xref: /dragonfly/sys/vfs/hammer2/hammer2_chain.c (revision 6e4c95df)
1 /*
2  * Copyright (c) 2011-2015 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62 
63 #include <crypto/sha2/sha2.h>
64 
65 #include "hammer2.h"
66 
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68 		hammer2_chain_t *parent,
69 		hammer2_key_t key, int keybits,
70 		hammer2_tid_t mtid, int for_type, int *errorp);
71 static hammer2_io_t *hammer2_chain_drop_data(hammer2_chain_t *chain);
72 static hammer2_chain_t *hammer2_combined_find(
73 		hammer2_chain_t *parent,
74 		hammer2_blockref_t *base, int count,
75 		hammer2_key_t *key_nextp,
76 		hammer2_key_t key_beg, hammer2_key_t key_end,
77 		hammer2_blockref_t **bresp);
78 
79 /*
80  * Basic RBTree for chains (core->rbtree and core->dbtree).  Chains cannot
81  * overlap in the RB trees.  Deleted chains are moved from rbtree to either
82  * dbtree or to dbq.
83  *
84  * Chains in delete-duplicate sequences can always iterate through core_entry
85  * to locate the live version of the chain.
86  */
87 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
88 
89 int
90 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
91 {
92 	hammer2_key_t c1_beg;
93 	hammer2_key_t c1_end;
94 	hammer2_key_t c2_beg;
95 	hammer2_key_t c2_end;
96 
97 	/*
98 	 * Compare chains.  Overlaps are not supposed to happen and catch
99 	 * any software issues early we count overlaps as a match.
100 	 */
101 	c1_beg = chain1->bref.key;
102 	c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
103 	c2_beg = chain2->bref.key;
104 	c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
105 
106 	if (c1_end < c2_beg)	/* fully to the left */
107 		return(-1);
108 	if (c1_beg > c2_end)	/* fully to the right */
109 		return(1);
110 	return(0);		/* overlap (must not cross edge boundary) */
111 }
112 
113 /*
114  * Assert that a chain has no media data associated with it.
115  */
116 static __inline void
117 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
118 {
119 	KKASSERT(chain->dio == NULL);
120 	if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
121 	    chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
122 	    chain->data) {
123 		panic("hammer2_assert_no_data: chain %p still has data", chain);
124 	}
125 }
126 
127 /*
128  * Make a chain visible to the flusher.  The flusher needs to be able to
129  * do flushes of subdirectory chains or single files so it does a top-down
130  * recursion using the ONFLUSH flag for the recursion.  It locates MODIFIED
131  * or UPDATE chains and flushes back up the chain to the volume root.
132  *
133  * This routine sets ONFLUSH upward until it hits the volume root.  For
134  * simplicity we ignore PFSROOT boundaries whos rules can be complex.
135  * Extra ONFLUSH flagging doesn't hurt the filesystem.
136  */
137 void
138 hammer2_chain_setflush(hammer2_chain_t *chain)
139 {
140 	hammer2_chain_t *parent;
141 
142 	if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
143 		hammer2_spin_sh(&chain->core.spin);
144 		while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
145 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
146 			if ((parent = chain->parent) == NULL)
147 				break;
148 			hammer2_spin_sh(&parent->core.spin);
149 			hammer2_spin_unsh(&chain->core.spin);
150 			chain = parent;
151 		}
152 		hammer2_spin_unsh(&chain->core.spin);
153 	}
154 }
155 
156 /*
157  * Allocate a new disconnected chain element representing the specified
158  * bref.  chain->refs is set to 1 and the passed bref is copied to
159  * chain->bref.  chain->bytes is derived from the bref.
160  *
161  * chain->pmp inherits pmp unless the chain is an inode (other than the
162  * super-root inode).
163  *
164  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
165  */
166 hammer2_chain_t *
167 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
168 		    hammer2_blockref_t *bref)
169 {
170 	hammer2_chain_t *chain;
171 	u_int bytes;
172 
173 	/*
174 	 * Special case - radix of 0 indicates a chain that does not
175 	 * need a data reference (context is completely embedded in the
176 	 * bref).
177 	 */
178 	if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
179 		bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
180 	else
181 		bytes = 0;
182 
183 	atomic_add_long(&hammer2_chain_allocs, 1);
184 
185 	/*
186 	 * Construct the appropriate system structure.
187 	 */
188 	switch(bref->type) {
189 	case HAMMER2_BREF_TYPE_DIRENT:
190 	case HAMMER2_BREF_TYPE_INODE:
191 	case HAMMER2_BREF_TYPE_INDIRECT:
192 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
193 	case HAMMER2_BREF_TYPE_DATA:
194 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
195 		/*
196 		 * Chain's are really only associated with the hmp but we
197 		 * maintain a pmp association for per-mount memory tracking
198 		 * purposes.  The pmp can be NULL.
199 		 */
200 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
201 		break;
202 	case HAMMER2_BREF_TYPE_VOLUME:
203 	case HAMMER2_BREF_TYPE_FREEMAP:
204 		/*
205 		 * Only hammer2_chain_bulksnap() calls this function with these
206 		 * types.
207 		 */
208 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
209 		break;
210 	default:
211 		chain = NULL;
212 		panic("hammer2_chain_alloc: unrecognized blockref type: %d",
213 		      bref->type);
214 	}
215 
216 	/*
217 	 * Initialize the new chain structure.  pmp must be set to NULL for
218 	 * chains belonging to the super-root topology of a device mount.
219 	 */
220 	if (pmp == hmp->spmp)
221 		chain->pmp = NULL;
222 	else
223 		chain->pmp = pmp;
224 	chain->hmp = hmp;
225 	chain->bref = *bref;
226 	chain->bytes = bytes;
227 	chain->refs = 1;
228 	chain->flags = HAMMER2_CHAIN_ALLOCATED;
229 
230 	/*
231 	 * Set the PFS boundary flag if this chain represents a PFS root.
232 	 */
233 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
234 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
235 	hammer2_chain_core_init(chain);
236 
237 	return (chain);
238 }
239 
240 /*
241  * Initialize a chain's core structure.  This structure used to be allocated
242  * but is now embedded.
243  *
244  * The core is not locked.  No additional refs on the chain are made.
245  * (trans) must not be NULL if (core) is not NULL.
246  */
247 void
248 hammer2_chain_core_init(hammer2_chain_t *chain)
249 {
250 	/*
251 	 * Fresh core under nchain (no multi-homing of ochain's
252 	 * sub-tree).
253 	 */
254 	RB_INIT(&chain->core.rbtree);	/* live chains */
255 	hammer2_mtx_init(&chain->lock, "h2chain");
256 }
257 
258 /*
259  * Add a reference to a chain element, preventing its destruction.
260  *
261  * (can be called with spinlock held)
262  */
263 void
264 hammer2_chain_ref(hammer2_chain_t *chain)
265 {
266 	if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
267 		/*
268 		 * 0->non-zero transition must ensure that chain is removed
269 		 * from the LRU list.
270 		 *
271 		 * NOTE: Already holding lru_spin here so we cannot call
272 		 *	 hammer2_chain_ref() to get it off lru_list, do
273 		 *	 it manually.
274 		 */
275 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
276 			hammer2_pfs_t *pmp = chain->pmp;
277 			hammer2_spin_ex(&pmp->lru_spin);
278 			if (chain->flags & HAMMER2_CHAIN_ONLRU) {
279 				atomic_add_int(&pmp->lru_count, -1);
280 				atomic_clear_int(&chain->flags,
281 						 HAMMER2_CHAIN_ONLRU);
282 				TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
283 			}
284 			hammer2_spin_unex(&pmp->lru_spin);
285 		}
286 	}
287 #if 0
288 	kprintf("REFC %p %d %08x\n", chain, chain->refs - 1, chain->flags);
289 	print_backtrace(8);
290 #endif
291 }
292 
293 /*
294  * Ref a locked chain and force the data to be held across an unlock.
295  * Chain must be currently locked.  The user of the chain who desires
296  * to release the hold must call hammer2_chain_lock_unhold() to relock
297  * and unhold the chain, then unlock normally, or may simply call
298  * hammer2_chain_drop_unhold() (which is safer against deadlocks).
299  */
300 void
301 hammer2_chain_ref_hold(hammer2_chain_t *chain)
302 {
303 	atomic_add_int(&chain->lockcnt, 1);
304 	hammer2_chain_ref(chain);
305 }
306 
307 /*
308  * Insert the chain in the core rbtree.
309  *
310  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
311  * chain is a special case used by the flush code that is placed on the
312  * unstaged deleted list to avoid confusing the live view.
313  */
314 #define HAMMER2_CHAIN_INSERT_SPIN	0x0001
315 #define HAMMER2_CHAIN_INSERT_LIVE	0x0002
316 #define HAMMER2_CHAIN_INSERT_RACE	0x0004
317 
318 static
319 int
320 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
321 		     int flags, int generation)
322 {
323 	hammer2_chain_t *xchain;
324 	int error = 0;
325 
326 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
327 		hammer2_spin_ex(&parent->core.spin);
328 
329 	/*
330 	 * Interlocked by spinlock, check for race
331 	 */
332 	if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
333 	    parent->core.generation != generation) {
334 		error = HAMMER2_ERROR_EAGAIN;
335 		goto failed;
336 	}
337 
338 	/*
339 	 * Insert chain
340 	 */
341 	xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
342 	KASSERT(xchain == NULL,
343 		("hammer2_chain_insert: collision %p %p (key=%016jx)",
344 		chain, xchain, chain->bref.key));
345 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
346 	chain->parent = parent;
347 	++parent->core.chain_count;
348 	++parent->core.generation;	/* XXX incs for _get() too, XXX */
349 
350 	/*
351 	 * We have to keep track of the effective live-view blockref count
352 	 * so the create code knows when to push an indirect block.
353 	 */
354 	if (flags & HAMMER2_CHAIN_INSERT_LIVE)
355 		atomic_add_int(&parent->core.live_count, 1);
356 failed:
357 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
358 		hammer2_spin_unex(&parent->core.spin);
359 	return error;
360 }
361 
362 /*
363  * Drop the caller's reference to the chain.  When the ref count drops to
364  * zero this function will try to disassociate the chain from its parent and
365  * deallocate it, then recursely drop the parent using the implied ref
366  * from the chain's chain->parent.
367  *
368  * Nobody should own chain's mutex on the 1->0 transition, unless this drop
369  * races an acquisition by another cpu.  Therefore we can loop if we are
370  * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
371  * race against another drop.
372  */
373 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain);
374 
375 void
376 hammer2_chain_drop(hammer2_chain_t *chain)
377 {
378 	u_int refs;
379 
380 	if (hammer2_debug & 0x200000)
381 		Debugger("drop");
382 #if 0
383 	kprintf("DROP %p %d %08x\n", chain, chain->refs - 1, chain->flags);
384 	print_backtrace(8);
385 #endif
386 
387 	KKASSERT(chain->refs > 0);
388 
389 	while (chain) {
390 		refs = chain->refs;
391 		cpu_ccfence();
392 		KKASSERT(refs > 0);
393 
394 		if (refs == 1) {
395 			if (mtx_lock_ex_try(&chain->lock) == 0)
396 				chain = hammer2_chain_lastdrop(chain);
397 			/* retry the same chain */
398 		} else {
399 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
400 				break;
401 			/* retry the same chain */
402 		}
403 		cpu_pause();
404 	}
405 }
406 
407 /*
408  * Unhold a held and probably not-locked chain, ensure that the data is
409  * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
410  * lock and then simply unlocking the chain.
411  */
412 void
413 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
414 {
415 	u_int lockcnt;
416 	int iter = 0;
417 
418 	for (;;) {
419 		lockcnt = chain->lockcnt;
420 		cpu_ccfence();
421 		if (lockcnt > 1) {
422 			if (atomic_cmpset_int(&chain->lockcnt,
423 					      lockcnt, lockcnt - 1)) {
424 				break;
425 			}
426 		} else if (mtx_lock_ex_try(&chain->lock) == 0) {
427 			hammer2_chain_unlock(chain);
428 			break;
429 		} else {
430 			/*
431 			 * This situation can easily occur on SMP due to
432 			 * the gap inbetween the 1->0 transition and the
433 			 * final unlock.  We cannot safely block on the
434 			 * mutex because lockcnt might go above 1.
435 			 *
436 			 * XXX Sleep for one tick if it takes too long.
437 			 */
438 			if (++iter > 1000) {
439 				if (iter > 1000 + hz) {
440 					kprintf("hammer2: h2race1 %p\n", chain);
441 					iter = 1000;
442 				}
443 				tsleep(&iter, 0, "h2race1", 1);
444 			}
445 			cpu_pause();
446 		}
447 	}
448 	hammer2_chain_drop(chain);
449 }
450 
451 /*
452  * Handles the (potential) last drop of chain->refs from 1->0.  Called with
453  * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
454  * possible against refs and lockcnt.  We must dispose of the mutex on chain.
455  *
456  * This function returns an unlocked chain for recursive drop or NULL.  It
457  * can return the same chain if it determines it has raced another ref.
458  *
459  * --
460  *
461  * When two chains need to be recursively dropped we use the chain we
462  * would otherwise free to placehold the additional chain.  It's a bit
463  * convoluted but we can't just recurse without potentially blowing out
464  * the kernel stack.
465  *
466  * The chain cannot be freed if it has any children.
467  * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
468  * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
469  * Any dedup registration can remain intact.
470  *
471  * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
472  */
473 static
474 hammer2_chain_t *
475 hammer2_chain_lastdrop(hammer2_chain_t *chain)
476 {
477 	hammer2_pfs_t *pmp;
478 	hammer2_dev_t *hmp;
479 	hammer2_chain_t *parent;
480 	hammer2_chain_t *rdrop;
481 #if 0
482 	hammer2_io_t *dio;
483 #endif
484 
485 #if 0
486 	/*
487 	 * On last drop if there is no parent and data_off is good (at
488 	 * least does not represent the volume root), the modified chain
489 	 * is probably going to be destroyed.  We have to make sure that
490 	 * the data area is not registered for dedup.
491 	 *
492 	 * XXX removed. In fact, we do not have to make sure that the
493 	 *     data area is not registered for dedup.  The data area
494 	 *     can, in fact, still be used for dedup because it is
495 	 *     still allocated in the freemap and the underlying I/O
496 	 *     will still be flushed.
497 	 */
498 	if (chain->parent == NULL &&
499 	    (chain->flags & HAMMER2_CHAIN_MODIFIED) &&
500 	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
501 		hmp = chain->hmp;
502 		hammer2_io_dedup_delete(hmp, chain->bref.type,
503 					chain->bref.data_off, chain->bytes);
504 	}
505 #endif
506 	/*
507 	 * We need chain's spinlock to interlock the sub-tree test.
508 	 * We already have chain's mutex, protecting chain->parent.
509 	 *
510 	 * Remember that chain->refs can be in flux.
511 	 */
512 	hammer2_spin_ex(&chain->core.spin);
513 
514 	if ((parent = chain->parent) != NULL) {
515 		/*
516 		 * If the chain has a parent the UPDATE bit prevents scrapping
517 		 * as the chain is needed to properly flush the parent.  Try
518 		 * to complete the 1->0 transition and return NULL.  Retry
519 		 * (return chain) if we are unable to complete the 1->0
520 		 * transition, else return NULL (nothing more to do).
521 		 *
522 		 * If the chain has a parent the MODIFIED bit prevents
523 		 * scrapping.
524 		 *
525 		 * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
526 		 */
527 		if (chain->flags & (HAMMER2_CHAIN_UPDATE |
528 				    HAMMER2_CHAIN_MODIFIED)) {
529 			if (atomic_cmpset_int(&chain->refs, 1, 0)) {
530 				hammer2_spin_unex(&chain->core.spin);
531 #if 0
532 				dio = hammer2_chain_drop_data(chain, 0);
533 				if (dio)
534 					hammer2_io_bqrelse(&dio);
535 #endif
536 				hammer2_chain_assert_no_data(chain);
537 				hammer2_mtx_unlock(&chain->lock);
538 				chain = NULL;
539 			} else {
540 				hammer2_spin_unex(&chain->core.spin);
541 				hammer2_mtx_unlock(&chain->lock);
542 			}
543 			return (chain);
544 		}
545 		/* spinlock still held */
546 	} else {
547 		/*
548 		 * The chain has no parent and can be flagged for destruction.
549 		 * Since it has no parent, UPDATE can also be cleared.
550 		 */
551 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
552 		if (chain->flags & HAMMER2_CHAIN_UPDATE)
553 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
554 
555 		/*
556 		 * If the chain has children we must still flush the chain.
557 		 * Any dedup is already handled by the underlying DIO, so
558 		 * we do not have to specifically flush it here.
559 		 *
560 		 * In the case where it has children, the DESTROY flag test
561 		 * in the flush code will prevent unnecessary flushes of
562 		 * MODIFIED chains that are not flagged DEDUP so don't worry
563 		 * about that here.
564 		 */
565 		if (chain->core.chain_count) {
566 			/*
567 			 * Put on flushq (should ensure refs > 1), retry
568 			 * the drop.
569 			 */
570 			hammer2_spin_unex(&chain->core.spin);
571 			hammer2_delayed_flush(chain);
572 			hammer2_mtx_unlock(&chain->lock);
573 
574 			return(chain);	/* retry drop */
575 		}
576 
577 		/*
578 		 * Otherwise we can scrap the MODIFIED bit if it is set,
579 		 * and continue along the freeing path.
580 		 *
581 		 * Be sure to clean-out any dedup bits.  Without a parent
582 		 * this chain will no longer be visible to the flush code.
583 		 * Easy check data_off to avoid the volume root.
584 		 */
585 		if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
586 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
587 			atomic_add_long(&hammer2_count_modified_chains, -1);
588 			if (chain->pmp)
589 				hammer2_pfs_memory_wakeup(chain->pmp);
590 		}
591 		/* spinlock still held */
592 	}
593 
594 	/* spinlock still held */
595 #if 0
596 	dio = NULL;
597 #endif
598 
599 	/*
600 	 * If any children exist we must leave the chain intact with refs == 0.
601 	 * They exist because chains are retained below us which have refs or
602 	 * may require flushing.
603 	 *
604 	 * Retry (return chain) if we fail to transition the refs to 0, else
605 	 * return NULL indication nothing more to do.
606 	 *
607 	 * Chains with children are NOT put on the LRU list.
608 	 */
609 	if (chain->core.chain_count) {
610 		if (atomic_cmpset_int(&chain->refs, 1, 0)) {
611 			hammer2_spin_unex(&chain->core.spin);
612 			hammer2_chain_assert_no_data(chain);
613 			hammer2_mtx_unlock(&chain->lock);
614 			chain = NULL;
615 		} else {
616 			hammer2_spin_unex(&chain->core.spin);
617 			hammer2_mtx_unlock(&chain->lock);
618 		}
619 		return (chain);
620 	}
621 	/* spinlock still held */
622 	/* no chains left under us */
623 
624 	/*
625 	 * chain->core has no children left so no accessors can get to our
626 	 * chain from there.  Now we have to lock the parent core to interlock
627 	 * remaining possible accessors that might bump chain's refs before
628 	 * we can safely drop chain's refs with intent to free the chain.
629 	 */
630 	hmp = chain->hmp;
631 	pmp = chain->pmp;	/* can be NULL */
632 	rdrop = NULL;
633 
634 	parent = chain->parent;
635 
636 	/*
637 	 * WARNING! chain's spin lock is still held here, and other spinlocks
638 	 *	    will be acquired and released in the code below.  We
639 	 *	    cannot be making fancy procedure calls!
640 	 */
641 
642 	/*
643 	 * We can cache the chain if it is associated with a pmp
644 	 * and not flagged as being destroyed or requesting a full
645 	 * release.  In this situation the chain is not removed
646 	 * from its parent, i.e. it can still be looked up.
647 	 *
648 	 * We intentionally do not cache DATA chains because these
649 	 * were likely used to load data into the logical buffer cache
650 	 * and will not be accessed again for some time.
651 	 */
652 	if ((chain->flags &
653 	     (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
654 	    chain->pmp &&
655 	    chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
656 		if (parent)
657 			hammer2_spin_ex(&parent->core.spin);
658 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
659 			/*
660 			 * 1->0 transition failed, retry.  Do not drop
661 			 * the chain's data yet!
662 			 */
663 			if (parent)
664 				hammer2_spin_unex(&parent->core.spin);
665 			hammer2_spin_unex(&chain->core.spin);
666 			hammer2_mtx_unlock(&chain->lock);
667 
668 			return(chain);
669 		}
670 
671 		/*
672 		 * Success
673 		 */
674 #if 0
675 		dio = hammer2_chain_drop_data(chain, 1);
676 #endif
677 		hammer2_chain_assert_no_data(chain);
678 
679 		KKASSERT((chain->flags & HAMMER2_CHAIN_ONLRU) == 0);
680 		hammer2_spin_ex(&pmp->lru_spin);
681 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
682 		TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
683 
684 		/*
685 		 * If we are over the LRU limit we need to drop something.
686 		 */
687 		if (pmp->lru_count > HAMMER2_LRU_LIMIT) {
688 			rdrop = TAILQ_FIRST(&pmp->lru_list);
689 			atomic_clear_int(&rdrop->flags, HAMMER2_CHAIN_ONLRU);
690 			TAILQ_REMOVE(&pmp->lru_list, rdrop, lru_node);
691 			atomic_add_int(&rdrop->refs, 1);
692 			atomic_set_int(&rdrop->flags, HAMMER2_CHAIN_RELEASE);
693 		} else {
694 			atomic_add_int(&pmp->lru_count, 1);
695 		}
696 		hammer2_spin_unex(&pmp->lru_spin);
697 		if (parent) {
698 			hammer2_spin_unex(&parent->core.spin);
699 			parent = NULL;	/* safety */
700 		}
701 		hammer2_spin_unex(&chain->core.spin);
702 		hammer2_mtx_unlock(&chain->lock);
703 #if 0
704 		if (dio)
705 			hammer2_io_bqrelse(&dio);
706 #endif
707 
708 		return rdrop;
709 		/* NOT REACHED */
710 	}
711 
712 	/*
713 	 * Spinlock the parent and try to drop the last ref on chain.
714 	 * On success determine if we should dispose of the chain
715 	 * (remove the chain from its parent, etc).
716 	 *
717 	 * (normal core locks are top-down recursive but we define
718 	 * core spinlocks as bottom-up recursive, so this is safe).
719 	 */
720 	if (parent) {
721 		hammer2_spin_ex(&parent->core.spin);
722 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
723 #if 0
724 			/* XXX remove, don't try to drop data on fail */
725 			hammer2_spin_unex(&parent->core.spin);
726 			dio = hammer2_chain_drop_data(chain, 0);
727 			hammer2_spin_unex(&chain->core.spin);
728 			if (dio)
729 				hammer2_io_bqrelse(&dio);
730 #endif
731 			/*
732 			 * 1->0 transition failed, retry.
733 			 */
734 			hammer2_spin_unex(&parent->core.spin);
735 			hammer2_spin_unex(&chain->core.spin);
736 			hammer2_mtx_unlock(&chain->lock);
737 
738 			return(chain);
739 		}
740 
741 		/*
742 		 * 1->0 transition successful, parent spin held to prevent
743 		 * new lookups, chain spinlock held to protect parent field.
744 		 * Remove chain from the parent.
745 		 *
746 		 * If the chain is being removed from the parent's btree but
747 		 * is not bmapped, we have to adjust live_count downward.  If
748 		 * it is bmapped then the blockref is retained in the parent
749 		 * as is its associated live_count.  This case can occur when
750 		 * a chain added to the topology is unable to flush and is
751 		 * then later deleted.
752 		 */
753 		if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
754 			if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
755 			    (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
756 				atomic_add_int(&parent->core.live_count, -1);
757 			}
758 			RB_REMOVE(hammer2_chain_tree,
759 				  &parent->core.rbtree, chain);
760 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
761 			--parent->core.chain_count;
762 			chain->parent = NULL;
763 		}
764 
765 		/*
766 		 * If our chain was the last chain in the parent's core the
767 		 * core is now empty and its parent might have to be
768 		 * re-dropped if it has 0 refs.
769 		 */
770 		if (parent->core.chain_count == 0) {
771 			rdrop = parent;
772 			atomic_add_int(&rdrop->refs, 1);
773 			/*
774 			if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
775 				rdrop = NULL;
776 			*/
777 		}
778 		hammer2_spin_unex(&parent->core.spin);
779 		parent = NULL;	/* safety */
780 		/* FALL THROUGH */
781 	} else {
782 		/*
783 		 * No-parent case.
784 		 */
785 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
786 			/*
787 			 * 1->0 transition failed, retry.
788 			 */
789 			hammer2_spin_unex(&parent->core.spin);
790 			hammer2_spin_unex(&chain->core.spin);
791 			hammer2_mtx_unlock(&chain->lock);
792 
793 			return(chain);
794 		}
795 	}
796 
797 	/*
798 	 * Successful 1->0 transition, no parent, no children... no way for
799 	 * anyone to ref this chain any more.  We can clean-up and free it.
800 	 *
801 	 * We still have the core spinlock, and core's chain_count is 0.
802 	 * Any parent spinlock is gone.
803 	 */
804 	hammer2_spin_unex(&chain->core.spin);
805 	hammer2_chain_assert_no_data(chain);
806 	hammer2_mtx_unlock(&chain->lock);
807 	KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
808 		 chain->core.chain_count == 0);
809 
810 	/*
811 	 * All locks are gone, no pointers remain to the chain, finish
812 	 * freeing it.
813 	 */
814 	KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
815 				  HAMMER2_CHAIN_MODIFIED)) == 0);
816 #if 0
817 	dio = hammer2_chain_drop_data(chain, 1);
818 	if (dio)
819 		hammer2_io_bqrelse(&dio);
820 #endif
821 
822 	/*
823 	 * Once chain resources are gone we can use the now dead chain
824 	 * structure to placehold what might otherwise require a recursive
825 	 * drop, because we have potentially two things to drop and can only
826 	 * return one directly.
827 	 */
828 	if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
829 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
830 		chain->hmp = NULL;
831 		kfree(chain, hmp->mchain);
832 	}
833 
834 	/*
835 	 * Possible chaining loop when parent re-drop needed.
836 	 */
837 	return(rdrop);
838 }
839 
840 /*
841  * On last lock release.
842  */
843 static hammer2_io_t *
844 hammer2_chain_drop_data(hammer2_chain_t *chain)
845 {
846 	hammer2_io_t *dio;
847 
848 	if ((dio = chain->dio) != NULL) {
849 		chain->dio = NULL;
850 		chain->data = NULL;
851 	} else {
852 		switch(chain->bref.type) {
853 		case HAMMER2_BREF_TYPE_VOLUME:
854 		case HAMMER2_BREF_TYPE_FREEMAP:
855 			break;
856 		default:
857 			if (chain->data != NULL) {
858 				hammer2_spin_unex(&chain->core.spin);
859 				panic("chain data not null: "
860 				      "chain %p bref %016jx.%02x "
861 				      "refs %d parent %p dio %p data %p",
862 				      chain, chain->bref.data_off,
863 				      chain->bref.type, chain->refs,
864 				      chain->parent,
865 				      chain->dio, chain->data);
866 			}
867 			KKASSERT(chain->data == NULL);
868 			break;
869 		}
870 	}
871 	return dio;
872 }
873 
874 /*
875  * Lock a referenced chain element, acquiring its data with I/O if necessary,
876  * and specify how you would like the data to be resolved.
877  *
878  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
879  *
880  * The lock is allowed to recurse, multiple locking ops will aggregate
881  * the requested resolve types.  Once data is assigned it will not be
882  * removed until the last unlock.
883  *
884  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
885  *			   (typically used to avoid device/logical buffer
886  *			    aliasing for data)
887  *
888  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
889  *			   the INITIAL-create state (indirect blocks only).
890  *
891  *			   Do not resolve data elements for DATA chains.
892  *			   (typically used to avoid device/logical buffer
893  *			    aliasing for data)
894  *
895  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
896  *
897  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
898  *			   it will be locked exclusive.
899  *
900  * NOTE: Embedded elements (volume header, inodes) are always resolved
901  *	 regardless.
902  *
903  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
904  *	 element will instantiate and zero its buffer, and flush it on
905  *	 release.
906  *
907  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
908  *	 so as not to instantiate a device buffer, which could alias against
909  *	 a logical file buffer.  However, if ALWAYS is specified the
910  *	 device buffer will be instantiated anyway.
911  *
912  * WARNING! This function blocks on I/O if data needs to be fetched.  This
913  *	    blocking can run concurrent with other compatible lock holders
914  *	    who do not need data returning.  The lock is not upgraded to
915  *	    exclusive during a data fetch, a separate bit is used to
916  *	    interlock I/O.  However, an exclusive lock holder can still count
917  *	    on being interlocked against an I/O fetch managed by a shared
918  *	    lock holder.
919  */
920 void
921 hammer2_chain_lock(hammer2_chain_t *chain, int how)
922 {
923 	/*
924 	 * Ref and lock the element.  Recursive locks are allowed.
925 	 */
926 	KKASSERT(chain->refs > 0);
927 	atomic_add_int(&chain->lockcnt, 1);
928 
929 	/*
930 	 * Get the appropriate lock.  If LOCKAGAIN is flagged with SHARED
931 	 * the caller expects a shared lock to already be present and we
932 	 * are giving it another ref.  This case must importantly not block
933 	 * if there is a pending exclusive lock request.
934 	 */
935 	if (how & HAMMER2_RESOLVE_SHARED) {
936 		if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
937 			hammer2_mtx_sh_again(&chain->lock);
938 		} else {
939 			hammer2_mtx_sh(&chain->lock);
940 		}
941 	} else {
942 		hammer2_mtx_ex(&chain->lock);
943 	}
944 	++curthread->td_tracker;
945 
946 	/*
947 	 * If we already have a valid data pointer no further action is
948 	 * necessary.
949 	 */
950 	if (chain->data)
951 		return;
952 
953 	/*
954 	 * Do we have to resolve the data?  This is generally only
955 	 * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
956 	 * Other BREF types expects the data to be there.
957 	 */
958 	switch(how & HAMMER2_RESOLVE_MASK) {
959 	case HAMMER2_RESOLVE_NEVER:
960 		return;
961 	case HAMMER2_RESOLVE_MAYBE:
962 		if (chain->flags & HAMMER2_CHAIN_INITIAL)
963 			return;
964 		if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
965 			return;
966 #if 0
967 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
968 			return;
969 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
970 			return;
971 #endif
972 		/* fall through */
973 	case HAMMER2_RESOLVE_ALWAYS:
974 	default:
975 		break;
976 	}
977 
978 	/*
979 	 * Caller requires data
980 	 */
981 	hammer2_chain_load_data(chain);
982 }
983 
984 /*
985  * Lock the chain, retain the hold, and drop the data persistence count.
986  * The data should remain valid because we never transitioned lockcnt
987  * through 0.
988  */
989 void
990 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
991 {
992 	hammer2_chain_lock(chain, how);
993 	atomic_add_int(&chain->lockcnt, -1);
994 }
995 
996 #if 0
997 /*
998  * Downgrade an exclusive chain lock to a shared chain lock.
999  *
1000  * NOTE: There is no upgrade equivalent due to the ease of
1001  *	 deadlocks in that direction.
1002  */
1003 void
1004 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1005 {
1006 	hammer2_mtx_downgrade(&chain->lock);
1007 }
1008 #endif
1009 
1010 #if 0
1011 /*
1012  * Obtains a second shared lock on the chain, does not account the second
1013  * shared lock as being owned by the current thread.
1014  *
1015  * Caller must already own a shared lock on this chain.
1016  *
1017  * The lock function is required to obtain the second shared lock without
1018  * blocking on pending exclusive requests.
1019  */
1020 void
1021 hammer2_chain_push_shared_lock(hammer2_chain_t *chain)
1022 {
1023 	hammer2_mtx_sh_again(&chain->lock);
1024 	atomic_add_int(&chain->lockcnt, 1);
1025 	/* do not count in td_tracker for this thread */
1026 }
1027 
1028 /*
1029  * Accounts for a shared lock that was pushed to us as being owned by our
1030  * thread.
1031  */
1032 void
1033 hammer2_chain_pull_shared_lock(hammer2_chain_t *chain)
1034 {
1035 	++curthread->td_tracker;
1036 }
1037 #endif
1038 
1039 /*
1040  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1041  * may be of any type.
1042  *
1043  * Once chain->data is set it cannot be disposed of until all locks are
1044  * released.
1045  */
1046 void
1047 hammer2_chain_load_data(hammer2_chain_t *chain)
1048 {
1049 	hammer2_blockref_t *bref;
1050 	hammer2_dev_t *hmp;
1051 	hammer2_io_t *dio;
1052 	char *bdata;
1053 	int error;
1054 
1055 	/*
1056 	 * Degenerate case, data already present, or chain has no media
1057 	 * reference to load.
1058 	 */
1059 	if (chain->data)
1060 		return;
1061 	if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1062 		return;
1063 
1064 	hmp = chain->hmp;
1065 	KKASSERT(hmp != NULL);
1066 
1067 	/*
1068 	 * Gain the IOINPROG bit, interlocked block.
1069 	 */
1070 	for (;;) {
1071 		u_int oflags;
1072 		u_int nflags;
1073 
1074 		oflags = chain->flags;
1075 		cpu_ccfence();
1076 		if (oflags & HAMMER2_CHAIN_IOINPROG) {
1077 			nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1078 			tsleep_interlock(&chain->flags, 0);
1079 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1080 				tsleep(&chain->flags, PINTERLOCKED,
1081 					"h2iocw", 0);
1082 			}
1083 			/* retry */
1084 		} else {
1085 			nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1086 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1087 				break;
1088 			}
1089 			/* retry */
1090 		}
1091 	}
1092 
1093 	/*
1094 	 * We own CHAIN_IOINPROG
1095 	 *
1096 	 * Degenerate case if we raced another load.
1097 	 */
1098 	if (chain->data)
1099 		goto done;
1100 
1101 	/*
1102 	 * We must resolve to a device buffer, either by issuing I/O or
1103 	 * by creating a zero-fill element.  We do not mark the buffer
1104 	 * dirty when creating a zero-fill element (the hammer2_chain_modify()
1105 	 * API must still be used to do that).
1106 	 *
1107 	 * The device buffer is variable-sized in powers of 2 down
1108 	 * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1109 	 * chunk always contains buffers of the same size. (XXX)
1110 	 *
1111 	 * The minimum physical IO size may be larger than the variable
1112 	 * block size.
1113 	 */
1114 	bref = &chain->bref;
1115 
1116 	/*
1117 	 * The getblk() optimization can only be used on newly created
1118 	 * elements if the physical block size matches the request.
1119 	 */
1120 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1121 		error = hammer2_io_new(hmp, bref->type,
1122 				       bref->data_off, chain->bytes,
1123 				       &chain->dio);
1124 	} else {
1125 		error = hammer2_io_bread(hmp, bref->type,
1126 					 bref->data_off, chain->bytes,
1127 					 &chain->dio);
1128 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
1129 	}
1130 	if (error) {
1131 		chain->error = HAMMER2_ERROR_EIO;
1132 		kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
1133 			(intmax_t)bref->data_off, error);
1134 		hammer2_io_bqrelse(&chain->dio);
1135 		goto done;
1136 	}
1137 	chain->error = 0;
1138 
1139 	/*
1140 	 * This isn't perfect and can be ignored on OSs which do not have
1141 	 * an indication as to whether a buffer is coming from cache or
1142 	 * if I/O was actually issued for the read.  TESTEDGOOD will work
1143 	 * pretty well without the B_IOISSUED logic because chains are
1144 	 * cached, but in that situation (without B_IOISSUED) it will not
1145 	 * detect whether a re-read via I/O is corrupted verses the original
1146 	 * read.
1147 	 *
1148 	 * We can't re-run the CRC on every fresh lock.  That would be
1149 	 * insanely expensive.
1150 	 *
1151 	 * If the underlying kernel buffer covers the entire chain we can
1152 	 * use the B_IOISSUED indication to determine if we have to re-run
1153 	 * the CRC on chain data for chains that managed to stay cached
1154 	 * across the kernel disposal of the original buffer.
1155 	 */
1156 	if ((dio = chain->dio) != NULL && dio->bp) {
1157 		struct buf *bp = dio->bp;
1158 
1159 		if (dio->psize == chain->bytes &&
1160 		    (bp->b_flags & B_IOISSUED)) {
1161 			atomic_clear_int(&chain->flags,
1162 					 HAMMER2_CHAIN_TESTEDGOOD);
1163 			bp->b_flags &= ~B_IOISSUED;
1164 		}
1165 	}
1166 
1167 	/*
1168 	 * NOTE: A locked chain's data cannot be modified without first
1169 	 *	 calling hammer2_chain_modify().
1170 	 */
1171 
1172 	/*
1173 	 * Clear INITIAL.  In this case we used io_new() and the buffer has
1174 	 * been zero'd and marked dirty.
1175 	 */
1176 	bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1177 
1178 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1179 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1180 		chain->bref.flags |= HAMMER2_BREF_FLAG_ZERO;
1181 	} else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1182 		/*
1183 		 * check data not currently synchronized due to
1184 		 * modification.  XXX assumes data stays in the buffer
1185 		 * cache, which might not be true (need biodep on flush
1186 		 * to calculate crc?  or simple crc?).
1187 		 */
1188 	} else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1189 		if (hammer2_chain_testcheck(chain, bdata) == 0) {
1190 			chain->error = HAMMER2_ERROR_CHECK;
1191 		} else {
1192 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1193 		}
1194 	}
1195 
1196 	/*
1197 	 * Setup the data pointer, either pointing it to an embedded data
1198 	 * structure and copying the data from the buffer, or pointing it
1199 	 * into the buffer.
1200 	 *
1201 	 * The buffer is not retained when copying to an embedded data
1202 	 * structure in order to avoid potential deadlocks or recursions
1203 	 * on the same physical buffer.
1204 	 *
1205 	 * WARNING! Other threads can start using the data the instant we
1206 	 *	    set chain->data non-NULL.
1207 	 */
1208 	switch (bref->type) {
1209 	case HAMMER2_BREF_TYPE_VOLUME:
1210 	case HAMMER2_BREF_TYPE_FREEMAP:
1211 		/*
1212 		 * Copy data from bp to embedded buffer
1213 		 */
1214 		panic("hammer2_chain_load_data: unresolved volume header");
1215 		break;
1216 	case HAMMER2_BREF_TYPE_DIRENT:
1217 		KKASSERT(chain->bytes != 0);
1218 		/* fall through */
1219 	case HAMMER2_BREF_TYPE_INODE:
1220 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1221 	case HAMMER2_BREF_TYPE_INDIRECT:
1222 	case HAMMER2_BREF_TYPE_DATA:
1223 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1224 	default:
1225 		/*
1226 		 * Point data at the device buffer and leave dio intact.
1227 		 */
1228 		chain->data = (void *)bdata;
1229 		break;
1230 	}
1231 
1232 	/*
1233 	 * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1234 	 */
1235 done:
1236 	for (;;) {
1237 		u_int oflags;
1238 		u_int nflags;
1239 
1240 		oflags = chain->flags;
1241 		nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1242 				    HAMMER2_CHAIN_IOSIGNAL);
1243 		KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1244 		if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1245 			if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1246 				wakeup(&chain->flags);
1247 			break;
1248 		}
1249 	}
1250 }
1251 
1252 /*
1253  * Unlock and deref a chain element.
1254  *
1255  * Remember that the presence of children under chain prevent the chain's
1256  * destruction but do not add additional references, so the dio will still
1257  * be dropped.
1258  */
1259 void
1260 hammer2_chain_unlock(hammer2_chain_t *chain)
1261 {
1262 	hammer2_io_t *dio;
1263 	u_int lockcnt;
1264 	int iter = 0;
1265 
1266 	--curthread->td_tracker;
1267 
1268 	/*
1269 	 * If multiple locks are present (or being attempted) on this
1270 	 * particular chain we can just unlock, drop refs, and return.
1271 	 *
1272 	 * Otherwise fall-through on the 1->0 transition.
1273 	 */
1274 	for (;;) {
1275 		lockcnt = chain->lockcnt;
1276 		KKASSERT(lockcnt > 0);
1277 		cpu_ccfence();
1278 		if (lockcnt > 1) {
1279 			if (atomic_cmpset_int(&chain->lockcnt,
1280 					      lockcnt, lockcnt - 1)) {
1281 				hammer2_mtx_unlock(&chain->lock);
1282 				return;
1283 			}
1284 		} else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1285 			/* while holding the mutex exclusively */
1286 			if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1287 				break;
1288 		} else {
1289 			/*
1290 			 * This situation can easily occur on SMP due to
1291 			 * the gap inbetween the 1->0 transition and the
1292 			 * final unlock.  We cannot safely block on the
1293 			 * mutex because lockcnt might go above 1.
1294 			 *
1295 			 * XXX Sleep for one tick if it takes too long.
1296 			 */
1297 			if (++iter > 1000) {
1298 				if (iter > 1000 + hz) {
1299 					kprintf("hammer2: h2race2 %p\n", chain);
1300 					iter = 1000;
1301 				}
1302 				tsleep(&iter, 0, "h2race2", 1);
1303 			}
1304 			cpu_pause();
1305 		}
1306 		/* retry */
1307 	}
1308 
1309 	/*
1310 	 * Last unlock / mutex upgraded to exclusive.  Drop the data
1311 	 * reference.
1312 	 */
1313 	dio = hammer2_chain_drop_data(chain);
1314 	if (dio)
1315 		hammer2_io_bqrelse(&dio);
1316 	hammer2_mtx_unlock(&chain->lock);
1317 }
1318 
1319 /*
1320  * Unlock and hold chain data intact
1321  */
1322 void
1323 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1324 {
1325 	atomic_add_int(&chain->lockcnt, 1);
1326 	hammer2_chain_unlock(chain);
1327 }
1328 
1329 /*
1330  * Helper to obtain the blockref[] array base and count for a chain.
1331  *
1332  * XXX Not widely used yet, various use cases need to be validated and
1333  *     converted to use this function.
1334  */
1335 static
1336 hammer2_blockref_t *
1337 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1338 {
1339 	hammer2_blockref_t *base;
1340 	int count;
1341 
1342 	if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1343 		base = NULL;
1344 
1345 		switch(parent->bref.type) {
1346 		case HAMMER2_BREF_TYPE_INODE:
1347 			count = HAMMER2_SET_COUNT;
1348 			break;
1349 		case HAMMER2_BREF_TYPE_INDIRECT:
1350 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1351 			count = parent->bytes / sizeof(hammer2_blockref_t);
1352 			break;
1353 		case HAMMER2_BREF_TYPE_VOLUME:
1354 			count = HAMMER2_SET_COUNT;
1355 			break;
1356 		case HAMMER2_BREF_TYPE_FREEMAP:
1357 			count = HAMMER2_SET_COUNT;
1358 			break;
1359 		default:
1360 			panic("hammer2_chain_create_indirect: "
1361 			      "unrecognized blockref type: %d",
1362 			      parent->bref.type);
1363 			count = 0;
1364 			break;
1365 		}
1366 	} else {
1367 		switch(parent->bref.type) {
1368 		case HAMMER2_BREF_TYPE_INODE:
1369 			base = &parent->data->ipdata.u.blockset.blockref[0];
1370 			count = HAMMER2_SET_COUNT;
1371 			break;
1372 		case HAMMER2_BREF_TYPE_INDIRECT:
1373 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1374 			base = &parent->data->npdata[0];
1375 			count = parent->bytes / sizeof(hammer2_blockref_t);
1376 			break;
1377 		case HAMMER2_BREF_TYPE_VOLUME:
1378 			base = &parent->data->voldata.
1379 					sroot_blockset.blockref[0];
1380 			count = HAMMER2_SET_COUNT;
1381 			break;
1382 		case HAMMER2_BREF_TYPE_FREEMAP:
1383 			base = &parent->data->blkset.blockref[0];
1384 			count = HAMMER2_SET_COUNT;
1385 			break;
1386 		default:
1387 			panic("hammer2_chain_create_indirect: "
1388 			      "unrecognized blockref type: %d",
1389 			      parent->bref.type);
1390 			count = 0;
1391 			break;
1392 		}
1393 	}
1394 	*countp = count;
1395 
1396 	return base;
1397 }
1398 
1399 /*
1400  * This counts the number of live blockrefs in a block array and
1401  * also calculates the point at which all remaining blockrefs are empty.
1402  * This routine can only be called on a live chain.
1403  *
1404  * Caller holds the chain locked, but possibly with a shared lock.  We
1405  * must use an exclusive spinlock to prevent corruption.
1406  *
1407  * NOTE: Flag is not set until after the count is complete, allowing
1408  *	 callers to test the flag without holding the spinlock.
1409  *
1410  * NOTE: If base is NULL the related chain is still in the INITIAL
1411  *	 state and there are no blockrefs to count.
1412  *
1413  * NOTE: live_count may already have some counts accumulated due to
1414  *	 creation and deletion and could even be initially negative.
1415  */
1416 void
1417 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1418 			 hammer2_blockref_t *base, int count)
1419 {
1420 	hammer2_spin_ex(&chain->core.spin);
1421         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1422 		if (base) {
1423 			while (--count >= 0) {
1424 				if (base[count].type)
1425 					break;
1426 			}
1427 			chain->core.live_zero = count + 1;
1428 			while (count >= 0) {
1429 				if (base[count].type)
1430 					atomic_add_int(&chain->core.live_count,
1431 						       1);
1432 				--count;
1433 			}
1434 		} else {
1435 			chain->core.live_zero = 0;
1436 		}
1437 		/* else do not modify live_count */
1438 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1439 	}
1440 	hammer2_spin_unex(&chain->core.spin);
1441 }
1442 
1443 /*
1444  * Resize the chain's physical storage allocation in-place.  This function does
1445  * not usually adjust the data pointer and must be followed by (typically) a
1446  * hammer2_chain_modify() call to copy any old data over and adjust the
1447  * data pointer.
1448  *
1449  * Chains can be resized smaller without reallocating the storage.  Resizing
1450  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1451  * asynchronously at a later time.
1452  *
1453  * An nradix value of 0 is special-cased to mean that the storage should
1454  * be disassociated, that is the chain is being resized to 0 bytes (not 1
1455  * byte).
1456  *
1457  * Must be passed an exclusively locked parent and chain.
1458  *
1459  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1460  * to avoid instantiating a device buffer that conflicts with the vnode data
1461  * buffer.  However, because H2 can compress or encrypt data, the chain may
1462  * have a dio assigned to it in those situations, and they do not conflict.
1463  *
1464  * XXX return error if cannot resize.
1465  */
1466 int
1467 hammer2_chain_resize(hammer2_chain_t *chain,
1468 		     hammer2_tid_t mtid, hammer2_off_t dedup_off,
1469 		     int nradix, int flags)
1470 {
1471 	hammer2_dev_t *hmp;
1472 	size_t obytes;
1473 	size_t nbytes;
1474 	int error;
1475 
1476 	hmp = chain->hmp;
1477 
1478 	/*
1479 	 * Only data and indirect blocks can be resized for now.
1480 	 * (The volu root, inodes, and freemap elements use a fixed size).
1481 	 */
1482 	KKASSERT(chain != &hmp->vchain);
1483 	KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1484 		 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1485 		 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1486 
1487 	/*
1488 	 * Nothing to do if the element is already the proper size
1489 	 */
1490 	obytes = chain->bytes;
1491 	nbytes = (nradix) ? (1U << nradix) : 0;
1492 	if (obytes == nbytes)
1493 		return (chain->error);
1494 
1495 	/*
1496 	 * Make sure the old data is instantiated so we can copy it.  If this
1497 	 * is a data block, the device data may be superfluous since the data
1498 	 * might be in a logical block, but compressed or encrypted data is
1499 	 * another matter.
1500 	 *
1501 	 * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1502 	 */
1503 	error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1504 	if (error)
1505 		return error;
1506 
1507 	/*
1508 	 * Relocate the block, even if making it smaller (because different
1509 	 * block sizes may be in different regions).
1510 	 *
1511 	 * NOTE: Operation does not copy the data and may only be used
1512 	 *	  to resize data blocks in-place, or directory entry blocks
1513 	 *	  which are about to be modified in some manner.
1514 	 */
1515 	error = hammer2_freemap_alloc(chain, nbytes);
1516 	if (error)
1517 		return error;
1518 
1519 	chain->bytes = nbytes;
1520 
1521 	/*
1522 	 * We don't want the followup chain_modify() to try to copy data
1523 	 * from the old (wrong-sized) buffer.  It won't know how much to
1524 	 * copy.  This case should only occur during writes when the
1525 	 * originator already has the data to write in-hand.
1526 	 */
1527 	if (chain->dio) {
1528 		KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1529 			 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1530 		hammer2_io_brelse(&chain->dio);
1531 		chain->data = NULL;
1532 	}
1533 	return (chain->error);
1534 }
1535 
1536 /*
1537  * Set the chain modified so its data can be changed by the caller, or
1538  * install deduplicated data.  The caller must call this routine for each
1539  * set of modifications it makes, even if the chain is already flagged
1540  * MODIFIED.
1541  *
1542  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1543  * is a CLC (cluster level change) field and is not updated by parent
1544  * propagation during a flush.
1545  *
1546  * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1547  * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1548  * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1549  * remains unmodified with its old data ref intact and chain->error
1550  * unchanged.
1551  *
1552  *				 Dedup Handling
1553  *
1554  * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1555  * even if the chain is still flagged MODIFIED.  In this case the chain's
1556  * DEDUPABLE flag will be cleared once the new storage has been assigned.
1557  *
1558  * If the caller passes a non-zero dedup_off we will use it to assign the
1559  * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1560  * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1561  * must not modify the data content upon return.
1562  */
1563 int
1564 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1565 		     hammer2_off_t dedup_off, int flags)
1566 {
1567 	hammer2_blockref_t obref;
1568 	hammer2_dev_t *hmp;
1569 	hammer2_io_t *dio;
1570 	int error;
1571 	int wasinitial;
1572 	int setmodified;
1573 	int setupdate;
1574 	int newmod;
1575 	char *bdata;
1576 
1577 	hmp = chain->hmp;
1578 	obref = chain->bref;
1579 	KKASSERT((chain->flags & HAMMER2_CHAIN_FICTITIOUS) == 0);
1580 
1581 	/*
1582 	 * Data is not optional for freemap chains (we must always be sure
1583 	 * to copy the data on COW storage allocations).
1584 	 */
1585 	if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1586 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1587 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1588 			 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1589 	}
1590 
1591 	/*
1592 	 * Data must be resolved if already assigned, unless explicitly
1593 	 * flagged otherwise.  If we cannot safety load the data the
1594 	 * modification fails and we return early.
1595 	 */
1596 	if (chain->data == NULL && chain->bytes != 0 &&
1597 	    (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1598 	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1599 		hammer2_chain_load_data(chain);
1600 		if (chain->error)
1601 			return (chain->error);
1602 	}
1603 	error = 0;
1604 
1605 	/*
1606 	 * Set MODIFIED to indicate that the chain has been modified.  A new
1607 	 * allocation is required when modifying a chain.
1608 	 *
1609 	 * Set UPDATE to ensure that the blockref is updated in the parent.
1610 	 *
1611 	 * If MODIFIED is already set determine if we can reuse the assigned
1612 	 * data block or if we need a new data block.
1613 	 */
1614 	if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1615 		/*
1616 		 * Must set modified bit.
1617 		 */
1618 		atomic_add_long(&hammer2_count_modified_chains, 1);
1619 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1620 		hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1621 		setmodified = 1;
1622 
1623 		/*
1624 		 * We may be able to avoid a copy-on-write if the chain's
1625 		 * check mode is set to NONE and the chain's current
1626 		 * modify_tid is beyond the last explicit snapshot tid.
1627 		 *
1628 		 * This implements HAMMER2's overwrite-in-place feature.
1629 		 *
1630 		 * NOTE! This data-block cannot be used as a de-duplication
1631 		 *	 source when the check mode is set to NONE.
1632 		 */
1633 		if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1634 		     chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1635 		    (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1636 		    (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1637 		    HAMMER2_DEC_CHECK(chain->bref.methods) ==
1638 		     HAMMER2_CHECK_NONE &&
1639 		    chain->pmp &&
1640 		    chain->bref.modify_tid >
1641 		     chain->pmp->iroot->meta.pfs_lsnap_tid) {
1642 			/*
1643 			 * Sector overwrite allowed.
1644 			 */
1645 			newmod = 0;
1646 		} else {
1647 			/*
1648 			 * Sector overwrite not allowed, must copy-on-write.
1649 			 */
1650 			newmod = 1;
1651 		}
1652 	} else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1653 		/*
1654 		 * If the modified chain was registered for dedup we need
1655 		 * a new allocation.  This only happens for delayed-flush
1656 		 * chains (i.e. which run through the front-end buffer
1657 		 * cache).
1658 		 */
1659 		newmod = 1;
1660 		setmodified = 0;
1661 	} else {
1662 		/*
1663 		 * Already flagged modified, no new allocation is needed.
1664 		 */
1665 		newmod = 0;
1666 		setmodified = 0;
1667 	}
1668 
1669 	/*
1670 	 * Flag parent update required.
1671 	 */
1672 	if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1673 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1674 		setupdate = 1;
1675 	} else {
1676 		setupdate = 0;
1677 	}
1678 
1679 	/*
1680 	 * The modification or re-modification requires an allocation and
1681 	 * possible COW.  If an error occurs, the previous content and data
1682 	 * reference is retained and the modification fails.
1683 	 *
1684 	 * If dedup_off is non-zero, the caller is requesting a deduplication
1685 	 * rather than a modification.  The MODIFIED bit is not set and the
1686 	 * data offset is set to the deduplication offset.  The data cannot
1687 	 * be modified.
1688 	 *
1689 	 * NOTE: The dedup offset is allowed to be in a partially free state
1690 	 *	 and we must be sure to reset it to a fully allocated state
1691 	 *	 to force two bulkfree passes to free it again.
1692 	 *
1693 	 * NOTE: Only applicable when chain->bytes != 0.
1694 	 *
1695 	 * XXX can a chain already be marked MODIFIED without a data
1696 	 * assignment?  If not, assert here instead of testing the case.
1697 	 */
1698 	if (chain != &hmp->vchain && chain != &hmp->fchain &&
1699 	    chain->bytes) {
1700 		if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1701 		     newmod
1702 		) {
1703 			/*
1704 			 * NOTE: We do not have to remove the dedup
1705 			 *	 registration because the area is still
1706 			 *	 allocated and the underlying DIO will
1707 			 *	 still be flushed.
1708 			 */
1709 			if (dedup_off) {
1710 				chain->bref.data_off = dedup_off;
1711 				chain->bytes = 1 << (dedup_off &
1712 						     HAMMER2_OFF_MASK_RADIX);
1713 				chain->error = 0;
1714 				atomic_clear_int(&chain->flags,
1715 						 HAMMER2_CHAIN_MODIFIED);
1716 				atomic_add_long(&hammer2_count_modified_chains,
1717 						-1);
1718 				if (chain->pmp)
1719 					hammer2_pfs_memory_wakeup(chain->pmp);
1720 				hammer2_freemap_adjust(hmp, &chain->bref,
1721 						HAMMER2_FREEMAP_DORECOVER);
1722 				atomic_set_int(&chain->flags,
1723 						HAMMER2_CHAIN_DEDUPABLE);
1724 			} else {
1725 				error = hammer2_freemap_alloc(chain,
1726 							      chain->bytes);
1727 				atomic_clear_int(&chain->flags,
1728 						HAMMER2_CHAIN_DEDUPABLE);
1729 			}
1730 		}
1731 	}
1732 
1733 	/*
1734 	 * Stop here if error.  We have to undo any flag bits we might
1735 	 * have set above.
1736 	 */
1737 	if (error) {
1738 		if (setmodified) {
1739 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1740 			atomic_add_long(&hammer2_count_modified_chains, -1);
1741 			if (chain->pmp)
1742 				hammer2_pfs_memory_wakeup(chain->pmp);
1743 		}
1744 		if (setupdate) {
1745 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1746 		}
1747 		return error;
1748 	}
1749 
1750 	/*
1751 	 * Update mirror_tid and modify_tid.  modify_tid is only updated
1752 	 * if not passed as zero (during flushes, parent propagation passes
1753 	 * the value 0).
1754 	 *
1755 	 * NOTE: chain->pmp could be the device spmp.
1756 	 */
1757 	chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1758 	if (mtid)
1759 		chain->bref.modify_tid = mtid;
1760 
1761 	/*
1762 	 * Set BMAPUPD to tell the flush code that an existing blockmap entry
1763 	 * requires updating as well as to tell the delete code that the
1764 	 * chain's blockref might not exactly match (in terms of physical size
1765 	 * or block offset) the one in the parent's blocktable.  The base key
1766 	 * of course will still match.
1767 	 */
1768 	if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1769 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1770 
1771 	/*
1772 	 * Short-cut data blocks which the caller does not need an actual
1773 	 * data reference to (aka OPTDATA), as long as the chain does not
1774 	 * already have a data pointer to the data.  This generally means
1775 	 * that the modifications are being done via the logical buffer cache.
1776 	 * The INITIAL flag relates only to the device data buffer and thus
1777 	 * remains unchange in this situation.
1778 	 *
1779 	 * This code also handles bytes == 0 (most dirents).
1780 	 */
1781 	if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1782 	    (flags & HAMMER2_MODIFY_OPTDATA) &&
1783 	    chain->data == NULL) {
1784 		KKASSERT(chain->dio == NULL);
1785 		goto skip2;
1786 	}
1787 
1788 	/*
1789 	 * Clearing the INITIAL flag (for indirect blocks) indicates that
1790 	 * we've processed the uninitialized storage allocation.
1791 	 *
1792 	 * If this flag is already clear we are likely in a copy-on-write
1793 	 * situation but we have to be sure NOT to bzero the storage if
1794 	 * no data is present.
1795 	 */
1796 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1797 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1798 		wasinitial = 1;
1799 	} else {
1800 		wasinitial = 0;
1801 	}
1802 
1803 	/*
1804 	 * Instantiate data buffer and possibly execute COW operation
1805 	 */
1806 	switch(chain->bref.type) {
1807 	case HAMMER2_BREF_TYPE_VOLUME:
1808 	case HAMMER2_BREF_TYPE_FREEMAP:
1809 		/*
1810 		 * The data is embedded, no copy-on-write operation is
1811 		 * needed.
1812 		 */
1813 		KKASSERT(chain->dio == NULL);
1814 		break;
1815 	case HAMMER2_BREF_TYPE_DIRENT:
1816 		/*
1817 		 * The data might be fully embedded.
1818 		 */
1819 		if (chain->bytes == 0) {
1820 			KKASSERT(chain->dio == NULL);
1821 			break;
1822 		}
1823 		/* fall through */
1824 	case HAMMER2_BREF_TYPE_INODE:
1825 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1826 	case HAMMER2_BREF_TYPE_DATA:
1827 	case HAMMER2_BREF_TYPE_INDIRECT:
1828 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1829 		/*
1830 		 * Perform the copy-on-write operation
1831 		 *
1832 		 * zero-fill or copy-on-write depending on whether
1833 		 * chain->data exists or not and set the dirty state for
1834 		 * the new buffer.  hammer2_io_new() will handle the
1835 		 * zero-fill.
1836 		 *
1837 		 * If a dedup_off was supplied this is an existing block
1838 		 * and no COW, copy, or further modification is required.
1839 		 */
1840 		KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
1841 
1842 		if (wasinitial && dedup_off == 0) {
1843 			error = hammer2_io_new(hmp, chain->bref.type,
1844 					       chain->bref.data_off,
1845 					       chain->bytes, &dio);
1846 		} else {
1847 			error = hammer2_io_bread(hmp, chain->bref.type,
1848 						 chain->bref.data_off,
1849 						 chain->bytes, &dio);
1850 		}
1851 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
1852 
1853 		/*
1854 		 * If an I/O error occurs make sure callers cannot accidently
1855 		 * modify the old buffer's contents and corrupt the filesystem.
1856 		 */
1857 		if (error) {
1858 			kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
1859 				hmp);
1860 			chain->error = HAMMER2_ERROR_EIO;
1861 			hammer2_io_brelse(&dio);
1862 			hammer2_io_brelse(&chain->dio);
1863 			chain->data = NULL;
1864 			break;
1865 		}
1866 		chain->error = 0;
1867 		bdata = hammer2_io_data(dio, chain->bref.data_off);
1868 
1869 		if (chain->data) {
1870 			/*
1871 			 * COW (unless a dedup).
1872 			 */
1873 			KKASSERT(chain->dio != NULL);
1874 			if (chain->data != (void *)bdata && dedup_off == 0) {
1875 				bcopy(chain->data, bdata, chain->bytes);
1876 			}
1877 		} else if (wasinitial == 0) {
1878 			/*
1879 			 * We have a problem.  We were asked to COW but
1880 			 * we don't have any data to COW with!
1881 			 */
1882 			panic("hammer2_chain_modify: having a COW %p\n",
1883 			      chain);
1884 		}
1885 
1886 		/*
1887 		 * Retire the old buffer, replace with the new.  Dirty or
1888 		 * redirty the new buffer.
1889 		 *
1890 		 * WARNING! The system buffer cache may have already flushed
1891 		 *	    the buffer, so we must be sure to [re]dirty it
1892 		 *	    for further modification.
1893 		 *
1894 		 *	    If dedup_off was supplied, the caller is not
1895 		 *	    expected to make any further modification to the
1896 		 *	    buffer.
1897 		 */
1898 		if (chain->dio)
1899 			hammer2_io_bqrelse(&chain->dio);
1900 		chain->data = (void *)bdata;
1901 		chain->dio = dio;
1902 		if (dedup_off == 0)
1903 			hammer2_io_setdirty(dio);
1904 		break;
1905 	default:
1906 		panic("hammer2_chain_modify: illegal non-embedded type %d",
1907 		      chain->bref.type);
1908 		break;
1909 
1910 	}
1911 skip2:
1912 	/*
1913 	 * setflush on parent indicating that the parent must recurse down
1914 	 * to us.  Do not call on chain itself which might already have it
1915 	 * set.
1916 	 */
1917 	if (chain->parent)
1918 		hammer2_chain_setflush(chain->parent);
1919 	return (chain->error);
1920 }
1921 
1922 /*
1923  * Modify the chain associated with an inode.
1924  */
1925 int
1926 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
1927 			hammer2_tid_t mtid, int flags)
1928 {
1929 	int error;
1930 
1931 	hammer2_inode_modify(ip);
1932 	error = hammer2_chain_modify(chain, mtid, 0, flags);
1933 
1934 	return error;
1935 }
1936 
1937 /*
1938  * Volume header data locks
1939  */
1940 void
1941 hammer2_voldata_lock(hammer2_dev_t *hmp)
1942 {
1943 	lockmgr(&hmp->vollk, LK_EXCLUSIVE);
1944 }
1945 
1946 void
1947 hammer2_voldata_unlock(hammer2_dev_t *hmp)
1948 {
1949 	lockmgr(&hmp->vollk, LK_RELEASE);
1950 }
1951 
1952 void
1953 hammer2_voldata_modify(hammer2_dev_t *hmp)
1954 {
1955 	if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1956 		atomic_add_long(&hammer2_count_modified_chains, 1);
1957 		atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1958 		hammer2_pfs_memory_inc(hmp->vchain.pmp);
1959 	}
1960 }
1961 
1962 /*
1963  * This function returns the chain at the nearest key within the specified
1964  * range.  The returned chain will be referenced but not locked.
1965  *
1966  * This function will recurse through chain->rbtree as necessary and will
1967  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
1968  * the iteration value is less than the current value of *key_nextp.
1969  *
1970  * The caller should use (*key_nextp) to calculate the actual range of
1971  * the returned element, which will be (key_beg to *key_nextp - 1), because
1972  * there might be another element which is superior to the returned element
1973  * and overlaps it.
1974  *
1975  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
1976  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
1977  * it will wind up being (key_end + 1).
1978  *
1979  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
1980  *	     held through the operation.
1981  */
1982 struct hammer2_chain_find_info {
1983 	hammer2_chain_t		*best;
1984 	hammer2_key_t		key_beg;
1985 	hammer2_key_t		key_end;
1986 	hammer2_key_t		key_next;
1987 };
1988 
1989 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
1990 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
1991 
1992 static
1993 hammer2_chain_t *
1994 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
1995 			  hammer2_key_t key_beg, hammer2_key_t key_end)
1996 {
1997 	struct hammer2_chain_find_info info;
1998 
1999 	info.best = NULL;
2000 	info.key_beg = key_beg;
2001 	info.key_end = key_end;
2002 	info.key_next = *key_nextp;
2003 
2004 	RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2005 		hammer2_chain_find_cmp, hammer2_chain_find_callback,
2006 		&info);
2007 	*key_nextp = info.key_next;
2008 #if 0
2009 	kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2010 		parent, key_beg, key_end, *key_nextp);
2011 #endif
2012 
2013 	return (info.best);
2014 }
2015 
2016 static
2017 int
2018 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2019 {
2020 	struct hammer2_chain_find_info *info = data;
2021 	hammer2_key_t child_beg;
2022 	hammer2_key_t child_end;
2023 
2024 	child_beg = child->bref.key;
2025 	child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2026 
2027 	if (child_end < info->key_beg)
2028 		return(-1);
2029 	if (child_beg > info->key_end)
2030 		return(1);
2031 	return(0);
2032 }
2033 
2034 static
2035 int
2036 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2037 {
2038 	struct hammer2_chain_find_info *info = data;
2039 	hammer2_chain_t *best;
2040 	hammer2_key_t child_end;
2041 
2042 	/*
2043 	 * WARNING! Layerq is scanned forwards, exact matches should keep
2044 	 *	    the existing info->best.
2045 	 */
2046 	if ((best = info->best) == NULL) {
2047 		/*
2048 		 * No previous best.  Assign best
2049 		 */
2050 		info->best = child;
2051 	} else if (best->bref.key <= info->key_beg &&
2052 		   child->bref.key <= info->key_beg) {
2053 		/*
2054 		 * Illegal overlap.
2055 		 */
2056 		KKASSERT(0);
2057 		/*info->best = child;*/
2058 	} else if (child->bref.key < best->bref.key) {
2059 		/*
2060 		 * Child has a nearer key and best is not flush with key_beg.
2061 		 * Set best to child.  Truncate key_next to the old best key.
2062 		 */
2063 		info->best = child;
2064 		if (info->key_next > best->bref.key || info->key_next == 0)
2065 			info->key_next = best->bref.key;
2066 	} else if (child->bref.key == best->bref.key) {
2067 		/*
2068 		 * If our current best is flush with the child then this
2069 		 * is an illegal overlap.
2070 		 *
2071 		 * key_next will automatically be limited to the smaller of
2072 		 * the two end-points.
2073 		 */
2074 		KKASSERT(0);
2075 		info->best = child;
2076 	} else {
2077 		/*
2078 		 * Keep the current best but truncate key_next to the child's
2079 		 * base.
2080 		 *
2081 		 * key_next will also automatically be limited to the smaller
2082 		 * of the two end-points (probably not necessary for this case
2083 		 * but we do it anyway).
2084 		 */
2085 		if (info->key_next > child->bref.key || info->key_next == 0)
2086 			info->key_next = child->bref.key;
2087 	}
2088 
2089 	/*
2090 	 * Always truncate key_next based on child's end-of-range.
2091 	 */
2092 	child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2093 	if (child_end && (info->key_next > child_end || info->key_next == 0))
2094 		info->key_next = child_end;
2095 
2096 	return(0);
2097 }
2098 
2099 /*
2100  * Retrieve the specified chain from a media blockref, creating the
2101  * in-memory chain structure which reflects it.  The returned chain is
2102  * held but not locked.  The caller must lock it to crc-check and
2103  * dereference its data, and should check chain->error after locking
2104  * before assuming that the data is good.
2105  *
2106  * To handle insertion races pass the INSERT_RACE flag along with the
2107  * generation number of the core.  NULL will be returned if the generation
2108  * number changes before we have a chance to insert the chain.  Insert
2109  * races can occur because the parent might be held shared.
2110  *
2111  * Caller must hold the parent locked shared or exclusive since we may
2112  * need the parent's bref array to find our block.
2113  *
2114  * WARNING! chain->pmp is always set to NULL for any chain representing
2115  *	    part of the super-root topology.
2116  */
2117 hammer2_chain_t *
2118 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2119 		  hammer2_blockref_t *bref)
2120 {
2121 	hammer2_dev_t *hmp = parent->hmp;
2122 	hammer2_chain_t *chain;
2123 	int error;
2124 
2125 	/*
2126 	 * Allocate a chain structure representing the existing media
2127 	 * entry.  Resulting chain has one ref and is not locked.
2128 	 */
2129 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2130 		chain = hammer2_chain_alloc(hmp, NULL, bref);
2131 	else
2132 		chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2133 	/* ref'd chain returned */
2134 
2135 	/*
2136 	 * Flag that the chain is in the parent's blockmap so delete/flush
2137 	 * knows what to do with it.
2138 	 */
2139 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2140 
2141 	/*
2142 	 * Link the chain into its parent.  A spinlock is required to safely
2143 	 * access the RBTREE, and it is possible to collide with another
2144 	 * hammer2_chain_get() operation because the caller might only hold
2145 	 * a shared lock on the parent.
2146 	 *
2147 	 * NOTE: Get races can occur quite often when we distribute
2148 	 *	 asynchronous read-aheads across multiple threads.
2149 	 */
2150 	KKASSERT(parent->refs > 0);
2151 	error = hammer2_chain_insert(parent, chain,
2152 				     HAMMER2_CHAIN_INSERT_SPIN |
2153 				     HAMMER2_CHAIN_INSERT_RACE,
2154 				     generation);
2155 	if (error) {
2156 		KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2157 		/*kprintf("chain %p get race\n", chain);*/
2158 		hammer2_chain_drop(chain);
2159 		chain = NULL;
2160 	} else {
2161 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2162 	}
2163 
2164 	/*
2165 	 * Return our new chain referenced but not locked, or NULL if
2166 	 * a race occurred.
2167 	 */
2168 	return (chain);
2169 }
2170 
2171 /*
2172  * Lookup initialization/completion API
2173  */
2174 hammer2_chain_t *
2175 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2176 {
2177 	hammer2_chain_ref(parent);
2178 	if (flags & HAMMER2_LOOKUP_SHARED) {
2179 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2180 					   HAMMER2_RESOLVE_SHARED);
2181 	} else {
2182 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2183 	}
2184 	return (parent);
2185 }
2186 
2187 void
2188 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2189 {
2190 	if (parent) {
2191 		hammer2_chain_unlock(parent);
2192 		hammer2_chain_drop(parent);
2193 	}
2194 }
2195 
2196 /*
2197  * Take the locked chain and return a locked parent.  The chain remains
2198  * locked on return.
2199  *
2200  * This will work even if the chain is errored, and the caller can check
2201  * parent->error on return if desired since the parent will be locked.
2202  *
2203  * This function handles the lock order reversal.
2204  */
2205 hammer2_chain_t *
2206 hammer2_chain_getparent(hammer2_chain_t *chain, int how)
2207 {
2208 	hammer2_chain_t *parent;
2209 
2210 	/*
2211 	 * Be careful of order, chain must be unlocked before parent
2212 	 * is locked below to avoid a deadlock.
2213 	 *
2214 	 * Safe access to fu->parent requires fu's core spinlock.
2215 	 */
2216 again:
2217 	hammer2_spin_ex(&chain->core.spin);
2218 	parent = chain->parent;
2219 	if (parent == NULL) {
2220 		hammer2_spin_unex(&chain->core.spin);
2221 		panic("hammer2_chain_getparent: no parent");
2222 	}
2223 	hammer2_chain_ref(parent);
2224 	hammer2_spin_unex(&chain->core.spin);
2225 
2226 	hammer2_chain_unlock(chain);
2227 	hammer2_chain_lock(parent, how);
2228 	hammer2_chain_lock(chain, how);
2229 
2230 	/*
2231 	 * Parent relinking races are quite common.  We have to get it right
2232 	 * or we will blow up the block table.
2233 	 */
2234 	if (chain->parent != parent) {
2235 		hammer2_chain_unlock(parent);
2236 		hammer2_chain_drop(parent);
2237 		goto again;
2238 	}
2239 	return parent;
2240 }
2241 
2242 /*
2243  * Take the locked chain and return a locked parent.  The chain is unlocked
2244  * and dropped.  *chainp is set to the returned parent as a convenience.
2245  *
2246  * This will work even if the chain is errored, and the caller can check
2247  * parent->error on return if desired since the parent will be locked.
2248  *
2249  * This function handles the lock order reversal.
2250  */
2251 hammer2_chain_t *
2252 hammer2_chain_repparent(hammer2_chain_t **chainp, int how)
2253 {
2254 	hammer2_chain_t *chain;
2255 	hammer2_chain_t *parent;
2256 
2257 	/*
2258 	 * Be careful of order, chain must be unlocked before parent
2259 	 * is locked below to avoid a deadlock.
2260 	 *
2261 	 * Safe access to fu->parent requires fu's core spinlock.
2262 	 */
2263 	chain = *chainp;
2264 again:
2265 	hammer2_spin_ex(&chain->core.spin);
2266 	parent = chain->parent;
2267 	if (parent == NULL) {
2268 		hammer2_spin_unex(&chain->core.spin);
2269 		panic("hammer2_chain_getparent: no parent");
2270 	}
2271 	hammer2_chain_ref(parent);
2272 	hammer2_spin_unex(&chain->core.spin);
2273 
2274 	hammer2_chain_unlock(chain);
2275 	hammer2_chain_lock(parent, how);
2276 
2277 	/*
2278 	 * Parent relinking races are quite common.  We have to get it right
2279 	 * or we will blow up the block table.
2280 	 */
2281 	if (chain->parent != parent) {
2282 		hammer2_chain_lock(chain, how);
2283 		hammer2_chain_unlock(parent);
2284 		hammer2_chain_drop(parent);
2285 		goto again;
2286 	}
2287 	hammer2_chain_drop(chain);
2288 	*chainp = parent;
2289 
2290 	return parent;
2291 }
2292 
2293 /*
2294  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2295  * (*parentp) typically points to an inode but can also point to a related
2296  * indirect block and this function will recurse upwards and find the inode
2297  * again.
2298  *
2299  * This function unconditionally sets *errorp, replacing any previous value.
2300  *
2301  * (*parentp) must be exclusively locked and referenced and can be an inode
2302  * or an existing indirect block within the inode.  If (*parent) is errored
2303  * out, this function will not attempt to recurse the radix tree and
2304  * will return NULL along with an appropriate *errorp.  If NULL is returned
2305  * and *errorp is 0, the requested lookup could not be located.
2306  *
2307  * On return (*parentp) will be modified to point at the deepest parent chain
2308  * element encountered during the search, as a helper for an insertion or
2309  * deletion.   The new (*parentp) will be locked and referenced and the old
2310  * will be unlocked and dereferenced (no change if they are both the same).
2311  * This is particularly important if the caller wishes to insert a new chain,
2312  * (*parentp) will be set properly even if NULL is returned, as long as no
2313  * error occurred.
2314  *
2315  * The matching chain will be returned exclusively locked.  If NOLOCK is
2316  * requested the chain will be returned only referenced.  Note that the
2317  * parent chain must always be locked shared or exclusive, matching the
2318  * HAMMER2_LOOKUP_SHARED flag.  We can conceivably lock it SHARED temporarily
2319  * when NOLOCK is specified but that complicates matters if *parentp must
2320  * inherit the chain.
2321  *
2322  * NOLOCK also implies NODATA, since an unlocked chain usually has a NULL
2323  * data pointer or can otherwise be in flux.
2324  *
2325  * NULL is returned if no match was found, but (*parentp) will still
2326  * potentially be adjusted.
2327  *
2328  * On return (*key_nextp) will point to an iterative value for key_beg.
2329  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2330  *
2331  * This function will also recurse up the chain if the key is not within the
2332  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2333  * can simply allow (*parentp) to float inside the loop.
2334  *
2335  * NOTE!  chain->data is not always resolved.  By default it will not be
2336  *	  resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2337  *	  HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2338  *	  BREF_TYPE_DATA as the device buffer can alias the logical file
2339  *	  buffer).
2340  */
2341 
2342 hammer2_chain_t *
2343 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2344 		     hammer2_key_t key_beg, hammer2_key_t key_end,
2345 		     int *errorp, int flags)
2346 {
2347 	hammer2_dev_t *hmp;
2348 	hammer2_chain_t *parent;
2349 	hammer2_chain_t *chain;
2350 	hammer2_blockref_t *base;
2351 	hammer2_blockref_t *bref;
2352 	hammer2_blockref_t bcopy;
2353 	hammer2_key_t scan_beg;
2354 	hammer2_key_t scan_end;
2355 	int count = 0;
2356 	int how_always = HAMMER2_RESOLVE_ALWAYS;
2357 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
2358 	int how;
2359 	int generation;
2360 	int maxloops = 300000;
2361 
2362 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
2363 		how_maybe = how_always;
2364 		how = HAMMER2_RESOLVE_ALWAYS;
2365 	} else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
2366 		how = HAMMER2_RESOLVE_NEVER;
2367 	} else {
2368 		how = HAMMER2_RESOLVE_MAYBE;
2369 	}
2370 	if (flags & HAMMER2_LOOKUP_SHARED) {
2371 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2372 		how_always |= HAMMER2_RESOLVE_SHARED;
2373 		how |= HAMMER2_RESOLVE_SHARED;
2374 	}
2375 
2376 	/*
2377 	 * Recurse (*parentp) upward if necessary until the parent completely
2378 	 * encloses the key range or we hit the inode.
2379 	 *
2380 	 * Handle races against the flusher deleting indirect nodes on its
2381 	 * way back up by continuing to recurse upward past the deletion.
2382 	 */
2383 	parent = *parentp;
2384 	hmp = parent->hmp;
2385 	*errorp = 0;
2386 
2387 	while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2388 	       parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2389 		scan_beg = parent->bref.key;
2390 		scan_end = scan_beg +
2391 			   ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2392 		if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2393 			if (key_beg >= scan_beg && key_end <= scan_end)
2394 				break;
2395 		}
2396 		parent = hammer2_chain_repparent(parentp, how_maybe);
2397 	}
2398 again:
2399 
2400 	if (--maxloops == 0)
2401 		panic("hammer2_chain_lookup: maxloops");
2402 	/*
2403 	 * Locate the blockref array.  Currently we do a fully associative
2404 	 * search through the array.
2405 	 */
2406 	switch(parent->bref.type) {
2407 	case HAMMER2_BREF_TYPE_INODE:
2408 		/*
2409 		 * Special shortcut for embedded data returns the inode
2410 		 * itself.  Callers must detect this condition and access
2411 		 * the embedded data (the strategy code does this for us).
2412 		 *
2413 		 * This is only applicable to regular files and softlinks.
2414 		 *
2415 		 * We need a second lock on parent.  Since we already have
2416 		 * a lock we must pass LOCKAGAIN to prevent unexpected
2417 		 * blocking (we don't want to block on a second shared
2418 		 * ref if an exclusive lock is pending)
2419 		 */
2420 		if (parent->data->ipdata.meta.op_flags &
2421 		    HAMMER2_OPFLAG_DIRECTDATA) {
2422 			if (flags & HAMMER2_LOOKUP_NODIRECT) {
2423 				chain = NULL;
2424 				*key_nextp = key_end + 1;
2425 				goto done;
2426 			}
2427 			hammer2_chain_ref(parent);
2428 			if ((flags & HAMMER2_LOOKUP_NOLOCK) == 0)
2429 				hammer2_chain_lock(parent,
2430 						   how_always |
2431 						    HAMMER2_RESOLVE_LOCKAGAIN);
2432 			*key_nextp = key_end + 1;
2433 			return (parent);
2434 		}
2435 		base = &parent->data->ipdata.u.blockset.blockref[0];
2436 		count = HAMMER2_SET_COUNT;
2437 		break;
2438 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2439 	case HAMMER2_BREF_TYPE_INDIRECT:
2440 		/*
2441 		 * Handle MATCHIND on the parent
2442 		 */
2443 		if (flags & HAMMER2_LOOKUP_MATCHIND) {
2444 			scan_beg = parent->bref.key;
2445 			scan_end = scan_beg +
2446 			       ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2447 			if (key_beg == scan_beg && key_end == scan_end) {
2448 				chain = parent;
2449 				hammer2_chain_ref(chain);
2450 				hammer2_chain_lock(chain, how_maybe);
2451 				*key_nextp = scan_end + 1;
2452 				goto done;
2453 			}
2454 		}
2455 
2456 		/*
2457 		 * Optimize indirect blocks in the INITIAL state to avoid
2458 		 * I/O.
2459 		 */
2460 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2461 			base = NULL;
2462 		} else {
2463 			if (parent->data == NULL) {
2464 				kprintf("parent->data is NULL %p\n", parent);
2465 				while (1)
2466 					tsleep(parent, 0, "xxx", 0);
2467 			}
2468 			base = &parent->data->npdata[0];
2469 		}
2470 		count = parent->bytes / sizeof(hammer2_blockref_t);
2471 		break;
2472 	case HAMMER2_BREF_TYPE_VOLUME:
2473 		base = &parent->data->voldata.sroot_blockset.blockref[0];
2474 		count = HAMMER2_SET_COUNT;
2475 		break;
2476 	case HAMMER2_BREF_TYPE_FREEMAP:
2477 		base = &parent->data->blkset.blockref[0];
2478 		count = HAMMER2_SET_COUNT;
2479 		break;
2480 	default:
2481 		kprintf("hammer2_chain_lookup: unrecognized "
2482 			"blockref(B) type: %d",
2483 			parent->bref.type);
2484 		while (1)
2485 			tsleep(&base, 0, "dead", 0);
2486 		panic("hammer2_chain_lookup: unrecognized "
2487 		      "blockref(B) type: %d",
2488 		      parent->bref.type);
2489 		base = NULL;	/* safety */
2490 		count = 0;	/* safety */
2491 	}
2492 
2493 	/*
2494 	 * No lookup is possible if the parent is errored.  We delayed
2495 	 * this check as long as we could to ensure that the parent backup,
2496 	 * embedded data, and MATCHIND code could still execute.
2497 	 */
2498 	if (parent->error) {
2499 		*errorp = parent->error;
2500 		return NULL;
2501 	}
2502 
2503 	/*
2504 	 * Merged scan to find next candidate.
2505 	 *
2506 	 * hammer2_base_*() functions require the parent->core.live_* fields
2507 	 * to be synchronized.
2508 	 *
2509 	 * We need to hold the spinlock to access the block array and RB tree
2510 	 * and to interlock chain creation.
2511 	 */
2512 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2513 		hammer2_chain_countbrefs(parent, base, count);
2514 
2515 	/*
2516 	 * Combined search
2517 	 */
2518 	hammer2_spin_ex(&parent->core.spin);
2519 	chain = hammer2_combined_find(parent, base, count,
2520 				      key_nextp,
2521 				      key_beg, key_end,
2522 				      &bref);
2523 	generation = parent->core.generation;
2524 
2525 	/*
2526 	 * Exhausted parent chain, iterate.
2527 	 */
2528 	if (bref == NULL) {
2529 		hammer2_spin_unex(&parent->core.spin);
2530 		if (key_beg == key_end)	/* short cut single-key case */
2531 			return (NULL);
2532 
2533 		/*
2534 		 * Stop if we reached the end of the iteration.
2535 		 */
2536 		if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2537 		    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2538 			return (NULL);
2539 		}
2540 
2541 		/*
2542 		 * Calculate next key, stop if we reached the end of the
2543 		 * iteration, otherwise go up one level and loop.
2544 		 */
2545 		key_beg = parent->bref.key +
2546 			  ((hammer2_key_t)1 << parent->bref.keybits);
2547 		if (key_beg == 0 || key_beg > key_end)
2548 			return (NULL);
2549 		parent = hammer2_chain_repparent(parentp, how_maybe);
2550 		goto again;
2551 	}
2552 
2553 	/*
2554 	 * Selected from blockref or in-memory chain.
2555 	 */
2556 	if (chain == NULL) {
2557 		bcopy = *bref;
2558 		hammer2_spin_unex(&parent->core.spin);
2559 		chain = hammer2_chain_get(parent, generation,
2560 					  &bcopy);
2561 		if (chain == NULL) {
2562 			/*
2563 			kprintf("retry lookup parent %p keys %016jx:%016jx\n",
2564 				parent, key_beg, key_end);
2565 			*/
2566 			goto again;
2567 		}
2568 		if (bcmp(&bcopy, bref, sizeof(bcopy))) {
2569 			hammer2_chain_drop(chain);
2570 			goto again;
2571 		}
2572 	} else {
2573 		hammer2_chain_ref(chain);
2574 		hammer2_spin_unex(&parent->core.spin);
2575 	}
2576 
2577 	/*
2578 	 * chain is referenced but not locked.  We must lock the chain
2579 	 * to obtain definitive state.
2580 	 */
2581 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2582 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2583 		hammer2_chain_lock(chain, how_maybe);
2584 	} else {
2585 		hammer2_chain_lock(chain, how);
2586 	}
2587 	KKASSERT(chain->parent == parent);
2588 
2589 	/*
2590 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2591 	 *
2592 	 * NOTE: Chain's key range is not relevant as there might be
2593 	 *	 one-offs within the range that are not deleted.
2594 	 *
2595 	 * NOTE: Lookups can race delete-duplicate because
2596 	 *	 delete-duplicate does not lock the parent's core
2597 	 *	 (they just use the spinlock on the core).
2598 	 */
2599 	if (chain->flags & HAMMER2_CHAIN_DELETED) {
2600 		kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2601 			chain->bref.data_off, chain->bref.type,
2602 			chain->bref.key);
2603 		hammer2_chain_unlock(chain);
2604 		hammer2_chain_drop(chain);
2605 		key_beg = *key_nextp;
2606 		if (key_beg == 0 || key_beg > key_end)
2607 			return(NULL);
2608 		goto again;
2609 	}
2610 
2611 	/*
2612 	 * If the chain element is an indirect block it becomes the new
2613 	 * parent and we loop on it.  We must maintain our top-down locks
2614 	 * to prevent the flusher from interfering (i.e. doing a
2615 	 * delete-duplicate and leaving us recursing down a deleted chain).
2616 	 *
2617 	 * The parent always has to be locked with at least RESOLVE_MAYBE
2618 	 * so we can access its data.  It might need a fixup if the caller
2619 	 * passed incompatible flags.  Be careful not to cause a deadlock
2620 	 * as a data-load requires an exclusive lock.
2621 	 *
2622 	 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2623 	 * range is within the requested key range we return the indirect
2624 	 * block and do NOT loop.  This is usually only used to acquire
2625 	 * freemap nodes.
2626 	 */
2627 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2628 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2629 		hammer2_chain_unlock(parent);
2630 		hammer2_chain_drop(parent);
2631 		*parentp = parent = chain;
2632 		goto again;
2633 	}
2634 done:
2635 	/*
2636 	 * All done, return the chain.
2637 	 *
2638 	 * If the caller does not want a locked chain, replace the lock with
2639 	 * a ref.  Perhaps this can eventually be optimized to not obtain the
2640 	 * lock in the first place for situations where the data does not
2641 	 * need to be resolved.
2642 	 *
2643 	 * NOTE! A chain->error must be tested by the caller upon return.
2644 	 *	 *errorp is only set based on issues which occur while
2645 	 *	 trying to reach the chain.
2646 	 */
2647 	if (chain) {
2648 		if (flags & HAMMER2_LOOKUP_NOLOCK)
2649 			hammer2_chain_unlock(chain);
2650 	}
2651 	return (chain);
2652 }
2653 
2654 /*
2655  * After having issued a lookup we can iterate all matching keys.
2656  *
2657  * If chain is non-NULL we continue the iteration from just after it's index.
2658  *
2659  * If chain is NULL we assume the parent was exhausted and continue the
2660  * iteration at the next parent.
2661  *
2662  * If a fatal error occurs (typically an I/O error), a dummy chain is
2663  * returned with chain->error and error-identifying information set.  This
2664  * chain will assert if you try to do anything fancy with it.
2665  *
2666  * XXX Depending on where the error occurs we should allow continued iteration.
2667  *
2668  * parent must be locked on entry and remains locked throughout.  chain's
2669  * lock status must match flags.  Chain is always at least referenced.
2670  *
2671  * WARNING!  The MATCHIND flag does not apply to this function.
2672  */
2673 hammer2_chain_t *
2674 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2675 		   hammer2_key_t *key_nextp,
2676 		   hammer2_key_t key_beg, hammer2_key_t key_end,
2677 		   int *errorp, int flags)
2678 {
2679 	hammer2_chain_t *parent;
2680 	int how_maybe;
2681 
2682 	/*
2683 	 * Calculate locking flags for upward recursion.
2684 	 */
2685 	how_maybe = HAMMER2_RESOLVE_MAYBE;
2686 	if (flags & HAMMER2_LOOKUP_SHARED)
2687 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2688 
2689 	parent = *parentp;
2690 	*errorp = 0;
2691 
2692 	/*
2693 	 * Calculate the next index and recalculate the parent if necessary.
2694 	 */
2695 	if (chain) {
2696 		key_beg = chain->bref.key +
2697 			  ((hammer2_key_t)1 << chain->bref.keybits);
2698 		if ((flags & (HAMMER2_LOOKUP_NOLOCK |
2699 			      HAMMER2_LOOKUP_NOUNLOCK)) == 0) {
2700 			hammer2_chain_unlock(chain);
2701 		}
2702 		hammer2_chain_drop(chain);
2703 
2704 		/*
2705 		 * chain invalid past this point, but we can still do a
2706 		 * pointer comparison w/parent.
2707 		 *
2708 		 * Any scan where the lookup returned degenerate data embedded
2709 		 * in the inode has an invalid index and must terminate.
2710 		 */
2711 		if (chain == parent)
2712 			return(NULL);
2713 		if (key_beg == 0 || key_beg > key_end)
2714 			return(NULL);
2715 		chain = NULL;
2716 	} else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2717 		   parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2718 		/*
2719 		 * We reached the end of the iteration.
2720 		 */
2721 		return (NULL);
2722 	} else {
2723 		/*
2724 		 * Continue iteration with next parent unless the current
2725 		 * parent covers the range.
2726 		 *
2727 		 * (This also handles the case of a deleted, empty indirect
2728 		 * node).
2729 		 */
2730 		key_beg = parent->bref.key +
2731 			  ((hammer2_key_t)1 << parent->bref.keybits);
2732 		if (key_beg == 0 || key_beg > key_end)
2733 			return (NULL);
2734 		parent = hammer2_chain_repparent(parentp, how_maybe);
2735 	}
2736 
2737 	/*
2738 	 * And execute
2739 	 */
2740 	return (hammer2_chain_lookup(parentp, key_nextp,
2741 				     key_beg, key_end,
2742 				     errorp, flags));
2743 }
2744 
2745 /*
2746  * Caller wishes to iterate chains under parent, loading new chains into
2747  * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
2748  * then call hammer2_chain_scan() repeatedly until a non-zero return.
2749  * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
2750  * with the returned chain for the scan.  The returned *chainp will be
2751  * locked and referenced.  Any prior contents will be unlocked and dropped.
2752  *
2753  * Caller should check the return value.  A normal scan EOF will return
2754  * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
2755  * error trying to access parent data.  Any error in the returned chain
2756  * must be tested separately by the caller.
2757  *
2758  * (*chainp) is dropped on each scan, but will only be set if the returned
2759  * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
2760  * returned via *chainp.  The caller will get their bref only.
2761  *
2762  * The raw scan function is similar to lookup/next but does not seek to a key.
2763  * Blockrefs are iterated via first_bref = (parent, NULL) and
2764  * next_chain = (parent, bref).
2765  *
2766  * The passed-in parent must be locked and its data resolved.  The function
2767  * nominally returns a locked and referenced *chainp != NULL for chains
2768  * the caller might need to recurse on (and will dipose of any *chainp passed
2769  * in).  The caller must check the chain->bref.type either way.
2770  */
2771 int
2772 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
2773 		   hammer2_blockref_t *bref, int *firstp,
2774 		   int flags)
2775 {
2776 	hammer2_dev_t *hmp;
2777 	hammer2_blockref_t *base;
2778 	hammer2_blockref_t *bref_ptr;
2779 	hammer2_key_t key;
2780 	hammer2_key_t next_key;
2781 	hammer2_chain_t *chain = NULL;
2782 	int count = 0;
2783 	int how_always = HAMMER2_RESOLVE_ALWAYS;
2784 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
2785 	int how;
2786 	int generation;
2787 	int maxloops = 300000;
2788 	int error;
2789 
2790 	hmp = parent->hmp;
2791 	error = 0;
2792 
2793 	/*
2794 	 * Scan flags borrowed from lookup.
2795 	 */
2796 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
2797 		how_maybe = how_always;
2798 		how = HAMMER2_RESOLVE_ALWAYS;
2799 	} else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
2800 		how = HAMMER2_RESOLVE_NEVER;
2801 	} else {
2802 		how = HAMMER2_RESOLVE_MAYBE;
2803 	}
2804 	if (flags & HAMMER2_LOOKUP_SHARED) {
2805 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2806 		how_always |= HAMMER2_RESOLVE_SHARED;
2807 		how |= HAMMER2_RESOLVE_SHARED;
2808 	}
2809 
2810 	/*
2811 	 * Calculate key to locate first/next element, unlocking the previous
2812 	 * element as we go.  Be careful, the key calculation can overflow.
2813 	 *
2814 	 * (also reset bref to NULL)
2815 	 */
2816 	if (*firstp) {
2817 		key = 0;
2818 		*firstp = 0;
2819 	} else {
2820 		key = bref->key + ((hammer2_key_t)1 << bref->keybits);
2821 		if ((chain = *chainp) != NULL) {
2822 			*chainp = NULL;
2823 			hammer2_chain_unlock(chain);
2824 			hammer2_chain_drop(chain);
2825 			chain = NULL;
2826 		}
2827 		if (key == 0) {
2828 			error |= HAMMER2_ERROR_EOF;
2829 			goto done;
2830 		}
2831 	}
2832 
2833 again:
2834 	if (parent->error) {
2835 		error = parent->error;
2836 		goto done;
2837 	}
2838 	if (--maxloops == 0)
2839 		panic("hammer2_chain_scan: maxloops");
2840 
2841 	/*
2842 	 * Locate the blockref array.  Currently we do a fully associative
2843 	 * search through the array.
2844 	 */
2845 	switch(parent->bref.type) {
2846 	case HAMMER2_BREF_TYPE_INODE:
2847 		/*
2848 		 * An inode with embedded data has no sub-chains.
2849 		 *
2850 		 * WARNING! Bulk scan code may pass a static chain marked
2851 		 *	    as BREF_TYPE_INODE with a copy of the volume
2852 		 *	    root blockset to snapshot the volume.
2853 		 */
2854 		if (parent->data->ipdata.meta.op_flags &
2855 		    HAMMER2_OPFLAG_DIRECTDATA) {
2856 			error |= HAMMER2_ERROR_EOF;
2857 			goto done;
2858 		}
2859 		base = &parent->data->ipdata.u.blockset.blockref[0];
2860 		count = HAMMER2_SET_COUNT;
2861 		break;
2862 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2863 	case HAMMER2_BREF_TYPE_INDIRECT:
2864 		/*
2865 		 * Optimize indirect blocks in the INITIAL state to avoid
2866 		 * I/O.
2867 		 */
2868 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2869 			base = NULL;
2870 		} else {
2871 			if (parent->data == NULL)
2872 				panic("parent->data is NULL");
2873 			base = &parent->data->npdata[0];
2874 		}
2875 		count = parent->bytes / sizeof(hammer2_blockref_t);
2876 		break;
2877 	case HAMMER2_BREF_TYPE_VOLUME:
2878 		base = &parent->data->voldata.sroot_blockset.blockref[0];
2879 		count = HAMMER2_SET_COUNT;
2880 		break;
2881 	case HAMMER2_BREF_TYPE_FREEMAP:
2882 		base = &parent->data->blkset.blockref[0];
2883 		count = HAMMER2_SET_COUNT;
2884 		break;
2885 	default:
2886 		panic("hammer2_chain_lookup: unrecognized blockref type: %d",
2887 		      parent->bref.type);
2888 		base = NULL;	/* safety */
2889 		count = 0;	/* safety */
2890 	}
2891 
2892 	/*
2893 	 * Merged scan to find next candidate.
2894 	 *
2895 	 * hammer2_base_*() functions require the parent->core.live_* fields
2896 	 * to be synchronized.
2897 	 *
2898 	 * We need to hold the spinlock to access the block array and RB tree
2899 	 * and to interlock chain creation.
2900 	 */
2901 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2902 		hammer2_chain_countbrefs(parent, base, count);
2903 
2904 	next_key = 0;
2905 	bref_ptr = NULL;
2906 	hammer2_spin_ex(&parent->core.spin);
2907 	chain = hammer2_combined_find(parent, base, count,
2908 				      &next_key,
2909 				      key, HAMMER2_KEY_MAX,
2910 				      &bref_ptr);
2911 	generation = parent->core.generation;
2912 
2913 	/*
2914 	 * Exhausted parent chain, we're done.
2915 	 */
2916 	if (bref_ptr == NULL) {
2917 		hammer2_spin_unex(&parent->core.spin);
2918 		KKASSERT(chain == NULL);
2919 		error |= HAMMER2_ERROR_EOF;
2920 		goto done;
2921 	}
2922 
2923 	/*
2924 	 * Copy into the supplied stack-based blockref.
2925 	 */
2926 	*bref = *bref_ptr;
2927 
2928 	/*
2929 	 * Selected from blockref or in-memory chain.
2930 	 */
2931 	if (chain == NULL) {
2932 		switch(bref->type) {
2933 		case HAMMER2_BREF_TYPE_INODE:
2934 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2935 		case HAMMER2_BREF_TYPE_INDIRECT:
2936 		case HAMMER2_BREF_TYPE_VOLUME:
2937 		case HAMMER2_BREF_TYPE_FREEMAP:
2938 			/*
2939 			 * Recursion, always get the chain
2940 			 */
2941 			hammer2_spin_unex(&parent->core.spin);
2942 			chain = hammer2_chain_get(parent, generation, bref);
2943 			if (chain == NULL) {
2944 				kprintf("retry scan parent %p keys %016jx\n",
2945 					parent, key);
2946 				goto again;
2947 			}
2948 			if (bcmp(bref, bref_ptr, sizeof(*bref))) {
2949 				hammer2_chain_drop(chain);
2950 				chain = NULL;
2951 				goto again;
2952 			}
2953 			break;
2954 		default:
2955 			/*
2956 			 * No recursion, do not waste time instantiating
2957 			 * a chain, just iterate using the bref.
2958 			 */
2959 			hammer2_spin_unex(&parent->core.spin);
2960 			break;
2961 		}
2962 	} else {
2963 		/*
2964 		 * Recursion or not we need the chain in order to supply
2965 		 * the bref.
2966 		 */
2967 		hammer2_chain_ref(chain);
2968 		hammer2_spin_unex(&parent->core.spin);
2969 	}
2970 
2971 	/*
2972 	 * chain is referenced but not locked.  We must lock the chain
2973 	 * to obtain definitive state.
2974 	 */
2975 	if (chain)
2976 		hammer2_chain_lock(chain, how);
2977 
2978 	/*
2979 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2980 	 *
2981 	 * NOTE: chain's key range is not relevant as there might be
2982 	 *	 one-offs within the range that are not deleted.
2983 	 *
2984 	 * NOTE: XXX this could create problems with scans used in
2985 	 *	 situations other than mount-time recovery.
2986 	 *
2987 	 * NOTE: Lookups can race delete-duplicate because
2988 	 *	 delete-duplicate does not lock the parent's core
2989 	 *	 (they just use the spinlock on the core).
2990 	 */
2991 	if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
2992 		hammer2_chain_unlock(chain);
2993 		hammer2_chain_drop(chain);
2994 		chain = NULL;
2995 
2996 		key = next_key;
2997 		if (key == 0) {
2998 			error |= HAMMER2_ERROR_EOF;
2999 			goto done;
3000 		}
3001 		goto again;
3002 	}
3003 
3004 done:
3005 	/*
3006 	 * All done, return the bref or NULL, supply chain if necessary.
3007 	 */
3008 	if (chain)
3009 		*chainp = chain;
3010 	return (error);
3011 }
3012 
3013 /*
3014  * Create and return a new hammer2 system memory structure of the specified
3015  * key, type and size and insert it under (*parentp).  This is a full
3016  * insertion, based on the supplied key/keybits, and may involve creating
3017  * indirect blocks and moving other chains around via delete/duplicate.
3018  *
3019  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3020  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3021  * FULL.  This typically means that the caller is creating the chain after
3022  * doing a hammer2_chain_lookup().
3023  *
3024  * (*parentp) must be exclusive locked and may be replaced on return
3025  * depending on how much work the function had to do.
3026  *
3027  * (*parentp) must not be errored or this function will assert.
3028  *
3029  * (*chainp) usually starts out NULL and returns the newly created chain,
3030  * but if the caller desires the caller may allocate a disconnected chain
3031  * and pass it in instead.
3032  *
3033  * This function should NOT be used to insert INDIRECT blocks.  It is
3034  * typically used to create/insert inodes and data blocks.
3035  *
3036  * Caller must pass-in an exclusively locked parent the new chain is to
3037  * be inserted under, and optionally pass-in a disconnected, exclusively
3038  * locked chain to insert (else we create a new chain).  The function will
3039  * adjust (*parentp) as necessary, create or connect the chain, and
3040  * return an exclusively locked chain in *chainp.
3041  *
3042  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3043  * and will be reassigned.
3044  *
3045  * NOTE: returns HAMMER_ERROR_* flags
3046  */
3047 int
3048 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3049 		     hammer2_pfs_t *pmp, int methods,
3050 		     hammer2_key_t key, int keybits, int type, size_t bytes,
3051 		     hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3052 {
3053 	hammer2_dev_t *hmp;
3054 	hammer2_chain_t *chain;
3055 	hammer2_chain_t *parent;
3056 	hammer2_blockref_t *base;
3057 	hammer2_blockref_t dummy;
3058 	int allocated = 0;
3059 	int error = 0;
3060 	int count;
3061 	int maxloops = 300000;
3062 
3063 	/*
3064 	 * Topology may be crossing a PFS boundary.
3065 	 */
3066 	parent = *parentp;
3067 	KKASSERT(hammer2_mtx_owned(&parent->lock));
3068 	KKASSERT(parent->error == 0);
3069 	hmp = parent->hmp;
3070 	chain = *chainp;
3071 
3072 	if (chain == NULL) {
3073 		/*
3074 		 * First allocate media space and construct the dummy bref,
3075 		 * then allocate the in-memory chain structure.  Set the
3076 		 * INITIAL flag for fresh chains which do not have embedded
3077 		 * data.
3078 		 *
3079 		 * XXX for now set the check mode of the child based on
3080 		 *     the parent or, if the parent is an inode, the
3081 		 *     specification in the inode.
3082 		 */
3083 		bzero(&dummy, sizeof(dummy));
3084 		dummy.type = type;
3085 		dummy.key = key;
3086 		dummy.keybits = keybits;
3087 		dummy.data_off = hammer2_getradix(bytes);
3088 
3089 		/*
3090 		 * Inherit methods from parent by default.  Primarily used
3091 		 * for BREF_TYPE_DATA.  Non-data types *must* be set to
3092 		 * a non-NONE check algorithm.
3093 		 */
3094 		if (methods == -1)
3095 			dummy.methods = parent->bref.methods;
3096 		else
3097 			dummy.methods = (uint8_t)methods;
3098 
3099 		if (type != HAMMER2_BREF_TYPE_DATA &&
3100 		    HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3101 			dummy.methods |=
3102 				HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3103 		}
3104 
3105 		chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3106 
3107 		/*
3108 		 * Lock the chain manually, chain_lock will load the chain
3109 		 * which we do NOT want to do.  (note: chain->refs is set
3110 		 * to 1 by chain_alloc() for us, but lockcnt is not).
3111 		 */
3112 		chain->lockcnt = 1;
3113 		hammer2_mtx_ex(&chain->lock);
3114 		allocated = 1;
3115 		++curthread->td_tracker;
3116 
3117 		/*
3118 		 * Set INITIAL to optimize I/O.  The flag will generally be
3119 		 * processed when we call hammer2_chain_modify().
3120 		 *
3121 		 * Recalculate bytes to reflect the actual media block
3122 		 * allocation.  Handle special case radix 0 == 0 bytes.
3123 		 */
3124 		bytes = (size_t)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
3125 		if (bytes)
3126 			bytes = (hammer2_off_t)1 << bytes;
3127 		chain->bytes = bytes;
3128 
3129 		switch(type) {
3130 		case HAMMER2_BREF_TYPE_VOLUME:
3131 		case HAMMER2_BREF_TYPE_FREEMAP:
3132 			panic("hammer2_chain_create: called with volume type");
3133 			break;
3134 		case HAMMER2_BREF_TYPE_INDIRECT:
3135 			panic("hammer2_chain_create: cannot be used to"
3136 			      "create indirect block");
3137 			break;
3138 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3139 			panic("hammer2_chain_create: cannot be used to"
3140 			      "create freemap root or node");
3141 			break;
3142 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3143 			KKASSERT(bytes == sizeof(chain->data->bmdata));
3144 			/* fall through */
3145 		case HAMMER2_BREF_TYPE_DIRENT:
3146 		case HAMMER2_BREF_TYPE_INODE:
3147 		case HAMMER2_BREF_TYPE_DATA:
3148 		default:
3149 			/*
3150 			 * leave chain->data NULL, set INITIAL
3151 			 */
3152 			KKASSERT(chain->data == NULL);
3153 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3154 			break;
3155 		}
3156 	} else {
3157 		/*
3158 		 * We are reattaching a previously deleted chain, possibly
3159 		 * under a new parent and possibly with a new key/keybits.
3160 		 * The chain does not have to be in a modified state.  The
3161 		 * UPDATE flag will be set later on in this routine.
3162 		 *
3163 		 * Do NOT mess with the current state of the INITIAL flag.
3164 		 */
3165 		chain->bref.key = key;
3166 		chain->bref.keybits = keybits;
3167 		if (chain->flags & HAMMER2_CHAIN_DELETED)
3168 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3169 		KKASSERT(chain->parent == NULL);
3170 	}
3171 	if (flags & HAMMER2_INSERT_PFSROOT)
3172 		chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3173 	else
3174 		chain->bref.flags &= ~HAMMER2_BREF_FLAG_PFSROOT;
3175 
3176 	/*
3177 	 * Calculate how many entries we have in the blockref array and
3178 	 * determine if an indirect block is required.
3179 	 */
3180 again:
3181 	if (--maxloops == 0)
3182 		panic("hammer2_chain_create: maxloops");
3183 
3184 	switch(parent->bref.type) {
3185 	case HAMMER2_BREF_TYPE_INODE:
3186 		if ((parent->data->ipdata.meta.op_flags &
3187 		     HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3188 			kprintf("hammer2: parent set for direct-data! "
3189 				"pkey=%016jx ckey=%016jx\n",
3190 				parent->bref.key,
3191 				chain->bref.key);
3192 	        }
3193 		KKASSERT((parent->data->ipdata.meta.op_flags &
3194 			  HAMMER2_OPFLAG_DIRECTDATA) == 0);
3195 		KKASSERT(parent->data != NULL);
3196 		base = &parent->data->ipdata.u.blockset.blockref[0];
3197 		count = HAMMER2_SET_COUNT;
3198 		break;
3199 	case HAMMER2_BREF_TYPE_INDIRECT:
3200 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3201 		if (parent->flags & HAMMER2_CHAIN_INITIAL)
3202 			base = NULL;
3203 		else
3204 			base = &parent->data->npdata[0];
3205 		count = parent->bytes / sizeof(hammer2_blockref_t);
3206 		break;
3207 	case HAMMER2_BREF_TYPE_VOLUME:
3208 		KKASSERT(parent->data != NULL);
3209 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3210 		count = HAMMER2_SET_COUNT;
3211 		break;
3212 	case HAMMER2_BREF_TYPE_FREEMAP:
3213 		KKASSERT(parent->data != NULL);
3214 		base = &parent->data->blkset.blockref[0];
3215 		count = HAMMER2_SET_COUNT;
3216 		break;
3217 	default:
3218 		panic("hammer2_chain_create: unrecognized blockref type: %d",
3219 		      parent->bref.type);
3220 		base = NULL;
3221 		count = 0;
3222 		break;
3223 	}
3224 
3225 	/*
3226 	 * Make sure we've counted the brefs
3227 	 */
3228 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3229 		hammer2_chain_countbrefs(parent, base, count);
3230 
3231 	KASSERT(parent->core.live_count >= 0 &&
3232 		parent->core.live_count <= count,
3233 		("bad live_count %d/%d (%02x, %d)",
3234 			parent->core.live_count, count,
3235 			parent->bref.type, parent->bytes));
3236 
3237 	/*
3238 	 * If no free blockref could be found we must create an indirect
3239 	 * block and move a number of blockrefs into it.  With the parent
3240 	 * locked we can safely lock each child in order to delete+duplicate
3241 	 * it without causing a deadlock.
3242 	 *
3243 	 * This may return the new indirect block or the old parent depending
3244 	 * on where the key falls.  NULL is returned on error.
3245 	 */
3246 	if (parent->core.live_count == count) {
3247 		hammer2_chain_t *nparent;
3248 
3249 		nparent = hammer2_chain_create_indirect(parent, key, keybits,
3250 							mtid, type, &error);
3251 		if (nparent == NULL) {
3252 			if (allocated)
3253 				hammer2_chain_drop(chain);
3254 			chain = NULL;
3255 			goto done;
3256 		}
3257 		if (parent != nparent) {
3258 			hammer2_chain_unlock(parent);
3259 			hammer2_chain_drop(parent);
3260 			parent = *parentp = nparent;
3261 		}
3262 		goto again;
3263 	}
3264 
3265 	if (chain->flags & HAMMER2_CHAIN_DELETED)
3266 		kprintf("Inserting deleted chain @%016jx\n",
3267 			chain->bref.key);
3268 
3269 	/*
3270 	 * Link the chain into its parent.
3271 	 */
3272 	if (chain->parent != NULL)
3273 		panic("hammer2: hammer2_chain_create: chain already connected");
3274 	KKASSERT(chain->parent == NULL);
3275 	KKASSERT(parent->core.live_count < count);
3276 	hammer2_chain_insert(parent, chain,
3277 			     HAMMER2_CHAIN_INSERT_SPIN |
3278 			     HAMMER2_CHAIN_INSERT_LIVE,
3279 			     0);
3280 
3281 	if (allocated) {
3282 		/*
3283 		 * Mark the newly created chain modified.  This will cause
3284 		 * UPDATE to be set and process the INITIAL flag.
3285 		 *
3286 		 * Device buffers are not instantiated for DATA elements
3287 		 * as these are handled by logical buffers.
3288 		 *
3289 		 * Indirect and freemap node indirect blocks are handled
3290 		 * by hammer2_chain_create_indirect() and not by this
3291 		 * function.
3292 		 *
3293 		 * Data for all other bref types is expected to be
3294 		 * instantiated (INODE, LEAF).
3295 		 */
3296 		switch(chain->bref.type) {
3297 		case HAMMER2_BREF_TYPE_DATA:
3298 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3299 		case HAMMER2_BREF_TYPE_DIRENT:
3300 		case HAMMER2_BREF_TYPE_INODE:
3301 			error = hammer2_chain_modify(chain, mtid, dedup_off,
3302 						     HAMMER2_MODIFY_OPTDATA);
3303 			break;
3304 		default:
3305 			/*
3306 			 * Remaining types are not supported by this function.
3307 			 * In particular, INDIRECT and LEAF_NODE types are
3308 			 * handled by create_indirect().
3309 			 */
3310 			panic("hammer2_chain_create: bad type: %d",
3311 			      chain->bref.type);
3312 			/* NOT REACHED */
3313 			break;
3314 		}
3315 	} else {
3316 		/*
3317 		 * When reconnecting a chain we must set UPDATE and
3318 		 * setflush so the flush recognizes that it must update
3319 		 * the bref in the parent.
3320 		 */
3321 		if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3322 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3323 	}
3324 
3325 	/*
3326 	 * We must setflush(parent) to ensure that it recurses through to
3327 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3328 	 * already set in the chain (so it won't recurse up to set it in the
3329 	 * parent).
3330 	 */
3331 	hammer2_chain_setflush(parent);
3332 
3333 done:
3334 	*chainp = chain;
3335 
3336 	return (error);
3337 }
3338 
3339 /*
3340  * Move the chain from its old parent to a new parent.  The chain must have
3341  * already been deleted or already disconnected (or never associated) with
3342  * a parent.  The chain is reassociated with the new parent and the deleted
3343  * flag will be cleared (no longer deleted).  The chain's modification state
3344  * is not altered.
3345  *
3346  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3347  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3348  * FULL.  This typically means that the caller is creating the chain after
3349  * doing a hammer2_chain_lookup().
3350  *
3351  * A non-NULL bref is typically passed when key and keybits must be overridden.
3352  * Note that hammer2_cluster_duplicate() *ONLY* uses the key and keybits fields
3353  * from a passed-in bref and uses the old chain's bref for everything else.
3354  *
3355  * Neither (parent) or (chain) can be errored.
3356  *
3357  * If (parent) is non-NULL then the chain is inserted under the parent.
3358  *
3359  * If (parent) is NULL then the newly duplicated chain is not inserted
3360  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3361  * passing into hammer2_chain_create() after this function returns).
3362  *
3363  * WARNING! This function calls create which means it can insert indirect
3364  *	    blocks.  This can cause other unrelated chains in the parent to
3365  *	    be moved to a newly inserted indirect block in addition to the
3366  *	    specific chain.
3367  */
3368 void
3369 hammer2_chain_rename(hammer2_blockref_t *bref,
3370 		     hammer2_chain_t **parentp, hammer2_chain_t *chain,
3371 		     hammer2_tid_t mtid, int flags)
3372 {
3373 	hammer2_dev_t *hmp;
3374 	hammer2_chain_t *parent;
3375 	size_t bytes;
3376 
3377 	/*
3378 	 * WARNING!  We should never resolve DATA to device buffers
3379 	 *	     (XXX allow it if the caller did?), and since
3380 	 *	     we currently do not have the logical buffer cache
3381 	 *	     buffer in-hand to fix its cached physical offset
3382 	 *	     we also force the modify code to not COW it. XXX
3383 	 */
3384 	hmp = chain->hmp;
3385 	KKASSERT(chain->parent == NULL);
3386 	KKASSERT(chain->error == 0);
3387 
3388 	/*
3389 	 * Now create a duplicate of the chain structure, associating
3390 	 * it with the same core, making it the same size, pointing it
3391 	 * to the same bref (the same media block).
3392 	 *
3393 	 * NOTE: Handle special radix == 0 case (means 0 bytes).
3394 	 */
3395 	if (bref == NULL)
3396 		bref = &chain->bref;
3397 	bytes = (size_t)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
3398 	if (bytes)
3399 		bytes = (hammer2_off_t)1 << bytes;
3400 
3401 	/*
3402 	 * If parent is not NULL the duplicated chain will be entered under
3403 	 * the parent and the UPDATE bit set to tell flush to update
3404 	 * the blockref.
3405 	 *
3406 	 * We must setflush(parent) to ensure that it recurses through to
3407 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3408 	 * already set in the chain (so it won't recurse up to set it in the
3409 	 * parent).
3410 	 *
3411 	 * Having both chains locked is extremely important for atomicy.
3412 	 */
3413 	if (parentp && (parent = *parentp) != NULL) {
3414 		KKASSERT(hammer2_mtx_owned(&parent->lock));
3415 		KKASSERT(parent->refs > 0);
3416 		KKASSERT(parent->error == 0);
3417 
3418 		hammer2_chain_create(parentp, &chain,
3419 				     chain->pmp, HAMMER2_METH_DEFAULT,
3420 				     bref->key, bref->keybits, bref->type,
3421 				     chain->bytes, mtid, 0, flags);
3422 		KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3423 		hammer2_chain_setflush(*parentp);
3424 	}
3425 }
3426 
3427 /*
3428  * Helper function for deleting chains.
3429  *
3430  * The chain is removed from the live view (the RBTREE) as well as the parent's
3431  * blockmap.  Both chain and its parent must be locked.
3432  *
3433  * parent may not be errored.  chain can be errored.
3434  */
3435 static int
3436 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3437 			     hammer2_tid_t mtid, int flags)
3438 {
3439 	hammer2_dev_t *hmp;
3440 	int error = 0;
3441 
3442 	KKASSERT((chain->flags & (HAMMER2_CHAIN_DELETED |
3443 				  HAMMER2_CHAIN_FICTITIOUS)) == 0);
3444 	KKASSERT(chain->parent == parent);
3445 	hmp = chain->hmp;
3446 
3447 	if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3448 		/*
3449 		 * Chain is blockmapped, so there must be a parent.
3450 		 * Atomically remove the chain from the parent and remove
3451 		 * the blockmap entry.  The parent must be set modified
3452 		 * to remove the blockmap entry.
3453 		 */
3454 		hammer2_blockref_t *base;
3455 		int count;
3456 
3457 		KKASSERT(parent != NULL);
3458 		KKASSERT(parent->error == 0);
3459 		KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3460 		error = hammer2_chain_modify(parent, mtid, 0, 0);
3461 		if (error)
3462 			goto done;
3463 
3464 		/*
3465 		 * Calculate blockmap pointer
3466 		 */
3467 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3468 		hammer2_spin_ex(&chain->core.spin);
3469 		hammer2_spin_ex(&parent->core.spin);
3470 
3471 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3472 		atomic_add_int(&parent->core.live_count, -1);
3473 		++parent->core.generation;
3474 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3475 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3476 		--parent->core.chain_count;
3477 		chain->parent = NULL;
3478 
3479 		switch(parent->bref.type) {
3480 		case HAMMER2_BREF_TYPE_INODE:
3481 			/*
3482 			 * Access the inode's block array.  However, there
3483 			 * is no block array if the inode is flagged
3484 			 * DIRECTDATA.
3485 			 */
3486 			if (parent->data &&
3487 			    (parent->data->ipdata.meta.op_flags &
3488 			     HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3489 				base =
3490 				   &parent->data->ipdata.u.blockset.blockref[0];
3491 			} else {
3492 				base = NULL;
3493 			}
3494 			count = HAMMER2_SET_COUNT;
3495 			break;
3496 		case HAMMER2_BREF_TYPE_INDIRECT:
3497 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3498 			if (parent->data)
3499 				base = &parent->data->npdata[0];
3500 			else
3501 				base = NULL;
3502 			count = parent->bytes / sizeof(hammer2_blockref_t);
3503 			break;
3504 		case HAMMER2_BREF_TYPE_VOLUME:
3505 			base = &parent->data->voldata.
3506 					sroot_blockset.blockref[0];
3507 			count = HAMMER2_SET_COUNT;
3508 			break;
3509 		case HAMMER2_BREF_TYPE_FREEMAP:
3510 			base = &parent->data->blkset.blockref[0];
3511 			count = HAMMER2_SET_COUNT;
3512 			break;
3513 		default:
3514 			base = NULL;
3515 			count = 0;
3516 			panic("hammer2_flush_pass2: "
3517 			      "unrecognized blockref type: %d",
3518 			      parent->bref.type);
3519 		}
3520 
3521 		/*
3522 		 * delete blockmapped chain from its parent.
3523 		 *
3524 		 * The parent is not affected by any statistics in chain
3525 		 * which are pending synchronization.  That is, there is
3526 		 * nothing to undo in the parent since they have not yet
3527 		 * been incorporated into the parent.
3528 		 *
3529 		 * The parent is affected by statistics stored in inodes.
3530 		 * Those have already been synchronized, so they must be
3531 		 * undone.  XXX split update possible w/delete in middle?
3532 		 */
3533 		if (base) {
3534 			hammer2_base_delete(parent, base, count, chain);
3535 		}
3536 		hammer2_spin_unex(&parent->core.spin);
3537 		hammer2_spin_unex(&chain->core.spin);
3538 	} else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3539 		/*
3540 		 * Chain is not blockmapped but a parent is present.
3541 		 * Atomically remove the chain from the parent.  There is
3542 		 * no blockmap entry to remove.
3543 		 *
3544 		 * Because chain was associated with a parent but not
3545 		 * synchronized, the chain's *_count_up fields contain
3546 		 * inode adjustment statistics which must be undone.
3547 		 */
3548 		hammer2_spin_ex(&chain->core.spin);
3549 		hammer2_spin_ex(&parent->core.spin);
3550 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3551 		atomic_add_int(&parent->core.live_count, -1);
3552 		++parent->core.generation;
3553 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3554 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3555 		--parent->core.chain_count;
3556 		chain->parent = NULL;
3557 		hammer2_spin_unex(&parent->core.spin);
3558 		hammer2_spin_unex(&chain->core.spin);
3559 	} else {
3560 		/*
3561 		 * Chain is not blockmapped and has no parent.  This
3562 		 * is a degenerate case.
3563 		 */
3564 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3565 	}
3566 done:
3567 	return error;
3568 }
3569 
3570 /*
3571  * Create an indirect block that covers one or more of the elements in the
3572  * current parent.  Either returns the existing parent with no locking or
3573  * ref changes or returns the new indirect block locked and referenced
3574  * and leaving the original parent lock/ref intact as well.
3575  *
3576  * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3577  *
3578  * The returned chain depends on where the specified key falls.
3579  *
3580  * The key/keybits for the indirect mode only needs to follow three rules:
3581  *
3582  * (1) That all elements underneath it fit within its key space and
3583  *
3584  * (2) That all elements outside it are outside its key space.
3585  *
3586  * (3) When creating the new indirect block any elements in the current
3587  *     parent that fit within the new indirect block's keyspace must be
3588  *     moved into the new indirect block.
3589  *
3590  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3591  *     keyspace the the current parent, but lookup/iteration rules will
3592  *     ensure (and must ensure) that rule (2) for all parents leading up
3593  *     to the nearest inode or the root volume header is adhered to.  This
3594  *     is accomplished by always recursing through matching keyspaces in
3595  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3596  *
3597  * The current implementation calculates the current worst-case keyspace by
3598  * iterating the current parent and then divides it into two halves, choosing
3599  * whichever half has the most elements (not necessarily the half containing
3600  * the requested key).
3601  *
3602  * We can also opt to use the half with the least number of elements.  This
3603  * causes lower-numbered keys (aka logical file offsets) to recurse through
3604  * fewer indirect blocks and higher-numbered keys to recurse through more.
3605  * This also has the risk of not moving enough elements to the new indirect
3606  * block and being forced to create several indirect blocks before the element
3607  * can be inserted.
3608  *
3609  * Must be called with an exclusively locked parent.
3610  *
3611  * NOTE: *errorp set to HAMMER_ERROR_* flags
3612  */
3613 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3614 				hammer2_key_t *keyp, int keybits,
3615 				hammer2_blockref_t *base, int count);
3616 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
3617 				hammer2_key_t *keyp, int keybits,
3618 				hammer2_blockref_t *base, int count,
3619 				int ncount);
3620 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
3621 				hammer2_key_t *keyp, int keybits,
3622 				hammer2_blockref_t *base, int count,
3623 				int ncount);
3624 static
3625 hammer2_chain_t *
3626 hammer2_chain_create_indirect(hammer2_chain_t *parent,
3627 			      hammer2_key_t create_key, int create_bits,
3628 			      hammer2_tid_t mtid, int for_type, int *errorp)
3629 {
3630 	hammer2_dev_t *hmp;
3631 	hammer2_blockref_t *base;
3632 	hammer2_blockref_t *bref;
3633 	hammer2_blockref_t bcopy;
3634 	hammer2_chain_t *chain;
3635 	hammer2_chain_t *ichain;
3636 	hammer2_chain_t dummy;
3637 	hammer2_key_t key = create_key;
3638 	hammer2_key_t key_beg;
3639 	hammer2_key_t key_end;
3640 	hammer2_key_t key_next;
3641 	int keybits = create_bits;
3642 	int count;
3643 	int ncount;
3644 	int nbytes;
3645 	int loops;
3646 	int error;
3647 	int reason;
3648 	int generation;
3649 	int maxloops = 300000;
3650 
3651 	/*
3652 	 * Calculate the base blockref pointer or NULL if the chain
3653 	 * is known to be empty.  We need to calculate the array count
3654 	 * for RB lookups either way.
3655 	 */
3656 	hmp = parent->hmp;
3657 	KKASSERT(hammer2_mtx_owned(&parent->lock));
3658 
3659 	/*
3660 	 * Pre-modify the parent now to avoid having to deal with error
3661 	 * processing if we tried to later (in the middle of our loop).
3662 	 */
3663 	*errorp = hammer2_chain_modify(parent, mtid, 0, 0);
3664 	if (*errorp) {
3665 		kprintf("hammer2_create_indirect: error %08x %s\n",
3666 			*errorp, hammer2_error_str(*errorp));
3667 		return NULL;
3668 	}
3669 
3670 	/*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
3671 	base = hammer2_chain_base_and_count(parent, &count);
3672 
3673 	/*
3674 	 * dummy used in later chain allocation (no longer used for lookups).
3675 	 */
3676 	bzero(&dummy, sizeof(dummy));
3677 
3678 	/*
3679 	 * How big should our new indirect block be?  It has to be at least
3680 	 * as large as its parent for splits to work properly.
3681 	 *
3682 	 * The freemap uses a specific indirect block size.  The number of
3683 	 * levels are built dynamically and ultimately depend on the size
3684 	 * volume.  Because freemap blocks are taken from the reserved areas
3685 	 * of the volume our goal is efficiency (fewer levels) and not so
3686 	 * much to save disk space.
3687 	 *
3688 	 * The first indirect block level for a directory usually uses
3689 	 * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
3690 	 * the hash mechanism, this typically gives us a nominal
3691 	 * 32 * 4 entries with one level of indirection.
3692 	 *
3693 	 * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
3694 	 * indirect blocks.  The initial 4 entries in the inode gives us
3695 	 * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
3696 	 * of indirection gives us 137GB, and so forth.  H2 can support
3697 	 * huge file sizes but they are not typical, so we try to stick
3698 	 * with compactness and do not use a larger indirect block size.
3699 	 *
3700 	 * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
3701 	 * due to the way indirect blocks are created this usually winds
3702 	 * up being extremely inefficient for small files.  Even though
3703 	 * 16KB requires more levels of indirection for very large files,
3704 	 * the 16KB records can be ganged together into 64KB DIOs.
3705 	 */
3706 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
3707 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
3708 		nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
3709 	} else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
3710 		if (parent->data->ipdata.meta.type ==
3711 		    HAMMER2_OBJTYPE_DIRECTORY)
3712 			nbytes = HAMMER2_IND_BYTES_MIN;	/* 4KB = 32 entries */
3713 		else
3714 			nbytes = HAMMER2_IND_BYTES_NOM;	/* 16KB = ~8MB file */
3715 
3716 	} else {
3717 		nbytes = HAMMER2_IND_BYTES_NOM;
3718 	}
3719 	if (nbytes < count * sizeof(hammer2_blockref_t)) {
3720 		KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
3721 			 for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
3722 		nbytes = count * sizeof(hammer2_blockref_t);
3723 	}
3724 	ncount = nbytes / sizeof(hammer2_blockref_t);
3725 
3726 	/*
3727 	 * When creating an indirect block for a freemap node or leaf
3728 	 * the key/keybits must be fitted to static radix levels because
3729 	 * particular radix levels use particular reserved blocks in the
3730 	 * related zone.
3731 	 *
3732 	 * This routine calculates the key/radix of the indirect block
3733 	 * we need to create, and whether it is on the high-side or the
3734 	 * low-side.
3735 	 */
3736 	switch(for_type) {
3737 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3738 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3739 		keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
3740 						       base, count);
3741 		break;
3742 	case HAMMER2_BREF_TYPE_DATA:
3743 		keybits = hammer2_chain_indkey_file(parent, &key, keybits,
3744 						    base, count, ncount);
3745 		break;
3746 	case HAMMER2_BREF_TYPE_DIRENT:
3747 	case HAMMER2_BREF_TYPE_INODE:
3748 		keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
3749 						   base, count, ncount);
3750 		break;
3751 	default:
3752 		panic("illegal indirect block for bref type %d", for_type);
3753 		break;
3754 	}
3755 
3756 	/*
3757 	 * Normalize the key for the radix being represented, keeping the
3758 	 * high bits and throwing away the low bits.
3759 	 */
3760 	key &= ~(((hammer2_key_t)1 << keybits) - 1);
3761 
3762 	/*
3763 	 * Ok, create our new indirect block
3764 	 */
3765 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
3766 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
3767 		dummy.bref.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
3768 	} else {
3769 		dummy.bref.type = HAMMER2_BREF_TYPE_INDIRECT;
3770 	}
3771 	dummy.bref.key = key;
3772 	dummy.bref.keybits = keybits;
3773 	dummy.bref.data_off = hammer2_getradix(nbytes);
3774 	dummy.bref.methods =
3775 		HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
3776 		HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
3777 
3778 	ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy.bref);
3779 	atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
3780 	hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
3781 	/* ichain has one ref at this point */
3782 
3783 	/*
3784 	 * We have to mark it modified to allocate its block, but use
3785 	 * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
3786 	 * it won't be acted upon by the flush code.
3787 	 */
3788 	*errorp = hammer2_chain_modify(ichain, mtid, 0, HAMMER2_MODIFY_OPTDATA);
3789 	if (*errorp) {
3790 		kprintf("hammer2_alloc_indirect: error %08x %s\n",
3791 			*errorp, hammer2_error_str(*errorp));
3792 		hammer2_chain_unlock(ichain);
3793 		hammer2_chain_drop(ichain);
3794 		return NULL;
3795 	}
3796 
3797 	/*
3798 	 * Iterate the original parent and move the matching brefs into
3799 	 * the new indirect block.
3800 	 *
3801 	 * XXX handle flushes.
3802 	 */
3803 	key_beg = 0;
3804 	key_end = HAMMER2_KEY_MAX;
3805 	key_next = 0;	/* avoid gcc warnings */
3806 	hammer2_spin_ex(&parent->core.spin);
3807 	loops = 0;
3808 	reason = 0;
3809 
3810 	for (;;) {
3811 		/*
3812 		 * Parent may have been modified, relocating its block array.
3813 		 * Reload the base pointer.
3814 		 */
3815 		base = hammer2_chain_base_and_count(parent, &count);
3816 
3817 		if (++loops > 100000) {
3818 		    hammer2_spin_unex(&parent->core.spin);
3819 		    panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
3820 			  reason, parent, base, count, key_next);
3821 		}
3822 
3823 		/*
3824 		 * NOTE: spinlock stays intact, returned chain (if not NULL)
3825 		 *	 is not referenced or locked which means that we
3826 		 *	 cannot safely check its flagged / deletion status
3827 		 *	 until we lock it.
3828 		 */
3829 		chain = hammer2_combined_find(parent, base, count,
3830 					      &key_next,
3831 					      key_beg, key_end,
3832 					      &bref);
3833 		generation = parent->core.generation;
3834 		if (bref == NULL)
3835 			break;
3836 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3837 
3838 		/*
3839 		 * Skip keys that are not within the key/radix of the new
3840 		 * indirect block.  They stay in the parent.
3841 		 */
3842 		if ((~(((hammer2_key_t)1 << keybits) - 1) &
3843 		    (key ^ bref->key)) != 0) {
3844 			goto next_key_spinlocked;
3845 		}
3846 
3847 		/*
3848 		 * Load the new indirect block by acquiring the related
3849 		 * chains (potentially from media as it might not be
3850 		 * in-memory).  Then move it to the new parent (ichain).
3851 		 *
3852 		 * chain is referenced but not locked.  We must lock the
3853 		 * chain to obtain definitive state.
3854 		 */
3855 		if (chain) {
3856 			/*
3857 			 * Use chain already present in the RBTREE
3858 			 */
3859 			hammer2_chain_ref(chain);
3860 			hammer2_spin_unex(&parent->core.spin);
3861 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
3862 		} else {
3863 			/*
3864 			 * Get chain for blockref element.  _get returns NULL
3865 			 * on insertion race.
3866 			 */
3867 			bcopy = *bref;
3868 			hammer2_spin_unex(&parent->core.spin);
3869 			chain = hammer2_chain_get(parent, generation, &bcopy);
3870 			if (chain == NULL) {
3871 				reason = 1;
3872 				hammer2_spin_ex(&parent->core.spin);
3873 				continue;
3874 			}
3875 			if (bcmp(&bcopy, bref, sizeof(bcopy))) {
3876 				reason = 2;
3877 				hammer2_chain_drop(chain);
3878 				hammer2_spin_ex(&parent->core.spin);
3879 				continue;
3880 			}
3881 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
3882 		}
3883 
3884 		/*
3885 		 * This is always live so if the chain has been deleted
3886 		 * we raced someone and we have to retry.
3887 		 *
3888 		 * NOTE: Lookups can race delete-duplicate because
3889 		 *	 delete-duplicate does not lock the parent's core
3890 		 *	 (they just use the spinlock on the core).
3891 		 *
3892 		 *	 (note reversed logic for this one)
3893 		 */
3894 		if (chain->parent != parent ||
3895 		    (chain->flags & HAMMER2_CHAIN_DELETED)) {
3896 			hammer2_chain_unlock(chain);
3897 			hammer2_chain_drop(chain);
3898 			kprintf("hammer2_chain_create_indirect "
3899 				"RETRY (%p,%p)->%p %08x\n",
3900 				parent, chain->parent, chain, chain->flags);
3901 			hammer2_spin_ex(&parent->core.spin);
3902 			continue;
3903 		}
3904 
3905 		/*
3906 		 * Shift the chain to the indirect block.
3907 		 *
3908 		 * WARNING! No reason for us to load chain data, pass NOSTATS
3909 		 *	    to prevent delete/insert from trying to access
3910 		 *	    inode stats (and thus asserting if there is no
3911 		 *	    chain->data loaded).
3912 		 *
3913 		 * WARNING! The (parent, chain) deletion may modify the parent
3914 		 *	    and invalidate the base pointer.
3915 		 *
3916 		 * WARNING! Parent must already be marked modified, so we
3917 		 *	    can assume that chain_delete always suceeds.
3918 		 */
3919 		error = hammer2_chain_delete(parent, chain, mtid, 0);
3920 		KKASSERT(error == 0);
3921 		hammer2_chain_rename(NULL, &ichain, chain, mtid, 0);
3922 		hammer2_chain_unlock(chain);
3923 		hammer2_chain_drop(chain);
3924 		KKASSERT(parent->refs > 0);
3925 		chain = NULL;
3926 		base = NULL;	/* safety */
3927 		hammer2_spin_ex(&parent->core.spin);
3928 next_key_spinlocked:
3929 		if (--maxloops == 0)
3930 			panic("hammer2_chain_create_indirect: maxloops");
3931 		reason = 4;
3932 		if (key_next == 0 || key_next > key_end)
3933 			break;
3934 		key_beg = key_next;
3935 		/* loop */
3936 	}
3937 	hammer2_spin_unex(&parent->core.spin);
3938 
3939 	/*
3940 	 * Insert the new indirect block into the parent now that we've
3941 	 * cleared out some entries in the parent.  We calculated a good
3942 	 * insertion index in the loop above (ichain->index).
3943 	 *
3944 	 * We don't have to set UPDATE here because we mark ichain
3945 	 * modified down below (so the normal modified -> flush -> set-moved
3946 	 * sequence applies).
3947 	 *
3948 	 * The insertion shouldn't race as this is a completely new block
3949 	 * and the parent is locked.
3950 	 */
3951 	base = NULL;	/* safety, parent modify may change address */
3952 	KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
3953 	KKASSERT(parent->core.live_count < count);
3954 	hammer2_chain_insert(parent, ichain,
3955 			     HAMMER2_CHAIN_INSERT_SPIN |
3956 			     HAMMER2_CHAIN_INSERT_LIVE,
3957 			     0);
3958 
3959 	/*
3960 	 * Make sure flushes propogate after our manual insertion.
3961 	 */
3962 	hammer2_chain_setflush(ichain);
3963 	hammer2_chain_setflush(parent);
3964 
3965 	/*
3966 	 * Figure out what to return.
3967 	 */
3968 	if (~(((hammer2_key_t)1 << keybits) - 1) &
3969 		   (create_key ^ key)) {
3970 		/*
3971 		 * Key being created is outside the key range,
3972 		 * return the original parent.
3973 		 */
3974 		hammer2_chain_unlock(ichain);
3975 		hammer2_chain_drop(ichain);
3976 	} else {
3977 		/*
3978 		 * Otherwise its in the range, return the new parent.
3979 		 * (leave both the new and old parent locked).
3980 		 */
3981 		parent = ichain;
3982 	}
3983 
3984 	return(parent);
3985 }
3986 
3987 /*
3988  * Freemap indirect blocks
3989  *
3990  * Calculate the keybits and highside/lowside of the freemap node the
3991  * caller is creating.
3992  *
3993  * This routine will specify the next higher-level freemap key/radix
3994  * representing the lowest-ordered set.  By doing so, eventually all
3995  * low-ordered sets will be moved one level down.
3996  *
3997  * We have to be careful here because the freemap reserves a limited
3998  * number of blocks for a limited number of levels.  So we can't just
3999  * push indiscriminately.
4000  */
4001 int
4002 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4003 			     int keybits, hammer2_blockref_t *base, int count)
4004 {
4005 	hammer2_chain_t *chain;
4006 	hammer2_blockref_t *bref;
4007 	hammer2_key_t key;
4008 	hammer2_key_t key_beg;
4009 	hammer2_key_t key_end;
4010 	hammer2_key_t key_next;
4011 	int locount;
4012 	int hicount;
4013 	int maxloops = 300000;
4014 
4015 	key = *keyp;
4016 	locount = 0;
4017 	hicount = 0;
4018 	keybits = 64;
4019 
4020 	/*
4021 	 * Calculate the range of keys in the array being careful to skip
4022 	 * slots which are overridden with a deletion.
4023 	 */
4024 	key_beg = 0;
4025 	key_end = HAMMER2_KEY_MAX;
4026 	hammer2_spin_ex(&parent->core.spin);
4027 
4028 	for (;;) {
4029 		if (--maxloops == 0) {
4030 			panic("indkey_freemap shit %p %p:%d\n",
4031 			      parent, base, count);
4032 		}
4033 		chain = hammer2_combined_find(parent, base, count,
4034 					      &key_next,
4035 					      key_beg, key_end,
4036 					      &bref);
4037 
4038 		/*
4039 		 * Exhausted search
4040 		 */
4041 		if (bref == NULL)
4042 			break;
4043 
4044 		/*
4045 		 * Skip deleted chains.
4046 		 */
4047 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4048 			if (key_next == 0 || key_next > key_end)
4049 				break;
4050 			key_beg = key_next;
4051 			continue;
4052 		}
4053 
4054 		/*
4055 		 * Use the full live (not deleted) element for the scan
4056 		 * iteration.  HAMMER2 does not allow partial replacements.
4057 		 *
4058 		 * XXX should be built into hammer2_combined_find().
4059 		 */
4060 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4061 
4062 		if (keybits > bref->keybits) {
4063 			key = bref->key;
4064 			keybits = bref->keybits;
4065 		} else if (keybits == bref->keybits && bref->key < key) {
4066 			key = bref->key;
4067 		}
4068 		if (key_next == 0)
4069 			break;
4070 		key_beg = key_next;
4071 	}
4072 	hammer2_spin_unex(&parent->core.spin);
4073 
4074 	/*
4075 	 * Return the keybits for a higher-level FREEMAP_NODE covering
4076 	 * this node.
4077 	 */
4078 	switch(keybits) {
4079 	case HAMMER2_FREEMAP_LEVEL0_RADIX:
4080 		keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4081 		break;
4082 	case HAMMER2_FREEMAP_LEVEL1_RADIX:
4083 		keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4084 		break;
4085 	case HAMMER2_FREEMAP_LEVEL2_RADIX:
4086 		keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4087 		break;
4088 	case HAMMER2_FREEMAP_LEVEL3_RADIX:
4089 		keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4090 		break;
4091 	case HAMMER2_FREEMAP_LEVEL4_RADIX:
4092 		keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4093 		break;
4094 	case HAMMER2_FREEMAP_LEVEL5_RADIX:
4095 		panic("hammer2_chain_indkey_freemap: level too high");
4096 		break;
4097 	default:
4098 		panic("hammer2_chain_indkey_freemap: bad radix");
4099 		break;
4100 	}
4101 	*keyp = key;
4102 
4103 	return (keybits);
4104 }
4105 
4106 /*
4107  * File indirect blocks
4108  *
4109  * Calculate the key/keybits for the indirect block to create by scanning
4110  * existing keys.  The key being created is also passed in *keyp and can be
4111  * inside or outside the indirect block.  Regardless, the indirect block
4112  * must hold at least two keys in order to guarantee sufficient space.
4113  *
4114  * We use a modified version of the freemap's fixed radix tree, but taylored
4115  * for file data.  Basically we configure an indirect block encompassing the
4116  * smallest key.
4117  */
4118 static int
4119 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4120 			    int keybits, hammer2_blockref_t *base, int count,
4121 			    int ncount)
4122 {
4123 	hammer2_chain_t *chain;
4124 	hammer2_blockref_t *bref;
4125 	hammer2_key_t key;
4126 	hammer2_key_t key_beg;
4127 	hammer2_key_t key_end;
4128 	hammer2_key_t key_next;
4129 	int nradix;
4130 	int locount;
4131 	int hicount;
4132 	int maxloops = 300000;
4133 
4134 	key = *keyp;
4135 	locount = 0;
4136 	hicount = 0;
4137 	keybits = 64;
4138 
4139 	/*
4140 	 * Calculate the range of keys in the array being careful to skip
4141 	 * slots which are overridden with a deletion.
4142 	 *
4143 	 * Locate the smallest key.
4144 	 */
4145 	key_beg = 0;
4146 	key_end = HAMMER2_KEY_MAX;
4147 	hammer2_spin_ex(&parent->core.spin);
4148 
4149 	for (;;) {
4150 		if (--maxloops == 0) {
4151 			panic("indkey_freemap shit %p %p:%d\n",
4152 			      parent, base, count);
4153 		}
4154 		chain = hammer2_combined_find(parent, base, count,
4155 					      &key_next,
4156 					      key_beg, key_end,
4157 					      &bref);
4158 
4159 		/*
4160 		 * Exhausted search
4161 		 */
4162 		if (bref == NULL)
4163 			break;
4164 
4165 		/*
4166 		 * Skip deleted chains.
4167 		 */
4168 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4169 			if (key_next == 0 || key_next > key_end)
4170 				break;
4171 			key_beg = key_next;
4172 			continue;
4173 		}
4174 
4175 		/*
4176 		 * Use the full live (not deleted) element for the scan
4177 		 * iteration.  HAMMER2 does not allow partial replacements.
4178 		 *
4179 		 * XXX should be built into hammer2_combined_find().
4180 		 */
4181 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4182 
4183 		if (keybits > bref->keybits) {
4184 			key = bref->key;
4185 			keybits = bref->keybits;
4186 		} else if (keybits == bref->keybits && bref->key < key) {
4187 			key = bref->key;
4188 		}
4189 		if (key_next == 0)
4190 			break;
4191 		key_beg = key_next;
4192 	}
4193 	hammer2_spin_unex(&parent->core.spin);
4194 
4195 	/*
4196 	 * Calculate the static keybits for a higher-level indirect block
4197 	 * that contains the key.
4198 	 */
4199 	*keyp = key;
4200 
4201 	switch(ncount) {
4202 	case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4203 		nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4204 		break;
4205 	case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4206 		nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4207 		break;
4208 	case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4209 		nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4210 		break;
4211 	default:
4212 		panic("bad ncount %d\n", ncount);
4213 		nradix = 0;
4214 		break;
4215 	}
4216 
4217 	/*
4218 	 * The largest radix that can be returned for an indirect block is
4219 	 * 63 bits.  (The largest practical indirect block radix is actually
4220 	 * 62 bits because the top-level inode or volume root contains four
4221 	 * entries, but allow 63 to be returned).
4222 	 */
4223 	if (nradix >= 64)
4224 		nradix = 63;
4225 
4226 	return keybits + nradix;
4227 }
4228 
4229 #if 1
4230 
4231 /*
4232  * Directory indirect blocks.
4233  *
4234  * Covers both the inode index (directory of inodes), and directory contents
4235  * (filenames hardlinked to inodes).
4236  *
4237  * Because directory keys are hashed we generally try to cut the space in
4238  * half.  We accomodate the inode index (which tends to have linearly
4239  * increasing inode numbers) by ensuring that the keyspace is at least large
4240  * enough to fill up the indirect block being created.
4241  */
4242 static int
4243 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4244 			 int keybits, hammer2_blockref_t *base, int count,
4245 			 int ncount)
4246 {
4247 	hammer2_blockref_t *bref;
4248 	hammer2_chain_t	*chain;
4249 	hammer2_key_t key_beg;
4250 	hammer2_key_t key_end;
4251 	hammer2_key_t key_next;
4252 	hammer2_key_t key;
4253 	int nkeybits;
4254 	int locount;
4255 	int hicount;
4256 	int maxloops = 300000;
4257 
4258 	/*
4259 	 * Shortcut if the parent is the inode.  In this situation the
4260 	 * parent has 4+1 directory entries and we are creating an indirect
4261 	 * block capable of holding many more.
4262 	 */
4263 	if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4264 		return 63;
4265 	}
4266 
4267 	key = *keyp;
4268 	locount = 0;
4269 	hicount = 0;
4270 
4271 	/*
4272 	 * Calculate the range of keys in the array being careful to skip
4273 	 * slots which are overridden with a deletion.
4274 	 */
4275 	key_beg = 0;
4276 	key_end = HAMMER2_KEY_MAX;
4277 	hammer2_spin_ex(&parent->core.spin);
4278 
4279 	for (;;) {
4280 		if (--maxloops == 0) {
4281 			panic("indkey_freemap shit %p %p:%d\n",
4282 			      parent, base, count);
4283 		}
4284 		chain = hammer2_combined_find(parent, base, count,
4285 					      &key_next,
4286 					      key_beg, key_end,
4287 					      &bref);
4288 
4289 		/*
4290 		 * Exhausted search
4291 		 */
4292 		if (bref == NULL)
4293 			break;
4294 
4295 		/*
4296 		 * Deleted object
4297 		 */
4298 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4299 			if (key_next == 0 || key_next > key_end)
4300 				break;
4301 			key_beg = key_next;
4302 			continue;
4303 		}
4304 
4305 		/*
4306 		 * Use the full live (not deleted) element for the scan
4307 		 * iteration.  HAMMER2 does not allow partial replacements.
4308 		 *
4309 		 * XXX should be built into hammer2_combined_find().
4310 		 */
4311 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4312 
4313 		/*
4314 		 * Expand our calculated key range (key, keybits) to fit
4315 		 * the scanned key.  nkeybits represents the full range
4316 		 * that we will later cut in half (two halves @ nkeybits - 1).
4317 		 */
4318 		nkeybits = keybits;
4319 		if (nkeybits < bref->keybits) {
4320 			if (bref->keybits > 64) {
4321 				kprintf("bad bref chain %p bref %p\n",
4322 					chain, bref);
4323 				Debugger("fubar");
4324 			}
4325 			nkeybits = bref->keybits;
4326 		}
4327 		while (nkeybits < 64 &&
4328 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
4329 		        (key ^ bref->key)) != 0) {
4330 			++nkeybits;
4331 		}
4332 
4333 		/*
4334 		 * If the new key range is larger we have to determine
4335 		 * which side of the new key range the existing keys fall
4336 		 * under by checking the high bit, then collapsing the
4337 		 * locount into the hicount or vise-versa.
4338 		 */
4339 		if (keybits != nkeybits) {
4340 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4341 				hicount += locount;
4342 				locount = 0;
4343 			} else {
4344 				locount += hicount;
4345 				hicount = 0;
4346 			}
4347 			keybits = nkeybits;
4348 		}
4349 
4350 		/*
4351 		 * The newly scanned key will be in the lower half or the
4352 		 * upper half of the (new) key range.
4353 		 */
4354 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4355 			++hicount;
4356 		else
4357 			++locount;
4358 
4359 		if (key_next == 0)
4360 			break;
4361 		key_beg = key_next;
4362 	}
4363 	hammer2_spin_unex(&parent->core.spin);
4364 	bref = NULL;	/* now invalid (safety) */
4365 
4366 	/*
4367 	 * Adjust keybits to represent half of the full range calculated
4368 	 * above (radix 63 max) for our new indirect block.
4369 	 */
4370 	--keybits;
4371 
4372 	/*
4373 	 * Expand keybits to hold at least ncount elements.  ncount will be
4374 	 * a power of 2.  This is to try to completely fill leaf nodes (at
4375 	 * least for keys which are not hashes).
4376 	 *
4377 	 * We aren't counting 'in' or 'out', we are counting 'high side'
4378 	 * and 'low side' based on the bit at (1LL << keybits).  We want
4379 	 * everything to be inside in these cases so shift it all to
4380 	 * the low or high side depending on the new high bit.
4381 	 */
4382 	while (((hammer2_key_t)1 << keybits) < ncount) {
4383 		++keybits;
4384 		if (key & ((hammer2_key_t)1 << keybits)) {
4385 			hicount += locount;
4386 			locount = 0;
4387 		} else {
4388 			locount += hicount;
4389 			hicount = 0;
4390 		}
4391 	}
4392 
4393 	if (hicount > locount)
4394 		key |= (hammer2_key_t)1 << keybits;
4395 	else
4396 		key &= ~(hammer2_key_t)1 << keybits;
4397 
4398 	*keyp = key;
4399 
4400 	return (keybits);
4401 }
4402 
4403 #else
4404 
4405 /*
4406  * Directory indirect blocks.
4407  *
4408  * Covers both the inode index (directory of inodes), and directory contents
4409  * (filenames hardlinked to inodes).
4410  *
4411  * Because directory keys are hashed we generally try to cut the space in
4412  * half.  We accomodate the inode index (which tends to have linearly
4413  * increasing inode numbers) by ensuring that the keyspace is at least large
4414  * enough to fill up the indirect block being created.
4415  */
4416 static int
4417 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4418 			 int keybits, hammer2_blockref_t *base, int count,
4419 			 int ncount)
4420 {
4421 	hammer2_blockref_t *bref;
4422 	hammer2_chain_t	*chain;
4423 	hammer2_key_t key_beg;
4424 	hammer2_key_t key_end;
4425 	hammer2_key_t key_next;
4426 	hammer2_key_t key;
4427 	int nkeybits;
4428 	int locount;
4429 	int hicount;
4430 	int maxloops = 300000;
4431 
4432 	/*
4433 	 * Shortcut if the parent is the inode.  In this situation the
4434 	 * parent has 4+1 directory entries and we are creating an indirect
4435 	 * block capable of holding many more.
4436 	 */
4437 	if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4438 		return 63;
4439 	}
4440 
4441 	key = *keyp;
4442 	locount = 0;
4443 	hicount = 0;
4444 
4445 	/*
4446 	 * Calculate the range of keys in the array being careful to skip
4447 	 * slots which are overridden with a deletion.
4448 	 */
4449 	key_beg = 0;
4450 	key_end = HAMMER2_KEY_MAX;
4451 	hammer2_spin_ex(&parent->core.spin);
4452 
4453 	for (;;) {
4454 		if (--maxloops == 0) {
4455 			panic("indkey_freemap shit %p %p:%d\n",
4456 			      parent, base, count);
4457 		}
4458 		chain = hammer2_combined_find(parent, base, count,
4459 					      &key_next,
4460 					      key_beg, key_end,
4461 					      &bref);
4462 
4463 		/*
4464 		 * Exhausted search
4465 		 */
4466 		if (bref == NULL)
4467 			break;
4468 
4469 		/*
4470 		 * Deleted object
4471 		 */
4472 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4473 			if (key_next == 0 || key_next > key_end)
4474 				break;
4475 			key_beg = key_next;
4476 			continue;
4477 		}
4478 
4479 		/*
4480 		 * Use the full live (not deleted) element for the scan
4481 		 * iteration.  HAMMER2 does not allow partial replacements.
4482 		 *
4483 		 * XXX should be built into hammer2_combined_find().
4484 		 */
4485 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4486 
4487 		/*
4488 		 * Expand our calculated key range (key, keybits) to fit
4489 		 * the scanned key.  nkeybits represents the full range
4490 		 * that we will later cut in half (two halves @ nkeybits - 1).
4491 		 */
4492 		nkeybits = keybits;
4493 		if (nkeybits < bref->keybits) {
4494 			if (bref->keybits > 64) {
4495 				kprintf("bad bref chain %p bref %p\n",
4496 					chain, bref);
4497 				Debugger("fubar");
4498 			}
4499 			nkeybits = bref->keybits;
4500 		}
4501 		while (nkeybits < 64 &&
4502 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
4503 		        (key ^ bref->key)) != 0) {
4504 			++nkeybits;
4505 		}
4506 
4507 		/*
4508 		 * If the new key range is larger we have to determine
4509 		 * which side of the new key range the existing keys fall
4510 		 * under by checking the high bit, then collapsing the
4511 		 * locount into the hicount or vise-versa.
4512 		 */
4513 		if (keybits != nkeybits) {
4514 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4515 				hicount += locount;
4516 				locount = 0;
4517 			} else {
4518 				locount += hicount;
4519 				hicount = 0;
4520 			}
4521 			keybits = nkeybits;
4522 		}
4523 
4524 		/*
4525 		 * The newly scanned key will be in the lower half or the
4526 		 * upper half of the (new) key range.
4527 		 */
4528 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4529 			++hicount;
4530 		else
4531 			++locount;
4532 
4533 		if (key_next == 0)
4534 			break;
4535 		key_beg = key_next;
4536 	}
4537 	hammer2_spin_unex(&parent->core.spin);
4538 	bref = NULL;	/* now invalid (safety) */
4539 
4540 	/*
4541 	 * Adjust keybits to represent half of the full range calculated
4542 	 * above (radix 63 max) for our new indirect block.
4543 	 */
4544 	--keybits;
4545 
4546 	/*
4547 	 * Expand keybits to hold at least ncount elements.  ncount will be
4548 	 * a power of 2.  This is to try to completely fill leaf nodes (at
4549 	 * least for keys which are not hashes).
4550 	 *
4551 	 * We aren't counting 'in' or 'out', we are counting 'high side'
4552 	 * and 'low side' based on the bit at (1LL << keybits).  We want
4553 	 * everything to be inside in these cases so shift it all to
4554 	 * the low or high side depending on the new high bit.
4555 	 */
4556 	while (((hammer2_key_t)1 << keybits) < ncount) {
4557 		++keybits;
4558 		if (key & ((hammer2_key_t)1 << keybits)) {
4559 			hicount += locount;
4560 			locount = 0;
4561 		} else {
4562 			locount += hicount;
4563 			hicount = 0;
4564 		}
4565 	}
4566 
4567 	if (hicount > locount)
4568 		key |= (hammer2_key_t)1 << keybits;
4569 	else
4570 		key &= ~(hammer2_key_t)1 << keybits;
4571 
4572 	*keyp = key;
4573 
4574 	return (keybits);
4575 }
4576 
4577 #endif
4578 
4579 /*
4580  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
4581  * it exists.
4582  *
4583  * Both parent and chain must be locked exclusively.
4584  *
4585  * This function will modify the parent if the blockref requires removal
4586  * from the parent's block table.
4587  *
4588  * This function is NOT recursive.  Any entity already pushed into the
4589  * chain (such as an inode) may still need visibility into its contents,
4590  * as well as the ability to read and modify the contents.  For example,
4591  * for an unlinked file which is still open.
4592  *
4593  * Also note that the flusher is responsible for cleaning up empty
4594  * indirect blocks.
4595  */
4596 int
4597 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
4598 		     hammer2_tid_t mtid, int flags)
4599 {
4600 	int error = 0;
4601 
4602 	KKASSERT(hammer2_mtx_owned(&chain->lock));
4603 
4604 	/*
4605 	 * Nothing to do if already marked.
4606 	 *
4607 	 * We need the spinlock on the core whos RBTREE contains chain
4608 	 * to protect against races.
4609 	 */
4610 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
4611 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
4612 			 chain->parent == parent);
4613 		error = _hammer2_chain_delete_helper(parent, chain,
4614 						     mtid, flags);
4615 	}
4616 
4617 	/*
4618 	 * Permanent deletions mark the chain as destroyed.
4619 	 */
4620 	if (error == 0) {
4621 		if (flags & HAMMER2_DELETE_PERMANENT)
4622 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
4623 		hammer2_chain_setflush(chain);
4624 	}
4625 
4626 	return error;
4627 }
4628 
4629 /*
4630  * Returns the index of the nearest element in the blockref array >= elm.
4631  * Returns (count) if no element could be found.
4632  *
4633  * Sets *key_nextp to the next key for loop purposes but does not modify
4634  * it if the next key would be higher than the current value of *key_nextp.
4635  * Note that *key_nexp can overflow to 0, which should be tested by the
4636  * caller.
4637  *
4638  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
4639  *	     held through the operation.
4640  */
4641 static int
4642 hammer2_base_find(hammer2_chain_t *parent,
4643 		  hammer2_blockref_t *base, int count,
4644 		  hammer2_key_t *key_nextp,
4645 		  hammer2_key_t key_beg, hammer2_key_t key_end)
4646 {
4647 	hammer2_blockref_t *scan;
4648 	hammer2_key_t scan_end;
4649 	int i;
4650 	int limit;
4651 
4652 	/*
4653 	 * Require the live chain's already have their core's counted
4654 	 * so we can optimize operations.
4655 	 */
4656         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
4657 
4658 	/*
4659 	 * Degenerate case
4660 	 */
4661 	if (count == 0 || base == NULL)
4662 		return(count);
4663 
4664 	/*
4665 	 * Sequential optimization using parent->cache_index.  This is
4666 	 * the most likely scenario.
4667 	 *
4668 	 * We can avoid trailing empty entries on live chains, otherwise
4669 	 * we might have to check the whole block array.
4670 	 */
4671 	i = parent->cache_index;	/* SMP RACE OK */
4672 	cpu_ccfence();
4673 	limit = parent->core.live_zero;
4674 	if (i >= limit)
4675 		i = limit - 1;
4676 	if (i < 0)
4677 		i = 0;
4678 	KKASSERT(i < count);
4679 
4680 	/*
4681 	 * Search backwards
4682 	 */
4683 	scan = &base[i];
4684 	while (i > 0 && (scan->type == 0 || scan->key > key_beg)) {
4685 		--scan;
4686 		--i;
4687 	}
4688 	parent->cache_index = i;
4689 
4690 	/*
4691 	 * Search forwards, stop when we find a scan element which
4692 	 * encloses the key or until we know that there are no further
4693 	 * elements.
4694 	 */
4695 	while (i < count) {
4696 		if (scan->type != 0) {
4697 			scan_end = scan->key +
4698 				   ((hammer2_key_t)1 << scan->keybits) - 1;
4699 			if (scan->key > key_beg || scan_end >= key_beg)
4700 				break;
4701 		}
4702 		if (i >= limit)
4703 			return (count);
4704 		++scan;
4705 		++i;
4706 	}
4707 	if (i != count) {
4708 		parent->cache_index = i;
4709 		if (i >= limit) {
4710 			i = count;
4711 		} else {
4712 			scan_end = scan->key +
4713 				   ((hammer2_key_t)1 << scan->keybits);
4714 			if (scan_end && (*key_nextp > scan_end ||
4715 					 *key_nextp == 0)) {
4716 				*key_nextp = scan_end;
4717 			}
4718 		}
4719 	}
4720 	return (i);
4721 }
4722 
4723 /*
4724  * Do a combined search and return the next match either from the blockref
4725  * array or from the in-memory chain.  Sets *bresp to the returned bref in
4726  * both cases, or sets it to NULL if the search exhausted.  Only returns
4727  * a non-NULL chain if the search matched from the in-memory chain.
4728  *
4729  * When no in-memory chain has been found and a non-NULL bref is returned
4730  * in *bresp.
4731  *
4732  *
4733  * The returned chain is not locked or referenced.  Use the returned bref
4734  * to determine if the search exhausted or not.  Iterate if the base find
4735  * is chosen but matches a deleted chain.
4736  *
4737  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
4738  *	     held through the operation.
4739  */
4740 static hammer2_chain_t *
4741 hammer2_combined_find(hammer2_chain_t *parent,
4742 		      hammer2_blockref_t *base, int count,
4743 		      hammer2_key_t *key_nextp,
4744 		      hammer2_key_t key_beg, hammer2_key_t key_end,
4745 		      hammer2_blockref_t **bresp)
4746 {
4747 	hammer2_blockref_t *bref;
4748 	hammer2_chain_t *chain;
4749 	int i;
4750 
4751 	/*
4752 	 * Lookup in block array and in rbtree.
4753 	 */
4754 	*key_nextp = key_end + 1;
4755 	i = hammer2_base_find(parent, base, count, key_nextp,
4756 			      key_beg, key_end);
4757 	chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
4758 
4759 	/*
4760 	 * Neither matched
4761 	 */
4762 	if (i == count && chain == NULL) {
4763 		*bresp = NULL;
4764 		return(NULL);
4765 	}
4766 
4767 	/*
4768 	 * Only chain matched.
4769 	 */
4770 	if (i == count) {
4771 		bref = &chain->bref;
4772 		goto found;
4773 	}
4774 
4775 	/*
4776 	 * Only blockref matched.
4777 	 */
4778 	if (chain == NULL) {
4779 		bref = &base[i];
4780 		goto found;
4781 	}
4782 
4783 	/*
4784 	 * Both in-memory and blockref matched, select the nearer element.
4785 	 *
4786 	 * If both are flush with the left-hand side or both are the
4787 	 * same distance away, select the chain.  In this situation the
4788 	 * chain must have been loaded from the matching blockmap.
4789 	 */
4790 	if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
4791 	    chain->bref.key == base[i].key) {
4792 		KKASSERT(chain->bref.key == base[i].key);
4793 		bref = &chain->bref;
4794 		goto found;
4795 	}
4796 
4797 	/*
4798 	 * Select the nearer key
4799 	 */
4800 	if (chain->bref.key < base[i].key) {
4801 		bref = &chain->bref;
4802 	} else {
4803 		bref = &base[i];
4804 		chain = NULL;
4805 	}
4806 
4807 	/*
4808 	 * If the bref is out of bounds we've exhausted our search.
4809 	 */
4810 found:
4811 	if (bref->key > key_end) {
4812 		*bresp = NULL;
4813 		chain = NULL;
4814 	} else {
4815 		*bresp = bref;
4816 	}
4817 	return(chain);
4818 }
4819 
4820 /*
4821  * Locate the specified block array element and delete it.  The element
4822  * must exist.
4823  *
4824  * The spin lock on the related chain must be held.
4825  *
4826  * NOTE: live_count was adjusted when the chain was deleted, so it does not
4827  *	 need to be adjusted when we commit the media change.
4828  */
4829 void
4830 hammer2_base_delete(hammer2_chain_t *parent,
4831 		    hammer2_blockref_t *base, int count,
4832 		    hammer2_chain_t *chain)
4833 {
4834 	hammer2_blockref_t *elm = &chain->bref;
4835 	hammer2_blockref_t *scan;
4836 	hammer2_key_t key_next;
4837 	int i;
4838 
4839 	/*
4840 	 * Delete element.  Expect the element to exist.
4841 	 *
4842 	 * XXX see caller, flush code not yet sophisticated enough to prevent
4843 	 *     re-flushed in some cases.
4844 	 */
4845 	key_next = 0; /* max range */
4846 	i = hammer2_base_find(parent, base, count, &key_next,
4847 			      elm->key, elm->key);
4848 	scan = &base[i];
4849 	if (i == count || scan->type == 0 ||
4850 	    scan->key != elm->key ||
4851 	    ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
4852 	     scan->keybits != elm->keybits)) {
4853 		hammer2_spin_unex(&parent->core.spin);
4854 		panic("delete base %p element not found at %d/%d elm %p\n",
4855 		      base, i, count, elm);
4856 		return;
4857 	}
4858 
4859 	/*
4860 	 * Update stats and zero the entry.
4861 	 *
4862 	 * NOTE: Handle radix == 0 (0 bytes) case.
4863 	 */
4864 	if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
4865 		parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
4866 				(int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
4867 	}
4868 	switch(scan->type) {
4869 	case HAMMER2_BREF_TYPE_INODE:
4870 		parent->bref.embed.stats.inode_count -= 1;
4871 		/* fall through */
4872 	case HAMMER2_BREF_TYPE_DATA:
4873 	case HAMMER2_BREF_TYPE_INDIRECT:
4874 		parent->bref.embed.stats.data_count -=
4875 			scan->embed.stats.data_count;
4876 		parent->bref.embed.stats.inode_count -=
4877 			scan->embed.stats.inode_count;
4878 		break;
4879 	default:
4880 		break;
4881 	}
4882 
4883 	bzero(scan, sizeof(*scan));
4884 
4885 	/*
4886 	 * We can only optimize parent->core.live_zero for live chains.
4887 	 */
4888 	if (parent->core.live_zero == i + 1) {
4889 		while (--i >= 0 && base[i].type == 0)
4890 			;
4891 		parent->core.live_zero = i + 1;
4892 	}
4893 
4894 	/*
4895 	 * Clear appropriate blockmap flags in chain.
4896 	 */
4897 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
4898 					HAMMER2_CHAIN_BMAPUPD);
4899 }
4900 
4901 /*
4902  * Insert the specified element.  The block array must not already have the
4903  * element and must have space available for the insertion.
4904  *
4905  * The spin lock on the related chain must be held.
4906  *
4907  * NOTE: live_count was adjusted when the chain was deleted, so it does not
4908  *	 need to be adjusted when we commit the media change.
4909  */
4910 void
4911 hammer2_base_insert(hammer2_chain_t *parent,
4912 		    hammer2_blockref_t *base, int count,
4913 		    hammer2_chain_t *chain)
4914 {
4915 	hammer2_blockref_t *elm = &chain->bref;
4916 	hammer2_key_t key_next;
4917 	hammer2_key_t xkey;
4918 	int i;
4919 	int j;
4920 	int k;
4921 	int l;
4922 	int u = 1;
4923 
4924 	/*
4925 	 * Insert new element.  Expect the element to not already exist
4926 	 * unless we are replacing it.
4927 	 *
4928 	 * XXX see caller, flush code not yet sophisticated enough to prevent
4929 	 *     re-flushed in some cases.
4930 	 */
4931 	key_next = 0; /* max range */
4932 	i = hammer2_base_find(parent, base, count, &key_next,
4933 			      elm->key, elm->key);
4934 
4935 	/*
4936 	 * Shortcut fill optimization, typical ordered insertion(s) may not
4937 	 * require a search.
4938 	 */
4939 	KKASSERT(i >= 0 && i <= count);
4940 
4941 	/*
4942 	 * Set appropriate blockmap flags in chain.
4943 	 */
4944 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
4945 
4946 	/*
4947 	 * Update stats and zero the entry
4948 	 */
4949 	if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
4950 		parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
4951 				(int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
4952 	}
4953 	switch(elm->type) {
4954 	case HAMMER2_BREF_TYPE_INODE:
4955 		parent->bref.embed.stats.inode_count += 1;
4956 		/* fall through */
4957 	case HAMMER2_BREF_TYPE_DATA:
4958 	case HAMMER2_BREF_TYPE_INDIRECT:
4959 		parent->bref.embed.stats.data_count +=
4960 			elm->embed.stats.data_count;
4961 		parent->bref.embed.stats.inode_count +=
4962 			elm->embed.stats.inode_count;
4963 		break;
4964 	default:
4965 		break;
4966 	}
4967 
4968 
4969 	/*
4970 	 * We can only optimize parent->core.live_zero for live chains.
4971 	 */
4972 	if (i == count && parent->core.live_zero < count) {
4973 		i = parent->core.live_zero++;
4974 		base[i] = *elm;
4975 		return;
4976 	}
4977 
4978 	xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
4979 	if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
4980 		hammer2_spin_unex(&parent->core.spin);
4981 		panic("insert base %p overlapping elements at %d elm %p\n",
4982 		      base, i, elm);
4983 	}
4984 
4985 	/*
4986 	 * Try to find an empty slot before or after.
4987 	 */
4988 	j = i;
4989 	k = i;
4990 	while (j > 0 || k < count) {
4991 		--j;
4992 		if (j >= 0 && base[j].type == 0) {
4993 			if (j == i - 1) {
4994 				base[j] = *elm;
4995 			} else {
4996 				bcopy(&base[j+1], &base[j],
4997 				      (i - j - 1) * sizeof(*base));
4998 				base[i - 1] = *elm;
4999 			}
5000 			goto validate;
5001 		}
5002 		++k;
5003 		if (k < count && base[k].type == 0) {
5004 			bcopy(&base[i], &base[i+1],
5005 			      (k - i) * sizeof(hammer2_blockref_t));
5006 			base[i] = *elm;
5007 
5008 			/*
5009 			 * We can only update parent->core.live_zero for live
5010 			 * chains.
5011 			 */
5012 			if (parent->core.live_zero <= k)
5013 				parent->core.live_zero = k + 1;
5014 			u = 2;
5015 			goto validate;
5016 		}
5017 	}
5018 	panic("hammer2_base_insert: no room!");
5019 
5020 	/*
5021 	 * Debugging
5022 	 */
5023 validate:
5024 	key_next = 0;
5025 	for (l = 0; l < count; ++l) {
5026 		if (base[l].type) {
5027 			key_next = base[l].key +
5028 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5029 			break;
5030 		}
5031 	}
5032 	while (++l < count) {
5033 		if (base[l].type) {
5034 			if (base[l].key <= key_next)
5035 				panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5036 			key_next = base[l].key +
5037 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5038 
5039 		}
5040 	}
5041 
5042 }
5043 
5044 #if 0
5045 
5046 /*
5047  * Sort the blockref array for the chain.  Used by the flush code to
5048  * sort the blockref[] array.
5049  *
5050  * The chain must be exclusively locked AND spin-locked.
5051  */
5052 typedef hammer2_blockref_t *hammer2_blockref_p;
5053 
5054 static
5055 int
5056 hammer2_base_sort_callback(const void *v1, const void *v2)
5057 {
5058 	hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5059 	hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5060 
5061 	/*
5062 	 * Make sure empty elements are placed at the end of the array
5063 	 */
5064 	if (bref1->type == 0) {
5065 		if (bref2->type == 0)
5066 			return(0);
5067 		return(1);
5068 	} else if (bref2->type == 0) {
5069 		return(-1);
5070 	}
5071 
5072 	/*
5073 	 * Sort by key
5074 	 */
5075 	if (bref1->key < bref2->key)
5076 		return(-1);
5077 	if (bref1->key > bref2->key)
5078 		return(1);
5079 	return(0);
5080 }
5081 
5082 void
5083 hammer2_base_sort(hammer2_chain_t *chain)
5084 {
5085 	hammer2_blockref_t *base;
5086 	int count;
5087 
5088 	switch(chain->bref.type) {
5089 	case HAMMER2_BREF_TYPE_INODE:
5090 		/*
5091 		 * Special shortcut for embedded data returns the inode
5092 		 * itself.  Callers must detect this condition and access
5093 		 * the embedded data (the strategy code does this for us).
5094 		 *
5095 		 * This is only applicable to regular files and softlinks.
5096 		 */
5097 		if (chain->data->ipdata.meta.op_flags &
5098 		    HAMMER2_OPFLAG_DIRECTDATA) {
5099 			return;
5100 		}
5101 		base = &chain->data->ipdata.u.blockset.blockref[0];
5102 		count = HAMMER2_SET_COUNT;
5103 		break;
5104 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5105 	case HAMMER2_BREF_TYPE_INDIRECT:
5106 		/*
5107 		 * Optimize indirect blocks in the INITIAL state to avoid
5108 		 * I/O.
5109 		 */
5110 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5111 		base = &chain->data->npdata[0];
5112 		count = chain->bytes / sizeof(hammer2_blockref_t);
5113 		break;
5114 	case HAMMER2_BREF_TYPE_VOLUME:
5115 		base = &chain->data->voldata.sroot_blockset.blockref[0];
5116 		count = HAMMER2_SET_COUNT;
5117 		break;
5118 	case HAMMER2_BREF_TYPE_FREEMAP:
5119 		base = &chain->data->blkset.blockref[0];
5120 		count = HAMMER2_SET_COUNT;
5121 		break;
5122 	default:
5123 		kprintf("hammer2_chain_lookup: unrecognized "
5124 			"blockref(A) type: %d",
5125 		        chain->bref.type);
5126 		while (1)
5127 			tsleep(&base, 0, "dead", 0);
5128 		panic("hammer2_chain_lookup: unrecognized "
5129 		      "blockref(A) type: %d",
5130 		      chain->bref.type);
5131 		base = NULL;	/* safety */
5132 		count = 0;	/* safety */
5133 	}
5134 	kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5135 }
5136 
5137 #endif
5138 
5139 /*
5140  * Chain memory management
5141  */
5142 void
5143 hammer2_chain_wait(hammer2_chain_t *chain)
5144 {
5145 	tsleep(chain, 0, "chnflw", 1);
5146 }
5147 
5148 const hammer2_media_data_t *
5149 hammer2_chain_rdata(hammer2_chain_t *chain)
5150 {
5151 	KKASSERT(chain->data != NULL);
5152 	return (chain->data);
5153 }
5154 
5155 hammer2_media_data_t *
5156 hammer2_chain_wdata(hammer2_chain_t *chain)
5157 {
5158 	KKASSERT(chain->data != NULL);
5159 	return (chain->data);
5160 }
5161 
5162 /*
5163  * Set the check data for a chain.  This can be a heavy-weight operation
5164  * and typically only runs on-flush.  For file data check data is calculated
5165  * when the logical buffers are flushed.
5166  */
5167 void
5168 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5169 {
5170 	chain->bref.flags &= ~HAMMER2_BREF_FLAG_ZERO;
5171 
5172 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5173 	case HAMMER2_CHECK_NONE:
5174 		break;
5175 	case HAMMER2_CHECK_DISABLED:
5176 		break;
5177 	case HAMMER2_CHECK_ISCSI32:
5178 		chain->bref.check.iscsi32.value =
5179 			hammer2_icrc32(bdata, chain->bytes);
5180 		break;
5181 	case HAMMER2_CHECK_XXHASH64:
5182 		chain->bref.check.xxhash64.value =
5183 			XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5184 		break;
5185 	case HAMMER2_CHECK_SHA192:
5186 		{
5187 			SHA256_CTX hash_ctx;
5188 			union {
5189 				uint8_t digest[SHA256_DIGEST_LENGTH];
5190 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5191 			} u;
5192 
5193 			SHA256_Init(&hash_ctx);
5194 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5195 			SHA256_Final(u.digest, &hash_ctx);
5196 			u.digest64[2] ^= u.digest64[3];
5197 			bcopy(u.digest,
5198 			      chain->bref.check.sha192.data,
5199 			      sizeof(chain->bref.check.sha192.data));
5200 		}
5201 		break;
5202 	case HAMMER2_CHECK_FREEMAP:
5203 		chain->bref.check.freemap.icrc32 =
5204 			hammer2_icrc32(bdata, chain->bytes);
5205 		break;
5206 	default:
5207 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5208 			chain->bref.methods);
5209 		break;
5210 	}
5211 }
5212 
5213 int
5214 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5215 {
5216 	uint32_t check32;
5217 	uint64_t check64;
5218 	int r;
5219 
5220 	if (chain->bref.flags & HAMMER2_BREF_FLAG_ZERO)
5221 		return 1;
5222 
5223 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5224 	case HAMMER2_CHECK_NONE:
5225 		r = 1;
5226 		break;
5227 	case HAMMER2_CHECK_DISABLED:
5228 		r = 1;
5229 		break;
5230 	case HAMMER2_CHECK_ISCSI32:
5231 		check32 = hammer2_icrc32(bdata, chain->bytes);
5232 		r = (chain->bref.check.iscsi32.value == check32);
5233 		if (r == 0) {
5234 			kprintf("chain %016jx.%02x meth=%02x CHECK FAIL "
5235 				"(flags=%08x, bref/data %08x/%08x)\n",
5236 				chain->bref.data_off,
5237 				chain->bref.type,
5238 				chain->bref.methods,
5239 				chain->flags,
5240 				chain->bref.check.iscsi32.value,
5241 				check32);
5242 		}
5243 		hammer2_check_icrc32 += chain->bytes;
5244 		break;
5245 	case HAMMER2_CHECK_XXHASH64:
5246 		check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5247 		r = (chain->bref.check.xxhash64.value == check64);
5248 		if (r == 0) {
5249 			kprintf("chain %016jx.%02x key=%016jx "
5250 				"meth=%02x CHECK FAIL "
5251 				"(flags=%08x, bref/data %016jx/%016jx)\n",
5252 				chain->bref.data_off,
5253 				chain->bref.type,
5254 				chain->bref.key,
5255 				chain->bref.methods,
5256 				chain->flags,
5257 				chain->bref.check.xxhash64.value,
5258 				check64);
5259 		}
5260 		hammer2_check_xxhash64 += chain->bytes;
5261 		break;
5262 	case HAMMER2_CHECK_SHA192:
5263 		{
5264 			SHA256_CTX hash_ctx;
5265 			union {
5266 				uint8_t digest[SHA256_DIGEST_LENGTH];
5267 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5268 			} u;
5269 
5270 			SHA256_Init(&hash_ctx);
5271 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5272 			SHA256_Final(u.digest, &hash_ctx);
5273 			u.digest64[2] ^= u.digest64[3];
5274 			if (bcmp(u.digest,
5275 				 chain->bref.check.sha192.data,
5276 			         sizeof(chain->bref.check.sha192.data)) == 0) {
5277 				r = 1;
5278 			} else {
5279 				r = 0;
5280 				kprintf("chain %016jx.%02x meth=%02x "
5281 					"CHECK FAIL\n",
5282 					chain->bref.data_off,
5283 					chain->bref.type,
5284 					chain->bref.methods);
5285 			}
5286 		}
5287 		break;
5288 	case HAMMER2_CHECK_FREEMAP:
5289 		r = (chain->bref.check.freemap.icrc32 ==
5290 		     hammer2_icrc32(bdata, chain->bytes));
5291 		if (r == 0) {
5292 			kprintf("chain %016jx.%02x meth=%02x "
5293 				"CHECK FAIL\n",
5294 				chain->bref.data_off,
5295 				chain->bref.type,
5296 				chain->bref.methods);
5297 			kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
5298 				chain->bref.check.freemap.icrc32,
5299 				hammer2_icrc32(bdata, chain->bytes),
5300 					       chain->bytes);
5301 			if (chain->dio)
5302 				kprintf("dio %p buf %016jx,%d bdata %p/%p\n",
5303 					chain->dio, chain->dio->bp->b_loffset,
5304 					chain->dio->bp->b_bufsize, bdata,
5305 					chain->dio->bp->b_data);
5306 		}
5307 
5308 		break;
5309 	default:
5310 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5311 			chain->bref.methods);
5312 		r = 1;
5313 		break;
5314 	}
5315 	return r;
5316 }
5317 
5318 /*
5319  * Acquire the chain and parent representing the specified inode for the
5320  * device at the specified cluster index.
5321  *
5322  * The flags passed in are LOOKUP flags, not RESOLVE flags.
5323  *
5324  * If we are unable to locate the hardlink, INVAL is returned and *chainp
5325  * will be NULL.  *parentp may still be set error or not, or NULL if the
5326  * parent itself could not be resolved.
5327  *
5328  * Caller must pass-in a valid or NULL *parentp or *chainp.  The passed-in
5329  * *parentp and *chainp will be unlocked if not NULL.
5330  */
5331 int
5332 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
5333 			 int clindex, int flags,
5334 			 hammer2_chain_t **parentp, hammer2_chain_t **chainp)
5335 {
5336 	hammer2_chain_t *parent;
5337 	hammer2_chain_t *rchain;
5338 	hammer2_key_t key_dummy;
5339 	int resolve_flags;
5340 	int error;
5341 
5342 	resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
5343 			HAMMER2_RESOLVE_SHARED : 0;
5344 
5345 	/*
5346 	 * Caller expects us to replace these.
5347 	 */
5348 	if (*chainp) {
5349 		hammer2_chain_unlock(*chainp);
5350 		hammer2_chain_drop(*chainp);
5351 		*chainp = NULL;
5352 	}
5353 	if (*parentp) {
5354 		hammer2_chain_unlock(*parentp);
5355 		hammer2_chain_drop(*parentp);
5356 		*parentp = NULL;
5357 	}
5358 
5359 	/*
5360 	 * Inodes hang off of the iroot (bit 63 is clear, differentiating
5361 	 * inodes from root directory entries in the key lookup).
5362 	 */
5363 	parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
5364 	rchain = NULL;
5365 	if (parent) {
5366 		rchain = hammer2_chain_lookup(&parent, &key_dummy,
5367 					      inum, inum,
5368 					      &error, flags);
5369 	} else {
5370 		error = HAMMER2_ERROR_EIO;
5371 	}
5372 	*parentp = parent;
5373 	*chainp = rchain;
5374 
5375 	return error;
5376 }
5377 
5378 /*
5379  * Used by the bulkscan code to snapshot the synchronized storage for
5380  * a volume, allowing it to be scanned concurrently against normal
5381  * operation.
5382  */
5383 hammer2_chain_t *
5384 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
5385 {
5386 	hammer2_chain_t *copy;
5387 
5388 	copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
5389 	copy->data = kmalloc(sizeof(copy->data->voldata),
5390 			     hmp->mchain,
5391 			     M_WAITOK | M_ZERO);
5392 	hammer2_voldata_lock(hmp);
5393 	copy->data->voldata = hmp->volsync;
5394 	hammer2_voldata_unlock(hmp);
5395 
5396 	return copy;
5397 }
5398 
5399 void
5400 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
5401 {
5402 	KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
5403 	KKASSERT(copy->data);
5404 	kfree(copy->data, copy->hmp->mchain);
5405 	copy->data = NULL;
5406 	atomic_add_long(&hammer2_chain_allocs, -1);
5407 	hammer2_chain_drop(copy);
5408 }
5409 
5410 /*
5411  * Create a snapshot of the specified (chain) with the specified label.
5412  * The originating hammer2_inode must be exclusively locked for
5413  * safety.  The device's bulklk should be held by the caller.  The caller
5414  * is responsible for synchronizing the filesystem to storage before
5415  * taking the snapshot.
5416  */
5417 int
5418 hammer2_chain_snapshot(hammer2_chain_t *chain, hammer2_ioc_pfs_t *pmp,
5419 		       hammer2_tid_t mtid)
5420 {
5421 	hammer2_dev_t *hmp;
5422 	const hammer2_inode_data_t *ripdata;
5423 	hammer2_inode_data_t *wipdata;
5424 	hammer2_chain_t *nchain;
5425 	hammer2_inode_t *nip;
5426 	size_t name_len;
5427 	hammer2_key_t lhc;
5428 	struct vattr vat;
5429 #if 0
5430 	uuid_t opfs_clid;
5431 #endif
5432 	int error;
5433 
5434 	kprintf("snapshot %s\n", pmp->name);
5435 
5436 	name_len = strlen(pmp->name);
5437 	lhc = hammer2_dirhash(pmp->name, name_len);
5438 
5439 	/*
5440 	 * Get the clid
5441 	 */
5442 	ripdata = &chain->data->ipdata;
5443 #if 0
5444 	opfs_clid = ripdata->meta.pfs_clid;
5445 #endif
5446 	hmp = chain->hmp;
5447 
5448 	/*
5449 	 * Create the snapshot directory under the super-root
5450 	 *
5451 	 * Set PFS type, generate a unique filesystem id, and generate
5452 	 * a cluster id.  Use the same clid when snapshotting a PFS root,
5453 	 * which theoretically allows the snapshot to be used as part of
5454 	 * the same cluster (perhaps as a cache).
5455 	 *
5456 	 * Copy the (flushed) blockref array.  Theoretically we could use
5457 	 * chain_duplicate() but it becomes difficult to disentangle
5458 	 * the shared core so for now just brute-force it.
5459 	 */
5460 	VATTR_NULL(&vat);
5461 	vat.va_type = VDIR;
5462 	vat.va_mode = 0755;
5463 	hammer2_chain_unlock(chain);
5464 	nip = hammer2_inode_create(hmp->spmp->iroot, hmp->spmp->iroot,
5465 				   &vat, proc0.p_ucred,
5466 				   pmp->name, name_len, 0,
5467 				   1, 0, 0,
5468 				   HAMMER2_INSERT_PFSROOT, &error);
5469 	hammer2_chain_lock(chain, HAMMER2_RESOLVE_ALWAYS);
5470 
5471 	if (nip) {
5472 		hammer2_inode_modify(nip);
5473 		nchain = hammer2_inode_chain(nip, 0, HAMMER2_RESOLVE_ALWAYS);
5474 		error = hammer2_chain_modify(nchain, mtid, 0, 0);
5475 		KKASSERT(error == 0);
5476 		wipdata = &nchain->data->ipdata;
5477 
5478 		nip->meta.pfs_type = HAMMER2_PFSTYPE_MASTER;
5479 		nip->meta.pfs_subtype = HAMMER2_PFSSUBTYPE_SNAPSHOT;
5480 		nip->meta.op_flags |= HAMMER2_OPFLAG_PFSROOT;
5481 		kern_uuidgen(&nip->meta.pfs_fsid, 1);
5482 
5483 #if 0
5484 		/*
5485 		 * Give the snapshot its own private cluster id.  As a
5486 		 * snapshot no further synchronization with the original
5487 		 * cluster will be done.
5488 		 */
5489 		if (chain->flags & HAMMER2_CHAIN_PFSBOUNDARY)
5490 			nip->meta.pfs_clid = opfs_clid;
5491 		else
5492 			kern_uuidgen(&nip->meta.pfs_clid, 1);
5493 #endif
5494 		kern_uuidgen(&nip->meta.pfs_clid, 1);
5495 		nchain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
5496 
5497 		/* XXX hack blockset copy */
5498 		/* XXX doesn't work with real cluster */
5499 		wipdata->meta = nip->meta;
5500 		wipdata->u.blockset = ripdata->u.blockset;
5501 
5502 		hammer2_flush(nchain, 1);
5503 		KKASSERT(wipdata == &nchain->data->ipdata);
5504 		hammer2_pfsalloc(nchain, wipdata, nchain->bref.modify_tid, 0);
5505 
5506 		hammer2_chain_unlock(nchain);
5507 		hammer2_chain_drop(nchain);
5508 		hammer2_inode_chain_sync(nip);
5509 		hammer2_inode_unlock(nip);
5510 		hammer2_inode_run_sideq(hmp->spmp);
5511 	}
5512 	return (error);
5513 }
5514 
5515 /*
5516  * Returns non-zero if the chain (INODE or DIRENT) matches the
5517  * filename.
5518  */
5519 int
5520 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
5521 			  size_t name_len)
5522 {
5523 	const hammer2_inode_data_t *ripdata;
5524 	const hammer2_dirent_head_t *den;
5525 
5526 	if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5527 		ripdata = &chain->data->ipdata;
5528 		if (ripdata->meta.name_len == name_len &&
5529 		    bcmp(ripdata->filename, name, name_len) == 0) {
5530 			return 1;
5531 		}
5532 	}
5533 	if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
5534 	   chain->bref.embed.dirent.namlen == name_len) {
5535 		den = &chain->bref.embed.dirent;
5536 		if (name_len > sizeof(chain->bref.check.buf) &&
5537 		    bcmp(chain->data->buf, name, name_len) == 0) {
5538 			return 1;
5539 		}
5540 		if (name_len <= sizeof(chain->bref.check.buf) &&
5541 		    bcmp(chain->bref.check.buf, name, name_len) == 0) {
5542 			return 1;
5543 		}
5544 	}
5545 	return 0;
5546 }
5547