletion of a chain does not actually
5117 	 *	 require it to be flushed.
5118 	 */
5119 	if (error == 0) {
5120 		if (flags & HAMMER2_DELETE_PERMANENT) {
5121 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5122 			hammer2_chain_setflush(chain);
5123 		}
5124 	}
5125 
5126 	return error;
5127 }
5128 
5129 static int
5130 hammer2_chain_delete_obref(hammer2_chain_t *parent, hammer2_chain_t *chain,
5131 		     hammer2_tid_t mtid, int flags,
5132 		     hammer2_blockref_t *obref)
5133 {
5134 	int error = 0;
5135 
5136 	KKASSERT(hammer2_mtx_owned(&chain->lock));
5137 
5138 	/*
5139 	 * Nothing to do if already marked.
5140 	 *
5141 	 * We need the spinlock on the core whos RBTREE contains chain
5142 	 * to protect against races.
5143 	 */
5144 	obref->type = HAMMER2_BREF_TYPE_EMPTY;
5145 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5146 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5147 			 chain->parent == parent);
5148 		error = _hammer2_chain_delete_helper(parent, chain,
5149 						     mtid, flags, obref);
5150 	}
5151 
5152 	/*
5153 	 * Permanent deletions mark the chain as destroyed.
5154 	 *
5155 	 * NOTE: We do not setflush the chain unless the deletion is
5156 	 *	 permanent, since the deletion of a chain does not actually
5157 	 *	 require it to be flushed.
5158 	 */
5159 	if (error == 0) {
5160 		if (flags & HAMMER2_DELETE_PERMANENT) {
5161 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5162 			hammer2_chain_setflush(chain);
5163 		}
5164 	}
5165 
5166 	return error;
5167 }
5168 
5169 /*
5170  * Returns the index of the nearest element in the blockref array >= elm.
5171  * Returns (count) if no element could be found.
5172  *
5173  * Sets *key_nextp to the next key for loop purposes but does not modify
5174  * it if the next key would be higher than the current value of *key_nextp.
5175  * Note that *key_nexp can overflow to 0, which should be tested by the
5176  * caller.
5177  *
5178  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5179  *	     held through the operation.
5180  */
5181 static int
5182 hammer2_base_find(hammer2_chain_t *parent,
5183 		  hammer2_blockref_t *base, int count,
5184 		  hammer2_key_t *key_nextp,
5185 		  hammer2_key_t key_beg, hammer2_key_t key_end)
5186 {
5187 	hammer2_blockref_t *scan;
5188 	hammer2_key_t scan_end;
5189 	int i;
5190 	int limit;
5191 
5192 	/*
5193 	 * Require the live chain's already have their core's counted
5194 	 * so we can optimize operations.
5195 	 */
5196         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5197 
5198 	/*
5199 	 * Degenerate case
5200 	 */
5201 	if (count == 0 || base == NULL)
5202 		return(count);
5203 
5204 	/*
5205 	 * Sequential optimization using parent->cache_index.  This is
5206 	 * the most likely scenario.
5207 	 *
5208 	 * We can avoid trailing empty entries on live chains, otherwise
5209 	 * we might have to check the whole block array.
5210 	 */
5211 	i = parent->cache_index;	/* SMP RACE OK */
5212 	cpu_ccfence();
5213 	limit = parent->core.live_zero;
5214 	if (i >= limit)
5215 		i = limit - 1;
5216 	if (i < 0)
5217 		i = 0;
5218 	KKASSERT(i < count);
5219 
5220 	/*
5221 	 * Search backwards
5222 	 */
5223 	scan = &base[i];
5224 	while (i > 0 && (scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5225 	    scan->key > key_beg)) {
5226 		--scan;
5227 		--i;
5228 	}
5229 	parent->cache_index = i;
5230 
5231 	/*
5232 	 * Search forwards, stop when we find a scan element which
5233 	 * encloses the key or until we know that there are no further
5234 	 * elements.
5235 	 */
5236 	while (i < count) {
5237 		if (scan->type != HAMMER2_BREF_TYPE_EMPTY) {
5238 			scan_end = scan->key +
5239 				   ((hammer2_key_t)1 << scan->keybits) - 1;
5240 			if (scan->key > key_beg || scan_end >= key_beg)
5241 				break;
5242 		}
5243 		if (i >= limit)
5244 			return (count);
5245 		++scan;
5246 		++i;
5247 	}
5248 	if (i != count) {
5249 		parent->cache_index = i;
5250 		if (i >= limit) {
5251 			i = count;
5252 		} else {
5253 			scan_end = scan->key +
5254 				   ((hammer2_key_t)1 << scan->keybits);
5255 			if (scan_end && (*key_nextp > scan_end ||
5256 					 *key_nextp == 0)) {
5257 				*key_nextp = scan_end;
5258 			}
5259 		}
5260 	}
5261 	return (i);
5262 }
5263 
5264 /*
5265  * Do a combined search and return the next match either from the blockref
5266  * array or from the in-memory chain.  Sets *bresp to the returned bref in
5267  * both cases, or sets it to NULL if the search exhausted.  Only returns
5268  * a non-NULL chain if the search matched from the in-memory chain.
5269  *
5270  * When no in-memory chain has been found and a non-NULL bref is returned
5271  * in *bresp.
5272  *
5273  *
5274  * The returned chain is not locked or referenced.  Use the returned bref
5275  * to determine if the search exhausted or not.  Iterate if the base find
5276  * is chosen but matches a deleted chain.
5277  *
5278  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5279  *	     held through the operation.
5280  */
5281 hammer2_chain_t *
5282 hammer2_combined_find(hammer2_chain_t *parent,
5283 		      hammer2_blockref_t *base, int count,
5284 		      hammer2_key_t *key_nextp,
5285 		      hammer2_key_t key_beg, hammer2_key_t key_end,
5286 		      hammer2_blockref_t **bresp)
5287 {
5288 	hammer2_blockref_t *bref;
5289 	hammer2_chain_t *chain;
5290 	int i;
5291 
5292 	/*
5293 	 * Lookup in block array and in rbtree.
5294 	 */
5295 	*key_nextp = key_end + 1;
5296 	i = hammer2_base_find(parent, base, count, key_nextp,
5297 			      key_beg, key_end);
5298 	chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5299 
5300 	/*
5301 	 * Neither matched
5302 	 */
5303 	if (i == count && chain == NULL) {
5304 		*bresp = NULL;
5305 		return(NULL);
5306 	}
5307 
5308 	/*
5309 	 * Only chain matched.
5310 	 */
5311 	if (i == count) {
5312 		bref = &chain->bref;
5313 		goto found;
5314 	}
5315 
5316 	/*
5317 	 * Only blockref matched.
5318 	 */
5319 	if (chain == NULL) {
5320 		bref = &base[i];
5321 		goto found;
5322 	}
5323 
5324 	/*
5325 	 * Both in-memory and blockref matched, select the nearer element.
5326 	 *
5327 	 * If both are flush with the left-hand side or both are the
5328 	 * same distance away, select the chain.  In this situation the
5329 	 * chain must have been loaded from the matching blockmap.
5330 	 */
5331 	if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5332 	    chain->bref.key == base[i].key) {
5333 		KKASSERT(chain->bref.key == base[i].key);
5334 		bref = &chain->bref;
5335 		goto found;
5336 	}
5337 
5338 	/*
5339 	 * Select the nearer key
5340 	 */
5341 	if (chain->bref.key < base[i].key) {
5342 		bref = &chain->bref;
5343 	} else {
5344 		bref = &base[i];
5345 		chain = NULL;
5346 	}
5347 
5348 	/*
5349 	 * If the bref is out of bounds we've exhausted our search.
5350 	 */
5351 found:
5352 	if (bref->key > key_end) {
5353 		*bresp = NULL;
5354 		chain = NULL;
5355 	} else {
5356 		*bresp = bref;
5357 	}
5358 	return(chain);
5359 }
5360 
5361 /*
5362  * Locate the specified block array element and delete it.  The element
5363  * must exist.
5364  *
5365  * The spin lock on the related chain must be held.
5366  *
5367  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5368  *	 need to be adjusted when we commit the media change.
5369  */
5370 void
5371 hammer2_base_delete(hammer2_chain_t *parent,
5372 		    hammer2_blockref_t *base, int count,
5373 		    hammer2_chain_t *chain,
5374 		    hammer2_blockref_t *obref)
5375 {
5376 	hammer2_blockref_t *elm = &chain->bref;
5377 	hammer2_blockref_t *scan;
5378 	hammer2_key_t key_next;
5379 	int i;
5380 
5381 	/*
5382 	 * Delete element.  Expect the element to exist.
5383 	 *
5384 	 * XXX see caller, flush code not yet sophisticated enough to prevent
5385 	 *     re-flushed in some cases.
5386 	 */
5387 	key_next = 0; /* max range */
5388 	i = hammer2_base_find(parent, base, count, &key_next,
5389 			      elm->key, elm->key);
5390 	scan = &base[i];
5391 	if (i == count || scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5392 	    scan->key != elm->key ||
5393 	    ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
5394 	     scan->keybits != elm->keybits)) {
5395 		hammer2_spin_unex(&parent->core.spin);
5396 		panic("delete base %p element not found at %d/%d elm %p\n",
5397 		      base, i, count, elm);
5398 		return;
5399 	}
5400 
5401 	/*
5402 	 * Update stats and zero the entry.
5403 	 *
5404 	 * NOTE: Handle radix == 0 (0 bytes) case.
5405 	 */
5406 	if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5407 		parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5408 				(int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5409 	}
5410 	switch(scan->type) {
5411 	case HAMMER2_BREF_TYPE_INODE:
5412 		--parent->bref.embed.stats.inode_count;
5413 		/* fall through */
5414 	case HAMMER2_BREF_TYPE_DATA:
5415 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5416 			atomic_set_int(&chain->flags,
5417 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5418 		} else {
5419 			if (parent->bref.leaf_count)
5420 				--parent->bref.leaf_count;
5421 		}
5422 		/* fall through */
5423 	case HAMMER2_BREF_TYPE_INDIRECT:
5424 		if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5425 			parent->bref.embed.stats.data_count -=
5426 				scan->embed.stats.data_count;
5427 			parent->bref.embed.stats.inode_count -=
5428 				scan->embed.stats.inode_count;
5429 		}
5430 		if (scan->type == HAMMER2_BREF_TYPE_INODE)
5431 			break;
5432 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5433 			atomic_set_int(&chain->flags,
5434 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5435 		} else {
5436 			if (parent->bref.leaf_count <= scan->leaf_count)
5437 				parent->bref.leaf_count = 0;
5438 			else
5439 				parent->bref.leaf_count -= scan->leaf_count;
5440 		}
5441 		break;
5442 	case HAMMER2_BREF_TYPE_DIRENT:
5443 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5444 			atomic_set_int(&chain->flags,
5445 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5446 		} else {
5447 			if (parent->bref.leaf_count)
5448 				--parent->bref.leaf_count;
5449 		}
5450 	default:
5451 		break;
5452 	}
5453 
5454 	if (obref)
5455 		*obref = *scan;
5456 	bzero(scan, sizeof(*scan));
5457 
5458 	/*
5459 	 * We can only optimize parent->core.live_zero for live chains.
5460 	 */
5461 	if (parent->core.live_zero == i + 1) {
5462 		while (--i >= 0 && base[i].type == HAMMER2_BREF_TYPE_EMPTY)
5463 			;
5464 		parent->core.live_zero = i + 1;
5465 	}
5466 
5467 	/*
5468 	 * Clear appropriate blockmap flags in chain.
5469 	 */
5470 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
5471 					HAMMER2_CHAIN_BMAPUPD);
5472 }
5473 
5474 /*
5475  * Insert the specified element.  The block array must not already have the
5476  * element and must have space available for the insertion.
5477  *
5478  * The spin lock on the related chain must be held.
5479  *
5480  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5481  *	 need to be adjusted when we commit the media change.
5482  */
5483 void
5484 hammer2_base_insert(hammer2_chain_t *parent,
5485 		    hammer2_blockref_t *base, int count,
5486 		    hammer2_chain_t *chain, hammer2_blockref_t *elm)
5487 {
5488 	hammer2_key_t key_next;
5489 	hammer2_key_t xkey;
5490 	int i;
5491 	int j;
5492 	int k;
5493 	int l;
5494 	int u = 1;
5495 
5496 	/*
5497 	 * Insert new element.  Expect the element to not already exist
5498 	 * unless we are replacing it.
5499 	 *
5500 	 * XXX see caller, flush code not yet sophisticated enough to prevent
5501 	 *     re-flushed in some cases.
5502 	 */
5503 	key_next = 0; /* max range */
5504 	i = hammer2_base_find(parent, base, count, &key_next,
5505 			      elm->key, elm->key);
5506 
5507 	/*
5508 	 * Shortcut fill optimization, typical ordered insertion(s) may not
5509 	 * require a search.
5510 	 */
5511 	KKASSERT(i >= 0 && i <= count);
5512 
5513 	/*
5514 	 * Set appropriate blockmap flags in chain (if not NULL)
5515 	 */
5516 	if (chain)
5517 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
5518 
5519 	/*
5520 	 * Update stats and zero the entry
5521 	 */
5522 	if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5523 		parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5524 				(int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5525 	}
5526 	switch(elm->type) {
5527 	case HAMMER2_BREF_TYPE_INODE:
5528 		++parent->bref.embed.stats.inode_count;
5529 		/* fall through */
5530 	case HAMMER2_BREF_TYPE_DATA:
5531 		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5532 			++parent->bref.leaf_count;
5533 		/* fall through */
5534 	case HAMMER2_BREF_TYPE_INDIRECT:
5535 		if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5536 			parent->bref.embed.stats.data_count +=
5537 				elm->embed.stats.data_count;
5538 			parent->bref.embed.stats.inode_count +=
5539 				elm->embed.stats.inode_count;
5540 		}
5541 		if (elm->type == HAMMER2_BREF_TYPE_INODE)
5542 			break;
5543 		if (parent->bref.leaf_count + elm->leaf_count <
5544 		    HAMMER2_BLOCKREF_LEAF_MAX) {
5545 			parent->bref.leaf_count += elm->leaf_count;
5546 		} else {
5547 			parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5548 		}
5549 		break;
5550 	case HAMMER2_BREF_TYPE_DIRENT:
5551 		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5552 			++parent->bref.leaf_count;
5553 		break;
5554 	default:
5555 		break;
5556 	}
5557 
5558 
5559 	/*
5560 	 * We can only optimize parent->core.live_zero for live chains.
5561 	 */
5562 	if (i == count && parent->core.live_zero < count) {
5563 		i = parent->core.live_zero++;
5564 		base[i] = *elm;
5565 		return;
5566 	}
5567 
5568 	xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5569 	if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5570 		hammer2_spin_unex(&parent->core.spin);
5571 		panic("insert base %p overlapping elements at %d elm %p\n",
5572 		      base, i, elm);
5573 	}
5574 
5575 	/*
5576 	 * Try to find an empty slot before or after.
5577 	 */
5578 	j = i;
5579 	k = i;
5580 	while (j > 0 || k < count) {
5581 		--j;
5582 		if (j >= 0 && base[j].type == HAMMER2_BREF_TYPE_EMPTY) {
5583 			if (j == i - 1) {
5584 				base[j] = *elm;
5585 			} else {
5586 				bcopy(&base[j+1], &base[j],
5587 				      (i - j - 1) * sizeof(*base));
5588 				base[i - 1] = *elm;
5589 			}
5590 			goto validate;
5591 		}
5592 		++k;
5593 		if (k < count && base[k].type == HAMMER2_BREF_TYPE_EMPTY) {
5594 			bcopy(&base[i], &base[i+1],
5595 			      (k - i) * sizeof(hammer2_blockref_t));
5596 			base[i] = *elm;
5597 
5598 			/*
5599 			 * We can only update parent->core.live_zero for live
5600 			 * chains.
5601 			 */
5602 			if (parent->core.live_zero <= k)
5603 				parent->core.live_zero = k + 1;
5604 			u = 2;
5605 			goto validate;
5606 		}
5607 	}
5608 	panic("hammer2_base_insert: no room!");
5609 
5610 	/*
5611 	 * Debugging
5612 	 */
5613 validate:
5614 	key_next = 0;
5615 	for (l = 0; l < count; ++l) {
5616 		if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5617 			key_next = base[l].key +
5618 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5619 			break;
5620 		}
5621 	}
5622 	while (++l < count) {
5623 		if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5624 			if (base[l].key <= key_next)
5625 				panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5626 			key_next = base[l].key +
5627 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5628 
5629 		}
5630 	}
5631 
5632 }
5633 
5634 #if 0
5635 
5636 /*
5637  * Sort the blockref array for the chain.  Used by the flush code to
5638  * sort the blockref[] array.
5639  *
5640  * The chain must be exclusively locked AND spin-locked.
5641  */
5642 typedef hammer2_blockref_t *hammer2_blockref_p;
5643 
5644 static
5645 int
5646 hammer2_base_sort_callback(const void *v1, const void *v2)
5647 {
5648 	hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5649 	hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5650 
5651 	/*
5652 	 * Make sure empty elements are placed at the end of the array
5653 	 */
5654 	if (bref1->type == HAMMER2_BREF_TYPE_EMPTY) {
5655 		if (bref2->type == HAMMER2_BREF_TYPE_EMPTY)
5656 			return(0);
5657 		return(1);
5658 	} else if (bref2->type == HAMMER2_BREF_TYPE_EMPTY) {
5659 		return(-1);
5660 	}
5661 
5662 	/*
5663 	 * Sort by key
5664 	 */
5665 	if (bref1->key < bref2->key)
5666 		return(-1);
5667 	if (bref1->key > bref2->key)
5668 		return(1);
5669 	return(0);
5670 }
5671 
5672 void
5673 hammer2_base_sort(hammer2_chain_t *chain)
5674 {
5675 	hammer2_blockref_t *base;
5676 	int count;
5677 
5678 	switch(chain->bref.type) {
5679 	case HAMMER2_BREF_TYPE_INODE:
5680 		/*
5681 		 * Special shortcut for embedded data returns the inode
5682 		 * itself.  Callers must detect this condition and access
5683 		 * the embedded data (the strategy code does this for us).
5684 		 *
5685 		 * This is only applicable to regular files and softlinks.
5686 		 */
5687 		if (chain->data->ipdata.meta.op_flags &
5688 		    HAMMER2_OPFLAG_DIRECTDATA) {
5689 			return;
5690 		}
5691 		base = &chain->data->ipdata.u.blockset.blockref[0];
5692 		count = HAMMER2_SET_COUNT;
5693 		break;
5694 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5695 	case HAMMER2_BREF_TYPE_INDIRECT:
5696 		/*
5697 		 * Optimize indirect blocks in the INITIAL state to avoid
5698 		 * I/O.
5699 		 */
5700 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5701 		base = &chain->data->npdata[0];
5702 		count = chain->bytes / sizeof(hammer2_blockref_t);
5703 		break;
5704 	case HAMMER2_BREF_TYPE_VOLUME:
5705 		base = &chain->data->voldata.sroot_blockset.blockref[0];
5706 		count = HAMMER2_SET_COUNT;
5707 		break;
5708 	case HAMMER2_BREF_TYPE_FREEMAP:
5709 		base = &chain->data->blkset.blockref[0];
5710 		count = HAMMER2_SET_COUNT;
5711 		break;
5712 	default:
5713 		kprintf("hammer2_chain_lookup: unrecognized "
5714 			"blockref(A) type: %d",
5715 		        chain->bref.type);
5716 		while (1)
5717 			tsleep(&base, 0, "dead", 0);
5718 		panic("hammer2_base_sort: unrecognized "
5719 		      "blockref(A) type: %d",
5720 		      chain->bref.type);
5721 		base = NULL;	/* safety */
5722 		count = 0;	/* safety */
5723 	}
5724 	kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5725 }
5726 
5727 #endif
5728 
5729 /*
5730  * Chain memory management
5731  */
5732 void
5733 hammer2_chain_wait(hammer2_chain_t *chain)
5734 {
5735 	tsleep(chain, 0, "chnflw", 1);
5736 }
5737 
5738 const hammer2_media_data_t *
5739 hammer2_chain_rdata(hammer2_chain_t *chain)
5740 {
5741 	KKASSERT(chain->data != NULL);
5742 	return (chain->data);
5743 }
5744 
5745 hammer2_media_data_t *
5746 hammer2_chain_wdata(hammer2_chain_t *chain)
5747 {
5748 	KKASSERT(chain->data != NULL);
5749 	return (chain->data);
5750 }
5751 
5752 /*
5753  * Set the check data for a chain.  This can be a heavy-weight operation
5754  * and typically only runs on-flush.  For file data check data is calculated
5755  * when the logical buffers are flushed.
5756  */
5757 void
5758 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5759 {
5760 	chain->bref.flags &= ~HAMMER2_BREF_FLAG_ZERO;
5761 
5762 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5763 	case HAMMER2_CHECK_NONE:
5764 		break;
5765 	case HAMMER2_CHECK_DISABLED:
5766 		break;
5767 	case HAMMER2_CHECK_ISCSI32:
5768 		chain->bref.check.iscsi32.value =
5769 			hammer2_icrc32(bdata, chain->bytes);
5770 		break;
5771 	case HAMMER2_CHECK_XXHASH64:
5772 		chain->bref.check.xxhash64.value =
5773 			XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5774 		break;
5775 	case HAMMER2_CHECK_SHA192:
5776 		{
5777 			SHA256_CTX hash_ctx;
5778 			union {
5779 				uint8_t digest[SHA256_DIGEST_LENGTH];
5780 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5781 			} u;
5782 
5783 			SHA256_Init(&hash_ctx);
5784 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5785 			SHA256_Final(u.digest, &hash_ctx);
5786 			u.digest64[2] ^= u.digest64[3];
5787 			bcopy(u.digest,
5788 			      chain->bref.check.sha192.data,
5789 			      sizeof(chain->bref.check.sha192.data));
5790 		}
5791 		break;
5792 	case HAMMER2_CHECK_FREEMAP:
5793 		chain->bref.check.freemap.icrc32 =
5794 			hammer2_icrc32(bdata, chain->bytes);
5795 		break;
5796 	default:
5797 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5798 			chain->bref.methods);
5799 		break;
5800 	}
5801 }
5802 
5803 /*
5804  * Characterize a failed check code and try to trace back to the inode.
5805  */
5806 static void
5807 hammer2_characterize_failed_chain(hammer2_chain_t *chain, uint64_t check,
5808 				  int bits)
5809 {
5810 	hammer2_chain_t *lchain;
5811 	hammer2_chain_t *ochain;
5812 
5813 	kprintf("chain %016jx.%02x (%s) meth=%02x CHECK FAIL "
5814 		"(flags=%08x, bref/data ",
5815 		chain->bref.data_off,
5816 		chain->bref.type,
5817 		hammer2_bref_type_str(&chain->bref),
5818 		chain->bref.methods,
5819 		chain->flags);
5820 	if (bits == 32) {
5821 		kprintf("%08x/%08x)\n",
5822 			chain->bref.check.iscsi32.value,
5823 			(uint32_t)check);
5824 	} else {
5825 		kprintf("%016jx/%016jx)\n",
5826 			chain->bref.check.xxhash64.value,
5827 			check);
5828 	}
5829 
5830 	/*
5831 	 * Run up the chains to try to find the governing inode so we
5832 	 * can report it.
5833 	 *
5834 	 * XXX This error reporting is not really MPSAFE
5835 	 */
5836 	ochain = chain;
5837 	lchain = chain;
5838 	while (chain && chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
5839 		lchain = chain;
5840 		chain = chain->parent;
5841 	}
5842 
5843 	if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
5844 	    ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) == 0 ||
5845 	     (lchain->bref.key & HAMMER2_DIRHASH_VISIBLE))) {
5846 		kprintf("   Resides at/in inode %ld\n",
5847 			chain->bref.key);
5848 	} else if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5849 		kprintf("   Resides in inode index - CRITICAL!!!\n");
5850 	} else {
5851 		kprintf("   Resides in root index - CRITICAL!!!\n");
5852 	}
5853 	if (ochain->hmp) {
5854 		const char *pfsname = "UNKNOWN";
5855 		int i;
5856 
5857 		if (ochain->pmp) {
5858 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
5859 				if (ochain->pmp->pfs_hmps[i] == ochain->hmp &&
5860 				    ochain->pmp->pfs_names[i]) {
5861 					pfsname = ochain->pmp->pfs_names[i];
5862 					break;
5863 				}
5864 			}
5865 		}
5866 		kprintf("   In pfs %s on device %s\n",
5867 			pfsname, ochain->hmp->devrepname);
5868 	}
5869 }
5870 
5871 int
5872 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5873 {
5874 	uint32_t check32;
5875 	uint64_t check64;
5876 	int r;
5877 
5878 	if (chain->bref.flags & HAMMER2_BREF_FLAG_ZERO)
5879 		return 1;
5880 
5881 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5882 	case HAMMER2_CHECK_NONE:
5883 		r = 1;
5884 		break;
5885 	case HAMMER2_CHECK_DISABLED:
5886 		r = 1;
5887 		break;
5888 	case HAMMER2_CHECK_ISCSI32:
5889 		check32 = hammer2_icrc32(bdata, chain->bytes);
5890 		r = (chain->bref.check.iscsi32.value == check32);
5891 		if (r == 0) {
5892 			hammer2_characterize_failed_chain(chain, check32, 32);
5893 		}
5894 		hammer2_process_icrc32 += chain->bytes;
5895 		break;
5896 	case HAMMER2_CHECK_XXHASH64:
5897 		check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5898 		r = (chain->bref.check.xxhash64.value == check64);
5899 		if (r == 0) {
5900 			hammer2_characterize_failed_chain(chain, check64, 64);
5901 		}
5902 		hammer2_process_xxhash64 += chain->bytes;
5903 		break;
5904 	case HAMMER2_CHECK_SHA192:
5905 		{
5906 			SHA256_CTX hash_ctx;
5907 			union {
5908 				uint8_t digest[SHA256_DIGEST_LENGTH];
5909 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5910 			} u;
5911 
5912 			SHA256_Init(&hash_ctx);
5913 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5914 			SHA256_Final(u.digest, &hash_ctx);
5915 			u.digest64[2] ^= u.digest64[3];
5916 			if (bcmp(u.digest,
5917 				 chain->bref.check.sha192.data,
5918 			         sizeof(chain->bref.check.sha192.data)) == 0) {
5919 				r = 1;
5920 			} else {
5921 				r = 0;
5922 				kprintf("chain %016jx.%02x meth=%02x "
5923 					"CHECK FAIL\n",
5924 					chain->bref.data_off,
5925 					chain->bref.type,
5926 					chain->bref.methods);
5927 			}
5928 		}
5929 		break;
5930 	case HAMMER2_CHECK_FREEMAP:
5931 		r = (chain->bref.check.freemap.icrc32 ==
5932 		     hammer2_icrc32(bdata, chain->bytes));
5933 		if (r == 0) {
5934 			kprintf("chain %016jx.%02x meth=%02x "
5935 				"CHECK FAIL\n",
5936 				chain->bref.data_off,
5937 				chain->bref.type,
5938 				chain->bref.methods);
5939 			kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
5940 				chain->bref.check.freemap.icrc32,
5941 				hammer2_icrc32(bdata, chain->bytes),
5942 					       chain->bytes);
5943 			if (chain->dio)
5944 				kprintf("dio %p buf %016jx,%d bdata %p/%p\n",
5945 					chain->dio, chain->dio->bp->b_loffset,
5946 					chain->dio->bp->b_bufsize, bdata,
5947 					chain->dio->bp->b_data);
5948 		}
5949 
5950 		break;
5951 	default:
5952 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5953 			chain->bref.methods);
5954 		r = 1;
5955 		break;
5956 	}
5957 	return r;
5958 }
5959 
5960 /*
5961  * Acquire the chain and parent representing the specified inode for the
5962  * device at the specified cluster index.
5963  *
5964  * The flags passed in are LOOKUP flags, not RESOLVE flags.
5965  *
5966  * If we are unable to locate the inode, HAMMER2_ERROR_EIO is returned and
5967  * *chainp will be NULL.  *parentp may still be set error or not, or NULL
5968  * if the parent itself could not be resolved.
5969  *
5970  * The caller may pass-in a locked *parentp and/or *chainp, or neither.
5971  * They will be unlocked and released by this function.  The *parentp and
5972  * *chainp representing the located inode are returned locked.
5973  */
5974 int
5975 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
5976 			 int clindex, int flags,
5977 			 hammer2_chain_t **parentp, hammer2_chain_t **chainp)
5978 {
5979 	hammer2_chain_t *parent;
5980 	hammer2_chain_t *rchain;
5981 	hammer2_key_t key_dummy;
5982 	hammer2_inode_t *ip;
5983 	int resolve_flags;
5984 	int error;
5985 
5986 	resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
5987 			HAMMER2_RESOLVE_SHARED : 0;
5988 
5989 	/*
5990 	 * Caller expects us to replace these.
5991 	 */
5992 	if (*chainp) {
5993 		hammer2_chain_unlock(*chainp);
5994 		hammer2_chain_drop(*chainp);
5995 		*chainp = NULL;
5996 	}
5997 	if (*parentp) {
5998 		hammer2_chain_unlock(*parentp);
5999 		hammer2_chain_drop(*parentp);
6000 		*parentp = NULL;
6001 	}
6002 
6003 	/*
6004 	 * Be very careful, this is a backend function and we CANNOT
6005 	 * lock any frontend inode structure we find.  But we have to
6006 	 * look the inode up this way first in case it exists but is
6007 	 * detached from the radix tree.
6008 	 */
6009 	ip = hammer2_inode_lookup(pmp, inum);
6010 	if (ip) {
6011 		*chainp = hammer2_inode_chain_and_parent(ip, clindex,
6012 						       parentp,
6013 						       resolve_flags);
6014 		hammer2_inode_drop(ip);
6015 		if (*chainp)
6016 			return 0;
6017 		hammer2_chain_unlock(*chainp);
6018 		hammer2_chain_drop(*chainp);
6019 		*chainp = NULL;
6020 		if (*parentp) {
6021 			hammer2_chain_unlock(*parentp);
6022 			hammer2_chain_drop(*parentp);
6023 			*parentp = NULL;
6024 		}
6025 	}
6026 
6027 	/*
6028 	 * Inodes hang off of the iroot (bit 63 is clear, differentiating
6029 	 * inodes from root directory entries in the key lookup).
6030 	 */
6031 	parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
6032 	rchain = NULL;
6033 	if (parent) {
6034 		rchain = hammer2_chain_lookup(&parent, &key_dummy,
6035 					      inum, inum,
6036 					      &error, flags);
6037 	} else {
6038 		error = HAMMER2_ERROR_EIO;
6039 	}
6040 	*parentp = parent;
6041 	*chainp = rchain;
6042 
6043 	return error;
6044 }
6045 
6046 /*
6047  * Used by the bulkscan code to snapshot the synchronized storage for
6048  * a volume, allowing it to be scanned concurrently against normal
6049  * operation.
6050  */
6051 hammer2_chain_t *
6052 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
6053 {
6054 	hammer2_chain_t *copy;
6055 
6056 	copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
6057 	copy->data = kmalloc(sizeof(copy->data->voldata),
6058 			     hmp->mchain,
6059 			     M_WAITOK | M_ZERO);
6060 	hammer2_voldata_lock(hmp);
6061 	copy->data->voldata = hmp->volsync;
6062 	hammer2_voldata_unlock(hmp);
6063 
6064 	return copy;
6065 }
6066 
6067 void
6068 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
6069 {
6070 	KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
6071 	KKASSERT(copy->data);
6072 	kfree(copy->data, copy->hmp->mchain);
6073 	copy->data = NULL;
6074 	atomic_add_long(&hammer2_chain_allocs, -1);
6075 	hammer2_chain_drop(copy);
6076 }
6077 
6078 /*
6079  * Returns non-zero if the chain (INODE or DIRENT) matches the
6080  * filename.
6081  */
6082 int
6083 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
6084 			  size_t name_len)
6085 {
6086 	const hammer2_inode_data_t *ripdata;
6087 	const hammer2_dirent_head_t *den;
6088 
6089 	if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
6090 		ripdata = &chain->data->ipdata;
6091 		if (ripdata->meta.name_len == name_len &&
6092 		    bcmp(ripdata->filename, name, name_len) == 0) {
6093 			return 1;
6094 		}
6095 	}
6096 	if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
6097 	   chain->bref.embed.dirent.namlen == name_len) {
6098 		den = &chain->bref.embed.dirent;
6099 		if (name_len > sizeof(chain->bref.check.buf) &&
6100 		    bcmp(chain->data->buf, name, name_len) == 0) {
6101 			return 1;
6102 		}
6103 		if (name_len <= sizeof(chain->bref.check.buf) &&
6104 		    bcmp(chain->bref.check.buf, name, name_len) == 0) {
6105 			return 1;
6106 		}
6107 	}
6108 	return 0;
6109 }
6110