xref: /dragonfly/sys/vfs/hammer2/hammer2_chain.c (revision 7bcb6caf)
1 /*
2  * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62 
63 #include <crypto/sha2/sha2.h>
64 
65 #include "hammer2.h"
66 
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68 		hammer2_chain_t *parent,
69 		hammer2_key_t key, int keybits,
70 		hammer2_tid_t mtid, int for_type, int *errorp);
71 static hammer2_io_t *hammer2_chain_drop_data(hammer2_chain_t *chain);
72 static hammer2_chain_t *hammer2_combined_find(
73 		hammer2_chain_t *parent,
74 		hammer2_blockref_t *base, int count,
75 		hammer2_key_t *key_nextp,
76 		hammer2_key_t key_beg, hammer2_key_t key_end,
77 		hammer2_blockref_t **bresp);
78 
79 static struct krate krate_h2me = { .freq = 1 };
80 
81 /*
82  * Basic RBTree for chains (core->rbtree and core->dbtree).  Chains cannot
83  * overlap in the RB trees.  Deleted chains are moved from rbtree to either
84  * dbtree or to dbq.
85  *
86  * Chains in delete-duplicate sequences can always iterate through core_entry
87  * to locate the live version of the chain.
88  */
89 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
90 
91 int
92 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
93 {
94 	hammer2_key_t c1_beg;
95 	hammer2_key_t c1_end;
96 	hammer2_key_t c2_beg;
97 	hammer2_key_t c2_end;
98 
99 	/*
100 	 * Compare chains.  Overlaps are not supposed to happen and catch
101 	 * any software issues early we count overlaps as a match.
102 	 */
103 	c1_beg = chain1->bref.key;
104 	c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
105 	c2_beg = chain2->bref.key;
106 	c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
107 
108 	if (c1_end < c2_beg)	/* fully to the left */
109 		return(-1);
110 	if (c1_beg > c2_end)	/* fully to the right */
111 		return(1);
112 	return(0);		/* overlap (must not cross edge boundary) */
113 }
114 
115 /*
116  * Assert that a chain has no media data associated with it.
117  */
118 static __inline void
119 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
120 {
121 	KKASSERT(chain->dio == NULL);
122 	if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
123 	    chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
124 	    chain->data) {
125 		panic("hammer2_assert_no_data: chain %p still has data", chain);
126 	}
127 }
128 
129 /*
130  * Make a chain visible to the flusher.  The flusher needs to be able to
131  * do flushes of subdirectory chains or single files so it does a top-down
132  * recursion using the ONFLUSH flag for the recursion.  It locates MODIFIED
133  * or UPDATE chains and flushes back up the chain to the volume root.
134  *
135  * This routine sets ONFLUSH upward until it hits the volume root.  For
136  * simplicity we ignore PFSROOT boundaries whos rules can be complex.
137  * Extra ONFLUSH flagging doesn't hurt the filesystem.
138  */
139 void
140 hammer2_chain_setflush(hammer2_chain_t *chain)
141 {
142 	hammer2_chain_t *parent;
143 
144 	if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
145 		hammer2_spin_sh(&chain->core.spin);
146 		while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
147 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
148 			if ((parent = chain->parent) == NULL)
149 				break;
150 			hammer2_spin_sh(&parent->core.spin);
151 			hammer2_spin_unsh(&chain->core.spin);
152 			chain = parent;
153 		}
154 		hammer2_spin_unsh(&chain->core.spin);
155 	}
156 }
157 
158 /*
159  * Allocate a new disconnected chain element representing the specified
160  * bref.  chain->refs is set to 1 and the passed bref is copied to
161  * chain->bref.  chain->bytes is derived from the bref.
162  *
163  * chain->pmp inherits pmp unless the chain is an inode (other than the
164  * super-root inode).
165  *
166  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
167  */
168 hammer2_chain_t *
169 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
170 		    hammer2_blockref_t *bref)
171 {
172 	hammer2_chain_t *chain;
173 	u_int bytes;
174 
175 	/*
176 	 * Special case - radix of 0 indicates a chain that does not
177 	 * need a data reference (context is completely embedded in the
178 	 * bref).
179 	 */
180 	if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
181 		bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
182 	else
183 		bytes = 0;
184 
185 	atomic_add_long(&hammer2_chain_allocs, 1);
186 
187 	/*
188 	 * Construct the appropriate system structure.
189 	 */
190 	switch(bref->type) {
191 	case HAMMER2_BREF_TYPE_DIRENT:
192 	case HAMMER2_BREF_TYPE_INODE:
193 	case HAMMER2_BREF_TYPE_INDIRECT:
194 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
195 	case HAMMER2_BREF_TYPE_DATA:
196 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
197 		/*
198 		 * Chain's are really only associated with the hmp but we
199 		 * maintain a pmp association for per-mount memory tracking
200 		 * purposes.  The pmp can be NULL.
201 		 */
202 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
203 		break;
204 	case HAMMER2_BREF_TYPE_VOLUME:
205 	case HAMMER2_BREF_TYPE_FREEMAP:
206 		/*
207 		 * Only hammer2_chain_bulksnap() calls this function with these
208 		 * types.
209 		 */
210 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
211 		break;
212 	default:
213 		chain = NULL;
214 		panic("hammer2_chain_alloc: unrecognized blockref type: %d",
215 		      bref->type);
216 	}
217 
218 	/*
219 	 * Initialize the new chain structure.  pmp must be set to NULL for
220 	 * chains belonging to the super-root topology of a device mount.
221 	 */
222 	if (pmp == hmp->spmp)
223 		chain->pmp = NULL;
224 	else
225 		chain->pmp = pmp;
226 	chain->hmp = hmp;
227 	chain->bref = *bref;
228 	chain->bytes = bytes;
229 	chain->refs = 1;
230 	chain->flags = HAMMER2_CHAIN_ALLOCATED;
231 
232 	/*
233 	 * Set the PFS boundary flag if this chain represents a PFS root.
234 	 */
235 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
236 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
237 	hammer2_chain_core_init(chain);
238 
239 	return (chain);
240 }
241 
242 /*
243  * Initialize a chain's core structure.  This structure used to be allocated
244  * but is now embedded.
245  *
246  * The core is not locked.  No additional refs on the chain are made.
247  * (trans) must not be NULL if (core) is not NULL.
248  */
249 void
250 hammer2_chain_core_init(hammer2_chain_t *chain)
251 {
252 	/*
253 	 * Fresh core under nchain (no multi-homing of ochain's
254 	 * sub-tree).
255 	 */
256 	RB_INIT(&chain->core.rbtree);	/* live chains */
257 	hammer2_mtx_init(&chain->lock, "h2chain");
258 }
259 
260 /*
261  * Add a reference to a chain element, preventing its destruction.
262  *
263  * (can be called with spinlock held)
264  */
265 void
266 hammer2_chain_ref(hammer2_chain_t *chain)
267 {
268 	if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
269 		/*
270 		 * Just flag that the chain was used and should be recycled
271 		 * on the LRU if it encounters it later.
272 		 */
273 		if (chain->flags & HAMMER2_CHAIN_ONLRU)
274 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
275 
276 #if 0
277 		/*
278 		 * REMOVED - reduces contention, lru_list is more heuristical
279 		 * now.
280 		 *
281 		 * 0->non-zero transition must ensure that chain is removed
282 		 * from the LRU list.
283 		 *
284 		 * NOTE: Already holding lru_spin here so we cannot call
285 		 *	 hammer2_chain_ref() to get it off lru_list, do
286 		 *	 it manually.
287 		 */
288 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
289 			hammer2_pfs_t *pmp = chain->pmp;
290 			hammer2_spin_ex(&pmp->lru_spin);
291 			if (chain->flags & HAMMER2_CHAIN_ONLRU) {
292 				atomic_add_int(&pmp->lru_count, -1);
293 				atomic_clear_int(&chain->flags,
294 						 HAMMER2_CHAIN_ONLRU);
295 				TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
296 			}
297 			hammer2_spin_unex(&pmp->lru_spin);
298 		}
299 #endif
300 	}
301 }
302 
303 /*
304  * Ref a locked chain and force the data to be held across an unlock.
305  * Chain must be currently locked.  The user of the chain who desires
306  * to release the hold must call hammer2_chain_lock_unhold() to relock
307  * and unhold the chain, then unlock normally, or may simply call
308  * hammer2_chain_drop_unhold() (which is safer against deadlocks).
309  */
310 void
311 hammer2_chain_ref_hold(hammer2_chain_t *chain)
312 {
313 	atomic_add_int(&chain->lockcnt, 1);
314 	hammer2_chain_ref(chain);
315 }
316 
317 /*
318  * Insert the chain in the core rbtree.
319  *
320  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
321  * chain is a special case used by the flush code that is placed on the
322  * unstaged deleted list to avoid confusing the live view.
323  */
324 #define HAMMER2_CHAIN_INSERT_SPIN	0x0001
325 #define HAMMER2_CHAIN_INSERT_LIVE	0x0002
326 #define HAMMER2_CHAIN_INSERT_RACE	0x0004
327 
328 static
329 int
330 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
331 		     int flags, int generation)
332 {
333 	hammer2_chain_t *xchain;
334 	int error = 0;
335 
336 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
337 		hammer2_spin_ex(&parent->core.spin);
338 
339 	/*
340 	 * Interlocked by spinlock, check for race
341 	 */
342 	if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
343 	    parent->core.generation != generation) {
344 		error = HAMMER2_ERROR_EAGAIN;
345 		goto failed;
346 	}
347 
348 	/*
349 	 * Insert chain
350 	 */
351 	xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
352 	KASSERT(xchain == NULL,
353 		("hammer2_chain_insert: collision %p %p (key=%016jx)",
354 		chain, xchain, chain->bref.key));
355 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
356 	chain->parent = parent;
357 	++parent->core.chain_count;
358 	++parent->core.generation;	/* XXX incs for _get() too, XXX */
359 
360 	/*
361 	 * We have to keep track of the effective live-view blockref count
362 	 * so the create code knows when to push an indirect block.
363 	 */
364 	if (flags & HAMMER2_CHAIN_INSERT_LIVE)
365 		atomic_add_int(&parent->core.live_count, 1);
366 failed:
367 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
368 		hammer2_spin_unex(&parent->core.spin);
369 	return error;
370 }
371 
372 /*
373  * Drop the caller's reference to the chain.  When the ref count drops to
374  * zero this function will try to disassociate the chain from its parent and
375  * deallocate it, then recursely drop the parent using the implied ref
376  * from the chain's chain->parent.
377  *
378  * Nobody should own chain's mutex on the 1->0 transition, unless this drop
379  * races an acquisition by another cpu.  Therefore we can loop if we are
380  * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
381  * race against another drop.
382  */
383 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
384 				int depth);
385 static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
386 
387 void
388 hammer2_chain_drop(hammer2_chain_t *chain)
389 {
390 	u_int refs;
391 
392 	if (hammer2_debug & 0x200000)
393 		Debugger("drop");
394 
395 	KKASSERT(chain->refs > 0);
396 
397 	while (chain) {
398 		refs = chain->refs;
399 		cpu_ccfence();
400 		KKASSERT(refs > 0);
401 
402 		if (refs == 1) {
403 			if (hammer2_mtx_ex_try(&chain->lock) == 0)
404 				chain = hammer2_chain_lastdrop(chain, 0);
405 			/* retry the same chain, or chain from lastdrop */
406 		} else {
407 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
408 				break;
409 			/* retry the same chain */
410 		}
411 		cpu_pause();
412 	}
413 }
414 
415 /*
416  * Unhold a held and probably not-locked chain, ensure that the data is
417  * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
418  * lock and then simply unlocking the chain.
419  */
420 void
421 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
422 {
423 	u_int lockcnt;
424 	int iter = 0;
425 
426 	for (;;) {
427 		lockcnt = chain->lockcnt;
428 		cpu_ccfence();
429 		if (lockcnt > 1) {
430 			if (atomic_cmpset_int(&chain->lockcnt,
431 					      lockcnt, lockcnt - 1)) {
432 				break;
433 			}
434 		} else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
435 			hammer2_chain_unlock(chain);
436 			break;
437 		} else {
438 			/*
439 			 * This situation can easily occur on SMP due to
440 			 * the gap inbetween the 1->0 transition and the
441 			 * final unlock.  We cannot safely block on the
442 			 * mutex because lockcnt might go above 1.
443 			 *
444 			 * XXX Sleep for one tick if it takes too long.
445 			 */
446 			if (++iter > 1000) {
447 				if (iter > 1000 + hz) {
448 					kprintf("hammer2: h2race1 %p\n", chain);
449 					iter = 1000;
450 				}
451 				tsleep(&iter, 0, "h2race1", 1);
452 			}
453 			cpu_pause();
454 		}
455 	}
456 	hammer2_chain_drop(chain);
457 }
458 
459 /*
460  * Handles the (potential) last drop of chain->refs from 1->0.  Called with
461  * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
462  * possible against refs and lockcnt.  We must dispose of the mutex on chain.
463  *
464  * This function returns an unlocked chain for recursive drop or NULL.  It
465  * can return the same chain if it determines it has raced another ref.
466  *
467  * --
468  *
469  * When two chains need to be recursively dropped we use the chain we
470  * would otherwise free to placehold the additional chain.  It's a bit
471  * convoluted but we can't just recurse without potentially blowing out
472  * the kernel stack.
473  *
474  * The chain cannot be freed if it has any children.
475  * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
476  * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
477  * Any dedup registration can remain intact.
478  *
479  * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
480  */
481 static
482 hammer2_chain_t *
483 hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
484 {
485 	hammer2_pfs_t *pmp;
486 	hammer2_dev_t *hmp;
487 	hammer2_chain_t *parent;
488 	hammer2_chain_t *rdrop;
489 #if 0
490 	hammer2_io_t *dio;
491 #endif
492 
493 #if 0
494 	/*
495 	 * On last drop if there is no parent and data_off is good (at
496 	 * least does not represent the volume root), the modified chain
497 	 * is probably going to be destroyed.  We have to make sure that
498 	 * the data area is not registered for dedup.
499 	 *
500 	 * XXX removed. In fact, we do not have to make sure that the
501 	 *     data area is not registered for dedup.  The data area
502 	 *     can, in fact, still be used for dedup because it is
503 	 *     still allocated in the freemap and the underlying I/O
504 	 *     will still be flushed.
505 	 */
506 	if (chain->parent == NULL &&
507 	    (chain->flags & HAMMER2_CHAIN_MODIFIED) &&
508 	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
509 		hmp = chain->hmp;
510 		hammer2_io_dedup_delete(hmp, chain->bref.type,
511 					chain->bref.data_off, chain->bytes);
512 	}
513 #endif
514 	/*
515 	 * We need chain's spinlock to interlock the sub-tree test.
516 	 * We already have chain's mutex, protecting chain->parent.
517 	 *
518 	 * Remember that chain->refs can be in flux.
519 	 */
520 	hammer2_spin_ex(&chain->core.spin);
521 
522 	if (chain->parent != NULL) {
523 		/*
524 		 * If the chain has a parent the UPDATE bit prevents scrapping
525 		 * as the chain is needed to properly flush the parent.  Try
526 		 * to complete the 1->0 transition and return NULL.  Retry
527 		 * (return chain) if we are unable to complete the 1->0
528 		 * transition, else return NULL (nothing more to do).
529 		 *
530 		 * If the chain has a parent the MODIFIED bit prevents
531 		 * scrapping.
532 		 *
533 		 * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
534 		 */
535 		if (chain->flags & (HAMMER2_CHAIN_UPDATE |
536 				    HAMMER2_CHAIN_MODIFIED)) {
537 			if (atomic_cmpset_int(&chain->refs, 1, 0)) {
538 				hammer2_spin_unex(&chain->core.spin);
539 #if 0
540 				dio = hammer2_chain_drop_data(chain, 0);
541 				if (dio)
542 					hammer2_io_bqrelse(&dio);
543 #endif
544 				hammer2_chain_assert_no_data(chain);
545 				hammer2_mtx_unlock(&chain->lock);
546 				chain = NULL;
547 			} else {
548 				hammer2_spin_unex(&chain->core.spin);
549 				hammer2_mtx_unlock(&chain->lock);
550 			}
551 			return (chain);
552 		}
553 		/* spinlock still held */
554 	} else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
555 		   chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
556 		/*
557 		 * Retain the static vchain and fchain.  Clear bits that
558 		 * are not relevant.  Do not clear the MODIFIED bit,
559 		 * and certainly do not put it on the delayed-flush queue.
560 		 */
561 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
562 	} else {
563 		/*
564 		 * The chain has no parent and can be flagged for destruction.
565 		 * Since it has no parent, UPDATE can also be cleared.
566 		 */
567 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
568 		if (chain->flags & HAMMER2_CHAIN_UPDATE)
569 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
570 
571 		/*
572 		 * If the chain has children we must still flush the chain.
573 		 * Any dedup is already handled by the underlying DIO, so
574 		 * we do not have to specifically flush it here.
575 		 *
576 		 * In the case where it has children, the DESTROY flag test
577 		 * in the flush code will prevent unnecessary flushes of
578 		 * MODIFIED chains that are not flagged DEDUP so don't worry
579 		 * about that here.
580 		 */
581 		if (chain->core.chain_count) {
582 			/*
583 			 * Put on flushq (should ensure refs > 1), retry
584 			 * the drop.
585 			 */
586 			hammer2_spin_unex(&chain->core.spin);
587 			hammer2_delayed_flush(chain);
588 			hammer2_mtx_unlock(&chain->lock);
589 
590 			return(chain);	/* retry drop */
591 		}
592 
593 		/*
594 		 * Otherwise we can scrap the MODIFIED bit if it is set,
595 		 * and continue along the freeing path.
596 		 *
597 		 * Be sure to clean-out any dedup bits.  Without a parent
598 		 * this chain will no longer be visible to the flush code.
599 		 * Easy check data_off to avoid the volume root.
600 		 */
601 		if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
602 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
603 			atomic_add_long(&hammer2_count_modified_chains, -1);
604 			if (chain->pmp)
605 				hammer2_pfs_memory_wakeup(chain->pmp);
606 		}
607 		/* spinlock still held */
608 	}
609 
610 	/* spinlock still held */
611 #if 0
612 	dio = NULL;
613 #endif
614 
615 	/*
616 	 * If any children exist we must leave the chain intact with refs == 0.
617 	 * They exist because chains are retained below us which have refs or
618 	 * may require flushing.
619 	 *
620 	 * Retry (return chain) if we fail to transition the refs to 0, else
621 	 * return NULL indication nothing more to do.
622 	 *
623 	 * Chains with children are NOT put on the LRU list.
624 	 */
625 	if (chain->core.chain_count) {
626 		if (atomic_cmpset_int(&chain->refs, 1, 0)) {
627 			hammer2_spin_unex(&chain->core.spin);
628 			hammer2_chain_assert_no_data(chain);
629 			hammer2_mtx_unlock(&chain->lock);
630 			chain = NULL;
631 		} else {
632 			hammer2_spin_unex(&chain->core.spin);
633 			hammer2_mtx_unlock(&chain->lock);
634 		}
635 		return (chain);
636 	}
637 	/* spinlock still held */
638 	/* no chains left under us */
639 
640 	/*
641 	 * chain->core has no children left so no accessors can get to our
642 	 * chain from there.  Now we have to lock the parent core to interlock
643 	 * remaining possible accessors that might bump chain's refs before
644 	 * we can safely drop chain's refs with intent to free the chain.
645 	 */
646 	hmp = chain->hmp;
647 	pmp = chain->pmp;	/* can be NULL */
648 	rdrop = NULL;
649 
650 	parent = chain->parent;
651 
652 	/*
653 	 * WARNING! chain's spin lock is still held here, and other spinlocks
654 	 *	    will be acquired and released in the code below.  We
655 	 *	    cannot be making fancy procedure calls!
656 	 */
657 
658 	/*
659 	 * We can cache the chain if it is associated with a pmp
660 	 * and not flagged as being destroyed or requesting a full
661 	 * release.  In this situation the chain is not removed
662 	 * from its parent, i.e. it can still be looked up.
663 	 *
664 	 * We intentionally do not cache DATA chains because these
665 	 * were likely used to load data into the logical buffer cache
666 	 * and will not be accessed again for some time.
667 	 */
668 	if ((chain->flags &
669 	     (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
670 	    chain->pmp &&
671 	    chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
672 		if (parent)
673 			hammer2_spin_ex(&parent->core.spin);
674 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
675 			/*
676 			 * 1->0 transition failed, retry.  Do not drop
677 			 * the chain's data yet!
678 			 */
679 			if (parent)
680 				hammer2_spin_unex(&parent->core.spin);
681 			hammer2_spin_unex(&chain->core.spin);
682 			hammer2_mtx_unlock(&chain->lock);
683 
684 			return(chain);
685 		}
686 
687 		/*
688 		 * Success
689 		 */
690 #if 0
691 		dio = hammer2_chain_drop_data(chain, 1);
692 #endif
693 		hammer2_chain_assert_no_data(chain);
694 
695 		/*
696 		 * Make sure we are on the LRU list, clean up excessive
697 		 * LRU entries.  We can only really drop one but there might
698 		 * be other entries that we can remove from the lru_list
699 		 * without dropping.
700 		 *
701 		 * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
702 		 *	 chain->core.spin AND pmp->lru_spin are held, but
703 		 *	 can be safely cleared only holding pmp->lru_spin.
704 		 */
705 		if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
706 			hammer2_spin_ex(&pmp->lru_spin);
707 			if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
708 				atomic_set_int(&chain->flags,
709 					       HAMMER2_CHAIN_ONLRU);
710 				TAILQ_INSERT_TAIL(&pmp->lru_list,
711 						  chain, lru_node);
712 				atomic_add_int(&pmp->lru_count, 1);
713 			}
714 			if (pmp->lru_count < HAMMER2_LRU_LIMIT)
715 				depth = 1;	/* disable lru_list flush */
716 			hammer2_spin_unex(&pmp->lru_spin);
717 		} else {
718 			/* disable lru flush */
719 			depth = 1;
720 		}
721 
722 		if (parent) {
723 			hammer2_spin_unex(&parent->core.spin);
724 			parent = NULL;	/* safety */
725 		}
726 		hammer2_spin_unex(&chain->core.spin);
727 		hammer2_mtx_unlock(&chain->lock);
728 #if 0
729 		if (dio)
730 			hammer2_io_bqrelse(&dio);
731 #endif
732 
733 		/*
734 		 * lru_list hysteresis (see above for depth overrides).
735 		 * Note that depth also prevents excessive lastdrop recursion.
736 		 */
737 		if (depth == 0)
738 			hammer2_chain_lru_flush(pmp);
739 
740 		return NULL;
741 		/* NOT REACHED */
742 	}
743 
744 	/*
745 	 * Make sure we are not on the LRU list.
746 	 */
747 	if (chain->flags & HAMMER2_CHAIN_ONLRU) {
748 		hammer2_spin_ex(&pmp->lru_spin);
749 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
750 			atomic_add_int(&pmp->lru_count, -1);
751 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
752 			TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
753 		}
754 		hammer2_spin_unex(&pmp->lru_spin);
755 	}
756 
757 	/*
758 	 * Spinlock the parent and try to drop the last ref on chain.
759 	 * On success determine if we should dispose of the chain
760 	 * (remove the chain from its parent, etc).
761 	 *
762 	 * (normal core locks are top-down recursive but we define
763 	 * core spinlocks as bottom-up recursive, so this is safe).
764 	 */
765 	if (parent) {
766 		hammer2_spin_ex(&parent->core.spin);
767 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
768 #if 0
769 			/* XXX remove, don't try to drop data on fail */
770 			hammer2_spin_unex(&parent->core.spin);
771 			dio = hammer2_chain_drop_data(chain, 0);
772 			hammer2_spin_unex(&chain->core.spin);
773 			if (dio)
774 				hammer2_io_bqrelse(&dio);
775 #endif
776 			/*
777 			 * 1->0 transition failed, retry.
778 			 */
779 			hammer2_spin_unex(&parent->core.spin);
780 			hammer2_spin_unex(&chain->core.spin);
781 			hammer2_mtx_unlock(&chain->lock);
782 
783 			return(chain);
784 		}
785 
786 		/*
787 		 * 1->0 transition successful, parent spin held to prevent
788 		 * new lookups, chain spinlock held to protect parent field.
789 		 * Remove chain from the parent.
790 		 *
791 		 * If the chain is being removed from the parent's btree but
792 		 * is not bmapped, we have to adjust live_count downward.  If
793 		 * it is bmapped then the blockref is retained in the parent
794 		 * as is its associated live_count.  This case can occur when
795 		 * a chain added to the topology is unable to flush and is
796 		 * then later deleted.
797 		 */
798 		if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
799 			if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
800 			    (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
801 				atomic_add_int(&parent->core.live_count, -1);
802 			}
803 			RB_REMOVE(hammer2_chain_tree,
804 				  &parent->core.rbtree, chain);
805 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
806 			--parent->core.chain_count;
807 			chain->parent = NULL;
808 		}
809 
810 		/*
811 		 * If our chain was the last chain in the parent's core the
812 		 * core is now empty and its parent might have to be
813 		 * re-dropped if it has 0 refs.
814 		 */
815 		if (parent->core.chain_count == 0) {
816 			rdrop = parent;
817 			atomic_add_int(&rdrop->refs, 1);
818 			/*
819 			if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
820 				rdrop = NULL;
821 			*/
822 		}
823 		hammer2_spin_unex(&parent->core.spin);
824 		parent = NULL;	/* safety */
825 		/* FALL THROUGH */
826 	} else {
827 		/*
828 		 * No-parent case.
829 		 */
830 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
831 			/*
832 			 * 1->0 transition failed, retry.
833 			 */
834 			hammer2_spin_unex(&parent->core.spin);
835 			hammer2_spin_unex(&chain->core.spin);
836 			hammer2_mtx_unlock(&chain->lock);
837 
838 			return(chain);
839 		}
840 	}
841 
842 	/*
843 	 * Successful 1->0 transition, no parent, no children... no way for
844 	 * anyone to ref this chain any more.  We can clean-up and free it.
845 	 *
846 	 * We still have the core spinlock, and core's chain_count is 0.
847 	 * Any parent spinlock is gone.
848 	 */
849 	hammer2_spin_unex(&chain->core.spin);
850 	hammer2_chain_assert_no_data(chain);
851 	hammer2_mtx_unlock(&chain->lock);
852 	KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
853 		 chain->core.chain_count == 0);
854 
855 	/*
856 	 * All locks are gone, no pointers remain to the chain, finish
857 	 * freeing it.
858 	 */
859 	KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
860 				  HAMMER2_CHAIN_MODIFIED)) == 0);
861 #if 0
862 	dio = hammer2_chain_drop_data(chain, 1);
863 	if (dio)
864 		hammer2_io_bqrelse(&dio);
865 #endif
866 
867 	/*
868 	 * Once chain resources are gone we can use the now dead chain
869 	 * structure to placehold what might otherwise require a recursive
870 	 * drop, because we have potentially two things to drop and can only
871 	 * return one directly.
872 	 */
873 	if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
874 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
875 		chain->hmp = NULL;
876 		kfree(chain, hmp->mchain);
877 	}
878 
879 	/*
880 	 * Possible chaining loop when parent re-drop needed.
881 	 */
882 	return(rdrop);
883 }
884 
885 /*
886  * Heuristical flush of the LRU, try to reduce the number of entries
887  * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3).  This procedure is called
888  * only when lru_count exceeds HAMMER2_LRU_LIMIT.
889  */
890 static
891 void
892 hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
893 {
894 	hammer2_chain_t *chain;
895 
896 again:
897 	chain = NULL;
898 	hammer2_spin_ex(&pmp->lru_spin);
899 	while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
900 		/*
901 		 * Pick a chain off the lru_list, just recycle it quickly
902 		 * if LRUHINT is set (the chain was ref'd but left on
903 		 * the lru_list, so cycle to the end).
904 		 */
905 		chain = TAILQ_FIRST(&pmp->lru_list);
906 		TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
907 
908 		if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
909 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
910 			TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
911 			chain = NULL;
912 			continue;
913 		}
914 
915 		/*
916 		 * Ok, we are off the LRU.  We must adjust refs before we
917 		 * can safely clear the ONLRU flag.
918 		 */
919 		atomic_add_int(&pmp->lru_count, -1);
920 		if (atomic_cmpset_int(&chain->refs, 0, 1)) {
921 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
922 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
923 			break;
924 		}
925 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
926 		chain = NULL;
927 	}
928 	hammer2_spin_unex(&pmp->lru_spin);
929 	if (chain == NULL)
930 		return;
931 
932 	/*
933 	 * If we picked a chain off the lru list we may be able to lastdrop
934 	 * it.  Use a depth of 1 to prevent excessive lastdrop recursion.
935 	 */
936 	while (chain) {
937 		u_int refs;
938 
939 		refs = chain->refs;
940 		cpu_ccfence();
941 		KKASSERT(refs > 0);
942 
943 		if (refs == 1) {
944 			if (hammer2_mtx_ex_try(&chain->lock) == 0)
945 				chain = hammer2_chain_lastdrop(chain, 1);
946 			/* retry the same chain, or chain from lastdrop */
947 		} else {
948 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
949 				break;
950 			/* retry the same chain */
951 		}
952 		cpu_pause();
953 	}
954 	goto again;
955 }
956 
957 /*
958  * On last lock release.
959  */
960 static hammer2_io_t *
961 hammer2_chain_drop_data(hammer2_chain_t *chain)
962 {
963 	hammer2_io_t *dio;
964 
965 	if ((dio = chain->dio) != NULL) {
966 		chain->dio = NULL;
967 		chain->data = NULL;
968 	} else {
969 		switch(chain->bref.type) {
970 		case HAMMER2_BREF_TYPE_VOLUME:
971 		case HAMMER2_BREF_TYPE_FREEMAP:
972 			break;
973 		default:
974 			if (chain->data != NULL) {
975 				hammer2_spin_unex(&chain->core.spin);
976 				panic("chain data not null: "
977 				      "chain %p bref %016jx.%02x "
978 				      "refs %d parent %p dio %p data %p",
979 				      chain, chain->bref.data_off,
980 				      chain->bref.type, chain->refs,
981 				      chain->parent,
982 				      chain->dio, chain->data);
983 			}
984 			KKASSERT(chain->data == NULL);
985 			break;
986 		}
987 	}
988 	return dio;
989 }
990 
991 /*
992  * Lock a referenced chain element, acquiring its data with I/O if necessary,
993  * and specify how you would like the data to be resolved.
994  *
995  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
996  *
997  * The lock is allowed to recurse, multiple locking ops will aggregate
998  * the requested resolve types.  Once data is assigned it will not be
999  * removed until the last unlock.
1000  *
1001  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
1002  *			   (typically used to avoid device/logical buffer
1003  *			    aliasing for data)
1004  *
1005  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
1006  *			   the INITIAL-create state (indirect blocks only).
1007  *
1008  *			   Do not resolve data elements for DATA chains.
1009  *			   (typically used to avoid device/logical buffer
1010  *			    aliasing for data)
1011  *
1012  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
1013  *
1014  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
1015  *			   it will be locked exclusive.
1016  *
1017  * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking.  If
1018  *			   the lock fails, EAGAIN is returned.
1019  *
1020  * NOTE: Embedded elements (volume header, inodes) are always resolved
1021  *	 regardless.
1022  *
1023  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
1024  *	 element will instantiate and zero its buffer, and flush it on
1025  *	 release.
1026  *
1027  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
1028  *	 so as not to instantiate a device buffer, which could alias against
1029  *	 a logical file buffer.  However, if ALWAYS is specified the
1030  *	 device buffer will be instantiated anyway.
1031  *
1032  * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
1033  *	 case it can be either 0 or EAGAIN.
1034  *
1035  * WARNING! This function blocks on I/O if data needs to be fetched.  This
1036  *	    blocking can run concurrent with other compatible lock holders
1037  *	    who do not need data returning.  The lock is not upgraded to
1038  *	    exclusive during a data fetch, a separate bit is used to
1039  *	    interlock I/O.  However, an exclusive lock holder can still count
1040  *	    on being interlocked against an I/O fetch managed by a shared
1041  *	    lock holder.
1042  */
1043 int
1044 hammer2_chain_lock(hammer2_chain_t *chain, int how)
1045 {
1046 	KKASSERT(chain->refs > 0);
1047 
1048 	if (how & HAMMER2_RESOLVE_NONBLOCK) {
1049 		/*
1050 		 * For non-blocking operation attempt to get the lock
1051 		 * before bumping lockcnt, just so we don't have to deal
1052 		 * with dropping lockcnt (and dealing with the underlying
1053 		 * data) if we fail.
1054 		 *
1055 		 * NOTE: LOCKAGAIN must always succeed without blocking.
1056 		 */
1057 		if (how & HAMMER2_RESOLVE_SHARED) {
1058 			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1059 				hammer2_mtx_sh_again(&chain->lock);
1060 			} else {
1061 				if (hammer2_mtx_sh_try(&chain->lock) != 0)
1062 					return EAGAIN;
1063 			}
1064 		} else {
1065 			if (hammer2_mtx_ex_try(&chain->lock) != 0)
1066 				return EAGAIN;
1067 		}
1068 		atomic_add_int(&chain->lockcnt, 1);
1069 		++curthread->td_tracker;
1070 	} else {
1071 		/*
1072 		 * Lock the element.  Recursive locks are allowed.  lockcnt
1073 		 * ensures that data is left intact.
1074 		 */
1075 		atomic_add_int(&chain->lockcnt, 1);
1076 
1077 		/*
1078 		 * Get the appropriate lock.  If LOCKAGAIN is flagged with
1079 		 * SHARED the caller expects a shared lock to already be
1080 		 * present and we are giving it another ref.  This case must
1081 		 * importantly not block if there is a pending exclusive lock
1082 		 * request.
1083 		 */
1084 		if (how & HAMMER2_RESOLVE_SHARED) {
1085 			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1086 				hammer2_mtx_sh_again(&chain->lock);
1087 			} else {
1088 				hammer2_mtx_sh(&chain->lock);
1089 			}
1090 		} else {
1091 			hammer2_mtx_ex(&chain->lock);
1092 		}
1093 		++curthread->td_tracker;
1094 	}
1095 
1096 	/*
1097 	 * If we already have a valid data pointer make sure the data is
1098 	 * synchronized to the current cpu, and then no further action is
1099 	 * necessary.
1100 	 */
1101 	if (chain->data) {
1102 		if (chain->dio)
1103 			hammer2_io_bkvasync(chain->dio);
1104 		return 0;
1105 	}
1106 
1107 	/*
1108 	 * Do we have to resolve the data?  This is generally only
1109 	 * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1110 	 * Other BREF types expects the data to be there.
1111 	 */
1112 	switch(how & HAMMER2_RESOLVE_MASK) {
1113 	case HAMMER2_RESOLVE_NEVER:
1114 		return 0;
1115 	case HAMMER2_RESOLVE_MAYBE:
1116 		if (chain->flags & HAMMER2_CHAIN_INITIAL)
1117 			return 0;
1118 		if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1119 			return 0;
1120 #if 0
1121 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1122 			return 0;
1123 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1124 			return 0;
1125 #endif
1126 		/* fall through */
1127 	case HAMMER2_RESOLVE_ALWAYS:
1128 	default:
1129 		break;
1130 	}
1131 
1132 	/*
1133 	 * Caller requires data
1134 	 */
1135 	hammer2_chain_load_data(chain);
1136 
1137 	return 0;
1138 }
1139 
1140 /*
1141  * Lock the chain, retain the hold, and drop the data persistence count.
1142  * The data should remain valid because we never transitioned lockcnt
1143  * through 0.
1144  */
1145 void
1146 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1147 {
1148 	hammer2_chain_lock(chain, how);
1149 	atomic_add_int(&chain->lockcnt, -1);
1150 }
1151 
1152 #if 0
1153 /*
1154  * Downgrade an exclusive chain lock to a shared chain lock.
1155  *
1156  * NOTE: There is no upgrade equivalent due to the ease of
1157  *	 deadlocks in that direction.
1158  */
1159 void
1160 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1161 {
1162 	hammer2_mtx_downgrade(&chain->lock);
1163 }
1164 #endif
1165 
1166 /*
1167  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1168  * may be of any type.
1169  *
1170  * Once chain->data is set it cannot be disposed of until all locks are
1171  * released.
1172  *
1173  * Make sure the data is synchronized to the current cpu.
1174  */
1175 void
1176 hammer2_chain_load_data(hammer2_chain_t *chain)
1177 {
1178 	hammer2_blockref_t *bref;
1179 	hammer2_dev_t *hmp;
1180 	hammer2_io_t *dio;
1181 	char *bdata;
1182 	int error;
1183 
1184 	/*
1185 	 * Degenerate case, data already present, or chain has no media
1186 	 * reference to load.
1187 	 */
1188 	if (chain->data) {
1189 		if (chain->dio)
1190 			hammer2_io_bkvasync(chain->dio);
1191 		return;
1192 	}
1193 	if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1194 		return;
1195 
1196 	hmp = chain->hmp;
1197 	KKASSERT(hmp != NULL);
1198 
1199 	/*
1200 	 * Gain the IOINPROG bit, interlocked block.
1201 	 */
1202 	for (;;) {
1203 		u_int oflags;
1204 		u_int nflags;
1205 
1206 		oflags = chain->flags;
1207 		cpu_ccfence();
1208 		if (oflags & HAMMER2_CHAIN_IOINPROG) {
1209 			nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1210 			tsleep_interlock(&chain->flags, 0);
1211 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1212 				tsleep(&chain->flags, PINTERLOCKED,
1213 					"h2iocw", 0);
1214 			}
1215 			/* retry */
1216 		} else {
1217 			nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1218 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1219 				break;
1220 			}
1221 			/* retry */
1222 		}
1223 	}
1224 
1225 	/*
1226 	 * We own CHAIN_IOINPROG
1227 	 *
1228 	 * Degenerate case if we raced another load.
1229 	 */
1230 	if (chain->data) {
1231 		if (chain->dio)
1232 			hammer2_io_bkvasync(chain->dio);
1233 		goto done;
1234 	}
1235 
1236 	/*
1237 	 * We must resolve to a device buffer, either by issuing I/O or
1238 	 * by creating a zero-fill element.  We do not mark the buffer
1239 	 * dirty when creating a zero-fill element (the hammer2_chain_modify()
1240 	 * API must still be used to do that).
1241 	 *
1242 	 * The device buffer is variable-sized in powers of 2 down
1243 	 * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1244 	 * chunk always contains buffers of the same size. (XXX)
1245 	 *
1246 	 * The minimum physical IO size may be larger than the variable
1247 	 * block size.
1248 	 */
1249 	bref = &chain->bref;
1250 
1251 	/*
1252 	 * The getblk() optimization can only be used on newly created
1253 	 * elements if the physical block size matches the request.
1254 	 */
1255 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1256 		error = hammer2_io_new(hmp, bref->type,
1257 				       bref->data_off, chain->bytes,
1258 				       &chain->dio);
1259 	} else {
1260 		error = hammer2_io_bread(hmp, bref->type,
1261 					 bref->data_off, chain->bytes,
1262 					 &chain->dio);
1263 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
1264 	}
1265 	if (error) {
1266 		chain->error = HAMMER2_ERROR_EIO;
1267 		kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
1268 			(intmax_t)bref->data_off, error);
1269 		hammer2_io_bqrelse(&chain->dio);
1270 		goto done;
1271 	}
1272 	chain->error = 0;
1273 
1274 	/*
1275 	 * This isn't perfect and can be ignored on OSs which do not have
1276 	 * an indication as to whether a buffer is coming from cache or
1277 	 * if I/O was actually issued for the read.  TESTEDGOOD will work
1278 	 * pretty well without the B_IOISSUED logic because chains are
1279 	 * cached, but in that situation (without B_IOISSUED) it will not
1280 	 * detect whether a re-read via I/O is corrupted verses the original
1281 	 * read.
1282 	 *
1283 	 * We can't re-run the CRC on every fresh lock.  That would be
1284 	 * insanely expensive.
1285 	 *
1286 	 * If the underlying kernel buffer covers the entire chain we can
1287 	 * use the B_IOISSUED indication to determine if we have to re-run
1288 	 * the CRC on chain data for chains that managed to stay cached
1289 	 * across the kernel disposal of the original buffer.
1290 	 */
1291 	if ((dio = chain->dio) != NULL && dio->bp) {
1292 		struct buf *bp = dio->bp;
1293 
1294 		if (dio->psize == chain->bytes &&
1295 		    (bp->b_flags & B_IOISSUED)) {
1296 			atomic_clear_int(&chain->flags,
1297 					 HAMMER2_CHAIN_TESTEDGOOD);
1298 			bp->b_flags &= ~B_IOISSUED;
1299 		}
1300 	}
1301 
1302 	/*
1303 	 * NOTE: A locked chain's data cannot be modified without first
1304 	 *	 calling hammer2_chain_modify().
1305 	 */
1306 
1307 	/*
1308 	 * Clear INITIAL.  In this case we used io_new() and the buffer has
1309 	 * been zero'd and marked dirty.
1310 	 *
1311 	 * NOTE: hammer2_io_data() call issues bkvasync()
1312 	 */
1313 	bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1314 
1315 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1316 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1317 		chain->bref.flags |= HAMMER2_BREF_FLAG_ZERO;
1318 	} else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1319 		/*
1320 		 * check data not currently synchronized due to
1321 		 * modification.  XXX assumes data stays in the buffer
1322 		 * cache, which might not be true (need biodep on flush
1323 		 * to calculate crc?  or simple crc?).
1324 		 */
1325 	} else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1326 		if (hammer2_chain_testcheck(chain, bdata) == 0) {
1327 			chain->error = HAMMER2_ERROR_CHECK;
1328 		} else {
1329 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1330 		}
1331 	}
1332 
1333 	/*
1334 	 * Setup the data pointer, either pointing it to an embedded data
1335 	 * structure and copying the data from the buffer, or pointing it
1336 	 * into the buffer.
1337 	 *
1338 	 * The buffer is not retained when copying to an embedded data
1339 	 * structure in order to avoid potential deadlocks or recursions
1340 	 * on the same physical buffer.
1341 	 *
1342 	 * WARNING! Other threads can start using the data the instant we
1343 	 *	    set chain->data non-NULL.
1344 	 */
1345 	switch (bref->type) {
1346 	case HAMMER2_BREF_TYPE_VOLUME:
1347 	case HAMMER2_BREF_TYPE_FREEMAP:
1348 		/*
1349 		 * Copy data from bp to embedded buffer
1350 		 */
1351 		panic("hammer2_chain_load_data: unresolved volume header");
1352 		break;
1353 	case HAMMER2_BREF_TYPE_DIRENT:
1354 		KKASSERT(chain->bytes != 0);
1355 		/* fall through */
1356 	case HAMMER2_BREF_TYPE_INODE:
1357 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1358 	case HAMMER2_BREF_TYPE_INDIRECT:
1359 	case HAMMER2_BREF_TYPE_DATA:
1360 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1361 	default:
1362 		/*
1363 		 * Point data at the device buffer and leave dio intact.
1364 		 */
1365 		chain->data = (void *)bdata;
1366 		break;
1367 	}
1368 
1369 	/*
1370 	 * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1371 	 */
1372 done:
1373 	for (;;) {
1374 		u_int oflags;
1375 		u_int nflags;
1376 
1377 		oflags = chain->flags;
1378 		nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1379 				    HAMMER2_CHAIN_IOSIGNAL);
1380 		KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1381 		if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1382 			if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1383 				wakeup(&chain->flags);
1384 			break;
1385 		}
1386 	}
1387 }
1388 
1389 /*
1390  * Unlock and deref a chain element.
1391  *
1392  * Remember that the presence of children under chain prevent the chain's
1393  * destruction but do not add additional references, so the dio will still
1394  * be dropped.
1395  */
1396 void
1397 hammer2_chain_unlock(hammer2_chain_t *chain)
1398 {
1399 	hammer2_io_t *dio;
1400 	u_int lockcnt;
1401 	int iter = 0;
1402 
1403 	--curthread->td_tracker;
1404 
1405 	/*
1406 	 * If multiple locks are present (or being attempted) on this
1407 	 * particular chain we can just unlock, drop refs, and return.
1408 	 *
1409 	 * Otherwise fall-through on the 1->0 transition.
1410 	 */
1411 	for (;;) {
1412 		lockcnt = chain->lockcnt;
1413 		KKASSERT(lockcnt > 0);
1414 		cpu_ccfence();
1415 		if (lockcnt > 1) {
1416 			if (atomic_cmpset_int(&chain->lockcnt,
1417 					      lockcnt, lockcnt - 1)) {
1418 				hammer2_mtx_unlock(&chain->lock);
1419 				return;
1420 			}
1421 		} else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1422 			/* while holding the mutex exclusively */
1423 			if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1424 				break;
1425 		} else {
1426 			/*
1427 			 * This situation can easily occur on SMP due to
1428 			 * the gap inbetween the 1->0 transition and the
1429 			 * final unlock.  We cannot safely block on the
1430 			 * mutex because lockcnt might go above 1.
1431 			 *
1432 			 * XXX Sleep for one tick if it takes too long.
1433 			 */
1434 			if (++iter > 1000) {
1435 				if (iter > 1000 + hz) {
1436 					kprintf("hammer2: h2race2 %p\n", chain);
1437 					iter = 1000;
1438 				}
1439 				tsleep(&iter, 0, "h2race2", 1);
1440 			}
1441 			cpu_pause();
1442 		}
1443 		/* retry */
1444 	}
1445 
1446 	/*
1447 	 * Last unlock / mutex upgraded to exclusive.  Drop the data
1448 	 * reference.
1449 	 */
1450 	dio = hammer2_chain_drop_data(chain);
1451 	if (dio)
1452 		hammer2_io_bqrelse(&dio);
1453 	hammer2_mtx_unlock(&chain->lock);
1454 }
1455 
1456 /*
1457  * Unlock and hold chain data intact
1458  */
1459 void
1460 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1461 {
1462 	atomic_add_int(&chain->lockcnt, 1);
1463 	hammer2_chain_unlock(chain);
1464 }
1465 
1466 /*
1467  * Helper to obtain the blockref[] array base and count for a chain.
1468  *
1469  * XXX Not widely used yet, various use cases need to be validated and
1470  *     converted to use this function.
1471  */
1472 static
1473 hammer2_blockref_t *
1474 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1475 {
1476 	hammer2_blockref_t *base;
1477 	int count;
1478 
1479 	if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1480 		base = NULL;
1481 
1482 		switch(parent->bref.type) {
1483 		case HAMMER2_BREF_TYPE_INODE:
1484 			count = HAMMER2_SET_COUNT;
1485 			break;
1486 		case HAMMER2_BREF_TYPE_INDIRECT:
1487 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1488 			count = parent->bytes / sizeof(hammer2_blockref_t);
1489 			break;
1490 		case HAMMER2_BREF_TYPE_VOLUME:
1491 			count = HAMMER2_SET_COUNT;
1492 			break;
1493 		case HAMMER2_BREF_TYPE_FREEMAP:
1494 			count = HAMMER2_SET_COUNT;
1495 			break;
1496 		default:
1497 			panic("hammer2_chain_create_indirect: "
1498 			      "unrecognized blockref type: %d",
1499 			      parent->bref.type);
1500 			count = 0;
1501 			break;
1502 		}
1503 	} else {
1504 		switch(parent->bref.type) {
1505 		case HAMMER2_BREF_TYPE_INODE:
1506 			base = &parent->data->ipdata.u.blockset.blockref[0];
1507 			count = HAMMER2_SET_COUNT;
1508 			break;
1509 		case HAMMER2_BREF_TYPE_INDIRECT:
1510 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1511 			base = &parent->data->npdata[0];
1512 			count = parent->bytes / sizeof(hammer2_blockref_t);
1513 			break;
1514 		case HAMMER2_BREF_TYPE_VOLUME:
1515 			base = &parent->data->voldata.
1516 					sroot_blockset.blockref[0];
1517 			count = HAMMER2_SET_COUNT;
1518 			break;
1519 		case HAMMER2_BREF_TYPE_FREEMAP:
1520 			base = &parent->data->blkset.blockref[0];
1521 			count = HAMMER2_SET_COUNT;
1522 			break;
1523 		default:
1524 			panic("hammer2_chain_create_indirect: "
1525 			      "unrecognized blockref type: %d",
1526 			      parent->bref.type);
1527 			count = 0;
1528 			break;
1529 		}
1530 	}
1531 	*countp = count;
1532 
1533 	return base;
1534 }
1535 
1536 /*
1537  * This counts the number of live blockrefs in a block array and
1538  * also calculates the point at which all remaining blockrefs are empty.
1539  * This routine can only be called on a live chain.
1540  *
1541  * Caller holds the chain locked, but possibly with a shared lock.  We
1542  * must use an exclusive spinlock to prevent corruption.
1543  *
1544  * NOTE: Flag is not set until after the count is complete, allowing
1545  *	 callers to test the flag without holding the spinlock.
1546  *
1547  * NOTE: If base is NULL the related chain is still in the INITIAL
1548  *	 state and there are no blockrefs to count.
1549  *
1550  * NOTE: live_count may already have some counts accumulated due to
1551  *	 creation and deletion and could even be initially negative.
1552  */
1553 void
1554 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1555 			 hammer2_blockref_t *base, int count)
1556 {
1557 	hammer2_spin_ex(&chain->core.spin);
1558         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1559 		if (base) {
1560 			while (--count >= 0) {
1561 				if (base[count].type)
1562 					break;
1563 			}
1564 			chain->core.live_zero = count + 1;
1565 			while (count >= 0) {
1566 				if (base[count].type)
1567 					atomic_add_int(&chain->core.live_count,
1568 						       1);
1569 				--count;
1570 			}
1571 		} else {
1572 			chain->core.live_zero = 0;
1573 		}
1574 		/* else do not modify live_count */
1575 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1576 	}
1577 	hammer2_spin_unex(&chain->core.spin);
1578 }
1579 
1580 /*
1581  * Resize the chain's physical storage allocation in-place.  This function does
1582  * not usually adjust the data pointer and must be followed by (typically) a
1583  * hammer2_chain_modify() call to copy any old data over and adjust the
1584  * data pointer.
1585  *
1586  * Chains can be resized smaller without reallocating the storage.  Resizing
1587  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1588  * asynchronously at a later time.
1589  *
1590  * An nradix value of 0 is special-cased to mean that the storage should
1591  * be disassociated, that is the chain is being resized to 0 bytes (not 1
1592  * byte).
1593  *
1594  * Must be passed an exclusively locked parent and chain.
1595  *
1596  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1597  * to avoid instantiating a device buffer that conflicts with the vnode data
1598  * buffer.  However, because H2 can compress or encrypt data, the chain may
1599  * have a dio assigned to it in those situations, and they do not conflict.
1600  *
1601  * XXX return error if cannot resize.
1602  */
1603 int
1604 hammer2_chain_resize(hammer2_chain_t *chain,
1605 		     hammer2_tid_t mtid, hammer2_off_t dedup_off,
1606 		     int nradix, int flags)
1607 {
1608 	hammer2_dev_t *hmp;
1609 	size_t obytes;
1610 	size_t nbytes;
1611 	int error;
1612 
1613 	hmp = chain->hmp;
1614 
1615 	/*
1616 	 * Only data and indirect blocks can be resized for now.
1617 	 * (The volu root, inodes, and freemap elements use a fixed size).
1618 	 */
1619 	KKASSERT(chain != &hmp->vchain);
1620 	KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1621 		 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1622 		 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1623 
1624 	/*
1625 	 * Nothing to do if the element is already the proper size
1626 	 */
1627 	obytes = chain->bytes;
1628 	nbytes = (nradix) ? (1U << nradix) : 0;
1629 	if (obytes == nbytes)
1630 		return (chain->error);
1631 
1632 	/*
1633 	 * Make sure the old data is instantiated so we can copy it.  If this
1634 	 * is a data block, the device data may be superfluous since the data
1635 	 * might be in a logical block, but compressed or encrypted data is
1636 	 * another matter.
1637 	 *
1638 	 * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1639 	 */
1640 	error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1641 	if (error)
1642 		return error;
1643 
1644 	/*
1645 	 * Relocate the block, even if making it smaller (because different
1646 	 * block sizes may be in different regions).
1647 	 *
1648 	 * NOTE: Operation does not copy the data and may only be used
1649 	 *	  to resize data blocks in-place, or directory entry blocks
1650 	 *	  which are about to be modified in some manner.
1651 	 */
1652 	error = hammer2_freemap_alloc(chain, nbytes);
1653 	if (error)
1654 		return error;
1655 
1656 	chain->bytes = nbytes;
1657 
1658 	/*
1659 	 * We don't want the followup chain_modify() to try to copy data
1660 	 * from the old (wrong-sized) buffer.  It won't know how much to
1661 	 * copy.  This case should only occur during writes when the
1662 	 * originator already has the data to write in-hand.
1663 	 */
1664 	if (chain->dio) {
1665 		KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1666 			 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1667 		hammer2_io_brelse(&chain->dio);
1668 		chain->data = NULL;
1669 	}
1670 	return (chain->error);
1671 }
1672 
1673 /*
1674  * Set the chain modified so its data can be changed by the caller, or
1675  * install deduplicated data.  The caller must call this routine for each
1676  * set of modifications it makes, even if the chain is already flagged
1677  * MODIFIED.
1678  *
1679  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1680  * is a CLC (cluster level change) field and is not updated by parent
1681  * propagation during a flush.
1682  *
1683  * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1684  * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1685  * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1686  * remains unmodified with its old data ref intact and chain->error
1687  * unchanged.
1688  *
1689  *				 Dedup Handling
1690  *
1691  * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1692  * even if the chain is still flagged MODIFIED.  In this case the chain's
1693  * DEDUPABLE flag will be cleared once the new storage has been assigned.
1694  *
1695  * If the caller passes a non-zero dedup_off we will use it to assign the
1696  * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1697  * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1698  * must not modify the data content upon return.
1699  */
1700 int
1701 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1702 		     hammer2_off_t dedup_off, int flags)
1703 {
1704 	hammer2_blockref_t obref;
1705 	hammer2_dev_t *hmp;
1706 	hammer2_io_t *dio;
1707 	int error;
1708 	int wasinitial;
1709 	int setmodified;
1710 	int setupdate;
1711 	int newmod;
1712 	char *bdata;
1713 
1714 	hmp = chain->hmp;
1715 	obref = chain->bref;
1716 	KKASSERT((chain->flags & HAMMER2_CHAIN_FICTITIOUS) == 0);
1717 
1718 	/*
1719 	 * Data is not optional for freemap chains (we must always be sure
1720 	 * to copy the data on COW storage allocations).
1721 	 */
1722 	if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1723 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1724 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1725 			 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1726 	}
1727 
1728 	/*
1729 	 * Data must be resolved if already assigned, unless explicitly
1730 	 * flagged otherwise.  If we cannot safety load the data the
1731 	 * modification fails and we return early.
1732 	 */
1733 	if (chain->data == NULL && chain->bytes != 0 &&
1734 	    (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1735 	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1736 		hammer2_chain_load_data(chain);
1737 		if (chain->error)
1738 			return (chain->error);
1739 	}
1740 	error = 0;
1741 
1742 	/*
1743 	 * Set MODIFIED to indicate that the chain has been modified.  A new
1744 	 * allocation is required when modifying a chain.
1745 	 *
1746 	 * Set UPDATE to ensure that the blockref is updated in the parent.
1747 	 *
1748 	 * If MODIFIED is already set determine if we can reuse the assigned
1749 	 * data block or if we need a new data block.
1750 	 */
1751 	if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1752 		/*
1753 		 * Must set modified bit.
1754 		 */
1755 		atomic_add_long(&hammer2_count_modified_chains, 1);
1756 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1757 		hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1758 		setmodified = 1;
1759 
1760 		/*
1761 		 * We may be able to avoid a copy-on-write if the chain's
1762 		 * check mode is set to NONE and the chain's current
1763 		 * modify_tid is beyond the last explicit snapshot tid.
1764 		 *
1765 		 * This implements HAMMER2's overwrite-in-place feature.
1766 		 *
1767 		 * NOTE! This data-block cannot be used as a de-duplication
1768 		 *	 source when the check mode is set to NONE.
1769 		 */
1770 		if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1771 		     chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1772 		    (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1773 		    (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1774 		    HAMMER2_DEC_CHECK(chain->bref.methods) ==
1775 		     HAMMER2_CHECK_NONE &&
1776 		    chain->pmp &&
1777 		    chain->bref.modify_tid >
1778 		     chain->pmp->iroot->meta.pfs_lsnap_tid) {
1779 			/*
1780 			 * Sector overwrite allowed.
1781 			 */
1782 			newmod = 0;
1783 		} else {
1784 			/*
1785 			 * Sector overwrite not allowed, must copy-on-write.
1786 			 */
1787 			newmod = 1;
1788 		}
1789 	} else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1790 		/*
1791 		 * If the modified chain was registered for dedup we need
1792 		 * a new allocation.  This only happens for delayed-flush
1793 		 * chains (i.e. which run through the front-end buffer
1794 		 * cache).
1795 		 */
1796 		newmod = 1;
1797 		setmodified = 0;
1798 	} else {
1799 		/*
1800 		 * Already flagged modified, no new allocation is needed.
1801 		 */
1802 		newmod = 0;
1803 		setmodified = 0;
1804 	}
1805 
1806 	/*
1807 	 * Flag parent update required.
1808 	 */
1809 	if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1810 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1811 		setupdate = 1;
1812 	} else {
1813 		setupdate = 0;
1814 	}
1815 
1816 	/*
1817 	 * The modification or re-modification requires an allocation and
1818 	 * possible COW.  If an error occurs, the previous content and data
1819 	 * reference is retained and the modification fails.
1820 	 *
1821 	 * If dedup_off is non-zero, the caller is requesting a deduplication
1822 	 * rather than a modification.  The MODIFIED bit is not set and the
1823 	 * data offset is set to the deduplication offset.  The data cannot
1824 	 * be modified.
1825 	 *
1826 	 * NOTE: The dedup offset is allowed to be in a partially free state
1827 	 *	 and we must be sure to reset it to a fully allocated state
1828 	 *	 to force two bulkfree passes to free it again.
1829 	 *
1830 	 * NOTE: Only applicable when chain->bytes != 0.
1831 	 *
1832 	 * XXX can a chain already be marked MODIFIED without a data
1833 	 * assignment?  If not, assert here instead of testing the case.
1834 	 */
1835 	if (chain != &hmp->vchain && chain != &hmp->fchain &&
1836 	    chain->bytes) {
1837 		if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1838 		     newmod
1839 		) {
1840 			/*
1841 			 * NOTE: We do not have to remove the dedup
1842 			 *	 registration because the area is still
1843 			 *	 allocated and the underlying DIO will
1844 			 *	 still be flushed.
1845 			 */
1846 			if (dedup_off) {
1847 				chain->bref.data_off = dedup_off;
1848 				chain->bytes = 1 << (dedup_off &
1849 						     HAMMER2_OFF_MASK_RADIX);
1850 				chain->error = 0;
1851 				atomic_clear_int(&chain->flags,
1852 						 HAMMER2_CHAIN_MODIFIED);
1853 				atomic_add_long(&hammer2_count_modified_chains,
1854 						-1);
1855 				if (chain->pmp)
1856 					hammer2_pfs_memory_wakeup(chain->pmp);
1857 				hammer2_freemap_adjust(hmp, &chain->bref,
1858 						HAMMER2_FREEMAP_DORECOVER);
1859 				atomic_set_int(&chain->flags,
1860 						HAMMER2_CHAIN_DEDUPABLE);
1861 			} else {
1862 				error = hammer2_freemap_alloc(chain,
1863 							      chain->bytes);
1864 				atomic_clear_int(&chain->flags,
1865 						HAMMER2_CHAIN_DEDUPABLE);
1866 			}
1867 		}
1868 	}
1869 
1870 	/*
1871 	 * Stop here if error.  We have to undo any flag bits we might
1872 	 * have set above.
1873 	 */
1874 	if (error) {
1875 		if (setmodified) {
1876 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1877 			atomic_add_long(&hammer2_count_modified_chains, -1);
1878 			if (chain->pmp)
1879 				hammer2_pfs_memory_wakeup(chain->pmp);
1880 		}
1881 		if (setupdate) {
1882 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1883 		}
1884 		return error;
1885 	}
1886 
1887 	/*
1888 	 * Update mirror_tid and modify_tid.  modify_tid is only updated
1889 	 * if not passed as zero (during flushes, parent propagation passes
1890 	 * the value 0).
1891 	 *
1892 	 * NOTE: chain->pmp could be the device spmp.
1893 	 */
1894 	chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1895 	if (mtid)
1896 		chain->bref.modify_tid = mtid;
1897 
1898 	/*
1899 	 * Set BMAPUPD to tell the flush code that an existing blockmap entry
1900 	 * requires updating as well as to tell the delete code that the
1901 	 * chain's blockref might not exactly match (in terms of physical size
1902 	 * or block offset) the one in the parent's blocktable.  The base key
1903 	 * of course will still match.
1904 	 */
1905 	if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1906 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1907 
1908 	/*
1909 	 * Short-cut data blocks which the caller does not need an actual
1910 	 * data reference to (aka OPTDATA), as long as the chain does not
1911 	 * already have a data pointer to the data.  This generally means
1912 	 * that the modifications are being done via the logical buffer cache.
1913 	 * The INITIAL flag relates only to the device data buffer and thus
1914 	 * remains unchange in this situation.
1915 	 *
1916 	 * This code also handles bytes == 0 (most dirents).
1917 	 */
1918 	if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1919 	    (flags & HAMMER2_MODIFY_OPTDATA) &&
1920 	    chain->data == NULL) {
1921 		KKASSERT(chain->dio == NULL);
1922 		goto skip2;
1923 	}
1924 
1925 	/*
1926 	 * Clearing the INITIAL flag (for indirect blocks) indicates that
1927 	 * we've processed the uninitialized storage allocation.
1928 	 *
1929 	 * If this flag is already clear we are likely in a copy-on-write
1930 	 * situation but we have to be sure NOT to bzero the storage if
1931 	 * no data is present.
1932 	 */
1933 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1934 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1935 		wasinitial = 1;
1936 	} else {
1937 		wasinitial = 0;
1938 	}
1939 
1940 	/*
1941 	 * Instantiate data buffer and possibly execute COW operation
1942 	 */
1943 	switch(chain->bref.type) {
1944 	case HAMMER2_BREF_TYPE_VOLUME:
1945 	case HAMMER2_BREF_TYPE_FREEMAP:
1946 		/*
1947 		 * The data is embedded, no copy-on-write operation is
1948 		 * needed.
1949 		 */
1950 		KKASSERT(chain->dio == NULL);
1951 		break;
1952 	case HAMMER2_BREF_TYPE_DIRENT:
1953 		/*
1954 		 * The data might be fully embedded.
1955 		 */
1956 		if (chain->bytes == 0) {
1957 			KKASSERT(chain->dio == NULL);
1958 			break;
1959 		}
1960 		/* fall through */
1961 	case HAMMER2_BREF_TYPE_INODE:
1962 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1963 	case HAMMER2_BREF_TYPE_DATA:
1964 	case HAMMER2_BREF_TYPE_INDIRECT:
1965 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1966 		/*
1967 		 * Perform the copy-on-write operation
1968 		 *
1969 		 * zero-fill or copy-on-write depending on whether
1970 		 * chain->data exists or not and set the dirty state for
1971 		 * the new buffer.  hammer2_io_new() will handle the
1972 		 * zero-fill.
1973 		 *
1974 		 * If a dedup_off was supplied this is an existing block
1975 		 * and no COW, copy, or further modification is required.
1976 		 */
1977 		KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
1978 
1979 		if (wasinitial && dedup_off == 0) {
1980 			error = hammer2_io_new(hmp, chain->bref.type,
1981 					       chain->bref.data_off,
1982 					       chain->bytes, &dio);
1983 		} else {
1984 			error = hammer2_io_bread(hmp, chain->bref.type,
1985 						 chain->bref.data_off,
1986 						 chain->bytes, &dio);
1987 		}
1988 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
1989 
1990 		/*
1991 		 * If an I/O error occurs make sure callers cannot accidently
1992 		 * modify the old buffer's contents and corrupt the filesystem.
1993 		 *
1994 		 * NOTE: hammer2_io_data() call issues bkvasync()
1995 		 */
1996 		if (error) {
1997 			kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
1998 				hmp);
1999 			chain->error = HAMMER2_ERROR_EIO;
2000 			hammer2_io_brelse(&dio);
2001 			hammer2_io_brelse(&chain->dio);
2002 			chain->data = NULL;
2003 			break;
2004 		}
2005 		chain->error = 0;
2006 		bdata = hammer2_io_data(dio, chain->bref.data_off);
2007 
2008 		if (chain->data) {
2009 			/*
2010 			 * COW (unless a dedup).
2011 			 */
2012 			KKASSERT(chain->dio != NULL);
2013 			if (chain->data != (void *)bdata && dedup_off == 0) {
2014 				bcopy(chain->data, bdata, chain->bytes);
2015 			}
2016 		} else if (wasinitial == 0) {
2017 			/*
2018 			 * We have a problem.  We were asked to COW but
2019 			 * we don't have any data to COW with!
2020 			 */
2021 			panic("hammer2_chain_modify: having a COW %p\n",
2022 			      chain);
2023 		}
2024 
2025 		/*
2026 		 * Retire the old buffer, replace with the new.  Dirty or
2027 		 * redirty the new buffer.
2028 		 *
2029 		 * WARNING! The system buffer cache may have already flushed
2030 		 *	    the buffer, so we must be sure to [re]dirty it
2031 		 *	    for further modification.
2032 		 *
2033 		 *	    If dedup_off was supplied, the caller is not
2034 		 *	    expected to make any further modification to the
2035 		 *	    buffer.
2036 		 */
2037 		if (chain->dio)
2038 			hammer2_io_bqrelse(&chain->dio);
2039 		chain->data = (void *)bdata;
2040 		chain->dio = dio;
2041 		if (dedup_off == 0)
2042 			hammer2_io_setdirty(dio);
2043 		break;
2044 	default:
2045 		panic("hammer2_chain_modify: illegal non-embedded type %d",
2046 		      chain->bref.type);
2047 		break;
2048 
2049 	}
2050 skip2:
2051 	/*
2052 	 * setflush on parent indicating that the parent must recurse down
2053 	 * to us.  Do not call on chain itself which might already have it
2054 	 * set.
2055 	 */
2056 	if (chain->parent)
2057 		hammer2_chain_setflush(chain->parent);
2058 	return (chain->error);
2059 }
2060 
2061 /*
2062  * Modify the chain associated with an inode.
2063  */
2064 int
2065 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2066 			hammer2_tid_t mtid, int flags)
2067 {
2068 	int error;
2069 
2070 	hammer2_inode_modify(ip);
2071 	error = hammer2_chain_modify(chain, mtid, 0, flags);
2072 
2073 	return error;
2074 }
2075 
2076 /*
2077  * Volume header data locks
2078  */
2079 void
2080 hammer2_voldata_lock(hammer2_dev_t *hmp)
2081 {
2082 	lockmgr(&hmp->vollk, LK_EXCLUSIVE);
2083 }
2084 
2085 void
2086 hammer2_voldata_unlock(hammer2_dev_t *hmp)
2087 {
2088 	lockmgr(&hmp->vollk, LK_RELEASE);
2089 }
2090 
2091 void
2092 hammer2_voldata_modify(hammer2_dev_t *hmp)
2093 {
2094 	if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
2095 		atomic_add_long(&hammer2_count_modified_chains, 1);
2096 		atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
2097 		hammer2_pfs_memory_inc(hmp->vchain.pmp);
2098 	}
2099 }
2100 
2101 /*
2102  * This function returns the chain at the nearest key within the specified
2103  * range.  The returned chain will be referenced but not locked.
2104  *
2105  * This function will recurse through chain->rbtree as necessary and will
2106  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
2107  * the iteration value is less than the current value of *key_nextp.
2108  *
2109  * The caller should use (*key_nextp) to calculate the actual range of
2110  * the returned element, which will be (key_beg to *key_nextp - 1), because
2111  * there might be another element which is superior to the returned element
2112  * and overlaps it.
2113  *
2114  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2115  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
2116  * it will wind up being (key_end + 1).
2117  *
2118  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
2119  *	     held through the operation.
2120  */
2121 struct hammer2_chain_find_info {
2122 	hammer2_chain_t		*best;
2123 	hammer2_key_t		key_beg;
2124 	hammer2_key_t		key_end;
2125 	hammer2_key_t		key_next;
2126 };
2127 
2128 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2129 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2130 
2131 static
2132 hammer2_chain_t *
2133 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2134 			  hammer2_key_t key_beg, hammer2_key_t key_end)
2135 {
2136 	struct hammer2_chain_find_info info;
2137 
2138 	info.best = NULL;
2139 	info.key_beg = key_beg;
2140 	info.key_end = key_end;
2141 	info.key_next = *key_nextp;
2142 
2143 	RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2144 		hammer2_chain_find_cmp, hammer2_chain_find_callback,
2145 		&info);
2146 	*key_nextp = info.key_next;
2147 #if 0
2148 	kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2149 		parent, key_beg, key_end, *key_nextp);
2150 #endif
2151 
2152 	return (info.best);
2153 }
2154 
2155 static
2156 int
2157 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2158 {
2159 	struct hammer2_chain_find_info *info = data;
2160 	hammer2_key_t child_beg;
2161 	hammer2_key_t child_end;
2162 
2163 	child_beg = child->bref.key;
2164 	child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2165 
2166 	if (child_end < info->key_beg)
2167 		return(-1);
2168 	if (child_beg > info->key_end)
2169 		return(1);
2170 	return(0);
2171 }
2172 
2173 static
2174 int
2175 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2176 {
2177 	struct hammer2_chain_find_info *info = data;
2178 	hammer2_chain_t *best;
2179 	hammer2_key_t child_end;
2180 
2181 	/*
2182 	 * WARNING! Layerq is scanned forwards, exact matches should keep
2183 	 *	    the existing info->best.
2184 	 */
2185 	if ((best = info->best) == NULL) {
2186 		/*
2187 		 * No previous best.  Assign best
2188 		 */
2189 		info->best = child;
2190 	} else if (best->bref.key <= info->key_beg &&
2191 		   child->bref.key <= info->key_beg) {
2192 		/*
2193 		 * Illegal overlap.
2194 		 */
2195 		KKASSERT(0);
2196 		/*info->best = child;*/
2197 	} else if (child->bref.key < best->bref.key) {
2198 		/*
2199 		 * Child has a nearer key and best is not flush with key_beg.
2200 		 * Set best to child.  Truncate key_next to the old best key.
2201 		 */
2202 		info->best = child;
2203 		if (info->key_next > best->bref.key || info->key_next == 0)
2204 			info->key_next = best->bref.key;
2205 	} else if (child->bref.key == best->bref.key) {
2206 		/*
2207 		 * If our current best is flush with the child then this
2208 		 * is an illegal overlap.
2209 		 *
2210 		 * key_next will automatically be limited to the smaller of
2211 		 * the two end-points.
2212 		 */
2213 		KKASSERT(0);
2214 		info->best = child;
2215 	} else {
2216 		/*
2217 		 * Keep the current best but truncate key_next to the child's
2218 		 * base.
2219 		 *
2220 		 * key_next will also automatically be limited to the smaller
2221 		 * of the two end-points (probably not necessary for this case
2222 		 * but we do it anyway).
2223 		 */
2224 		if (info->key_next > child->bref.key || info->key_next == 0)
2225 			info->key_next = child->bref.key;
2226 	}
2227 
2228 	/*
2229 	 * Always truncate key_next based on child's end-of-range.
2230 	 */
2231 	child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2232 	if (child_end && (info->key_next > child_end || info->key_next == 0))
2233 		info->key_next = child_end;
2234 
2235 	return(0);
2236 }
2237 
2238 /*
2239  * Retrieve the specified chain from a media blockref, creating the
2240  * in-memory chain structure which reflects it.  The returned chain is
2241  * held and locked according to (how) (HAMMER2_RESOLVE_*).  The caller must
2242  * handle crc-checks and so forth, and should check chain->error before
2243  * assuming that the data is good.
2244  *
2245  * To handle insertion races pass the INSERT_RACE flag along with the
2246  * generation number of the core.  NULL will be returned if the generation
2247  * number changes before we have a chance to insert the chain.  Insert
2248  * races can occur because the parent might be held shared.
2249  *
2250  * Caller must hold the parent locked shared or exclusive since we may
2251  * need the parent's bref array to find our block.
2252  *
2253  * WARNING! chain->pmp is always set to NULL for any chain representing
2254  *	    part of the super-root topology.
2255  */
2256 hammer2_chain_t *
2257 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2258 		  hammer2_blockref_t *bref, int how)
2259 {
2260 	hammer2_dev_t *hmp = parent->hmp;
2261 	hammer2_chain_t *chain;
2262 	int error;
2263 
2264 	/*
2265 	 * Allocate a chain structure representing the existing media
2266 	 * entry.  Resulting chain has one ref and is not locked.
2267 	 */
2268 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2269 		chain = hammer2_chain_alloc(hmp, NULL, bref);
2270 	else
2271 		chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2272 	/* ref'd chain returned */
2273 
2274 	/*
2275 	 * Flag that the chain is in the parent's blockmap so delete/flush
2276 	 * knows what to do with it.
2277 	 */
2278 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2279 
2280 	/*
2281 	 * chain must be locked to avoid unexpected ripouts
2282 	 */
2283 	hammer2_chain_lock(chain, how);
2284 
2285 	/*
2286 	 * Link the chain into its parent.  A spinlock is required to safely
2287 	 * access the RBTREE, and it is possible to collide with another
2288 	 * hammer2_chain_get() operation because the caller might only hold
2289 	 * a shared lock on the parent.
2290 	 *
2291 	 * NOTE: Get races can occur quite often when we distribute
2292 	 *	 asynchronous read-aheads across multiple threads.
2293 	 */
2294 	KKASSERT(parent->refs > 0);
2295 	error = hammer2_chain_insert(parent, chain,
2296 				     HAMMER2_CHAIN_INSERT_SPIN |
2297 				     HAMMER2_CHAIN_INSERT_RACE,
2298 				     generation);
2299 	if (error) {
2300 		KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2301 		/*kprintf("chain %p get race\n", chain);*/
2302 		hammer2_chain_unlock(chain);
2303 		hammer2_chain_drop(chain);
2304 		chain = NULL;
2305 	} else {
2306 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2307 	}
2308 
2309 	/*
2310 	 * Return our new chain referenced but not locked, or NULL if
2311 	 * a race occurred.
2312 	 */
2313 	return (chain);
2314 }
2315 
2316 /*
2317  * Lookup initialization/completion API
2318  */
2319 hammer2_chain_t *
2320 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2321 {
2322 	hammer2_chain_ref(parent);
2323 	if (flags & HAMMER2_LOOKUP_SHARED) {
2324 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2325 					   HAMMER2_RESOLVE_SHARED);
2326 	} else {
2327 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2328 	}
2329 	return (parent);
2330 }
2331 
2332 void
2333 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2334 {
2335 	if (parent) {
2336 		hammer2_chain_unlock(parent);
2337 		hammer2_chain_drop(parent);
2338 	}
2339 }
2340 
2341 /*
2342  * Take the locked chain and return a locked parent.  The chain remains
2343  * locked on return, but may have to be temporarily unlocked to acquire
2344  * the parent.  Because of this, (chain) must be stable and cannot be
2345  * deleted while it was temporarily unlocked (typically means that (chain)
2346  * is an inode).
2347  *
2348  * Pass HAMMER2_RESOLVE_* flags in flags.
2349  *
2350  * This will work even if the chain is errored, and the caller can check
2351  * parent->error on return if desired since the parent will be locked.
2352  *
2353  * This function handles the lock order reversal.
2354  */
2355 hammer2_chain_t *
2356 hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2357 {
2358 	hammer2_chain_t *parent;
2359 
2360 	/*
2361 	 * Be careful of order, chain must be unlocked before parent
2362 	 * is locked below to avoid a deadlock.  Try it trivially first.
2363 	 */
2364 	parent = chain->parent;
2365 	if (parent == NULL)
2366 		panic("hammer2_chain_getparent: no parent");
2367 	hammer2_chain_ref(parent);
2368 	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2369 		return parent;
2370 
2371 	for (;;) {
2372 		hammer2_chain_unlock(chain);
2373 		hammer2_chain_lock(parent, flags);
2374 		hammer2_chain_lock(chain, flags);
2375 
2376 		/*
2377 		 * Parent relinking races are quite common.  We have to get
2378 		 * it right or we will blow up the block table.
2379 		 */
2380 		if (chain->parent == parent)
2381 			break;
2382 		hammer2_chain_unlock(parent);
2383 		hammer2_chain_drop(parent);
2384 		cpu_ccfence();
2385 		parent = chain->parent;
2386 		if (parent == NULL)
2387 			panic("hammer2_chain_getparent: no parent");
2388 		hammer2_chain_ref(parent);
2389 	}
2390 	return parent;
2391 }
2392 
2393 /*
2394  * Take the locked chain and return a locked parent.  The chain is unlocked
2395  * and dropped.  *chainp is set to the returned parent as a convenience.
2396  * Pass HAMMER2_RESOLVE_* flags in flags.
2397  *
2398  * This will work even if the chain is errored, and the caller can check
2399  * parent->error on return if desired since the parent will be locked.
2400  *
2401  * The chain does NOT need to be stable.  We use a tracking structure
2402  * to track the expected parent if the chain is deleted out from under us.
2403  *
2404  * This function handles the lock order reversal.
2405  */
2406 hammer2_chain_t *
2407 hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2408 {
2409 	hammer2_chain_t *chain;
2410 	hammer2_chain_t *parent;
2411 	struct hammer2_reptrack reptrack;
2412 	struct hammer2_reptrack **repp;
2413 
2414 	/*
2415 	 * Be careful of order, chain must be unlocked before parent
2416 	 * is locked below to avoid a deadlock.  Try it trivially first.
2417 	 */
2418 	chain = *chainp;
2419 	parent = chain->parent;
2420 	if (parent == NULL) {
2421 		hammer2_spin_unex(&chain->core.spin);
2422 		panic("hammer2_chain_repparent: no parent");
2423 	}
2424 	hammer2_chain_ref(parent);
2425 	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2426 		hammer2_chain_unlock(chain);
2427 		hammer2_chain_drop(chain);
2428 		*chainp = parent;
2429 
2430 		return parent;
2431 	}
2432 
2433 	/*
2434 	 * Ok, now it gets a bit nasty.  There are multiple situations where
2435 	 * the parent might be in the middle of a deletion, or where the child
2436 	 * (chain) might be deleted the instant we let go of its lock.
2437 	 * We can potentially end up in a no-win situation!
2438 	 *
2439 	 * In particular, the indirect_maintenance() case can cause these
2440 	 * situations.
2441 	 *
2442 	 * To deal with this we install a reptrack structure in the parent
2443 	 * This reptrack structure 'owns' the parent ref and will automatically
2444 	 * migrate to the parent's parent if the parent is deleted permanently.
2445 	 */
2446 	hammer2_spin_init(&reptrack.spin, "h2reptrk");
2447 	reptrack.chain = parent;
2448 	hammer2_chain_ref(parent);		/* for the reptrack */
2449 
2450 	hammer2_spin_ex(&parent->core.spin);
2451 	reptrack.next = parent->core.reptrack;
2452 	parent->core.reptrack = &reptrack;
2453 	hammer2_spin_unex(&parent->core.spin);
2454 
2455 	hammer2_chain_unlock(chain);
2456 	hammer2_chain_drop(chain);
2457 	chain = NULL;	/* gone */
2458 
2459 	/*
2460 	 * At the top of this loop, chain is gone and parent is refd both
2461 	 * by us explicitly AND via our reptrack.  We are attempting to
2462 	 * lock parent.
2463 	 */
2464 	for (;;) {
2465 		hammer2_chain_lock(parent, flags);
2466 
2467 		if (reptrack.chain == parent)
2468 			break;
2469 		hammer2_chain_unlock(parent);
2470 		hammer2_chain_drop(parent);
2471 
2472 		kprintf("hammer2: debug REPTRACK %p->%p\n",
2473 			parent, reptrack.chain);
2474 		hammer2_spin_ex(&reptrack.spin);
2475 		parent = reptrack.chain;
2476 		hammer2_chain_ref(parent);
2477 		hammer2_spin_unex(&reptrack.spin);
2478 	}
2479 
2480 	/*
2481 	 * Once parent is locked and matches our reptrack, our reptrack
2482 	 * will be stable and we have our parent.  We can unlink our
2483 	 * reptrack.
2484 	 *
2485 	 * WARNING!  Remember that the chain lock might be shared.  Chains
2486 	 *	     locked shared have stable parent linkages.
2487 	 */
2488 	hammer2_spin_ex(&parent->core.spin);
2489 	repp = &parent->core.reptrack;
2490 	while (*repp != &reptrack)
2491 		repp = &(*repp)->next;
2492 	*repp = reptrack.next;
2493 	hammer2_spin_unex(&parent->core.spin);
2494 
2495 	hammer2_chain_drop(parent);	/* reptrack ref */
2496 	*chainp = parent;		/* return parent lock+ref */
2497 
2498 	return parent;
2499 }
2500 
2501 /*
2502  * Dispose of any linked reptrack structures in (chain) by shifting them to
2503  * (parent).  Both (chain) and (parent) must be exclusively locked.
2504  *
2505  * This is interlocked against any children of (chain) on the other side.
2506  * No children so remain as-of when this is called so we can test
2507  * core.reptrack without holding the spin-lock.
2508  *
2509  * Used whenever the caller intends to permanently delete chains related
2510  * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2511  * where the chains underneath the node being deleted are given a new parent
2512  * above the node being deleted.
2513  */
2514 static
2515 void
2516 hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2517 {
2518 	struct hammer2_reptrack *reptrack;
2519 
2520 	KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2521 	while (chain->core.reptrack) {
2522 		hammer2_spin_ex(&parent->core.spin);
2523 		hammer2_spin_ex(&chain->core.spin);
2524 		reptrack = chain->core.reptrack;
2525 		if (reptrack == NULL) {
2526 			hammer2_spin_unex(&chain->core.spin);
2527 			hammer2_spin_unex(&parent->core.spin);
2528 			break;
2529 		}
2530 		hammer2_spin_ex(&reptrack->spin);
2531 		chain->core.reptrack = reptrack->next;
2532 		reptrack->chain = parent;
2533 		reptrack->next = parent->core.reptrack;
2534 		parent->core.reptrack = reptrack;
2535 		hammer2_chain_ref(parent);		/* reptrack */
2536 
2537 		hammer2_spin_unex(&chain->core.spin);
2538 		hammer2_spin_unex(&parent->core.spin);
2539 		kprintf("hammer2: debug repchange %p %p->%p\n",
2540 			reptrack, chain, parent);
2541 		hammer2_chain_drop(chain);		/* reptrack */
2542 	}
2543 }
2544 
2545 /*
2546  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2547  * (*parentp) typically points to an inode but can also point to a related
2548  * indirect block and this function will recurse upwards and find the inode
2549  * or the nearest undeleted indirect block covering the key range.
2550  *
2551  * This function unconditionally sets *errorp, replacing any previous value.
2552  *
2553  * (*parentp) must be exclusive or shared locked (depending on flags) and
2554  * referenced and can be an inode or an existing indirect block within the
2555  * inode.
2556  *
2557  * If (*parent) is errored out, this function will not attempt to recurse
2558  * the radix tree and will return NULL along with an appropriate *errorp.
2559  * If NULL is returned and *errorp is 0, the requested lookup could not be
2560  * located.
2561  *
2562  * On return (*parentp) will be modified to point at the deepest parent chain
2563  * element encountered during the search, as a helper for an insertion or
2564  * deletion.
2565  *
2566  * The new (*parentp) will be locked shared or exclusive (depending on flags),
2567  * and referenced, and the old will be unlocked and dereferenced (no change
2568  * if they are both the same).  This is particularly important if the caller
2569  * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2570  * is returned, as long as no error occurred.
2571  *
2572  * The matching chain will be returned locked according to flags.
2573  *
2574  * --
2575  *
2576  * NULL is returned if no match was found, but (*parentp) will still
2577  * potentially be adjusted.
2578  *
2579  * On return (*key_nextp) will point to an iterative value for key_beg.
2580  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2581  *
2582  * This function will also recurse up the chain if the key is not within the
2583  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2584  * can simply allow (*parentp) to float inside the loop.
2585  *
2586  * NOTE!  chain->data is not always resolved.  By default it will not be
2587  *	  resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2588  *	  HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2589  *	  BREF_TYPE_DATA as the device buffer can alias the logical file
2590  *	  buffer).
2591  */
2592 
2593 hammer2_chain_t *
2594 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2595 		     hammer2_key_t key_beg, hammer2_key_t key_end,
2596 		     int *errorp, int flags)
2597 {
2598 	hammer2_dev_t *hmp;
2599 	hammer2_chain_t *parent;
2600 	hammer2_chain_t *chain;
2601 	hammer2_blockref_t *base;
2602 	hammer2_blockref_t *bref;
2603 	hammer2_blockref_t bcopy;
2604 	hammer2_key_t scan_beg;
2605 	hammer2_key_t scan_end;
2606 	int count = 0;
2607 	int how_always = HAMMER2_RESOLVE_ALWAYS;
2608 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
2609 	int how;
2610 	int generation;
2611 	int maxloops = 300000;
2612 	volatile hammer2_mtx_t save_mtx;
2613 
2614 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
2615 		how_maybe = how_always;
2616 		how = HAMMER2_RESOLVE_ALWAYS;
2617 	} else if (flags & HAMMER2_LOOKUP_NODATA) {
2618 		how = HAMMER2_RESOLVE_NEVER;
2619 	} else {
2620 		how = HAMMER2_RESOLVE_MAYBE;
2621 	}
2622 	if (flags & HAMMER2_LOOKUP_SHARED) {
2623 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2624 		how_always |= HAMMER2_RESOLVE_SHARED;
2625 		how |= HAMMER2_RESOLVE_SHARED;
2626 	}
2627 
2628 	/*
2629 	 * Recurse (*parentp) upward if necessary until the parent completely
2630 	 * encloses the key range or we hit the inode.
2631 	 *
2632 	 * Handle races against the flusher deleting indirect nodes on its
2633 	 * way back up by continuing to recurse upward past the deletion.
2634 	 */
2635 	parent = *parentp;
2636 	hmp = parent->hmp;
2637 	*errorp = 0;
2638 
2639 	while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2640 	       parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2641 		scan_beg = parent->bref.key;
2642 		scan_end = scan_beg +
2643 			   ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2644 		if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2645 			if (key_beg >= scan_beg && key_end <= scan_end)
2646 				break;
2647 		}
2648 		parent = hammer2_chain_repparent(parentp, how_maybe);
2649 	}
2650 again:
2651 	if (--maxloops == 0)
2652 		panic("hammer2_chain_lookup: maxloops");
2653 	/*
2654 	 * Locate the blockref array.  Currently we do a fully associative
2655 	 * search through the array.
2656 	 */
2657 	switch(parent->bref.type) {
2658 	case HAMMER2_BREF_TYPE_INODE:
2659 		/*
2660 		 * Special shortcut for embedded data returns the inode
2661 		 * itself.  Callers must detect this condition and access
2662 		 * the embedded data (the strategy code does this for us).
2663 		 *
2664 		 * This is only applicable to regular files and softlinks.
2665 		 *
2666 		 * We need a second lock on parent.  Since we already have
2667 		 * a lock we must pass LOCKAGAIN to prevent unexpected
2668 		 * blocking (we don't want to block on a second shared
2669 		 * ref if an exclusive lock is pending)
2670 		 */
2671 		if (parent->data->ipdata.meta.op_flags &
2672 		    HAMMER2_OPFLAG_DIRECTDATA) {
2673 			if (flags & HAMMER2_LOOKUP_NODIRECT) {
2674 				chain = NULL;
2675 				*key_nextp = key_end + 1;
2676 				goto done;
2677 			}
2678 			hammer2_chain_ref(parent);
2679 			hammer2_chain_lock(parent, how_always |
2680 						   HAMMER2_RESOLVE_LOCKAGAIN);
2681 			*key_nextp = key_end + 1;
2682 			return (parent);
2683 		}
2684 		base = &parent->data->ipdata.u.blockset.blockref[0];
2685 		count = HAMMER2_SET_COUNT;
2686 		break;
2687 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2688 	case HAMMER2_BREF_TYPE_INDIRECT:
2689 		/*
2690 		 * Handle MATCHIND on the parent
2691 		 */
2692 		if (flags & HAMMER2_LOOKUP_MATCHIND) {
2693 			scan_beg = parent->bref.key;
2694 			scan_end = scan_beg +
2695 			       ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2696 			if (key_beg == scan_beg && key_end == scan_end) {
2697 				chain = parent;
2698 				hammer2_chain_ref(chain);
2699 				hammer2_chain_lock(chain, how_maybe);
2700 				*key_nextp = scan_end + 1;
2701 				goto done;
2702 			}
2703 		}
2704 
2705 		/*
2706 		 * Optimize indirect blocks in the INITIAL state to avoid
2707 		 * I/O.
2708 		 */
2709 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2710 			base = NULL;
2711 		} else {
2712 			if (parent->data == NULL) {
2713 				kprintf("parent->data is NULL %p\n", parent);
2714 				while (1)
2715 					tsleep(parent, 0, "xxx", 0);
2716 			}
2717 			base = &parent->data->npdata[0];
2718 		}
2719 		count = parent->bytes / sizeof(hammer2_blockref_t);
2720 		break;
2721 	case HAMMER2_BREF_TYPE_VOLUME:
2722 		base = &parent->data->voldata.sroot_blockset.blockref[0];
2723 		count = HAMMER2_SET_COUNT;
2724 		break;
2725 	case HAMMER2_BREF_TYPE_FREEMAP:
2726 		base = &parent->data->blkset.blockref[0];
2727 		count = HAMMER2_SET_COUNT;
2728 		break;
2729 	default:
2730 		kprintf("hammer2_chain_lookup: unrecognized "
2731 			"blockref(B) type: %d",
2732 			parent->bref.type);
2733 		while (1)
2734 			tsleep(&base, 0, "dead", 0);
2735 		panic("hammer2_chain_lookup: unrecognized "
2736 		      "blockref(B) type: %d",
2737 		      parent->bref.type);
2738 		base = NULL;	/* safety */
2739 		count = 0;	/* safety */
2740 	}
2741 
2742 	/*
2743 	 * No lookup is possible if the parent is errored.  We delayed
2744 	 * this check as long as we could to ensure that the parent backup,
2745 	 * embedded data, and MATCHIND code could still execute.
2746 	 */
2747 	if (parent->error) {
2748 		*errorp = parent->error;
2749 		return NULL;
2750 	}
2751 
2752 	/*
2753 	 * Merged scan to find next candidate.
2754 	 *
2755 	 * hammer2_base_*() functions require the parent->core.live_* fields
2756 	 * to be synchronized.
2757 	 *
2758 	 * We need to hold the spinlock to access the block array and RB tree
2759 	 * and to interlock chain creation.
2760 	 */
2761 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2762 		hammer2_chain_countbrefs(parent, base, count);
2763 
2764 	/*
2765 	 * Combined search
2766 	 */
2767 	hammer2_spin_ex(&parent->core.spin);
2768 	chain = hammer2_combined_find(parent, base, count,
2769 				      key_nextp,
2770 				      key_beg, key_end,
2771 				      &bref);
2772 	generation = parent->core.generation;
2773 
2774 	/*
2775 	 * Exhausted parent chain, iterate.
2776 	 */
2777 	if (bref == NULL) {
2778 		KKASSERT(chain == NULL);
2779 		hammer2_spin_unex(&parent->core.spin);
2780 		if (key_beg == key_end)	/* short cut single-key case */
2781 			return (NULL);
2782 
2783 		/*
2784 		 * Stop if we reached the end of the iteration.
2785 		 */
2786 		if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2787 		    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2788 			return (NULL);
2789 		}
2790 
2791 		/*
2792 		 * Calculate next key, stop if we reached the end of the
2793 		 * iteration, otherwise go up one level and loop.
2794 		 */
2795 		key_beg = parent->bref.key +
2796 			  ((hammer2_key_t)1 << parent->bref.keybits);
2797 		if (key_beg == 0 || key_beg > key_end)
2798 			return (NULL);
2799 		parent = hammer2_chain_repparent(parentp, how_maybe);
2800 		goto again;
2801 	}
2802 
2803 	/*
2804 	 * Selected from blockref or in-memory chain.
2805 	 */
2806 	bcopy = *bref;
2807 	if (chain == NULL) {
2808 		hammer2_spin_unex(&parent->core.spin);
2809 		if (bcopy.type == HAMMER2_BREF_TYPE_INDIRECT ||
2810 		    bcopy.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2811 			chain = hammer2_chain_get(parent, generation,
2812 						  &bcopy, how_maybe);
2813 		} else {
2814 			chain = hammer2_chain_get(parent, generation,
2815 						  &bcopy, how);
2816 		}
2817 		if (chain == NULL)
2818 			goto again;
2819 	} else {
2820 		hammer2_chain_ref(chain);
2821 		hammer2_spin_unex(&parent->core.spin);
2822 
2823 		/*
2824 		 * chain is referenced but not locked.  We must lock the
2825 		 * chain to obtain definitive state.
2826 		 */
2827 		if (bcopy.type == HAMMER2_BREF_TYPE_INDIRECT ||
2828 		    bcopy.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2829 			hammer2_chain_lock(chain, how_maybe);
2830 		} else {
2831 			hammer2_chain_lock(chain, how);
2832 		}
2833 		KKASSERT(chain->parent == parent);
2834 	}
2835 	if (bcmp(&bcopy, &chain->bref, sizeof(bcopy)) ||
2836 	    chain->parent != parent) {
2837 		hammer2_chain_unlock(chain);
2838 		hammer2_chain_drop(chain);
2839 		chain = NULL;	/* SAFETY */
2840 		goto again;
2841 	}
2842 
2843 
2844 	/*
2845 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2846 	 *
2847 	 * NOTE: Chain's key range is not relevant as there might be
2848 	 *	 one-offs within the range that are not deleted.
2849 	 *
2850 	 * NOTE: Lookups can race delete-duplicate because
2851 	 *	 delete-duplicate does not lock the parent's core
2852 	 *	 (they just use the spinlock on the core).
2853 	 */
2854 	if (chain->flags & HAMMER2_CHAIN_DELETED) {
2855 		kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2856 			chain->bref.data_off, chain->bref.type,
2857 			chain->bref.key);
2858 		hammer2_chain_unlock(chain);
2859 		hammer2_chain_drop(chain);
2860 		chain = NULL;	/* SAFETY */
2861 		key_beg = *key_nextp;
2862 		if (key_beg == 0 || key_beg > key_end)
2863 			return(NULL);
2864 		goto again;
2865 	}
2866 
2867 	/*
2868 	 * If the chain element is an indirect block it becomes the new
2869 	 * parent and we loop on it.  We must maintain our top-down locks
2870 	 * to prevent the flusher from interfering (i.e. doing a
2871 	 * delete-duplicate and leaving us recursing down a deleted chain).
2872 	 *
2873 	 * The parent always has to be locked with at least RESOLVE_MAYBE
2874 	 * so we can access its data.  It might need a fixup if the caller
2875 	 * passed incompatible flags.  Be careful not to cause a deadlock
2876 	 * as a data-load requires an exclusive lock.
2877 	 *
2878 	 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2879 	 * range is within the requested key range we return the indirect
2880 	 * block and do NOT loop.  This is usually only used to acquire
2881 	 * freemap nodes.
2882 	 */
2883 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2884 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2885 		save_mtx = parent->lock;
2886 		hammer2_chain_unlock(parent);
2887 		hammer2_chain_drop(parent);
2888 		*parentp = parent = chain;
2889 		chain = NULL;	/* SAFETY */
2890 		goto again;
2891 	}
2892 done:
2893 	/*
2894 	 * All done, return the locked chain.
2895 	 *
2896 	 * If the caller does not want a locked chain, replace the lock with
2897 	 * a ref.  Perhaps this can eventually be optimized to not obtain the
2898 	 * lock in the first place for situations where the data does not
2899 	 * need to be resolved.
2900 	 *
2901 	 * NOTE! A chain->error must be tested by the caller upon return.
2902 	 *	 *errorp is only set based on issues which occur while
2903 	 *	 trying to reach the chain.
2904 	 */
2905 	return (chain);
2906 }
2907 
2908 /*
2909  * After having issued a lookup we can iterate all matching keys.
2910  *
2911  * If chain is non-NULL we continue the iteration from just after it's index.
2912  *
2913  * If chain is NULL we assume the parent was exhausted and continue the
2914  * iteration at the next parent.
2915  *
2916  * If a fatal error occurs (typically an I/O error), a dummy chain is
2917  * returned with chain->error and error-identifying information set.  This
2918  * chain will assert if you try to do anything fancy with it.
2919  *
2920  * XXX Depending on where the error occurs we should allow continued iteration.
2921  *
2922  * parent must be locked on entry and remains locked throughout.  chain's
2923  * lock status must match flags.  Chain is always at least referenced.
2924  *
2925  * WARNING!  The MATCHIND flag does not apply to this function.
2926  */
2927 hammer2_chain_t *
2928 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2929 		   hammer2_key_t *key_nextp,
2930 		   hammer2_key_t key_beg, hammer2_key_t key_end,
2931 		   int *errorp, int flags)
2932 {
2933 	hammer2_chain_t *parent;
2934 	int how_maybe;
2935 
2936 	/*
2937 	 * Calculate locking flags for upward recursion.
2938 	 */
2939 	how_maybe = HAMMER2_RESOLVE_MAYBE;
2940 	if (flags & HAMMER2_LOOKUP_SHARED)
2941 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2942 
2943 	parent = *parentp;
2944 	*errorp = 0;
2945 
2946 	/*
2947 	 * Calculate the next index and recalculate the parent if necessary.
2948 	 */
2949 	if (chain) {
2950 		key_beg = chain->bref.key +
2951 			  ((hammer2_key_t)1 << chain->bref.keybits);
2952 		hammer2_chain_unlock(chain);
2953 		hammer2_chain_drop(chain);
2954 
2955 		/*
2956 		 * chain invalid past this point, but we can still do a
2957 		 * pointer comparison w/parent.
2958 		 *
2959 		 * Any scan where the lookup returned degenerate data embedded
2960 		 * in the inode has an invalid index and must terminate.
2961 		 */
2962 		if (chain == parent)
2963 			return(NULL);
2964 		if (key_beg == 0 || key_beg > key_end)
2965 			return(NULL);
2966 		chain = NULL;
2967 	} else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2968 		   parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2969 		/*
2970 		 * We reached the end of the iteration.
2971 		 */
2972 		return (NULL);
2973 	} else {
2974 		/*
2975 		 * Continue iteration with next parent unless the current
2976 		 * parent covers the range.
2977 		 *
2978 		 * (This also handles the case of a deleted, empty indirect
2979 		 * node).
2980 		 */
2981 		key_beg = parent->bref.key +
2982 			  ((hammer2_key_t)1 << parent->bref.keybits);
2983 		if (key_beg == 0 || key_beg > key_end)
2984 			return (NULL);
2985 		parent = hammer2_chain_repparent(parentp, how_maybe);
2986 	}
2987 
2988 	/*
2989 	 * And execute
2990 	 */
2991 	return (hammer2_chain_lookup(parentp, key_nextp,
2992 				     key_beg, key_end,
2993 				     errorp, flags));
2994 }
2995 
2996 /*
2997  * Caller wishes to iterate chains under parent, loading new chains into
2998  * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
2999  * then call hammer2_chain_scan() repeatedly until a non-zero return.
3000  * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
3001  * with the returned chain for the scan.  The returned *chainp will be
3002  * locked and referenced.  Any prior contents will be unlocked and dropped.
3003  *
3004  * Caller should check the return value.  A normal scan EOF will return
3005  * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
3006  * error trying to access parent data.  Any error in the returned chain
3007  * must be tested separately by the caller.
3008  *
3009  * (*chainp) is dropped on each scan, but will only be set if the returned
3010  * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
3011  * returned via *chainp.  The caller will get their bref only.
3012  *
3013  * The raw scan function is similar to lookup/next but does not seek to a key.
3014  * Blockrefs are iterated via first_bref = (parent, NULL) and
3015  * next_chain = (parent, bref).
3016  *
3017  * The passed-in parent must be locked and its data resolved.  The function
3018  * nominally returns a locked and referenced *chainp != NULL for chains
3019  * the caller might need to recurse on (and will dipose of any *chainp passed
3020  * in).  The caller must check the chain->bref.type either way.
3021  */
3022 int
3023 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3024 		   hammer2_blockref_t *bref, int *firstp,
3025 		   int flags)
3026 {
3027 	hammer2_dev_t *hmp;
3028 	hammer2_blockref_t *base;
3029 	hammer2_blockref_t *bref_ptr;
3030 	hammer2_key_t key;
3031 	hammer2_key_t next_key;
3032 	hammer2_chain_t *chain = NULL;
3033 	int count = 0;
3034 	int how_always = HAMMER2_RESOLVE_ALWAYS;
3035 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
3036 	int how;
3037 	int generation;
3038 	int maxloops = 300000;
3039 	int error;
3040 
3041 	hmp = parent->hmp;
3042 	error = 0;
3043 
3044 	/*
3045 	 * Scan flags borrowed from lookup.
3046 	 */
3047 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
3048 		how_maybe = how_always;
3049 		how = HAMMER2_RESOLVE_ALWAYS;
3050 	} else if (flags & HAMMER2_LOOKUP_NODATA) {
3051 		how = HAMMER2_RESOLVE_NEVER;
3052 	} else {
3053 		how = HAMMER2_RESOLVE_MAYBE;
3054 	}
3055 	if (flags & HAMMER2_LOOKUP_SHARED) {
3056 		how_maybe |= HAMMER2_RESOLVE_SHARED;
3057 		how_always |= HAMMER2_RESOLVE_SHARED;
3058 		how |= HAMMER2_RESOLVE_SHARED;
3059 	}
3060 
3061 	/*
3062 	 * Calculate key to locate first/next element, unlocking the previous
3063 	 * element as we go.  Be careful, the key calculation can overflow.
3064 	 *
3065 	 * (also reset bref to NULL)
3066 	 */
3067 	if (*firstp) {
3068 		key = 0;
3069 		*firstp = 0;
3070 	} else {
3071 		key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3072 		if ((chain = *chainp) != NULL) {
3073 			*chainp = NULL;
3074 			hammer2_chain_unlock(chain);
3075 			hammer2_chain_drop(chain);
3076 			chain = NULL;
3077 		}
3078 		if (key == 0) {
3079 			error |= HAMMER2_ERROR_EOF;
3080 			goto done;
3081 		}
3082 	}
3083 
3084 again:
3085 	if (parent->error) {
3086 		error = parent->error;
3087 		goto done;
3088 	}
3089 	if (--maxloops == 0)
3090 		panic("hammer2_chain_scan: maxloops");
3091 
3092 	/*
3093 	 * Locate the blockref array.  Currently we do a fully associative
3094 	 * search through the array.
3095 	 */
3096 	switch(parent->bref.type) {
3097 	case HAMMER2_BREF_TYPE_INODE:
3098 		/*
3099 		 * An inode with embedded data has no sub-chains.
3100 		 *
3101 		 * WARNING! Bulk scan code may pass a static chain marked
3102 		 *	    as BREF_TYPE_INODE with a copy of the volume
3103 		 *	    root blockset to snapshot the volume.
3104 		 */
3105 		if (parent->data->ipdata.meta.op_flags &
3106 		    HAMMER2_OPFLAG_DIRECTDATA) {
3107 			error |= HAMMER2_ERROR_EOF;
3108 			goto done;
3109 		}
3110 		base = &parent->data->ipdata.u.blockset.blockref[0];
3111 		count = HAMMER2_SET_COUNT;
3112 		break;
3113 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3114 	case HAMMER2_BREF_TYPE_INDIRECT:
3115 		/*
3116 		 * Optimize indirect blocks in the INITIAL state to avoid
3117 		 * I/O.
3118 		 */
3119 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3120 			base = NULL;
3121 		} else {
3122 			if (parent->data == NULL)
3123 				panic("parent->data is NULL");
3124 			base = &parent->data->npdata[0];
3125 		}
3126 		count = parent->bytes / sizeof(hammer2_blockref_t);
3127 		break;
3128 	case HAMMER2_BREF_TYPE_VOLUME:
3129 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3130 		count = HAMMER2_SET_COUNT;
3131 		break;
3132 	case HAMMER2_BREF_TYPE_FREEMAP:
3133 		base = &parent->data->blkset.blockref[0];
3134 		count = HAMMER2_SET_COUNT;
3135 		break;
3136 	default:
3137 		panic("hammer2_chain_lookup: unrecognized blockref type: %d",
3138 		      parent->bref.type);
3139 		base = NULL;	/* safety */
3140 		count = 0;	/* safety */
3141 	}
3142 
3143 	/*
3144 	 * Merged scan to find next candidate.
3145 	 *
3146 	 * hammer2_base_*() functions require the parent->core.live_* fields
3147 	 * to be synchronized.
3148 	 *
3149 	 * We need to hold the spinlock to access the block array and RB tree
3150 	 * and to interlock chain creation.
3151 	 */
3152 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3153 		hammer2_chain_countbrefs(parent, base, count);
3154 
3155 	next_key = 0;
3156 	bref_ptr = NULL;
3157 	hammer2_spin_ex(&parent->core.spin);
3158 	chain = hammer2_combined_find(parent, base, count,
3159 				      &next_key,
3160 				      key, HAMMER2_KEY_MAX,
3161 				      &bref_ptr);
3162 	generation = parent->core.generation;
3163 
3164 	/*
3165 	 * Exhausted parent chain, we're done.
3166 	 */
3167 	if (bref_ptr == NULL) {
3168 		hammer2_spin_unex(&parent->core.spin);
3169 		KKASSERT(chain == NULL);
3170 		error |= HAMMER2_ERROR_EOF;
3171 		goto done;
3172 	}
3173 
3174 	/*
3175 	 * Copy into the supplied stack-based blockref.
3176 	 */
3177 	*bref = *bref_ptr;
3178 
3179 	/*
3180 	 * Selected from blockref or in-memory chain.
3181 	 */
3182 	if (chain == NULL) {
3183 		switch(bref->type) {
3184 		case HAMMER2_BREF_TYPE_INODE:
3185 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3186 		case HAMMER2_BREF_TYPE_INDIRECT:
3187 		case HAMMER2_BREF_TYPE_VOLUME:
3188 		case HAMMER2_BREF_TYPE_FREEMAP:
3189 			/*
3190 			 * Recursion, always get the chain
3191 			 */
3192 			hammer2_spin_unex(&parent->core.spin);
3193 			chain = hammer2_chain_get(parent, generation,
3194 						  bref, how);
3195 			if (chain == NULL)
3196 				goto again;
3197 			break;
3198 		default:
3199 			/*
3200 			 * No recursion, do not waste time instantiating
3201 			 * a chain, just iterate using the bref.
3202 			 */
3203 			hammer2_spin_unex(&parent->core.spin);
3204 			break;
3205 		}
3206 	} else {
3207 		/*
3208 		 * Recursion or not we need the chain in order to supply
3209 		 * the bref.
3210 		 */
3211 		hammer2_chain_ref(chain);
3212 		hammer2_spin_unex(&parent->core.spin);
3213 		hammer2_chain_lock(chain, how);
3214 	}
3215 	if (chain &&
3216 	    (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3217 	     chain->parent != parent)) {
3218 		hammer2_chain_unlock(chain);
3219 		hammer2_chain_drop(chain);
3220 		chain = NULL;
3221 		goto again;
3222 	}
3223 
3224 	/*
3225 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3226 	 *
3227 	 * NOTE: chain's key range is not relevant as there might be
3228 	 *	 one-offs within the range that are not deleted.
3229 	 *
3230 	 * NOTE: XXX this could create problems with scans used in
3231 	 *	 situations other than mount-time recovery.
3232 	 *
3233 	 * NOTE: Lookups can race delete-duplicate because
3234 	 *	 delete-duplicate does not lock the parent's core
3235 	 *	 (they just use the spinlock on the core).
3236 	 */
3237 	if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3238 		hammer2_chain_unlock(chain);
3239 		hammer2_chain_drop(chain);
3240 		chain = NULL;
3241 
3242 		key = next_key;
3243 		if (key == 0) {
3244 			error |= HAMMER2_ERROR_EOF;
3245 			goto done;
3246 		}
3247 		goto again;
3248 	}
3249 
3250 done:
3251 	/*
3252 	 * All done, return the bref or NULL, supply chain if necessary.
3253 	 */
3254 	if (chain)
3255 		*chainp = chain;
3256 	return (error);
3257 }
3258 
3259 /*
3260  * Create and return a new hammer2 system memory structure of the specified
3261  * key, type and size and insert it under (*parentp).  This is a full
3262  * insertion, based on the supplied key/keybits, and may involve creating
3263  * indirect blocks and moving other chains around via delete/duplicate.
3264  *
3265  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3266  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3267  * FULL.  This typically means that the caller is creating the chain after
3268  * doing a hammer2_chain_lookup().
3269  *
3270  * (*parentp) must be exclusive locked and may be replaced on return
3271  * depending on how much work the function had to do.
3272  *
3273  * (*parentp) must not be errored or this function will assert.
3274  *
3275  * (*chainp) usually starts out NULL and returns the newly created chain,
3276  * but if the caller desires the caller may allocate a disconnected chain
3277  * and pass it in instead.
3278  *
3279  * This function should NOT be used to insert INDIRECT blocks.  It is
3280  * typically used to create/insert inodes and data blocks.
3281  *
3282  * Caller must pass-in an exclusively locked parent the new chain is to
3283  * be inserted under, and optionally pass-in a disconnected, exclusively
3284  * locked chain to insert (else we create a new chain).  The function will
3285  * adjust (*parentp) as necessary, create or connect the chain, and
3286  * return an exclusively locked chain in *chainp.
3287  *
3288  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3289  * and will be reassigned.
3290  *
3291  * NOTE: returns HAMMER_ERROR_* flags
3292  */
3293 int
3294 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3295 		     hammer2_pfs_t *pmp, int methods,
3296 		     hammer2_key_t key, int keybits, int type, size_t bytes,
3297 		     hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3298 {
3299 	hammer2_dev_t *hmp;
3300 	hammer2_chain_t *chain;
3301 	hammer2_chain_t *parent;
3302 	hammer2_blockref_t *base;
3303 	hammer2_blockref_t dummy;
3304 	int allocated = 0;
3305 	int error = 0;
3306 	int count;
3307 	int maxloops = 300000;
3308 
3309 	/*
3310 	 * Topology may be crossing a PFS boundary.
3311 	 */
3312 	parent = *parentp;
3313 	KKASSERT(hammer2_mtx_owned(&parent->lock));
3314 	KKASSERT(parent->error == 0);
3315 	hmp = parent->hmp;
3316 	chain = *chainp;
3317 
3318 	if (chain == NULL) {
3319 		/*
3320 		 * First allocate media space and construct the dummy bref,
3321 		 * then allocate the in-memory chain structure.  Set the
3322 		 * INITIAL flag for fresh chains which do not have embedded
3323 		 * data.
3324 		 *
3325 		 * XXX for now set the check mode of the child based on
3326 		 *     the parent or, if the parent is an inode, the
3327 		 *     specification in the inode.
3328 		 */
3329 		bzero(&dummy, sizeof(dummy));
3330 		dummy.type = type;
3331 		dummy.key = key;
3332 		dummy.keybits = keybits;
3333 		dummy.data_off = hammer2_getradix(bytes);
3334 
3335 		/*
3336 		 * Inherit methods from parent by default.  Primarily used
3337 		 * for BREF_TYPE_DATA.  Non-data types *must* be set to
3338 		 * a non-NONE check algorithm.
3339 		 */
3340 		if (methods == -1)
3341 			dummy.methods = parent->bref.methods;
3342 		else
3343 			dummy.methods = (uint8_t)methods;
3344 
3345 		if (type != HAMMER2_BREF_TYPE_DATA &&
3346 		    HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3347 			dummy.methods |=
3348 				HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3349 		}
3350 
3351 		chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3352 
3353 		/*
3354 		 * Lock the chain manually, chain_lock will load the chain
3355 		 * which we do NOT want to do.  (note: chain->refs is set
3356 		 * to 1 by chain_alloc() for us, but lockcnt is not).
3357 		 */
3358 		chain->lockcnt = 1;
3359 		hammer2_mtx_ex(&chain->lock);
3360 		allocated = 1;
3361 		++curthread->td_tracker;
3362 
3363 		/*
3364 		 * Set INITIAL to optimize I/O.  The flag will generally be
3365 		 * processed when we call hammer2_chain_modify().
3366 		 *
3367 		 * Recalculate bytes to reflect the actual media block
3368 		 * allocation.  Handle special case radix 0 == 0 bytes.
3369 		 */
3370 		bytes = (size_t)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
3371 		if (bytes)
3372 			bytes = (hammer2_off_t)1 << bytes;
3373 		chain->bytes = bytes;
3374 
3375 		switch(type) {
3376 		case HAMMER2_BREF_TYPE_VOLUME:
3377 		case HAMMER2_BREF_TYPE_FREEMAP:
3378 			panic("hammer2_chain_create: called with volume type");
3379 			break;
3380 		case HAMMER2_BREF_TYPE_INDIRECT:
3381 			panic("hammer2_chain_create: cannot be used to"
3382 			      "create indirect block");
3383 			break;
3384 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3385 			panic("hammer2_chain_create: cannot be used to"
3386 			      "create freemap root or node");
3387 			break;
3388 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3389 			KKASSERT(bytes == sizeof(chain->data->bmdata));
3390 			/* fall through */
3391 		case HAMMER2_BREF_TYPE_DIRENT:
3392 		case HAMMER2_BREF_TYPE_INODE:
3393 		case HAMMER2_BREF_TYPE_DATA:
3394 		default:
3395 			/*
3396 			 * leave chain->data NULL, set INITIAL
3397 			 */
3398 			KKASSERT(chain->data == NULL);
3399 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3400 			break;
3401 		}
3402 	} else {
3403 		/*
3404 		 * We are reattaching a previously deleted chain, possibly
3405 		 * under a new parent and possibly with a new key/keybits.
3406 		 * The chain does not have to be in a modified state.  The
3407 		 * UPDATE flag will be set later on in this routine.
3408 		 *
3409 		 * Do NOT mess with the current state of the INITIAL flag.
3410 		 */
3411 		chain->bref.key = key;
3412 		chain->bref.keybits = keybits;
3413 		if (chain->flags & HAMMER2_CHAIN_DELETED)
3414 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3415 		KKASSERT(chain->parent == NULL);
3416 	}
3417 
3418 	/*
3419 	 * Set the appropriate bref flag if requested.
3420 	 *
3421 	 * NOTE! Callers can call this function to move chains without
3422 	 *	 knowing about special flags, so don't clear bref flags
3423 	 *	 here!
3424 	 */
3425 	if (flags & HAMMER2_INSERT_PFSROOT)
3426 		chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3427 
3428 	/*
3429 	 * Calculate how many entries we have in the blockref array and
3430 	 * determine if an indirect block is required.
3431 	 */
3432 again:
3433 	if (--maxloops == 0)
3434 		panic("hammer2_chain_create: maxloops");
3435 
3436 	switch(parent->bref.type) {
3437 	case HAMMER2_BREF_TYPE_INODE:
3438 		if ((parent->data->ipdata.meta.op_flags &
3439 		     HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3440 			kprintf("hammer2: parent set for direct-data! "
3441 				"pkey=%016jx ckey=%016jx\n",
3442 				parent->bref.key,
3443 				chain->bref.key);
3444 	        }
3445 		KKASSERT((parent->data->ipdata.meta.op_flags &
3446 			  HAMMER2_OPFLAG_DIRECTDATA) == 0);
3447 		KKASSERT(parent->data != NULL);
3448 		base = &parent->data->ipdata.u.blockset.blockref[0];
3449 		count = HAMMER2_SET_COUNT;
3450 		break;
3451 	case HAMMER2_BREF_TYPE_INDIRECT:
3452 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3453 		if (parent->flags & HAMMER2_CHAIN_INITIAL)
3454 			base = NULL;
3455 		else
3456 			base = &parent->data->npdata[0];
3457 		count = parent->bytes / sizeof(hammer2_blockref_t);
3458 		break;
3459 	case HAMMER2_BREF_TYPE_VOLUME:
3460 		KKASSERT(parent->data != NULL);
3461 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3462 		count = HAMMER2_SET_COUNT;
3463 		break;
3464 	case HAMMER2_BREF_TYPE_FREEMAP:
3465 		KKASSERT(parent->data != NULL);
3466 		base = &parent->data->blkset.blockref[0];
3467 		count = HAMMER2_SET_COUNT;
3468 		break;
3469 	default:
3470 		panic("hammer2_chain_create: unrecognized blockref type: %d",
3471 		      parent->bref.type);
3472 		base = NULL;
3473 		count = 0;
3474 		break;
3475 	}
3476 
3477 	/*
3478 	 * Make sure we've counted the brefs
3479 	 */
3480 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3481 		hammer2_chain_countbrefs(parent, base, count);
3482 
3483 	KASSERT(parent->core.live_count >= 0 &&
3484 		parent->core.live_count <= count,
3485 		("bad live_count %d/%d (%02x, %d)",
3486 			parent->core.live_count, count,
3487 			parent->bref.type, parent->bytes));
3488 
3489 	/*
3490 	 * If no free blockref could be found we must create an indirect
3491 	 * block and move a number of blockrefs into it.  With the parent
3492 	 * locked we can safely lock each child in order to delete+duplicate
3493 	 * it without causing a deadlock.
3494 	 *
3495 	 * This may return the new indirect block or the old parent depending
3496 	 * on where the key falls.  NULL is returned on error.
3497 	 */
3498 	if (parent->core.live_count == count) {
3499 		hammer2_chain_t *nparent;
3500 
3501 		KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3502 
3503 		nparent = hammer2_chain_create_indirect(parent, key, keybits,
3504 							mtid, type, &error);
3505 		if (nparent == NULL) {
3506 			if (allocated)
3507 				hammer2_chain_drop(chain);
3508 			chain = NULL;
3509 			goto done;
3510 		}
3511 		if (parent != nparent) {
3512 			hammer2_chain_unlock(parent);
3513 			hammer2_chain_drop(parent);
3514 			parent = *parentp = nparent;
3515 		}
3516 		goto again;
3517 	}
3518 
3519 	if (chain->flags & HAMMER2_CHAIN_DELETED)
3520 		kprintf("Inserting deleted chain @%016jx\n",
3521 			chain->bref.key);
3522 
3523 	/*
3524 	 * Link the chain into its parent.
3525 	 */
3526 	if (chain->parent != NULL)
3527 		panic("hammer2: hammer2_chain_create: chain already connected");
3528 	KKASSERT(chain->parent == NULL);
3529 	KKASSERT(parent->core.live_count < count);
3530 	hammer2_chain_insert(parent, chain,
3531 			     HAMMER2_CHAIN_INSERT_SPIN |
3532 			     HAMMER2_CHAIN_INSERT_LIVE,
3533 			     0);
3534 
3535 	if (allocated) {
3536 		/*
3537 		 * Mark the newly created chain modified.  This will cause
3538 		 * UPDATE to be set and process the INITIAL flag.
3539 		 *
3540 		 * Device buffers are not instantiated for DATA elements
3541 		 * as these are handled by logical buffers.
3542 		 *
3543 		 * Indirect and freemap node indirect blocks are handled
3544 		 * by hammer2_chain_create_indirect() and not by this
3545 		 * function.
3546 		 *
3547 		 * Data for all other bref types is expected to be
3548 		 * instantiated (INODE, LEAF).
3549 		 */
3550 		switch(chain->bref.type) {
3551 		case HAMMER2_BREF_TYPE_DATA:
3552 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3553 		case HAMMER2_BREF_TYPE_DIRENT:
3554 		case HAMMER2_BREF_TYPE_INODE:
3555 			error = hammer2_chain_modify(chain, mtid, dedup_off,
3556 						     HAMMER2_MODIFY_OPTDATA);
3557 			break;
3558 		default:
3559 			/*
3560 			 * Remaining types are not supported by this function.
3561 			 * In particular, INDIRECT and LEAF_NODE types are
3562 			 * handled by create_indirect().
3563 			 */
3564 			panic("hammer2_chain_create: bad type: %d",
3565 			      chain->bref.type);
3566 			/* NOT REACHED */
3567 			break;
3568 		}
3569 	} else {
3570 		/*
3571 		 * When reconnecting a chain we must set UPDATE and
3572 		 * setflush so the flush recognizes that it must update
3573 		 * the bref in the parent.
3574 		 */
3575 		if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3576 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3577 	}
3578 
3579 	/*
3580 	 * We must setflush(parent) to ensure that it recurses through to
3581 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3582 	 * already set in the chain (so it won't recurse up to set it in the
3583 	 * parent).
3584 	 */
3585 	hammer2_chain_setflush(parent);
3586 
3587 done:
3588 	*chainp = chain;
3589 
3590 	return (error);
3591 }
3592 
3593 /*
3594  * Move the chain from its old parent to a new parent.  The chain must have
3595  * already been deleted or already disconnected (or never associated) with
3596  * a parent.  The chain is reassociated with the new parent and the deleted
3597  * flag will be cleared (no longer deleted).  The chain's modification state
3598  * is not altered.
3599  *
3600  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3601  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3602  * FULL.  This typically means that the caller is creating the chain after
3603  * doing a hammer2_chain_lookup().
3604  *
3605  * Neither (parent) or (chain) can be errored.
3606  *
3607  * If (parent) is non-NULL then the chain is inserted under the parent.
3608  *
3609  * If (parent) is NULL then the newly duplicated chain is not inserted
3610  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3611  * passing into hammer2_chain_create() after this function returns).
3612  *
3613  * WARNING! This function calls create which means it can insert indirect
3614  *	    blocks.  This can cause other unrelated chains in the parent to
3615  *	    be moved to a newly inserted indirect block in addition to the
3616  *	    specific chain.
3617  */
3618 void
3619 hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3620 		     hammer2_tid_t mtid, int flags)
3621 {
3622 	hammer2_blockref_t *bref;
3623 	hammer2_dev_t *hmp;
3624 	hammer2_chain_t *parent;
3625 	size_t bytes;
3626 
3627 	/*
3628 	 * WARNING!  We should never resolve DATA to device buffers
3629 	 *	     (XXX allow it if the caller did?), and since
3630 	 *	     we currently do not have the logical buffer cache
3631 	 *	     buffer in-hand to fix its cached physical offset
3632 	 *	     we also force the modify code to not COW it. XXX
3633 	 */
3634 	hmp = chain->hmp;
3635 	KKASSERT(chain->parent == NULL);
3636 	KKASSERT(chain->error == 0);
3637 
3638 	/*
3639 	 * Now create a duplicate of the chain structure, associating
3640 	 * it with the same core, making it the same size, pointing it
3641 	 * to the same bref (the same media block).
3642 	 *
3643 	 * NOTE: Handle special radix == 0 case (means 0 bytes).
3644 	 */
3645 	bref = &chain->bref;
3646 	bytes = (size_t)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
3647 	if (bytes)
3648 		bytes = (hammer2_off_t)1 << bytes;
3649 
3650 	/*
3651 	 * If parent is not NULL the duplicated chain will be entered under
3652 	 * the parent and the UPDATE bit set to tell flush to update
3653 	 * the blockref.
3654 	 *
3655 	 * We must setflush(parent) to ensure that it recurses through to
3656 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3657 	 * already set in the chain (so it won't recurse up to set it in the
3658 	 * parent).
3659 	 *
3660 	 * Having both chains locked is extremely important for atomicy.
3661 	 */
3662 	if (parentp && (parent = *parentp) != NULL) {
3663 		KKASSERT(hammer2_mtx_owned(&parent->lock));
3664 		KKASSERT(parent->refs > 0);
3665 		KKASSERT(parent->error == 0);
3666 
3667 		hammer2_chain_create(parentp, &chain,
3668 				     chain->pmp, HAMMER2_METH_DEFAULT,
3669 				     bref->key, bref->keybits, bref->type,
3670 				     chain->bytes, mtid, 0, flags);
3671 		KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3672 		hammer2_chain_setflush(*parentp);
3673 	}
3674 }
3675 
3676 /*
3677  * Helper function for deleting chains.
3678  *
3679  * The chain is removed from the live view (the RBTREE) as well as the parent's
3680  * blockmap.  Both chain and its parent must be locked.
3681  *
3682  * parent may not be errored.  chain can be errored.
3683  */
3684 static int
3685 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3686 			     hammer2_tid_t mtid, int flags)
3687 {
3688 	hammer2_dev_t *hmp;
3689 	int error = 0;
3690 
3691 	KKASSERT((chain->flags & (HAMMER2_CHAIN_DELETED |
3692 				  HAMMER2_CHAIN_FICTITIOUS)) == 0);
3693 	KKASSERT(chain->parent == parent);
3694 	hmp = chain->hmp;
3695 
3696 	if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3697 		/*
3698 		 * Chain is blockmapped, so there must be a parent.
3699 		 * Atomically remove the chain from the parent and remove
3700 		 * the blockmap entry.  The parent must be set modified
3701 		 * to remove the blockmap entry.
3702 		 */
3703 		hammer2_blockref_t *base;
3704 		int count;
3705 
3706 		KKASSERT(parent != NULL);
3707 		KKASSERT(parent->error == 0);
3708 		KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3709 		error = hammer2_chain_modify(parent, mtid, 0, 0);
3710 		if (error)
3711 			goto done;
3712 
3713 		/*
3714 		 * Calculate blockmap pointer
3715 		 */
3716 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3717 		hammer2_spin_ex(&chain->core.spin);
3718 		hammer2_spin_ex(&parent->core.spin);
3719 
3720 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3721 		atomic_add_int(&parent->core.live_count, -1);
3722 		++parent->core.generation;
3723 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3724 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3725 		--parent->core.chain_count;
3726 		chain->parent = NULL;
3727 
3728 		switch(parent->bref.type) {
3729 		case HAMMER2_BREF_TYPE_INODE:
3730 			/*
3731 			 * Access the inode's block array.  However, there
3732 			 * is no block array if the inode is flagged
3733 			 * DIRECTDATA.
3734 			 */
3735 			if (parent->data &&
3736 			    (parent->data->ipdata.meta.op_flags &
3737 			     HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3738 				base =
3739 				   &parent->data->ipdata.u.blockset.blockref[0];
3740 			} else {
3741 				base = NULL;
3742 			}
3743 			count = HAMMER2_SET_COUNT;
3744 			break;
3745 		case HAMMER2_BREF_TYPE_INDIRECT:
3746 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3747 			if (parent->data)
3748 				base = &parent->data->npdata[0];
3749 			else
3750 				base = NULL;
3751 			count = parent->bytes / sizeof(hammer2_blockref_t);
3752 			break;
3753 		case HAMMER2_BREF_TYPE_VOLUME:
3754 			base = &parent->data->voldata.
3755 					sroot_blockset.blockref[0];
3756 			count = HAMMER2_SET_COUNT;
3757 			break;
3758 		case HAMMER2_BREF_TYPE_FREEMAP:
3759 			base = &parent->data->blkset.blockref[0];
3760 			count = HAMMER2_SET_COUNT;
3761 			break;
3762 		default:
3763 			base = NULL;
3764 			count = 0;
3765 			panic("hammer2_flush_pass2: "
3766 			      "unrecognized blockref type: %d",
3767 			      parent->bref.type);
3768 		}
3769 
3770 		/*
3771 		 * delete blockmapped chain from its parent.
3772 		 *
3773 		 * The parent is not affected by any statistics in chain
3774 		 * which are pending synchronization.  That is, there is
3775 		 * nothing to undo in the parent since they have not yet
3776 		 * been incorporated into the parent.
3777 		 *
3778 		 * The parent is affected by statistics stored in inodes.
3779 		 * Those have already been synchronized, so they must be
3780 		 * undone.  XXX split update possible w/delete in middle?
3781 		 */
3782 		if (base) {
3783 			hammer2_base_delete(parent, base, count, chain);
3784 		}
3785 		hammer2_spin_unex(&parent->core.spin);
3786 		hammer2_spin_unex(&chain->core.spin);
3787 	} else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3788 		/*
3789 		 * Chain is not blockmapped but a parent is present.
3790 		 * Atomically remove the chain from the parent.  There is
3791 		 * no blockmap entry to remove.
3792 		 *
3793 		 * Because chain was associated with a parent but not
3794 		 * synchronized, the chain's *_count_up fields contain
3795 		 * inode adjustment statistics which must be undone.
3796 		 */
3797 		hammer2_spin_ex(&chain->core.spin);
3798 		hammer2_spin_ex(&parent->core.spin);
3799 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3800 		atomic_add_int(&parent->core.live_count, -1);
3801 		++parent->core.generation;
3802 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3803 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3804 		--parent->core.chain_count;
3805 		chain->parent = NULL;
3806 		hammer2_spin_unex(&parent->core.spin);
3807 		hammer2_spin_unex(&chain->core.spin);
3808 	} else {
3809 		/*
3810 		 * Chain is not blockmapped and has no parent.  This
3811 		 * is a degenerate case.
3812 		 */
3813 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3814 	}
3815 done:
3816 	return error;
3817 }
3818 
3819 /*
3820  * Create an indirect block that covers one or more of the elements in the
3821  * current parent.  Either returns the existing parent with no locking or
3822  * ref changes or returns the new indirect block locked and referenced
3823  * and leaving the original parent lock/ref intact as well.
3824  *
3825  * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3826  *
3827  * The returned chain depends on where the specified key falls.
3828  *
3829  * The key/keybits for the indirect mode only needs to follow three rules:
3830  *
3831  * (1) That all elements underneath it fit within its key space and
3832  *
3833  * (2) That all elements outside it are outside its key space.
3834  *
3835  * (3) When creating the new indirect block any elements in the current
3836  *     parent that fit within the new indirect block's keyspace must be
3837  *     moved into the new indirect block.
3838  *
3839  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3840  *     keyspace the the current parent, but lookup/iteration rules will
3841  *     ensure (and must ensure) that rule (2) for all parents leading up
3842  *     to the nearest inode or the root volume header is adhered to.  This
3843  *     is accomplished by always recursing through matching keyspaces in
3844  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3845  *
3846  * The current implementation calculates the current worst-case keyspace by
3847  * iterating the current parent and then divides it into two halves, choosing
3848  * whichever half has the most elements (not necessarily the half containing
3849  * the requested key).
3850  *
3851  * We can also opt to use the half with the least number of elements.  This
3852  * causes lower-numbered keys (aka logical file offsets) to recurse through
3853  * fewer indirect blocks and higher-numbered keys to recurse through more.
3854  * This also has the risk of not moving enough elements to the new indirect
3855  * block and being forced to create several indirect blocks before the element
3856  * can be inserted.
3857  *
3858  * Must be called with an exclusively locked parent.
3859  *
3860  * NOTE: *errorp set to HAMMER_ERROR_* flags
3861  */
3862 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3863 				hammer2_key_t *keyp, int keybits,
3864 				hammer2_blockref_t *base, int count);
3865 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
3866 				hammer2_key_t *keyp, int keybits,
3867 				hammer2_blockref_t *base, int count,
3868 				int ncount);
3869 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
3870 				hammer2_key_t *keyp, int keybits,
3871 				hammer2_blockref_t *base, int count,
3872 				int ncount);
3873 static
3874 hammer2_chain_t *
3875 hammer2_chain_create_indirect(hammer2_chain_t *parent,
3876 			      hammer2_key_t create_key, int create_bits,
3877 			      hammer2_tid_t mtid, int for_type, int *errorp)
3878 {
3879 	hammer2_dev_t *hmp;
3880 	hammer2_blockref_t *base;
3881 	hammer2_blockref_t *bref;
3882 	hammer2_blockref_t bcopy;
3883 	hammer2_chain_t *chain;
3884 	hammer2_chain_t *ichain;
3885 	hammer2_chain_t dummy;
3886 	hammer2_key_t key = create_key;
3887 	hammer2_key_t key_beg;
3888 	hammer2_key_t key_end;
3889 	hammer2_key_t key_next;
3890 	int keybits = create_bits;
3891 	int count;
3892 	int ncount;
3893 	int nbytes;
3894 	int loops;
3895 	int error;
3896 	int reason;
3897 	int generation;
3898 	int maxloops = 300000;
3899 
3900 	/*
3901 	 * Calculate the base blockref pointer or NULL if the chain
3902 	 * is known to be empty.  We need to calculate the array count
3903 	 * for RB lookups either way.
3904 	 */
3905 	hmp = parent->hmp;
3906 	KKASSERT(hammer2_mtx_owned(&parent->lock));
3907 
3908 	/*
3909 	 * Pre-modify the parent now to avoid having to deal with error
3910 	 * processing if we tried to later (in the middle of our loop).
3911 	 */
3912 	*errorp = hammer2_chain_modify(parent, mtid, 0, 0);
3913 	if (*errorp) {
3914 		kprintf("hammer2_create_indirect: error %08x %s\n",
3915 			*errorp, hammer2_error_str(*errorp));
3916 		return NULL;
3917 	}
3918 
3919 	/*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
3920 	base = hammer2_chain_base_and_count(parent, &count);
3921 
3922 	/*
3923 	 * dummy used in later chain allocation (no longer used for lookups).
3924 	 */
3925 	bzero(&dummy, sizeof(dummy));
3926 
3927 	/*
3928 	 * How big should our new indirect block be?  It has to be at least
3929 	 * as large as its parent for splits to work properly.
3930 	 *
3931 	 * The freemap uses a specific indirect block size.  The number of
3932 	 * levels are built dynamically and ultimately depend on the size
3933 	 * volume.  Because freemap blocks are taken from the reserved areas
3934 	 * of the volume our goal is efficiency (fewer levels) and not so
3935 	 * much to save disk space.
3936 	 *
3937 	 * The first indirect block level for a directory usually uses
3938 	 * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
3939 	 * the hash mechanism, this typically gives us a nominal
3940 	 * 32 * 4 entries with one level of indirection.
3941 	 *
3942 	 * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
3943 	 * indirect blocks.  The initial 4 entries in the inode gives us
3944 	 * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
3945 	 * of indirection gives us 137GB, and so forth.  H2 can support
3946 	 * huge file sizes but they are not typical, so we try to stick
3947 	 * with compactness and do not use a larger indirect block size.
3948 	 *
3949 	 * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
3950 	 * due to the way indirect blocks are created this usually winds
3951 	 * up being extremely inefficient for small files.  Even though
3952 	 * 16KB requires more levels of indirection for very large files,
3953 	 * the 16KB records can be ganged together into 64KB DIOs.
3954 	 */
3955 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
3956 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
3957 		nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
3958 	} else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
3959 		if (parent->data->ipdata.meta.type ==
3960 		    HAMMER2_OBJTYPE_DIRECTORY)
3961 			nbytes = HAMMER2_IND_BYTES_MIN;	/* 4KB = 32 entries */
3962 		else
3963 			nbytes = HAMMER2_IND_BYTES_NOM;	/* 16KB = ~8MB file */
3964 
3965 	} else {
3966 		nbytes = HAMMER2_IND_BYTES_NOM;
3967 	}
3968 	if (nbytes < count * sizeof(hammer2_blockref_t)) {
3969 		KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
3970 			 for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
3971 		nbytes = count * sizeof(hammer2_blockref_t);
3972 	}
3973 	ncount = nbytes / sizeof(hammer2_blockref_t);
3974 
3975 	/*
3976 	 * When creating an indirect block for a freemap node or leaf
3977 	 * the key/keybits must be fitted to static radix levels because
3978 	 * particular radix levels use particular reserved blocks in the
3979 	 * related zone.
3980 	 *
3981 	 * This routine calculates the key/radix of the indirect block
3982 	 * we need to create, and whether it is on the high-side or the
3983 	 * low-side.
3984 	 */
3985 	switch(for_type) {
3986 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3987 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3988 		keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
3989 						       base, count);
3990 		break;
3991 	case HAMMER2_BREF_TYPE_DATA:
3992 		keybits = hammer2_chain_indkey_file(parent, &key, keybits,
3993 						    base, count, ncount);
3994 		break;
3995 	case HAMMER2_BREF_TYPE_DIRENT:
3996 	case HAMMER2_BREF_TYPE_INODE:
3997 		keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
3998 						   base, count, ncount);
3999 		break;
4000 	default:
4001 		panic("illegal indirect block for bref type %d", for_type);
4002 		break;
4003 	}
4004 
4005 	/*
4006 	 * Normalize the key for the radix being represented, keeping the
4007 	 * high bits and throwing away the low bits.
4008 	 */
4009 	key &= ~(((hammer2_key_t)1 << keybits) - 1);
4010 
4011 	/*
4012 	 * Ok, create our new indirect block
4013 	 */
4014 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4015 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4016 		dummy.bref.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4017 	} else {
4018 		dummy.bref.type = HAMMER2_BREF_TYPE_INDIRECT;
4019 	}
4020 	dummy.bref.key = key;
4021 	dummy.bref.keybits = keybits;
4022 	dummy.bref.data_off = hammer2_getradix(nbytes);
4023 	dummy.bref.methods =
4024 		HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4025 		HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4026 
4027 	ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy.bref);
4028 	atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4029 	hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4030 	/* ichain has one ref at this point */
4031 
4032 	/*
4033 	 * We have to mark it modified to allocate its block, but use
4034 	 * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
4035 	 * it won't be acted upon by the flush code.
4036 	 */
4037 	*errorp = hammer2_chain_modify(ichain, mtid, 0, HAMMER2_MODIFY_OPTDATA);
4038 	if (*errorp) {
4039 		kprintf("hammer2_alloc_indirect: error %08x %s\n",
4040 			*errorp, hammer2_error_str(*errorp));
4041 		hammer2_chain_unlock(ichain);
4042 		hammer2_chain_drop(ichain);
4043 		return NULL;
4044 	}
4045 
4046 	/*
4047 	 * Iterate the original parent and move the matching brefs into
4048 	 * the new indirect block.
4049 	 *
4050 	 * XXX handle flushes.
4051 	 */
4052 	key_beg = 0;
4053 	key_end = HAMMER2_KEY_MAX;
4054 	key_next = 0;	/* avoid gcc warnings */
4055 	hammer2_spin_ex(&parent->core.spin);
4056 	loops = 0;
4057 	reason = 0;
4058 
4059 	for (;;) {
4060 		/*
4061 		 * Parent may have been modified, relocating its block array.
4062 		 * Reload the base pointer.
4063 		 */
4064 		base = hammer2_chain_base_and_count(parent, &count);
4065 
4066 		if (++loops > 100000) {
4067 		    hammer2_spin_unex(&parent->core.spin);
4068 		    panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4069 			  reason, parent, base, count, key_next);
4070 		}
4071 
4072 		/*
4073 		 * NOTE: spinlock stays intact, returned chain (if not NULL)
4074 		 *	 is not referenced or locked which means that we
4075 		 *	 cannot safely check its flagged / deletion status
4076 		 *	 until we lock it.
4077 		 */
4078 		chain = hammer2_combined_find(parent, base, count,
4079 					      &key_next,
4080 					      key_beg, key_end,
4081 					      &bref);
4082 		generation = parent->core.generation;
4083 		if (bref == NULL)
4084 			break;
4085 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4086 
4087 		/*
4088 		 * Skip keys that are not within the key/radix of the new
4089 		 * indirect block.  They stay in the parent.
4090 		 */
4091 		if ((~(((hammer2_key_t)1 << keybits) - 1) &
4092 		    (key ^ bref->key)) != 0) {
4093 			goto next_key_spinlocked;
4094 		}
4095 
4096 		/*
4097 		 * Load the new indirect block by acquiring the related
4098 		 * chains (potentially from media as it might not be
4099 		 * in-memory).  Then move it to the new parent (ichain).
4100 		 *
4101 		 * chain is referenced but not locked.  We must lock the
4102 		 * chain to obtain definitive state.
4103 		 */
4104 		bcopy = *bref;
4105 		if (chain) {
4106 			/*
4107 			 * Use chain already present in the RBTREE
4108 			 */
4109 			hammer2_chain_ref(chain);
4110 			hammer2_spin_unex(&parent->core.spin);
4111 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4112 		} else {
4113 			/*
4114 			 * Get chain for blockref element.  _get returns NULL
4115 			 * on insertion race.
4116 			 */
4117 			hammer2_spin_unex(&parent->core.spin);
4118 			chain = hammer2_chain_get(parent, generation, &bcopy,
4119 						  HAMMER2_RESOLVE_NEVER);
4120 			if (chain == NULL) {
4121 				reason = 1;
4122 				hammer2_spin_ex(&parent->core.spin);
4123 				continue;
4124 			}
4125 		}
4126 
4127 		/*
4128 		 * This is always live so if the chain has been deleted
4129 		 * we raced someone and we have to retry.
4130 		 *
4131 		 * NOTE: Lookups can race delete-duplicate because
4132 		 *	 delete-duplicate does not lock the parent's core
4133 		 *	 (they just use the spinlock on the core).
4134 		 *
4135 		 *	 (note reversed logic for this one)
4136 		 */
4137 		if (bcmp(&bcopy, &chain->bref, sizeof(bcopy)) ||
4138 		    chain->parent != parent ||
4139 		    (chain->flags & HAMMER2_CHAIN_DELETED)) {
4140 			hammer2_chain_unlock(chain);
4141 			hammer2_chain_drop(chain);
4142 			if (hammer2_debug & 0x0040) {
4143 				kprintf("LOST PARENT RETRY "
4144 				"RETRY (%p,%p)->%p %08x\n",
4145 				parent, chain->parent, chain, chain->flags);
4146 			}
4147 			hammer2_spin_ex(&parent->core.spin);
4148 			continue;
4149 		}
4150 
4151 		/*
4152 		 * Shift the chain to the indirect block.
4153 		 *
4154 		 * WARNING! No reason for us to load chain data, pass NOSTATS
4155 		 *	    to prevent delete/insert from trying to access
4156 		 *	    inode stats (and thus asserting if there is no
4157 		 *	    chain->data loaded).
4158 		 *
4159 		 * WARNING! The (parent, chain) deletion may modify the parent
4160 		 *	    and invalidate the base pointer.
4161 		 *
4162 		 * WARNING! Parent must already be marked modified, so we
4163 		 *	    can assume that chain_delete always suceeds.
4164 		 *
4165 		 * WARNING! hammer2_chain_repchange() does not have to be
4166 		 *	    called (and doesn't work anyway because we are
4167 		 *	    only doing a partial shift).  A recursion that is
4168 		 *	    in-progress can continue at the current parent
4169 		 *	    and will be able to properly find its next key.
4170 		 */
4171 		error = hammer2_chain_delete(parent, chain, mtid, 0);
4172 		KKASSERT(error == 0);
4173 		hammer2_chain_rename(&ichain, chain, mtid, 0);
4174 		hammer2_chain_unlock(chain);
4175 		hammer2_chain_drop(chain);
4176 		KKASSERT(parent->refs > 0);
4177 		chain = NULL;
4178 		base = NULL;	/* safety */
4179 		hammer2_spin_ex(&parent->core.spin);
4180 next_key_spinlocked:
4181 		if (--maxloops == 0)
4182 			panic("hammer2_chain_create_indirect: maxloops");
4183 		reason = 4;
4184 		if (key_next == 0 || key_next > key_end)
4185 			break;
4186 		key_beg = key_next;
4187 		/* loop */
4188 	}
4189 	hammer2_spin_unex(&parent->core.spin);
4190 
4191 	/*
4192 	 * Insert the new indirect block into the parent now that we've
4193 	 * cleared out some entries in the parent.  We calculated a good
4194 	 * insertion index in the loop above (ichain->index).
4195 	 *
4196 	 * We don't have to set UPDATE here because we mark ichain
4197 	 * modified down below (so the normal modified -> flush -> set-moved
4198 	 * sequence applies).
4199 	 *
4200 	 * The insertion shouldn't race as this is a completely new block
4201 	 * and the parent is locked.
4202 	 */
4203 	base = NULL;	/* safety, parent modify may change address */
4204 	KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4205 	KKASSERT(parent->core.live_count < count);
4206 	hammer2_chain_insert(parent, ichain,
4207 			     HAMMER2_CHAIN_INSERT_SPIN |
4208 			     HAMMER2_CHAIN_INSERT_LIVE,
4209 			     0);
4210 
4211 	/*
4212 	 * Make sure flushes propogate after our manual insertion.
4213 	 */
4214 	hammer2_chain_setflush(ichain);
4215 	hammer2_chain_setflush(parent);
4216 
4217 	/*
4218 	 * Figure out what to return.
4219 	 */
4220 	if (~(((hammer2_key_t)1 << keybits) - 1) &
4221 		   (create_key ^ key)) {
4222 		/*
4223 		 * Key being created is outside the key range,
4224 		 * return the original parent.
4225 		 */
4226 		hammer2_chain_unlock(ichain);
4227 		hammer2_chain_drop(ichain);
4228 	} else {
4229 		/*
4230 		 * Otherwise its in the range, return the new parent.
4231 		 * (leave both the new and old parent locked).
4232 		 */
4233 		parent = ichain;
4234 	}
4235 
4236 	return(parent);
4237 }
4238 
4239 /*
4240  * Do maintenance on an indirect chain.  Both parent and chain are locked.
4241  *
4242  * Returns non-zero if (chain) is deleted, either due to being empty or
4243  * because its children were safely moved into the parent.
4244  */
4245 int
4246 hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4247 				   hammer2_chain_t *chain)
4248 {
4249 	hammer2_blockref_t *chain_base;
4250 	hammer2_blockref_t *base;
4251 	hammer2_blockref_t *bref;
4252 	hammer2_blockref_t bcopy;
4253 	hammer2_key_t key_next;
4254 	hammer2_key_t key_beg;
4255 	hammer2_key_t key_end;
4256 	hammer2_chain_t *sub;
4257 	int chain_count;
4258 	int count;
4259 	int error;
4260 	int generation;
4261 
4262 	/*
4263 	 * Make sure we have an accurate live_count
4264 	 */
4265 	if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4266 			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4267 		base = &chain->data->npdata[0];
4268 		count = chain->bytes / sizeof(hammer2_blockref_t);
4269 		hammer2_chain_countbrefs(chain, base, count);
4270 	}
4271 
4272 	/*
4273 	 * If the indirect block is empty we can delete it.
4274 	 * (ignore deletion error)
4275 	 */
4276 	if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4277 		hammer2_chain_delete(parent, chain,
4278 				     chain->bref.modify_tid,
4279 				     HAMMER2_DELETE_PERMANENT);
4280 		hammer2_chain_repchange(parent, chain);
4281 		return 1;
4282 	}
4283 
4284 	base = hammer2_chain_base_and_count(parent, &count);
4285 
4286 	if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4287 			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4288 		hammer2_chain_countbrefs(parent, base, count);
4289 	}
4290 
4291 	/*
4292 	 * Determine if we can collapse chain into parent, calculate
4293 	 * hysteresis for chain emptiness.
4294 	 */
4295 	if (parent->core.live_count + chain->core.live_count - 1 > count)
4296 		return 0;
4297 	chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4298 	if (chain->core.live_count > chain_count * 3 / 4)
4299 		return 0;
4300 
4301 	/*
4302 	 * Ok, theoretically we can collapse chain's contents into
4303 	 * parent.  chain is locked, but any in-memory children of chain
4304 	 * are not.  For this to work, we must be able to dispose of any
4305 	 * in-memory children of chain.
4306 	 *
4307 	 * For now require that there are no in-memory children of chain.
4308 	 *
4309 	 * WARNING! Both chain and parent must remain locked across this
4310 	 *	    entire operation.
4311 	 */
4312 
4313 	/*
4314 	 * Parent must be marked modified.  Don't try to collapse it if we
4315 	 * can't mark it modified.  Once modified, destroy chain to make room
4316 	 * and to get rid of what will be a conflicting key (this is included
4317 	 * in the calculation above).  Finally, move the children of chain
4318 	 * into chain's parent.
4319 	 *
4320 	 * This order creates an accounting problem for bref.embed.stats
4321 	 * because we destroy chain before we remove its children.  Any
4322 	 * elements whos blockref is already synchronized will be counted
4323 	 * twice.  To deal with the problem we clean out chain's stats prior
4324 	 * to deleting it.
4325 	 */
4326 	error = hammer2_chain_modify(parent, 0, 0, 0);
4327 	if (error) {
4328 		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4329 			    hammer2_error_str(error));
4330 		return 0;
4331 	}
4332 	error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4333 	if (error) {
4334 		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4335 			    hammer2_error_str(error));
4336 		return 0;
4337 	}
4338 
4339 	chain->bref.embed.stats.inode_count = 0;
4340 	chain->bref.embed.stats.data_count = 0;
4341 	error = hammer2_chain_delete(parent, chain,
4342 				     chain->bref.modify_tid,
4343 				     HAMMER2_DELETE_PERMANENT);
4344 	KKASSERT(error == 0);
4345 
4346 	/*
4347 	 * The combined_find call requires core.spin to be held.  One would
4348 	 * think there wouldn't be any conflicts since we hold chain
4349 	 * exclusively locked, but the caching mechanism for 0-ref children
4350 	 * does not require a chain lock.
4351 	 */
4352 	hammer2_spin_ex(&chain->core.spin);
4353 
4354 	key_next = 0;
4355 	key_beg = 0;
4356 	key_end = HAMMER2_KEY_MAX;
4357 	for (;;) {
4358 		chain_base = &chain->data->npdata[0];
4359 		chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4360 		sub = hammer2_combined_find(chain, chain_base, chain_count,
4361 					    &key_next,
4362 					    key_beg, key_end,
4363 					    &bref);
4364 		generation = chain->core.generation;
4365 		if (bref == NULL)
4366 			break;
4367 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4368 
4369 		bcopy = *bref;
4370 		if (sub) {
4371 			hammer2_chain_ref(sub);
4372 			hammer2_spin_unex(&chain->core.spin);
4373 			hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4374 		} else {
4375 			hammer2_spin_unex(&chain->core.spin);
4376 			sub = hammer2_chain_get(chain, generation, &bcopy,
4377 						HAMMER2_RESOLVE_NEVER);
4378 			if (sub == NULL) {
4379 				hammer2_spin_ex(&chain->core.spin);
4380 				continue;
4381 			}
4382 		}
4383 		if (bcmp(&bcopy, &sub->bref, sizeof(bcopy)) ||
4384 		    sub->parent != chain ||
4385 		    (sub->flags & HAMMER2_CHAIN_DELETED)) {
4386 			hammer2_chain_unlock(sub);
4387 			hammer2_chain_drop(sub);
4388 			hammer2_spin_ex(&chain->core.spin);
4389 			sub = NULL;	/* safety */
4390 			continue;
4391 		}
4392 		error = hammer2_chain_delete(chain, sub,
4393 					     sub->bref.modify_tid, 0);
4394 		KKASSERT(error == 0);
4395 		hammer2_chain_rename(&parent, sub,
4396 				     sub->bref.modify_tid,
4397 				     HAMMER2_INSERT_SAMEPARENT);
4398 		hammer2_chain_unlock(sub);
4399 		hammer2_chain_drop(sub);
4400 		hammer2_spin_ex(&chain->core.spin);
4401 
4402 		if (key_next == 0)
4403 			break;
4404 		key_beg = key_next;
4405 	}
4406 	hammer2_spin_unex(&chain->core.spin);
4407 
4408 	hammer2_chain_repchange(parent, chain);
4409 
4410 	return 1;
4411 }
4412 
4413 /*
4414  * Freemap indirect blocks
4415  *
4416  * Calculate the keybits and highside/lowside of the freemap node the
4417  * caller is creating.
4418  *
4419  * This routine will specify the next higher-level freemap key/radix
4420  * representing the lowest-ordered set.  By doing so, eventually all
4421  * low-ordered sets will be moved one level down.
4422  *
4423  * We have to be careful here because the freemap reserves a limited
4424  * number of blocks for a limited number of levels.  So we can't just
4425  * push indiscriminately.
4426  */
4427 int
4428 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4429 			     int keybits, hammer2_blockref_t *base, int count)
4430 {
4431 	hammer2_chain_t *chain;
4432 	hammer2_blockref_t *bref;
4433 	hammer2_key_t key;
4434 	hammer2_key_t key_beg;
4435 	hammer2_key_t key_end;
4436 	hammer2_key_t key_next;
4437 	int locount;
4438 	int hicount;
4439 	int maxloops = 300000;
4440 
4441 	key = *keyp;
4442 	locount = 0;
4443 	hicount = 0;
4444 	keybits = 64;
4445 
4446 	/*
4447 	 * Calculate the range of keys in the array being careful to skip
4448 	 * slots which are overridden with a deletion.
4449 	 */
4450 	key_beg = 0;
4451 	key_end = HAMMER2_KEY_MAX;
4452 	hammer2_spin_ex(&parent->core.spin);
4453 
4454 	for (;;) {
4455 		if (--maxloops == 0) {
4456 			panic("indkey_freemap shit %p %p:%d\n",
4457 			      parent, base, count);
4458 		}
4459 		chain = hammer2_combined_find(parent, base, count,
4460 					      &key_next,
4461 					      key_beg, key_end,
4462 					      &bref);
4463 
4464 		/*
4465 		 * Exhausted search
4466 		 */
4467 		if (bref == NULL)
4468 			break;
4469 
4470 		/*
4471 		 * Skip deleted chains.
4472 		 */
4473 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4474 			if (key_next == 0 || key_next > key_end)
4475 				break;
4476 			key_beg = key_next;
4477 			continue;
4478 		}
4479 
4480 		/*
4481 		 * Use the full live (not deleted) element for the scan
4482 		 * iteration.  HAMMER2 does not allow partial replacements.
4483 		 *
4484 		 * XXX should be built into hammer2_combined_find().
4485 		 */
4486 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4487 
4488 		if (keybits > bref->keybits) {
4489 			key = bref->key;
4490 			keybits = bref->keybits;
4491 		} else if (keybits == bref->keybits && bref->key < key) {
4492 			key = bref->key;
4493 		}
4494 		if (key_next == 0)
4495 			break;
4496 		key_beg = key_next;
4497 	}
4498 	hammer2_spin_unex(&parent->core.spin);
4499 
4500 	/*
4501 	 * Return the keybits for a higher-level FREEMAP_NODE covering
4502 	 * this node.
4503 	 */
4504 	switch(keybits) {
4505 	case HAMMER2_FREEMAP_LEVEL0_RADIX:
4506 		keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4507 		break;
4508 	case HAMMER2_FREEMAP_LEVEL1_RADIX:
4509 		keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4510 		break;
4511 	case HAMMER2_FREEMAP_LEVEL2_RADIX:
4512 		keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4513 		break;
4514 	case HAMMER2_FREEMAP_LEVEL3_RADIX:
4515 		keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4516 		break;
4517 	case HAMMER2_FREEMAP_LEVEL4_RADIX:
4518 		keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4519 		break;
4520 	case HAMMER2_FREEMAP_LEVEL5_RADIX:
4521 		panic("hammer2_chain_indkey_freemap: level too high");
4522 		break;
4523 	default:
4524 		panic("hammer2_chain_indkey_freemap: bad radix");
4525 		break;
4526 	}
4527 	*keyp = key;
4528 
4529 	return (keybits);
4530 }
4531 
4532 /*
4533  * File indirect blocks
4534  *
4535  * Calculate the key/keybits for the indirect block to create by scanning
4536  * existing keys.  The key being created is also passed in *keyp and can be
4537  * inside or outside the indirect block.  Regardless, the indirect block
4538  * must hold at least two keys in order to guarantee sufficient space.
4539  *
4540  * We use a modified version of the freemap's fixed radix tree, but taylored
4541  * for file data.  Basically we configure an indirect block encompassing the
4542  * smallest key.
4543  */
4544 static int
4545 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4546 			    int keybits, hammer2_blockref_t *base, int count,
4547 			    int ncount)
4548 {
4549 	hammer2_chain_t *chain;
4550 	hammer2_blockref_t *bref;
4551 	hammer2_key_t key;
4552 	hammer2_key_t key_beg;
4553 	hammer2_key_t key_end;
4554 	hammer2_key_t key_next;
4555 	int nradix;
4556 	int locount;
4557 	int hicount;
4558 	int maxloops = 300000;
4559 
4560 	key = *keyp;
4561 	locount = 0;
4562 	hicount = 0;
4563 	keybits = 64;
4564 
4565 	/*
4566 	 * Calculate the range of keys in the array being careful to skip
4567 	 * slots which are overridden with a deletion.
4568 	 *
4569 	 * Locate the smallest key.
4570 	 */
4571 	key_beg = 0;
4572 	key_end = HAMMER2_KEY_MAX;
4573 	hammer2_spin_ex(&parent->core.spin);
4574 
4575 	for (;;) {
4576 		if (--maxloops == 0) {
4577 			panic("indkey_freemap shit %p %p:%d\n",
4578 			      parent, base, count);
4579 		}
4580 		chain = hammer2_combined_find(parent, base, count,
4581 					      &key_next,
4582 					      key_beg, key_end,
4583 					      &bref);
4584 
4585 		/*
4586 		 * Exhausted search
4587 		 */
4588 		if (bref == NULL)
4589 			break;
4590 
4591 		/*
4592 		 * Skip deleted chains.
4593 		 */
4594 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4595 			if (key_next == 0 || key_next > key_end)
4596 				break;
4597 			key_beg = key_next;
4598 			continue;
4599 		}
4600 
4601 		/*
4602 		 * Use the full live (not deleted) element for the scan
4603 		 * iteration.  HAMMER2 does not allow partial replacements.
4604 		 *
4605 		 * XXX should be built into hammer2_combined_find().
4606 		 */
4607 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4608 
4609 		if (keybits > bref->keybits) {
4610 			key = bref->key;
4611 			keybits = bref->keybits;
4612 		} else if (keybits == bref->keybits && bref->key < key) {
4613 			key = bref->key;
4614 		}
4615 		if (key_next == 0)
4616 			break;
4617 		key_beg = key_next;
4618 	}
4619 	hammer2_spin_unex(&parent->core.spin);
4620 
4621 	/*
4622 	 * Calculate the static keybits for a higher-level indirect block
4623 	 * that contains the key.
4624 	 */
4625 	*keyp = key;
4626 
4627 	switch(ncount) {
4628 	case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4629 		nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4630 		break;
4631 	case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4632 		nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4633 		break;
4634 	case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4635 		nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4636 		break;
4637 	default:
4638 		panic("bad ncount %d\n", ncount);
4639 		nradix = 0;
4640 		break;
4641 	}
4642 
4643 	/*
4644 	 * The largest radix that can be returned for an indirect block is
4645 	 * 63 bits.  (The largest practical indirect block radix is actually
4646 	 * 62 bits because the top-level inode or volume root contains four
4647 	 * entries, but allow 63 to be returned).
4648 	 */
4649 	if (nradix >= 64)
4650 		nradix = 63;
4651 
4652 	return keybits + nradix;
4653 }
4654 
4655 #if 1
4656 
4657 /*
4658  * Directory indirect blocks.
4659  *
4660  * Covers both the inode index (directory of inodes), and directory contents
4661  * (filenames hardlinked to inodes).
4662  *
4663  * Because directory keys are hashed we generally try to cut the space in
4664  * half.  We accomodate the inode index (which tends to have linearly
4665  * increasing inode numbers) by ensuring that the keyspace is at least large
4666  * enough to fill up the indirect block being created.
4667  */
4668 static int
4669 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4670 			 int keybits, hammer2_blockref_t *base, int count,
4671 			 int ncount)
4672 {
4673 	hammer2_blockref_t *bref;
4674 	hammer2_chain_t	*chain;
4675 	hammer2_key_t key_beg;
4676 	hammer2_key_t key_end;
4677 	hammer2_key_t key_next;
4678 	hammer2_key_t key;
4679 	int nkeybits;
4680 	int locount;
4681 	int hicount;
4682 	int maxloops = 300000;
4683 
4684 	/*
4685 	 * NOTE: We can't take a shortcut here anymore for inodes because
4686 	 *	 the root directory can contain a mix of inodes and directory
4687 	 *	 entries (we used to just return 63 if parent->bref.type was
4688 	 *	 HAMMER2_BREF_TYPE_INODE.
4689 	 */
4690 	key = *keyp;
4691 	locount = 0;
4692 	hicount = 0;
4693 
4694 	/*
4695 	 * Calculate the range of keys in the array being careful to skip
4696 	 * slots which are overridden with a deletion.
4697 	 */
4698 	key_beg = 0;
4699 	key_end = HAMMER2_KEY_MAX;
4700 	hammer2_spin_ex(&parent->core.spin);
4701 
4702 	for (;;) {
4703 		if (--maxloops == 0) {
4704 			panic("indkey_freemap shit %p %p:%d\n",
4705 			      parent, base, count);
4706 		}
4707 		chain = hammer2_combined_find(parent, base, count,
4708 					      &key_next,
4709 					      key_beg, key_end,
4710 					      &bref);
4711 
4712 		/*
4713 		 * Exhausted search
4714 		 */
4715 		if (bref == NULL)
4716 			break;
4717 
4718 		/*
4719 		 * Deleted object
4720 		 */
4721 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4722 			if (key_next == 0 || key_next > key_end)
4723 				break;
4724 			key_beg = key_next;
4725 			continue;
4726 		}
4727 
4728 		/*
4729 		 * Use the full live (not deleted) element for the scan
4730 		 * iteration.  HAMMER2 does not allow partial replacements.
4731 		 *
4732 		 * XXX should be built into hammer2_combined_find().
4733 		 */
4734 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4735 
4736 		/*
4737 		 * Expand our calculated key range (key, keybits) to fit
4738 		 * the scanned key.  nkeybits represents the full range
4739 		 * that we will later cut in half (two halves @ nkeybits - 1).
4740 		 */
4741 		nkeybits = keybits;
4742 		if (nkeybits < bref->keybits) {
4743 			if (bref->keybits > 64) {
4744 				kprintf("bad bref chain %p bref %p\n",
4745 					chain, bref);
4746 				Debugger("fubar");
4747 			}
4748 			nkeybits = bref->keybits;
4749 		}
4750 		while (nkeybits < 64 &&
4751 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
4752 		        (key ^ bref->key)) != 0) {
4753 			++nkeybits;
4754 		}
4755 
4756 		/*
4757 		 * If the new key range is larger we have to determine
4758 		 * which side of the new key range the existing keys fall
4759 		 * under by checking the high bit, then collapsing the
4760 		 * locount into the hicount or vise-versa.
4761 		 */
4762 		if (keybits != nkeybits) {
4763 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4764 				hicount += locount;
4765 				locount = 0;
4766 			} else {
4767 				locount += hicount;
4768 				hicount = 0;
4769 			}
4770 			keybits = nkeybits;
4771 		}
4772 
4773 		/*
4774 		 * The newly scanned key will be in the lower half or the
4775 		 * upper half of the (new) key range.
4776 		 */
4777 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4778 			++hicount;
4779 		else
4780 			++locount;
4781 
4782 		if (key_next == 0)
4783 			break;
4784 		key_beg = key_next;
4785 	}
4786 	hammer2_spin_unex(&parent->core.spin);
4787 	bref = NULL;	/* now invalid (safety) */
4788 
4789 	/*
4790 	 * Adjust keybits to represent half of the full range calculated
4791 	 * above (radix 63 max) for our new indirect block.
4792 	 */
4793 	--keybits;
4794 
4795 	/*
4796 	 * Expand keybits to hold at least ncount elements.  ncount will be
4797 	 * a power of 2.  This is to try to completely fill leaf nodes (at
4798 	 * least for keys which are not hashes).
4799 	 *
4800 	 * We aren't counting 'in' or 'out', we are counting 'high side'
4801 	 * and 'low side' based on the bit at (1LL << keybits).  We want
4802 	 * everything to be inside in these cases so shift it all to
4803 	 * the low or high side depending on the new high bit.
4804 	 */
4805 	while (((hammer2_key_t)1 << keybits) < ncount) {
4806 		++keybits;
4807 		if (key & ((hammer2_key_t)1 << keybits)) {
4808 			hicount += locount;
4809 			locount = 0;
4810 		} else {
4811 			locount += hicount;
4812 			hicount = 0;
4813 		}
4814 	}
4815 
4816 	if (hicount > locount)
4817 		key |= (hammer2_key_t)1 << keybits;
4818 	else
4819 		key &= ~(hammer2_key_t)1 << keybits;
4820 
4821 	*keyp = key;
4822 
4823 	return (keybits);
4824 }
4825 
4826 #else
4827 
4828 /*
4829  * Directory indirect blocks.
4830  *
4831  * Covers both the inode index (directory of inodes), and directory contents
4832  * (filenames hardlinked to inodes).
4833  *
4834  * Because directory keys are hashed we generally try to cut the space in
4835  * half.  We accomodate the inode index (which tends to have linearly
4836  * increasing inode numbers) by ensuring that the keyspace is at least large
4837  * enough to fill up the indirect block being created.
4838  */
4839 static int
4840 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4841 			 int keybits, hammer2_blockref_t *base, int count,
4842 			 int ncount)
4843 {
4844 	hammer2_blockref_t *bref;
4845 	hammer2_chain_t	*chain;
4846 	hammer2_key_t key_beg;
4847 	hammer2_key_t key_end;
4848 	hammer2_key_t key_next;
4849 	hammer2_key_t key;
4850 	int nkeybits;
4851 	int locount;
4852 	int hicount;
4853 	int maxloops = 300000;
4854 
4855 	/*
4856 	 * Shortcut if the parent is the inode.  In this situation the
4857 	 * parent has 4+1 directory entries and we are creating an indirect
4858 	 * block capable of holding many more.
4859 	 */
4860 	if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4861 		return 63;
4862 	}
4863 
4864 	key = *keyp;
4865 	locount = 0;
4866 	hicount = 0;
4867 
4868 	/*
4869 	 * Calculate the range of keys in the array being careful to skip
4870 	 * slots which are overridden with a deletion.
4871 	 */
4872 	key_beg = 0;
4873 	key_end = HAMMER2_KEY_MAX;
4874 	hammer2_spin_ex(&parent->core.spin);
4875 
4876 	for (;;) {
4877 		if (--maxloops == 0) {
4878 			panic("indkey_freemap shit %p %p:%d\n",
4879 			      parent, base, count);
4880 		}
4881 		chain = hammer2_combined_find(parent, base, count,
4882 					      &key_next,
4883 					      key_beg, key_end,
4884 					      &bref);
4885 
4886 		/*
4887 		 * Exhausted search
4888 		 */
4889 		if (bref == NULL)
4890 			break;
4891 
4892 		/*
4893 		 * Deleted object
4894 		 */
4895 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4896 			if (key_next == 0 || key_next > key_end)
4897 				break;
4898 			key_beg = key_next;
4899 			continue;
4900 		}
4901 
4902 		/*
4903 		 * Use the full live (not deleted) element for the scan
4904 		 * iteration.  HAMMER2 does not allow partial replacements.
4905 		 *
4906 		 * XXX should be built into hammer2_combined_find().
4907 		 */
4908 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4909 
4910 		/*
4911 		 * Expand our calculated key range (key, keybits) to fit
4912 		 * the scanned key.  nkeybits represents the full range
4913 		 * that we will later cut in half (two halves @ nkeybits - 1).
4914 		 */
4915 		nkeybits = keybits;
4916 		if (nkeybits < bref->keybits) {
4917 			if (bref->keybits > 64) {
4918 				kprintf("bad bref chain %p bref %p\n",
4919 					chain, bref);
4920 				Debugger("fubar");
4921 			}
4922 			nkeybits = bref->keybits;
4923 		}
4924 		while (nkeybits < 64 &&
4925 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
4926 		        (key ^ bref->key)) != 0) {
4927 			++nkeybits;
4928 		}
4929 
4930 		/*
4931 		 * If the new key range is larger we have to determine
4932 		 * which side of the new key range the existing keys fall
4933 		 * under by checking the high bit, then collapsing the
4934 		 * locount into the hicount or vise-versa.
4935 		 */
4936 		if (keybits != nkeybits) {
4937 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4938 				hicount += locount;
4939 				locount = 0;
4940 			} else {
4941 				locount += hicount;
4942 				hicount = 0;
4943 			}
4944 			keybits = nkeybits;
4945 		}
4946 
4947 		/*
4948 		 * The newly scanned key will be in the lower half or the
4949 		 * upper half of the (new) key range.
4950 		 */
4951 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4952 			++hicount;
4953 		else
4954 			++locount;
4955 
4956 		if (key_next == 0)
4957 			break;
4958 		key_beg = key_next;
4959 	}
4960 	hammer2_spin_unex(&parent->core.spin);
4961 	bref = NULL;	/* now invalid (safety) */
4962 
4963 	/*
4964 	 * Adjust keybits to represent half of the full range calculated
4965 	 * above (radix 63 max) for our new indirect block.
4966 	 */
4967 	--keybits;
4968 
4969 	/*
4970 	 * Expand keybits to hold at least ncount elements.  ncount will be
4971 	 * a power of 2.  This is to try to completely fill leaf nodes (at
4972 	 * least for keys which are not hashes).
4973 	 *
4974 	 * We aren't counting 'in' or 'out', we are counting 'high side'
4975 	 * and 'low side' based on the bit at (1LL << keybits).  We want
4976 	 * everything to be inside in these cases so shift it all to
4977 	 * the low or high side depending on the new high bit.
4978 	 */
4979 	while (((hammer2_key_t)1 << keybits) < ncount) {
4980 		++keybits;
4981 		if (key & ((hammer2_key_t)1 << keybits)) {
4982 			hicount += locount;
4983 			locount = 0;
4984 		} else {
4985 			locount += hicount;
4986 			hicount = 0;
4987 		}
4988 	}
4989 
4990 	if (hicount > locount)
4991 		key |= (hammer2_key_t)1 << keybits;
4992 	else
4993 		key &= ~(hammer2_key_t)1 << keybits;
4994 
4995 	*keyp = key;
4996 
4997 	return (keybits);
4998 }
4999 
5000 #endif
5001 
5002 /*
5003  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5004  * it exists.
5005  *
5006  * Both parent and chain must be locked exclusively.
5007  *
5008  * This function will modify the parent if the blockref requires removal
5009  * from the parent's block table.
5010  *
5011  * This function is NOT recursive.  Any entity already pushed into the
5012  * chain (such as an inode) may still need visibility into its contents,
5013  * as well as the ability to read and modify the contents.  For example,
5014  * for an unlinked file which is still open.
5015  *
5016  * Also note that the flusher is responsible for cleaning up empty
5017  * indirect blocks.
5018  */
5019 int
5020 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5021 		     hammer2_tid_t mtid, int flags)
5022 {
5023 	int error = 0;
5024 
5025 	KKASSERT(hammer2_mtx_owned(&chain->lock));
5026 
5027 	/*
5028 	 * Nothing to do if already marked.
5029 	 *
5030 	 * We need the spinlock on the core whos RBTREE contains chain
5031 	 * to protect against races.
5032 	 */
5033 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5034 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5035 			 chain->parent == parent);
5036 		error = _hammer2_chain_delete_helper(parent, chain,
5037 						     mtid, flags);
5038 	}
5039 
5040 	/*
5041 	 * Permanent deletions mark the chain as destroyed.
5042 	 *
5043 	 * NOTE: We do not setflush the chain unless the deletion is
5044 	 *	 permanent, since the deletion of a chain does not actually
5045 	 *	 require it to be flushed.
5046 	 */
5047 	if (error == 0) {
5048 		if (flags & HAMMER2_DELETE_PERMANENT) {
5049 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5050 			hammer2_chain_setflush(chain);
5051 		}
5052 	}
5053 
5054 	return error;
5055 }
5056 
5057 /*
5058  * Returns the index of the nearest element in the blockref array >= elm.
5059  * Returns (count) if no element could be found.
5060  *
5061  * Sets *key_nextp to the next key for loop purposes but does not modify
5062  * it if the next key would be higher than the current value of *key_nextp.
5063  * Note that *key_nexp can overflow to 0, which should be tested by the
5064  * caller.
5065  *
5066  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5067  *	     held through the operation.
5068  */
5069 static int
5070 hammer2_base_find(hammer2_chain_t *parent,
5071 		  hammer2_blockref_t *base, int count,
5072 		  hammer2_key_t *key_nextp,
5073 		  hammer2_key_t key_beg, hammer2_key_t key_end)
5074 {
5075 	hammer2_blockref_t *scan;
5076 	hammer2_key_t scan_end;
5077 	int i;
5078 	int limit;
5079 
5080 	/*
5081 	 * Require the live chain's already have their core's counted
5082 	 * so we can optimize operations.
5083 	 */
5084         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5085 
5086 	/*
5087 	 * Degenerate case
5088 	 */
5089 	if (count == 0 || base == NULL)
5090 		return(count);
5091 
5092 	/*
5093 	 * Sequential optimization using parent->cache_index.  This is
5094 	 * the most likely scenario.
5095 	 *
5096 	 * We can avoid trailing empty entries on live chains, otherwise
5097 	 * we might have to check the whole block array.
5098 	 */
5099 	i = parent->cache_index;	/* SMP RACE OK */
5100 	cpu_ccfence();
5101 	limit = parent->core.live_zero;
5102 	if (i >= limit)
5103 		i = limit - 1;
5104 	if (i < 0)
5105 		i = 0;
5106 	KKASSERT(i < count);
5107 
5108 	/*
5109 	 * Search backwards
5110 	 */
5111 	scan = &base[i];
5112 	while (i > 0 && (scan->type == 0 || scan->key > key_beg)) {
5113 		--scan;
5114 		--i;
5115 	}
5116 	parent->cache_index = i;
5117 
5118 	/*
5119 	 * Search forwards, stop when we find a scan element which
5120 	 * encloses the key or until we know that there are no further
5121 	 * elements.
5122 	 */
5123 	while (i < count) {
5124 		if (scan->type != 0) {
5125 			scan_end = scan->key +
5126 				   ((hammer2_key_t)1 << scan->keybits) - 1;
5127 			if (scan->key > key_beg || scan_end >= key_beg)
5128 				break;
5129 		}
5130 		if (i >= limit)
5131 			return (count);
5132 		++scan;
5133 		++i;
5134 	}
5135 	if (i != count) {
5136 		parent->cache_index = i;
5137 		if (i >= limit) {
5138 			i = count;
5139 		} else {
5140 			scan_end = scan->key +
5141 				   ((hammer2_key_t)1 << scan->keybits);
5142 			if (scan_end && (*key_nextp > scan_end ||
5143 					 *key_nextp == 0)) {
5144 				*key_nextp = scan_end;
5145 			}
5146 		}
5147 	}
5148 	return (i);
5149 }
5150 
5151 /*
5152  * Do a combined search and return the next match either from the blockref
5153  * array or from the in-memory chain.  Sets *bresp to the returned bref in
5154  * both cases, or sets it to NULL if the search exhausted.  Only returns
5155  * a non-NULL chain if the search matched from the in-memory chain.
5156  *
5157  * When no in-memory chain has been found and a non-NULL bref is returned
5158  * in *bresp.
5159  *
5160  *
5161  * The returned chain is not locked or referenced.  Use the returned bref
5162  * to determine if the search exhausted or not.  Iterate if the base find
5163  * is chosen but matches a deleted chain.
5164  *
5165  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5166  *	     held through the operation.
5167  */
5168 hammer2_chain_t *
5169 hammer2_combined_find(hammer2_chain_t *parent,
5170 		      hammer2_blockref_t *base, int count,
5171 		      hammer2_key_t *key_nextp,
5172 		      hammer2_key_t key_beg, hammer2_key_t key_end,
5173 		      hammer2_blockref_t **bresp)
5174 {
5175 	hammer2_blockref_t *bref;
5176 	hammer2_chain_t *chain;
5177 	int i;
5178 
5179 	/*
5180 	 * Lookup in block array and in rbtree.
5181 	 */
5182 	*key_nextp = key_end + 1;
5183 	i = hammer2_base_find(parent, base, count, key_nextp,
5184 			      key_beg, key_end);
5185 	chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5186 
5187 	/*
5188 	 * Neither matched
5189 	 */
5190 	if (i == count && chain == NULL) {
5191 		*bresp = NULL;
5192 		return(NULL);
5193 	}
5194 
5195 	/*
5196 	 * Only chain matched.
5197 	 */
5198 	if (i == count) {
5199 		bref = &chain->bref;
5200 		goto found;
5201 	}
5202 
5203 	/*
5204 	 * Only blockref matched.
5205 	 */
5206 	if (chain == NULL) {
5207 		bref = &base[i];
5208 		goto found;
5209 	}
5210 
5211 	/*
5212 	 * Both in-memory and blockref matched, select the nearer element.
5213 	 *
5214 	 * If both are flush with the left-hand side or both are the
5215 	 * same distance away, select the chain.  In this situation the
5216 	 * chain must have been loaded from the matching blockmap.
5217 	 */
5218 	if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5219 	    chain->bref.key == base[i].key) {
5220 		KKASSERT(chain->bref.key == base[i].key);
5221 		bref = &chain->bref;
5222 		goto found;
5223 	}
5224 
5225 	/*
5226 	 * Select the nearer key
5227 	 */
5228 	if (chain->bref.key < base[i].key) {
5229 		bref = &chain->bref;
5230 	} else {
5231 		bref = &base[i];
5232 		chain = NULL;
5233 	}
5234 
5235 	/*
5236 	 * If the bref is out of bounds we've exhausted our search.
5237 	 */
5238 found:
5239 	if (bref->key > key_end) {
5240 		*bresp = NULL;
5241 		chain = NULL;
5242 	} else {
5243 		*bresp = bref;
5244 	}
5245 	return(chain);
5246 }
5247 
5248 /*
5249  * Locate the specified block array element and delete it.  The element
5250  * must exist.
5251  *
5252  * The spin lock on the related chain must be held.
5253  *
5254  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5255  *	 need to be adjusted when we commit the media change.
5256  */
5257 void
5258 hammer2_base_delete(hammer2_chain_t *parent,
5259 		    hammer2_blockref_t *base, int count,
5260 		    hammer2_chain_t *chain)
5261 {
5262 	hammer2_blockref_t *elm = &chain->bref;
5263 	hammer2_blockref_t *scan;
5264 	hammer2_key_t key_next;
5265 	int i;
5266 
5267 	/*
5268 	 * Delete element.  Expect the element to exist.
5269 	 *
5270 	 * XXX see caller, flush code not yet sophisticated enough to prevent
5271 	 *     re-flushed in some cases.
5272 	 */
5273 	key_next = 0; /* max range */
5274 	i = hammer2_base_find(parent, base, count, &key_next,
5275 			      elm->key, elm->key);
5276 	scan = &base[i];
5277 	if (i == count || scan->type == 0 ||
5278 	    scan->key != elm->key ||
5279 	    ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
5280 	     scan->keybits != elm->keybits)) {
5281 		hammer2_spin_unex(&parent->core.spin);
5282 		panic("delete base %p element not found at %d/%d elm %p\n",
5283 		      base, i, count, elm);
5284 		return;
5285 	}
5286 
5287 	/*
5288 	 * Update stats and zero the entry.
5289 	 *
5290 	 * NOTE: Handle radix == 0 (0 bytes) case.
5291 	 */
5292 	if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5293 		parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5294 				(int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5295 	}
5296 	switch(scan->type) {
5297 	case HAMMER2_BREF_TYPE_INODE:
5298 		--parent->bref.embed.stats.inode_count;
5299 		/* fall through */
5300 	case HAMMER2_BREF_TYPE_DATA:
5301 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5302 			atomic_set_int(&chain->flags,
5303 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5304 		} else {
5305 			if (parent->bref.leaf_count)
5306 				--parent->bref.leaf_count;
5307 		}
5308 		/* fall through */
5309 	case HAMMER2_BREF_TYPE_INDIRECT:
5310 		if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5311 			parent->bref.embed.stats.data_count -=
5312 				scan->embed.stats.data_count;
5313 			parent->bref.embed.stats.inode_count -=
5314 				scan->embed.stats.inode_count;
5315 		}
5316 		if (scan->type == HAMMER2_BREF_TYPE_INODE)
5317 			break;
5318 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5319 			atomic_set_int(&chain->flags,
5320 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5321 		} else {
5322 			if (parent->bref.leaf_count <= scan->leaf_count)
5323 				parent->bref.leaf_count = 0;
5324 			else
5325 				parent->bref.leaf_count -= scan->leaf_count;
5326 		}
5327 		break;
5328 	case HAMMER2_BREF_TYPE_DIRENT:
5329 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5330 			atomic_set_int(&chain->flags,
5331 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5332 		} else {
5333 			if (parent->bref.leaf_count)
5334 				--parent->bref.leaf_count;
5335 		}
5336 	default:
5337 		break;
5338 	}
5339 
5340 	bzero(scan, sizeof(*scan));
5341 
5342 	/*
5343 	 * We can only optimize parent->core.live_zero for live chains.
5344 	 */
5345 	if (parent->core.live_zero == i + 1) {
5346 		while (--i >= 0 && base[i].type == 0)
5347 			;
5348 		parent->core.live_zero = i + 1;
5349 	}
5350 
5351 	/*
5352 	 * Clear appropriate blockmap flags in chain.
5353 	 */
5354 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
5355 					HAMMER2_CHAIN_BMAPUPD);
5356 }
5357 
5358 /*
5359  * Insert the specified element.  The block array must not already have the
5360  * element and must have space available for the insertion.
5361  *
5362  * The spin lock on the related chain must be held.
5363  *
5364  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5365  *	 need to be adjusted when we commit the media change.
5366  */
5367 void
5368 hammer2_base_insert(hammer2_chain_t *parent,
5369 		    hammer2_blockref_t *base, int count,
5370 		    hammer2_chain_t *chain, hammer2_blockref_t *elm)
5371 {
5372 	hammer2_key_t key_next;
5373 	hammer2_key_t xkey;
5374 	int i;
5375 	int j;
5376 	int k;
5377 	int l;
5378 	int u = 1;
5379 
5380 	/*
5381 	 * Insert new element.  Expect the element to not already exist
5382 	 * unless we are replacing it.
5383 	 *
5384 	 * XXX see caller, flush code not yet sophisticated enough to prevent
5385 	 *     re-flushed in some cases.
5386 	 */
5387 	key_next = 0; /* max range */
5388 	i = hammer2_base_find(parent, base, count, &key_next,
5389 			      elm->key, elm->key);
5390 
5391 	/*
5392 	 * Shortcut fill optimization, typical ordered insertion(s) may not
5393 	 * require a search.
5394 	 */
5395 	KKASSERT(i >= 0 && i <= count);
5396 
5397 	/*
5398 	 * Set appropriate blockmap flags in chain (if not NULL)
5399 	 */
5400 	if (chain)
5401 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
5402 
5403 	/*
5404 	 * Update stats and zero the entry
5405 	 */
5406 	if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5407 		parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5408 				(int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5409 	}
5410 	switch(elm->type) {
5411 	case HAMMER2_BREF_TYPE_INODE:
5412 		++parent->bref.embed.stats.inode_count;
5413 		/* fall through */
5414 	case HAMMER2_BREF_TYPE_DATA:
5415 		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5416 			++parent->bref.leaf_count;
5417 		/* fall through */
5418 	case HAMMER2_BREF_TYPE_INDIRECT:
5419 		if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5420 			parent->bref.embed.stats.data_count +=
5421 				elm->embed.stats.data_count;
5422 			parent->bref.embed.stats.inode_count +=
5423 				elm->embed.stats.inode_count;
5424 		}
5425 		if (elm->type == HAMMER2_BREF_TYPE_INODE)
5426 			break;
5427 		if (parent->bref.leaf_count + elm->leaf_count <
5428 		    HAMMER2_BLOCKREF_LEAF_MAX) {
5429 			parent->bref.leaf_count += elm->leaf_count;
5430 		} else {
5431 			parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5432 		}
5433 		break;
5434 	case HAMMER2_BREF_TYPE_DIRENT:
5435 		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5436 			++parent->bref.leaf_count;
5437 		break;
5438 	default:
5439 		break;
5440 	}
5441 
5442 
5443 	/*
5444 	 * We can only optimize parent->core.live_zero for live chains.
5445 	 */
5446 	if (i == count && parent->core.live_zero < count) {
5447 		i = parent->core.live_zero++;
5448 		base[i] = *elm;
5449 		return;
5450 	}
5451 
5452 	xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5453 	if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5454 		hammer2_spin_unex(&parent->core.spin);
5455 		panic("insert base %p overlapping elements at %d elm %p\n",
5456 		      base, i, elm);
5457 	}
5458 
5459 	/*
5460 	 * Try to find an empty slot before or after.
5461 	 */
5462 	j = i;
5463 	k = i;
5464 	while (j > 0 || k < count) {
5465 		--j;
5466 		if (j >= 0 && base[j].type == 0) {
5467 			if (j == i - 1) {
5468 				base[j] = *elm;
5469 			} else {
5470 				bcopy(&base[j+1], &base[j],
5471 				      (i - j - 1) * sizeof(*base));
5472 				base[i - 1] = *elm;
5473 			}
5474 			goto validate;
5475 		}
5476 		++k;
5477 		if (k < count && base[k].type == 0) {
5478 			bcopy(&base[i], &base[i+1],
5479 			      (k - i) * sizeof(hammer2_blockref_t));
5480 			base[i] = *elm;
5481 
5482 			/*
5483 			 * We can only update parent->core.live_zero for live
5484 			 * chains.
5485 			 */
5486 			if (parent->core.live_zero <= k)
5487 				parent->core.live_zero = k + 1;
5488 			u = 2;
5489 			goto validate;
5490 		}
5491 	}
5492 	panic("hammer2_base_insert: no room!");
5493 
5494 	/*
5495 	 * Debugging
5496 	 */
5497 validate:
5498 	key_next = 0;
5499 	for (l = 0; l < count; ++l) {
5500 		if (base[l].type) {
5501 			key_next = base[l].key +
5502 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5503 			break;
5504 		}
5505 	}
5506 	while (++l < count) {
5507 		if (base[l].type) {
5508 			if (base[l].key <= key_next)
5509 				panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5510 			key_next = base[l].key +
5511 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5512 
5513 		}
5514 	}
5515 
5516 }
5517 
5518 #if 0
5519 
5520 /*
5521  * Sort the blockref array for the chain.  Used by the flush code to
5522  * sort the blockref[] array.
5523  *
5524  * The chain must be exclusively locked AND spin-locked.
5525  */
5526 typedef hammer2_blockref_t *hammer2_blockref_p;
5527 
5528 static
5529 int
5530 hammer2_base_sort_callback(const void *v1, const void *v2)
5531 {
5532 	hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5533 	hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5534 
5535 	/*
5536 	 * Make sure empty elements are placed at the end of the array
5537 	 */
5538 	if (bref1->type == 0) {
5539 		if (bref2->type == 0)
5540 			return(0);
5541 		return(1);
5542 	} else if (bref2->type == 0) {
5543 		return(-1);
5544 	}
5545 
5546 	/*
5547 	 * Sort by key
5548 	 */
5549 	if (bref1->key < bref2->key)
5550 		return(-1);
5551 	if (bref1->key > bref2->key)
5552 		return(1);
5553 	return(0);
5554 }
5555 
5556 void
5557 hammer2_base_sort(hammer2_chain_t *chain)
5558 {
5559 	hammer2_blockref_t *base;
5560 	int count;
5561 
5562 	switch(chain->bref.type) {
5563 	case HAMMER2_BREF_TYPE_INODE:
5564 		/*
5565 		 * Special shortcut for embedded data returns the inode
5566 		 * itself.  Callers must detect this condition and access
5567 		 * the embedded data (the strategy code does this for us).
5568 		 *
5569 		 * This is only applicable to regular files and softlinks.
5570 		 */
5571 		if (chain->data->ipdata.meta.op_flags &
5572 		    HAMMER2_OPFLAG_DIRECTDATA) {
5573 			return;
5574 		}
5575 		base = &chain->data->ipdata.u.blockset.blockref[0];
5576 		count = HAMMER2_SET_COUNT;
5577 		break;
5578 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5579 	case HAMMER2_BREF_TYPE_INDIRECT:
5580 		/*
5581 		 * Optimize indirect blocks in the INITIAL state to avoid
5582 		 * I/O.
5583 		 */
5584 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5585 		base = &chain->data->npdata[0];
5586 		count = chain->bytes / sizeof(hammer2_blockref_t);
5587 		break;
5588 	case HAMMER2_BREF_TYPE_VOLUME:
5589 		base = &chain->data->voldata.sroot_blockset.blockref[0];
5590 		count = HAMMER2_SET_COUNT;
5591 		break;
5592 	case HAMMER2_BREF_TYPE_FREEMAP:
5593 		base = &chain->data->blkset.blockref[0];
5594 		count = HAMMER2_SET_COUNT;
5595 		break;
5596 	default:
5597 		kprintf("hammer2_chain_lookup: unrecognized "
5598 			"blockref(A) type: %d",
5599 		        chain->bref.type);
5600 		while (1)
5601 			tsleep(&base, 0, "dead", 0);
5602 		panic("hammer2_chain_lookup: unrecognized "
5603 		      "blockref(A) type: %d",
5604 		      chain->bref.type);
5605 		base = NULL;	/* safety */
5606 		count = 0;	/* safety */
5607 	}
5608 	kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5609 }
5610 
5611 #endif
5612 
5613 /*
5614  * Chain memory management
5615  */
5616 void
5617 hammer2_chain_wait(hammer2_chain_t *chain)
5618 {
5619 	tsleep(chain, 0, "chnflw", 1);
5620 }
5621 
5622 const hammer2_media_data_t *
5623 hammer2_chain_rdata(hammer2_chain_t *chain)
5624 {
5625 	KKASSERT(chain->data != NULL);
5626 	return (chain->data);
5627 }
5628 
5629 hammer2_media_data_t *
5630 hammer2_chain_wdata(hammer2_chain_t *chain)
5631 {
5632 	KKASSERT(chain->data != NULL);
5633 	return (chain->data);
5634 }
5635 
5636 /*
5637  * Set the check data for a chain.  This can be a heavy-weight operation
5638  * and typically only runs on-flush.  For file data check data is calculated
5639  * when the logical buffers are flushed.
5640  */
5641 void
5642 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5643 {
5644 	chain->bref.flags &= ~HAMMER2_BREF_FLAG_ZERO;
5645 
5646 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5647 	case HAMMER2_CHECK_NONE:
5648 		break;
5649 	case HAMMER2_CHECK_DISABLED:
5650 		break;
5651 	case HAMMER2_CHECK_ISCSI32:
5652 		chain->bref.check.iscsi32.value =
5653 			hammer2_icrc32(bdata, chain->bytes);
5654 		break;
5655 	case HAMMER2_CHECK_XXHASH64:
5656 		chain->bref.check.xxhash64.value =
5657 			XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5658 		break;
5659 	case HAMMER2_CHECK_SHA192:
5660 		{
5661 			SHA256_CTX hash_ctx;
5662 			union {
5663 				uint8_t digest[SHA256_DIGEST_LENGTH];
5664 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5665 			} u;
5666 
5667 			SHA256_Init(&hash_ctx);
5668 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5669 			SHA256_Final(u.digest, &hash_ctx);
5670 			u.digest64[2] ^= u.digest64[3];
5671 			bcopy(u.digest,
5672 			      chain->bref.check.sha192.data,
5673 			      sizeof(chain->bref.check.sha192.data));
5674 		}
5675 		break;
5676 	case HAMMER2_CHECK_FREEMAP:
5677 		chain->bref.check.freemap.icrc32 =
5678 			hammer2_icrc32(bdata, chain->bytes);
5679 		break;
5680 	default:
5681 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5682 			chain->bref.methods);
5683 		break;
5684 	}
5685 }
5686 
5687 int
5688 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5689 {
5690 	uint32_t check32;
5691 	uint64_t check64;
5692 	int r;
5693 
5694 	if (chain->bref.flags & HAMMER2_BREF_FLAG_ZERO)
5695 		return 1;
5696 
5697 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5698 	case HAMMER2_CHECK_NONE:
5699 		r = 1;
5700 		break;
5701 	case HAMMER2_CHECK_DISABLED:
5702 		r = 1;
5703 		break;
5704 	case HAMMER2_CHECK_ISCSI32:
5705 		check32 = hammer2_icrc32(bdata, chain->bytes);
5706 		r = (chain->bref.check.iscsi32.value == check32);
5707 		if (r == 0) {
5708 			kprintf("chain %016jx.%02x meth=%02x CHECK FAIL "
5709 				"(flags=%08x, bref/data %08x/%08x)\n",
5710 				chain->bref.data_off,
5711 				chain->bref.type,
5712 				chain->bref.methods,
5713 				chain->flags,
5714 				chain->bref.check.iscsi32.value,
5715 				check32);
5716 		}
5717 		hammer2_process_icrc32 += chain->bytes;
5718 		break;
5719 	case HAMMER2_CHECK_XXHASH64:
5720 		check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5721 		r = (chain->bref.check.xxhash64.value == check64);
5722 		if (r == 0) {
5723 			kprintf("chain %016jx.%02x key=%016jx "
5724 				"meth=%02x CHECK FAIL "
5725 				"(flags=%08x, bref/data %016jx/%016jx)\n",
5726 				chain->bref.data_off,
5727 				chain->bref.type,
5728 				chain->bref.key,
5729 				chain->bref.methods,
5730 				chain->flags,
5731 				chain->bref.check.xxhash64.value,
5732 				check64);
5733 		}
5734 		hammer2_process_xxhash64 += chain->bytes;
5735 		break;
5736 	case HAMMER2_CHECK_SHA192:
5737 		{
5738 			SHA256_CTX hash_ctx;
5739 			union {
5740 				uint8_t digest[SHA256_DIGEST_LENGTH];
5741 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5742 			} u;
5743 
5744 			SHA256_Init(&hash_ctx);
5745 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5746 			SHA256_Final(u.digest, &hash_ctx);
5747 			u.digest64[2] ^= u.digest64[3];
5748 			if (bcmp(u.digest,
5749 				 chain->bref.check.sha192.data,
5750 			         sizeof(chain->bref.check.sha192.data)) == 0) {
5751 				r = 1;
5752 			} else {
5753 				r = 0;
5754 				kprintf("chain %016jx.%02x meth=%02x "
5755 					"CHECK FAIL\n",
5756 					chain->bref.data_off,
5757 					chain->bref.type,
5758 					chain->bref.methods);
5759 			}
5760 		}
5761 		break;
5762 	case HAMMER2_CHECK_FREEMAP:
5763 		r = (chain->bref.check.freemap.icrc32 ==
5764 		     hammer2_icrc32(bdata, chain->bytes));
5765 		if (r == 0) {
5766 			kprintf("chain %016jx.%02x meth=%02x "
5767 				"CHECK FAIL\n",
5768 				chain->bref.data_off,
5769 				chain->bref.type,
5770 				chain->bref.methods);
5771 			kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
5772 				chain->bref.check.freemap.icrc32,
5773 				hammer2_icrc32(bdata, chain->bytes),
5774 					       chain->bytes);
5775 			if (chain->dio)
5776 				kprintf("dio %p buf %016jx,%d bdata %p/%p\n",
5777 					chain->dio, chain->dio->bp->b_loffset,
5778 					chain->dio->bp->b_bufsize, bdata,
5779 					chain->dio->bp->b_data);
5780 		}
5781 
5782 		break;
5783 	default:
5784 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5785 			chain->bref.methods);
5786 		r = 1;
5787 		break;
5788 	}
5789 	return r;
5790 }
5791 
5792 /*
5793  * Acquire the chain and parent representing the specified inode for the
5794  * device at the specified cluster index.
5795  *
5796  * The flags passed in are LOOKUP flags, not RESOLVE flags.
5797  *
5798  * If we are unable to locate the hardlink, INVAL is returned and *chainp
5799  * will be NULL.  *parentp may still be set error or not, or NULL if the
5800  * parent itself could not be resolved.
5801  *
5802  * Caller must pass-in a valid (and locked), or NULL *parentp or *chainp.
5803  * This function replaces *parentp and *chainp.  Generally speaking, if
5804  * the caller found a directory entry and wants the inode, the caller should
5805  * pass the parent,chain representing the directory entry so this function
5806  * can dispose of it properly to avoid any possible lock order reversals.
5807  */
5808 int
5809 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
5810 			 int clindex, int flags,
5811 			 hammer2_chain_t **parentp, hammer2_chain_t **chainp)
5812 {
5813 	hammer2_chain_t *parent;
5814 	hammer2_chain_t *rchain;
5815 	hammer2_key_t key_dummy;
5816 	int resolve_flags;
5817 	int error;
5818 
5819 	resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
5820 			HAMMER2_RESOLVE_SHARED : 0;
5821 
5822 	/*
5823 	 * Caller expects us to replace these.
5824 	 */
5825 	if (*chainp) {
5826 		hammer2_chain_unlock(*chainp);
5827 		hammer2_chain_drop(*chainp);
5828 		*chainp = NULL;
5829 	}
5830 	if (*parentp) {
5831 		hammer2_chain_unlock(*parentp);
5832 		hammer2_chain_drop(*parentp);
5833 		*parentp = NULL;
5834 	}
5835 
5836 	/*
5837 	 * Inodes hang off of the iroot (bit 63 is clear, differentiating
5838 	 * inodes from root directory entries in the key lookup).
5839 	 */
5840 	parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
5841 	rchain = NULL;
5842 	if (parent) {
5843 		rchain = hammer2_chain_lookup(&parent, &key_dummy,
5844 					      inum, inum,
5845 					      &error, flags);
5846 	} else {
5847 		error = HAMMER2_ERROR_EIO;
5848 	}
5849 	*parentp = parent;
5850 	*chainp = rchain;
5851 
5852 	return error;
5853 }
5854 
5855 /*
5856  * Used by the bulkscan code to snapshot the synchronized storage for
5857  * a volume, allowing it to be scanned concurrently against normal
5858  * operation.
5859  */
5860 hammer2_chain_t *
5861 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
5862 {
5863 	hammer2_chain_t *copy;
5864 
5865 	copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
5866 	copy->data = kmalloc(sizeof(copy->data->voldata),
5867 			     hmp->mchain,
5868 			     M_WAITOK | M_ZERO);
5869 	hammer2_voldata_lock(hmp);
5870 	copy->data->voldata = hmp->volsync;
5871 	hammer2_voldata_unlock(hmp);
5872 
5873 	return copy;
5874 }
5875 
5876 void
5877 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
5878 {
5879 	KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
5880 	KKASSERT(copy->data);
5881 	kfree(copy->data, copy->hmp->mchain);
5882 	copy->data = NULL;
5883 	atomic_add_long(&hammer2_chain_allocs, -1);
5884 	hammer2_chain_drop(copy);
5885 }
5886 
5887 /*
5888  * Returns non-zero if the chain (INODE or DIRENT) matches the
5889  * filename.
5890  */
5891 int
5892 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
5893 			  size_t name_len)
5894 {
5895 	const hammer2_inode_data_t *ripdata;
5896 	const hammer2_dirent_head_t *den;
5897 
5898 	if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5899 		ripdata = &chain->data->ipdata;
5900 		if (ripdata->meta.name_len == name_len &&
5901 		    bcmp(ripdata->filename, name, name_len) == 0) {
5902 			return 1;
5903 		}
5904 	}
5905 	if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
5906 	   chain->bref.embed.dirent.namlen == name_len) {
5907 		den = &chain->bref.embed.dirent;
5908 		if (name_len > sizeof(chain->bref.check.buf) &&
5909 		    bcmp(chain->data->buf, name, name_len) == 0) {
5910 			return 1;
5911 		}
5912 		if (name_len <= sizeof(chain->bref.check.buf) &&
5913 		    bcmp(chain->bref.check.buf, name, name_len) == 0) {
5914 			return 1;
5915 		}
5916 	}
5917 	return 0;
5918 }
5919