xref: /dragonfly/sys/vfs/hammer2/hammer2_chain.c (revision a1626531)
1 /*
2  * Copyright (c) 2011-2020 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62 
63 #include <crypto/sha2/sha2.h>
64 
65 #include "hammer2.h"
66 
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68 		hammer2_chain_t *parent,
69 		hammer2_key_t key, int keybits,
70 		hammer2_tid_t mtid, int for_type, int *errorp);
71 static void hammer2_chain_rename_obref(hammer2_chain_t **parentp,
72 		hammer2_chain_t *chain, hammer2_tid_t mtid,
73 		int flags, hammer2_blockref_t *obref);
74 static int hammer2_chain_delete_obref(hammer2_chain_t *parent,
75 		hammer2_chain_t *chain,
76 		hammer2_tid_t mtid, int flags,
77 		hammer2_blockref_t *obref);
78 static hammer2_io_t *hammer2_chain_drop_data(hammer2_chain_t *chain);
79 static hammer2_chain_t *hammer2_combined_find(
80 		hammer2_chain_t *parent,
81 		hammer2_blockref_t *base, int count,
82 		hammer2_key_t *key_nextp,
83 		hammer2_key_t key_beg, hammer2_key_t key_end,
84 		hammer2_blockref_t **bresp);
85 
86 /*
87  * There are many degenerate situations where an extreme rate of console
88  * output can occur from warnings and errors.  Make sure this output does
89  * not impede operations.
90  */
91 static struct krate krate_h2chk = { .freq = 5 };
92 static struct krate krate_h2me = { .freq = 1 };
93 static struct krate krate_h2em = { .freq = 1 };
94 
95 /*
96  * Basic RBTree for chains (core.rbtree).
97  */
98 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
99 
100 int
101 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
102 {
103 	hammer2_key_t c1_beg;
104 	hammer2_key_t c1_end;
105 	hammer2_key_t c2_beg;
106 	hammer2_key_t c2_end;
107 
108 	/*
109 	 * Compare chains.  Overlaps are not supposed to happen and catch
110 	 * any software issues early we count overlaps as a match.
111 	 */
112 	c1_beg = chain1->bref.key;
113 	c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
114 	c2_beg = chain2->bref.key;
115 	c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
116 
117 	if (c1_end < c2_beg)	/* fully to the left */
118 		return(-1);
119 	if (c1_beg > c2_end)	/* fully to the right */
120 		return(1);
121 	return(0);		/* overlap (must not cross edge boundary) */
122 }
123 
124 /*
125  * Assert that a chain has no media data associated with it.
126  */
127 static __inline void
128 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
129 {
130 	KKASSERT(chain->dio == NULL);
131 	if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
132 	    chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
133 	    chain->data) {
134 		panic("hammer2_chain_assert_no_data: chain %p still has data",
135 		    chain);
136 	}
137 }
138 
139 /*
140  * Make a chain visible to the flusher.  The flusher operates using a top-down
141  * recursion based on the ONFLUSH flag.  It locates MODIFIED and UPDATE chains,
142  * flushes them, and updates blocks back to the volume root.
143  *
144  * This routine sets the ONFLUSH flag upward from the triggering chain until
145  * it hits an inode root or the volume root.  Inode chains serve as inflection
146  * points, requiring the flusher to bridge across trees.  Inodes include
147  * regular inodes, PFS roots (pmp->iroot), and the media super root
148  * (spmp->iroot).
149  */
150 void
151 hammer2_chain_setflush(hammer2_chain_t *chain)
152 {
153 	hammer2_chain_t *parent;
154 
155 	if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
156 		hammer2_spin_sh(&chain->core.spin);
157 		while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
158 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
159 			if (chain->bref.type == HAMMER2_BREF_TYPE_INODE)
160 				break;
161 			if ((parent = chain->parent) == NULL)
162 				break;
163 			hammer2_spin_sh(&parent->core.spin);
164 			hammer2_spin_unsh(&chain->core.spin);
165 			chain = parent;
166 		}
167 		hammer2_spin_unsh(&chain->core.spin);
168 	}
169 }
170 
171 /*
172  * Allocate a new disconnected chain element representing the specified
173  * bref.  chain->refs is set to 1 and the passed bref is copied to
174  * chain->bref.  chain->bytes is derived from the bref.
175  *
176  * chain->pmp inherits pmp unless the chain is an inode (other than the
177  * super-root inode).
178  *
179  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
180  */
181 hammer2_chain_t *
182 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
183 		    hammer2_blockref_t *bref)
184 {
185 	hammer2_chain_t *chain;
186 	u_int bytes;
187 
188 	/*
189 	 * Special case - radix of 0 indicates a chain that does not
190 	 * need a data reference (context is completely embedded in the
191 	 * bref).
192 	 */
193 	if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
194 		bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
195 	else
196 		bytes = 0;
197 
198 	atomic_add_long(&hammer2_chain_allocs, 1);
199 
200 	/*
201 	 * Construct the appropriate system structure.
202 	 */
203 	switch(bref->type) {
204 	case HAMMER2_BREF_TYPE_DIRENT:
205 	case HAMMER2_BREF_TYPE_INODE:
206 	case HAMMER2_BREF_TYPE_INDIRECT:
207 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
208 	case HAMMER2_BREF_TYPE_DATA:
209 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
210 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
211 		break;
212 	case HAMMER2_BREF_TYPE_VOLUME:
213 	case HAMMER2_BREF_TYPE_FREEMAP:
214 		/*
215 		 * Only hammer2_chain_bulksnap() calls this function with these
216 		 * types.
217 		 */
218 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
219 		break;
220 	default:
221 		chain = NULL;
222 		panic("hammer2_chain_alloc: unrecognized blockref type: %d",
223 		      bref->type);
224 	}
225 
226 	/*
227 	 * Initialize the new chain structure.  pmp must be set to NULL for
228 	 * chains belonging to the super-root topology of a device mount.
229 	 */
230 	if (pmp == hmp->spmp)
231 		chain->pmp = NULL;
232 	else
233 		chain->pmp = pmp;
234 
235 	chain->hmp = hmp;
236 	chain->bref = *bref;
237 	chain->bytes = bytes;
238 	chain->refs = 1;
239 	chain->flags = HAMMER2_CHAIN_ALLOCATED;
240 	lockinit(&chain->diolk, "chdio", 0, 0);
241 
242 	/*
243 	 * Set the PFS boundary flag if this chain represents a PFS root.
244 	 */
245 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
246 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
247 	hammer2_chain_core_init(chain);
248 
249 	return (chain);
250 }
251 
252 /*
253  * Initialize a chain's core structure.  This structure used to be allocated
254  * but is now embedded.
255  *
256  * The core is not locked.  No additional refs on the chain are made.
257  * (trans) must not be NULL if (core) is not NULL.
258  */
259 void
260 hammer2_chain_core_init(hammer2_chain_t *chain)
261 {
262 	/*
263 	 * Fresh core under nchain (no multi-homing of ochain's
264 	 * sub-tree).
265 	 */
266 	RB_INIT(&chain->core.rbtree);	/* live chains */
267 	hammer2_mtx_init(&chain->lock, "h2chain");
268 }
269 
270 /*
271  * Add a reference to a chain element, preventing its destruction.
272  *
273  * (can be called with spinlock held)
274  */
275 void
276 hammer2_chain_ref(hammer2_chain_t *chain)
277 {
278 	if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
279 		/*
280 		 * Just flag that the chain was used and should be recycled
281 		 * on the LRU if it encounters it later.
282 		 */
283 		if (chain->flags & HAMMER2_CHAIN_ONLRU)
284 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
285 
286 #if 0
287 		/*
288 		 * REMOVED - reduces contention, lru_list is more heuristical
289 		 * now.
290 		 *
291 		 * 0->non-zero transition must ensure that chain is removed
292 		 * from the LRU list.
293 		 *
294 		 * NOTE: Already holding lru_spin here so we cannot call
295 		 *	 hammer2_chain_ref() to get it off lru_list, do
296 		 *	 it manually.
297 		 */
298 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
299 			hammer2_pfs_t *pmp = chain->pmp;
300 			hammer2_spin_ex(&pmp->lru_spin);
301 			if (chain->flags & HAMMER2_CHAIN_ONLRU) {
302 				atomic_add_int(&pmp->lru_count, -1);
303 				atomic_clear_int(&chain->flags,
304 						 HAMMER2_CHAIN_ONLRU);
305 				TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
306 			}
307 			hammer2_spin_unex(&pmp->lru_spin);
308 		}
309 #endif
310 	}
311 }
312 
313 /*
314  * Ref a locked chain and force the data to be held across an unlock.
315  * Chain must be currently locked.  The user of the chain who desires
316  * to release the hold must call hammer2_chain_lock_unhold() to relock
317  * and unhold the chain, then unlock normally, or may simply call
318  * hammer2_chain_drop_unhold() (which is safer against deadlocks).
319  */
320 void
321 hammer2_chain_ref_hold(hammer2_chain_t *chain)
322 {
323 	atomic_add_int(&chain->lockcnt, 1);
324 	hammer2_chain_ref(chain);
325 }
326 
327 /*
328  * Insert the chain in the core rbtree.
329  *
330  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
331  * chain is a special case used by the flush code that is placed on the
332  * unstaged deleted list to avoid confusing the live view.
333  */
334 #define HAMMER2_CHAIN_INSERT_SPIN	0x0001
335 #define HAMMER2_CHAIN_INSERT_LIVE	0x0002
336 #define HAMMER2_CHAIN_INSERT_RACE	0x0004
337 
338 static
339 int
340 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
341 		     int flags, int generation)
342 {
343 	hammer2_chain_t *xchain;
344 	int error = 0;
345 
346 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
347 		hammer2_spin_ex(&parent->core.spin);
348 
349 	/*
350 	 * Interlocked by spinlock, check for race
351 	 */
352 	if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
353 	    parent->core.generation != generation) {
354 		error = HAMMER2_ERROR_EAGAIN;
355 		goto failed;
356 	}
357 
358 	/*
359 	 * Insert chain
360 	 */
361 	xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
362 	KASSERT(xchain == NULL,
363 		("hammer2_chain_insert: collision %p %p (key=%016jx)",
364 		chain, xchain, chain->bref.key));
365 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
366 	chain->parent = parent;
367 	++parent->core.chain_count;
368 	++parent->core.generation;	/* XXX incs for _get() too, XXX */
369 
370 	/*
371 	 * We have to keep track of the effective live-view blockref count
372 	 * so the create code knows when to push an indirect block.
373 	 */
374 	if (flags & HAMMER2_CHAIN_INSERT_LIVE)
375 		atomic_add_int(&parent->core.live_count, 1);
376 failed:
377 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
378 		hammer2_spin_unex(&parent->core.spin);
379 	return error;
380 }
381 
382 /*
383  * Drop the caller's reference to the chain.  When the ref count drops to
384  * zero this function will try to disassociate the chain from its parent and
385  * deallocate it, then recursely drop the parent using the implied ref
386  * from the chain's chain->parent.
387  *
388  * Nobody should own chain's mutex on the 1->0 transition, unless this drop
389  * races an acquisition by another cpu.  Therefore we can loop if we are
390  * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
391  * race against another drop.
392  */
393 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
394 				int depth);
395 static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
396 
397 void
398 hammer2_chain_drop(hammer2_chain_t *chain)
399 {
400 	u_int refs;
401 
402 	if (hammer2_debug & 0x200000)
403 		Debugger("drop");
404 
405 	KKASSERT(chain->refs > 0);
406 
407 	while (chain) {
408 		refs = chain->refs;
409 		cpu_ccfence();
410 		KKASSERT(refs > 0);
411 
412 		if (refs == 1) {
413 			if (hammer2_mtx_ex_try(&chain->lock) == 0)
414 				chain = hammer2_chain_lastdrop(chain, 0);
415 			/* retry the same chain, or chain from lastdrop */
416 		} else {
417 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
418 				break;
419 			/* retry the same chain */
420 		}
421 		cpu_pause();
422 	}
423 }
424 
425 /*
426  * Unhold a held and probably not-locked chain, ensure that the data is
427  * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
428  * lock and then simply unlocking the chain.
429  */
430 void
431 hammer2_chain_unhold(hammer2_chain_t *chain)
432 {
433 	u_int lockcnt;
434 	int iter = 0;
435 
436 	for (;;) {
437 		lockcnt = chain->lockcnt;
438 		cpu_ccfence();
439 		if (lockcnt > 1) {
440 			if (atomic_cmpset_int(&chain->lockcnt,
441 					      lockcnt, lockcnt - 1)) {
442 				break;
443 			}
444 		} else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
445 			hammer2_chain_unlock(chain);
446 			break;
447 		} else {
448 			/*
449 			 * This situation can easily occur on SMP due to
450 			 * the gap inbetween the 1->0 transition and the
451 			 * final unlock.  We cannot safely block on the
452 			 * mutex because lockcnt might go above 1.
453 			 *
454 			 * XXX Sleep for one tick if it takes too long.
455 			 */
456 			if (++iter > 1000) {
457 				if (iter > 1000 + hz) {
458 					kprintf("hammer2: h2race1 %p\n", chain);
459 					iter = 1000;
460 				}
461 				tsleep(&iter, 0, "h2race1", 1);
462 			}
463 			cpu_pause();
464 		}
465 	}
466 }
467 
468 void
469 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
470 {
471 	hammer2_chain_unhold(chain);
472 	hammer2_chain_drop(chain);
473 }
474 
475 void
476 hammer2_chain_rehold(hammer2_chain_t *chain)
477 {
478 	hammer2_chain_lock(chain, HAMMER2_RESOLVE_SHARED);
479 	atomic_add_int(&chain->lockcnt, 1);
480 	hammer2_chain_unlock(chain);
481 }
482 
483 /*
484  * Handles the (potential) last drop of chain->refs from 1->0.  Called with
485  * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
486  * possible against refs and lockcnt.  We must dispose of the mutex on chain.
487  *
488  * This function returns an unlocked chain for recursive drop or NULL.  It
489  * can return the same chain if it determines it has raced another ref.
490  *
491  * --
492  *
493  * When two chains need to be recursively dropped we use the chain we
494  * would otherwise free to placehold the additional chain.  It's a bit
495  * convoluted but we can't just recurse without potentially blowing out
496  * the kernel stack.
497  *
498  * The chain cannot be freed if it has any children.
499  * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
500  * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
501  * Any dedup registration can remain intact.
502  *
503  * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
504  */
505 static
506 hammer2_chain_t *
507 hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
508 {
509 	hammer2_pfs_t *pmp;
510 	hammer2_dev_t *hmp;
511 	hammer2_chain_t *parent;
512 	hammer2_chain_t *rdrop;
513 
514 	/*
515 	 * We need chain's spinlock to interlock the sub-tree test.
516 	 * We already have chain's mutex, protecting chain->parent.
517 	 *
518 	 * Remember that chain->refs can be in flux.
519 	 */
520 	hammer2_spin_ex(&chain->core.spin);
521 
522 	if (chain->parent != NULL) {
523 		/*
524 		 * If the chain has a parent the UPDATE bit prevents scrapping
525 		 * as the chain is needed to properly flush the parent.  Try
526 		 * to complete the 1->0 transition and return NULL.  Retry
527 		 * (return chain) if we are unable to complete the 1->0
528 		 * transition, else return NULL (nothing more to do).
529 		 *
530 		 * If the chain has a parent the MODIFIED bit prevents
531 		 * scrapping.
532 		 *
533 		 * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
534 		 */
535 		if (chain->flags & (HAMMER2_CHAIN_UPDATE |
536 				    HAMMER2_CHAIN_MODIFIED)) {
537 			if (atomic_cmpset_int(&chain->refs, 1, 0)) {
538 				hammer2_spin_unex(&chain->core.spin);
539 				hammer2_chain_assert_no_data(chain);
540 				hammer2_mtx_unlock(&chain->lock);
541 				chain = NULL;
542 			} else {
543 				hammer2_spin_unex(&chain->core.spin);
544 				hammer2_mtx_unlock(&chain->lock);
545 			}
546 			return (chain);
547 		}
548 		/* spinlock still held */
549 	} else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
550 		   chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
551 		/*
552 		 * Retain the static vchain and fchain.  Clear bits that
553 		 * are not relevant.  Do not clear the MODIFIED bit,
554 		 * and certainly do not put it on the delayed-flush queue.
555 		 */
556 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
557 	} else {
558 		/*
559 		 * The chain has no parent and can be flagged for destruction.
560 		 * Since it has no parent, UPDATE can also be cleared.
561 		 */
562 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
563 		if (chain->flags & HAMMER2_CHAIN_UPDATE)
564 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
565 
566 		/*
567 		 * If the chain has children we must propagate the DESTROY
568 		 * flag downward and rip the disconnected topology apart.
569 		 * This is accomplished by calling hammer2_flush() on the
570 		 * chain.
571 		 *
572 		 * Any dedup is already handled by the underlying DIO, so
573 		 * we do not have to specifically flush it here.
574 		 */
575 		if (chain->core.chain_count) {
576 			hammer2_spin_unex(&chain->core.spin);
577 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
578 					     HAMMER2_FLUSH_ALL);
579 			hammer2_mtx_unlock(&chain->lock);
580 
581 			return(chain);	/* retry drop */
582 		}
583 
584 		/*
585 		 * Otherwise we can scrap the MODIFIED bit if it is set,
586 		 * and continue along the freeing path.
587 		 *
588 		 * Be sure to clean-out any dedup bits.  Without a parent
589 		 * this chain will no longer be visible to the flush code.
590 		 * Easy check data_off to avoid the volume root.
591 		 */
592 		if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
593 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
594 			atomic_add_long(&hammer2_count_modified_chains, -1);
595 			if (chain->pmp)
596 				hammer2_pfs_memory_wakeup(chain->pmp, -1);
597 		}
598 		/* spinlock still held */
599 	}
600 
601 	/* spinlock still held */
602 
603 	/*
604 	 * If any children exist we must leave the chain intact with refs == 0.
605 	 * They exist because chains are retained below us which have refs or
606 	 * may require flushing.
607 	 *
608 	 * Retry (return chain) if we fail to transition the refs to 0, else
609 	 * return NULL indication nothing more to do.
610 	 *
611 	 * Chains with children are NOT put on the LRU list.
612 	 */
613 	if (chain->core.chain_count) {
614 		if (atomic_cmpset_int(&chain->refs, 1, 0)) {
615 			hammer2_spin_unex(&chain->core.spin);
616 			hammer2_chain_assert_no_data(chain);
617 			hammer2_mtx_unlock(&chain->lock);
618 			chain = NULL;
619 		} else {
620 			hammer2_spin_unex(&chain->core.spin);
621 			hammer2_mtx_unlock(&chain->lock);
622 		}
623 		return (chain);
624 	}
625 	/* spinlock still held */
626 	/* no chains left under us */
627 
628 	/*
629 	 * chain->core has no children left so no accessors can get to our
630 	 * chain from there.  Now we have to lock the parent core to interlock
631 	 * remaining possible accessors that might bump chain's refs before
632 	 * we can safely drop chain's refs with intent to free the chain.
633 	 */
634 	hmp = chain->hmp;
635 	pmp = chain->pmp;	/* can be NULL */
636 	rdrop = NULL;
637 
638 	parent = chain->parent;
639 
640 	/*
641 	 * WARNING! chain's spin lock is still held here, and other spinlocks
642 	 *	    will be acquired and released in the code below.  We
643 	 *	    cannot be making fancy procedure calls!
644 	 */
645 
646 	/*
647 	 * We can cache the chain if it is associated with a pmp
648 	 * and not flagged as being destroyed or requesting a full
649 	 * release.  In this situation the chain is not removed
650 	 * from its parent, i.e. it can still be looked up.
651 	 *
652 	 * We intentionally do not cache DATA chains because these
653 	 * were likely used to load data into the logical buffer cache
654 	 * and will not be accessed again for some time.
655 	 */
656 	if ((chain->flags &
657 	     (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
658 	    chain->pmp &&
659 	    chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
660 		if (parent)
661 			hammer2_spin_ex(&parent->core.spin);
662 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
663 			/*
664 			 * 1->0 transition failed, retry.  Do not drop
665 			 * the chain's data yet!
666 			 */
667 			if (parent)
668 				hammer2_spin_unex(&parent->core.spin);
669 			hammer2_spin_unex(&chain->core.spin);
670 			hammer2_mtx_unlock(&chain->lock);
671 
672 			return(chain);
673 		}
674 
675 		/*
676 		 * Success
677 		 */
678 		hammer2_chain_assert_no_data(chain);
679 
680 		/*
681 		 * Make sure we are on the LRU list, clean up excessive
682 		 * LRU entries.  We can only really drop one but there might
683 		 * be other entries that we can remove from the lru_list
684 		 * without dropping.
685 		 *
686 		 * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
687 		 *	 chain->core.spin AND pmp->lru_spin are held, but
688 		 *	 can be safely cleared only holding pmp->lru_spin.
689 		 */
690 		if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
691 			hammer2_spin_ex(&pmp->lru_spin);
692 			if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
693 				atomic_set_int(&chain->flags,
694 					       HAMMER2_CHAIN_ONLRU);
695 				TAILQ_INSERT_TAIL(&pmp->lru_list,
696 						  chain, lru_node);
697 				atomic_add_int(&pmp->lru_count, 1);
698 			}
699 			if (pmp->lru_count < HAMMER2_LRU_LIMIT)
700 				depth = 1;	/* disable lru_list flush */
701 			hammer2_spin_unex(&pmp->lru_spin);
702 		} else {
703 			/* disable lru flush */
704 			depth = 1;
705 		}
706 
707 		if (parent) {
708 			hammer2_spin_unex(&parent->core.spin);
709 			parent = NULL;	/* safety */
710 		}
711 		hammer2_spin_unex(&chain->core.spin);
712 		hammer2_mtx_unlock(&chain->lock);
713 
714 		/*
715 		 * lru_list hysteresis (see above for depth overrides).
716 		 * Note that depth also prevents excessive lastdrop recursion.
717 		 */
718 		if (depth == 0)
719 			hammer2_chain_lru_flush(pmp);
720 
721 		return NULL;
722 		/* NOT REACHED */
723 	}
724 
725 	/*
726 	 * Make sure we are not on the LRU list.
727 	 */
728 	if (chain->flags & HAMMER2_CHAIN_ONLRU) {
729 		hammer2_spin_ex(&pmp->lru_spin);
730 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
731 			atomic_add_int(&pmp->lru_count, -1);
732 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
733 			TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
734 		}
735 		hammer2_spin_unex(&pmp->lru_spin);
736 	}
737 
738 	/*
739 	 * Spinlock the parent and try to drop the last ref on chain.
740 	 * On success determine if we should dispose of the chain
741 	 * (remove the chain from its parent, etc).
742 	 *
743 	 * (normal core locks are top-down recursive but we define
744 	 * core spinlocks as bottom-up recursive, so this is safe).
745 	 */
746 	if (parent) {
747 		hammer2_spin_ex(&parent->core.spin);
748 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
749 			/*
750 			 * 1->0 transition failed, retry.
751 			 */
752 			hammer2_spin_unex(&parent->core.spin);
753 			hammer2_spin_unex(&chain->core.spin);
754 			hammer2_mtx_unlock(&chain->lock);
755 
756 			return(chain);
757 		}
758 
759 		/*
760 		 * 1->0 transition successful, parent spin held to prevent
761 		 * new lookups, chain spinlock held to protect parent field.
762 		 * Remove chain from the parent.
763 		 *
764 		 * If the chain is being removed from the parent's btree but
765 		 * is not bmapped, we have to adjust live_count downward.  If
766 		 * it is bmapped then the blockref is retained in the parent
767 		 * as is its associated live_count.  This case can occur when
768 		 * a chain added to the topology is unable to flush and is
769 		 * then later deleted.
770 		 */
771 		if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
772 			if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
773 			    (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
774 				atomic_add_int(&parent->core.live_count, -1);
775 			}
776 			RB_REMOVE(hammer2_chain_tree,
777 				  &parent->core.rbtree, chain);
778 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
779 			--parent->core.chain_count;
780 			chain->parent = NULL;
781 		}
782 
783 		/*
784 		 * If our chain was the last chain in the parent's core the
785 		 * core is now empty and its parent might have to be
786 		 * re-dropped if it has 0 refs.
787 		 */
788 		if (parent->core.chain_count == 0) {
789 			rdrop = parent;
790 			atomic_add_int(&rdrop->refs, 1);
791 			/*
792 			if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
793 				rdrop = NULL;
794 			*/
795 		}
796 		hammer2_spin_unex(&parent->core.spin);
797 		parent = NULL;	/* safety */
798 		/* FALL THROUGH */
799 	} else {
800 		/*
801 		 * No-parent case.
802 		 */
803 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
804 			/*
805 			 * 1->0 transition failed, retry.
806 			 */
807 			hammer2_spin_unex(&parent->core.spin);
808 			hammer2_spin_unex(&chain->core.spin);
809 			hammer2_mtx_unlock(&chain->lock);
810 
811 			return(chain);
812 		}
813 	}
814 
815 	/*
816 	 * Successful 1->0 transition, no parent, no children... no way for
817 	 * anyone to ref this chain any more.  We can clean-up and free it.
818 	 *
819 	 * We still have the core spinlock, and core's chain_count is 0.
820 	 * Any parent spinlock is gone.
821 	 */
822 	hammer2_spin_unex(&chain->core.spin);
823 	hammer2_chain_assert_no_data(chain);
824 	hammer2_mtx_unlock(&chain->lock);
825 	KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
826 		 chain->core.chain_count == 0);
827 
828 	/*
829 	 * All locks are gone, no pointers remain to the chain, finish
830 	 * freeing it.
831 	 */
832 	KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
833 				  HAMMER2_CHAIN_MODIFIED)) == 0);
834 
835 	/*
836 	 * Once chain resources are gone we can use the now dead chain
837 	 * structure to placehold what might otherwise require a recursive
838 	 * drop, because we have potentially two things to drop and can only
839 	 * return one directly.
840 	 */
841 	if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
842 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
843 		chain->hmp = NULL;
844 		kfree(chain, hmp->mchain);
845 	}
846 
847 	/*
848 	 * Possible chaining loop when parent re-drop needed.
849 	 */
850 	return(rdrop);
851 }
852 
853 /*
854  * Heuristical flush of the LRU, try to reduce the number of entries
855  * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3).  This procedure is called
856  * only when lru_count exceeds HAMMER2_LRU_LIMIT.
857  */
858 static
859 void
860 hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
861 {
862 	hammer2_chain_t *chain;
863 
864 again:
865 	chain = NULL;
866 	hammer2_spin_ex(&pmp->lru_spin);
867 	while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
868 		/*
869 		 * Pick a chain off the lru_list, just recycle it quickly
870 		 * if LRUHINT is set (the chain was ref'd but left on
871 		 * the lru_list, so cycle to the end).
872 		 */
873 		chain = TAILQ_FIRST(&pmp->lru_list);
874 		TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
875 
876 		if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
877 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
878 			TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
879 			chain = NULL;
880 			continue;
881 		}
882 
883 		/*
884 		 * Ok, we are off the LRU.  We must adjust refs before we
885 		 * can safely clear the ONLRU flag.
886 		 */
887 		atomic_add_int(&pmp->lru_count, -1);
888 		if (atomic_cmpset_int(&chain->refs, 0, 1)) {
889 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
890 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
891 			break;
892 		}
893 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
894 		chain = NULL;
895 	}
896 	hammer2_spin_unex(&pmp->lru_spin);
897 	if (chain == NULL)
898 		return;
899 
900 	/*
901 	 * If we picked a chain off the lru list we may be able to lastdrop
902 	 * it.  Use a depth of 1 to prevent excessive lastdrop recursion.
903 	 */
904 	while (chain) {
905 		u_int refs;
906 
907 		refs = chain->refs;
908 		cpu_ccfence();
909 		KKASSERT(refs > 0);
910 
911 		if (refs == 1) {
912 			if (hammer2_mtx_ex_try(&chain->lock) == 0)
913 				chain = hammer2_chain_lastdrop(chain, 1);
914 			/* retry the same chain, or chain from lastdrop */
915 		} else {
916 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
917 				break;
918 			/* retry the same chain */
919 		}
920 		cpu_pause();
921 	}
922 	goto again;
923 }
924 
925 /*
926  * On last lock release.
927  */
928 static hammer2_io_t *
929 hammer2_chain_drop_data(hammer2_chain_t *chain)
930 {
931 	hammer2_io_t *dio;
932 
933 	if ((dio = chain->dio) != NULL) {
934 		chain->dio = NULL;
935 		chain->data = NULL;
936 	} else {
937 		switch(chain->bref.type) {
938 		case HAMMER2_BREF_TYPE_VOLUME:
939 		case HAMMER2_BREF_TYPE_FREEMAP:
940 			break;
941 		default:
942 			if (chain->data != NULL) {
943 				hammer2_spin_unex(&chain->core.spin);
944 				panic("chain data not null: "
945 				      "chain %p bref %016jx.%02x "
946 				      "refs %d parent %p dio %p data %p",
947 				      chain, chain->bref.data_off,
948 				      chain->bref.type, chain->refs,
949 				      chain->parent,
950 				      chain->dio, chain->data);
951 			}
952 			KKASSERT(chain->data == NULL);
953 			break;
954 		}
955 	}
956 	return dio;
957 }
958 
959 /*
960  * Lock a referenced chain element, acquiring its data with I/O if necessary,
961  * and specify how you would like the data to be resolved.
962  *
963  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
964  *
965  * The lock is allowed to recurse, multiple locking ops will aggregate
966  * the requested resolve types.  Once data is assigned it will not be
967  * removed until the last unlock.
968  *
969  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
970  *			   (typically used to avoid device/logical buffer
971  *			    aliasing for data)
972  *
973  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
974  *			   the INITIAL-create state (indirect blocks only).
975  *
976  *			   Do not resolve data elements for DATA chains.
977  *			   (typically used to avoid device/logical buffer
978  *			    aliasing for data)
979  *
980  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
981  *
982  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
983  *			   it will be locked exclusive.
984  *
985  * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking.  If
986  *			   the lock fails, EAGAIN is returned.
987  *
988  * NOTE: Embedded elements (volume header, inodes) are always resolved
989  *	 regardless.
990  *
991  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
992  *	 element will instantiate and zero its buffer, and flush it on
993  *	 release.
994  *
995  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
996  *	 so as not to instantiate a device buffer, which could alias against
997  *	 a logical file buffer.  However, if ALWAYS is specified the
998  *	 device buffer will be instantiated anyway.
999  *
1000  * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
1001  *	 case it can be either 0 or EAGAIN.
1002  *
1003  * WARNING! This function blocks on I/O if data needs to be fetched.  This
1004  *	    blocking can run concurrent with other compatible lock holders
1005  *	    who do not need data returning.  The lock is not upgraded to
1006  *	    exclusive during a data fetch, a separate bit is used to
1007  *	    interlock I/O.  However, an exclusive lock holder can still count
1008  *	    on being interlocked against an I/O fetch managed by a shared
1009  *	    lock holder.
1010  */
1011 int
1012 hammer2_chain_lock(hammer2_chain_t *chain, int how)
1013 {
1014 	KKASSERT(chain->refs > 0);
1015 
1016 	if (how & HAMMER2_RESOLVE_NONBLOCK) {
1017 		/*
1018 		 * We still have to bump lockcnt before acquiring the lock,
1019 		 * even for non-blocking operation, because the unlock code
1020 		 * live-loops on lockcnt == 1 when dropping the last lock.
1021 		 *
1022 		 * If the non-blocking operation fails we have to use an
1023 		 * unhold sequence to undo the mess.
1024 		 *
1025 		 * NOTE: LOCKAGAIN must always succeed without blocking,
1026 		 *	 even if NONBLOCK is specified.
1027 		 */
1028 		atomic_add_int(&chain->lockcnt, 1);
1029 		if (how & HAMMER2_RESOLVE_SHARED) {
1030 			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1031 				hammer2_mtx_sh_again(&chain->lock);
1032 			} else {
1033 				if (hammer2_mtx_sh_try(&chain->lock) != 0) {
1034 					hammer2_chain_unhold(chain);
1035 					return EAGAIN;
1036 				}
1037 			}
1038 		} else {
1039 			if (hammer2_mtx_ex_try(&chain->lock) != 0) {
1040 				hammer2_chain_unhold(chain);
1041 				return EAGAIN;
1042 			}
1043 		}
1044 	} else {
1045 		/*
1046 		 * Get the appropriate lock.  If LOCKAGAIN is flagged with
1047 		 * SHARED the caller expects a shared lock to already be
1048 		 * present and we are giving it another ref.  This case must
1049 		 * importantly not block if there is a pending exclusive lock
1050 		 * request.
1051 		 */
1052 		atomic_add_int(&chain->lockcnt, 1);
1053 		if (how & HAMMER2_RESOLVE_SHARED) {
1054 			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1055 				hammer2_mtx_sh_again(&chain->lock);
1056 			} else {
1057 				hammer2_mtx_sh(&chain->lock);
1058 			}
1059 		} else {
1060 			hammer2_mtx_ex(&chain->lock);
1061 		}
1062 	}
1063 
1064 	/*
1065 	 * If we already have a valid data pointer make sure the data is
1066 	 * synchronized to the current cpu, and then no further action is
1067 	 * necessary.
1068 	 */
1069 	if (chain->data) {
1070 		if (chain->dio)
1071 			hammer2_io_bkvasync(chain->dio);
1072 		return 0;
1073 	}
1074 
1075 	/*
1076 	 * Do we have to resolve the data?  This is generally only
1077 	 * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1078 	 * Other BREF types expects the data to be there.
1079 	 */
1080 	switch(how & HAMMER2_RESOLVE_MASK) {
1081 	case HAMMER2_RESOLVE_NEVER:
1082 		return 0;
1083 	case HAMMER2_RESOLVE_MAYBE:
1084 		if (chain->flags & HAMMER2_CHAIN_INITIAL)
1085 			return 0;
1086 		if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1087 			return 0;
1088 #if 0
1089 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1090 			return 0;
1091 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1092 			return 0;
1093 #endif
1094 		/* fall through */
1095 	case HAMMER2_RESOLVE_ALWAYS:
1096 	default:
1097 		break;
1098 	}
1099 
1100 	/*
1101 	 * Caller requires data
1102 	 */
1103 	hammer2_chain_load_data(chain);
1104 
1105 	return 0;
1106 }
1107 
1108 /*
1109  * Lock the chain, retain the hold, and drop the data persistence count.
1110  * The data should remain valid because we never transitioned lockcnt
1111  * through 0.
1112  */
1113 void
1114 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1115 {
1116 	hammer2_chain_lock(chain, how);
1117 	atomic_add_int(&chain->lockcnt, -1);
1118 }
1119 
1120 #if 0
1121 /*
1122  * Downgrade an exclusive chain lock to a shared chain lock.
1123  *
1124  * NOTE: There is no upgrade equivalent due to the ease of
1125  *	 deadlocks in that direction.
1126  */
1127 void
1128 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1129 {
1130 	hammer2_mtx_downgrade(&chain->lock);
1131 }
1132 #endif
1133 
1134 /*
1135  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1136  * may be of any type.
1137  *
1138  * Once chain->data is set it cannot be disposed of until all locks are
1139  * released.
1140  *
1141  * Make sure the data is synchronized to the current cpu.
1142  */
1143 void
1144 hammer2_chain_load_data(hammer2_chain_t *chain)
1145 {
1146 	hammer2_blockref_t *bref;
1147 	hammer2_dev_t *hmp;
1148 	hammer2_io_t *dio;
1149 	char *bdata;
1150 	int error;
1151 
1152 	/*
1153 	 * Degenerate case, data already present, or chain has no media
1154 	 * reference to load.
1155 	 */
1156 	KKASSERT(chain->lock.mtx_lock & MTX_MASK);
1157 	if (chain->data) {
1158 		if (chain->dio)
1159 			hammer2_io_bkvasync(chain->dio);
1160 		return;
1161 	}
1162 	if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1163 		return;
1164 
1165 	hmp = chain->hmp;
1166 	KKASSERT(hmp != NULL);
1167 
1168 	/*
1169 	 * Gain the IOINPROG bit, interlocked block.
1170 	 */
1171 	for (;;) {
1172 		u_int oflags;
1173 		u_int nflags;
1174 
1175 		oflags = chain->flags;
1176 		cpu_ccfence();
1177 		if (oflags & HAMMER2_CHAIN_IOINPROG) {
1178 			nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1179 			tsleep_interlock(&chain->flags, 0);
1180 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1181 				tsleep(&chain->flags, PINTERLOCKED,
1182 					"h2iocw", 0);
1183 			}
1184 			/* retry */
1185 		} else {
1186 			nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1187 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1188 				break;
1189 			}
1190 			/* retry */
1191 		}
1192 	}
1193 
1194 	/*
1195 	 * We own CHAIN_IOINPROG
1196 	 *
1197 	 * Degenerate case if we raced another load.
1198 	 */
1199 	if (chain->data) {
1200 		if (chain->dio)
1201 			hammer2_io_bkvasync(chain->dio);
1202 		goto done;
1203 	}
1204 
1205 	/*
1206 	 * We must resolve to a device buffer, either by issuing I/O or
1207 	 * by creating a zero-fill element.  We do not mark the buffer
1208 	 * dirty when creating a zero-fill element (the hammer2_chain_modify()
1209 	 * API must still be used to do that).
1210 	 *
1211 	 * The device buffer is variable-sized in powers of 2 down
1212 	 * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1213 	 * chunk always contains buffers of the same size. (XXX)
1214 	 *
1215 	 * The minimum physical IO size may be larger than the variable
1216 	 * block size.
1217 	 */
1218 	bref = &chain->bref;
1219 
1220 	/*
1221 	 * The getblk() optimization can only be used on newly created
1222 	 * elements if the physical block size matches the request.
1223 	 */
1224 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1225 		error = hammer2_io_new(hmp, bref->type,
1226 				       bref->data_off, chain->bytes,
1227 				       &chain->dio);
1228 	} else {
1229 		error = hammer2_io_bread(hmp, bref->type,
1230 					 bref->data_off, chain->bytes,
1231 					 &chain->dio);
1232 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
1233 	}
1234 	if (error) {
1235 		chain->error = HAMMER2_ERROR_EIO;
1236 		kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
1237 			(intmax_t)bref->data_off, error);
1238 		hammer2_io_bqrelse(&chain->dio);
1239 		goto done;
1240 	}
1241 	chain->error = 0;
1242 
1243 	/*
1244 	 * This isn't perfect and can be ignored on OSs which do not have
1245 	 * an indication as to whether a buffer is coming from cache or
1246 	 * if I/O was actually issued for the read.  TESTEDGOOD will work
1247 	 * pretty well without the B_IOISSUED logic because chains are
1248 	 * cached, but in that situation (without B_IOISSUED) it will not
1249 	 * detect whether a re-read via I/O is corrupted verses the original
1250 	 * read.
1251 	 *
1252 	 * We can't re-run the CRC on every fresh lock.  That would be
1253 	 * insanely expensive.
1254 	 *
1255 	 * If the underlying kernel buffer covers the entire chain we can
1256 	 * use the B_IOISSUED indication to determine if we have to re-run
1257 	 * the CRC on chain data for chains that managed to stay cached
1258 	 * across the kernel disposal of the original buffer.
1259 	 */
1260 	if ((dio = chain->dio) != NULL && dio->bp) {
1261 		struct buf *bp = dio->bp;
1262 
1263 		if (dio->psize == chain->bytes &&
1264 		    (bp->b_flags & B_IOISSUED)) {
1265 			atomic_clear_int(&chain->flags,
1266 					 HAMMER2_CHAIN_TESTEDGOOD);
1267 			bp->b_flags &= ~B_IOISSUED;
1268 		}
1269 	}
1270 
1271 	/*
1272 	 * NOTE: A locked chain's data cannot be modified without first
1273 	 *	 calling hammer2_chain_modify().
1274 	 */
1275 
1276 	/*
1277 	 * NOTE: hammer2_io_data() call issues bkvasync()
1278 	 */
1279 	bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1280 
1281 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1282 		/*
1283 		 * Clear INITIAL.  In this case we used io_new() and the
1284 		 * buffer has been zero'd and marked dirty.
1285 		 *
1286 		 * CHAIN_MODIFIED has not been set yet, and we leave it
1287 		 * that way for now.  Set a temporary CHAIN_NOTTESTED flag
1288 		 * to prevent hammer2_chain_testcheck() from trying to match
1289 		 * a check code that has not yet been generated.  This bit
1290 		 * should NOT end up on the actual media.
1291 		 */
1292 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1293 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
1294 	} else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1295 		/*
1296 		 * check data not currently synchronized due to
1297 		 * modification.  XXX assumes data stays in the buffer
1298 		 * cache, which might not be true (need biodep on flush
1299 		 * to calculate crc?  or simple crc?).
1300 		 */
1301 	} else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1302 		if (hammer2_chain_testcheck(chain, bdata) == 0) {
1303 			chain->error = HAMMER2_ERROR_CHECK;
1304 		} else {
1305 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1306 		}
1307 	}
1308 
1309 	/*
1310 	 * Setup the data pointer, either pointing it to an embedded data
1311 	 * structure and copying the data from the buffer, or pointing it
1312 	 * into the buffer.
1313 	 *
1314 	 * The buffer is not retained when copying to an embedded data
1315 	 * structure in order to avoid potential deadlocks or recursions
1316 	 * on the same physical buffer.
1317 	 *
1318 	 * WARNING! Other threads can start using the data the instant we
1319 	 *	    set chain->data non-NULL.
1320 	 */
1321 	switch (bref->type) {
1322 	case HAMMER2_BREF_TYPE_VOLUME:
1323 	case HAMMER2_BREF_TYPE_FREEMAP:
1324 		/*
1325 		 * Copy data from bp to embedded buffer
1326 		 */
1327 		panic("hammer2_chain_load_data: unresolved volume header");
1328 		break;
1329 	case HAMMER2_BREF_TYPE_DIRENT:
1330 		KKASSERT(chain->bytes != 0);
1331 		/* fall through */
1332 	case HAMMER2_BREF_TYPE_INODE:
1333 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1334 	case HAMMER2_BREF_TYPE_INDIRECT:
1335 	case HAMMER2_BREF_TYPE_DATA:
1336 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1337 	default:
1338 		/*
1339 		 * Point data at the device buffer and leave dio intact.
1340 		 */
1341 		chain->data = (void *)bdata;
1342 		break;
1343 	}
1344 
1345 	/*
1346 	 * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1347 	 */
1348 done:
1349 	for (;;) {
1350 		u_int oflags;
1351 		u_int nflags;
1352 
1353 		oflags = chain->flags;
1354 		nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1355 				    HAMMER2_CHAIN_IOSIGNAL);
1356 		KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1357 		if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1358 			if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1359 				wakeup(&chain->flags);
1360 			break;
1361 		}
1362 	}
1363 }
1364 
1365 /*
1366  * Unlock and deref a chain element.
1367  *
1368  * Remember that the presence of children under chain prevent the chain's
1369  * destruction but do not add additional references, so the dio will still
1370  * be dropped.
1371  */
1372 void
1373 hammer2_chain_unlock(hammer2_chain_t *chain)
1374 {
1375 	hammer2_io_t *dio;
1376 	u_int lockcnt;
1377 	int iter = 0;
1378 
1379 	/*
1380 	 * If multiple locks are present (or being attempted) on this
1381 	 * particular chain we can just unlock, drop refs, and return.
1382 	 *
1383 	 * Otherwise fall-through on the 1->0 transition.
1384 	 */
1385 	for (;;) {
1386 		lockcnt = chain->lockcnt;
1387 		KKASSERT(lockcnt > 0);
1388 		cpu_ccfence();
1389 		if (lockcnt > 1) {
1390 			if (atomic_cmpset_int(&chain->lockcnt,
1391 					      lockcnt, lockcnt - 1)) {
1392 				hammer2_mtx_unlock(&chain->lock);
1393 				return;
1394 			}
1395 		} else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1396 			/* while holding the mutex exclusively */
1397 			if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1398 				break;
1399 		} else {
1400 			/*
1401 			 * This situation can easily occur on SMP due to
1402 			 * the gap inbetween the 1->0 transition and the
1403 			 * final unlock.  We cannot safely block on the
1404 			 * mutex because lockcnt might go above 1.
1405 			 *
1406 			 * XXX Sleep for one tick if it takes too long.
1407 			 */
1408 			if (++iter > 1000) {
1409 				if (iter > 1000 + hz) {
1410 					kprintf("hammer2: h2race2 %p\n", chain);
1411 					iter = 1000;
1412 				}
1413 				tsleep(&iter, 0, "h2race2", 1);
1414 			}
1415 			cpu_pause();
1416 		}
1417 		/* retry */
1418 	}
1419 
1420 	/*
1421 	 * Last unlock / mutex upgraded to exclusive.  Drop the data
1422 	 * reference.
1423 	 */
1424 	dio = hammer2_chain_drop_data(chain);
1425 	if (dio)
1426 		hammer2_io_bqrelse(&dio);
1427 	hammer2_mtx_unlock(&chain->lock);
1428 }
1429 
1430 /*
1431  * Unlock and hold chain data intact
1432  */
1433 void
1434 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1435 {
1436 	atomic_add_int(&chain->lockcnt, 1);
1437 	hammer2_chain_unlock(chain);
1438 }
1439 
1440 /*
1441  * Helper to obtain the blockref[] array base and count for a chain.
1442  *
1443  * XXX Not widely used yet, various use cases need to be validated and
1444  *     converted to use this function.
1445  */
1446 static
1447 hammer2_blockref_t *
1448 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1449 {
1450 	hammer2_blockref_t *base;
1451 	int count;
1452 
1453 	if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1454 		base = NULL;
1455 
1456 		switch(parent->bref.type) {
1457 		case HAMMER2_BREF_TYPE_INODE:
1458 			count = HAMMER2_SET_COUNT;
1459 			break;
1460 		case HAMMER2_BREF_TYPE_INDIRECT:
1461 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1462 			count = parent->bytes / sizeof(hammer2_blockref_t);
1463 			break;
1464 		case HAMMER2_BREF_TYPE_VOLUME:
1465 			count = HAMMER2_SET_COUNT;
1466 			break;
1467 		case HAMMER2_BREF_TYPE_FREEMAP:
1468 			count = HAMMER2_SET_COUNT;
1469 			break;
1470 		default:
1471 			panic("hammer2_chain_base_and_count: "
1472 			      "unrecognized blockref type: %d",
1473 			      parent->bref.type);
1474 			count = 0;
1475 			break;
1476 		}
1477 	} else {
1478 		switch(parent->bref.type) {
1479 		case HAMMER2_BREF_TYPE_INODE:
1480 			base = &parent->data->ipdata.u.blockset.blockref[0];
1481 			count = HAMMER2_SET_COUNT;
1482 			break;
1483 		case HAMMER2_BREF_TYPE_INDIRECT:
1484 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1485 			base = &parent->data->npdata[0];
1486 			count = parent->bytes / sizeof(hammer2_blockref_t);
1487 			break;
1488 		case HAMMER2_BREF_TYPE_VOLUME:
1489 			base = &parent->data->voldata.
1490 					sroot_blockset.blockref[0];
1491 			count = HAMMER2_SET_COUNT;
1492 			break;
1493 		case HAMMER2_BREF_TYPE_FREEMAP:
1494 			base = &parent->data->blkset.blockref[0];
1495 			count = HAMMER2_SET_COUNT;
1496 			break;
1497 		default:
1498 			panic("hammer2_chain_base_and_count: "
1499 			      "unrecognized blockref type: %d",
1500 			      parent->bref.type);
1501 			count = 0;
1502 			break;
1503 		}
1504 	}
1505 	*countp = count;
1506 
1507 	return base;
1508 }
1509 
1510 /*
1511  * This counts the number of live blockrefs in a block array and
1512  * also calculates the point at which all remaining blockrefs are empty.
1513  * This routine can only be called on a live chain.
1514  *
1515  * Caller holds the chain locked, but possibly with a shared lock.  We
1516  * must use an exclusive spinlock to prevent corruption.
1517  *
1518  * NOTE: Flag is not set until after the count is complete, allowing
1519  *	 callers to test the flag without holding the spinlock.
1520  *
1521  * NOTE: If base is NULL the related chain is still in the INITIAL
1522  *	 state and there are no blockrefs to count.
1523  *
1524  * NOTE: live_count may already have some counts accumulated due to
1525  *	 creation and deletion and could even be initially negative.
1526  */
1527 void
1528 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1529 			 hammer2_blockref_t *base, int count)
1530 {
1531 	hammer2_spin_ex(&chain->core.spin);
1532         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1533 		if (base) {
1534 			while (--count >= 0) {
1535 				if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1536 					break;
1537 			}
1538 			chain->core.live_zero = count + 1;
1539 			while (count >= 0) {
1540 				if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1541 					atomic_add_int(&chain->core.live_count,
1542 						       1);
1543 				--count;
1544 			}
1545 		} else {
1546 			chain->core.live_zero = 0;
1547 		}
1548 		/* else do not modify live_count */
1549 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1550 	}
1551 	hammer2_spin_unex(&chain->core.spin);
1552 }
1553 
1554 /*
1555  * Resize the chain's physical storage allocation in-place.  This function does
1556  * not usually adjust the data pointer and must be followed by (typically) a
1557  * hammer2_chain_modify() call to copy any old data over and adjust the
1558  * data pointer.
1559  *
1560  * Chains can be resized smaller without reallocating the storage.  Resizing
1561  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1562  * asynchronously at a later time.
1563  *
1564  * An nradix value of 0 is special-cased to mean that the storage should
1565  * be disassociated, that is the chain is being resized to 0 bytes (not 1
1566  * byte).
1567  *
1568  * Must be passed an exclusively locked parent and chain.
1569  *
1570  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1571  * to avoid instantiating a device buffer that conflicts with the vnode data
1572  * buffer.  However, because H2 can compress or encrypt data, the chain may
1573  * have a dio assigned to it in those situations, and they do not conflict.
1574  *
1575  * XXX return error if cannot resize.
1576  */
1577 int
1578 hammer2_chain_resize(hammer2_chain_t *chain,
1579 		     hammer2_tid_t mtid, hammer2_off_t dedup_off,
1580 		     int nradix, int flags)
1581 {
1582 	hammer2_dev_t *hmp;
1583 	size_t obytes;
1584 	size_t nbytes;
1585 	int error;
1586 
1587 	hmp = chain->hmp;
1588 
1589 	/*
1590 	 * Only data and indirect blocks can be resized for now.
1591 	 * (The volu root, inodes, and freemap elements use a fixed size).
1592 	 */
1593 	KKASSERT(chain != &hmp->vchain);
1594 	KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1595 		 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1596 		 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1597 
1598 	/*
1599 	 * Nothing to do if the element is already the proper size
1600 	 */
1601 	obytes = chain->bytes;
1602 	nbytes = (nradix) ? (1U << nradix) : 0;
1603 	if (obytes == nbytes)
1604 		return (chain->error);
1605 
1606 	/*
1607 	 * Make sure the old data is instantiated so we can copy it.  If this
1608 	 * is a data block, the device data may be superfluous since the data
1609 	 * might be in a logical block, but compressed or encrypted data is
1610 	 * another matter.
1611 	 *
1612 	 * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1613 	 */
1614 	error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1615 	if (error)
1616 		return error;
1617 
1618 	/*
1619 	 * Reallocate the block, even if making it smaller (because different
1620 	 * block sizes may be in different regions).
1621 	 *
1622 	 * NOTE: Operation does not copy the data and may only be used
1623 	 *	 to resize data blocks in-place, or directory entry blocks
1624 	 *	 which are about to be modified in some manner.
1625 	 */
1626 	error = hammer2_freemap_alloc(chain, nbytes);
1627 	if (error)
1628 		return error;
1629 
1630 	chain->bytes = nbytes;
1631 
1632 	/*
1633 	 * We don't want the followup chain_modify() to try to copy data
1634 	 * from the old (wrong-sized) buffer.  It won't know how much to
1635 	 * copy.  This case should only occur during writes when the
1636 	 * originator already has the data to write in-hand.
1637 	 */
1638 	if (chain->dio) {
1639 		KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1640 			 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1641 		hammer2_io_brelse(&chain->dio);
1642 		chain->data = NULL;
1643 	}
1644 	return (chain->error);
1645 }
1646 
1647 /*
1648  * Set the chain modified so its data can be changed by the caller, or
1649  * install deduplicated data.  The caller must call this routine for each
1650  * set of modifications it makes, even if the chain is already flagged
1651  * MODIFIED.
1652  *
1653  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1654  * is a CLC (cluster level change) field and is not updated by parent
1655  * propagation during a flush.
1656  *
1657  * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1658  * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1659  * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1660  * remains unmodified with its old data ref intact and chain->error
1661  * unchanged.
1662  *
1663  *				 Dedup Handling
1664  *
1665  * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1666  * even if the chain is still flagged MODIFIED.  In this case the chain's
1667  * DEDUPABLE flag will be cleared once the new storage has been assigned.
1668  *
1669  * If the caller passes a non-zero dedup_off we will use it to assign the
1670  * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1671  * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1672  * must not modify the data content upon return.
1673  */
1674 int
1675 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1676 		     hammer2_off_t dedup_off, int flags)
1677 {
1678 	hammer2_blockref_t obref;
1679 	hammer2_dev_t *hmp;
1680 	hammer2_io_t *dio;
1681 	int error;
1682 	int wasinitial;
1683 	int setmodified;
1684 	int setupdate;
1685 	int newmod;
1686 	char *bdata;
1687 
1688 	hmp = chain->hmp;
1689 	obref = chain->bref;
1690 	KKASSERT((chain->flags & HAMMER2_CHAIN_FICTITIOUS) == 0);
1691 	KKASSERT(chain->lock.mtx_lock & MTX_EXCLUSIVE);
1692 
1693 	/*
1694 	 * Data is not optional for freemap chains (we must always be sure
1695 	 * to copy the data on COW storage allocations).
1696 	 */
1697 	if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1698 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1699 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1700 			 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1701 	}
1702 
1703 	/*
1704 	 * Data must be resolved if already assigned, unless explicitly
1705 	 * flagged otherwise.  If we cannot safety load the data the
1706 	 * modification fails and we return early.
1707 	 */
1708 	if (chain->data == NULL && chain->bytes != 0 &&
1709 	    (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1710 	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1711 		hammer2_chain_load_data(chain);
1712 		if (chain->error)
1713 			return (chain->error);
1714 	}
1715 	error = 0;
1716 
1717 	/*
1718 	 * Set MODIFIED to indicate that the chain has been modified.  A new
1719 	 * allocation is required when modifying a chain.
1720 	 *
1721 	 * Set UPDATE to ensure that the blockref is updated in the parent.
1722 	 *
1723 	 * If MODIFIED is already set determine if we can reuse the assigned
1724 	 * data block or if we need a new data block.
1725 	 */
1726 	if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1727 		/*
1728 		 * Must set modified bit.
1729 		 */
1730 		atomic_add_long(&hammer2_count_modified_chains, 1);
1731 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1732 		hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1733 		setmodified = 1;
1734 
1735 		/*
1736 		 * We may be able to avoid a copy-on-write if the chain's
1737 		 * check mode is set to NONE and the chain's current
1738 		 * modify_tid is beyond the last explicit snapshot tid.
1739 		 *
1740 		 * This implements HAMMER2's overwrite-in-place feature.
1741 		 *
1742 		 * NOTE! This data-block cannot be used as a de-duplication
1743 		 *	 source when the check mode is set to NONE.
1744 		 */
1745 		if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1746 		     chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1747 		    (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1748 		    (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1749 		    HAMMER2_DEC_CHECK(chain->bref.methods) ==
1750 		     HAMMER2_CHECK_NONE &&
1751 		    chain->pmp &&
1752 		    chain->bref.modify_tid >
1753 		     chain->pmp->iroot->meta.pfs_lsnap_tid) {
1754 			/*
1755 			 * Sector overwrite allowed.
1756 			 */
1757 			newmod = 0;
1758 		} else if ((hmp->hflags & HMNT2_EMERG) &&
1759 			   chain->pmp &&
1760 			   chain->bref.modify_tid >
1761 			    chain->pmp->iroot->meta.pfs_lsnap_tid) {
1762 			/*
1763 			 * If in emergency delete mode then do a modify-in-
1764 			 * place on any chain type belonging to the PFS as
1765 			 * long as it doesn't mess up a snapshot.  We might
1766 			 * be forced to do this anyway a little further down
1767 			 * in the code if the allocation fails.
1768 			 *
1769 			 * Also note that in emergency mode, these modify-in-
1770 			 * place operations are NOT SAFE.  A storage failure,
1771 			 * power failure, or panic can corrupt the filesystem.
1772 			 */
1773 			newmod = 0;
1774 		} else {
1775 			/*
1776 			 * Sector overwrite not allowed, must copy-on-write.
1777 			 */
1778 			newmod = 1;
1779 		}
1780 	} else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1781 		/*
1782 		 * If the modified chain was registered for dedup we need
1783 		 * a new allocation.  This only happens for delayed-flush
1784 		 * chains (i.e. which run through the front-end buffer
1785 		 * cache).
1786 		 */
1787 		newmod = 1;
1788 		setmodified = 0;
1789 	} else {
1790 		/*
1791 		 * Already flagged modified, no new allocation is needed.
1792 		 */
1793 		newmod = 0;
1794 		setmodified = 0;
1795 	}
1796 
1797 	/*
1798 	 * Flag parent update required.
1799 	 */
1800 	if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1801 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1802 		setupdate = 1;
1803 	} else {
1804 		setupdate = 0;
1805 	}
1806 
1807 	/*
1808 	 * The XOP code returns held but unlocked focus chains.  This
1809 	 * prevents the chain from being destroyed but does not prevent
1810 	 * it from being modified.  diolk is used to interlock modifications
1811 	 * against XOP frontend accesses to the focus.
1812 	 *
1813 	 * This allows us to theoretically avoid deadlocking the frontend
1814 	 * if one of the backends lock up by not formally locking the
1815 	 * focused chain in the frontend.  In addition, the synchronization
1816 	 * code relies on this mechanism to avoid deadlocking concurrent
1817 	 * synchronization threads.
1818 	 */
1819 	lockmgr(&chain->diolk, LK_EXCLUSIVE);
1820 
1821 	/*
1822 	 * The modification or re-modification requires an allocation and
1823 	 * possible COW.  If an error occurs, the previous content and data
1824 	 * reference is retained and the modification fails.
1825 	 *
1826 	 * If dedup_off is non-zero, the caller is requesting a deduplication
1827 	 * rather than a modification.  The MODIFIED bit is not set and the
1828 	 * data offset is set to the deduplication offset.  The data cannot
1829 	 * be modified.
1830 	 *
1831 	 * NOTE: The dedup offset is allowed to be in a partially free state
1832 	 *	 and we must be sure to reset it to a fully allocated state
1833 	 *	 to force two bulkfree passes to free it again.
1834 	 *
1835 	 * NOTE: Only applicable when chain->bytes != 0.
1836 	 *
1837 	 * XXX can a chain already be marked MODIFIED without a data
1838 	 * assignment?  If not, assert here instead of testing the case.
1839 	 */
1840 	if (chain != &hmp->vchain && chain != &hmp->fchain &&
1841 	    chain->bytes) {
1842 		if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1843 		    newmod
1844 		) {
1845 			/*
1846 			 * NOTE: We do not have to remove the dedup
1847 			 *	 registration because the area is still
1848 			 *	 allocated and the underlying DIO will
1849 			 *	 still be flushed.
1850 			 */
1851 			if (dedup_off) {
1852 				chain->bref.data_off = dedup_off;
1853 				chain->bytes = 1 << (dedup_off &
1854 						     HAMMER2_OFF_MASK_RADIX);
1855 				chain->error = 0;
1856 				atomic_clear_int(&chain->flags,
1857 						 HAMMER2_CHAIN_MODIFIED);
1858 				atomic_add_long(&hammer2_count_modified_chains,
1859 						-1);
1860 				if (chain->pmp) {
1861 					hammer2_pfs_memory_wakeup(
1862 						chain->pmp, -1);
1863 				}
1864 				hammer2_freemap_adjust(hmp, &chain->bref,
1865 						HAMMER2_FREEMAP_DORECOVER);
1866 				atomic_set_int(&chain->flags,
1867 						HAMMER2_CHAIN_DEDUPABLE);
1868 			} else {
1869 				error = hammer2_freemap_alloc(chain,
1870 							      chain->bytes);
1871 				atomic_clear_int(&chain->flags,
1872 						HAMMER2_CHAIN_DEDUPABLE);
1873 
1874 				/*
1875 				 * If we are unable to allocate a new block
1876 				 * but we are in emergency mode, issue a
1877 				 * warning to the console and reuse the same
1878 				 * block.
1879 				 *
1880 				 * We behave as if the allocation were
1881 				 * successful.
1882 				 *
1883 				 * THIS IS IMPORTANT: These modifications
1884 				 * are virtually guaranteed to corrupt any
1885 				 * snapshots related to this filesystem.
1886 				 */
1887 				if (error && (hmp->hflags & HMNT2_EMERG)) {
1888 					error = 0;
1889 					chain->bref.flags |=
1890 						HAMMER2_BREF_FLAG_EMERG_MIP;
1891 
1892 					krateprintf(&krate_h2em,
1893 					    "hammer2: Emergency Mode WARNING: "
1894 					    "Operation will likely corrupt "
1895 					    "related snapshot: "
1896 					    "%016jx.%02x key=%016jx\n",
1897 					    chain->bref.data_off,
1898 					    chain->bref.type,
1899 					    chain->bref.key);
1900 				} else if (error == 0) {
1901 					chain->bref.flags &=
1902 						~HAMMER2_BREF_FLAG_EMERG_MIP;
1903 				}
1904 			}
1905 		}
1906 	}
1907 
1908 	/*
1909 	 * Stop here if error.  We have to undo any flag bits we might
1910 	 * have set above.
1911 	 */
1912 	if (error) {
1913 		if (setmodified) {
1914 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1915 			atomic_add_long(&hammer2_count_modified_chains, -1);
1916 			if (chain->pmp)
1917 				hammer2_pfs_memory_wakeup(chain->pmp, -1);
1918 		}
1919 		if (setupdate) {
1920 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1921 		}
1922 		lockmgr(&chain->diolk, LK_RELEASE);
1923 
1924 		return error;
1925 	}
1926 
1927 	/*
1928 	 * Update mirror_tid and modify_tid.  modify_tid is only updated
1929 	 * if not passed as zero (during flushes, parent propagation passes
1930 	 * the value 0).
1931 	 *
1932 	 * NOTE: chain->pmp could be the device spmp.
1933 	 */
1934 	chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1935 	if (mtid)
1936 		chain->bref.modify_tid = mtid;
1937 
1938 	/*
1939 	 * Set BMAPUPD to tell the flush code that an existing blockmap entry
1940 	 * requires updating as well as to tell the delete code that the
1941 	 * chain's blockref might not exactly match (in terms of physical size
1942 	 * or block offset) the one in the parent's blocktable.  The base key
1943 	 * of course will still match.
1944 	 */
1945 	if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1946 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1947 
1948 	/*
1949 	 * Short-cut data block handling when the caller does not need an
1950 	 * actual data reference to (aka OPTDATA), as long as the chain does
1951 	 * not already have a data pointer to the data and no de-duplication
1952 	 * occurred.
1953 	 *
1954 	 * This generally means that the modifications are being done via the
1955 	 * logical buffer cache.
1956 	 *
1957 	 * NOTE: If deduplication occurred we have to run through the data
1958 	 *	 stuff to clear INITIAL, and the caller will likely want to
1959 	 *	 assign the check code anyway.  Leaving INITIAL set on a
1960 	 *	 dedup can be deadly (it can cause the block to be zero'd!).
1961 	 *
1962 	 * This code also handles bytes == 0 (most dirents).
1963 	 */
1964 	if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1965 	    (flags & HAMMER2_MODIFY_OPTDATA) &&
1966 	    chain->data == NULL) {
1967 		if (dedup_off == 0) {
1968 			KKASSERT(chain->dio == NULL);
1969 			goto skip2;
1970 		}
1971 	}
1972 
1973 	/*
1974 	 * Clearing the INITIAL flag (for indirect blocks) indicates that
1975 	 * we've processed the uninitialized storage allocation.
1976 	 *
1977 	 * If this flag is already clear we are likely in a copy-on-write
1978 	 * situation but we have to be sure NOT to bzero the storage if
1979 	 * no data is present.
1980 	 *
1981 	 * Clearing of NOTTESTED is allowed if the MODIFIED bit is set,
1982 	 */
1983 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1984 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1985 		wasinitial = 1;
1986 	} else {
1987 		wasinitial = 0;
1988 	}
1989 
1990 	/*
1991 	 * Instantiate data buffer and possibly execute COW operation
1992 	 */
1993 	switch(chain->bref.type) {
1994 	case HAMMER2_BREF_TYPE_VOLUME:
1995 	case HAMMER2_BREF_TYPE_FREEMAP:
1996 		/*
1997 		 * The data is embedded, no copy-on-write operation is
1998 		 * needed.
1999 		 */
2000 		KKASSERT(chain->dio == NULL);
2001 		break;
2002 	case HAMMER2_BREF_TYPE_DIRENT:
2003 		/*
2004 		 * The data might be fully embedded.
2005 		 */
2006 		if (chain->bytes == 0) {
2007 			KKASSERT(chain->dio == NULL);
2008 			break;
2009 		}
2010 		/* fall through */
2011 	case HAMMER2_BREF_TYPE_INODE:
2012 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2013 	case HAMMER2_BREF_TYPE_DATA:
2014 	case HAMMER2_BREF_TYPE_INDIRECT:
2015 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2016 		/*
2017 		 * Perform the copy-on-write operation
2018 		 *
2019 		 * zero-fill or copy-on-write depending on whether
2020 		 * chain->data exists or not and set the dirty state for
2021 		 * the new buffer.  hammer2_io_new() will handle the
2022 		 * zero-fill.
2023 		 *
2024 		 * If a dedup_off was supplied this is an existing block
2025 		 * and no COW, copy, or further modification is required.
2026 		 */
2027 		KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
2028 
2029 		if (wasinitial && dedup_off == 0) {
2030 			error = hammer2_io_new(hmp, chain->bref.type,
2031 					       chain->bref.data_off,
2032 					       chain->bytes, &dio);
2033 		} else {
2034 			error = hammer2_io_bread(hmp, chain->bref.type,
2035 						 chain->bref.data_off,
2036 						 chain->bytes, &dio);
2037 		}
2038 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
2039 
2040 		/*
2041 		 * If an I/O error occurs make sure callers cannot accidently
2042 		 * modify the old buffer's contents and corrupt the filesystem.
2043 		 *
2044 		 * NOTE: hammer2_io_data() call issues bkvasync()
2045 		 */
2046 		if (error) {
2047 			kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
2048 				hmp);
2049 			chain->error = HAMMER2_ERROR_EIO;
2050 			hammer2_io_brelse(&dio);
2051 			hammer2_io_brelse(&chain->dio);
2052 			chain->data = NULL;
2053 			break;
2054 		}
2055 		chain->error = 0;
2056 		bdata = hammer2_io_data(dio, chain->bref.data_off);
2057 
2058 		if (chain->data) {
2059 			/*
2060 			 * COW (unless a dedup).
2061 			 */
2062 			KKASSERT(chain->dio != NULL);
2063 			if (chain->data != (void *)bdata && dedup_off == 0) {
2064 				bcopy(chain->data, bdata, chain->bytes);
2065 			}
2066 		} else if (wasinitial == 0 && dedup_off == 0) {
2067 			/*
2068 			 * We have a problem.  We were asked to COW but
2069 			 * we don't have any data to COW with!
2070 			 */
2071 			panic("hammer2_chain_modify: having a COW %p\n",
2072 			      chain);
2073 		}
2074 
2075 		/*
2076 		 * Retire the old buffer, replace with the new.  Dirty or
2077 		 * redirty the new buffer.
2078 		 *
2079 		 * WARNING! The system buffer cache may have already flushed
2080 		 *	    the buffer, so we must be sure to [re]dirty it
2081 		 *	    for further modification.
2082 		 *
2083 		 *	    If dedup_off was supplied, the caller is not
2084 		 *	    expected to make any further modification to the
2085 		 *	    buffer.
2086 		 *
2087 		 * WARNING! hammer2_get_gdata() assumes dio never transitions
2088 		 *	    through NULL in order to optimize away unnecessary
2089 		 *	    diolk operations.
2090 		 */
2091 		{
2092 			hammer2_io_t *tio;
2093 
2094 			if ((tio = chain->dio) != NULL)
2095 				hammer2_io_bqrelse(&tio);
2096 			chain->data = (void *)bdata;
2097 			chain->dio = dio;
2098 			if (dedup_off == 0)
2099 				hammer2_io_setdirty(dio);
2100 		}
2101 		break;
2102 	default:
2103 		panic("hammer2_chain_modify: illegal non-embedded type %d",
2104 		      chain->bref.type);
2105 		break;
2106 
2107 	}
2108 skip2:
2109 	/*
2110 	 * setflush on parent indicating that the parent must recurse down
2111 	 * to us.  Do not call on chain itself which might already have it
2112 	 * set.
2113 	 */
2114 	if (chain->parent)
2115 		hammer2_chain_setflush(chain->parent);
2116 	lockmgr(&chain->diolk, LK_RELEASE);
2117 
2118 	return (chain->error);
2119 }
2120 
2121 /*
2122  * Modify the chain associated with an inode.
2123  */
2124 int
2125 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2126 			hammer2_tid_t mtid, int flags)
2127 {
2128 	int error;
2129 
2130 	hammer2_inode_modify(ip);
2131 	error = hammer2_chain_modify(chain, mtid, 0, flags);
2132 
2133 	return error;
2134 }
2135 
2136 /*
2137  * Volume header data locks
2138  */
2139 void
2140 hammer2_voldata_lock(hammer2_dev_t *hmp)
2141 {
2142 	lockmgr(&hmp->vollk, LK_EXCLUSIVE);
2143 }
2144 
2145 void
2146 hammer2_voldata_unlock(hammer2_dev_t *hmp)
2147 {
2148 	lockmgr(&hmp->vollk, LK_RELEASE);
2149 }
2150 
2151 void
2152 hammer2_voldata_modify(hammer2_dev_t *hmp)
2153 {
2154 	if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
2155 		atomic_add_long(&hammer2_count_modified_chains, 1);
2156 		atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
2157 		hammer2_pfs_memory_inc(hmp->vchain.pmp);
2158 	}
2159 }
2160 
2161 /*
2162  * This function returns the chain at the nearest key within the specified
2163  * range.  The returned chain will be referenced but not locked.
2164  *
2165  * This function will recurse through chain->rbtree as necessary and will
2166  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
2167  * the iteration value is less than the current value of *key_nextp.
2168  *
2169  * The caller should use (*key_nextp) to calculate the actual range of
2170  * the returned element, which will be (key_beg to *key_nextp - 1), because
2171  * there might be another element which is superior to the returned element
2172  * and overlaps it.
2173  *
2174  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2175  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
2176  * it will wind up being (key_end + 1).
2177  *
2178  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
2179  *	     held through the operation.
2180  */
2181 struct hammer2_chain_find_info {
2182 	hammer2_chain_t		*best;
2183 	hammer2_key_t		key_beg;
2184 	hammer2_key_t		key_end;
2185 	hammer2_key_t		key_next;
2186 };
2187 
2188 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2189 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2190 
2191 static
2192 hammer2_chain_t *
2193 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2194 			  hammer2_key_t key_beg, hammer2_key_t key_end)
2195 {
2196 	struct hammer2_chain_find_info info;
2197 
2198 	info.best = NULL;
2199 	info.key_beg = key_beg;
2200 	info.key_end = key_end;
2201 	info.key_next = *key_nextp;
2202 
2203 	RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2204 		hammer2_chain_find_cmp, hammer2_chain_find_callback,
2205 		&info);
2206 	*key_nextp = info.key_next;
2207 #if 0
2208 	kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2209 		parent, key_beg, key_end, *key_nextp);
2210 #endif
2211 
2212 	return (info.best);
2213 }
2214 
2215 static
2216 int
2217 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2218 {
2219 	struct hammer2_chain_find_info *info = data;
2220 	hammer2_key_t child_beg;
2221 	hammer2_key_t child_end;
2222 
2223 	child_beg = child->bref.key;
2224 	child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2225 
2226 	if (child_end < info->key_beg)
2227 		return(-1);
2228 	if (child_beg > info->key_end)
2229 		return(1);
2230 	return(0);
2231 }
2232 
2233 static
2234 int
2235 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2236 {
2237 	struct hammer2_chain_find_info *info = data;
2238 	hammer2_chain_t *best;
2239 	hammer2_key_t child_end;
2240 
2241 	/*
2242 	 * WARNING! Layerq is scanned forwards, exact matches should keep
2243 	 *	    the existing info->best.
2244 	 */
2245 	if ((best = info->best) == NULL) {
2246 		/*
2247 		 * No previous best.  Assign best
2248 		 */
2249 		info->best = child;
2250 	} else if (best->bref.key <= info->key_beg &&
2251 		   child->bref.key <= info->key_beg) {
2252 		/*
2253 		 * Illegal overlap.
2254 		 */
2255 		KKASSERT(0);
2256 		/*info->best = child;*/
2257 	} else if (child->bref.key < best->bref.key) {
2258 		/*
2259 		 * Child has a nearer key and best is not flush with key_beg.
2260 		 * Set best to child.  Truncate key_next to the old best key.
2261 		 */
2262 		info->best = child;
2263 		if (info->key_next > best->bref.key || info->key_next == 0)
2264 			info->key_next = best->bref.key;
2265 	} else if (child->bref.key == best->bref.key) {
2266 		/*
2267 		 * If our current best is flush with the child then this
2268 		 * is an illegal overlap.
2269 		 *
2270 		 * key_next will automatically be limited to the smaller of
2271 		 * the two end-points.
2272 		 */
2273 		KKASSERT(0);
2274 		info->best = child;
2275 	} else {
2276 		/*
2277 		 * Keep the current best but truncate key_next to the child's
2278 		 * base.
2279 		 *
2280 		 * key_next will also automatically be limited to the smaller
2281 		 * of the two end-points (probably not necessary for this case
2282 		 * but we do it anyway).
2283 		 */
2284 		if (info->key_next > child->bref.key || info->key_next == 0)
2285 			info->key_next = child->bref.key;
2286 	}
2287 
2288 	/*
2289 	 * Always truncate key_next based on child's end-of-range.
2290 	 */
2291 	child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2292 	if (child_end && (info->key_next > child_end || info->key_next == 0))
2293 		info->key_next = child_end;
2294 
2295 	return(0);
2296 }
2297 
2298 /*
2299  * Retrieve the specified chain from a media blockref, creating the
2300  * in-memory chain structure which reflects it.  The returned chain is
2301  * held and locked according to (how) (HAMMER2_RESOLVE_*).  The caller must
2302  * handle crc-checks and so forth, and should check chain->error before
2303  * assuming that the data is good.
2304  *
2305  * To handle insertion races pass the INSERT_RACE flag along with the
2306  * generation number of the core.  NULL will be returned if the generation
2307  * number changes before we have a chance to insert the chain.  Insert
2308  * races can occur because the parent might be held shared.
2309  *
2310  * Caller must hold the parent locked shared or exclusive since we may
2311  * need the parent's bref array to find our block.
2312  *
2313  * WARNING! chain->pmp is always set to NULL for any chain representing
2314  *	    part of the super-root topology.
2315  */
2316 hammer2_chain_t *
2317 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2318 		  hammer2_blockref_t *bref, int how)
2319 {
2320 	hammer2_dev_t *hmp = parent->hmp;
2321 	hammer2_chain_t *chain;
2322 	int error;
2323 
2324 	/*
2325 	 * Allocate a chain structure representing the existing media
2326 	 * entry.  Resulting chain has one ref and is not locked.
2327 	 */
2328 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2329 		chain = hammer2_chain_alloc(hmp, NULL, bref);
2330 	else
2331 		chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2332 	/* ref'd chain returned */
2333 
2334 	/*
2335 	 * Flag that the chain is in the parent's blockmap so delete/flush
2336 	 * knows what to do with it.
2337 	 */
2338 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2339 
2340 	/*
2341 	 * chain must be locked to avoid unexpected ripouts
2342 	 */
2343 	hammer2_chain_lock(chain, how);
2344 
2345 	/*
2346 	 * Link the chain into its parent.  A spinlock is required to safely
2347 	 * access the RBTREE, and it is possible to collide with another
2348 	 * hammer2_chain_get() operation because the caller might only hold
2349 	 * a shared lock on the parent.
2350 	 *
2351 	 * NOTE: Get races can occur quite often when we distribute
2352 	 *	 asynchronous read-aheads across multiple threads.
2353 	 */
2354 	KKASSERT(parent->refs > 0);
2355 	error = hammer2_chain_insert(parent, chain,
2356 				     HAMMER2_CHAIN_INSERT_SPIN |
2357 				     HAMMER2_CHAIN_INSERT_RACE,
2358 				     generation);
2359 	if (error) {
2360 		KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2361 		/*kprintf("chain %p get race\n", chain);*/
2362 		hammer2_chain_unlock(chain);
2363 		hammer2_chain_drop(chain);
2364 		chain = NULL;
2365 	} else {
2366 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2367 	}
2368 
2369 	/*
2370 	 * Return our new chain referenced but not locked, or NULL if
2371 	 * a race occurred.
2372 	 */
2373 	return (chain);
2374 }
2375 
2376 /*
2377  * Lookup initialization/completion API
2378  */
2379 hammer2_chain_t *
2380 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2381 {
2382 	hammer2_chain_ref(parent);
2383 	if (flags & HAMMER2_LOOKUP_SHARED) {
2384 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2385 					   HAMMER2_RESOLVE_SHARED);
2386 	} else {
2387 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2388 	}
2389 	return (parent);
2390 }
2391 
2392 void
2393 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2394 {
2395 	if (parent) {
2396 		hammer2_chain_unlock(parent);
2397 		hammer2_chain_drop(parent);
2398 	}
2399 }
2400 
2401 /*
2402  * Take the locked chain and return a locked parent.  The chain remains
2403  * locked on return, but may have to be temporarily unlocked to acquire
2404  * the parent.  Because of this, (chain) must be stable and cannot be
2405  * deleted while it was temporarily unlocked (typically means that (chain)
2406  * is an inode).
2407  *
2408  * Pass HAMMER2_RESOLVE_* flags in flags.
2409  *
2410  * This will work even if the chain is errored, and the caller can check
2411  * parent->error on return if desired since the parent will be locked.
2412  *
2413  * This function handles the lock order reversal.
2414  */
2415 hammer2_chain_t *
2416 hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2417 {
2418 	hammer2_chain_t *parent;
2419 
2420 	/*
2421 	 * Be careful of order, chain must be unlocked before parent
2422 	 * is locked below to avoid a deadlock.  Try it trivially first.
2423 	 */
2424 	parent = chain->parent;
2425 	if (parent == NULL)
2426 		panic("hammer2_chain_getparent: no parent");
2427 	hammer2_chain_ref(parent);
2428 	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2429 		return parent;
2430 
2431 	for (;;) {
2432 		hammer2_chain_unlock(chain);
2433 		hammer2_chain_lock(parent, flags);
2434 		hammer2_chain_lock(chain, flags);
2435 
2436 		/*
2437 		 * Parent relinking races are quite common.  We have to get
2438 		 * it right or we will blow up the block table.
2439 		 */
2440 		if (chain->parent == parent)
2441 			break;
2442 		hammer2_chain_unlock(parent);
2443 		hammer2_chain_drop(parent);
2444 		cpu_ccfence();
2445 		parent = chain->parent;
2446 		if (parent == NULL)
2447 			panic("hammer2_chain_getparent: no parent");
2448 		hammer2_chain_ref(parent);
2449 	}
2450 	return parent;
2451 }
2452 
2453 /*
2454  * Take the locked chain and return a locked parent.  The chain is unlocked
2455  * and dropped.  *chainp is set to the returned parent as a convenience.
2456  * Pass HAMMER2_RESOLVE_* flags in flags.
2457  *
2458  * This will work even if the chain is errored, and the caller can check
2459  * parent->error on return if desired since the parent will be locked.
2460  *
2461  * The chain does NOT need to be stable.  We use a tracking structure
2462  * to track the expected parent if the chain is deleted out from under us.
2463  *
2464  * This function handles the lock order reversal.
2465  */
2466 hammer2_chain_t *
2467 hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2468 {
2469 	hammer2_chain_t *chain;
2470 	hammer2_chain_t *parent;
2471 	struct hammer2_reptrack reptrack;
2472 	struct hammer2_reptrack **repp;
2473 
2474 	/*
2475 	 * Be careful of order, chain must be unlocked before parent
2476 	 * is locked below to avoid a deadlock.  Try it trivially first.
2477 	 */
2478 	chain = *chainp;
2479 	parent = chain->parent;
2480 	if (parent == NULL) {
2481 		hammer2_spin_unex(&chain->core.spin);
2482 		panic("hammer2_chain_repparent: no parent");
2483 	}
2484 	hammer2_chain_ref(parent);
2485 	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2486 		hammer2_chain_unlock(chain);
2487 		hammer2_chain_drop(chain);
2488 		*chainp = parent;
2489 
2490 		return parent;
2491 	}
2492 
2493 	/*
2494 	 * Ok, now it gets a bit nasty.  There are multiple situations where
2495 	 * the parent might be in the middle of a deletion, or where the child
2496 	 * (chain) might be deleted the instant we let go of its lock.
2497 	 * We can potentially end up in a no-win situation!
2498 	 *
2499 	 * In particular, the indirect_maintenance() case can cause these
2500 	 * situations.
2501 	 *
2502 	 * To deal with this we install a reptrack structure in the parent
2503 	 * This reptrack structure 'owns' the parent ref and will automatically
2504 	 * migrate to the parent's parent if the parent is deleted permanently.
2505 	 */
2506 	hammer2_spin_init(&reptrack.spin, "h2reptrk");
2507 	reptrack.chain = parent;
2508 	hammer2_chain_ref(parent);		/* for the reptrack */
2509 
2510 	hammer2_spin_ex(&parent->core.spin);
2511 	reptrack.next = parent->core.reptrack;
2512 	parent->core.reptrack = &reptrack;
2513 	hammer2_spin_unex(&parent->core.spin);
2514 
2515 	hammer2_chain_unlock(chain);
2516 	hammer2_chain_drop(chain);
2517 	chain = NULL;	/* gone */
2518 
2519 	/*
2520 	 * At the top of this loop, chain is gone and parent is refd both
2521 	 * by us explicitly AND via our reptrack.  We are attempting to
2522 	 * lock parent.
2523 	 */
2524 	for (;;) {
2525 		hammer2_chain_lock(parent, flags);
2526 
2527 		if (reptrack.chain == parent)
2528 			break;
2529 		hammer2_chain_unlock(parent);
2530 		hammer2_chain_drop(parent);
2531 
2532 		kprintf("hammer2: debug REPTRACK %p->%p\n",
2533 			parent, reptrack.chain);
2534 		hammer2_spin_ex(&reptrack.spin);
2535 		parent = reptrack.chain;
2536 		hammer2_chain_ref(parent);
2537 		hammer2_spin_unex(&reptrack.spin);
2538 	}
2539 
2540 	/*
2541 	 * Once parent is locked and matches our reptrack, our reptrack
2542 	 * will be stable and we have our parent.  We can unlink our
2543 	 * reptrack.
2544 	 *
2545 	 * WARNING!  Remember that the chain lock might be shared.  Chains
2546 	 *	     locked shared have stable parent linkages.
2547 	 */
2548 	hammer2_spin_ex(&parent->core.spin);
2549 	repp = &parent->core.reptrack;
2550 	while (*repp != &reptrack)
2551 		repp = &(*repp)->next;
2552 	*repp = reptrack.next;
2553 	hammer2_spin_unex(&parent->core.spin);
2554 
2555 	hammer2_chain_drop(parent);	/* reptrack ref */
2556 	*chainp = parent;		/* return parent lock+ref */
2557 
2558 	return parent;
2559 }
2560 
2561 /*
2562  * Dispose of any linked reptrack structures in (chain) by shifting them to
2563  * (parent).  Both (chain) and (parent) must be exclusively locked.
2564  *
2565  * This is interlocked against any children of (chain) on the other side.
2566  * No children so remain as-of when this is called so we can test
2567  * core.reptrack without holding the spin-lock.
2568  *
2569  * Used whenever the caller intends to permanently delete chains related
2570  * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2571  * where the chains underneath the node being deleted are given a new parent
2572  * above the node being deleted.
2573  */
2574 static
2575 void
2576 hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2577 {
2578 	struct hammer2_reptrack *reptrack;
2579 
2580 	KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2581 	while (chain->core.reptrack) {
2582 		hammer2_spin_ex(&parent->core.spin);
2583 		hammer2_spin_ex(&chain->core.spin);
2584 		reptrack = chain->core.reptrack;
2585 		if (reptrack == NULL) {
2586 			hammer2_spin_unex(&chain->core.spin);
2587 			hammer2_spin_unex(&parent->core.spin);
2588 			break;
2589 		}
2590 		hammer2_spin_ex(&reptrack->spin);
2591 		chain->core.reptrack = reptrack->next;
2592 		reptrack->chain = parent;
2593 		reptrack->next = parent->core.reptrack;
2594 		parent->core.reptrack = reptrack;
2595 		hammer2_chain_ref(parent);		/* reptrack */
2596 
2597 		hammer2_spin_unex(&chain->core.spin);
2598 		hammer2_spin_unex(&parent->core.spin);
2599 		kprintf("hammer2: debug repchange %p %p->%p\n",
2600 			reptrack, chain, parent);
2601 		hammer2_chain_drop(chain);		/* reptrack */
2602 	}
2603 }
2604 
2605 /*
2606  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2607  * (*parentp) typically points to an inode but can also point to a related
2608  * indirect block and this function will recurse upwards and find the inode
2609  * or the nearest undeleted indirect block covering the key range.
2610  *
2611  * This function unconditionally sets *errorp, replacing any previous value.
2612  *
2613  * (*parentp) must be exclusive or shared locked (depending on flags) and
2614  * referenced and can be an inode or an existing indirect block within the
2615  * inode.
2616  *
2617  * If (*parent) is errored out, this function will not attempt to recurse
2618  * the radix tree and will return NULL along with an appropriate *errorp.
2619  * If NULL is returned and *errorp is 0, the requested lookup could not be
2620  * located.
2621  *
2622  * On return (*parentp) will be modified to point at the deepest parent chain
2623  * element encountered during the search, as a helper for an insertion or
2624  * deletion.
2625  *
2626  * The new (*parentp) will be locked shared or exclusive (depending on flags),
2627  * and referenced, and the old will be unlocked and dereferenced (no change
2628  * if they are both the same).  This is particularly important if the caller
2629  * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2630  * is returned, as long as no error occurred.
2631  *
2632  * The matching chain will be returned locked according to flags.
2633  *
2634  * --
2635  *
2636  * NULL is returned if no match was found, but (*parentp) will still
2637  * potentially be adjusted.
2638  *
2639  * On return (*key_nextp) will point to an iterative value for key_beg.
2640  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2641  *
2642  * This function will also recurse up the chain if the key is not within the
2643  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2644  * can simply allow (*parentp) to float inside the loop.
2645  *
2646  * NOTE!  chain->data is not always resolved.  By default it will not be
2647  *	  resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2648  *	  HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2649  *	  BREF_TYPE_DATA as the device buffer can alias the logical file
2650  *	  buffer).
2651  */
2652 
2653 hammer2_chain_t *
2654 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2655 		     hammer2_key_t key_beg, hammer2_key_t key_end,
2656 		     int *errorp, int flags)
2657 {
2658 	hammer2_dev_t *hmp;
2659 	hammer2_chain_t *parent;
2660 	hammer2_chain_t *chain;
2661 	hammer2_blockref_t *base;
2662 	hammer2_blockref_t *bref;
2663 	hammer2_blockref_t bsave;
2664 	hammer2_key_t scan_beg;
2665 	hammer2_key_t scan_end;
2666 	int count = 0;
2667 	int how_always = HAMMER2_RESOLVE_ALWAYS;
2668 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
2669 	int how;
2670 	int generation;
2671 	int maxloops = 300000;
2672 	volatile hammer2_mtx_t save_mtx;
2673 
2674 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
2675 		how_maybe = how_always;
2676 		how = HAMMER2_RESOLVE_ALWAYS;
2677 	} else if (flags & HAMMER2_LOOKUP_NODATA) {
2678 		how = HAMMER2_RESOLVE_NEVER;
2679 	} else {
2680 		how = HAMMER2_RESOLVE_MAYBE;
2681 	}
2682 	if (flags & HAMMER2_LOOKUP_SHARED) {
2683 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2684 		how_always |= HAMMER2_RESOLVE_SHARED;
2685 		how |= HAMMER2_RESOLVE_SHARED;
2686 	}
2687 
2688 	/*
2689 	 * Recurse (*parentp) upward if necessary until the parent completely
2690 	 * encloses the key range or we hit the inode.
2691 	 *
2692 	 * Handle races against the flusher deleting indirect nodes on its
2693 	 * way back up by continuing to recurse upward past the deletion.
2694 	 */
2695 	parent = *parentp;
2696 	hmp = parent->hmp;
2697 	*errorp = 0;
2698 
2699 	while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2700 	       parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2701 		scan_beg = parent->bref.key;
2702 		scan_end = scan_beg +
2703 			   ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2704 		if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2705 			if (key_beg >= scan_beg && key_end <= scan_end)
2706 				break;
2707 		}
2708 		parent = hammer2_chain_repparent(parentp, how_maybe);
2709 	}
2710 again:
2711 	if (--maxloops == 0)
2712 		panic("hammer2_chain_lookup: maxloops");
2713 
2714 	/*
2715 	 * MATCHIND case that does not require parent->data (do prior to
2716 	 * parent->error check).
2717 	 */
2718 	switch(parent->bref.type) {
2719 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2720 	case HAMMER2_BREF_TYPE_INDIRECT:
2721 		if (flags & HAMMER2_LOOKUP_MATCHIND) {
2722 			scan_beg = parent->bref.key;
2723 			scan_end = scan_beg +
2724 			       ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2725 			if (key_beg == scan_beg && key_end == scan_end) {
2726 				chain = parent;
2727 				hammer2_chain_ref(chain);
2728 				hammer2_chain_lock(chain, how_maybe);
2729 				*key_nextp = scan_end + 1;
2730 				goto done;
2731 			}
2732 		}
2733 		break;
2734 	default:
2735 		break;
2736 	}
2737 
2738 	/*
2739 	 * No lookup is possible if the parent is errored.  We delayed
2740 	 * this check as long as we could to ensure that the parent backup,
2741 	 * embedded data, and MATCHIND code could still execute.
2742 	 */
2743 	if (parent->error) {
2744 		*errorp = parent->error;
2745 		return NULL;
2746 	}
2747 
2748 	/*
2749 	 * Locate the blockref array.  Currently we do a fully associative
2750 	 * search through the array.
2751 	 */
2752 	switch(parent->bref.type) {
2753 	case HAMMER2_BREF_TYPE_INODE:
2754 		/*
2755 		 * Special shortcut for embedded data returns the inode
2756 		 * itself.  Callers must detect this condition and access
2757 		 * the embedded data (the strategy code does this for us).
2758 		 *
2759 		 * This is only applicable to regular files and softlinks.
2760 		 *
2761 		 * We need a second lock on parent.  Since we already have
2762 		 * a lock we must pass LOCKAGAIN to prevent unexpected
2763 		 * blocking (we don't want to block on a second shared
2764 		 * ref if an exclusive lock is pending)
2765 		 */
2766 		if (parent->data->ipdata.meta.op_flags &
2767 		    HAMMER2_OPFLAG_DIRECTDATA) {
2768 			if (flags & HAMMER2_LOOKUP_NODIRECT) {
2769 				chain = NULL;
2770 				*key_nextp = key_end + 1;
2771 				goto done;
2772 			}
2773 			hammer2_chain_ref(parent);
2774 			hammer2_chain_lock(parent, how_always |
2775 						   HAMMER2_RESOLVE_LOCKAGAIN);
2776 			*key_nextp = key_end + 1;
2777 			return (parent);
2778 		}
2779 		base = &parent->data->ipdata.u.blockset.blockref[0];
2780 		count = HAMMER2_SET_COUNT;
2781 		break;
2782 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2783 	case HAMMER2_BREF_TYPE_INDIRECT:
2784 		/*
2785 		 * Optimize indirect blocks in the INITIAL state to avoid
2786 		 * I/O.
2787 		 *
2788 		 * Debugging: Enter permanent wait state instead of
2789 		 * panicing on unexpectedly NULL data for the moment.
2790 		 */
2791 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2792 			base = NULL;
2793 		} else {
2794 			if (parent->data == NULL) {
2795 				kprintf("hammer2: unexpected NULL data "
2796 					"on %p\n", parent);
2797 				while (1)
2798 					tsleep(parent, 0, "xxx", 0);
2799 			}
2800 			base = &parent->data->npdata[0];
2801 		}
2802 		count = parent->bytes / sizeof(hammer2_blockref_t);
2803 		break;
2804 	case HAMMER2_BREF_TYPE_VOLUME:
2805 		base = &parent->data->voldata.sroot_blockset.blockref[0];
2806 		count = HAMMER2_SET_COUNT;
2807 		break;
2808 	case HAMMER2_BREF_TYPE_FREEMAP:
2809 		base = &parent->data->blkset.blockref[0];
2810 		count = HAMMER2_SET_COUNT;
2811 		break;
2812 	default:
2813 		kprintf("hammer2_chain_lookup: unrecognized "
2814 			"blockref(B) type: %d",
2815 			parent->bref.type);
2816 		while (1)
2817 			tsleep(&base, 0, "dead", 0);
2818 		panic("hammer2_chain_lookup: unrecognized "
2819 		      "blockref(B) type: %d",
2820 		      parent->bref.type);
2821 		base = NULL;	/* safety */
2822 		count = 0;	/* safety */
2823 	}
2824 
2825 	/*
2826 	 * Merged scan to find next candidate.
2827 	 *
2828 	 * hammer2_base_*() functions require the parent->core.live_* fields
2829 	 * to be synchronized.
2830 	 *
2831 	 * We need to hold the spinlock to access the block array and RB tree
2832 	 * and to interlock chain creation.
2833 	 */
2834 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2835 		hammer2_chain_countbrefs(parent, base, count);
2836 
2837 	/*
2838 	 * Combined search
2839 	 */
2840 	hammer2_spin_ex(&parent->core.spin);
2841 	chain = hammer2_combined_find(parent, base, count,
2842 				      key_nextp,
2843 				      key_beg, key_end,
2844 				      &bref);
2845 	generation = parent->core.generation;
2846 
2847 	/*
2848 	 * Exhausted parent chain, iterate.
2849 	 */
2850 	if (bref == NULL) {
2851 		KKASSERT(chain == NULL);
2852 		hammer2_spin_unex(&parent->core.spin);
2853 		if (key_beg == key_end)	/* short cut single-key case */
2854 			return (NULL);
2855 
2856 		/*
2857 		 * Stop if we reached the end of the iteration.
2858 		 */
2859 		if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2860 		    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2861 			return (NULL);
2862 		}
2863 
2864 		/*
2865 		 * Calculate next key, stop if we reached the end of the
2866 		 * iteration, otherwise go up one level and loop.
2867 		 */
2868 		key_beg = parent->bref.key +
2869 			  ((hammer2_key_t)1 << parent->bref.keybits);
2870 		if (key_beg == 0 || key_beg > key_end)
2871 			return (NULL);
2872 		parent = hammer2_chain_repparent(parentp, how_maybe);
2873 		goto again;
2874 	}
2875 
2876 	/*
2877 	 * Selected from blockref or in-memory chain.
2878 	 */
2879 	bsave = *bref;
2880 	if (chain == NULL) {
2881 		hammer2_spin_unex(&parent->core.spin);
2882 		if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2883 		    bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2884 			chain = hammer2_chain_get(parent, generation,
2885 						  &bsave, how_maybe);
2886 		} else {
2887 			chain = hammer2_chain_get(parent, generation,
2888 						  &bsave, how);
2889 		}
2890 		if (chain == NULL)
2891 			goto again;
2892 	} else {
2893 		hammer2_chain_ref(chain);
2894 		hammer2_spin_unex(&parent->core.spin);
2895 
2896 		/*
2897 		 * chain is referenced but not locked.  We must lock the
2898 		 * chain to obtain definitive state.
2899 		 */
2900 		if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2901 		    bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2902 			hammer2_chain_lock(chain, how_maybe);
2903 		} else {
2904 			hammer2_chain_lock(chain, how);
2905 		}
2906 		KKASSERT(chain->parent == parent);
2907 	}
2908 	if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
2909 	    chain->parent != parent) {
2910 		hammer2_chain_unlock(chain);
2911 		hammer2_chain_drop(chain);
2912 		chain = NULL;	/* SAFETY */
2913 		goto again;
2914 	}
2915 
2916 
2917 	/*
2918 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2919 	 *
2920 	 * NOTE: Chain's key range is not relevant as there might be
2921 	 *	 one-offs within the range that are not deleted.
2922 	 *
2923 	 * NOTE: Lookups can race delete-duplicate because
2924 	 *	 delete-duplicate does not lock the parent's core
2925 	 *	 (they just use the spinlock on the core).
2926 	 */
2927 	if (chain->flags & HAMMER2_CHAIN_DELETED) {
2928 		kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2929 			chain->bref.data_off, chain->bref.type,
2930 			chain->bref.key);
2931 		hammer2_chain_unlock(chain);
2932 		hammer2_chain_drop(chain);
2933 		chain = NULL;	/* SAFETY */
2934 		key_beg = *key_nextp;
2935 		if (key_beg == 0 || key_beg > key_end)
2936 			return(NULL);
2937 		goto again;
2938 	}
2939 
2940 	/*
2941 	 * If the chain element is an indirect block it becomes the new
2942 	 * parent and we loop on it.  We must maintain our top-down locks
2943 	 * to prevent the flusher from interfering (i.e. doing a
2944 	 * delete-duplicate and leaving us recursing down a deleted chain).
2945 	 *
2946 	 * The parent always has to be locked with at least RESOLVE_MAYBE
2947 	 * so we can access its data.  It might need a fixup if the caller
2948 	 * passed incompatible flags.  Be careful not to cause a deadlock
2949 	 * as a data-load requires an exclusive lock.
2950 	 *
2951 	 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2952 	 * range is within the requested key range we return the indirect
2953 	 * block and do NOT loop.  This is usually only used to acquire
2954 	 * freemap nodes.
2955 	 */
2956 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2957 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2958 		save_mtx = parent->lock;
2959 		hammer2_chain_unlock(parent);
2960 		hammer2_chain_drop(parent);
2961 		*parentp = parent = chain;
2962 		chain = NULL;	/* SAFETY */
2963 		goto again;
2964 	}
2965 done:
2966 	/*
2967 	 * All done, return the locked chain.
2968 	 *
2969 	 * If the caller does not want a locked chain, replace the lock with
2970 	 * a ref.  Perhaps this can eventually be optimized to not obtain the
2971 	 * lock in the first place for situations where the data does not
2972 	 * need to be resolved.
2973 	 *
2974 	 * NOTE! A chain->error must be tested by the caller upon return.
2975 	 *	 *errorp is only set based on issues which occur while
2976 	 *	 trying to reach the chain.
2977 	 */
2978 	return (chain);
2979 }
2980 
2981 /*
2982  * After having issued a lookup we can iterate all matching keys.
2983  *
2984  * If chain is non-NULL we continue the iteration from just after it's index.
2985  *
2986  * If chain is NULL we assume the parent was exhausted and continue the
2987  * iteration at the next parent.
2988  *
2989  * If a fatal error occurs (typically an I/O error), a dummy chain is
2990  * returned with chain->error and error-identifying information set.  This
2991  * chain will assert if you try to do anything fancy with it.
2992  *
2993  * XXX Depending on where the error occurs we should allow continued iteration.
2994  *
2995  * parent must be locked on entry and remains locked throughout.  chain's
2996  * lock status must match flags.  Chain is always at least referenced.
2997  *
2998  * WARNING!  The MATCHIND flag does not apply to this function.
2999  */
3000 hammer2_chain_t *
3001 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3002 		   hammer2_key_t *key_nextp,
3003 		   hammer2_key_t key_beg, hammer2_key_t key_end,
3004 		   int *errorp, int flags)
3005 {
3006 	hammer2_chain_t *parent;
3007 	int how_maybe;
3008 
3009 	/*
3010 	 * Calculate locking flags for upward recursion.
3011 	 */
3012 	how_maybe = HAMMER2_RESOLVE_MAYBE;
3013 	if (flags & HAMMER2_LOOKUP_SHARED)
3014 		how_maybe |= HAMMER2_RESOLVE_SHARED;
3015 
3016 	parent = *parentp;
3017 	*errorp = 0;
3018 
3019 	/*
3020 	 * Calculate the next index and recalculate the parent if necessary.
3021 	 */
3022 	if (chain) {
3023 		key_beg = chain->bref.key +
3024 			  ((hammer2_key_t)1 << chain->bref.keybits);
3025 		hammer2_chain_unlock(chain);
3026 		hammer2_chain_drop(chain);
3027 
3028 		/*
3029 		 * chain invalid past this point, but we can still do a
3030 		 * pointer comparison w/parent.
3031 		 *
3032 		 * Any scan where the lookup returned degenerate data embedded
3033 		 * in the inode has an invalid index and must terminate.
3034 		 */
3035 		if (chain == parent)
3036 			return(NULL);
3037 		if (key_beg == 0 || key_beg > key_end)
3038 			return(NULL);
3039 		chain = NULL;
3040 	} else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
3041 		   parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
3042 		/*
3043 		 * We reached the end of the iteration.
3044 		 */
3045 		return (NULL);
3046 	} else {
3047 		/*
3048 		 * Continue iteration with next parent unless the current
3049 		 * parent covers the range.
3050 		 *
3051 		 * (This also handles the case of a deleted, empty indirect
3052 		 * node).
3053 		 */
3054 		key_beg = parent->bref.key +
3055 			  ((hammer2_key_t)1 << parent->bref.keybits);
3056 		if (key_beg == 0 || key_beg > key_end)
3057 			return (NULL);
3058 		parent = hammer2_chain_repparent(parentp, how_maybe);
3059 	}
3060 
3061 	/*
3062 	 * And execute
3063 	 */
3064 	return (hammer2_chain_lookup(parentp, key_nextp,
3065 				     key_beg, key_end,
3066 				     errorp, flags));
3067 }
3068 
3069 /*
3070  * Caller wishes to iterate chains under parent, loading new chains into
3071  * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
3072  * then call hammer2_chain_scan() repeatedly until a non-zero return.
3073  * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
3074  * with the returned chain for the scan.  The returned *chainp will be
3075  * locked and referenced.  Any prior contents will be unlocked and dropped.
3076  *
3077  * Caller should check the return value.  A normal scan EOF will return
3078  * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
3079  * error trying to access parent data.  Any error in the returned chain
3080  * must be tested separately by the caller.
3081  *
3082  * (*chainp) is dropped on each scan, but will only be set if the returned
3083  * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
3084  * returned via *chainp.  The caller will get their bref only.
3085  *
3086  * The raw scan function is similar to lookup/next but does not seek to a key.
3087  * Blockrefs are iterated via first_bref = (parent, NULL) and
3088  * next_chain = (parent, bref).
3089  *
3090  * The passed-in parent must be locked and its data resolved.  The function
3091  * nominally returns a locked and referenced *chainp != NULL for chains
3092  * the caller might need to recurse on (and will dipose of any *chainp passed
3093  * in).  The caller must check the chain->bref.type either way.
3094  */
3095 int
3096 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3097 		   hammer2_blockref_t *bref, int *firstp,
3098 		   int flags)
3099 {
3100 	hammer2_dev_t *hmp;
3101 	hammer2_blockref_t *base;
3102 	hammer2_blockref_t *bref_ptr;
3103 	hammer2_key_t key;
3104 	hammer2_key_t next_key;
3105 	hammer2_chain_t *chain = NULL;
3106 	int count = 0;
3107 	int how_always = HAMMER2_RESOLVE_ALWAYS;
3108 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
3109 	int how;
3110 	int generation;
3111 	int maxloops = 300000;
3112 	int error;
3113 
3114 	hmp = parent->hmp;
3115 	error = 0;
3116 
3117 	/*
3118 	 * Scan flags borrowed from lookup.
3119 	 */
3120 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
3121 		how_maybe = how_always;
3122 		how = HAMMER2_RESOLVE_ALWAYS;
3123 	} else if (flags & HAMMER2_LOOKUP_NODATA) {
3124 		how = HAMMER2_RESOLVE_NEVER;
3125 	} else {
3126 		how = HAMMER2_RESOLVE_MAYBE;
3127 	}
3128 	if (flags & HAMMER2_LOOKUP_SHARED) {
3129 		how_maybe |= HAMMER2_RESOLVE_SHARED;
3130 		how_always |= HAMMER2_RESOLVE_SHARED;
3131 		how |= HAMMER2_RESOLVE_SHARED;
3132 	}
3133 
3134 	/*
3135 	 * Calculate key to locate first/next element, unlocking the previous
3136 	 * element as we go.  Be careful, the key calculation can overflow.
3137 	 *
3138 	 * (also reset bref to NULL)
3139 	 */
3140 	if (*firstp) {
3141 		key = 0;
3142 		*firstp = 0;
3143 	} else {
3144 		key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3145 		if ((chain = *chainp) != NULL) {
3146 			*chainp = NULL;
3147 			hammer2_chain_unlock(chain);
3148 			hammer2_chain_drop(chain);
3149 			chain = NULL;
3150 		}
3151 		if (key == 0) {
3152 			error |= HAMMER2_ERROR_EOF;
3153 			goto done;
3154 		}
3155 	}
3156 
3157 again:
3158 	if (parent->error) {
3159 		error = parent->error;
3160 		goto done;
3161 	}
3162 	if (--maxloops == 0)
3163 		panic("hammer2_chain_scan: maxloops");
3164 
3165 	/*
3166 	 * Locate the blockref array.  Currently we do a fully associative
3167 	 * search through the array.
3168 	 */
3169 	switch(parent->bref.type) {
3170 	case HAMMER2_BREF_TYPE_INODE:
3171 		/*
3172 		 * An inode with embedded data has no sub-chains.
3173 		 *
3174 		 * WARNING! Bulk scan code may pass a static chain marked
3175 		 *	    as BREF_TYPE_INODE with a copy of the volume
3176 		 *	    root blockset to snapshot the volume.
3177 		 */
3178 		if (parent->data->ipdata.meta.op_flags &
3179 		    HAMMER2_OPFLAG_DIRECTDATA) {
3180 			error |= HAMMER2_ERROR_EOF;
3181 			goto done;
3182 		}
3183 		base = &parent->data->ipdata.u.blockset.blockref[0];
3184 		count = HAMMER2_SET_COUNT;
3185 		break;
3186 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3187 	case HAMMER2_BREF_TYPE_INDIRECT:
3188 		/*
3189 		 * Optimize indirect blocks in the INITIAL state to avoid
3190 		 * I/O.
3191 		 */
3192 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3193 			base = NULL;
3194 		} else {
3195 			if (parent->data == NULL)
3196 				panic("parent->data is NULL");
3197 			base = &parent->data->npdata[0];
3198 		}
3199 		count = parent->bytes / sizeof(hammer2_blockref_t);
3200 		break;
3201 	case HAMMER2_BREF_TYPE_VOLUME:
3202 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3203 		count = HAMMER2_SET_COUNT;
3204 		break;
3205 	case HAMMER2_BREF_TYPE_FREEMAP:
3206 		base = &parent->data->blkset.blockref[0];
3207 		count = HAMMER2_SET_COUNT;
3208 		break;
3209 	default:
3210 		panic("hammer2_chain_scan: unrecognized blockref type: %d",
3211 		      parent->bref.type);
3212 		base = NULL;	/* safety */
3213 		count = 0;	/* safety */
3214 	}
3215 
3216 	/*
3217 	 * Merged scan to find next candidate.
3218 	 *
3219 	 * hammer2_base_*() functions require the parent->core.live_* fields
3220 	 * to be synchronized.
3221 	 *
3222 	 * We need to hold the spinlock to access the block array and RB tree
3223 	 * and to interlock chain creation.
3224 	 */
3225 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3226 		hammer2_chain_countbrefs(parent, base, count);
3227 
3228 	next_key = 0;
3229 	bref_ptr = NULL;
3230 	hammer2_spin_ex(&parent->core.spin);
3231 	chain = hammer2_combined_find(parent, base, count,
3232 				      &next_key,
3233 				      key, HAMMER2_KEY_MAX,
3234 				      &bref_ptr);
3235 	generation = parent->core.generation;
3236 
3237 	/*
3238 	 * Exhausted parent chain, we're done.
3239 	 */
3240 	if (bref_ptr == NULL) {
3241 		hammer2_spin_unex(&parent->core.spin);
3242 		KKASSERT(chain == NULL);
3243 		error |= HAMMER2_ERROR_EOF;
3244 		goto done;
3245 	}
3246 
3247 	/*
3248 	 * Copy into the supplied stack-based blockref.
3249 	 */
3250 	*bref = *bref_ptr;
3251 
3252 	/*
3253 	 * Selected from blockref or in-memory chain.
3254 	 */
3255 	if (chain == NULL) {
3256 		switch(bref->type) {
3257 		case HAMMER2_BREF_TYPE_INODE:
3258 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3259 		case HAMMER2_BREF_TYPE_INDIRECT:
3260 		case HAMMER2_BREF_TYPE_VOLUME:
3261 		case HAMMER2_BREF_TYPE_FREEMAP:
3262 			/*
3263 			 * Recursion, always get the chain
3264 			 */
3265 			hammer2_spin_unex(&parent->core.spin);
3266 			chain = hammer2_chain_get(parent, generation,
3267 						  bref, how);
3268 			if (chain == NULL)
3269 				goto again;
3270 			break;
3271 		default:
3272 			/*
3273 			 * No recursion, do not waste time instantiating
3274 			 * a chain, just iterate using the bref.
3275 			 */
3276 			hammer2_spin_unex(&parent->core.spin);
3277 			break;
3278 		}
3279 	} else {
3280 		/*
3281 		 * Recursion or not we need the chain in order to supply
3282 		 * the bref.
3283 		 */
3284 		hammer2_chain_ref(chain);
3285 		hammer2_spin_unex(&parent->core.spin);
3286 		hammer2_chain_lock(chain, how);
3287 	}
3288 	if (chain &&
3289 	    (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3290 	     chain->parent != parent)) {
3291 		hammer2_chain_unlock(chain);
3292 		hammer2_chain_drop(chain);
3293 		chain = NULL;
3294 		goto again;
3295 	}
3296 
3297 	/*
3298 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3299 	 *
3300 	 * NOTE: chain's key range is not relevant as there might be
3301 	 *	 one-offs within the range that are not deleted.
3302 	 *
3303 	 * NOTE: XXX this could create problems with scans used in
3304 	 *	 situations other than mount-time recovery.
3305 	 *
3306 	 * NOTE: Lookups can race delete-duplicate because
3307 	 *	 delete-duplicate does not lock the parent's core
3308 	 *	 (they just use the spinlock on the core).
3309 	 */
3310 	if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3311 		hammer2_chain_unlock(chain);
3312 		hammer2_chain_drop(chain);
3313 		chain = NULL;
3314 
3315 		key = next_key;
3316 		if (key == 0) {
3317 			error |= HAMMER2_ERROR_EOF;
3318 			goto done;
3319 		}
3320 		goto again;
3321 	}
3322 
3323 done:
3324 	/*
3325 	 * All done, return the bref or NULL, supply chain if necessary.
3326 	 */
3327 	if (chain)
3328 		*chainp = chain;
3329 	return (error);
3330 }
3331 
3332 /*
3333  * Create and return a new hammer2 system memory structure of the specified
3334  * key, type and size and insert it under (*parentp).  This is a full
3335  * insertion, based on the supplied key/keybits, and may involve creating
3336  * indirect blocks and moving other chains around via delete/duplicate.
3337  *
3338  * This call can be made with parent == NULL as long as a non -1 methods
3339  * is supplied.  hmp must also be supplied in this situation (otherwise
3340  * hmp is extracted from the supplied parent).  The chain will be detached
3341  * from the topology.  A later call with both parent and chain can be made
3342  * to attach it.
3343  *
3344  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3345  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3346  * FULL.  This typically means that the caller is creating the chain after
3347  * doing a hammer2_chain_lookup().
3348  *
3349  * (*parentp) must be exclusive locked and may be replaced on return
3350  * depending on how much work the function had to do.
3351  *
3352  * (*parentp) must not be errored or this function will assert.
3353  *
3354  * (*chainp) usually starts out NULL and returns the newly created chain,
3355  * but if the caller desires the caller may allocate a disconnected chain
3356  * and pass it in instead.
3357  *
3358  * This function should NOT be used to insert INDIRECT blocks.  It is
3359  * typically used to create/insert inodes and data blocks.
3360  *
3361  * Caller must pass-in an exclusively locked parent the new chain is to
3362  * be inserted under, and optionally pass-in a disconnected, exclusively
3363  * locked chain to insert (else we create a new chain).  The function will
3364  * adjust (*parentp) as necessary, create or connect the chain, and
3365  * return an exclusively locked chain in *chainp.
3366  *
3367  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3368  * and will be reassigned.
3369  *
3370  * NOTE: returns HAMMER_ERROR_* flags
3371  */
3372 int
3373 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3374 		     hammer2_dev_t *hmp, hammer2_pfs_t *pmp, int methods,
3375 		     hammer2_key_t key, int keybits, int type, size_t bytes,
3376 		     hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3377 {
3378 	hammer2_chain_t *chain;
3379 	hammer2_chain_t *parent;
3380 	hammer2_blockref_t *base;
3381 	hammer2_blockref_t dummy;
3382 	int allocated = 0;
3383 	int error = 0;
3384 	int count;
3385 	int maxloops = 300000;
3386 
3387 	/*
3388 	 * Topology may be crossing a PFS boundary.
3389 	 */
3390 	parent = *parentp;
3391 	if (parent) {
3392 		KKASSERT(hammer2_mtx_owned(&parent->lock));
3393 		KKASSERT(parent->error == 0);
3394 		hmp = parent->hmp;
3395 	}
3396 	chain = *chainp;
3397 
3398 	if (chain == NULL) {
3399 		/*
3400 		 * First allocate media space and construct the dummy bref,
3401 		 * then allocate the in-memory chain structure.  Set the
3402 		 * INITIAL flag for fresh chains which do not have embedded
3403 		 * data.
3404 		 *
3405 		 * XXX for now set the check mode of the child based on
3406 		 *     the parent or, if the parent is an inode, the
3407 		 *     specification in the inode.
3408 		 */
3409 		bzero(&dummy, sizeof(dummy));
3410 		dummy.type = type;
3411 		dummy.key = key;
3412 		dummy.keybits = keybits;
3413 		dummy.data_off = hammer2_getradix(bytes);
3414 
3415 		/*
3416 		 * Inherit methods from parent by default.  Primarily used
3417 		 * for BREF_TYPE_DATA.  Non-data types *must* be set to
3418 		 * a non-NONE check algorithm.
3419 		 */
3420 		if (methods == -1)
3421 			dummy.methods = parent->bref.methods;
3422 		else
3423 			dummy.methods = (uint8_t)methods;
3424 
3425 		if (type != HAMMER2_BREF_TYPE_DATA &&
3426 		    HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3427 			dummy.methods |=
3428 				HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3429 		}
3430 
3431 		chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3432 
3433 		/*
3434 		 * Lock the chain manually, chain_lock will load the chain
3435 		 * which we do NOT want to do.  (note: chain->refs is set
3436 		 * to 1 by chain_alloc() for us, but lockcnt is not).
3437 		 */
3438 		chain->lockcnt = 1;
3439 		hammer2_mtx_ex(&chain->lock);
3440 		allocated = 1;
3441 
3442 		/*
3443 		 * Set INITIAL to optimize I/O.  The flag will generally be
3444 		 * processed when we call hammer2_chain_modify().
3445 		 *
3446 		 * Recalculate bytes to reflect the actual media block
3447 		 * allocation.  Handle special case radix 0 == 0 bytes.
3448 		 */
3449 		bytes = (size_t)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
3450 		if (bytes)
3451 			bytes = (hammer2_off_t)1 << bytes;
3452 		chain->bytes = bytes;
3453 
3454 		switch(type) {
3455 		case HAMMER2_BREF_TYPE_VOLUME:
3456 		case HAMMER2_BREF_TYPE_FREEMAP:
3457 			panic("hammer2_chain_create: called with volume type");
3458 			break;
3459 		case HAMMER2_BREF_TYPE_INDIRECT:
3460 			panic("hammer2_chain_create: cannot be used to"
3461 			      "create indirect block");
3462 			break;
3463 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3464 			panic("hammer2_chain_create: cannot be used to"
3465 			      "create freemap root or node");
3466 			break;
3467 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3468 			KKASSERT(bytes == sizeof(chain->data->bmdata));
3469 			/* fall through */
3470 		case HAMMER2_BREF_TYPE_DIRENT:
3471 		case HAMMER2_BREF_TYPE_INODE:
3472 		case HAMMER2_BREF_TYPE_DATA:
3473 		default:
3474 			/*
3475 			 * leave chain->data NULL, set INITIAL
3476 			 */
3477 			KKASSERT(chain->data == NULL);
3478 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3479 			break;
3480 		}
3481 	} else {
3482 		/*
3483 		 * We are reattaching a previously deleted chain, possibly
3484 		 * under a new parent and possibly with a new key/keybits.
3485 		 * The chain does not have to be in a modified state.  The
3486 		 * UPDATE flag will be set later on in this routine.
3487 		 *
3488 		 * Do NOT mess with the current state of the INITIAL flag.
3489 		 */
3490 		chain->bref.key = key;
3491 		chain->bref.keybits = keybits;
3492 		if (chain->flags & HAMMER2_CHAIN_DELETED)
3493 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3494 		KKASSERT(chain->parent == NULL);
3495 	}
3496 
3497 	/*
3498 	 * Set the appropriate bref flag if requested.
3499 	 *
3500 	 * NOTE! Callers can call this function to move chains without
3501 	 *	 knowing about special flags, so don't clear bref flags
3502 	 *	 here!
3503 	 */
3504 	if (flags & HAMMER2_INSERT_PFSROOT)
3505 		chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3506 
3507 	if (parent == NULL)
3508 		goto skip;
3509 
3510 	/*
3511 	 * Calculate how many entries we have in the blockref array and
3512 	 * determine if an indirect block is required when inserting into
3513 	 * the parent.
3514 	 */
3515 again:
3516 	if (--maxloops == 0)
3517 		panic("hammer2_chain_create: maxloops");
3518 
3519 	switch(parent->bref.type) {
3520 	case HAMMER2_BREF_TYPE_INODE:
3521 		if ((parent->data->ipdata.meta.op_flags &
3522 		     HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3523 			kprintf("hammer2: parent set for direct-data! "
3524 				"pkey=%016jx ckey=%016jx\n",
3525 				parent->bref.key,
3526 				chain->bref.key);
3527 	        }
3528 		KKASSERT((parent->data->ipdata.meta.op_flags &
3529 			  HAMMER2_OPFLAG_DIRECTDATA) == 0);
3530 		KKASSERT(parent->data != NULL);
3531 		base = &parent->data->ipdata.u.blockset.blockref[0];
3532 		count = HAMMER2_SET_COUNT;
3533 		break;
3534 	case HAMMER2_BREF_TYPE_INDIRECT:
3535 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3536 		if (parent->flags & HAMMER2_CHAIN_INITIAL)
3537 			base = NULL;
3538 		else
3539 			base = &parent->data->npdata[0];
3540 		count = parent->bytes / sizeof(hammer2_blockref_t);
3541 		break;
3542 	case HAMMER2_BREF_TYPE_VOLUME:
3543 		KKASSERT(parent->data != NULL);
3544 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3545 		count = HAMMER2_SET_COUNT;
3546 		break;
3547 	case HAMMER2_BREF_TYPE_FREEMAP:
3548 		KKASSERT(parent->data != NULL);
3549 		base = &parent->data->blkset.blockref[0];
3550 		count = HAMMER2_SET_COUNT;
3551 		break;
3552 	default:
3553 		panic("hammer2_chain_create: unrecognized blockref type: %d",
3554 		      parent->bref.type);
3555 		base = NULL;
3556 		count = 0;
3557 		break;
3558 	}
3559 
3560 	/*
3561 	 * Make sure we've counted the brefs
3562 	 */
3563 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3564 		hammer2_chain_countbrefs(parent, base, count);
3565 
3566 	KASSERT(parent->core.live_count >= 0 &&
3567 		parent->core.live_count <= count,
3568 		("bad live_count %d/%d (%02x, %d)",
3569 			parent->core.live_count, count,
3570 			parent->bref.type, parent->bytes));
3571 
3572 	/*
3573 	 * If no free blockref could be found we must create an indirect
3574 	 * block and move a number of blockrefs into it.  With the parent
3575 	 * locked we can safely lock each child in order to delete+duplicate
3576 	 * it without causing a deadlock.
3577 	 *
3578 	 * This may return the new indirect block or the old parent depending
3579 	 * on where the key falls.  NULL is returned on error.
3580 	 */
3581 	if (parent->core.live_count == count) {
3582 		hammer2_chain_t *nparent;
3583 
3584 		KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3585 
3586 		nparent = hammer2_chain_create_indirect(parent, key, keybits,
3587 							mtid, type, &error);
3588 		if (nparent == NULL) {
3589 			if (allocated)
3590 				hammer2_chain_drop(chain);
3591 			chain = NULL;
3592 			goto done;
3593 		}
3594 		if (parent != nparent) {
3595 			hammer2_chain_unlock(parent);
3596 			hammer2_chain_drop(parent);
3597 			parent = *parentp = nparent;
3598 		}
3599 		goto again;
3600 	}
3601 
3602 	/*
3603 	 * fall through if parent, or skip to here if no parent.
3604 	 */
3605 skip:
3606 	if (chain->flags & HAMMER2_CHAIN_DELETED)
3607 		kprintf("Inserting deleted chain @%016jx\n",
3608 			chain->bref.key);
3609 
3610 	/*
3611 	 * Link the chain into its parent.
3612 	 */
3613 	if (chain->parent != NULL)
3614 		panic("hammer2: hammer2_chain_create: chain already connected");
3615 	KKASSERT(chain->parent == NULL);
3616 	if (parent) {
3617 		KKASSERT(parent->core.live_count < count);
3618 		hammer2_chain_insert(parent, chain,
3619 				     HAMMER2_CHAIN_INSERT_SPIN |
3620 				     HAMMER2_CHAIN_INSERT_LIVE,
3621 				     0);
3622 	}
3623 
3624 	if (allocated) {
3625 		/*
3626 		 * Mark the newly created chain modified.  This will cause
3627 		 * UPDATE to be set and process the INITIAL flag.
3628 		 *
3629 		 * Device buffers are not instantiated for DATA elements
3630 		 * as these are handled by logical buffers.
3631 		 *
3632 		 * Indirect and freemap node indirect blocks are handled
3633 		 * by hammer2_chain_create_indirect() and not by this
3634 		 * function.
3635 		 *
3636 		 * Data for all other bref types is expected to be
3637 		 * instantiated (INODE, LEAF).
3638 		 */
3639 		switch(chain->bref.type) {
3640 		case HAMMER2_BREF_TYPE_DATA:
3641 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3642 		case HAMMER2_BREF_TYPE_DIRENT:
3643 		case HAMMER2_BREF_TYPE_INODE:
3644 			error = hammer2_chain_modify(chain, mtid, dedup_off,
3645 						     HAMMER2_MODIFY_OPTDATA);
3646 			break;
3647 		default:
3648 			/*
3649 			 * Remaining types are not supported by this function.
3650 			 * In particular, INDIRECT and LEAF_NODE types are
3651 			 * handled by create_indirect().
3652 			 */
3653 			panic("hammer2_chain_create: bad type: %d",
3654 			      chain->bref.type);
3655 			/* NOT REACHED */
3656 			break;
3657 		}
3658 	} else {
3659 		/*
3660 		 * When reconnecting a chain we must set UPDATE and
3661 		 * setflush so the flush recognizes that it must update
3662 		 * the bref in the parent.
3663 		 */
3664 		if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3665 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3666 	}
3667 
3668 	/*
3669 	 * We must setflush(parent) to ensure that it recurses through to
3670 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3671 	 * already set in the chain (so it won't recurse up to set it in the
3672 	 * parent).
3673 	 */
3674 	if (parent)
3675 		hammer2_chain_setflush(parent);
3676 
3677 done:
3678 	*chainp = chain;
3679 
3680 	return (error);
3681 }
3682 
3683 /*
3684  * Move the chain from its old parent to a new parent.  The chain must have
3685  * already been deleted or already disconnected (or never associated) with
3686  * a parent.  The chain is reassociated with the new parent and the deleted
3687  * flag will be cleared (no longer deleted).  The chain's modification state
3688  * is not altered.
3689  *
3690  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3691  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3692  * FULL.  This typically means that the caller is creating the chain after
3693  * doing a hammer2_chain_lookup().
3694  *
3695  * Neither (parent) or (chain) can be errored.
3696  *
3697  * If (parent) is non-NULL then the chain is inserted under the parent.
3698  *
3699  * If (parent) is NULL then the newly duplicated chain is not inserted
3700  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3701  * passing into hammer2_chain_create() after this function returns).
3702  *
3703  * WARNING! This function calls create which means it can insert indirect
3704  *	    blocks.  This can cause other unrelated chains in the parent to
3705  *	    be moved to a newly inserted indirect block in addition to the
3706  *	    specific chain.
3707  */
3708 void
3709 hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3710 		     hammer2_tid_t mtid, int flags)
3711 {
3712 	hammer2_blockref_t *bref;
3713 	hammer2_dev_t *hmp;
3714 	hammer2_chain_t *parent;
3715 	size_t bytes;
3716 
3717 	/*
3718 	 * WARNING!  We should never resolve DATA to device buffers
3719 	 *	     (XXX allow it if the caller did?), and since
3720 	 *	     we currently do not have the logical buffer cache
3721 	 *	     buffer in-hand to fix its cached physical offset
3722 	 *	     we also force the modify code to not COW it. XXX
3723 	 *
3724 	 * NOTE!     We allow error'd chains to be renamed.  The bref itself
3725 	 *	     is good and can be renamed.  The content, however, may
3726 	 *	     be inaccessible.
3727 	 */
3728 	hmp = chain->hmp;
3729 	KKASSERT(chain->parent == NULL);
3730 	/*KKASSERT(chain->error == 0); allow */
3731 
3732 	/*
3733 	 * Now create a duplicate of the chain structure, associating
3734 	 * it with the same core, making it the same size, pointing it
3735 	 * to the same bref (the same media block).
3736 	 *
3737 	 * NOTE: Handle special radix == 0 case (means 0 bytes).
3738 	 */
3739 	bref = &chain->bref;
3740 	bytes = (size_t)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
3741 	if (bytes)
3742 		bytes = (hammer2_off_t)1 << bytes;
3743 
3744 	/*
3745 	 * If parent is not NULL the duplicated chain will be entered under
3746 	 * the parent and the UPDATE bit set to tell flush to update
3747 	 * the blockref.
3748 	 *
3749 	 * We must setflush(parent) to ensure that it recurses through to
3750 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3751 	 * already set in the chain (so it won't recurse up to set it in the
3752 	 * parent).
3753 	 *
3754 	 * Having both chains locked is extremely important for atomicy.
3755 	 */
3756 	if (parentp && (parent = *parentp) != NULL) {
3757 		KKASSERT(hammer2_mtx_owned(&parent->lock));
3758 		KKASSERT(parent->refs > 0);
3759 		KKASSERT(parent->error == 0);
3760 
3761 		hammer2_chain_create(parentp, &chain, NULL, chain->pmp,
3762 				     HAMMER2_METH_DEFAULT,
3763 				     bref->key, bref->keybits, bref->type,
3764 				     chain->bytes, mtid, 0, flags);
3765 		KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3766 		hammer2_chain_setflush(*parentp);
3767 	}
3768 }
3769 
3770 /*
3771  * This works in tandem with delete_obref() to install a blockref in
3772  * (typically) an indirect block that is associated with the chain being
3773  * moved to *parentp.
3774  *
3775  * The reason we need this function is that the caller needs to maintain
3776  * the blockref as it was, and not generate a new blockref for what might
3777  * be a modified chain.  Otherwise stuff will leak into the flush that
3778  * the flush code's FLUSH_INODE_STOP flag is unable to catch.
3779  *
3780  * It is EXTREMELY important that we properly set CHAIN_BMAPUPD and
3781  * CHAIN_UPDATE.  We must set BMAPUPD if the bref does not match, and
3782  * we must clear CHAIN_UPDATE (that was likely set by the chain_rename) if
3783  * it does.  Otherwise we can end up in a situation where H2 is unable to
3784  * clean up the in-memory chain topology.
3785  *
3786  * The reason for this is that flushes do not generally flush through
3787  * BREF_TYPE_INODE chains and depend on a hammer2_inode_t queued to syncq
3788  * or sideq to properly flush and dispose of the related inode chain's flags.
3789  * Situations where the inode is not actually modified by the frontend,
3790  * but where we have to move the related chains around as we insert or cleanup
3791  * indirect blocks, can leave us with a 'dirty' (non-disposable) in-memory
3792  * inode chain that does not have a hammer2_inode_t associated with it.
3793  */
3794 void
3795 hammer2_chain_rename_obref(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3796 			   hammer2_tid_t mtid, int flags,
3797 			   hammer2_blockref_t *obref)
3798 {
3799 	hammer2_chain_rename(parentp, chain, mtid, flags);
3800 
3801 	if (obref->type != HAMMER2_BREF_TYPE_EMPTY) {
3802 		hammer2_blockref_t *tbase;
3803 		int tcount;
3804 
3805 		KKASSERT((chain->flags & HAMMER2_CHAIN_BMAPPED) == 0);
3806 		hammer2_chain_modify(*parentp, mtid, 0, 0);
3807 		tbase = hammer2_chain_base_and_count(*parentp, &tcount);
3808 		hammer2_base_insert(*parentp, tbase, tcount, chain, obref);
3809 		if (bcmp(obref, &chain->bref, sizeof(chain->bref))) {
3810 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD |
3811 						      HAMMER2_CHAIN_UPDATE);
3812 		} else {
3813 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3814 		}
3815 	}
3816 }
3817 
3818 /*
3819  * Helper function for deleting chains.
3820  *
3821  * The chain is removed from the live view (the RBTREE) as well as the parent's
3822  * blockmap.  Both chain and its parent must be locked.
3823  *
3824  * parent may not be errored.  chain can be errored.
3825  */
3826 static int
3827 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3828 			     hammer2_tid_t mtid, int flags,
3829 			     hammer2_blockref_t *obref)
3830 {
3831 	hammer2_dev_t *hmp;
3832 	int error = 0;
3833 
3834 	KKASSERT((chain->flags & (HAMMER2_CHAIN_DELETED |
3835 				  HAMMER2_CHAIN_FICTITIOUS)) == 0);
3836 	KKASSERT(chain->parent == parent);
3837 	hmp = chain->hmp;
3838 
3839 	if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3840 		/*
3841 		 * Chain is blockmapped, so there must be a parent.
3842 		 * Atomically remove the chain from the parent and remove
3843 		 * the blockmap entry.  The parent must be set modified
3844 		 * to remove the blockmap entry.
3845 		 */
3846 		hammer2_blockref_t *base;
3847 		int count;
3848 
3849 		KKASSERT(parent != NULL);
3850 		KKASSERT(parent->error == 0);
3851 		KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3852 		error = hammer2_chain_modify(parent, mtid, 0, 0);
3853 		if (error)
3854 			goto done;
3855 
3856 		/*
3857 		 * Calculate blockmap pointer
3858 		 */
3859 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3860 		hammer2_spin_ex(&chain->core.spin);
3861 		hammer2_spin_ex(&parent->core.spin);
3862 
3863 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3864 		atomic_add_int(&parent->core.live_count, -1);
3865 		++parent->core.generation;
3866 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3867 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3868 		--parent->core.chain_count;
3869 		chain->parent = NULL;
3870 
3871 		switch(parent->bref.type) {
3872 		case HAMMER2_BREF_TYPE_INODE:
3873 			/*
3874 			 * Access the inode's block array.  However, there
3875 			 * is no block array if the inode is flagged
3876 			 * DIRECTDATA.
3877 			 */
3878 			if (parent->data &&
3879 			    (parent->data->ipdata.meta.op_flags &
3880 			     HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3881 				base =
3882 				   &parent->data->ipdata.u.blockset.blockref[0];
3883 			} else {
3884 				base = NULL;
3885 			}
3886 			count = HAMMER2_SET_COUNT;
3887 			break;
3888 		case HAMMER2_BREF_TYPE_INDIRECT:
3889 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3890 			if (parent->data)
3891 				base = &parent->data->npdata[0];
3892 			else
3893 				base = NULL;
3894 			count = parent->bytes / sizeof(hammer2_blockref_t);
3895 			break;
3896 		case HAMMER2_BREF_TYPE_VOLUME:
3897 			base = &parent->data->voldata.
3898 					sroot_blockset.blockref[0];
3899 			count = HAMMER2_SET_COUNT;
3900 			break;
3901 		case HAMMER2_BREF_TYPE_FREEMAP:
3902 			base = &parent->data->blkset.blockref[0];
3903 			count = HAMMER2_SET_COUNT;
3904 			break;
3905 		default:
3906 			base = NULL;
3907 			count = 0;
3908 			panic("_hammer2_chain_delete_helper: "
3909 			      "unrecognized blockref type: %d",
3910 			      parent->bref.type);
3911 		}
3912 
3913 		/*
3914 		 * delete blockmapped chain from its parent.
3915 		 *
3916 		 * The parent is not affected by any statistics in chain
3917 		 * which are pending synchronization.  That is, there is
3918 		 * nothing to undo in the parent since they have not yet
3919 		 * been incorporated into the parent.
3920 		 *
3921 		 * The parent is affected by statistics stored in inodes.
3922 		 * Those have already been synchronized, so they must be
3923 		 * undone.  XXX split update possible w/delete in middle?
3924 		 */
3925 		if (base) {
3926 			hammer2_base_delete(parent, base, count, chain, obref);
3927 		}
3928 		hammer2_spin_unex(&parent->core.spin);
3929 		hammer2_spin_unex(&chain->core.spin);
3930 	} else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3931 		/*
3932 		 * Chain is not blockmapped but a parent is present.
3933 		 * Atomically remove the chain from the parent.  There is
3934 		 * no blockmap entry to remove.
3935 		 *
3936 		 * Because chain was associated with a parent but not
3937 		 * synchronized, the chain's *_count_up fields contain
3938 		 * inode adjustment statistics which must be undone.
3939 		 */
3940 		hammer2_spin_ex(&chain->core.spin);
3941 		hammer2_spin_ex(&parent->core.spin);
3942 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3943 		atomic_add_int(&parent->core.live_count, -1);
3944 		++parent->core.generation;
3945 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3946 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3947 		--parent->core.chain_count;
3948 		chain->parent = NULL;
3949 		hammer2_spin_unex(&parent->core.spin);
3950 		hammer2_spin_unex(&chain->core.spin);
3951 	} else {
3952 		/*
3953 		 * Chain is not blockmapped and has no parent.  This
3954 		 * is a degenerate case.
3955 		 */
3956 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3957 	}
3958 done:
3959 	return error;
3960 }
3961 
3962 /*
3963  * Create an indirect block that covers one or more of the elements in the
3964  * current parent.  Either returns the existing parent with no locking or
3965  * ref changes or returns the new indirect block locked and referenced
3966  * and leaving the original parent lock/ref intact as well.
3967  *
3968  * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3969  *
3970  * The returned chain depends on where the specified key falls.
3971  *
3972  * The key/keybits for the indirect mode only needs to follow three rules:
3973  *
3974  * (1) That all elements underneath it fit within its key space and
3975  *
3976  * (2) That all elements outside it are outside its key space.
3977  *
3978  * (3) When creating the new indirect block any elements in the current
3979  *     parent that fit within the new indirect block's keyspace must be
3980  *     moved into the new indirect block.
3981  *
3982  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3983  *     keyspace the the current parent, but lookup/iteration rules will
3984  *     ensure (and must ensure) that rule (2) for all parents leading up
3985  *     to the nearest inode or the root volume header is adhered to.  This
3986  *     is accomplished by always recursing through matching keyspaces in
3987  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3988  *
3989  * The current implementation calculates the current worst-case keyspace by
3990  * iterating the current parent and then divides it into two halves, choosing
3991  * whichever half has the most elements (not necessarily the half containing
3992  * the requested key).
3993  *
3994  * We can also opt to use the half with the least number of elements.  This
3995  * causes lower-numbered keys (aka logical file offsets) to recurse through
3996  * fewer indirect blocks and higher-numbered keys to recurse through more.
3997  * This also has the risk of not moving enough elements to the new indirect
3998  * block and being forced to create several indirect blocks before the element
3999  * can be inserted.
4000  *
4001  * Must be called with an exclusively locked parent.
4002  *
4003  * NOTE: *errorp set to HAMMER_ERROR_* flags
4004  */
4005 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
4006 				hammer2_key_t *keyp, int keybits,
4007 				hammer2_blockref_t *base, int count);
4008 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
4009 				hammer2_key_t *keyp, int keybits,
4010 				hammer2_blockref_t *base, int count,
4011 				int ncount);
4012 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
4013 				hammer2_key_t *keyp, int keybits,
4014 				hammer2_blockref_t *base, int count,
4015 				int ncount);
4016 static
4017 hammer2_chain_t *
4018 hammer2_chain_create_indirect(hammer2_chain_t *parent,
4019 			      hammer2_key_t create_key, int create_bits,
4020 			      hammer2_tid_t mtid, int for_type, int *errorp)
4021 {
4022 	hammer2_dev_t *hmp;
4023 	hammer2_blockref_t *base;
4024 	hammer2_blockref_t *bref;
4025 	hammer2_blockref_t bsave;
4026 	hammer2_blockref_t dummy;
4027 	hammer2_chain_t *chain;
4028 	hammer2_chain_t *ichain;
4029 	hammer2_key_t key = create_key;
4030 	hammer2_key_t key_beg;
4031 	hammer2_key_t key_end;
4032 	hammer2_key_t key_next;
4033 	int keybits = create_bits;
4034 	int count;
4035 	int ncount;
4036 	int nbytes;
4037 	int loops;
4038 	int error;
4039 	int reason;
4040 	int generation;
4041 	int maxloops = 300000;
4042 
4043 	/*
4044 	 * Calculate the base blockref pointer or NULL if the chain
4045 	 * is known to be empty.  We need to calculate the array count
4046 	 * for RB lookups either way.
4047 	 */
4048 	hmp = parent->hmp;
4049 	KKASSERT(hammer2_mtx_owned(&parent->lock));
4050 
4051 	/*
4052 	 * Pre-modify the parent now to avoid having to deal with error
4053 	 * processing if we tried to later (in the middle of our loop).
4054 	 *
4055 	 * We are going to be moving bref's around, the indirect blocks
4056 	 * cannot be in an initial state.  Do not pass MODIFY_OPTDATA.
4057 	 */
4058 	*errorp = hammer2_chain_modify(parent, mtid, 0, 0);
4059 	if (*errorp) {
4060 		kprintf("hammer2_create_indirect: error %08x %s\n",
4061 			*errorp, hammer2_error_str(*errorp));
4062 		return NULL;
4063 	}
4064 	KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
4065 
4066 	/*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
4067 	base = hammer2_chain_base_and_count(parent, &count);
4068 
4069 	/*
4070 	 * How big should our new indirect block be?  It has to be at least
4071 	 * as large as its parent for splits to work properly.
4072 	 *
4073 	 * The freemap uses a specific indirect block size.  The number of
4074 	 * levels are built dynamically and ultimately depend on the size
4075 	 * volume.  Because freemap blocks are taken from the reserved areas
4076 	 * of the volume our goal is efficiency (fewer levels) and not so
4077 	 * much to save disk space.
4078 	 *
4079 	 * The first indirect block level for a directory usually uses
4080 	 * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
4081 	 * the hash mechanism, this typically gives us a nominal
4082 	 * 32 * 4 entries with one level of indirection.
4083 	 *
4084 	 * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
4085 	 * indirect blocks.  The initial 4 entries in the inode gives us
4086 	 * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
4087 	 * of indirection gives us 137GB, and so forth.  H2 can support
4088 	 * huge file sizes but they are not typical, so we try to stick
4089 	 * with compactness and do not use a larger indirect block size.
4090 	 *
4091 	 * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
4092 	 * due to the way indirect blocks are created this usually winds
4093 	 * up being extremely inefficient for small files.  Even though
4094 	 * 16KB requires more levels of indirection for very large files,
4095 	 * the 16KB records can be ganged together into 64KB DIOs.
4096 	 */
4097 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4098 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4099 		nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
4100 	} else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4101 		if (parent->data->ipdata.meta.type ==
4102 		    HAMMER2_OBJTYPE_DIRECTORY)
4103 			nbytes = HAMMER2_IND_BYTES_MIN;	/* 4KB = 32 entries */
4104 		else
4105 			nbytes = HAMMER2_IND_BYTES_NOM;	/* 16KB = ~8MB file */
4106 
4107 	} else {
4108 		nbytes = HAMMER2_IND_BYTES_NOM;
4109 	}
4110 	if (nbytes < count * sizeof(hammer2_blockref_t)) {
4111 		KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
4112 			 for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
4113 		nbytes = count * sizeof(hammer2_blockref_t);
4114 	}
4115 	ncount = nbytes / sizeof(hammer2_blockref_t);
4116 
4117 	/*
4118 	 * When creating an indirect block for a freemap node or leaf
4119 	 * the key/keybits must be fitted to static radix levels because
4120 	 * particular radix levels use particular reserved blocks in the
4121 	 * related zone.
4122 	 *
4123 	 * This routine calculates the key/radix of the indirect block
4124 	 * we need to create, and whether it is on the high-side or the
4125 	 * low-side.
4126 	 */
4127 	switch(for_type) {
4128 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4129 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4130 		keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
4131 						       base, count);
4132 		break;
4133 	case HAMMER2_BREF_TYPE_DATA:
4134 		keybits = hammer2_chain_indkey_file(parent, &key, keybits,
4135 						    base, count, ncount);
4136 		break;
4137 	case HAMMER2_BREF_TYPE_DIRENT:
4138 	case HAMMER2_BREF_TYPE_INODE:
4139 		keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
4140 						   base, count, ncount);
4141 		break;
4142 	default:
4143 		panic("illegal indirect block for bref type %d", for_type);
4144 		break;
4145 	}
4146 
4147 	/*
4148 	 * Normalize the key for the radix being represented, keeping the
4149 	 * high bits and throwing away the low bits.
4150 	 */
4151 	key &= ~(((hammer2_key_t)1 << keybits) - 1);
4152 
4153 	/*
4154 	 * Ok, create our new indirect block
4155 	 */
4156 	bzero(&dummy, sizeof(dummy));
4157 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4158 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4159 		dummy.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4160 	} else {
4161 		dummy.type = HAMMER2_BREF_TYPE_INDIRECT;
4162 	}
4163 	dummy.key = key;
4164 	dummy.keybits = keybits;
4165 	dummy.data_off = hammer2_getradix(nbytes);
4166 	dummy.methods =
4167 		HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4168 		HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4169 
4170 	ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy);
4171 	atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4172 	hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4173 	/* ichain has one ref at this point */
4174 
4175 	/*
4176 	 * We have to mark it modified to allocate its block, but use
4177 	 * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
4178 	 * it won't be acted upon by the flush code.
4179 	 *
4180 	 * XXX remove OPTDATA, we need a fully initialized indirect block to
4181 	 * be able to move the original blockref.
4182 	 */
4183 	*errorp = hammer2_chain_modify(ichain, mtid, 0, 0);
4184 	if (*errorp) {
4185 		kprintf("hammer2_alloc_indirect: error %08x %s\n",
4186 			*errorp, hammer2_error_str(*errorp));
4187 		hammer2_chain_unlock(ichain);
4188 		hammer2_chain_drop(ichain);
4189 		return NULL;
4190 	}
4191 	KKASSERT((ichain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4192 
4193 	/*
4194 	 * Iterate the original parent and move the matching brefs into
4195 	 * the new indirect block.
4196 	 *
4197 	 * XXX handle flushes.
4198 	 */
4199 	key_beg = 0;
4200 	key_end = HAMMER2_KEY_MAX;
4201 	key_next = 0;	/* avoid gcc warnings */
4202 	hammer2_spin_ex(&parent->core.spin);
4203 	loops = 0;
4204 	reason = 0;
4205 
4206 	for (;;) {
4207 		/*
4208 		 * Parent may have been modified, relocating its block array.
4209 		 * Reload the base pointer.
4210 		 */
4211 		base = hammer2_chain_base_and_count(parent, &count);
4212 
4213 		if (++loops > 100000) {
4214 		    hammer2_spin_unex(&parent->core.spin);
4215 		    panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4216 			  reason, parent, base, count, key_next);
4217 		}
4218 
4219 		/*
4220 		 * NOTE: spinlock stays intact, returned chain (if not NULL)
4221 		 *	 is not referenced or locked which means that we
4222 		 *	 cannot safely check its flagged / deletion status
4223 		 *	 until we lock it.
4224 		 */
4225 		chain = hammer2_combined_find(parent, base, count,
4226 					      &key_next,
4227 					      key_beg, key_end,
4228 					      &bref);
4229 		generation = parent->core.generation;
4230 		if (bref == NULL)
4231 			break;
4232 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4233 
4234 		/*
4235 		 * Skip keys that are not within the key/radix of the new
4236 		 * indirect block.  They stay in the parent.
4237 		 */
4238 		if (rounddown2(key ^ bref->key, (hammer2_key_t)1 << keybits) != 0) {
4239 			goto next_key_spinlocked;
4240 		}
4241 
4242 		/*
4243 		 * Load the new indirect block by acquiring the related
4244 		 * chains (potentially from media as it might not be
4245 		 * in-memory).  Then move it to the new parent (ichain).
4246 		 *
4247 		 * chain is referenced but not locked.  We must lock the
4248 		 * chain to obtain definitive state.
4249 		 */
4250 		bsave = *bref;
4251 		if (chain) {
4252 			/*
4253 			 * Use chain already present in the RBTREE
4254 			 */
4255 			hammer2_chain_ref(chain);
4256 			hammer2_spin_unex(&parent->core.spin);
4257 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4258 		} else {
4259 			/*
4260 			 * Get chain for blockref element.  _get returns NULL
4261 			 * on insertion race.
4262 			 */
4263 			hammer2_spin_unex(&parent->core.spin);
4264 			chain = hammer2_chain_get(parent, generation, &bsave,
4265 						  HAMMER2_RESOLVE_NEVER);
4266 			if (chain == NULL) {
4267 				reason = 1;
4268 				hammer2_spin_ex(&parent->core.spin);
4269 				continue;
4270 			}
4271 		}
4272 
4273 		/*
4274 		 * This is always live so if the chain has been deleted
4275 		 * we raced someone and we have to retry.
4276 		 *
4277 		 * NOTE: Lookups can race delete-duplicate because
4278 		 *	 delete-duplicate does not lock the parent's core
4279 		 *	 (they just use the spinlock on the core).
4280 		 *
4281 		 *	 (note reversed logic for this one)
4282 		 */
4283 		if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
4284 		    chain->parent != parent ||
4285 		    (chain->flags & HAMMER2_CHAIN_DELETED)) {
4286 			hammer2_chain_unlock(chain);
4287 			hammer2_chain_drop(chain);
4288 			if (hammer2_debug & 0x0040) {
4289 				kprintf("LOST PARENT RETRY "
4290 				"RETRY (%p,%p)->%p %08x\n",
4291 				parent, chain->parent, chain, chain->flags);
4292 			}
4293 			hammer2_spin_ex(&parent->core.spin);
4294 			continue;
4295 		}
4296 
4297 		/*
4298 		 * Shift the chain to the indirect block.
4299 		 *
4300 		 * WARNING! No reason for us to load chain data, pass NOSTATS
4301 		 *	    to prevent delete/insert from trying to access
4302 		 *	    inode stats (and thus asserting if there is no
4303 		 *	    chain->data loaded).
4304 		 *
4305 		 * WARNING! The (parent, chain) deletion may modify the parent
4306 		 *	    and invalidate the base pointer.
4307 		 *
4308 		 * WARNING! Parent must already be marked modified, so we
4309 		 *	    can assume that chain_delete always suceeds.
4310 		 *
4311 		 * WARNING! hammer2_chain_repchange() does not have to be
4312 		 *	    called (and doesn't work anyway because we are
4313 		 *	    only doing a partial shift).  A recursion that is
4314 		 *	    in-progress can continue at the current parent
4315 		 *	    and will be able to properly find its next key.
4316 		 */
4317 		error = hammer2_chain_delete_obref(parent, chain, mtid, 0,
4318 						   &bsave);
4319 		KKASSERT(error == 0);
4320 		hammer2_chain_rename_obref(&ichain, chain, mtid, 0, &bsave);
4321 		hammer2_chain_unlock(chain);
4322 		hammer2_chain_drop(chain);
4323 		KKASSERT(parent->refs > 0);
4324 		chain = NULL;
4325 		base = NULL;	/* safety */
4326 		hammer2_spin_ex(&parent->core.spin);
4327 next_key_spinlocked:
4328 		if (--maxloops == 0)
4329 			panic("hammer2_chain_create_indirect: maxloops");
4330 		reason = 4;
4331 		if (key_next == 0 || key_next > key_end)
4332 			break;
4333 		key_beg = key_next;
4334 		/* loop */
4335 	}
4336 	hammer2_spin_unex(&parent->core.spin);
4337 
4338 	/*
4339 	 * Insert the new indirect block into the parent now that we've
4340 	 * cleared out some entries in the parent.  We calculated a good
4341 	 * insertion index in the loop above (ichain->index).
4342 	 *
4343 	 * We don't have to set UPDATE here because we mark ichain
4344 	 * modified down below (so the normal modified -> flush -> set-moved
4345 	 * sequence applies).
4346 	 *
4347 	 * The insertion shouldn't race as this is a completely new block
4348 	 * and the parent is locked.
4349 	 */
4350 	base = NULL;	/* safety, parent modify may change address */
4351 	KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4352 	KKASSERT(parent->core.live_count < count);
4353 	hammer2_chain_insert(parent, ichain,
4354 			     HAMMER2_CHAIN_INSERT_SPIN |
4355 			     HAMMER2_CHAIN_INSERT_LIVE,
4356 			     0);
4357 
4358 	/*
4359 	 * Make sure flushes propogate after our manual insertion.
4360 	 */
4361 	hammer2_chain_setflush(ichain);
4362 	hammer2_chain_setflush(parent);
4363 
4364 	/*
4365 	 * Figure out what to return.
4366 	 */
4367 	if (rounddown2(create_key ^ key, (hammer2_key_t)1 << keybits)) {
4368 		/*
4369 		 * Key being created is outside the key range,
4370 		 * return the original parent.
4371 		 */
4372 		hammer2_chain_unlock(ichain);
4373 		hammer2_chain_drop(ichain);
4374 	} else {
4375 		/*
4376 		 * Otherwise its in the range, return the new parent.
4377 		 * (leave both the new and old parent locked).
4378 		 */
4379 		parent = ichain;
4380 	}
4381 
4382 	return(parent);
4383 }
4384 
4385 /*
4386  * Do maintenance on an indirect chain.  Both parent and chain are locked.
4387  *
4388  * Returns non-zero if (chain) is deleted, either due to being empty or
4389  * because its children were safely moved into the parent.
4390  */
4391 int
4392 hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4393 				   hammer2_chain_t *chain)
4394 {
4395 	hammer2_blockref_t *chain_base;
4396 	hammer2_blockref_t *base;
4397 	hammer2_blockref_t *bref;
4398 	hammer2_blockref_t bsave;
4399 	hammer2_key_t key_next;
4400 	hammer2_key_t key_beg;
4401 	hammer2_key_t key_end;
4402 	hammer2_chain_t *sub;
4403 	int chain_count;
4404 	int count;
4405 	int error;
4406 	int generation;
4407 
4408 	/*
4409 	 * Make sure we have an accurate live_count
4410 	 */
4411 	if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4412 			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4413 		base = &chain->data->npdata[0];
4414 		count = chain->bytes / sizeof(hammer2_blockref_t);
4415 		hammer2_chain_countbrefs(chain, base, count);
4416 	}
4417 
4418 	/*
4419 	 * If the indirect block is empty we can delete it.
4420 	 * (ignore deletion error)
4421 	 */
4422 	if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4423 		hammer2_chain_delete(parent, chain,
4424 				     chain->bref.modify_tid,
4425 				     HAMMER2_DELETE_PERMANENT);
4426 		hammer2_chain_repchange(parent, chain);
4427 		return 1;
4428 	}
4429 
4430 	base = hammer2_chain_base_and_count(parent, &count);
4431 
4432 	if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4433 			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4434 		hammer2_chain_countbrefs(parent, base, count);
4435 	}
4436 
4437 	/*
4438 	 * Determine if we can collapse chain into parent, calculate
4439 	 * hysteresis for chain emptiness.
4440 	 */
4441 	if (parent->core.live_count + chain->core.live_count - 1 > count)
4442 		return 0;
4443 	chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4444 	if (chain->core.live_count > chain_count * 3 / 4)
4445 		return 0;
4446 
4447 	/*
4448 	 * Ok, theoretically we can collapse chain's contents into
4449 	 * parent.  chain is locked, but any in-memory children of chain
4450 	 * are not.  For this to work, we must be able to dispose of any
4451 	 * in-memory children of chain.
4452 	 *
4453 	 * For now require that there are no in-memory children of chain.
4454 	 *
4455 	 * WARNING! Both chain and parent must remain locked across this
4456 	 *	    entire operation.
4457 	 */
4458 
4459 	/*
4460 	 * Parent must be marked modified.  Don't try to collapse it if we
4461 	 * can't mark it modified.  Once modified, destroy chain to make room
4462 	 * and to get rid of what will be a conflicting key (this is included
4463 	 * in the calculation above).  Finally, move the children of chain
4464 	 * into chain's parent.
4465 	 *
4466 	 * This order creates an accounting problem for bref.embed.stats
4467 	 * because we destroy chain before we remove its children.  Any
4468 	 * elements whos blockref is already synchronized will be counted
4469 	 * twice.  To deal with the problem we clean out chain's stats prior
4470 	 * to deleting it.
4471 	 */
4472 	error = hammer2_chain_modify(parent, 0, 0, 0);
4473 	if (error) {
4474 		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4475 			    hammer2_error_str(error));
4476 		return 0;
4477 	}
4478 	error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4479 	if (error) {
4480 		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4481 			    hammer2_error_str(error));
4482 		return 0;
4483 	}
4484 
4485 	chain->bref.embed.stats.inode_count = 0;
4486 	chain->bref.embed.stats.data_count = 0;
4487 	error = hammer2_chain_delete(parent, chain,
4488 				     chain->bref.modify_tid,
4489 				     HAMMER2_DELETE_PERMANENT);
4490 	KKASSERT(error == 0);
4491 
4492 	/*
4493 	 * The combined_find call requires core.spin to be held.  One would
4494 	 * think there wouldn't be any conflicts since we hold chain
4495 	 * exclusively locked, but the caching mechanism for 0-ref children
4496 	 * does not require a chain lock.
4497 	 */
4498 	hammer2_spin_ex(&chain->core.spin);
4499 
4500 	key_next = 0;
4501 	key_beg = 0;
4502 	key_end = HAMMER2_KEY_MAX;
4503 	for (;;) {
4504 		chain_base = &chain->data->npdata[0];
4505 		chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4506 		sub = hammer2_combined_find(chain, chain_base, chain_count,
4507 					    &key_next,
4508 					    key_beg, key_end,
4509 					    &bref);
4510 		generation = chain->core.generation;
4511 		if (bref == NULL)
4512 			break;
4513 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4514 
4515 		bsave = *bref;
4516 		if (sub) {
4517 			hammer2_chain_ref(sub);
4518 			hammer2_spin_unex(&chain->core.spin);
4519 			hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4520 		} else {
4521 			hammer2_spin_unex(&chain->core.spin);
4522 			sub = hammer2_chain_get(chain, generation, &bsave,
4523 						HAMMER2_RESOLVE_NEVER);
4524 			if (sub == NULL) {
4525 				hammer2_spin_ex(&chain->core.spin);
4526 				continue;
4527 			}
4528 		}
4529 		if (bcmp(&bsave, &sub->bref, sizeof(bsave)) ||
4530 		    sub->parent != chain ||
4531 		    (sub->flags & HAMMER2_CHAIN_DELETED)) {
4532 			hammer2_chain_unlock(sub);
4533 			hammer2_chain_drop(sub);
4534 			hammer2_spin_ex(&chain->core.spin);
4535 			sub = NULL;	/* safety */
4536 			continue;
4537 		}
4538 		error = hammer2_chain_delete_obref(chain, sub,
4539 						   sub->bref.modify_tid, 0,
4540 						   &bsave);
4541 		KKASSERT(error == 0);
4542 		hammer2_chain_rename_obref(&parent, sub,
4543 				     sub->bref.modify_tid,
4544 				     HAMMER2_INSERT_SAMEPARENT, &bsave);
4545 		hammer2_chain_unlock(sub);
4546 		hammer2_chain_drop(sub);
4547 		hammer2_spin_ex(&chain->core.spin);
4548 
4549 		if (key_next == 0)
4550 			break;
4551 		key_beg = key_next;
4552 	}
4553 	hammer2_spin_unex(&chain->core.spin);
4554 
4555 	hammer2_chain_repchange(parent, chain);
4556 
4557 	return 1;
4558 }
4559 
4560 /*
4561  * Freemap indirect blocks
4562  *
4563  * Calculate the keybits and highside/lowside of the freemap node the
4564  * caller is creating.
4565  *
4566  * This routine will specify the next higher-level freemap key/radix
4567  * representing the lowest-ordered set.  By doing so, eventually all
4568  * low-ordered sets will be moved one level down.
4569  *
4570  * We have to be careful here because the freemap reserves a limited
4571  * number of blocks for a limited number of levels.  So we can't just
4572  * push indiscriminately.
4573  */
4574 int
4575 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4576 			     int keybits, hammer2_blockref_t *base, int count)
4577 {
4578 	hammer2_chain_t *chain;
4579 	hammer2_blockref_t *bref;
4580 	hammer2_key_t key;
4581 	hammer2_key_t key_beg;
4582 	hammer2_key_t key_end;
4583 	hammer2_key_t key_next;
4584 	int locount;
4585 	int hicount;
4586 	int maxloops = 300000;
4587 
4588 	key = *keyp;
4589 	locount = 0;
4590 	hicount = 0;
4591 	keybits = 64;
4592 
4593 	/*
4594 	 * Calculate the range of keys in the array being careful to skip
4595 	 * slots which are overridden with a deletion.
4596 	 */
4597 	key_beg = 0;
4598 	key_end = HAMMER2_KEY_MAX;
4599 	hammer2_spin_ex(&parent->core.spin);
4600 
4601 	for (;;) {
4602 		if (--maxloops == 0) {
4603 			panic("indkey_freemap shit %p %p:%d\n",
4604 			      parent, base, count);
4605 		}
4606 		chain = hammer2_combined_find(parent, base, count,
4607 					      &key_next,
4608 					      key_beg, key_end,
4609 					      &bref);
4610 
4611 		/*
4612 		 * Exhausted search
4613 		 */
4614 		if (bref == NULL)
4615 			break;
4616 
4617 		/*
4618 		 * Skip deleted chains.
4619 		 */
4620 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4621 			if (key_next == 0 || key_next > key_end)
4622 				break;
4623 			key_beg = key_next;
4624 			continue;
4625 		}
4626 
4627 		/*
4628 		 * Use the full live (not deleted) element for the scan
4629 		 * iteration.  HAMMER2 does not allow partial replacements.
4630 		 *
4631 		 * XXX should be built into hammer2_combined_find().
4632 		 */
4633 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4634 
4635 		if (keybits > bref->keybits) {
4636 			key = bref->key;
4637 			keybits = bref->keybits;
4638 		} else if (keybits == bref->keybits && bref->key < key) {
4639 			key = bref->key;
4640 		}
4641 		if (key_next == 0)
4642 			break;
4643 		key_beg = key_next;
4644 	}
4645 	hammer2_spin_unex(&parent->core.spin);
4646 
4647 	/*
4648 	 * Return the keybits for a higher-level FREEMAP_NODE covering
4649 	 * this node.
4650 	 */
4651 	switch(keybits) {
4652 	case HAMMER2_FREEMAP_LEVEL0_RADIX:
4653 		keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4654 		break;
4655 	case HAMMER2_FREEMAP_LEVEL1_RADIX:
4656 		keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4657 		break;
4658 	case HAMMER2_FREEMAP_LEVEL2_RADIX:
4659 		keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4660 		break;
4661 	case HAMMER2_FREEMAP_LEVEL3_RADIX:
4662 		keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4663 		break;
4664 	case HAMMER2_FREEMAP_LEVEL4_RADIX:
4665 		keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4666 		break;
4667 	case HAMMER2_FREEMAP_LEVEL5_RADIX:
4668 		panic("hammer2_chain_indkey_freemap: level too high");
4669 		break;
4670 	default:
4671 		panic("hammer2_chain_indkey_freemap: bad radix");
4672 		break;
4673 	}
4674 	*keyp = key;
4675 
4676 	return (keybits);
4677 }
4678 
4679 /*
4680  * File indirect blocks
4681  *
4682  * Calculate the key/keybits for the indirect block to create by scanning
4683  * existing keys.  The key being created is also passed in *keyp and can be
4684  * inside or outside the indirect block.  Regardless, the indirect block
4685  * must hold at least two keys in order to guarantee sufficient space.
4686  *
4687  * We use a modified version of the freemap's fixed radix tree, but taylored
4688  * for file data.  Basically we configure an indirect block encompassing the
4689  * smallest key.
4690  */
4691 static int
4692 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4693 			    int keybits, hammer2_blockref_t *base, int count,
4694 			    int ncount)
4695 {
4696 	hammer2_chain_t *chain;
4697 	hammer2_blockref_t *bref;
4698 	hammer2_key_t key;
4699 	hammer2_key_t key_beg;
4700 	hammer2_key_t key_end;
4701 	hammer2_key_t key_next;
4702 	int nradix;
4703 	int locount;
4704 	int hicount;
4705 	int maxloops = 300000;
4706 
4707 	key = *keyp;
4708 	locount = 0;
4709 	hicount = 0;
4710 	keybits = 64;
4711 
4712 	/*
4713 	 * Calculate the range of keys in the array being careful to skip
4714 	 * slots which are overridden with a deletion.
4715 	 *
4716 	 * Locate the smallest key.
4717 	 */
4718 	key_beg = 0;
4719 	key_end = HAMMER2_KEY_MAX;
4720 	hammer2_spin_ex(&parent->core.spin);
4721 
4722 	for (;;) {
4723 		if (--maxloops == 0) {
4724 			panic("indkey_freemap shit %p %p:%d\n",
4725 			      parent, base, count);
4726 		}
4727 		chain = hammer2_combined_find(parent, base, count,
4728 					      &key_next,
4729 					      key_beg, key_end,
4730 					      &bref);
4731 
4732 		/*
4733 		 * Exhausted search
4734 		 */
4735 		if (bref == NULL)
4736 			break;
4737 
4738 		/*
4739 		 * Skip deleted chains.
4740 		 */
4741 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4742 			if (key_next == 0 || key_next > key_end)
4743 				break;
4744 			key_beg = key_next;
4745 			continue;
4746 		}
4747 
4748 		/*
4749 		 * Use the full live (not deleted) element for the scan
4750 		 * iteration.  HAMMER2 does not allow partial replacements.
4751 		 *
4752 		 * XXX should be built into hammer2_combined_find().
4753 		 */
4754 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4755 
4756 		if (keybits > bref->keybits) {
4757 			key = bref->key;
4758 			keybits = bref->keybits;
4759 		} else if (keybits == bref->keybits && bref->key < key) {
4760 			key = bref->key;
4761 		}
4762 		if (key_next == 0)
4763 			break;
4764 		key_beg = key_next;
4765 	}
4766 	hammer2_spin_unex(&parent->core.spin);
4767 
4768 	/*
4769 	 * Calculate the static keybits for a higher-level indirect block
4770 	 * that contains the key.
4771 	 */
4772 	*keyp = key;
4773 
4774 	switch(ncount) {
4775 	case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4776 		nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4777 		break;
4778 	case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4779 		nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4780 		break;
4781 	case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4782 		nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4783 		break;
4784 	default:
4785 		panic("bad ncount %d\n", ncount);
4786 		nradix = 0;
4787 		break;
4788 	}
4789 
4790 	/*
4791 	 * The largest radix that can be returned for an indirect block is
4792 	 * 63 bits.  (The largest practical indirect block radix is actually
4793 	 * 62 bits because the top-level inode or volume root contains four
4794 	 * entries, but allow 63 to be returned).
4795 	 */
4796 	if (nradix >= 64)
4797 		nradix = 63;
4798 
4799 	return keybits + nradix;
4800 }
4801 
4802 #if 1
4803 
4804 /*
4805  * Directory indirect blocks.
4806  *
4807  * Covers both the inode index (directory of inodes), and directory contents
4808  * (filenames hardlinked to inodes).
4809  *
4810  * Because directory keys are hashed we generally try to cut the space in
4811  * half.  We accomodate the inode index (which tends to have linearly
4812  * increasing inode numbers) by ensuring that the keyspace is at least large
4813  * enough to fill up the indirect block being created.
4814  */
4815 static int
4816 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4817 			 int keybits, hammer2_blockref_t *base, int count,
4818 			 int ncount)
4819 {
4820 	hammer2_blockref_t *bref;
4821 	hammer2_chain_t	*chain;
4822 	hammer2_key_t key_beg;
4823 	hammer2_key_t key_end;
4824 	hammer2_key_t key_next;
4825 	hammer2_key_t key;
4826 	int nkeybits;
4827 	int locount;
4828 	int hicount;
4829 	int maxloops = 300000;
4830 
4831 	/*
4832 	 * NOTE: We can't take a shortcut here anymore for inodes because
4833 	 *	 the root directory can contain a mix of inodes and directory
4834 	 *	 entries (we used to just return 63 if parent->bref.type was
4835 	 *	 HAMMER2_BREF_TYPE_INODE.
4836 	 */
4837 	key = *keyp;
4838 	locount = 0;
4839 	hicount = 0;
4840 
4841 	/*
4842 	 * Calculate the range of keys in the array being careful to skip
4843 	 * slots which are overridden with a deletion.
4844 	 */
4845 	key_beg = 0;
4846 	key_end = HAMMER2_KEY_MAX;
4847 	hammer2_spin_ex(&parent->core.spin);
4848 
4849 	for (;;) {
4850 		if (--maxloops == 0) {
4851 			panic("indkey_freemap shit %p %p:%d\n",
4852 			      parent, base, count);
4853 		}
4854 		chain = hammer2_combined_find(parent, base, count,
4855 					      &key_next,
4856 					      key_beg, key_end,
4857 					      &bref);
4858 
4859 		/*
4860 		 * Exhausted search
4861 		 */
4862 		if (bref == NULL)
4863 			break;
4864 
4865 		/*
4866 		 * Deleted object
4867 		 */
4868 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4869 			if (key_next == 0 || key_next > key_end)
4870 				break;
4871 			key_beg = key_next;
4872 			continue;
4873 		}
4874 
4875 		/*
4876 		 * Use the full live (not deleted) element for the scan
4877 		 * iteration.  HAMMER2 does not allow partial replacements.
4878 		 *
4879 		 * XXX should be built into hammer2_combined_find().
4880 		 */
4881 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4882 
4883 		/*
4884 		 * Expand our calculated key range (key, keybits) to fit
4885 		 * the scanned key.  nkeybits represents the full range
4886 		 * that we will later cut in half (two halves @ nkeybits - 1).
4887 		 */
4888 		nkeybits = keybits;
4889 		if (nkeybits < bref->keybits) {
4890 			if (bref->keybits > 64) {
4891 				kprintf("bad bref chain %p bref %p\n",
4892 					chain, bref);
4893 				Debugger("fubar");
4894 			}
4895 			nkeybits = bref->keybits;
4896 		}
4897 		while (nkeybits < 64 &&
4898 		       rounddown2(key ^ bref->key, (hammer2_key_t)1 << nkeybits) != 0) {
4899 			++nkeybits;
4900 		}
4901 
4902 		/*
4903 		 * If the new key range is larger we have to determine
4904 		 * which side of the new key range the existing keys fall
4905 		 * under by checking the high bit, then collapsing the
4906 		 * locount into the hicount or vise-versa.
4907 		 */
4908 		if (keybits != nkeybits) {
4909 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4910 				hicount += locount;
4911 				locount = 0;
4912 			} else {
4913 				locount += hicount;
4914 				hicount = 0;
4915 			}
4916 			keybits = nkeybits;
4917 		}
4918 
4919 		/*
4920 		 * The newly scanned key will be in the lower half or the
4921 		 * upper half of the (new) key range.
4922 		 */
4923 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4924 			++hicount;
4925 		else
4926 			++locount;
4927 
4928 		if (key_next == 0)
4929 			break;
4930 		key_beg = key_next;
4931 	}
4932 	hammer2_spin_unex(&parent->core.spin);
4933 	bref = NULL;	/* now invalid (safety) */
4934 
4935 	/*
4936 	 * Adjust keybits to represent half of the full range calculated
4937 	 * above (radix 63 max) for our new indirect block.
4938 	 */
4939 	--keybits;
4940 
4941 	/*
4942 	 * Expand keybits to hold at least ncount elements.  ncount will be
4943 	 * a power of 2.  This is to try to completely fill leaf nodes (at
4944 	 * least for keys which are not hashes).
4945 	 *
4946 	 * We aren't counting 'in' or 'out', we are counting 'high side'
4947 	 * and 'low side' based on the bit at (1LL << keybits).  We want
4948 	 * everything to be inside in these cases so shift it all to
4949 	 * the low or high side depending on the new high bit.
4950 	 */
4951 	while (((hammer2_key_t)1 << keybits) < ncount) {
4952 		++keybits;
4953 		if (key & ((hammer2_key_t)1 << keybits)) {
4954 			hicount += locount;
4955 			locount = 0;
4956 		} else {
4957 			locount += hicount;
4958 			hicount = 0;
4959 		}
4960 	}
4961 
4962 	if (hicount > locount)
4963 		key |= (hammer2_key_t)1 << keybits;
4964 	else
4965 		key &= ~(hammer2_key_t)1 << keybits;
4966 
4967 	*keyp = key;
4968 
4969 	return (keybits);
4970 }
4971 
4972 #else
4973 
4974 /*
4975  * Directory indirect blocks.
4976  *
4977  * Covers both the inode index (directory of inodes), and directory contents
4978  * (filenames hardlinked to inodes).
4979  *
4980  * Because directory keys are hashed we generally try to cut the space in
4981  * half.  We accomodate the inode index (which tends to have linearly
4982  * increasing inode numbers) by ensuring that the keyspace is at least large
4983  * enough to fill up the indirect block being created.
4984  */
4985 static int
4986 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4987 			 int keybits, hammer2_blockref_t *base, int count,
4988 			 int ncount)
4989 {
4990 	hammer2_blockref_t *bref;
4991 	hammer2_chain_t	*chain;
4992 	hammer2_key_t key_beg;
4993 	hammer2_key_t key_end;
4994 	hammer2_key_t key_next;
4995 	hammer2_key_t key;
4996 	int nkeybits;
4997 	int locount;
4998 	int hicount;
4999 	int maxloops = 300000;
5000 
5001 	/*
5002 	 * Shortcut if the parent is the inode.  In this situation the
5003 	 * parent has 4+1 directory entries and we are creating an indirect
5004 	 * block capable of holding many more.
5005 	 */
5006 	if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
5007 		return 63;
5008 	}
5009 
5010 	key = *keyp;
5011 	locount = 0;
5012 	hicount = 0;
5013 
5014 	/*
5015 	 * Calculate the range of keys in the array being careful to skip
5016 	 * slots which are overridden with a deletion.
5017 	 */
5018 	key_beg = 0;
5019 	key_end = HAMMER2_KEY_MAX;
5020 	hammer2_spin_ex(&parent->core.spin);
5021 
5022 	for (;;) {
5023 		if (--maxloops == 0) {
5024 			panic("indkey_freemap shit %p %p:%d\n",
5025 			      parent, base, count);
5026 		}
5027 		chain = hammer2_combined_find(parent, base, count,
5028 					      &key_next,
5029 					      key_beg, key_end,
5030 					      &bref);
5031 
5032 		/*
5033 		 * Exhausted search
5034 		 */
5035 		if (bref == NULL)
5036 			break;
5037 
5038 		/*
5039 		 * Deleted object
5040 		 */
5041 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
5042 			if (key_next == 0 || key_next > key_end)
5043 				break;
5044 			key_beg = key_next;
5045 			continue;
5046 		}
5047 
5048 		/*
5049 		 * Use the full live (not deleted) element for the scan
5050 		 * iteration.  HAMMER2 does not allow partial replacements.
5051 		 *
5052 		 * XXX should be built into hammer2_combined_find().
5053 		 */
5054 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
5055 
5056 		/*
5057 		 * Expand our calculated key range (key, keybits) to fit
5058 		 * the scanned key.  nkeybits represents the full range
5059 		 * that we will later cut in half (two halves @ nkeybits - 1).
5060 		 */
5061 		nkeybits = keybits;
5062 		if (nkeybits < bref->keybits) {
5063 			if (bref->keybits > 64) {
5064 				kprintf("bad bref chain %p bref %p\n",
5065 					chain, bref);
5066 				Debugger("fubar");
5067 			}
5068 			nkeybits = bref->keybits;
5069 		}
5070 		while (nkeybits < 64 &&
5071 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
5072 		        (key ^ bref->key)) != 0) {
5073 			++nkeybits;
5074 		}
5075 
5076 		/*
5077 		 * If the new key range is larger we have to determine
5078 		 * which side of the new key range the existing keys fall
5079 		 * under by checking the high bit, then collapsing the
5080 		 * locount into the hicount or vise-versa.
5081 		 */
5082 		if (keybits != nkeybits) {
5083 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
5084 				hicount += locount;
5085 				locount = 0;
5086 			} else {
5087 				locount += hicount;
5088 				hicount = 0;
5089 			}
5090 			keybits = nkeybits;
5091 		}
5092 
5093 		/*
5094 		 * The newly scanned key will be in the lower half or the
5095 		 * upper half of the (new) key range.
5096 		 */
5097 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
5098 			++hicount;
5099 		else
5100 			++locount;
5101 
5102 		if (key_next == 0)
5103 			break;
5104 		key_beg = key_next;
5105 	}
5106 	hammer2_spin_unex(&parent->core.spin);
5107 	bref = NULL;	/* now invalid (safety) */
5108 
5109 	/*
5110 	 * Adjust keybits to represent half of the full range calculated
5111 	 * above (radix 63 max) for our new indirect block.
5112 	 */
5113 	--keybits;
5114 
5115 	/*
5116 	 * Expand keybits to hold at least ncount elements.  ncount will be
5117 	 * a power of 2.  This is to try to completely fill leaf nodes (at
5118 	 * least for keys which are not hashes).
5119 	 *
5120 	 * We aren't counting 'in' or 'out', we are counting 'high side'
5121 	 * and 'low side' based on the bit at (1LL << keybits).  We want
5122 	 * everything to be inside in these cases so shift it all to
5123 	 * the low or high side depending on the new high bit.
5124 	 */
5125 	while (((hammer2_key_t)1 << keybits) < ncount) {
5126 		++keybits;
5127 		if (key & ((hammer2_key_t)1 << keybits)) {
5128 			hicount += locount;
5129 			locount = 0;
5130 		} else {
5131 			locount += hicount;
5132 			hicount = 0;
5133 		}
5134 	}
5135 
5136 	if (hicount > locount)
5137 		key |= (hammer2_key_t)1 << keybits;
5138 	else
5139 		key &= ~(hammer2_key_t)1 << keybits;
5140 
5141 	*keyp = key;
5142 
5143 	return (keybits);
5144 }
5145 
5146 #endif
5147 
5148 /*
5149  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5150  * it exists.
5151  *
5152  * Both parent and chain must be locked exclusively.
5153  *
5154  * This function will modify the parent if the blockref requires removal
5155  * from the parent's block table.
5156  *
5157  * This function is NOT recursive.  Any entity already pushed into the
5158  * chain (such as an inode) may still need visibility into its contents,
5159  * as well as the ability to read and modify the contents.  For example,
5160  * for an unlinked file which is still open.
5161  *
5162  * Also note that the flusher is responsible for cleaning up empty
5163  * indirect blocks.
5164  */
5165 int
5166 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5167 		     hammer2_tid_t mtid, int flags)
5168 {
5169 	int error = 0;
5170 
5171 	KKASSERT(hammer2_mtx_owned(&chain->lock));
5172 
5173 	/*
5174 	 * Nothing to do if already marked.
5175 	 *
5176 	 * We need the spinlock on the core whos RBTREE contains chain
5177 	 * to protect against races.
5178 	 */
5179 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5180 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5181 			 chain->parent == parent);
5182 		error = _hammer2_chain_delete_helper(parent, chain,
5183 						     mtid, flags, NULL);
5184 	}
5185 
5186 	/*
5187 	 * Permanent deletions mark the chain as destroyed.
5188 	 *
5189 	 * NOTE: We do not setflush the chain unless the deletion is
5190 	 *	 permanent, since the deletion of a chain does not actually
5191 	 *	 require it to be flushed.
5192 	 */
5193 	if (error == 0) {
5194 		if (flags & HAMMER2_DELETE_PERMANENT) {
5195 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5196 			hammer2_chain_setflush(chain);
5197 		}
5198 	}
5199 
5200 	return error;
5201 }
5202 
5203 static int
5204 hammer2_chain_delete_obref(hammer2_chain_t *parent, hammer2_chain_t *chain,
5205 		     hammer2_tid_t mtid, int flags,
5206 		     hammer2_blockref_t *obref)
5207 {
5208 	int error = 0;
5209 
5210 	KKASSERT(hammer2_mtx_owned(&chain->lock));
5211 
5212 	/*
5213 	 * Nothing to do if already marked.
5214 	 *
5215 	 * We need the spinlock on the core whos RBTREE contains chain
5216 	 * to protect against races.
5217 	 */
5218 	obref->type = HAMMER2_BREF_TYPE_EMPTY;
5219 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5220 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5221 			 chain->parent == parent);
5222 		error = _hammer2_chain_delete_helper(parent, chain,
5223 						     mtid, flags, obref);
5224 	}
5225 
5226 	/*
5227 	 * Permanent deletions mark the chain as destroyed.
5228 	 *
5229 	 * NOTE: We do not setflush the chain unless the deletion is
5230 	 *	 permanent, since the deletion of a chain does not actually
5231 	 *	 require it to be flushed.
5232 	 */
5233 	if (error == 0) {
5234 		if (flags & HAMMER2_DELETE_PERMANENT) {
5235 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5236 			hammer2_chain_setflush(chain);
5237 		}
5238 	}
5239 
5240 	return error;
5241 }
5242 
5243 /*
5244  * Returns the index of the nearest element in the blockref array >= elm.
5245  * Returns (count) if no element could be found.
5246  *
5247  * Sets *key_nextp to the next key for loop purposes but does not modify
5248  * it if the next key would be higher than the current value of *key_nextp.
5249  * Note that *key_nexp can overflow to 0, which should be tested by the
5250  * caller.
5251  *
5252  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5253  *	     held through the operation.
5254  */
5255 static int
5256 hammer2_base_find(hammer2_chain_t *parent,
5257 		  hammer2_blockref_t *base, int count,
5258 		  hammer2_key_t *key_nextp,
5259 		  hammer2_key_t key_beg, hammer2_key_t key_end)
5260 {
5261 	hammer2_blockref_t *scan;
5262 	hammer2_key_t scan_end;
5263 	int i;
5264 	int limit;
5265 
5266 	/*
5267 	 * Require the live chain's already have their core's counted
5268 	 * so we can optimize operations.
5269 	 */
5270         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5271 
5272 	/*
5273 	 * Degenerate case
5274 	 */
5275 	if (count == 0 || base == NULL)
5276 		return(count);
5277 
5278 	/*
5279 	 * Sequential optimization using parent->cache_index.  This is
5280 	 * the most likely scenario.
5281 	 *
5282 	 * We can avoid trailing empty entries on live chains, otherwise
5283 	 * we might have to check the whole block array.
5284 	 */
5285 	i = parent->cache_index;	/* SMP RACE OK */
5286 	cpu_ccfence();
5287 	limit = parent->core.live_zero;
5288 	if (i >= limit)
5289 		i = limit - 1;
5290 	if (i < 0)
5291 		i = 0;
5292 	KKASSERT(i < count);
5293 
5294 	/*
5295 	 * Search backwards
5296 	 */
5297 	scan = &base[i];
5298 	while (i > 0 && (scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5299 	    scan->key > key_beg)) {
5300 		--scan;
5301 		--i;
5302 	}
5303 	parent->cache_index = i;
5304 
5305 	/*
5306 	 * Search forwards, stop when we find a scan element which
5307 	 * encloses the key or until we know that there are no further
5308 	 * elements.
5309 	 */
5310 	while (i < count) {
5311 		if (scan->type != HAMMER2_BREF_TYPE_EMPTY) {
5312 			scan_end = scan->key +
5313 				   ((hammer2_key_t)1 << scan->keybits) - 1;
5314 			if (scan->key > key_beg || scan_end >= key_beg)
5315 				break;
5316 		}
5317 		if (i >= limit)
5318 			return (count);
5319 		++scan;
5320 		++i;
5321 	}
5322 	if (i != count) {
5323 		parent->cache_index = i;
5324 		if (i >= limit) {
5325 			i = count;
5326 		} else {
5327 			scan_end = scan->key +
5328 				   ((hammer2_key_t)1 << scan->keybits);
5329 			if (scan_end && (*key_nextp > scan_end ||
5330 					 *key_nextp == 0)) {
5331 				*key_nextp = scan_end;
5332 			}
5333 		}
5334 	}
5335 	return (i);
5336 }
5337 
5338 /*
5339  * Do a combined search and return the next match either from the blockref
5340  * array or from the in-memory chain.  Sets *bresp to the returned bref in
5341  * both cases, or sets it to NULL if the search exhausted.  Only returns
5342  * a non-NULL chain if the search matched from the in-memory chain.
5343  *
5344  * When no in-memory chain has been found and a non-NULL bref is returned
5345  * in *bresp.
5346  *
5347  *
5348  * The returned chain is not locked or referenced.  Use the returned bref
5349  * to determine if the search exhausted or not.  Iterate if the base find
5350  * is chosen but matches a deleted chain.
5351  *
5352  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5353  *	     held through the operation.
5354  */
5355 hammer2_chain_t *
5356 hammer2_combined_find(hammer2_chain_t *parent,
5357 		      hammer2_blockref_t *base, int count,
5358 		      hammer2_key_t *key_nextp,
5359 		      hammer2_key_t key_beg, hammer2_key_t key_end,
5360 		      hammer2_blockref_t **bresp)
5361 {
5362 	hammer2_blockref_t *bref;
5363 	hammer2_chain_t *chain;
5364 	int i;
5365 
5366 	/*
5367 	 * Lookup in block array and in rbtree.
5368 	 */
5369 	*key_nextp = key_end + 1;
5370 	i = hammer2_base_find(parent, base, count, key_nextp,
5371 			      key_beg, key_end);
5372 	chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5373 
5374 	/*
5375 	 * Neither matched
5376 	 */
5377 	if (i == count && chain == NULL) {
5378 		*bresp = NULL;
5379 		return(NULL);
5380 	}
5381 
5382 	/*
5383 	 * Only chain matched.
5384 	 */
5385 	if (i == count) {
5386 		bref = &chain->bref;
5387 		goto found;
5388 	}
5389 
5390 	/*
5391 	 * Only blockref matched.
5392 	 */
5393 	if (chain == NULL) {
5394 		bref = &base[i];
5395 		goto found;
5396 	}
5397 
5398 	/*
5399 	 * Both in-memory and blockref matched, select the nearer element.
5400 	 *
5401 	 * If both are flush with the left-hand side or both are the
5402 	 * same distance away, select the chain.  In this situation the
5403 	 * chain must have been loaded from the matching blockmap.
5404 	 */
5405 	if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5406 	    chain->bref.key == base[i].key) {
5407 		KKASSERT(chain->bref.key == base[i].key);
5408 		bref = &chain->bref;
5409 		goto found;
5410 	}
5411 
5412 	/*
5413 	 * Select the nearer key
5414 	 */
5415 	if (chain->bref.key < base[i].key) {
5416 		bref = &chain->bref;
5417 	} else {
5418 		bref = &base[i];
5419 		chain = NULL;
5420 	}
5421 
5422 	/*
5423 	 * If the bref is out of bounds we've exhausted our search.
5424 	 */
5425 found:
5426 	if (bref->key > key_end) {
5427 		*bresp = NULL;
5428 		chain = NULL;
5429 	} else {
5430 		*bresp = bref;
5431 	}
5432 	return(chain);
5433 }
5434 
5435 /*
5436  * Locate the specified block array element and delete it.  The element
5437  * must exist.
5438  *
5439  * The spin lock on the related chain must be held.
5440  *
5441  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5442  *	 need to be adjusted when we commit the media change.
5443  */
5444 void
5445 hammer2_base_delete(hammer2_chain_t *parent,
5446 		    hammer2_blockref_t *base, int count,
5447 		    hammer2_chain_t *chain,
5448 		    hammer2_blockref_t *obref)
5449 {
5450 	hammer2_blockref_t *elm = &chain->bref;
5451 	hammer2_blockref_t *scan;
5452 	hammer2_key_t key_next;
5453 	int i;
5454 
5455 	/*
5456 	 * Delete element.  Expect the element to exist.
5457 	 *
5458 	 * XXX see caller, flush code not yet sophisticated enough to prevent
5459 	 *     re-flushed in some cases.
5460 	 */
5461 	key_next = 0; /* max range */
5462 	i = hammer2_base_find(parent, base, count, &key_next,
5463 			      elm->key, elm->key);
5464 	scan = &base[i];
5465 	if (i == count || scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5466 	    scan->key != elm->key ||
5467 	    ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
5468 	     scan->keybits != elm->keybits)) {
5469 		hammer2_spin_unex(&parent->core.spin);
5470 		panic("delete base %p element not found at %d/%d elm %p\n",
5471 		      base, i, count, elm);
5472 		return;
5473 	}
5474 
5475 	/*
5476 	 * Update stats and zero the entry.
5477 	 *
5478 	 * NOTE: Handle radix == 0 (0 bytes) case.
5479 	 */
5480 	if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5481 		parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5482 				(int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5483 	}
5484 	switch(scan->type) {
5485 	case HAMMER2_BREF_TYPE_INODE:
5486 		--parent->bref.embed.stats.inode_count;
5487 		/* fall through */
5488 	case HAMMER2_BREF_TYPE_DATA:
5489 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5490 			atomic_set_int(&chain->flags,
5491 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5492 		} else {
5493 			if (parent->bref.leaf_count)
5494 				--parent->bref.leaf_count;
5495 		}
5496 		/* fall through */
5497 	case HAMMER2_BREF_TYPE_INDIRECT:
5498 		if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5499 			parent->bref.embed.stats.data_count -=
5500 				scan->embed.stats.data_count;
5501 			parent->bref.embed.stats.inode_count -=
5502 				scan->embed.stats.inode_count;
5503 		}
5504 		if (scan->type == HAMMER2_BREF_TYPE_INODE)
5505 			break;
5506 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5507 			atomic_set_int(&chain->flags,
5508 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5509 		} else {
5510 			if (parent->bref.leaf_count <= scan->leaf_count)
5511 				parent->bref.leaf_count = 0;
5512 			else
5513 				parent->bref.leaf_count -= scan->leaf_count;
5514 		}
5515 		break;
5516 	case HAMMER2_BREF_TYPE_DIRENT:
5517 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5518 			atomic_set_int(&chain->flags,
5519 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5520 		} else {
5521 			if (parent->bref.leaf_count)
5522 				--parent->bref.leaf_count;
5523 		}
5524 	default:
5525 		break;
5526 	}
5527 
5528 	if (obref)
5529 		*obref = *scan;
5530 	bzero(scan, sizeof(*scan));
5531 
5532 	/*
5533 	 * We can only optimize parent->core.live_zero for live chains.
5534 	 */
5535 	if (parent->core.live_zero == i + 1) {
5536 		while (--i >= 0 && base[i].type == HAMMER2_BREF_TYPE_EMPTY)
5537 			;
5538 		parent->core.live_zero = i + 1;
5539 	}
5540 
5541 	/*
5542 	 * Clear appropriate blockmap flags in chain.
5543 	 */
5544 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
5545 					HAMMER2_CHAIN_BMAPUPD);
5546 }
5547 
5548 /*
5549  * Insert the specified element.  The block array must not already have the
5550  * element and must have space available for the insertion.
5551  *
5552  * The spin lock on the related chain must be held.
5553  *
5554  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5555  *	 need to be adjusted when we commit the media change.
5556  */
5557 void
5558 hammer2_base_insert(hammer2_chain_t *parent,
5559 		    hammer2_blockref_t *base, int count,
5560 		    hammer2_chain_t *chain, hammer2_blockref_t *elm)
5561 {
5562 	hammer2_key_t key_next;
5563 	hammer2_key_t xkey;
5564 	int i;
5565 	int j;
5566 	int k;
5567 	int l;
5568 	int u = 1;
5569 
5570 	/*
5571 	 * Insert new element.  Expect the element to not already exist
5572 	 * unless we are replacing it.
5573 	 *
5574 	 * XXX see caller, flush code not yet sophisticated enough to prevent
5575 	 *     re-flushed in some cases.
5576 	 */
5577 	key_next = 0; /* max range */
5578 	i = hammer2_base_find(parent, base, count, &key_next,
5579 			      elm->key, elm->key);
5580 
5581 	/*
5582 	 * Shortcut fill optimization, typical ordered insertion(s) may not
5583 	 * require a search.
5584 	 */
5585 	KKASSERT(i >= 0 && i <= count);
5586 
5587 	/*
5588 	 * Set appropriate blockmap flags in chain (if not NULL)
5589 	 */
5590 	if (chain)
5591 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
5592 
5593 	/*
5594 	 * Update stats and zero the entry
5595 	 */
5596 	if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5597 		parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5598 				(int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5599 	}
5600 	switch(elm->type) {
5601 	case HAMMER2_BREF_TYPE_INODE:
5602 		++parent->bref.embed.stats.inode_count;
5603 		/* fall through */
5604 	case HAMMER2_BREF_TYPE_DATA:
5605 		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5606 			++parent->bref.leaf_count;
5607 		/* fall through */
5608 	case HAMMER2_BREF_TYPE_INDIRECT:
5609 		if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5610 			parent->bref.embed.stats.data_count +=
5611 				elm->embed.stats.data_count;
5612 			parent->bref.embed.stats.inode_count +=
5613 				elm->embed.stats.inode_count;
5614 		}
5615 		if (elm->type == HAMMER2_BREF_TYPE_INODE)
5616 			break;
5617 		if (parent->bref.leaf_count + elm->leaf_count <
5618 		    HAMMER2_BLOCKREF_LEAF_MAX) {
5619 			parent->bref.leaf_count += elm->leaf_count;
5620 		} else {
5621 			parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5622 		}
5623 		break;
5624 	case HAMMER2_BREF_TYPE_DIRENT:
5625 		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5626 			++parent->bref.leaf_count;
5627 		break;
5628 	default:
5629 		break;
5630 	}
5631 
5632 
5633 	/*
5634 	 * We can only optimize parent->core.live_zero for live chains.
5635 	 */
5636 	if (i == count && parent->core.live_zero < count) {
5637 		i = parent->core.live_zero++;
5638 		base[i] = *elm;
5639 		return;
5640 	}
5641 
5642 	xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5643 	if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5644 		hammer2_spin_unex(&parent->core.spin);
5645 		panic("insert base %p overlapping elements at %d elm %p\n",
5646 		      base, i, elm);
5647 	}
5648 
5649 	/*
5650 	 * Try to find an empty slot before or after.
5651 	 */
5652 	j = i;
5653 	k = i;
5654 	while (j > 0 || k < count) {
5655 		--j;
5656 		if (j >= 0 && base[j].type == HAMMER2_BREF_TYPE_EMPTY) {
5657 			if (j == i - 1) {
5658 				base[j] = *elm;
5659 			} else {
5660 				bcopy(&base[j+1], &base[j],
5661 				      (i - j - 1) * sizeof(*base));
5662 				base[i - 1] = *elm;
5663 			}
5664 			goto validate;
5665 		}
5666 		++k;
5667 		if (k < count && base[k].type == HAMMER2_BREF_TYPE_EMPTY) {
5668 			bcopy(&base[i], &base[i+1],
5669 			      (k - i) * sizeof(hammer2_blockref_t));
5670 			base[i] = *elm;
5671 
5672 			/*
5673 			 * We can only update parent->core.live_zero for live
5674 			 * chains.
5675 			 */
5676 			if (parent->core.live_zero <= k)
5677 				parent->core.live_zero = k + 1;
5678 			u = 2;
5679 			goto validate;
5680 		}
5681 	}
5682 	panic("hammer2_base_insert: no room!");
5683 
5684 	/*
5685 	 * Debugging
5686 	 */
5687 validate:
5688 	key_next = 0;
5689 	for (l = 0; l < count; ++l) {
5690 		if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5691 			key_next = base[l].key +
5692 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5693 			break;
5694 		}
5695 	}
5696 	while (++l < count) {
5697 		if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5698 			if (base[l].key <= key_next)
5699 				panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5700 			key_next = base[l].key +
5701 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5702 
5703 		}
5704 	}
5705 
5706 }
5707 
5708 #if 0
5709 
5710 /*
5711  * Sort the blockref array for the chain.  Used by the flush code to
5712  * sort the blockref[] array.
5713  *
5714  * The chain must be exclusively locked AND spin-locked.
5715  */
5716 typedef hammer2_blockref_t *hammer2_blockref_p;
5717 
5718 static
5719 int
5720 hammer2_base_sort_callback(const void *v1, const void *v2)
5721 {
5722 	hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5723 	hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5724 
5725 	/*
5726 	 * Make sure empty elements are placed at the end of the array
5727 	 */
5728 	if (bref1->type == HAMMER2_BREF_TYPE_EMPTY) {
5729 		if (bref2->type == HAMMER2_BREF_TYPE_EMPTY)
5730 			return(0);
5731 		return(1);
5732 	} else if (bref2->type == HAMMER2_BREF_TYPE_EMPTY) {
5733 		return(-1);
5734 	}
5735 
5736 	/*
5737 	 * Sort by key
5738 	 */
5739 	if (bref1->key < bref2->key)
5740 		return(-1);
5741 	if (bref1->key > bref2->key)
5742 		return(1);
5743 	return(0);
5744 }
5745 
5746 void
5747 hammer2_base_sort(hammer2_chain_t *chain)
5748 {
5749 	hammer2_blockref_t *base;
5750 	int count;
5751 
5752 	switch(chain->bref.type) {
5753 	case HAMMER2_BREF_TYPE_INODE:
5754 		/*
5755 		 * Special shortcut for embedded data returns the inode
5756 		 * itself.  Callers must detect this condition and access
5757 		 * the embedded data (the strategy code does this for us).
5758 		 *
5759 		 * This is only applicable to regular files and softlinks.
5760 		 */
5761 		if (chain->data->ipdata.meta.op_flags &
5762 		    HAMMER2_OPFLAG_DIRECTDATA) {
5763 			return;
5764 		}
5765 		base = &chain->data->ipdata.u.blockset.blockref[0];
5766 		count = HAMMER2_SET_COUNT;
5767 		break;
5768 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5769 	case HAMMER2_BREF_TYPE_INDIRECT:
5770 		/*
5771 		 * Optimize indirect blocks in the INITIAL state to avoid
5772 		 * I/O.
5773 		 */
5774 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5775 		base = &chain->data->npdata[0];
5776 		count = chain->bytes / sizeof(hammer2_blockref_t);
5777 		break;
5778 	case HAMMER2_BREF_TYPE_VOLUME:
5779 		base = &chain->data->voldata.sroot_blockset.blockref[0];
5780 		count = HAMMER2_SET_COUNT;
5781 		break;
5782 	case HAMMER2_BREF_TYPE_FREEMAP:
5783 		base = &chain->data->blkset.blockref[0];
5784 		count = HAMMER2_SET_COUNT;
5785 		break;
5786 	default:
5787 		kprintf("hammer2_chain_lookup: unrecognized "
5788 			"blockref(A) type: %d",
5789 		        chain->bref.type);
5790 		while (1)
5791 			tsleep(&base, 0, "dead", 0);
5792 		panic("hammer2_base_sort: unrecognized "
5793 		      "blockref(A) type: %d",
5794 		      chain->bref.type);
5795 		base = NULL;	/* safety */
5796 		count = 0;	/* safety */
5797 	}
5798 	kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5799 }
5800 
5801 #endif
5802 
5803 /*
5804  * Chain memory management
5805  */
5806 void
5807 hammer2_chain_wait(hammer2_chain_t *chain)
5808 {
5809 	tsleep(chain, 0, "chnflw", 1);
5810 }
5811 
5812 const hammer2_media_data_t *
5813 hammer2_chain_rdata(hammer2_chain_t *chain)
5814 {
5815 	KKASSERT(chain->data != NULL);
5816 	return (chain->data);
5817 }
5818 
5819 hammer2_media_data_t *
5820 hammer2_chain_wdata(hammer2_chain_t *chain)
5821 {
5822 	KKASSERT(chain->data != NULL);
5823 	return (chain->data);
5824 }
5825 
5826 /*
5827  * Set the check data for a chain.  This can be a heavy-weight operation
5828  * and typically only runs on-flush.  For file data check data is calculated
5829  * when the logical buffers are flushed.
5830  */
5831 void
5832 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5833 {
5834 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
5835 
5836 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5837 	case HAMMER2_CHECK_NONE:
5838 		break;
5839 	case HAMMER2_CHECK_DISABLED:
5840 		break;
5841 	case HAMMER2_CHECK_ISCSI32:
5842 		chain->bref.check.iscsi32.value =
5843 			hammer2_icrc32(bdata, chain->bytes);
5844 		break;
5845 	case HAMMER2_CHECK_XXHASH64:
5846 		chain->bref.check.xxhash64.value =
5847 			XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5848 		break;
5849 	case HAMMER2_CHECK_SHA192:
5850 		{
5851 			SHA256_CTX hash_ctx;
5852 			union {
5853 				uint8_t digest[SHA256_DIGEST_LENGTH];
5854 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5855 			} u;
5856 
5857 			SHA256_Init(&hash_ctx);
5858 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5859 			SHA256_Final(u.digest, &hash_ctx);
5860 			u.digest64[2] ^= u.digest64[3];
5861 			bcopy(u.digest,
5862 			      chain->bref.check.sha192.data,
5863 			      sizeof(chain->bref.check.sha192.data));
5864 		}
5865 		break;
5866 	case HAMMER2_CHECK_FREEMAP:
5867 		chain->bref.check.freemap.icrc32 =
5868 			hammer2_icrc32(bdata, chain->bytes);
5869 		break;
5870 	default:
5871 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5872 			chain->bref.methods);
5873 		break;
5874 	}
5875 }
5876 
5877 /*
5878  * Characterize a failed check code and try to trace back to the inode.
5879  */
5880 static void
5881 hammer2_characterize_failed_chain(hammer2_chain_t *chain, uint64_t check,
5882 				  int bits)
5883 {
5884 	hammer2_chain_t *lchain;
5885 	hammer2_chain_t *ochain;
5886 	int did;
5887 
5888 	did = krateprintf(&krate_h2chk,
5889 		"chain %016jx.%02x (%s) meth=%02x CHECK FAIL "
5890 		"(flags=%08x, bref/data ",
5891 		chain->bref.data_off,
5892 		chain->bref.type,
5893 		hammer2_bref_type_str(&chain->bref),
5894 		chain->bref.methods,
5895 		chain->flags);
5896 	if (did == 0)
5897 		return;
5898 
5899 	if (bits == 32) {
5900 		kprintf("%08x/%08x)\n",
5901 			chain->bref.check.iscsi32.value,
5902 			(uint32_t)check);
5903 	} else {
5904 		kprintf("%016jx/%016jx)\n",
5905 			chain->bref.check.xxhash64.value,
5906 			check);
5907 	}
5908 
5909 	/*
5910 	 * Run up the chains to try to find the governing inode so we
5911 	 * can report it.
5912 	 *
5913 	 * XXX This error reporting is not really MPSAFE
5914 	 */
5915 	ochain = chain;
5916 	lchain = chain;
5917 	while (chain && chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
5918 		lchain = chain;
5919 		chain = chain->parent;
5920 	}
5921 
5922 	if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
5923 	    ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) == 0 ||
5924 	     (lchain->bref.key & HAMMER2_DIRHASH_VISIBLE))) {
5925 		kprintf("   Resides at/in inode %ld\n",
5926 			chain->bref.key);
5927 	} else if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5928 		kprintf("   Resides in inode index - CRITICAL!!!\n");
5929 	} else {
5930 		kprintf("   Resides in root index - CRITICAL!!!\n");
5931 	}
5932 	if (ochain->hmp) {
5933 		const char *pfsname = "UNKNOWN";
5934 		int i;
5935 
5936 		if (ochain->pmp) {
5937 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
5938 				if (ochain->pmp->pfs_hmps[i] == ochain->hmp &&
5939 				    ochain->pmp->pfs_names[i]) {
5940 					pfsname = ochain->pmp->pfs_names[i];
5941 					break;
5942 				}
5943 			}
5944 		}
5945 		kprintf("   In pfs %s on device %s\n",
5946 			pfsname, ochain->hmp->devrepname);
5947 	}
5948 }
5949 
5950 /*
5951  * Returns non-zero on success, 0 on failure.
5952  */
5953 int
5954 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5955 {
5956 	uint32_t check32;
5957 	uint64_t check64;
5958 	int r;
5959 
5960 	if (chain->flags & HAMMER2_CHAIN_NOTTESTED)
5961 		return 1;
5962 
5963 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5964 	case HAMMER2_CHECK_NONE:
5965 		r = 1;
5966 		break;
5967 	case HAMMER2_CHECK_DISABLED:
5968 		r = 1;
5969 		break;
5970 	case HAMMER2_CHECK_ISCSI32:
5971 		check32 = hammer2_icrc32(bdata, chain->bytes);
5972 		r = (chain->bref.check.iscsi32.value == check32);
5973 		if (r == 0) {
5974 			hammer2_characterize_failed_chain(chain, check32, 32);
5975 		}
5976 		hammer2_process_icrc32 += chain->bytes;
5977 		break;
5978 	case HAMMER2_CHECK_XXHASH64:
5979 		check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5980 		r = (chain->bref.check.xxhash64.value == check64);
5981 		if (r == 0) {
5982 			hammer2_characterize_failed_chain(chain, check64, 64);
5983 		}
5984 		hammer2_process_xxhash64 += chain->bytes;
5985 		break;
5986 	case HAMMER2_CHECK_SHA192:
5987 		{
5988 			SHA256_CTX hash_ctx;
5989 			union {
5990 				uint8_t digest[SHA256_DIGEST_LENGTH];
5991 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5992 			} u;
5993 
5994 			SHA256_Init(&hash_ctx);
5995 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5996 			SHA256_Final(u.digest, &hash_ctx);
5997 			u.digest64[2] ^= u.digest64[3];
5998 			if (bcmp(u.digest,
5999 				 chain->bref.check.sha192.data,
6000 			         sizeof(chain->bref.check.sha192.data)) == 0) {
6001 				r = 1;
6002 			} else {
6003 				r = 0;
6004 				krateprintf(&krate_h2chk,
6005 					"chain %016jx.%02x meth=%02x "
6006 					"CHECK FAIL\n",
6007 					chain->bref.data_off,
6008 					chain->bref.type,
6009 					chain->bref.methods);
6010 			}
6011 		}
6012 		break;
6013 	case HAMMER2_CHECK_FREEMAP:
6014 		r = (chain->bref.check.freemap.icrc32 ==
6015 		     hammer2_icrc32(bdata, chain->bytes));
6016 		if (r == 0) {
6017 			int did;
6018 
6019 			did = krateprintf(&krate_h2chk,
6020 					  "chain %016jx.%02x meth=%02x "
6021 					  "CHECK FAIL\n",
6022 					  chain->bref.data_off,
6023 					  chain->bref.type,
6024 					  chain->bref.methods);
6025 			if (did) {
6026 				kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
6027 					chain->bref.check.freemap.icrc32,
6028 					hammer2_icrc32(bdata, chain->bytes),
6029 					chain->bytes);
6030 				if (chain->dio) {
6031 					kprintf("dio %p buf %016jx,%d "
6032 						"bdata %p/%p\n",
6033 						chain->dio,
6034 						chain->dio->bp->b_loffset,
6035 						chain->dio->bp->b_bufsize,
6036 						bdata,
6037 						chain->dio->bp->b_data);
6038 				}
6039 			}
6040 		}
6041 		break;
6042 	default:
6043 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
6044 			chain->bref.methods);
6045 		r = 1;
6046 		break;
6047 	}
6048 	return r;
6049 }
6050 
6051 /*
6052  * Acquire the chain and parent representing the specified inode for the
6053  * device at the specified cluster index.
6054  *
6055  * The flags passed in are LOOKUP flags, not RESOLVE flags.
6056  *
6057  * If we are unable to locate the inode, HAMMER2_ERROR_EIO is returned and
6058  * *chainp will be NULL.  *parentp may still be set error or not, or NULL
6059  * if the parent itself could not be resolved.
6060  *
6061  * The caller may pass-in a locked *parentp and/or *chainp, or neither.
6062  * They will be unlocked and released by this function.  The *parentp and
6063  * *chainp representing the located inode are returned locked.
6064  */
6065 int
6066 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
6067 			 int clindex, int flags,
6068 			 hammer2_chain_t **parentp, hammer2_chain_t **chainp)
6069 {
6070 	hammer2_chain_t *parent;
6071 	hammer2_chain_t *rchain;
6072 	hammer2_key_t key_dummy;
6073 	hammer2_inode_t *ip;
6074 	int resolve_flags;
6075 	int error;
6076 
6077 	resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
6078 			HAMMER2_RESOLVE_SHARED : 0;
6079 
6080 	/*
6081 	 * Caller expects us to replace these.
6082 	 */
6083 	if (*chainp) {
6084 		hammer2_chain_unlock(*chainp);
6085 		hammer2_chain_drop(*chainp);
6086 		*chainp = NULL;
6087 	}
6088 	if (*parentp) {
6089 		hammer2_chain_unlock(*parentp);
6090 		hammer2_chain_drop(*parentp);
6091 		*parentp = NULL;
6092 	}
6093 
6094 	/*
6095 	 * Be very careful, this is a backend function and we CANNOT
6096 	 * lock any frontend inode structure we find.  But we have to
6097 	 * look the inode up this way first in case it exists but is
6098 	 * detached from the radix tree.
6099 	 */
6100 	ip = hammer2_inode_lookup(pmp, inum);
6101 	if (ip) {
6102 		*chainp = hammer2_inode_chain_and_parent(ip, clindex,
6103 						       parentp,
6104 						       resolve_flags);
6105 		hammer2_inode_drop(ip);
6106 		if (*chainp)
6107 			return 0;
6108 		hammer2_chain_unlock(*chainp);
6109 		hammer2_chain_drop(*chainp);
6110 		*chainp = NULL;
6111 		if (*parentp) {
6112 			hammer2_chain_unlock(*parentp);
6113 			hammer2_chain_drop(*parentp);
6114 			*parentp = NULL;
6115 		}
6116 	}
6117 
6118 	/*
6119 	 * Inodes hang off of the iroot (bit 63 is clear, differentiating
6120 	 * inodes from root directory entries in the key lookup).
6121 	 */
6122 	parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
6123 	rchain = NULL;
6124 	if (parent) {
6125 		rchain = hammer2_chain_lookup(&parent, &key_dummy,
6126 					      inum, inum,
6127 					      &error, flags);
6128 	} else {
6129 		error = HAMMER2_ERROR_EIO;
6130 	}
6131 	*parentp = parent;
6132 	*chainp = rchain;
6133 
6134 	return error;
6135 }
6136 
6137 /*
6138  * Used by the bulkscan code to snapshot the synchronized storage for
6139  * a volume, allowing it to be scanned concurrently against normal
6140  * operation.
6141  */
6142 hammer2_chain_t *
6143 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
6144 {
6145 	hammer2_chain_t *copy;
6146 
6147 	copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
6148 	copy->data = kmalloc(sizeof(copy->data->voldata),
6149 			     hmp->mchain,
6150 			     M_WAITOK | M_ZERO);
6151 	hammer2_voldata_lock(hmp);
6152 	copy->data->voldata = hmp->volsync;
6153 	hammer2_voldata_unlock(hmp);
6154 
6155 	return copy;
6156 }
6157 
6158 void
6159 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
6160 {
6161 	KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
6162 	KKASSERT(copy->data);
6163 	kfree(copy->data, copy->hmp->mchain);
6164 	copy->data = NULL;
6165 	atomic_add_long(&hammer2_chain_allocs, -1);
6166 	hammer2_chain_drop(copy);
6167 }
6168 
6169 /*
6170  * Returns non-zero if the chain (INODE or DIRENT) matches the
6171  * filename.
6172  */
6173 int
6174 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
6175 			  size_t name_len)
6176 {
6177 	const hammer2_inode_data_t *ripdata;
6178 	const hammer2_dirent_head_t *den;
6179 
6180 	if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
6181 		ripdata = &chain->data->ipdata;
6182 		if (ripdata->meta.name_len == name_len &&
6183 		    bcmp(ripdata->filename, name, name_len) == 0) {
6184 			return 1;
6185 		}
6186 	}
6187 	if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
6188 	   chain->bref.embed.dirent.namlen == name_len) {
6189 		den = &chain->bref.embed.dirent;
6190 		if (name_len > sizeof(chain->bref.check.buf) &&
6191 		    bcmp(chain->data->buf, name, name_len) == 0) {
6192 			return 1;
6193 		}
6194 		if (name_len <= sizeof(chain->bref.check.buf) &&
6195 		    bcmp(chain->bref.check.buf, name, name_len) == 0) {
6196 			return 1;
6197 		}
6198 	}
6199 	return 0;
6200 }
6201