xref: /dragonfly/sys/vfs/hammer2/hammer2_chain.c (revision a9783bc6)
1 /*
2  * Copyright (c) 2011-2019 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62 
63 #include <crypto/sha2/sha2.h>
64 
65 #include "hammer2.h"
66 
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68 		hammer2_chain_t *parent,
69 		hammer2_key_t key, int keybits,
70 		hammer2_tid_t mtid, int for_type, int *errorp);
71 static void hammer2_chain_rename_obref(hammer2_chain_t **parentp,
72 		hammer2_chain_t *chain, hammer2_tid_t mtid,
73 		int flags, hammer2_blockref_t *obref);
74 static int hammer2_chain_delete_obref(hammer2_chain_t *parent,
75 		hammer2_chain_t *chain,
76 		hammer2_tid_t mtid, int flags,
77 		hammer2_blockref_t *obref);
78 static hammer2_io_t *hammer2_chain_drop_data(hammer2_chain_t *chain);
79 static hammer2_chain_t *hammer2_combined_find(
80 		hammer2_chain_t *parent,
81 		hammer2_blockref_t *base, int count,
82 		hammer2_key_t *key_nextp,
83 		hammer2_key_t key_beg, hammer2_key_t key_end,
84 		hammer2_blockref_t **bresp);
85 
86 /*
87  * There are many degenerate situations where an extreme rate of console
88  * output can occur from warnings and errors.  Make sure this output does
89  * not impede operations.
90  */
91 static struct krate krate_h2chk = { .freq = 5 };
92 static struct krate krate_h2me = { .freq = 1 };
93 static struct krate krate_h2em = { .freq = 1 };
94 
95 /*
96  * Basic RBTree for chains (core.rbtree).
97  */
98 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
99 
100 int
101 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
102 {
103 	hammer2_key_t c1_beg;
104 	hammer2_key_t c1_end;
105 	hammer2_key_t c2_beg;
106 	hammer2_key_t c2_end;
107 
108 	/*
109 	 * Compare chains.  Overlaps are not supposed to happen and catch
110 	 * any software issues early we count overlaps as a match.
111 	 */
112 	c1_beg = chain1->bref.key;
113 	c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
114 	c2_beg = chain2->bref.key;
115 	c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
116 
117 	if (c1_end < c2_beg)	/* fully to the left */
118 		return(-1);
119 	if (c1_beg > c2_end)	/* fully to the right */
120 		return(1);
121 	return(0);		/* overlap (must not cross edge boundary) */
122 }
123 
124 /*
125  * Assert that a chain has no media data associated with it.
126  */
127 static __inline void
128 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
129 {
130 	KKASSERT(chain->dio == NULL);
131 	if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
132 	    chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
133 	    chain->data) {
134 		panic("hammer2_chain_assert_no_data: chain %p still has data",
135 		    chain);
136 	}
137 }
138 
139 /*
140  * Make a chain visible to the flusher.  The flusher operates using a top-down
141  * recursion based on the ONFLUSH flag.  It locates MODIFIED and UPDATE chains,
142  * flushes them, and updates blocks back to the volume root.
143  *
144  * This routine sets the ONFLUSH flag upward from the triggering chain until
145  * it hits an inode root or the volume root.  Inode chains serve as inflection
146  * points, requiring the flusher to bridge across trees.  Inodes include
147  * regular inodes, PFS roots (pmp->iroot), and the media super root
148  * (spmp->iroot).
149  */
150 void
151 hammer2_chain_setflush(hammer2_chain_t *chain)
152 {
153 	hammer2_chain_t *parent;
154 
155 	if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
156 		hammer2_spin_sh(&chain->core.spin);
157 		while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
158 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
159 			if (chain->bref.type == HAMMER2_BREF_TYPE_INODE)
160 				break;
161 			if ((parent = chain->parent) == NULL)
162 				break;
163 			hammer2_spin_sh(&parent->core.spin);
164 			hammer2_spin_unsh(&chain->core.spin);
165 			chain = parent;
166 		}
167 		hammer2_spin_unsh(&chain->core.spin);
168 	}
169 }
170 
171 /*
172  * Allocate a new disconnected chain element representing the specified
173  * bref.  chain->refs is set to 1 and the passed bref is copied to
174  * chain->bref.  chain->bytes is derived from the bref.
175  *
176  * chain->pmp inherits pmp unless the chain is an inode (other than the
177  * super-root inode).
178  *
179  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
180  */
181 hammer2_chain_t *
182 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
183 		    hammer2_blockref_t *bref)
184 {
185 	hammer2_chain_t *chain;
186 	u_int bytes;
187 
188 	/*
189 	 * Special case - radix of 0 indicates a chain that does not
190 	 * need a data reference (context is completely embedded in the
191 	 * bref).
192 	 */
193 	if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
194 		bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
195 	else
196 		bytes = 0;
197 
198 	atomic_add_long(&hammer2_chain_allocs, 1);
199 
200 	/*
201 	 * Construct the appropriate system structure.
202 	 */
203 	switch(bref->type) {
204 	case HAMMER2_BREF_TYPE_DIRENT:
205 	case HAMMER2_BREF_TYPE_INODE:
206 	case HAMMER2_BREF_TYPE_INDIRECT:
207 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
208 	case HAMMER2_BREF_TYPE_DATA:
209 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
210 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
211 		break;
212 	case HAMMER2_BREF_TYPE_VOLUME:
213 	case HAMMER2_BREF_TYPE_FREEMAP:
214 		/*
215 		 * Only hammer2_chain_bulksnap() calls this function with these
216 		 * types.
217 		 */
218 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
219 		break;
220 	default:
221 		chain = NULL;
222 		panic("hammer2_chain_alloc: unrecognized blockref type: %d",
223 		      bref->type);
224 	}
225 
226 	/*
227 	 * Initialize the new chain structure.  pmp must be set to NULL for
228 	 * chains belonging to the super-root topology of a device mount.
229 	 */
230 	if (pmp == hmp->spmp)
231 		chain->pmp = NULL;
232 	else
233 		chain->pmp = pmp;
234 
235 	chain->hmp = hmp;
236 	chain->bref = *bref;
237 	chain->bytes = bytes;
238 	chain->refs = 1;
239 	chain->flags = HAMMER2_CHAIN_ALLOCATED;
240 	lockinit(&chain->diolk, "chdio", 0, 0);
241 
242 	/*
243 	 * Set the PFS boundary flag if this chain represents a PFS root.
244 	 */
245 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
246 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
247 	hammer2_chain_core_init(chain);
248 
249 	return (chain);
250 }
251 
252 /*
253  * Initialize a chain's core structure.  This structure used to be allocated
254  * but is now embedded.
255  *
256  * The core is not locked.  No additional refs on the chain are made.
257  * (trans) must not be NULL if (core) is not NULL.
258  */
259 void
260 hammer2_chain_core_init(hammer2_chain_t *chain)
261 {
262 	/*
263 	 * Fresh core under nchain (no multi-homing of ochain's
264 	 * sub-tree).
265 	 */
266 	RB_INIT(&chain->core.rbtree);	/* live chains */
267 	hammer2_mtx_init(&chain->lock, "h2chain");
268 }
269 
270 /*
271  * Add a reference to a chain element, preventing its destruction.
272  *
273  * (can be called with spinlock held)
274  */
275 void
276 hammer2_chain_ref(hammer2_chain_t *chain)
277 {
278 	if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
279 		/*
280 		 * Just flag that the chain was used and should be recycled
281 		 * on the LRU if it encounters it later.
282 		 */
283 		if (chain->flags & HAMMER2_CHAIN_ONLRU)
284 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
285 
286 #if 0
287 		/*
288 		 * REMOVED - reduces contention, lru_list is more heuristical
289 		 * now.
290 		 *
291 		 * 0->non-zero transition must ensure that chain is removed
292 		 * from the LRU list.
293 		 *
294 		 * NOTE: Already holding lru_spin here so we cannot call
295 		 *	 hammer2_chain_ref() to get it off lru_list, do
296 		 *	 it manually.
297 		 */
298 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
299 			hammer2_pfs_t *pmp = chain->pmp;
300 			hammer2_spin_ex(&pmp->lru_spin);
301 			if (chain->flags & HAMMER2_CHAIN_ONLRU) {
302 				atomic_add_int(&pmp->lru_count, -1);
303 				atomic_clear_int(&chain->flags,
304 						 HAMMER2_CHAIN_ONLRU);
305 				TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
306 			}
307 			hammer2_spin_unex(&pmp->lru_spin);
308 		}
309 #endif
310 	}
311 }
312 
313 /*
314  * Ref a locked chain and force the data to be held across an unlock.
315  * Chain must be currently locked.  The user of the chain who desires
316  * to release the hold must call hammer2_chain_lock_unhold() to relock
317  * and unhold the chain, then unlock normally, or may simply call
318  * hammer2_chain_drop_unhold() (which is safer against deadlocks).
319  */
320 void
321 hammer2_chain_ref_hold(hammer2_chain_t *chain)
322 {
323 	atomic_add_int(&chain->lockcnt, 1);
324 	hammer2_chain_ref(chain);
325 }
326 
327 /*
328  * Insert the chain in the core rbtree.
329  *
330  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
331  * chain is a special case used by the flush code that is placed on the
332  * unstaged deleted list to avoid confusing the live view.
333  */
334 #define HAMMER2_CHAIN_INSERT_SPIN	0x0001
335 #define HAMMER2_CHAIN_INSERT_LIVE	0x0002
336 #define HAMMER2_CHAIN_INSERT_RACE	0x0004
337 
338 static
339 int
340 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
341 		     int flags, int generation)
342 {
343 	hammer2_chain_t *xchain;
344 	int error = 0;
345 
346 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
347 		hammer2_spin_ex(&parent->core.spin);
348 
349 	/*
350 	 * Interlocked by spinlock, check for race
351 	 */
352 	if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
353 	    parent->core.generation != generation) {
354 		error = HAMMER2_ERROR_EAGAIN;
355 		goto failed;
356 	}
357 
358 	/*
359 	 * Insert chain
360 	 */
361 	xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
362 	KASSERT(xchain == NULL,
363 		("hammer2_chain_insert: collision %p %p (key=%016jx)",
364 		chain, xchain, chain->bref.key));
365 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
366 	chain->parent = parent;
367 	++parent->core.chain_count;
368 	++parent->core.generation;	/* XXX incs for _get() too, XXX */
369 
370 	/*
371 	 * We have to keep track of the effective live-view blockref count
372 	 * so the create code knows when to push an indirect block.
373 	 */
374 	if (flags & HAMMER2_CHAIN_INSERT_LIVE)
375 		atomic_add_int(&parent->core.live_count, 1);
376 failed:
377 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
378 		hammer2_spin_unex(&parent->core.spin);
379 	return error;
380 }
381 
382 /*
383  * Drop the caller's reference to the chain.  When the ref count drops to
384  * zero this function will try to disassociate the chain from its parent and
385  * deallocate it, then recursely drop the parent using the implied ref
386  * from the chain's chain->parent.
387  *
388  * Nobody should own chain's mutex on the 1->0 transition, unless this drop
389  * races an acquisition by another cpu.  Therefore we can loop if we are
390  * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
391  * race against another drop.
392  */
393 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
394 				int depth);
395 static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
396 
397 void
398 hammer2_chain_drop(hammer2_chain_t *chain)
399 {
400 	u_int refs;
401 
402 	if (hammer2_debug & 0x200000)
403 		Debugger("drop");
404 
405 	KKASSERT(chain->refs > 0);
406 
407 	while (chain) {
408 		refs = chain->refs;
409 		cpu_ccfence();
410 		KKASSERT(refs > 0);
411 
412 		if (refs == 1) {
413 			if (hammer2_mtx_ex_try(&chain->lock) == 0)
414 				chain = hammer2_chain_lastdrop(chain, 0);
415 			/* retry the same chain, or chain from lastdrop */
416 		} else {
417 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
418 				break;
419 			/* retry the same chain */
420 		}
421 		cpu_pause();
422 	}
423 }
424 
425 /*
426  * Unhold a held and probably not-locked chain, ensure that the data is
427  * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
428  * lock and then simply unlocking the chain.
429  */
430 void
431 hammer2_chain_unhold(hammer2_chain_t *chain)
432 {
433 	u_int lockcnt;
434 	int iter = 0;
435 
436 	for (;;) {
437 		lockcnt = chain->lockcnt;
438 		cpu_ccfence();
439 		if (lockcnt > 1) {
440 			if (atomic_cmpset_int(&chain->lockcnt,
441 					      lockcnt, lockcnt - 1)) {
442 				break;
443 			}
444 		} else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
445 			hammer2_chain_unlock(chain);
446 			break;
447 		} else {
448 			/*
449 			 * This situation can easily occur on SMP due to
450 			 * the gap inbetween the 1->0 transition and the
451 			 * final unlock.  We cannot safely block on the
452 			 * mutex because lockcnt might go above 1.
453 			 *
454 			 * XXX Sleep for one tick if it takes too long.
455 			 */
456 			if (++iter > 1000) {
457 				if (iter > 1000 + hz) {
458 					kprintf("hammer2: h2race1 %p\n", chain);
459 					iter = 1000;
460 				}
461 				tsleep(&iter, 0, "h2race1", 1);
462 			}
463 			cpu_pause();
464 		}
465 	}
466 }
467 
468 void
469 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
470 {
471 	hammer2_chain_unhold(chain);
472 	hammer2_chain_drop(chain);
473 }
474 
475 void
476 hammer2_chain_rehold(hammer2_chain_t *chain)
477 {
478 	hammer2_chain_lock(chain, HAMMER2_RESOLVE_SHARED);
479 	atomic_add_int(&chain->lockcnt, 1);
480 	hammer2_chain_unlock(chain);
481 }
482 
483 /*
484  * Handles the (potential) last drop of chain->refs from 1->0.  Called with
485  * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
486  * possible against refs and lockcnt.  We must dispose of the mutex on chain.
487  *
488  * This function returns an unlocked chain for recursive drop or NULL.  It
489  * can return the same chain if it determines it has raced another ref.
490  *
491  * --
492  *
493  * When two chains need to be recursively dropped we use the chain we
494  * would otherwise free to placehold the additional chain.  It's a bit
495  * convoluted but we can't just recurse without potentially blowing out
496  * the kernel stack.
497  *
498  * The chain cannot be freed if it has any children.
499  * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
500  * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
501  * Any dedup registration can remain intact.
502  *
503  * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
504  */
505 static
506 hammer2_chain_t *
507 hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
508 {
509 	hammer2_pfs_t *pmp;
510 	hammer2_dev_t *hmp;
511 	hammer2_chain_t *parent;
512 	hammer2_chain_t *rdrop;
513 
514 	/*
515 	 * We need chain's spinlock to interlock the sub-tree test.
516 	 * We already have chain's mutex, protecting chain->parent.
517 	 *
518 	 * Remember that chain->refs can be in flux.
519 	 */
520 	hammer2_spin_ex(&chain->core.spin);
521 
522 	if (chain->parent != NULL) {
523 		/*
524 		 * If the chain has a parent the UPDATE bit prevents scrapping
525 		 * as the chain is needed to properly flush the parent.  Try
526 		 * to complete the 1->0 transition and return NULL.  Retry
527 		 * (return chain) if we are unable to complete the 1->0
528 		 * transition, else return NULL (nothing more to do).
529 		 *
530 		 * If the chain has a parent the MODIFIED bit prevents
531 		 * scrapping.
532 		 *
533 		 * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
534 		 */
535 		if (chain->flags & (HAMMER2_CHAIN_UPDATE |
536 				    HAMMER2_CHAIN_MODIFIED)) {
537 			if (atomic_cmpset_int(&chain->refs, 1, 0)) {
538 				hammer2_spin_unex(&chain->core.spin);
539 				hammer2_chain_assert_no_data(chain);
540 				hammer2_mtx_unlock(&chain->lock);
541 				chain = NULL;
542 			} else {
543 				hammer2_spin_unex(&chain->core.spin);
544 				hammer2_mtx_unlock(&chain->lock);
545 			}
546 			return (chain);
547 		}
548 		/* spinlock still held */
549 	} else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
550 		   chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
551 		/*
552 		 * Retain the static vchain and fchain.  Clear bits that
553 		 * are not relevant.  Do not clear the MODIFIED bit,
554 		 * and certainly do not put it on the delayed-flush queue.
555 		 */
556 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
557 	} else {
558 		/*
559 		 * The chain has no parent and can be flagged for destruction.
560 		 * Since it has no parent, UPDATE can also be cleared.
561 		 */
562 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
563 		if (chain->flags & HAMMER2_CHAIN_UPDATE)
564 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
565 
566 		/*
567 		 * If the chain has children we must propagate the DESTROY
568 		 * flag downward and rip the disconnected topology apart.
569 		 * This is accomplished by calling hammer2_flush() on the
570 		 * chain.
571 		 *
572 		 * Any dedup is already handled by the underlying DIO, so
573 		 * we do not have to specifically flush it here.
574 		 */
575 		if (chain->core.chain_count) {
576 			hammer2_spin_unex(&chain->core.spin);
577 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
578 					     HAMMER2_FLUSH_ALL);
579 			hammer2_mtx_unlock(&chain->lock);
580 
581 			return(chain);	/* retry drop */
582 		}
583 
584 		/*
585 		 * Otherwise we can scrap the MODIFIED bit if it is set,
586 		 * and continue along the freeing path.
587 		 *
588 		 * Be sure to clean-out any dedup bits.  Without a parent
589 		 * this chain will no longer be visible to the flush code.
590 		 * Easy check data_off to avoid the volume root.
591 		 */
592 		if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
593 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
594 			atomic_add_long(&hammer2_count_modified_chains, -1);
595 			if (chain->pmp)
596 				hammer2_pfs_memory_wakeup(chain->pmp);
597 		}
598 		/* spinlock still held */
599 	}
600 
601 	/* spinlock still held */
602 
603 	/*
604 	 * If any children exist we must leave the chain intact with refs == 0.
605 	 * They exist because chains are retained below us which have refs or
606 	 * may require flushing.
607 	 *
608 	 * Retry (return chain) if we fail to transition the refs to 0, else
609 	 * return NULL indication nothing more to do.
610 	 *
611 	 * Chains with children are NOT put on the LRU list.
612 	 */
613 	if (chain->core.chain_count) {
614 		if (atomic_cmpset_int(&chain->refs, 1, 0)) {
615 			hammer2_spin_unex(&chain->core.spin);
616 			hammer2_chain_assert_no_data(chain);
617 			hammer2_mtx_unlock(&chain->lock);
618 			chain = NULL;
619 		} else {
620 			hammer2_spin_unex(&chain->core.spin);
621 			hammer2_mtx_unlock(&chain->lock);
622 		}
623 		return (chain);
624 	}
625 	/* spinlock still held */
626 	/* no chains left under us */
627 
628 	/*
629 	 * chain->core has no children left so no accessors can get to our
630 	 * chain from there.  Now we have to lock the parent core to interlock
631 	 * remaining possible accessors that might bump chain's refs before
632 	 * we can safely drop chain's refs with intent to free the chain.
633 	 */
634 	hmp = chain->hmp;
635 	pmp = chain->pmp;	/* can be NULL */
636 	rdrop = NULL;
637 
638 	parent = chain->parent;
639 
640 	/*
641 	 * WARNING! chain's spin lock is still held here, and other spinlocks
642 	 *	    will be acquired and released in the code below.  We
643 	 *	    cannot be making fancy procedure calls!
644 	 */
645 
646 	/*
647 	 * We can cache the chain if it is associated with a pmp
648 	 * and not flagged as being destroyed or requesting a full
649 	 * release.  In this situation the chain is not removed
650 	 * from its parent, i.e. it can still be looked up.
651 	 *
652 	 * We intentionally do not cache DATA chains because these
653 	 * were likely used to load data into the logical buffer cache
654 	 * and will not be accessed again for some time.
655 	 */
656 	if ((chain->flags &
657 	     (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
658 	    chain->pmp &&
659 	    chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
660 		if (parent)
661 			hammer2_spin_ex(&parent->core.spin);
662 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
663 			/*
664 			 * 1->0 transition failed, retry.  Do not drop
665 			 * the chain's data yet!
666 			 */
667 			if (parent)
668 				hammer2_spin_unex(&parent->core.spin);
669 			hammer2_spin_unex(&chain->core.spin);
670 			hammer2_mtx_unlock(&chain->lock);
671 
672 			return(chain);
673 		}
674 
675 		/*
676 		 * Success
677 		 */
678 		hammer2_chain_assert_no_data(chain);
679 
680 		/*
681 		 * Make sure we are on the LRU list, clean up excessive
682 		 * LRU entries.  We can only really drop one but there might
683 		 * be other entries that we can remove from the lru_list
684 		 * without dropping.
685 		 *
686 		 * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
687 		 *	 chain->core.spin AND pmp->lru_spin are held, but
688 		 *	 can be safely cleared only holding pmp->lru_spin.
689 		 */
690 		if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
691 			hammer2_spin_ex(&pmp->lru_spin);
692 			if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
693 				atomic_set_int(&chain->flags,
694 					       HAMMER2_CHAIN_ONLRU);
695 				TAILQ_INSERT_TAIL(&pmp->lru_list,
696 						  chain, lru_node);
697 				atomic_add_int(&pmp->lru_count, 1);
698 			}
699 			if (pmp->lru_count < HAMMER2_LRU_LIMIT)
700 				depth = 1;	/* disable lru_list flush */
701 			hammer2_spin_unex(&pmp->lru_spin);
702 		} else {
703 			/* disable lru flush */
704 			depth = 1;
705 		}
706 
707 		if (parent) {
708 			hammer2_spin_unex(&parent->core.spin);
709 			parent = NULL;	/* safety */
710 		}
711 		hammer2_spin_unex(&chain->core.spin);
712 		hammer2_mtx_unlock(&chain->lock);
713 
714 		/*
715 		 * lru_list hysteresis (see above for depth overrides).
716 		 * Note that depth also prevents excessive lastdrop recursion.
717 		 */
718 		if (depth == 0)
719 			hammer2_chain_lru_flush(pmp);
720 
721 		return NULL;
722 		/* NOT REACHED */
723 	}
724 
725 	/*
726 	 * Make sure we are not on the LRU list.
727 	 */
728 	if (chain->flags & HAMMER2_CHAIN_ONLRU) {
729 		hammer2_spin_ex(&pmp->lru_spin);
730 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
731 			atomic_add_int(&pmp->lru_count, -1);
732 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
733 			TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
734 		}
735 		hammer2_spin_unex(&pmp->lru_spin);
736 	}
737 
738 	/*
739 	 * Spinlock the parent and try to drop the last ref on chain.
740 	 * On success determine if we should dispose of the chain
741 	 * (remove the chain from its parent, etc).
742 	 *
743 	 * (normal core locks are top-down recursive but we define
744 	 * core spinlocks as bottom-up recursive, so this is safe).
745 	 */
746 	if (parent) {
747 		hammer2_spin_ex(&parent->core.spin);
748 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
749 			/*
750 			 * 1->0 transition failed, retry.
751 			 */
752 			hammer2_spin_unex(&parent->core.spin);
753 			hammer2_spin_unex(&chain->core.spin);
754 			hammer2_mtx_unlock(&chain->lock);
755 
756 			return(chain);
757 		}
758 
759 		/*
760 		 * 1->0 transition successful, parent spin held to prevent
761 		 * new lookups, chain spinlock held to protect parent field.
762 		 * Remove chain from the parent.
763 		 *
764 		 * If the chain is being removed from the parent's btree but
765 		 * is not bmapped, we have to adjust live_count downward.  If
766 		 * it is bmapped then the blockref is retained in the parent
767 		 * as is its associated live_count.  This case can occur when
768 		 * a chain added to the topology is unable to flush and is
769 		 * then later deleted.
770 		 */
771 		if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
772 			if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
773 			    (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
774 				atomic_add_int(&parent->core.live_count, -1);
775 			}
776 			RB_REMOVE(hammer2_chain_tree,
777 				  &parent->core.rbtree, chain);
778 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
779 			--parent->core.chain_count;
780 			chain->parent = NULL;
781 		}
782 
783 		/*
784 		 * If our chain was the last chain in the parent's core the
785 		 * core is now empty and its parent might have to be
786 		 * re-dropped if it has 0 refs.
787 		 */
788 		if (parent->core.chain_count == 0) {
789 			rdrop = parent;
790 			atomic_add_int(&rdrop->refs, 1);
791 			/*
792 			if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
793 				rdrop = NULL;
794 			*/
795 		}
796 		hammer2_spin_unex(&parent->core.spin);
797 		parent = NULL;	/* safety */
798 		/* FALL THROUGH */
799 	} else {
800 		/*
801 		 * No-parent case.
802 		 */
803 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
804 			/*
805 			 * 1->0 transition failed, retry.
806 			 */
807 			hammer2_spin_unex(&parent->core.spin);
808 			hammer2_spin_unex(&chain->core.spin);
809 			hammer2_mtx_unlock(&chain->lock);
810 
811 			return(chain);
812 		}
813 	}
814 
815 	/*
816 	 * Successful 1->0 transition, no parent, no children... no way for
817 	 * anyone to ref this chain any more.  We can clean-up and free it.
818 	 *
819 	 * We still have the core spinlock, and core's chain_count is 0.
820 	 * Any parent spinlock is gone.
821 	 */
822 	hammer2_spin_unex(&chain->core.spin);
823 	hammer2_chain_assert_no_data(chain);
824 	hammer2_mtx_unlock(&chain->lock);
825 	KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
826 		 chain->core.chain_count == 0);
827 
828 	/*
829 	 * All locks are gone, no pointers remain to the chain, finish
830 	 * freeing it.
831 	 */
832 	KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
833 				  HAMMER2_CHAIN_MODIFIED)) == 0);
834 
835 	/*
836 	 * Once chain resources are gone we can use the now dead chain
837 	 * structure to placehold what might otherwise require a recursive
838 	 * drop, because we have potentially two things to drop and can only
839 	 * return one directly.
840 	 */
841 	if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
842 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
843 		chain->hmp = NULL;
844 		kfree(chain, hmp->mchain);
845 	}
846 
847 	/*
848 	 * Possible chaining loop when parent re-drop needed.
849 	 */
850 	return(rdrop);
851 }
852 
853 /*
854  * Heuristical flush of the LRU, try to reduce the number of entries
855  * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3).  This procedure is called
856  * only when lru_count exceeds HAMMER2_LRU_LIMIT.
857  */
858 static
859 void
860 hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
861 {
862 	hammer2_chain_t *chain;
863 
864 again:
865 	chain = NULL;
866 	hammer2_spin_ex(&pmp->lru_spin);
867 	while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
868 		/*
869 		 * Pick a chain off the lru_list, just recycle it quickly
870 		 * if LRUHINT is set (the chain was ref'd but left on
871 		 * the lru_list, so cycle to the end).
872 		 */
873 		chain = TAILQ_FIRST(&pmp->lru_list);
874 		TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
875 
876 		if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
877 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
878 			TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
879 			chain = NULL;
880 			continue;
881 		}
882 
883 		/*
884 		 * Ok, we are off the LRU.  We must adjust refs before we
885 		 * can safely clear the ONLRU flag.
886 		 */
887 		atomic_add_int(&pmp->lru_count, -1);
888 		if (atomic_cmpset_int(&chain->refs, 0, 1)) {
889 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
890 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
891 			break;
892 		}
893 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
894 		chain = NULL;
895 	}
896 	hammer2_spin_unex(&pmp->lru_spin);
897 	if (chain == NULL)
898 		return;
899 
900 	/*
901 	 * If we picked a chain off the lru list we may be able to lastdrop
902 	 * it.  Use a depth of 1 to prevent excessive lastdrop recursion.
903 	 */
904 	while (chain) {
905 		u_int refs;
906 
907 		refs = chain->refs;
908 		cpu_ccfence();
909 		KKASSERT(refs > 0);
910 
911 		if (refs == 1) {
912 			if (hammer2_mtx_ex_try(&chain->lock) == 0)
913 				chain = hammer2_chain_lastdrop(chain, 1);
914 			/* retry the same chain, or chain from lastdrop */
915 		} else {
916 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
917 				break;
918 			/* retry the same chain */
919 		}
920 		cpu_pause();
921 	}
922 	goto again;
923 }
924 
925 /*
926  * On last lock release.
927  */
928 static hammer2_io_t *
929 hammer2_chain_drop_data(hammer2_chain_t *chain)
930 {
931 	hammer2_io_t *dio;
932 
933 	if ((dio = chain->dio) != NULL) {
934 		chain->dio = NULL;
935 		chain->data = NULL;
936 	} else {
937 		switch(chain->bref.type) {
938 		case HAMMER2_BREF_TYPE_VOLUME:
939 		case HAMMER2_BREF_TYPE_FREEMAP:
940 			break;
941 		default:
942 			if (chain->data != NULL) {
943 				hammer2_spin_unex(&chain->core.spin);
944 				panic("chain data not null: "
945 				      "chain %p bref %016jx.%02x "
946 				      "refs %d parent %p dio %p data %p",
947 				      chain, chain->bref.data_off,
948 				      chain->bref.type, chain->refs,
949 				      chain->parent,
950 				      chain->dio, chain->data);
951 			}
952 			KKASSERT(chain->data == NULL);
953 			break;
954 		}
955 	}
956 	return dio;
957 }
958 
959 /*
960  * Lock a referenced chain element, acquiring its data with I/O if necessary,
961  * and specify how you would like the data to be resolved.
962  *
963  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
964  *
965  * The lock is allowed to recurse, multiple locking ops will aggregate
966  * the requested resolve types.  Once data is assigned it will not be
967  * removed until the last unlock.
968  *
969  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
970  *			   (typically used to avoid device/logical buffer
971  *			    aliasing for data)
972  *
973  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
974  *			   the INITIAL-create state (indirect blocks only).
975  *
976  *			   Do not resolve data elements for DATA chains.
977  *			   (typically used to avoid device/logical buffer
978  *			    aliasing for data)
979  *
980  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
981  *
982  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
983  *			   it will be locked exclusive.
984  *
985  * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking.  If
986  *			   the lock fails, EAGAIN is returned.
987  *
988  * NOTE: Embedded elements (volume header, inodes) are always resolved
989  *	 regardless.
990  *
991  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
992  *	 element will instantiate and zero its buffer, and flush it on
993  *	 release.
994  *
995  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
996  *	 so as not to instantiate a device buffer, which could alias against
997  *	 a logical file buffer.  However, if ALWAYS is specified the
998  *	 device buffer will be instantiated anyway.
999  *
1000  * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
1001  *	 case it can be either 0 or EAGAIN.
1002  *
1003  * WARNING! This function blocks on I/O if data needs to be fetched.  This
1004  *	    blocking can run concurrent with other compatible lock holders
1005  *	    who do not need data returning.  The lock is not upgraded to
1006  *	    exclusive during a data fetch, a separate bit is used to
1007  *	    interlock I/O.  However, an exclusive lock holder can still count
1008  *	    on being interlocked against an I/O fetch managed by a shared
1009  *	    lock holder.
1010  */
1011 int
1012 hammer2_chain_lock(hammer2_chain_t *chain, int how)
1013 {
1014 	KKASSERT(chain->refs > 0);
1015 
1016 	if (how & HAMMER2_RESOLVE_NONBLOCK) {
1017 		/*
1018 		 * We still have to bump lockcnt before acquiring the lock,
1019 		 * even for non-blocking operation, because the unlock code
1020 		 * live-loops on lockcnt == 1 when dropping the last lock.
1021 		 *
1022 		 * If the non-blocking operation fails we have to use an
1023 		 * unhold sequence to undo the mess.
1024 		 *
1025 		 * NOTE: LOCKAGAIN must always succeed without blocking,
1026 		 *	 even if NONBLOCK is specified.
1027 		 */
1028 		atomic_add_int(&chain->lockcnt, 1);
1029 		if (how & HAMMER2_RESOLVE_SHARED) {
1030 			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1031 				hammer2_mtx_sh_again(&chain->lock);
1032 			} else {
1033 				if (hammer2_mtx_sh_try(&chain->lock) != 0) {
1034 					hammer2_chain_unhold(chain);
1035 					return EAGAIN;
1036 				}
1037 			}
1038 		} else {
1039 			if (hammer2_mtx_ex_try(&chain->lock) != 0) {
1040 				hammer2_chain_unhold(chain);
1041 				return EAGAIN;
1042 			}
1043 		}
1044 	} else {
1045 		/*
1046 		 * Get the appropriate lock.  If LOCKAGAIN is flagged with
1047 		 * SHARED the caller expects a shared lock to already be
1048 		 * present and we are giving it another ref.  This case must
1049 		 * importantly not block if there is a pending exclusive lock
1050 		 * request.
1051 		 */
1052 		atomic_add_int(&chain->lockcnt, 1);
1053 		if (how & HAMMER2_RESOLVE_SHARED) {
1054 			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1055 				hammer2_mtx_sh_again(&chain->lock);
1056 			} else {
1057 				hammer2_mtx_sh(&chain->lock);
1058 			}
1059 		} else {
1060 			hammer2_mtx_ex(&chain->lock);
1061 		}
1062 	}
1063 
1064 	/*
1065 	 * If we already have a valid data pointer make sure the data is
1066 	 * synchronized to the current cpu, and then no further action is
1067 	 * necessary.
1068 	 */
1069 	if (chain->data) {
1070 		if (chain->dio)
1071 			hammer2_io_bkvasync(chain->dio);
1072 		return 0;
1073 	}
1074 
1075 	/*
1076 	 * Do we have to resolve the data?  This is generally only
1077 	 * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1078 	 * Other BREF types expects the data to be there.
1079 	 */
1080 	switch(how & HAMMER2_RESOLVE_MASK) {
1081 	case HAMMER2_RESOLVE_NEVER:
1082 		return 0;
1083 	case HAMMER2_RESOLVE_MAYBE:
1084 		if (chain->flags & HAMMER2_CHAIN_INITIAL)
1085 			return 0;
1086 		if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1087 			return 0;
1088 #if 0
1089 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1090 			return 0;
1091 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1092 			return 0;
1093 #endif
1094 		/* fall through */
1095 	case HAMMER2_RESOLVE_ALWAYS:
1096 	default:
1097 		break;
1098 	}
1099 
1100 	/*
1101 	 * Caller requires data
1102 	 */
1103 	hammer2_chain_load_data(chain);
1104 
1105 	return 0;
1106 }
1107 
1108 /*
1109  * Lock the chain, retain the hold, and drop the data persistence count.
1110  * The data should remain valid because we never transitioned lockcnt
1111  * through 0.
1112  */
1113 void
1114 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1115 {
1116 	hammer2_chain_lock(chain, how);
1117 	atomic_add_int(&chain->lockcnt, -1);
1118 }
1119 
1120 #if 0
1121 /*
1122  * Downgrade an exclusive chain lock to a shared chain lock.
1123  *
1124  * NOTE: There is no upgrade equivalent due to the ease of
1125  *	 deadlocks in that direction.
1126  */
1127 void
1128 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1129 {
1130 	hammer2_mtx_downgrade(&chain->lock);
1131 }
1132 #endif
1133 
1134 /*
1135  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1136  * may be of any type.
1137  *
1138  * Once chain->data is set it cannot be disposed of until all locks are
1139  * released.
1140  *
1141  * Make sure the data is synchronized to the current cpu.
1142  */
1143 void
1144 hammer2_chain_load_data(hammer2_chain_t *chain)
1145 {
1146 	hammer2_blockref_t *bref;
1147 	hammer2_dev_t *hmp;
1148 	hammer2_io_t *dio;
1149 	char *bdata;
1150 	int error;
1151 
1152 	/*
1153 	 * Degenerate case, data already present, or chain has no media
1154 	 * reference to load.
1155 	 */
1156 	KKASSERT(chain->lock.mtx_lock & MTX_MASK);
1157 	if (chain->data) {
1158 		if (chain->dio)
1159 			hammer2_io_bkvasync(chain->dio);
1160 		return;
1161 	}
1162 	if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1163 		return;
1164 
1165 	hmp = chain->hmp;
1166 	KKASSERT(hmp != NULL);
1167 
1168 	/*
1169 	 * Gain the IOINPROG bit, interlocked block.
1170 	 */
1171 	for (;;) {
1172 		u_int oflags;
1173 		u_int nflags;
1174 
1175 		oflags = chain->flags;
1176 		cpu_ccfence();
1177 		if (oflags & HAMMER2_CHAIN_IOINPROG) {
1178 			nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1179 			tsleep_interlock(&chain->flags, 0);
1180 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1181 				tsleep(&chain->flags, PINTERLOCKED,
1182 					"h2iocw", 0);
1183 			}
1184 			/* retry */
1185 		} else {
1186 			nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1187 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1188 				break;
1189 			}
1190 			/* retry */
1191 		}
1192 	}
1193 
1194 	/*
1195 	 * We own CHAIN_IOINPROG
1196 	 *
1197 	 * Degenerate case if we raced another load.
1198 	 */
1199 	if (chain->data) {
1200 		if (chain->dio)
1201 			hammer2_io_bkvasync(chain->dio);
1202 		goto done;
1203 	}
1204 
1205 	/*
1206 	 * We must resolve to a device buffer, either by issuing I/O or
1207 	 * by creating a zero-fill element.  We do not mark the buffer
1208 	 * dirty when creating a zero-fill element (the hammer2_chain_modify()
1209 	 * API must still be used to do that).
1210 	 *
1211 	 * The device buffer is variable-sized in powers of 2 down
1212 	 * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1213 	 * chunk always contains buffers of the same size. (XXX)
1214 	 *
1215 	 * The minimum physical IO size may be larger than the variable
1216 	 * block size.
1217 	 */
1218 	bref = &chain->bref;
1219 
1220 	/*
1221 	 * The getblk() optimization can only be used on newly created
1222 	 * elements if the physical block size matches the request.
1223 	 */
1224 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1225 		error = hammer2_io_new(hmp, bref->type,
1226 				       bref->data_off, chain->bytes,
1227 				       &chain->dio);
1228 	} else {
1229 		error = hammer2_io_bread(hmp, bref->type,
1230 					 bref->data_off, chain->bytes,
1231 					 &chain->dio);
1232 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
1233 	}
1234 	if (error) {
1235 		chain->error = HAMMER2_ERROR_EIO;
1236 		kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
1237 			(intmax_t)bref->data_off, error);
1238 		hammer2_io_bqrelse(&chain->dio);
1239 		goto done;
1240 	}
1241 	chain->error = 0;
1242 
1243 	/*
1244 	 * This isn't perfect and can be ignored on OSs which do not have
1245 	 * an indication as to whether a buffer is coming from cache or
1246 	 * if I/O was actually issued for the read.  TESTEDGOOD will work
1247 	 * pretty well without the B_IOISSUED logic because chains are
1248 	 * cached, but in that situation (without B_IOISSUED) it will not
1249 	 * detect whether a re-read via I/O is corrupted verses the original
1250 	 * read.
1251 	 *
1252 	 * We can't re-run the CRC on every fresh lock.  That would be
1253 	 * insanely expensive.
1254 	 *
1255 	 * If the underlying kernel buffer covers the entire chain we can
1256 	 * use the B_IOISSUED indication to determine if we have to re-run
1257 	 * the CRC on chain data for chains that managed to stay cached
1258 	 * across the kernel disposal of the original buffer.
1259 	 */
1260 	if ((dio = chain->dio) != NULL && dio->bp) {
1261 		struct buf *bp = dio->bp;
1262 
1263 		if (dio->psize == chain->bytes &&
1264 		    (bp->b_flags & B_IOISSUED)) {
1265 			atomic_clear_int(&chain->flags,
1266 					 HAMMER2_CHAIN_TESTEDGOOD);
1267 			bp->b_flags &= ~B_IOISSUED;
1268 		}
1269 	}
1270 
1271 	/*
1272 	 * NOTE: A locked chain's data cannot be modified without first
1273 	 *	 calling hammer2_chain_modify().
1274 	 */
1275 
1276 	/*
1277 	 * Clear INITIAL.  In this case we used io_new() and the buffer has
1278 	 * been zero'd and marked dirty.
1279 	 *
1280 	 * NOTE: hammer2_io_data() call issues bkvasync()
1281 	 */
1282 	bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1283 
1284 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1285 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1286 		chain->bref.flags |= HAMMER2_BREF_FLAG_ZERO;
1287 	} else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1288 		/*
1289 		 * check data not currently synchronized due to
1290 		 * modification.  XXX assumes data stays in the buffer
1291 		 * cache, which might not be true (need biodep on flush
1292 		 * to calculate crc?  or simple crc?).
1293 		 */
1294 	} else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1295 		if (hammer2_chain_testcheck(chain, bdata) == 0) {
1296 			chain->error = HAMMER2_ERROR_CHECK;
1297 		} else {
1298 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1299 		}
1300 	}
1301 
1302 	/*
1303 	 * Setup the data pointer, either pointing it to an embedded data
1304 	 * structure and copying the data from the buffer, or pointing it
1305 	 * into the buffer.
1306 	 *
1307 	 * The buffer is not retained when copying to an embedded data
1308 	 * structure in order to avoid potential deadlocks or recursions
1309 	 * on the same physical buffer.
1310 	 *
1311 	 * WARNING! Other threads can start using the data the instant we
1312 	 *	    set chain->data non-NULL.
1313 	 */
1314 	switch (bref->type) {
1315 	case HAMMER2_BREF_TYPE_VOLUME:
1316 	case HAMMER2_BREF_TYPE_FREEMAP:
1317 		/*
1318 		 * Copy data from bp to embedded buffer
1319 		 */
1320 		panic("hammer2_chain_load_data: unresolved volume header");
1321 		break;
1322 	case HAMMER2_BREF_TYPE_DIRENT:
1323 		KKASSERT(chain->bytes != 0);
1324 		/* fall through */
1325 	case HAMMER2_BREF_TYPE_INODE:
1326 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1327 	case HAMMER2_BREF_TYPE_INDIRECT:
1328 	case HAMMER2_BREF_TYPE_DATA:
1329 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1330 	default:
1331 		/*
1332 		 * Point data at the device buffer and leave dio intact.
1333 		 */
1334 		chain->data = (void *)bdata;
1335 		break;
1336 	}
1337 
1338 	/*
1339 	 * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1340 	 */
1341 done:
1342 	for (;;) {
1343 		u_int oflags;
1344 		u_int nflags;
1345 
1346 		oflags = chain->flags;
1347 		nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1348 				    HAMMER2_CHAIN_IOSIGNAL);
1349 		KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1350 		if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1351 			if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1352 				wakeup(&chain->flags);
1353 			break;
1354 		}
1355 	}
1356 }
1357 
1358 /*
1359  * Unlock and deref a chain element.
1360  *
1361  * Remember that the presence of children under chain prevent the chain's
1362  * destruction but do not add additional references, so the dio will still
1363  * be dropped.
1364  */
1365 void
1366 hammer2_chain_unlock(hammer2_chain_t *chain)
1367 {
1368 	hammer2_io_t *dio;
1369 	u_int lockcnt;
1370 	int iter = 0;
1371 
1372 	/*
1373 	 * If multiple locks are present (or being attempted) on this
1374 	 * particular chain we can just unlock, drop refs, and return.
1375 	 *
1376 	 * Otherwise fall-through on the 1->0 transition.
1377 	 */
1378 	for (;;) {
1379 		lockcnt = chain->lockcnt;
1380 		KKASSERT(lockcnt > 0);
1381 		cpu_ccfence();
1382 		if (lockcnt > 1) {
1383 			if (atomic_cmpset_int(&chain->lockcnt,
1384 					      lockcnt, lockcnt - 1)) {
1385 				hammer2_mtx_unlock(&chain->lock);
1386 				return;
1387 			}
1388 		} else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1389 			/* while holding the mutex exclusively */
1390 			if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1391 				break;
1392 		} else {
1393 			/*
1394 			 * This situation can easily occur on SMP due to
1395 			 * the gap inbetween the 1->0 transition and the
1396 			 * final unlock.  We cannot safely block on the
1397 			 * mutex because lockcnt might go above 1.
1398 			 *
1399 			 * XXX Sleep for one tick if it takes too long.
1400 			 */
1401 			if (++iter > 1000) {
1402 				if (iter > 1000 + hz) {
1403 					kprintf("hammer2: h2race2 %p\n", chain);
1404 					iter = 1000;
1405 				}
1406 				tsleep(&iter, 0, "h2race2", 1);
1407 			}
1408 			cpu_pause();
1409 		}
1410 		/* retry */
1411 	}
1412 
1413 	/*
1414 	 * Last unlock / mutex upgraded to exclusive.  Drop the data
1415 	 * reference.
1416 	 */
1417 	dio = hammer2_chain_drop_data(chain);
1418 	if (dio)
1419 		hammer2_io_bqrelse(&dio);
1420 	hammer2_mtx_unlock(&chain->lock);
1421 }
1422 
1423 /*
1424  * Unlock and hold chain data intact
1425  */
1426 void
1427 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1428 {
1429 	atomic_add_int(&chain->lockcnt, 1);
1430 	hammer2_chain_unlock(chain);
1431 }
1432 
1433 /*
1434  * Helper to obtain the blockref[] array base and count for a chain.
1435  *
1436  * XXX Not widely used yet, various use cases need to be validated and
1437  *     converted to use this function.
1438  */
1439 static
1440 hammer2_blockref_t *
1441 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1442 {
1443 	hammer2_blockref_t *base;
1444 	int count;
1445 
1446 	if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1447 		base = NULL;
1448 
1449 		switch(parent->bref.type) {
1450 		case HAMMER2_BREF_TYPE_INODE:
1451 			count = HAMMER2_SET_COUNT;
1452 			break;
1453 		case HAMMER2_BREF_TYPE_INDIRECT:
1454 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1455 			count = parent->bytes / sizeof(hammer2_blockref_t);
1456 			break;
1457 		case HAMMER2_BREF_TYPE_VOLUME:
1458 			count = HAMMER2_SET_COUNT;
1459 			break;
1460 		case HAMMER2_BREF_TYPE_FREEMAP:
1461 			count = HAMMER2_SET_COUNT;
1462 			break;
1463 		default:
1464 			panic("hammer2_chain_base_and_count: "
1465 			      "unrecognized blockref type: %d",
1466 			      parent->bref.type);
1467 			count = 0;
1468 			break;
1469 		}
1470 	} else {
1471 		switch(parent->bref.type) {
1472 		case HAMMER2_BREF_TYPE_INODE:
1473 			base = &parent->data->ipdata.u.blockset.blockref[0];
1474 			count = HAMMER2_SET_COUNT;
1475 			break;
1476 		case HAMMER2_BREF_TYPE_INDIRECT:
1477 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1478 			base = &parent->data->npdata[0];
1479 			count = parent->bytes / sizeof(hammer2_blockref_t);
1480 			break;
1481 		case HAMMER2_BREF_TYPE_VOLUME:
1482 			base = &parent->data->voldata.
1483 					sroot_blockset.blockref[0];
1484 			count = HAMMER2_SET_COUNT;
1485 			break;
1486 		case HAMMER2_BREF_TYPE_FREEMAP:
1487 			base = &parent->data->blkset.blockref[0];
1488 			count = HAMMER2_SET_COUNT;
1489 			break;
1490 		default:
1491 			panic("hammer2_chain_base_and_count: "
1492 			      "unrecognized blockref type: %d",
1493 			      parent->bref.type);
1494 			count = 0;
1495 			break;
1496 		}
1497 	}
1498 	*countp = count;
1499 
1500 	return base;
1501 }
1502 
1503 /*
1504  * This counts the number of live blockrefs in a block array and
1505  * also calculates the point at which all remaining blockrefs are empty.
1506  * This routine can only be called on a live chain.
1507  *
1508  * Caller holds the chain locked, but possibly with a shared lock.  We
1509  * must use an exclusive spinlock to prevent corruption.
1510  *
1511  * NOTE: Flag is not set until after the count is complete, allowing
1512  *	 callers to test the flag without holding the spinlock.
1513  *
1514  * NOTE: If base is NULL the related chain is still in the INITIAL
1515  *	 state and there are no blockrefs to count.
1516  *
1517  * NOTE: live_count may already have some counts accumulated due to
1518  *	 creation and deletion and could even be initially negative.
1519  */
1520 void
1521 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1522 			 hammer2_blockref_t *base, int count)
1523 {
1524 	hammer2_spin_ex(&chain->core.spin);
1525         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1526 		if (base) {
1527 			while (--count >= 0) {
1528 				if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1529 					break;
1530 			}
1531 			chain->core.live_zero = count + 1;
1532 			while (count >= 0) {
1533 				if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1534 					atomic_add_int(&chain->core.live_count,
1535 						       1);
1536 				--count;
1537 			}
1538 		} else {
1539 			chain->core.live_zero = 0;
1540 		}
1541 		/* else do not modify live_count */
1542 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1543 	}
1544 	hammer2_spin_unex(&chain->core.spin);
1545 }
1546 
1547 /*
1548  * Resize the chain's physical storage allocation in-place.  This function does
1549  * not usually adjust the data pointer and must be followed by (typically) a
1550  * hammer2_chain_modify() call to copy any old data over and adjust the
1551  * data pointer.
1552  *
1553  * Chains can be resized smaller without reallocating the storage.  Resizing
1554  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1555  * asynchronously at a later time.
1556  *
1557  * An nradix value of 0 is special-cased to mean that the storage should
1558  * be disassociated, that is the chain is being resized to 0 bytes (not 1
1559  * byte).
1560  *
1561  * Must be passed an exclusively locked parent and chain.
1562  *
1563  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1564  * to avoid instantiating a device buffer that conflicts with the vnode data
1565  * buffer.  However, because H2 can compress or encrypt data, the chain may
1566  * have a dio assigned to it in those situations, and they do not conflict.
1567  *
1568  * XXX return error if cannot resize.
1569  */
1570 int
1571 hammer2_chain_resize(hammer2_chain_t *chain,
1572 		     hammer2_tid_t mtid, hammer2_off_t dedup_off,
1573 		     int nradix, int flags)
1574 {
1575 	hammer2_dev_t *hmp;
1576 	size_t obytes;
1577 	size_t nbytes;
1578 	int error;
1579 
1580 	hmp = chain->hmp;
1581 
1582 	/*
1583 	 * Only data and indirect blocks can be resized for now.
1584 	 * (The volu root, inodes, and freemap elements use a fixed size).
1585 	 */
1586 	KKASSERT(chain != &hmp->vchain);
1587 	KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1588 		 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1589 		 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1590 
1591 	/*
1592 	 * Nothing to do if the element is already the proper size
1593 	 */
1594 	obytes = chain->bytes;
1595 	nbytes = (nradix) ? (1U << nradix) : 0;
1596 	if (obytes == nbytes)
1597 		return (chain->error);
1598 
1599 	/*
1600 	 * Make sure the old data is instantiated so we can copy it.  If this
1601 	 * is a data block, the device data may be superfluous since the data
1602 	 * might be in a logical block, but compressed or encrypted data is
1603 	 * another matter.
1604 	 *
1605 	 * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1606 	 */
1607 	error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1608 	if (error)
1609 		return error;
1610 
1611 	/*
1612 	 * Relocate the block, even if making it smaller (because different
1613 	 * block sizes may be in different regions).
1614 	 *
1615 	 * NOTE: Operation does not copy the data and may only be used
1616 	 *	  to resize data blocks in-place, or directory entry blocks
1617 	 *	  which are about to be modified in some manner.
1618 	 */
1619 	error = hammer2_freemap_alloc(chain, nbytes);
1620 	if (error)
1621 		return error;
1622 
1623 	chain->bytes = nbytes;
1624 
1625 	/*
1626 	 * We don't want the followup chain_modify() to try to copy data
1627 	 * from the old (wrong-sized) buffer.  It won't know how much to
1628 	 * copy.  This case should only occur during writes when the
1629 	 * originator already has the data to write in-hand.
1630 	 */
1631 	if (chain->dio) {
1632 		KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1633 			 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1634 		hammer2_io_brelse(&chain->dio);
1635 		chain->data = NULL;
1636 	}
1637 	return (chain->error);
1638 }
1639 
1640 /*
1641  * Set the chain modified so its data can be changed by the caller, or
1642  * install deduplicated data.  The caller must call this routine for each
1643  * set of modifications it makes, even if the chain is already flagged
1644  * MODIFIED.
1645  *
1646  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1647  * is a CLC (cluster level change) field and is not updated by parent
1648  * propagation during a flush.
1649  *
1650  * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1651  * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1652  * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1653  * remains unmodified with its old data ref intact and chain->error
1654  * unchanged.
1655  *
1656  *				 Dedup Handling
1657  *
1658  * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1659  * even if the chain is still flagged MODIFIED.  In this case the chain's
1660  * DEDUPABLE flag will be cleared once the new storage has been assigned.
1661  *
1662  * If the caller passes a non-zero dedup_off we will use it to assign the
1663  * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1664  * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1665  * must not modify the data content upon return.
1666  */
1667 int
1668 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1669 		     hammer2_off_t dedup_off, int flags)
1670 {
1671 	hammer2_blockref_t obref;
1672 	hammer2_dev_t *hmp;
1673 	hammer2_io_t *dio;
1674 	int error;
1675 	int wasinitial;
1676 	int setmodified;
1677 	int setupdate;
1678 	int newmod;
1679 	char *bdata;
1680 
1681 	hmp = chain->hmp;
1682 	obref = chain->bref;
1683 	KKASSERT((chain->flags & HAMMER2_CHAIN_FICTITIOUS) == 0);
1684 	KKASSERT(chain->lock.mtx_lock & MTX_EXCLUSIVE);
1685 
1686 	/*
1687 	 * Data is not optional for freemap chains (we must always be sure
1688 	 * to copy the data on COW storage allocations).
1689 	 */
1690 	if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1691 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1692 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1693 			 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1694 	}
1695 
1696 	/*
1697 	 * Data must be resolved if already assigned, unless explicitly
1698 	 * flagged otherwise.  If we cannot safety load the data the
1699 	 * modification fails and we return early.
1700 	 */
1701 	if (chain->data == NULL && chain->bytes != 0 &&
1702 	    (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1703 	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1704 		hammer2_chain_load_data(chain);
1705 		if (chain->error)
1706 			return (chain->error);
1707 	}
1708 	error = 0;
1709 
1710 	/*
1711 	 * Set MODIFIED to indicate that the chain has been modified.  A new
1712 	 * allocation is required when modifying a chain.
1713 	 *
1714 	 * Set UPDATE to ensure that the blockref is updated in the parent.
1715 	 *
1716 	 * If MODIFIED is already set determine if we can reuse the assigned
1717 	 * data block or if we need a new data block.
1718 	 */
1719 	if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1720 		/*
1721 		 * Must set modified bit.
1722 		 */
1723 		atomic_add_long(&hammer2_count_modified_chains, 1);
1724 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1725 		hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1726 		setmodified = 1;
1727 
1728 		/*
1729 		 * We may be able to avoid a copy-on-write if the chain's
1730 		 * check mode is set to NONE and the chain's current
1731 		 * modify_tid is beyond the last explicit snapshot tid.
1732 		 *
1733 		 * This implements HAMMER2's overwrite-in-place feature.
1734 		 *
1735 		 * NOTE! This data-block cannot be used as a de-duplication
1736 		 *	 source when the check mode is set to NONE.
1737 		 */
1738 		if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1739 		     chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1740 		    (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1741 		    (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1742 		    HAMMER2_DEC_CHECK(chain->bref.methods) ==
1743 		     HAMMER2_CHECK_NONE &&
1744 		    chain->pmp &&
1745 		    chain->bref.modify_tid >
1746 		     chain->pmp->iroot->meta.pfs_lsnap_tid) {
1747 			/*
1748 			 * Sector overwrite allowed.
1749 			 */
1750 			newmod = 0;
1751 		} else if ((hmp->hflags & HMNT2_EMERG) &&
1752 			   chain->pmp &&
1753 			   chain->bref.modify_tid >
1754 			    chain->pmp->iroot->meta.pfs_lsnap_tid) {
1755 			/*
1756 			 * If in emergency delete mode then do a modify-in-
1757 			 * place on any chain type belonging to the PFS as
1758 			 * long as it doesn't mess up a snapshot.  We might
1759 			 * be forced to do this anyway a little further down
1760 			 * in the code if the allocation fails.
1761 			 *
1762 			 * Also note that in emergency mode, these modify-in-
1763 			 * place operations are NOT SAFE.  A storage failure,
1764 			 * power failure, or panic can corrupt the filesystem.
1765 			 */
1766 			newmod = 0;
1767 		} else {
1768 			/*
1769 			 * Sector overwrite not allowed, must copy-on-write.
1770 			 */
1771 			newmod = 1;
1772 		}
1773 	} else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1774 		/*
1775 		 * If the modified chain was registered for dedup we need
1776 		 * a new allocation.  This only happens for delayed-flush
1777 		 * chains (i.e. which run through the front-end buffer
1778 		 * cache).
1779 		 */
1780 		newmod = 1;
1781 		setmodified = 0;
1782 	} else {
1783 		/*
1784 		 * Already flagged modified, no new allocation is needed.
1785 		 */
1786 		newmod = 0;
1787 		setmodified = 0;
1788 	}
1789 
1790 	/*
1791 	 * Flag parent update required.
1792 	 */
1793 	if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1794 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1795 		setupdate = 1;
1796 	} else {
1797 		setupdate = 0;
1798 	}
1799 
1800 	/*
1801 	 * The XOP code returns held but unlocked focus chains.  This
1802 	 * prevents the chain from being destroyed but does not prevent
1803 	 * it from being modified.  diolk is used to interlock modifications
1804 	 * against XOP frontend accesses to the focus.
1805 	 *
1806 	 * This allows us to theoretically avoid deadlocking the frontend
1807 	 * if one of the backends lock up by not formally locking the
1808 	 * focused chain in the frontend.  In addition, the synchronization
1809 	 * code relies on this mechanism to avoid deadlocking concurrent
1810 	 * synchronization threads.
1811 	 */
1812 	lockmgr(&chain->diolk, LK_EXCLUSIVE);
1813 
1814 	/*
1815 	 * The modification or re-modification requires an allocation and
1816 	 * possible COW.  If an error occurs, the previous content and data
1817 	 * reference is retained and the modification fails.
1818 	 *
1819 	 * If dedup_off is non-zero, the caller is requesting a deduplication
1820 	 * rather than a modification.  The MODIFIED bit is not set and the
1821 	 * data offset is set to the deduplication offset.  The data cannot
1822 	 * be modified.
1823 	 *
1824 	 * NOTE: The dedup offset is allowed to be in a partially free state
1825 	 *	 and we must be sure to reset it to a fully allocated state
1826 	 *	 to force two bulkfree passes to free it again.
1827 	 *
1828 	 * NOTE: Only applicable when chain->bytes != 0.
1829 	 *
1830 	 * XXX can a chain already be marked MODIFIED without a data
1831 	 * assignment?  If not, assert here instead of testing the case.
1832 	 */
1833 	if (chain != &hmp->vchain && chain != &hmp->fchain &&
1834 	    chain->bytes) {
1835 		if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1836 		    newmod
1837 		) {
1838 			/*
1839 			 * NOTE: We do not have to remove the dedup
1840 			 *	 registration because the area is still
1841 			 *	 allocated and the underlying DIO will
1842 			 *	 still be flushed.
1843 			 */
1844 			if (dedup_off) {
1845 				chain->bref.data_off = dedup_off;
1846 				chain->bytes = 1 << (dedup_off &
1847 						     HAMMER2_OFF_MASK_RADIX);
1848 				chain->error = 0;
1849 				atomic_clear_int(&chain->flags,
1850 						 HAMMER2_CHAIN_MODIFIED);
1851 				atomic_add_long(&hammer2_count_modified_chains,
1852 						-1);
1853 				if (chain->pmp)
1854 					hammer2_pfs_memory_wakeup(chain->pmp);
1855 				hammer2_freemap_adjust(hmp, &chain->bref,
1856 						HAMMER2_FREEMAP_DORECOVER);
1857 				atomic_set_int(&chain->flags,
1858 						HAMMER2_CHAIN_DEDUPABLE);
1859 			} else {
1860 				error = hammer2_freemap_alloc(chain,
1861 							      chain->bytes);
1862 				atomic_clear_int(&chain->flags,
1863 						HAMMER2_CHAIN_DEDUPABLE);
1864 
1865 				/*
1866 				 * If we are unable to allocate a new block
1867 				 * but we are in emergency mode, issue a
1868 				 * warning to the console and reuse the same
1869 				 * block.
1870 				 *
1871 				 * We behave as if the allocation were
1872 				 * successful.
1873 				 *
1874 				 * THIS IS IMPORTANT: These modifications
1875 				 * are virtually guaranteed to corrupt any
1876 				 * snapshots related to this filesystem.
1877 				 */
1878 				if (error && (hmp->hflags & HMNT2_EMERG)) {
1879 					error = 0;
1880 					chain->bref.flags |=
1881 						HAMMER2_BREF_FLAG_EMERG_MIP;
1882 
1883 					krateprintf(&krate_h2em,
1884 					    "hammer2: Emergency Mode WARNING: "
1885 					    "Operation will likely corrupt "
1886 					    "related snapshot: "
1887 					    "%016jx.%02x key=%016jx\n",
1888 					    chain->bref.data_off,
1889 					    chain->bref.type,
1890 					    chain->bref.key);
1891 				} else if (error == 0) {
1892 					chain->bref.flags &=
1893 						~HAMMER2_BREF_FLAG_EMERG_MIP;
1894 				}
1895 			}
1896 		}
1897 	}
1898 
1899 	/*
1900 	 * Stop here if error.  We have to undo any flag bits we might
1901 	 * have set above.
1902 	 */
1903 	if (error) {
1904 		if (setmodified) {
1905 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1906 			atomic_add_long(&hammer2_count_modified_chains, -1);
1907 			if (chain->pmp)
1908 				hammer2_pfs_memory_wakeup(chain->pmp);
1909 		}
1910 		if (setupdate) {
1911 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1912 		}
1913 		lockmgr(&chain->diolk, LK_RELEASE);
1914 
1915 		return error;
1916 	}
1917 
1918 	/*
1919 	 * Update mirror_tid and modify_tid.  modify_tid is only updated
1920 	 * if not passed as zero (during flushes, parent propagation passes
1921 	 * the value 0).
1922 	 *
1923 	 * NOTE: chain->pmp could be the device spmp.
1924 	 */
1925 	chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1926 	if (mtid)
1927 		chain->bref.modify_tid = mtid;
1928 
1929 	/*
1930 	 * Set BMAPUPD to tell the flush code that an existing blockmap entry
1931 	 * requires updating as well as to tell the delete code that the
1932 	 * chain's blockref might not exactly match (in terms of physical size
1933 	 * or block offset) the one in the parent's blocktable.  The base key
1934 	 * of course will still match.
1935 	 */
1936 	if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1937 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1938 
1939 	/*
1940 	 * Short-cut data blocks which the caller does not need an actual
1941 	 * data reference to (aka OPTDATA), as long as the chain does not
1942 	 * already have a data pointer to the data.  This generally means
1943 	 * that the modifications are being done via the logical buffer cache.
1944 	 * The INITIAL flag relates only to the device data buffer and thus
1945 	 * remains unchange in this situation.
1946 	 *
1947 	 * This code also handles bytes == 0 (most dirents).
1948 	 */
1949 	if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1950 	    (flags & HAMMER2_MODIFY_OPTDATA) &&
1951 	    chain->data == NULL) {
1952 		KKASSERT(chain->dio == NULL);
1953 		goto skip2;
1954 	}
1955 
1956 	/*
1957 	 * Clearing the INITIAL flag (for indirect blocks) indicates that
1958 	 * we've processed the uninitialized storage allocation.
1959 	 *
1960 	 * If this flag is already clear we are likely in a copy-on-write
1961 	 * situation but we have to be sure NOT to bzero the storage if
1962 	 * no data is present.
1963 	 */
1964 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1965 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1966 		wasinitial = 1;
1967 	} else {
1968 		wasinitial = 0;
1969 	}
1970 
1971 	/*
1972 	 * Instantiate data buffer and possibly execute COW operation
1973 	 */
1974 	switch(chain->bref.type) {
1975 	case HAMMER2_BREF_TYPE_VOLUME:
1976 	case HAMMER2_BREF_TYPE_FREEMAP:
1977 		/*
1978 		 * The data is embedded, no copy-on-write operation is
1979 		 * needed.
1980 		 */
1981 		KKASSERT(chain->dio == NULL);
1982 		break;
1983 	case HAMMER2_BREF_TYPE_DIRENT:
1984 		/*
1985 		 * The data might be fully embedded.
1986 		 */
1987 		if (chain->bytes == 0) {
1988 			KKASSERT(chain->dio == NULL);
1989 			break;
1990 		}
1991 		/* fall through */
1992 	case HAMMER2_BREF_TYPE_INODE:
1993 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1994 	case HAMMER2_BREF_TYPE_DATA:
1995 	case HAMMER2_BREF_TYPE_INDIRECT:
1996 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1997 		/*
1998 		 * Perform the copy-on-write operation
1999 		 *
2000 		 * zero-fill or copy-on-write depending on whether
2001 		 * chain->data exists or not and set the dirty state for
2002 		 * the new buffer.  hammer2_io_new() will handle the
2003 		 * zero-fill.
2004 		 *
2005 		 * If a dedup_off was supplied this is an existing block
2006 		 * and no COW, copy, or further modification is required.
2007 		 */
2008 		KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
2009 
2010 		if (wasinitial && dedup_off == 0) {
2011 			error = hammer2_io_new(hmp, chain->bref.type,
2012 					       chain->bref.data_off,
2013 					       chain->bytes, &dio);
2014 		} else {
2015 			error = hammer2_io_bread(hmp, chain->bref.type,
2016 						 chain->bref.data_off,
2017 						 chain->bytes, &dio);
2018 		}
2019 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
2020 
2021 		/*
2022 		 * If an I/O error occurs make sure callers cannot accidently
2023 		 * modify the old buffer's contents and corrupt the filesystem.
2024 		 *
2025 		 * NOTE: hammer2_io_data() call issues bkvasync()
2026 		 */
2027 		if (error) {
2028 			kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
2029 				hmp);
2030 			chain->error = HAMMER2_ERROR_EIO;
2031 			hammer2_io_brelse(&dio);
2032 			hammer2_io_brelse(&chain->dio);
2033 			chain->data = NULL;
2034 			break;
2035 		}
2036 		chain->error = 0;
2037 		bdata = hammer2_io_data(dio, chain->bref.data_off);
2038 
2039 		if (chain->data) {
2040 			/*
2041 			 * COW (unless a dedup).
2042 			 */
2043 			KKASSERT(chain->dio != NULL);
2044 			if (chain->data != (void *)bdata && dedup_off == 0) {
2045 				bcopy(chain->data, bdata, chain->bytes);
2046 			}
2047 		} else if (wasinitial == 0) {
2048 			/*
2049 			 * We have a problem.  We were asked to COW but
2050 			 * we don't have any data to COW with!
2051 			 */
2052 			panic("hammer2_chain_modify: having a COW %p\n",
2053 			      chain);
2054 		}
2055 
2056 		/*
2057 		 * Retire the old buffer, replace with the new.  Dirty or
2058 		 * redirty the new buffer.
2059 		 *
2060 		 * WARNING! The system buffer cache may have already flushed
2061 		 *	    the buffer, so we must be sure to [re]dirty it
2062 		 *	    for further modification.
2063 		 *
2064 		 *	    If dedup_off was supplied, the caller is not
2065 		 *	    expected to make any further modification to the
2066 		 *	    buffer.
2067 		 *
2068 		 * WARNING! hammer2_get_gdata() assumes dio never transitions
2069 		 *	    through NULL in order to optimize away unnecessary
2070 		 *	    diolk operations.
2071 		 */
2072 		{
2073 			hammer2_io_t *tio;
2074 
2075 			if ((tio = chain->dio) != NULL)
2076 				hammer2_io_bqrelse(&tio);
2077 			chain->data = (void *)bdata;
2078 			chain->dio = dio;
2079 			if (dedup_off == 0)
2080 				hammer2_io_setdirty(dio);
2081 		}
2082 		break;
2083 	default:
2084 		panic("hammer2_chain_modify: illegal non-embedded type %d",
2085 		      chain->bref.type);
2086 		break;
2087 
2088 	}
2089 skip2:
2090 	/*
2091 	 * setflush on parent indicating that the parent must recurse down
2092 	 * to us.  Do not call on chain itself which might already have it
2093 	 * set.
2094 	 */
2095 	if (chain->parent)
2096 		hammer2_chain_setflush(chain->parent);
2097 	lockmgr(&chain->diolk, LK_RELEASE);
2098 
2099 	return (chain->error);
2100 }
2101 
2102 /*
2103  * Modify the chain associated with an inode.
2104  */
2105 int
2106 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2107 			hammer2_tid_t mtid, int flags)
2108 {
2109 	int error;
2110 
2111 	hammer2_inode_modify(ip);
2112 	error = hammer2_chain_modify(chain, mtid, 0, flags);
2113 
2114 	return error;
2115 }
2116 
2117 /*
2118  * Volume header data locks
2119  */
2120 void
2121 hammer2_voldata_lock(hammer2_dev_t *hmp)
2122 {
2123 	lockmgr(&hmp->vollk, LK_EXCLUSIVE);
2124 }
2125 
2126 void
2127 hammer2_voldata_unlock(hammer2_dev_t *hmp)
2128 {
2129 	lockmgr(&hmp->vollk, LK_RELEASE);
2130 }
2131 
2132 void
2133 hammer2_voldata_modify(hammer2_dev_t *hmp)
2134 {
2135 	if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
2136 		atomic_add_long(&hammer2_count_modified_chains, 1);
2137 		atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
2138 		hammer2_pfs_memory_inc(hmp->vchain.pmp);
2139 	}
2140 }
2141 
2142 /*
2143  * This function returns the chain at the nearest key within the specified
2144  * range.  The returned chain will be referenced but not locked.
2145  *
2146  * This function will recurse through chain->rbtree as necessary and will
2147  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
2148  * the iteration value is less than the current value of *key_nextp.
2149  *
2150  * The caller should use (*key_nextp) to calculate the actual range of
2151  * the returned element, which will be (key_beg to *key_nextp - 1), because
2152  * there might be another element which is superior to the returned element
2153  * and overlaps it.
2154  *
2155  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2156  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
2157  * it will wind up being (key_end + 1).
2158  *
2159  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
2160  *	     held through the operation.
2161  */
2162 struct hammer2_chain_find_info {
2163 	hammer2_chain_t		*best;
2164 	hammer2_key_t		key_beg;
2165 	hammer2_key_t		key_end;
2166 	hammer2_key_t		key_next;
2167 };
2168 
2169 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2170 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2171 
2172 static
2173 hammer2_chain_t *
2174 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2175 			  hammer2_key_t key_beg, hammer2_key_t key_end)
2176 {
2177 	struct hammer2_chain_find_info info;
2178 
2179 	info.best = NULL;
2180 	info.key_beg = key_beg;
2181 	info.key_end = key_end;
2182 	info.key_next = *key_nextp;
2183 
2184 	RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2185 		hammer2_chain_find_cmp, hammer2_chain_find_callback,
2186 		&info);
2187 	*key_nextp = info.key_next;
2188 #if 0
2189 	kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2190 		parent, key_beg, key_end, *key_nextp);
2191 #endif
2192 
2193 	return (info.best);
2194 }
2195 
2196 static
2197 int
2198 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2199 {
2200 	struct hammer2_chain_find_info *info = data;
2201 	hammer2_key_t child_beg;
2202 	hammer2_key_t child_end;
2203 
2204 	child_beg = child->bref.key;
2205 	child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2206 
2207 	if (child_end < info->key_beg)
2208 		return(-1);
2209 	if (child_beg > info->key_end)
2210 		return(1);
2211 	return(0);
2212 }
2213 
2214 static
2215 int
2216 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2217 {
2218 	struct hammer2_chain_find_info *info = data;
2219 	hammer2_chain_t *best;
2220 	hammer2_key_t child_end;
2221 
2222 	/*
2223 	 * WARNING! Layerq is scanned forwards, exact matches should keep
2224 	 *	    the existing info->best.
2225 	 */
2226 	if ((best = info->best) == NULL) {
2227 		/*
2228 		 * No previous best.  Assign best
2229 		 */
2230 		info->best = child;
2231 	} else if (best->bref.key <= info->key_beg &&
2232 		   child->bref.key <= info->key_beg) {
2233 		/*
2234 		 * Illegal overlap.
2235 		 */
2236 		KKASSERT(0);
2237 		/*info->best = child;*/
2238 	} else if (child->bref.key < best->bref.key) {
2239 		/*
2240 		 * Child has a nearer key and best is not flush with key_beg.
2241 		 * Set best to child.  Truncate key_next to the old best key.
2242 		 */
2243 		info->best = child;
2244 		if (info->key_next > best->bref.key || info->key_next == 0)
2245 			info->key_next = best->bref.key;
2246 	} else if (child->bref.key == best->bref.key) {
2247 		/*
2248 		 * If our current best is flush with the child then this
2249 		 * is an illegal overlap.
2250 		 *
2251 		 * key_next will automatically be limited to the smaller of
2252 		 * the two end-points.
2253 		 */
2254 		KKASSERT(0);
2255 		info->best = child;
2256 	} else {
2257 		/*
2258 		 * Keep the current best but truncate key_next to the child's
2259 		 * base.
2260 		 *
2261 		 * key_next will also automatically be limited to the smaller
2262 		 * of the two end-points (probably not necessary for this case
2263 		 * but we do it anyway).
2264 		 */
2265 		if (info->key_next > child->bref.key || info->key_next == 0)
2266 			info->key_next = child->bref.key;
2267 	}
2268 
2269 	/*
2270 	 * Always truncate key_next based on child's end-of-range.
2271 	 */
2272 	child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2273 	if (child_end && (info->key_next > child_end || info->key_next == 0))
2274 		info->key_next = child_end;
2275 
2276 	return(0);
2277 }
2278 
2279 /*
2280  * Retrieve the specified chain from a media blockref, creating the
2281  * in-memory chain structure which reflects it.  The returned chain is
2282  * held and locked according to (how) (HAMMER2_RESOLVE_*).  The caller must
2283  * handle crc-checks and so forth, and should check chain->error before
2284  * assuming that the data is good.
2285  *
2286  * To handle insertion races pass the INSERT_RACE flag along with the
2287  * generation number of the core.  NULL will be returned if the generation
2288  * number changes before we have a chance to insert the chain.  Insert
2289  * races can occur because the parent might be held shared.
2290  *
2291  * Caller must hold the parent locked shared or exclusive since we may
2292  * need the parent's bref array to find our block.
2293  *
2294  * WARNING! chain->pmp is always set to NULL for any chain representing
2295  *	    part of the super-root topology.
2296  */
2297 hammer2_chain_t *
2298 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2299 		  hammer2_blockref_t *bref, int how)
2300 {
2301 	hammer2_dev_t *hmp = parent->hmp;
2302 	hammer2_chain_t *chain;
2303 	int error;
2304 
2305 	/*
2306 	 * Allocate a chain structure representing the existing media
2307 	 * entry.  Resulting chain has one ref and is not locked.
2308 	 */
2309 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2310 		chain = hammer2_chain_alloc(hmp, NULL, bref);
2311 	else
2312 		chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2313 	/* ref'd chain returned */
2314 
2315 	/*
2316 	 * Flag that the chain is in the parent's blockmap so delete/flush
2317 	 * knows what to do with it.
2318 	 */
2319 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2320 
2321 	/*
2322 	 * chain must be locked to avoid unexpected ripouts
2323 	 */
2324 	hammer2_chain_lock(chain, how);
2325 
2326 	/*
2327 	 * Link the chain into its parent.  A spinlock is required to safely
2328 	 * access the RBTREE, and it is possible to collide with another
2329 	 * hammer2_chain_get() operation because the caller might only hold
2330 	 * a shared lock on the parent.
2331 	 *
2332 	 * NOTE: Get races can occur quite often when we distribute
2333 	 *	 asynchronous read-aheads across multiple threads.
2334 	 */
2335 	KKASSERT(parent->refs > 0);
2336 	error = hammer2_chain_insert(parent, chain,
2337 				     HAMMER2_CHAIN_INSERT_SPIN |
2338 				     HAMMER2_CHAIN_INSERT_RACE,
2339 				     generation);
2340 	if (error) {
2341 		KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2342 		/*kprintf("chain %p get race\n", chain);*/
2343 		hammer2_chain_unlock(chain);
2344 		hammer2_chain_drop(chain);
2345 		chain = NULL;
2346 	} else {
2347 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2348 	}
2349 
2350 	/*
2351 	 * Return our new chain referenced but not locked, or NULL if
2352 	 * a race occurred.
2353 	 */
2354 	return (chain);
2355 }
2356 
2357 /*
2358  * Lookup initialization/completion API
2359  */
2360 hammer2_chain_t *
2361 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2362 {
2363 	hammer2_chain_ref(parent);
2364 	if (flags & HAMMER2_LOOKUP_SHARED) {
2365 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2366 					   HAMMER2_RESOLVE_SHARED);
2367 	} else {
2368 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2369 	}
2370 	return (parent);
2371 }
2372 
2373 void
2374 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2375 {
2376 	if (parent) {
2377 		hammer2_chain_unlock(parent);
2378 		hammer2_chain_drop(parent);
2379 	}
2380 }
2381 
2382 /*
2383  * Take the locked chain and return a locked parent.  The chain remains
2384  * locked on return, but may have to be temporarily unlocked to acquire
2385  * the parent.  Because of this, (chain) must be stable and cannot be
2386  * deleted while it was temporarily unlocked (typically means that (chain)
2387  * is an inode).
2388  *
2389  * Pass HAMMER2_RESOLVE_* flags in flags.
2390  *
2391  * This will work even if the chain is errored, and the caller can check
2392  * parent->error on return if desired since the parent will be locked.
2393  *
2394  * This function handles the lock order reversal.
2395  */
2396 hammer2_chain_t *
2397 hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2398 {
2399 	hammer2_chain_t *parent;
2400 
2401 	/*
2402 	 * Be careful of order, chain must be unlocked before parent
2403 	 * is locked below to avoid a deadlock.  Try it trivially first.
2404 	 */
2405 	parent = chain->parent;
2406 	if (parent == NULL)
2407 		panic("hammer2_chain_getparent: no parent");
2408 	hammer2_chain_ref(parent);
2409 	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2410 		return parent;
2411 
2412 	for (;;) {
2413 		hammer2_chain_unlock(chain);
2414 		hammer2_chain_lock(parent, flags);
2415 		hammer2_chain_lock(chain, flags);
2416 
2417 		/*
2418 		 * Parent relinking races are quite common.  We have to get
2419 		 * it right or we will blow up the block table.
2420 		 */
2421 		if (chain->parent == parent)
2422 			break;
2423 		hammer2_chain_unlock(parent);
2424 		hammer2_chain_drop(parent);
2425 		cpu_ccfence();
2426 		parent = chain->parent;
2427 		if (parent == NULL)
2428 			panic("hammer2_chain_getparent: no parent");
2429 		hammer2_chain_ref(parent);
2430 	}
2431 	return parent;
2432 }
2433 
2434 /*
2435  * Take the locked chain and return a locked parent.  The chain is unlocked
2436  * and dropped.  *chainp is set to the returned parent as a convenience.
2437  * Pass HAMMER2_RESOLVE_* flags in flags.
2438  *
2439  * This will work even if the chain is errored, and the caller can check
2440  * parent->error on return if desired since the parent will be locked.
2441  *
2442  * The chain does NOT need to be stable.  We use a tracking structure
2443  * to track the expected parent if the chain is deleted out from under us.
2444  *
2445  * This function handles the lock order reversal.
2446  */
2447 hammer2_chain_t *
2448 hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2449 {
2450 	hammer2_chain_t *chain;
2451 	hammer2_chain_t *parent;
2452 	struct hammer2_reptrack reptrack;
2453 	struct hammer2_reptrack **repp;
2454 
2455 	/*
2456 	 * Be careful of order, chain must be unlocked before parent
2457 	 * is locked below to avoid a deadlock.  Try it trivially first.
2458 	 */
2459 	chain = *chainp;
2460 	parent = chain->parent;
2461 	if (parent == NULL) {
2462 		hammer2_spin_unex(&chain->core.spin);
2463 		panic("hammer2_chain_repparent: no parent");
2464 	}
2465 	hammer2_chain_ref(parent);
2466 	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2467 		hammer2_chain_unlock(chain);
2468 		hammer2_chain_drop(chain);
2469 		*chainp = parent;
2470 
2471 		return parent;
2472 	}
2473 
2474 	/*
2475 	 * Ok, now it gets a bit nasty.  There are multiple situations where
2476 	 * the parent might be in the middle of a deletion, or where the child
2477 	 * (chain) might be deleted the instant we let go of its lock.
2478 	 * We can potentially end up in a no-win situation!
2479 	 *
2480 	 * In particular, the indirect_maintenance() case can cause these
2481 	 * situations.
2482 	 *
2483 	 * To deal with this we install a reptrack structure in the parent
2484 	 * This reptrack structure 'owns' the parent ref and will automatically
2485 	 * migrate to the parent's parent if the parent is deleted permanently.
2486 	 */
2487 	hammer2_spin_init(&reptrack.spin, "h2reptrk");
2488 	reptrack.chain = parent;
2489 	hammer2_chain_ref(parent);		/* for the reptrack */
2490 
2491 	hammer2_spin_ex(&parent->core.spin);
2492 	reptrack.next = parent->core.reptrack;
2493 	parent->core.reptrack = &reptrack;
2494 	hammer2_spin_unex(&parent->core.spin);
2495 
2496 	hammer2_chain_unlock(chain);
2497 	hammer2_chain_drop(chain);
2498 	chain = NULL;	/* gone */
2499 
2500 	/*
2501 	 * At the top of this loop, chain is gone and parent is refd both
2502 	 * by us explicitly AND via our reptrack.  We are attempting to
2503 	 * lock parent.
2504 	 */
2505 	for (;;) {
2506 		hammer2_chain_lock(parent, flags);
2507 
2508 		if (reptrack.chain == parent)
2509 			break;
2510 		hammer2_chain_unlock(parent);
2511 		hammer2_chain_drop(parent);
2512 
2513 		kprintf("hammer2: debug REPTRACK %p->%p\n",
2514 			parent, reptrack.chain);
2515 		hammer2_spin_ex(&reptrack.spin);
2516 		parent = reptrack.chain;
2517 		hammer2_chain_ref(parent);
2518 		hammer2_spin_unex(&reptrack.spin);
2519 	}
2520 
2521 	/*
2522 	 * Once parent is locked and matches our reptrack, our reptrack
2523 	 * will be stable and we have our parent.  We can unlink our
2524 	 * reptrack.
2525 	 *
2526 	 * WARNING!  Remember that the chain lock might be shared.  Chains
2527 	 *	     locked shared have stable parent linkages.
2528 	 */
2529 	hammer2_spin_ex(&parent->core.spin);
2530 	repp = &parent->core.reptrack;
2531 	while (*repp != &reptrack)
2532 		repp = &(*repp)->next;
2533 	*repp = reptrack.next;
2534 	hammer2_spin_unex(&parent->core.spin);
2535 
2536 	hammer2_chain_drop(parent);	/* reptrack ref */
2537 	*chainp = parent;		/* return parent lock+ref */
2538 
2539 	return parent;
2540 }
2541 
2542 /*
2543  * Dispose of any linked reptrack structures in (chain) by shifting them to
2544  * (parent).  Both (chain) and (parent) must be exclusively locked.
2545  *
2546  * This is interlocked against any children of (chain) on the other side.
2547  * No children so remain as-of when this is called so we can test
2548  * core.reptrack without holding the spin-lock.
2549  *
2550  * Used whenever the caller intends to permanently delete chains related
2551  * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2552  * where the chains underneath the node being deleted are given a new parent
2553  * above the node being deleted.
2554  */
2555 static
2556 void
2557 hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2558 {
2559 	struct hammer2_reptrack *reptrack;
2560 
2561 	KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2562 	while (chain->core.reptrack) {
2563 		hammer2_spin_ex(&parent->core.spin);
2564 		hammer2_spin_ex(&chain->core.spin);
2565 		reptrack = chain->core.reptrack;
2566 		if (reptrack == NULL) {
2567 			hammer2_spin_unex(&chain->core.spin);
2568 			hammer2_spin_unex(&parent->core.spin);
2569 			break;
2570 		}
2571 		hammer2_spin_ex(&reptrack->spin);
2572 		chain->core.reptrack = reptrack->next;
2573 		reptrack->chain = parent;
2574 		reptrack->next = parent->core.reptrack;
2575 		parent->core.reptrack = reptrack;
2576 		hammer2_chain_ref(parent);		/* reptrack */
2577 
2578 		hammer2_spin_unex(&chain->core.spin);
2579 		hammer2_spin_unex(&parent->core.spin);
2580 		kprintf("hammer2: debug repchange %p %p->%p\n",
2581 			reptrack, chain, parent);
2582 		hammer2_chain_drop(chain);		/* reptrack */
2583 	}
2584 }
2585 
2586 /*
2587  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2588  * (*parentp) typically points to an inode but can also point to a related
2589  * indirect block and this function will recurse upwards and find the inode
2590  * or the nearest undeleted indirect block covering the key range.
2591  *
2592  * This function unconditionally sets *errorp, replacing any previous value.
2593  *
2594  * (*parentp) must be exclusive or shared locked (depending on flags) and
2595  * referenced and can be an inode or an existing indirect block within the
2596  * inode.
2597  *
2598  * If (*parent) is errored out, this function will not attempt to recurse
2599  * the radix tree and will return NULL along with an appropriate *errorp.
2600  * If NULL is returned and *errorp is 0, the requested lookup could not be
2601  * located.
2602  *
2603  * On return (*parentp) will be modified to point at the deepest parent chain
2604  * element encountered during the search, as a helper for an insertion or
2605  * deletion.
2606  *
2607  * The new (*parentp) will be locked shared or exclusive (depending on flags),
2608  * and referenced, and the old will be unlocked and dereferenced (no change
2609  * if they are both the same).  This is particularly important if the caller
2610  * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2611  * is returned, as long as no error occurred.
2612  *
2613  * The matching chain will be returned locked according to flags.
2614  *
2615  * --
2616  *
2617  * NULL is returned if no match was found, but (*parentp) will still
2618  * potentially be adjusted.
2619  *
2620  * On return (*key_nextp) will point to an iterative value for key_beg.
2621  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2622  *
2623  * This function will also recurse up the chain if the key is not within the
2624  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2625  * can simply allow (*parentp) to float inside the loop.
2626  *
2627  * NOTE!  chain->data is not always resolved.  By default it will not be
2628  *	  resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2629  *	  HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2630  *	  BREF_TYPE_DATA as the device buffer can alias the logical file
2631  *	  buffer).
2632  */
2633 
2634 hammer2_chain_t *
2635 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2636 		     hammer2_key_t key_beg, hammer2_key_t key_end,
2637 		     int *errorp, int flags)
2638 {
2639 	hammer2_dev_t *hmp;
2640 	hammer2_chain_t *parent;
2641 	hammer2_chain_t *chain;
2642 	hammer2_blockref_t *base;
2643 	hammer2_blockref_t *bref;
2644 	hammer2_blockref_t bsave;
2645 	hammer2_key_t scan_beg;
2646 	hammer2_key_t scan_end;
2647 	int count = 0;
2648 	int how_always = HAMMER2_RESOLVE_ALWAYS;
2649 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
2650 	int how;
2651 	int generation;
2652 	int maxloops = 300000;
2653 	volatile hammer2_mtx_t save_mtx;
2654 
2655 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
2656 		how_maybe = how_always;
2657 		how = HAMMER2_RESOLVE_ALWAYS;
2658 	} else if (flags & HAMMER2_LOOKUP_NODATA) {
2659 		how = HAMMER2_RESOLVE_NEVER;
2660 	} else {
2661 		how = HAMMER2_RESOLVE_MAYBE;
2662 	}
2663 	if (flags & HAMMER2_LOOKUP_SHARED) {
2664 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2665 		how_always |= HAMMER2_RESOLVE_SHARED;
2666 		how |= HAMMER2_RESOLVE_SHARED;
2667 	}
2668 
2669 	/*
2670 	 * Recurse (*parentp) upward if necessary until the parent completely
2671 	 * encloses the key range or we hit the inode.
2672 	 *
2673 	 * Handle races against the flusher deleting indirect nodes on its
2674 	 * way back up by continuing to recurse upward past the deletion.
2675 	 */
2676 	parent = *parentp;
2677 	hmp = parent->hmp;
2678 	*errorp = 0;
2679 
2680 	while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2681 	       parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2682 		scan_beg = parent->bref.key;
2683 		scan_end = scan_beg +
2684 			   ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2685 		if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2686 			if (key_beg >= scan_beg && key_end <= scan_end)
2687 				break;
2688 		}
2689 		parent = hammer2_chain_repparent(parentp, how_maybe);
2690 	}
2691 again:
2692 	if (--maxloops == 0)
2693 		panic("hammer2_chain_lookup: maxloops");
2694 
2695 	/*
2696 	 * MATCHIND case that does not require parent->data (do prior to
2697 	 * parent->error check).
2698 	 */
2699 	switch(parent->bref.type) {
2700 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2701 	case HAMMER2_BREF_TYPE_INDIRECT:
2702 		if (flags & HAMMER2_LOOKUP_MATCHIND) {
2703 			scan_beg = parent->bref.key;
2704 			scan_end = scan_beg +
2705 			       ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2706 			if (key_beg == scan_beg && key_end == scan_end) {
2707 				chain = parent;
2708 				hammer2_chain_ref(chain);
2709 				hammer2_chain_lock(chain, how_maybe);
2710 				*key_nextp = scan_end + 1;
2711 				goto done;
2712 			}
2713 		}
2714 		break;
2715 	default:
2716 		break;
2717 	}
2718 
2719 	/*
2720 	 * No lookup is possible if the parent is errored.  We delayed
2721 	 * this check as long as we could to ensure that the parent backup,
2722 	 * embedded data, and MATCHIND code could still execute.
2723 	 */
2724 	if (parent->error) {
2725 		*errorp = parent->error;
2726 		return NULL;
2727 	}
2728 
2729 	/*
2730 	 * Locate the blockref array.  Currently we do a fully associative
2731 	 * search through the array.
2732 	 */
2733 	switch(parent->bref.type) {
2734 	case HAMMER2_BREF_TYPE_INODE:
2735 		/*
2736 		 * Special shortcut for embedded data returns the inode
2737 		 * itself.  Callers must detect this condition and access
2738 		 * the embedded data (the strategy code does this for us).
2739 		 *
2740 		 * This is only applicable to regular files and softlinks.
2741 		 *
2742 		 * We need a second lock on parent.  Since we already have
2743 		 * a lock we must pass LOCKAGAIN to prevent unexpected
2744 		 * blocking (we don't want to block on a second shared
2745 		 * ref if an exclusive lock is pending)
2746 		 */
2747 		if (parent->data->ipdata.meta.op_flags &
2748 		    HAMMER2_OPFLAG_DIRECTDATA) {
2749 			if (flags & HAMMER2_LOOKUP_NODIRECT) {
2750 				chain = NULL;
2751 				*key_nextp = key_end + 1;
2752 				goto done;
2753 			}
2754 			hammer2_chain_ref(parent);
2755 			hammer2_chain_lock(parent, how_always |
2756 						   HAMMER2_RESOLVE_LOCKAGAIN);
2757 			*key_nextp = key_end + 1;
2758 			return (parent);
2759 		}
2760 		base = &parent->data->ipdata.u.blockset.blockref[0];
2761 		count = HAMMER2_SET_COUNT;
2762 		break;
2763 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2764 	case HAMMER2_BREF_TYPE_INDIRECT:
2765 		/*
2766 		 * Optimize indirect blocks in the INITIAL state to avoid
2767 		 * I/O.
2768 		 *
2769 		 * Debugging: Enter permanent wait state instead of
2770 		 * panicing on unexpectedly NULL data for the moment.
2771 		 */
2772 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2773 			base = NULL;
2774 		} else {
2775 			if (parent->data == NULL) {
2776 				kprintf("hammer2: unexpected NULL data "
2777 					"on %p\n", parent);
2778 				while (1)
2779 					tsleep(parent, 0, "xxx", 0);
2780 			}
2781 			base = &parent->data->npdata[0];
2782 		}
2783 		count = parent->bytes / sizeof(hammer2_blockref_t);
2784 		break;
2785 	case HAMMER2_BREF_TYPE_VOLUME:
2786 		base = &parent->data->voldata.sroot_blockset.blockref[0];
2787 		count = HAMMER2_SET_COUNT;
2788 		break;
2789 	case HAMMER2_BREF_TYPE_FREEMAP:
2790 		base = &parent->data->blkset.blockref[0];
2791 		count = HAMMER2_SET_COUNT;
2792 		break;
2793 	default:
2794 		kprintf("hammer2_chain_lookup: unrecognized "
2795 			"blockref(B) type: %d",
2796 			parent->bref.type);
2797 		while (1)
2798 			tsleep(&base, 0, "dead", 0);
2799 		panic("hammer2_chain_lookup: unrecognized "
2800 		      "blockref(B) type: %d",
2801 		      parent->bref.type);
2802 		base = NULL;	/* safety */
2803 		count = 0;	/* safety */
2804 	}
2805 
2806 	/*
2807 	 * Merged scan to find next candidate.
2808 	 *
2809 	 * hammer2_base_*() functions require the parent->core.live_* fields
2810 	 * to be synchronized.
2811 	 *
2812 	 * We need to hold the spinlock to access the block array and RB tree
2813 	 * and to interlock chain creation.
2814 	 */
2815 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2816 		hammer2_chain_countbrefs(parent, base, count);
2817 
2818 	/*
2819 	 * Combined search
2820 	 */
2821 	hammer2_spin_ex(&parent->core.spin);
2822 	chain = hammer2_combined_find(parent, base, count,
2823 				      key_nextp,
2824 				      key_beg, key_end,
2825 				      &bref);
2826 	generation = parent->core.generation;
2827 
2828 	/*
2829 	 * Exhausted parent chain, iterate.
2830 	 */
2831 	if (bref == NULL) {
2832 		KKASSERT(chain == NULL);
2833 		hammer2_spin_unex(&parent->core.spin);
2834 		if (key_beg == key_end)	/* short cut single-key case */
2835 			return (NULL);
2836 
2837 		/*
2838 		 * Stop if we reached the end of the iteration.
2839 		 */
2840 		if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2841 		    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2842 			return (NULL);
2843 		}
2844 
2845 		/*
2846 		 * Calculate next key, stop if we reached the end of the
2847 		 * iteration, otherwise go up one level and loop.
2848 		 */
2849 		key_beg = parent->bref.key +
2850 			  ((hammer2_key_t)1 << parent->bref.keybits);
2851 		if (key_beg == 0 || key_beg > key_end)
2852 			return (NULL);
2853 		parent = hammer2_chain_repparent(parentp, how_maybe);
2854 		goto again;
2855 	}
2856 
2857 	/*
2858 	 * Selected from blockref or in-memory chain.
2859 	 */
2860 	bsave = *bref;
2861 	if (chain == NULL) {
2862 		hammer2_spin_unex(&parent->core.spin);
2863 		if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2864 		    bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2865 			chain = hammer2_chain_get(parent, generation,
2866 						  &bsave, how_maybe);
2867 		} else {
2868 			chain = hammer2_chain_get(parent, generation,
2869 						  &bsave, how);
2870 		}
2871 		if (chain == NULL)
2872 			goto again;
2873 	} else {
2874 		hammer2_chain_ref(chain);
2875 		hammer2_spin_unex(&parent->core.spin);
2876 
2877 		/*
2878 		 * chain is referenced but not locked.  We must lock the
2879 		 * chain to obtain definitive state.
2880 		 */
2881 		if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2882 		    bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2883 			hammer2_chain_lock(chain, how_maybe);
2884 		} else {
2885 			hammer2_chain_lock(chain, how);
2886 		}
2887 		KKASSERT(chain->parent == parent);
2888 	}
2889 	if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
2890 	    chain->parent != parent) {
2891 		hammer2_chain_unlock(chain);
2892 		hammer2_chain_drop(chain);
2893 		chain = NULL;	/* SAFETY */
2894 		goto again;
2895 	}
2896 
2897 
2898 	/*
2899 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2900 	 *
2901 	 * NOTE: Chain's key range is not relevant as there might be
2902 	 *	 one-offs within the range that are not deleted.
2903 	 *
2904 	 * NOTE: Lookups can race delete-duplicate because
2905 	 *	 delete-duplicate does not lock the parent's core
2906 	 *	 (they just use the spinlock on the core).
2907 	 */
2908 	if (chain->flags & HAMMER2_CHAIN_DELETED) {
2909 		kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2910 			chain->bref.data_off, chain->bref.type,
2911 			chain->bref.key);
2912 		hammer2_chain_unlock(chain);
2913 		hammer2_chain_drop(chain);
2914 		chain = NULL;	/* SAFETY */
2915 		key_beg = *key_nextp;
2916 		if (key_beg == 0 || key_beg > key_end)
2917 			return(NULL);
2918 		goto again;
2919 	}
2920 
2921 	/*
2922 	 * If the chain element is an indirect block it becomes the new
2923 	 * parent and we loop on it.  We must maintain our top-down locks
2924 	 * to prevent the flusher from interfering (i.e. doing a
2925 	 * delete-duplicate and leaving us recursing down a deleted chain).
2926 	 *
2927 	 * The parent always has to be locked with at least RESOLVE_MAYBE
2928 	 * so we can access its data.  It might need a fixup if the caller
2929 	 * passed incompatible flags.  Be careful not to cause a deadlock
2930 	 * as a data-load requires an exclusive lock.
2931 	 *
2932 	 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2933 	 * range is within the requested key range we return the indirect
2934 	 * block and do NOT loop.  This is usually only used to acquire
2935 	 * freemap nodes.
2936 	 */
2937 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2938 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2939 		save_mtx = parent->lock;
2940 		hammer2_chain_unlock(parent);
2941 		hammer2_chain_drop(parent);
2942 		*parentp = parent = chain;
2943 		chain = NULL;	/* SAFETY */
2944 		goto again;
2945 	}
2946 done:
2947 	/*
2948 	 * All done, return the locked chain.
2949 	 *
2950 	 * If the caller does not want a locked chain, replace the lock with
2951 	 * a ref.  Perhaps this can eventually be optimized to not obtain the
2952 	 * lock in the first place for situations where the data does not
2953 	 * need to be resolved.
2954 	 *
2955 	 * NOTE! A chain->error must be tested by the caller upon return.
2956 	 *	 *errorp is only set based on issues which occur while
2957 	 *	 trying to reach the chain.
2958 	 */
2959 	return (chain);
2960 }
2961 
2962 /*
2963  * After having issued a lookup we can iterate all matching keys.
2964  *
2965  * If chain is non-NULL we continue the iteration from just after it's index.
2966  *
2967  * If chain is NULL we assume the parent was exhausted and continue the
2968  * iteration at the next parent.
2969  *
2970  * If a fatal error occurs (typically an I/O error), a dummy chain is
2971  * returned with chain->error and error-identifying information set.  This
2972  * chain will assert if you try to do anything fancy with it.
2973  *
2974  * XXX Depending on where the error occurs we should allow continued iteration.
2975  *
2976  * parent must be locked on entry and remains locked throughout.  chain's
2977  * lock status must match flags.  Chain is always at least referenced.
2978  *
2979  * WARNING!  The MATCHIND flag does not apply to this function.
2980  */
2981 hammer2_chain_t *
2982 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2983 		   hammer2_key_t *key_nextp,
2984 		   hammer2_key_t key_beg, hammer2_key_t key_end,
2985 		   int *errorp, int flags)
2986 {
2987 	hammer2_chain_t *parent;
2988 	int how_maybe;
2989 
2990 	/*
2991 	 * Calculate locking flags for upward recursion.
2992 	 */
2993 	how_maybe = HAMMER2_RESOLVE_MAYBE;
2994 	if (flags & HAMMER2_LOOKUP_SHARED)
2995 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2996 
2997 	parent = *parentp;
2998 	*errorp = 0;
2999 
3000 	/*
3001 	 * Calculate the next index and recalculate the parent if necessary.
3002 	 */
3003 	if (chain) {
3004 		key_beg = chain->bref.key +
3005 			  ((hammer2_key_t)1 << chain->bref.keybits);
3006 		hammer2_chain_unlock(chain);
3007 		hammer2_chain_drop(chain);
3008 
3009 		/*
3010 		 * chain invalid past this point, but we can still do a
3011 		 * pointer comparison w/parent.
3012 		 *
3013 		 * Any scan where the lookup returned degenerate data embedded
3014 		 * in the inode has an invalid index and must terminate.
3015 		 */
3016 		if (chain == parent)
3017 			return(NULL);
3018 		if (key_beg == 0 || key_beg > key_end)
3019 			return(NULL);
3020 		chain = NULL;
3021 	} else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
3022 		   parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
3023 		/*
3024 		 * We reached the end of the iteration.
3025 		 */
3026 		return (NULL);
3027 	} else {
3028 		/*
3029 		 * Continue iteration with next parent unless the current
3030 		 * parent covers the range.
3031 		 *
3032 		 * (This also handles the case of a deleted, empty indirect
3033 		 * node).
3034 		 */
3035 		key_beg = parent->bref.key +
3036 			  ((hammer2_key_t)1 << parent->bref.keybits);
3037 		if (key_beg == 0 || key_beg > key_end)
3038 			return (NULL);
3039 		parent = hammer2_chain_repparent(parentp, how_maybe);
3040 	}
3041 
3042 	/*
3043 	 * And execute
3044 	 */
3045 	return (hammer2_chain_lookup(parentp, key_nextp,
3046 				     key_beg, key_end,
3047 				     errorp, flags));
3048 }
3049 
3050 /*
3051  * Caller wishes to iterate chains under parent, loading new chains into
3052  * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
3053  * then call hammer2_chain_scan() repeatedly until a non-zero return.
3054  * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
3055  * with the returned chain for the scan.  The returned *chainp will be
3056  * locked and referenced.  Any prior contents will be unlocked and dropped.
3057  *
3058  * Caller should check the return value.  A normal scan EOF will return
3059  * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
3060  * error trying to access parent data.  Any error in the returned chain
3061  * must be tested separately by the caller.
3062  *
3063  * (*chainp) is dropped on each scan, but will only be set if the returned
3064  * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
3065  * returned via *chainp.  The caller will get their bref only.
3066  *
3067  * The raw scan function is similar to lookup/next but does not seek to a key.
3068  * Blockrefs are iterated via first_bref = (parent, NULL) and
3069  * next_chain = (parent, bref).
3070  *
3071  * The passed-in parent must be locked and its data resolved.  The function
3072  * nominally returns a locked and referenced *chainp != NULL for chains
3073  * the caller might need to recurse on (and will dipose of any *chainp passed
3074  * in).  The caller must check the chain->bref.type either way.
3075  */
3076 int
3077 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3078 		   hammer2_blockref_t *bref, int *firstp,
3079 		   int flags)
3080 {
3081 	hammer2_dev_t *hmp;
3082 	hammer2_blockref_t *base;
3083 	hammer2_blockref_t *bref_ptr;
3084 	hammer2_key_t key;
3085 	hammer2_key_t next_key;
3086 	hammer2_chain_t *chain = NULL;
3087 	int count = 0;
3088 	int how_always = HAMMER2_RESOLVE_ALWAYS;
3089 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
3090 	int how;
3091 	int generation;
3092 	int maxloops = 300000;
3093 	int error;
3094 
3095 	hmp = parent->hmp;
3096 	error = 0;
3097 
3098 	/*
3099 	 * Scan flags borrowed from lookup.
3100 	 */
3101 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
3102 		how_maybe = how_always;
3103 		how = HAMMER2_RESOLVE_ALWAYS;
3104 	} else if (flags & HAMMER2_LOOKUP_NODATA) {
3105 		how = HAMMER2_RESOLVE_NEVER;
3106 	} else {
3107 		how = HAMMER2_RESOLVE_MAYBE;
3108 	}
3109 	if (flags & HAMMER2_LOOKUP_SHARED) {
3110 		how_maybe |= HAMMER2_RESOLVE_SHARED;
3111 		how_always |= HAMMER2_RESOLVE_SHARED;
3112 		how |= HAMMER2_RESOLVE_SHARED;
3113 	}
3114 
3115 	/*
3116 	 * Calculate key to locate first/next element, unlocking the previous
3117 	 * element as we go.  Be careful, the key calculation can overflow.
3118 	 *
3119 	 * (also reset bref to NULL)
3120 	 */
3121 	if (*firstp) {
3122 		key = 0;
3123 		*firstp = 0;
3124 	} else {
3125 		key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3126 		if ((chain = *chainp) != NULL) {
3127 			*chainp = NULL;
3128 			hammer2_chain_unlock(chain);
3129 			hammer2_chain_drop(chain);
3130 			chain = NULL;
3131 		}
3132 		if (key == 0) {
3133 			error |= HAMMER2_ERROR_EOF;
3134 			goto done;
3135 		}
3136 	}
3137 
3138 again:
3139 	if (parent->error) {
3140 		error = parent->error;
3141 		goto done;
3142 	}
3143 	if (--maxloops == 0)
3144 		panic("hammer2_chain_scan: maxloops");
3145 
3146 	/*
3147 	 * Locate the blockref array.  Currently we do a fully associative
3148 	 * search through the array.
3149 	 */
3150 	switch(parent->bref.type) {
3151 	case HAMMER2_BREF_TYPE_INODE:
3152 		/*
3153 		 * An inode with embedded data has no sub-chains.
3154 		 *
3155 		 * WARNING! Bulk scan code may pass a static chain marked
3156 		 *	    as BREF_TYPE_INODE with a copy of the volume
3157 		 *	    root blockset to snapshot the volume.
3158 		 */
3159 		if (parent->data->ipdata.meta.op_flags &
3160 		    HAMMER2_OPFLAG_DIRECTDATA) {
3161 			error |= HAMMER2_ERROR_EOF;
3162 			goto done;
3163 		}
3164 		base = &parent->data->ipdata.u.blockset.blockref[0];
3165 		count = HAMMER2_SET_COUNT;
3166 		break;
3167 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3168 	case HAMMER2_BREF_TYPE_INDIRECT:
3169 		/*
3170 		 * Optimize indirect blocks in the INITIAL state to avoid
3171 		 * I/O.
3172 		 */
3173 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3174 			base = NULL;
3175 		} else {
3176 			if (parent->data == NULL)
3177 				panic("parent->data is NULL");
3178 			base = &parent->data->npdata[0];
3179 		}
3180 		count = parent->bytes / sizeof(hammer2_blockref_t);
3181 		break;
3182 	case HAMMER2_BREF_TYPE_VOLUME:
3183 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3184 		count = HAMMER2_SET_COUNT;
3185 		break;
3186 	case HAMMER2_BREF_TYPE_FREEMAP:
3187 		base = &parent->data->blkset.blockref[0];
3188 		count = HAMMER2_SET_COUNT;
3189 		break;
3190 	default:
3191 		panic("hammer2_chain_scan: unrecognized blockref type: %d",
3192 		      parent->bref.type);
3193 		base = NULL;	/* safety */
3194 		count = 0;	/* safety */
3195 	}
3196 
3197 	/*
3198 	 * Merged scan to find next candidate.
3199 	 *
3200 	 * hammer2_base_*() functions require the parent->core.live_* fields
3201 	 * to be synchronized.
3202 	 *
3203 	 * We need to hold the spinlock to access the block array and RB tree
3204 	 * and to interlock chain creation.
3205 	 */
3206 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3207 		hammer2_chain_countbrefs(parent, base, count);
3208 
3209 	next_key = 0;
3210 	bref_ptr = NULL;
3211 	hammer2_spin_ex(&parent->core.spin);
3212 	chain = hammer2_combined_find(parent, base, count,
3213 				      &next_key,
3214 				      key, HAMMER2_KEY_MAX,
3215 				      &bref_ptr);
3216 	generation = parent->core.generation;
3217 
3218 	/*
3219 	 * Exhausted parent chain, we're done.
3220 	 */
3221 	if (bref_ptr == NULL) {
3222 		hammer2_spin_unex(&parent->core.spin);
3223 		KKASSERT(chain == NULL);
3224 		error |= HAMMER2_ERROR_EOF;
3225 		goto done;
3226 	}
3227 
3228 	/*
3229 	 * Copy into the supplied stack-based blockref.
3230 	 */
3231 	*bref = *bref_ptr;
3232 
3233 	/*
3234 	 * Selected from blockref or in-memory chain.
3235 	 */
3236 	if (chain == NULL) {
3237 		switch(bref->type) {
3238 		case HAMMER2_BREF_TYPE_INODE:
3239 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3240 		case HAMMER2_BREF_TYPE_INDIRECT:
3241 		case HAMMER2_BREF_TYPE_VOLUME:
3242 		case HAMMER2_BREF_TYPE_FREEMAP:
3243 			/*
3244 			 * Recursion, always get the chain
3245 			 */
3246 			hammer2_spin_unex(&parent->core.spin);
3247 			chain = hammer2_chain_get(parent, generation,
3248 						  bref, how);
3249 			if (chain == NULL)
3250 				goto again;
3251 			break;
3252 		default:
3253 			/*
3254 			 * No recursion, do not waste time instantiating
3255 			 * a chain, just iterate using the bref.
3256 			 */
3257 			hammer2_spin_unex(&parent->core.spin);
3258 			break;
3259 		}
3260 	} else {
3261 		/*
3262 		 * Recursion or not we need the chain in order to supply
3263 		 * the bref.
3264 		 */
3265 		hammer2_chain_ref(chain);
3266 		hammer2_spin_unex(&parent->core.spin);
3267 		hammer2_chain_lock(chain, how);
3268 	}
3269 	if (chain &&
3270 	    (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3271 	     chain->parent != parent)) {
3272 		hammer2_chain_unlock(chain);
3273 		hammer2_chain_drop(chain);
3274 		chain = NULL;
3275 		goto again;
3276 	}
3277 
3278 	/*
3279 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3280 	 *
3281 	 * NOTE: chain's key range is not relevant as there might be
3282 	 *	 one-offs within the range that are not deleted.
3283 	 *
3284 	 * NOTE: XXX this could create problems with scans used in
3285 	 *	 situations other than mount-time recovery.
3286 	 *
3287 	 * NOTE: Lookups can race delete-duplicate because
3288 	 *	 delete-duplicate does not lock the parent's core
3289 	 *	 (they just use the spinlock on the core).
3290 	 */
3291 	if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3292 		hammer2_chain_unlock(chain);
3293 		hammer2_chain_drop(chain);
3294 		chain = NULL;
3295 
3296 		key = next_key;
3297 		if (key == 0) {
3298 			error |= HAMMER2_ERROR_EOF;
3299 			goto done;
3300 		}
3301 		goto again;
3302 	}
3303 
3304 done:
3305 	/*
3306 	 * All done, return the bref or NULL, supply chain if necessary.
3307 	 */
3308 	if (chain)
3309 		*chainp = chain;
3310 	return (error);
3311 }
3312 
3313 /*
3314  * Create and return a new hammer2 system memory structure of the specified
3315  * key, type and size and insert it under (*parentp).  This is a full
3316  * insertion, based on the supplied key/keybits, and may involve creating
3317  * indirect blocks and moving other chains around via delete/duplicate.
3318  *
3319  * This call can be made with parent == NULL as long as a non -1 methods
3320  * is supplied.  hmp must also be supplied in this situation (otherwise
3321  * hmp is extracted from the supplied parent).  The chain will be detached
3322  * from the topology.  A later call with both parent and chain can be made
3323  * to attach it.
3324  *
3325  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3326  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3327  * FULL.  This typically means that the caller is creating the chain after
3328  * doing a hammer2_chain_lookup().
3329  *
3330  * (*parentp) must be exclusive locked and may be replaced on return
3331  * depending on how much work the function had to do.
3332  *
3333  * (*parentp) must not be errored or this function will assert.
3334  *
3335  * (*chainp) usually starts out NULL and returns the newly created chain,
3336  * but if the caller desires the caller may allocate a disconnected chain
3337  * and pass it in instead.
3338  *
3339  * This function should NOT be used to insert INDIRECT blocks.  It is
3340  * typically used to create/insert inodes and data blocks.
3341  *
3342  * Caller must pass-in an exclusively locked parent the new chain is to
3343  * be inserted under, and optionally pass-in a disconnected, exclusively
3344  * locked chain to insert (else we create a new chain).  The function will
3345  * adjust (*parentp) as necessary, create or connect the chain, and
3346  * return an exclusively locked chain in *chainp.
3347  *
3348  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3349  * and will be reassigned.
3350  *
3351  * NOTE: returns HAMMER_ERROR_* flags
3352  */
3353 int
3354 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3355 		     hammer2_dev_t *hmp, hammer2_pfs_t *pmp, int methods,
3356 		     hammer2_key_t key, int keybits, int type, size_t bytes,
3357 		     hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3358 {
3359 	hammer2_chain_t *chain;
3360 	hammer2_chain_t *parent;
3361 	hammer2_blockref_t *base;
3362 	hammer2_blockref_t dummy;
3363 	int allocated = 0;
3364 	int error = 0;
3365 	int count;
3366 	int maxloops = 300000;
3367 
3368 	/*
3369 	 * Topology may be crossing a PFS boundary.
3370 	 */
3371 	parent = *parentp;
3372 	if (parent) {
3373 		KKASSERT(hammer2_mtx_owned(&parent->lock));
3374 		KKASSERT(parent->error == 0);
3375 		hmp = parent->hmp;
3376 	}
3377 	chain = *chainp;
3378 
3379 	if (chain == NULL) {
3380 		/*
3381 		 * First allocate media space and construct the dummy bref,
3382 		 * then allocate the in-memory chain structure.  Set the
3383 		 * INITIAL flag for fresh chains which do not have embedded
3384 		 * data.
3385 		 *
3386 		 * XXX for now set the check mode of the child based on
3387 		 *     the parent or, if the parent is an inode, the
3388 		 *     specification in the inode.
3389 		 */
3390 		bzero(&dummy, sizeof(dummy));
3391 		dummy.type = type;
3392 		dummy.key = key;
3393 		dummy.keybits = keybits;
3394 		dummy.data_off = hammer2_getradix(bytes);
3395 
3396 		/*
3397 		 * Inherit methods from parent by default.  Primarily used
3398 		 * for BREF_TYPE_DATA.  Non-data types *must* be set to
3399 		 * a non-NONE check algorithm.
3400 		 */
3401 		if (methods == -1)
3402 			dummy.methods = parent->bref.methods;
3403 		else
3404 			dummy.methods = (uint8_t)methods;
3405 
3406 		if (type != HAMMER2_BREF_TYPE_DATA &&
3407 		    HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3408 			dummy.methods |=
3409 				HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3410 		}
3411 
3412 		chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3413 
3414 		/*
3415 		 * Lock the chain manually, chain_lock will load the chain
3416 		 * which we do NOT want to do.  (note: chain->refs is set
3417 		 * to 1 by chain_alloc() for us, but lockcnt is not).
3418 		 */
3419 		chain->lockcnt = 1;
3420 		hammer2_mtx_ex(&chain->lock);
3421 		allocated = 1;
3422 
3423 		/*
3424 		 * Set INITIAL to optimize I/O.  The flag will generally be
3425 		 * processed when we call hammer2_chain_modify().
3426 		 *
3427 		 * Recalculate bytes to reflect the actual media block
3428 		 * allocation.  Handle special case radix 0 == 0 bytes.
3429 		 */
3430 		bytes = (size_t)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
3431 		if (bytes)
3432 			bytes = (hammer2_off_t)1 << bytes;
3433 		chain->bytes = bytes;
3434 
3435 		switch(type) {
3436 		case HAMMER2_BREF_TYPE_VOLUME:
3437 		case HAMMER2_BREF_TYPE_FREEMAP:
3438 			panic("hammer2_chain_create: called with volume type");
3439 			break;
3440 		case HAMMER2_BREF_TYPE_INDIRECT:
3441 			panic("hammer2_chain_create: cannot be used to"
3442 			      "create indirect block");
3443 			break;
3444 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3445 			panic("hammer2_chain_create: cannot be used to"
3446 			      "create freemap root or node");
3447 			break;
3448 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3449 			KKASSERT(bytes == sizeof(chain->data->bmdata));
3450 			/* fall through */
3451 		case HAMMER2_BREF_TYPE_DIRENT:
3452 		case HAMMER2_BREF_TYPE_INODE:
3453 		case HAMMER2_BREF_TYPE_DATA:
3454 		default:
3455 			/*
3456 			 * leave chain->data NULL, set INITIAL
3457 			 */
3458 			KKASSERT(chain->data == NULL);
3459 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3460 			break;
3461 		}
3462 	} else {
3463 		/*
3464 		 * We are reattaching a previously deleted chain, possibly
3465 		 * under a new parent and possibly with a new key/keybits.
3466 		 * The chain does not have to be in a modified state.  The
3467 		 * UPDATE flag will be set later on in this routine.
3468 		 *
3469 		 * Do NOT mess with the current state of the INITIAL flag.
3470 		 */
3471 		chain->bref.key = key;
3472 		chain->bref.keybits = keybits;
3473 		if (chain->flags & HAMMER2_CHAIN_DELETED)
3474 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3475 		KKASSERT(chain->parent == NULL);
3476 	}
3477 
3478 	/*
3479 	 * Set the appropriate bref flag if requested.
3480 	 *
3481 	 * NOTE! Callers can call this function to move chains without
3482 	 *	 knowing about special flags, so don't clear bref flags
3483 	 *	 here!
3484 	 */
3485 	if (flags & HAMMER2_INSERT_PFSROOT)
3486 		chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3487 
3488 	if (parent == NULL)
3489 		goto skip;
3490 
3491 	/*
3492 	 * Calculate how many entries we have in the blockref array and
3493 	 * determine if an indirect block is required when inserting into
3494 	 * the parent.
3495 	 */
3496 again:
3497 	if (--maxloops == 0)
3498 		panic("hammer2_chain_create: maxloops");
3499 
3500 	switch(parent->bref.type) {
3501 	case HAMMER2_BREF_TYPE_INODE:
3502 		if ((parent->data->ipdata.meta.op_flags &
3503 		     HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3504 			kprintf("hammer2: parent set for direct-data! "
3505 				"pkey=%016jx ckey=%016jx\n",
3506 				parent->bref.key,
3507 				chain->bref.key);
3508 	        }
3509 		KKASSERT((parent->data->ipdata.meta.op_flags &
3510 			  HAMMER2_OPFLAG_DIRECTDATA) == 0);
3511 		KKASSERT(parent->data != NULL);
3512 		base = &parent->data->ipdata.u.blockset.blockref[0];
3513 		count = HAMMER2_SET_COUNT;
3514 		break;
3515 	case HAMMER2_BREF_TYPE_INDIRECT:
3516 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3517 		if (parent->flags & HAMMER2_CHAIN_INITIAL)
3518 			base = NULL;
3519 		else
3520 			base = &parent->data->npdata[0];
3521 		count = parent->bytes / sizeof(hammer2_blockref_t);
3522 		break;
3523 	case HAMMER2_BREF_TYPE_VOLUME:
3524 		KKASSERT(parent->data != NULL);
3525 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3526 		count = HAMMER2_SET_COUNT;
3527 		break;
3528 	case HAMMER2_BREF_TYPE_FREEMAP:
3529 		KKASSERT(parent->data != NULL);
3530 		base = &parent->data->blkset.blockref[0];
3531 		count = HAMMER2_SET_COUNT;
3532 		break;
3533 	default:
3534 		panic("hammer2_chain_create: unrecognized blockref type: %d",
3535 		      parent->bref.type);
3536 		base = NULL;
3537 		count = 0;
3538 		break;
3539 	}
3540 
3541 	/*
3542 	 * Make sure we've counted the brefs
3543 	 */
3544 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3545 		hammer2_chain_countbrefs(parent, base, count);
3546 
3547 	KASSERT(parent->core.live_count >= 0 &&
3548 		parent->core.live_count <= count,
3549 		("bad live_count %d/%d (%02x, %d)",
3550 			parent->core.live_count, count,
3551 			parent->bref.type, parent->bytes));
3552 
3553 	/*
3554 	 * If no free blockref could be found we must create an indirect
3555 	 * block and move a number of blockrefs into it.  With the parent
3556 	 * locked we can safely lock each child in order to delete+duplicate
3557 	 * it without causing a deadlock.
3558 	 *
3559 	 * This may return the new indirect block or the old parent depending
3560 	 * on where the key falls.  NULL is returned on error.
3561 	 */
3562 	if (parent->core.live_count == count) {
3563 		hammer2_chain_t *nparent;
3564 
3565 		KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3566 
3567 		nparent = hammer2_chain_create_indirect(parent, key, keybits,
3568 							mtid, type, &error);
3569 		if (nparent == NULL) {
3570 			if (allocated)
3571 				hammer2_chain_drop(chain);
3572 			chain = NULL;
3573 			goto done;
3574 		}
3575 		if (parent != nparent) {
3576 			hammer2_chain_unlock(parent);
3577 			hammer2_chain_drop(parent);
3578 			parent = *parentp = nparent;
3579 		}
3580 		goto again;
3581 	}
3582 
3583 	/*
3584 	 * fall through if parent, or skip to here if no parent.
3585 	 */
3586 skip:
3587 	if (chain->flags & HAMMER2_CHAIN_DELETED)
3588 		kprintf("Inserting deleted chain @%016jx\n",
3589 			chain->bref.key);
3590 
3591 	/*
3592 	 * Link the chain into its parent.
3593 	 */
3594 	if (chain->parent != NULL)
3595 		panic("hammer2: hammer2_chain_create: chain already connected");
3596 	KKASSERT(chain->parent == NULL);
3597 	if (parent) {
3598 		KKASSERT(parent->core.live_count < count);
3599 		hammer2_chain_insert(parent, chain,
3600 				     HAMMER2_CHAIN_INSERT_SPIN |
3601 				     HAMMER2_CHAIN_INSERT_LIVE,
3602 				     0);
3603 	}
3604 
3605 	if (allocated) {
3606 		/*
3607 		 * Mark the newly created chain modified.  This will cause
3608 		 * UPDATE to be set and process the INITIAL flag.
3609 		 *
3610 		 * Device buffers are not instantiated for DATA elements
3611 		 * as these are handled by logical buffers.
3612 		 *
3613 		 * Indirect and freemap node indirect blocks are handled
3614 		 * by hammer2_chain_create_indirect() and not by this
3615 		 * function.
3616 		 *
3617 		 * Data for all other bref types is expected to be
3618 		 * instantiated (INODE, LEAF).
3619 		 */
3620 		switch(chain->bref.type) {
3621 		case HAMMER2_BREF_TYPE_DATA:
3622 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3623 		case HAMMER2_BREF_TYPE_DIRENT:
3624 		case HAMMER2_BREF_TYPE_INODE:
3625 			error = hammer2_chain_modify(chain, mtid, dedup_off,
3626 						     HAMMER2_MODIFY_OPTDATA);
3627 			break;
3628 		default:
3629 			/*
3630 			 * Remaining types are not supported by this function.
3631 			 * In particular, INDIRECT and LEAF_NODE types are
3632 			 * handled by create_indirect().
3633 			 */
3634 			panic("hammer2_chain_create: bad type: %d",
3635 			      chain->bref.type);
3636 			/* NOT REACHED */
3637 			break;
3638 		}
3639 	} else {
3640 		/*
3641 		 * When reconnecting a chain we must set UPDATE and
3642 		 * setflush so the flush recognizes that it must update
3643 		 * the bref in the parent.
3644 		 */
3645 		if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3646 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3647 	}
3648 
3649 	/*
3650 	 * We must setflush(parent) to ensure that it recurses through to
3651 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3652 	 * already set in the chain (so it won't recurse up to set it in the
3653 	 * parent).
3654 	 */
3655 	if (parent)
3656 		hammer2_chain_setflush(parent);
3657 
3658 done:
3659 	*chainp = chain;
3660 
3661 	return (error);
3662 }
3663 
3664 /*
3665  * Move the chain from its old parent to a new parent.  The chain must have
3666  * already been deleted or already disconnected (or never associated) with
3667  * a parent.  The chain is reassociated with the new parent and the deleted
3668  * flag will be cleared (no longer deleted).  The chain's modification state
3669  * is not altered.
3670  *
3671  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3672  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3673  * FULL.  This typically means that the caller is creating the chain after
3674  * doing a hammer2_chain_lookup().
3675  *
3676  * Neither (parent) or (chain) can be errored.
3677  *
3678  * If (parent) is non-NULL then the chain is inserted under the parent.
3679  *
3680  * If (parent) is NULL then the newly duplicated chain is not inserted
3681  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3682  * passing into hammer2_chain_create() after this function returns).
3683  *
3684  * WARNING! This function calls create which means it can insert indirect
3685  *	    blocks.  This can cause other unrelated chains in the parent to
3686  *	    be moved to a newly inserted indirect block in addition to the
3687  *	    specific chain.
3688  */
3689 void
3690 hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3691 		     hammer2_tid_t mtid, int flags)
3692 {
3693 	hammer2_blockref_t *bref;
3694 	hammer2_dev_t *hmp;
3695 	hammer2_chain_t *parent;
3696 	size_t bytes;
3697 
3698 	/*
3699 	 * WARNING!  We should never resolve DATA to device buffers
3700 	 *	     (XXX allow it if the caller did?), and since
3701 	 *	     we currently do not have the logical buffer cache
3702 	 *	     buffer in-hand to fix its cached physical offset
3703 	 *	     we also force the modify code to not COW it. XXX
3704 	 *
3705 	 * NOTE!     We allow error'd chains to be renamed.  The bref itself
3706 	 *	     is good and can be renamed.  The content, however, may
3707 	 *	     be inaccessible.
3708 	 */
3709 	hmp = chain->hmp;
3710 	KKASSERT(chain->parent == NULL);
3711 	/*KKASSERT(chain->error == 0); allow */
3712 
3713 	/*
3714 	 * Now create a duplicate of the chain structure, associating
3715 	 * it with the same core, making it the same size, pointing it
3716 	 * to the same bref (the same media block).
3717 	 *
3718 	 * NOTE: Handle special radix == 0 case (means 0 bytes).
3719 	 */
3720 	bref = &chain->bref;
3721 	bytes = (size_t)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
3722 	if (bytes)
3723 		bytes = (hammer2_off_t)1 << bytes;
3724 
3725 	/*
3726 	 * If parent is not NULL the duplicated chain will be entered under
3727 	 * the parent and the UPDATE bit set to tell flush to update
3728 	 * the blockref.
3729 	 *
3730 	 * We must setflush(parent) to ensure that it recurses through to
3731 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3732 	 * already set in the chain (so it won't recurse up to set it in the
3733 	 * parent).
3734 	 *
3735 	 * Having both chains locked is extremely important for atomicy.
3736 	 */
3737 	if (parentp && (parent = *parentp) != NULL) {
3738 		KKASSERT(hammer2_mtx_owned(&parent->lock));
3739 		KKASSERT(parent->refs > 0);
3740 		KKASSERT(parent->error == 0);
3741 
3742 		hammer2_chain_create(parentp, &chain, NULL, chain->pmp,
3743 				     HAMMER2_METH_DEFAULT,
3744 				     bref->key, bref->keybits, bref->type,
3745 				     chain->bytes, mtid, 0, flags);
3746 		KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3747 		hammer2_chain_setflush(*parentp);
3748 	}
3749 }
3750 
3751 /*
3752  * This works in tandem with delete_obref() to install a blockref in
3753  * (typically) an indirect block that is associated with the chain being
3754  * moved to *parentp.
3755  *
3756  * The reason we need this function is that the caller needs to maintain
3757  * the blockref as it was, and not generate a new blockref for what might
3758  * be a modified chain.  Otherwise stuff will leak into the flush that
3759  * the flush code's FLUSH_INODE_STOP flag is unable to catch.
3760  *
3761  * It is EXTREMELY important that we properly set CHAIN_BMAPUPD and
3762  * CHAIN_UPDATE.  We must set BMAPUPD if the bref does not match, and
3763  * we must clear CHAIN_UPDATE (that was likely set by the chain_rename) if
3764  * it does.  Otherwise we can end up in a situation where H2 is unable to
3765  * clean up the in-memory chain topology.
3766  *
3767  * The reason for this is that flushes do not generally flush through
3768  * BREF_TYPE_INODE chains and depend on a hammer2_inode_t queued to syncq
3769  * or sideq to properly flush and dispose of the related inode chain's flags.
3770  * Situations where the inode is not actually modified by the frontend,
3771  * but where we have to move the related chains around as we insert or cleanup
3772  * indirect blocks, can leave us with a 'dirty' (non-disposable) in-memory
3773  * inode chain that does not have a hammer2_inode_t associated with it.
3774  */
3775 void
3776 hammer2_chain_rename_obref(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3777 			   hammer2_tid_t mtid, int flags,
3778 			   hammer2_blockref_t *obref)
3779 {
3780 	hammer2_chain_rename(parentp, chain, mtid, flags);
3781 
3782 	if (obref->type != HAMMER2_BREF_TYPE_EMPTY) {
3783 		hammer2_blockref_t *tbase;
3784 		int tcount;
3785 
3786 		KKASSERT((chain->flags & HAMMER2_CHAIN_BMAPPED) == 0);
3787 		hammer2_chain_modify(*parentp, mtid, 0, 0);
3788 		tbase = hammer2_chain_base_and_count(*parentp, &tcount);
3789 		hammer2_base_insert(*parentp, tbase, tcount, chain, obref);
3790 		if (bcmp(obref, &chain->bref, sizeof(chain->bref))) {
3791 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD |
3792 						      HAMMER2_CHAIN_UPDATE);
3793 		} else {
3794 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3795 		}
3796 	}
3797 }
3798 
3799 /*
3800  * Helper function for deleting chains.
3801  *
3802  * The chain is removed from the live view (the RBTREE) as well as the parent's
3803  * blockmap.  Both chain and its parent must be locked.
3804  *
3805  * parent may not be errored.  chain can be errored.
3806  */
3807 static int
3808 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3809 			     hammer2_tid_t mtid, int flags,
3810 			     hammer2_blockref_t *obref)
3811 {
3812 	hammer2_dev_t *hmp;
3813 	int error = 0;
3814 
3815 	KKASSERT((chain->flags & (HAMMER2_CHAIN_DELETED |
3816 				  HAMMER2_CHAIN_FICTITIOUS)) == 0);
3817 	KKASSERT(chain->parent == parent);
3818 	hmp = chain->hmp;
3819 
3820 	if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3821 		/*
3822 		 * Chain is blockmapped, so there must be a parent.
3823 		 * Atomically remove the chain from the parent and remove
3824 		 * the blockmap entry.  The parent must be set modified
3825 		 * to remove the blockmap entry.
3826 		 */
3827 		hammer2_blockref_t *base;
3828 		int count;
3829 
3830 		KKASSERT(parent != NULL);
3831 		KKASSERT(parent->error == 0);
3832 		KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3833 		error = hammer2_chain_modify(parent, mtid, 0, 0);
3834 		if (error)
3835 			goto done;
3836 
3837 		/*
3838 		 * Calculate blockmap pointer
3839 		 */
3840 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3841 		hammer2_spin_ex(&chain->core.spin);
3842 		hammer2_spin_ex(&parent->core.spin);
3843 
3844 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3845 		atomic_add_int(&parent->core.live_count, -1);
3846 		++parent->core.generation;
3847 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3848 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3849 		--parent->core.chain_count;
3850 		chain->parent = NULL;
3851 
3852 		switch(parent->bref.type) {
3853 		case HAMMER2_BREF_TYPE_INODE:
3854 			/*
3855 			 * Access the inode's block array.  However, there
3856 			 * is no block array if the inode is flagged
3857 			 * DIRECTDATA.
3858 			 */
3859 			if (parent->data &&
3860 			    (parent->data->ipdata.meta.op_flags &
3861 			     HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3862 				base =
3863 				   &parent->data->ipdata.u.blockset.blockref[0];
3864 			} else {
3865 				base = NULL;
3866 			}
3867 			count = HAMMER2_SET_COUNT;
3868 			break;
3869 		case HAMMER2_BREF_TYPE_INDIRECT:
3870 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3871 			if (parent->data)
3872 				base = &parent->data->npdata[0];
3873 			else
3874 				base = NULL;
3875 			count = parent->bytes / sizeof(hammer2_blockref_t);
3876 			break;
3877 		case HAMMER2_BREF_TYPE_VOLUME:
3878 			base = &parent->data->voldata.
3879 					sroot_blockset.blockref[0];
3880 			count = HAMMER2_SET_COUNT;
3881 			break;
3882 		case HAMMER2_BREF_TYPE_FREEMAP:
3883 			base = &parent->data->blkset.blockref[0];
3884 			count = HAMMER2_SET_COUNT;
3885 			break;
3886 		default:
3887 			base = NULL;
3888 			count = 0;
3889 			panic("_hammer2_chain_delete_helper: "
3890 			      "unrecognized blockref type: %d",
3891 			      parent->bref.type);
3892 		}
3893 
3894 		/*
3895 		 * delete blockmapped chain from its parent.
3896 		 *
3897 		 * The parent is not affected by any statistics in chain
3898 		 * which are pending synchronization.  That is, there is
3899 		 * nothing to undo in the parent since they have not yet
3900 		 * been incorporated into the parent.
3901 		 *
3902 		 * The parent is affected by statistics stored in inodes.
3903 		 * Those have already been synchronized, so they must be
3904 		 * undone.  XXX split update possible w/delete in middle?
3905 		 */
3906 		if (base) {
3907 			hammer2_base_delete(parent, base, count, chain, obref);
3908 		}
3909 		hammer2_spin_unex(&parent->core.spin);
3910 		hammer2_spin_unex(&chain->core.spin);
3911 	} else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3912 		/*
3913 		 * Chain is not blockmapped but a parent is present.
3914 		 * Atomically remove the chain from the parent.  There is
3915 		 * no blockmap entry to remove.
3916 		 *
3917 		 * Because chain was associated with a parent but not
3918 		 * synchronized, the chain's *_count_up fields contain
3919 		 * inode adjustment statistics which must be undone.
3920 		 */
3921 		hammer2_spin_ex(&chain->core.spin);
3922 		hammer2_spin_ex(&parent->core.spin);
3923 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3924 		atomic_add_int(&parent->core.live_count, -1);
3925 		++parent->core.generation;
3926 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3927 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3928 		--parent->core.chain_count;
3929 		chain->parent = NULL;
3930 		hammer2_spin_unex(&parent->core.spin);
3931 		hammer2_spin_unex(&chain->core.spin);
3932 	} else {
3933 		/*
3934 		 * Chain is not blockmapped and has no parent.  This
3935 		 * is a degenerate case.
3936 		 */
3937 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3938 	}
3939 done:
3940 	return error;
3941 }
3942 
3943 /*
3944  * Create an indirect block that covers one or more of the elements in the
3945  * current parent.  Either returns the existing parent with no locking or
3946  * ref changes or returns the new indirect block locked and referenced
3947  * and leaving the original parent lock/ref intact as well.
3948  *
3949  * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3950  *
3951  * The returned chain depends on where the specified key falls.
3952  *
3953  * The key/keybits for the indirect mode only needs to follow three rules:
3954  *
3955  * (1) That all elements underneath it fit within its key space and
3956  *
3957  * (2) That all elements outside it are outside its key space.
3958  *
3959  * (3) When creating the new indirect block any elements in the current
3960  *     parent that fit within the new indirect block's keyspace must be
3961  *     moved into the new indirect block.
3962  *
3963  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3964  *     keyspace the the current parent, but lookup/iteration rules will
3965  *     ensure (and must ensure) that rule (2) for all parents leading up
3966  *     to the nearest inode or the root volume header is adhered to.  This
3967  *     is accomplished by always recursing through matching keyspaces in
3968  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3969  *
3970  * The current implementation calculates the current worst-case keyspace by
3971  * iterating the current parent and then divides it into two halves, choosing
3972  * whichever half has the most elements (not necessarily the half containing
3973  * the requested key).
3974  *
3975  * We can also opt to use the half with the least number of elements.  This
3976  * causes lower-numbered keys (aka logical file offsets) to recurse through
3977  * fewer indirect blocks and higher-numbered keys to recurse through more.
3978  * This also has the risk of not moving enough elements to the new indirect
3979  * block and being forced to create several indirect blocks before the element
3980  * can be inserted.
3981  *
3982  * Must be called with an exclusively locked parent.
3983  *
3984  * NOTE: *errorp set to HAMMER_ERROR_* flags
3985  */
3986 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3987 				hammer2_key_t *keyp, int keybits,
3988 				hammer2_blockref_t *base, int count);
3989 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
3990 				hammer2_key_t *keyp, int keybits,
3991 				hammer2_blockref_t *base, int count,
3992 				int ncount);
3993 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
3994 				hammer2_key_t *keyp, int keybits,
3995 				hammer2_blockref_t *base, int count,
3996 				int ncount);
3997 static
3998 hammer2_chain_t *
3999 hammer2_chain_create_indirect(hammer2_chain_t *parent,
4000 			      hammer2_key_t create_key, int create_bits,
4001 			      hammer2_tid_t mtid, int for_type, int *errorp)
4002 {
4003 	hammer2_dev_t *hmp;
4004 	hammer2_blockref_t *base;
4005 	hammer2_blockref_t *bref;
4006 	hammer2_blockref_t bsave;
4007 	hammer2_blockref_t dummy;
4008 	hammer2_chain_t *chain;
4009 	hammer2_chain_t *ichain;
4010 	hammer2_key_t key = create_key;
4011 	hammer2_key_t key_beg;
4012 	hammer2_key_t key_end;
4013 	hammer2_key_t key_next;
4014 	int keybits = create_bits;
4015 	int count;
4016 	int ncount;
4017 	int nbytes;
4018 	int loops;
4019 	int error;
4020 	int reason;
4021 	int generation;
4022 	int maxloops = 300000;
4023 
4024 	/*
4025 	 * Calculate the base blockref pointer or NULL if the chain
4026 	 * is known to be empty.  We need to calculate the array count
4027 	 * for RB lookups either way.
4028 	 */
4029 	hmp = parent->hmp;
4030 	KKASSERT(hammer2_mtx_owned(&parent->lock));
4031 
4032 	/*
4033 	 * Pre-modify the parent now to avoid having to deal with error
4034 	 * processing if we tried to later (in the middle of our loop).
4035 	 *
4036 	 * We are going to be moving bref's around, the indirect blocks
4037 	 * cannot be in an initial state.  Do not pass MODIFY_OPTDATA.
4038 	 */
4039 	*errorp = hammer2_chain_modify(parent, mtid, 0, 0);
4040 	if (*errorp) {
4041 		kprintf("hammer2_create_indirect: error %08x %s\n",
4042 			*errorp, hammer2_error_str(*errorp));
4043 		return NULL;
4044 	}
4045 	KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
4046 
4047 	/*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
4048 	base = hammer2_chain_base_and_count(parent, &count);
4049 
4050 	/*
4051 	 * How big should our new indirect block be?  It has to be at least
4052 	 * as large as its parent for splits to work properly.
4053 	 *
4054 	 * The freemap uses a specific indirect block size.  The number of
4055 	 * levels are built dynamically and ultimately depend on the size
4056 	 * volume.  Because freemap blocks are taken from the reserved areas
4057 	 * of the volume our goal is efficiency (fewer levels) and not so
4058 	 * much to save disk space.
4059 	 *
4060 	 * The first indirect block level for a directory usually uses
4061 	 * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
4062 	 * the hash mechanism, this typically gives us a nominal
4063 	 * 32 * 4 entries with one level of indirection.
4064 	 *
4065 	 * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
4066 	 * indirect blocks.  The initial 4 entries in the inode gives us
4067 	 * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
4068 	 * of indirection gives us 137GB, and so forth.  H2 can support
4069 	 * huge file sizes but they are not typical, so we try to stick
4070 	 * with compactness and do not use a larger indirect block size.
4071 	 *
4072 	 * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
4073 	 * due to the way indirect blocks are created this usually winds
4074 	 * up being extremely inefficient for small files.  Even though
4075 	 * 16KB requires more levels of indirection for very large files,
4076 	 * the 16KB records can be ganged together into 64KB DIOs.
4077 	 */
4078 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4079 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4080 		nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
4081 	} else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4082 		if (parent->data->ipdata.meta.type ==
4083 		    HAMMER2_OBJTYPE_DIRECTORY)
4084 			nbytes = HAMMER2_IND_BYTES_MIN;	/* 4KB = 32 entries */
4085 		else
4086 			nbytes = HAMMER2_IND_BYTES_NOM;	/* 16KB = ~8MB file */
4087 
4088 	} else {
4089 		nbytes = HAMMER2_IND_BYTES_NOM;
4090 	}
4091 	if (nbytes < count * sizeof(hammer2_blockref_t)) {
4092 		KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
4093 			 for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
4094 		nbytes = count * sizeof(hammer2_blockref_t);
4095 	}
4096 	ncount = nbytes / sizeof(hammer2_blockref_t);
4097 
4098 	/*
4099 	 * When creating an indirect block for a freemap node or leaf
4100 	 * the key/keybits must be fitted to static radix levels because
4101 	 * particular radix levels use particular reserved blocks in the
4102 	 * related zone.
4103 	 *
4104 	 * This routine calculates the key/radix of the indirect block
4105 	 * we need to create, and whether it is on the high-side or the
4106 	 * low-side.
4107 	 */
4108 	switch(for_type) {
4109 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4110 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4111 		keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
4112 						       base, count);
4113 		break;
4114 	case HAMMER2_BREF_TYPE_DATA:
4115 		keybits = hammer2_chain_indkey_file(parent, &key, keybits,
4116 						    base, count, ncount);
4117 		break;
4118 	case HAMMER2_BREF_TYPE_DIRENT:
4119 	case HAMMER2_BREF_TYPE_INODE:
4120 		keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
4121 						   base, count, ncount);
4122 		break;
4123 	default:
4124 		panic("illegal indirect block for bref type %d", for_type);
4125 		break;
4126 	}
4127 
4128 	/*
4129 	 * Normalize the key for the radix being represented, keeping the
4130 	 * high bits and throwing away the low bits.
4131 	 */
4132 	key &= ~(((hammer2_key_t)1 << keybits) - 1);
4133 
4134 	/*
4135 	 * Ok, create our new indirect block
4136 	 */
4137 	bzero(&dummy, sizeof(dummy));
4138 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4139 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4140 		dummy.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4141 	} else {
4142 		dummy.type = HAMMER2_BREF_TYPE_INDIRECT;
4143 	}
4144 	dummy.key = key;
4145 	dummy.keybits = keybits;
4146 	dummy.data_off = hammer2_getradix(nbytes);
4147 	dummy.methods =
4148 		HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4149 		HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4150 
4151 	ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy);
4152 	atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4153 	hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4154 	/* ichain has one ref at this point */
4155 
4156 	/*
4157 	 * We have to mark it modified to allocate its block, but use
4158 	 * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
4159 	 * it won't be acted upon by the flush code.
4160 	 *
4161 	 * XXX remove OPTDATA, we need a fully initialized indirect block to
4162 	 * be able to move the original blockref.
4163 	 */
4164 	*errorp = hammer2_chain_modify(ichain, mtid, 0, 0);
4165 	if (*errorp) {
4166 		kprintf("hammer2_alloc_indirect: error %08x %s\n",
4167 			*errorp, hammer2_error_str(*errorp));
4168 		hammer2_chain_unlock(ichain);
4169 		hammer2_chain_drop(ichain);
4170 		return NULL;
4171 	}
4172 	KKASSERT((ichain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4173 
4174 	/*
4175 	 * Iterate the original parent and move the matching brefs into
4176 	 * the new indirect block.
4177 	 *
4178 	 * XXX handle flushes.
4179 	 */
4180 	key_beg = 0;
4181 	key_end = HAMMER2_KEY_MAX;
4182 	key_next = 0;	/* avoid gcc warnings */
4183 	hammer2_spin_ex(&parent->core.spin);
4184 	loops = 0;
4185 	reason = 0;
4186 
4187 	for (;;) {
4188 		/*
4189 		 * Parent may have been modified, relocating its block array.
4190 		 * Reload the base pointer.
4191 		 */
4192 		base = hammer2_chain_base_and_count(parent, &count);
4193 
4194 		if (++loops > 100000) {
4195 		    hammer2_spin_unex(&parent->core.spin);
4196 		    panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4197 			  reason, parent, base, count, key_next);
4198 		}
4199 
4200 		/*
4201 		 * NOTE: spinlock stays intact, returned chain (if not NULL)
4202 		 *	 is not referenced or locked which means that we
4203 		 *	 cannot safely check its flagged / deletion status
4204 		 *	 until we lock it.
4205 		 */
4206 		chain = hammer2_combined_find(parent, base, count,
4207 					      &key_next,
4208 					      key_beg, key_end,
4209 					      &bref);
4210 		generation = parent->core.generation;
4211 		if (bref == NULL)
4212 			break;
4213 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4214 
4215 		/*
4216 		 * Skip keys that are not within the key/radix of the new
4217 		 * indirect block.  They stay in the parent.
4218 		 */
4219 		if (rounddown2(key ^ bref->key, (hammer2_key_t)1 << keybits) != 0) {
4220 			goto next_key_spinlocked;
4221 		}
4222 
4223 		/*
4224 		 * Load the new indirect block by acquiring the related
4225 		 * chains (potentially from media as it might not be
4226 		 * in-memory).  Then move it to the new parent (ichain).
4227 		 *
4228 		 * chain is referenced but not locked.  We must lock the
4229 		 * chain to obtain definitive state.
4230 		 */
4231 		bsave = *bref;
4232 		if (chain) {
4233 			/*
4234 			 * Use chain already present in the RBTREE
4235 			 */
4236 			hammer2_chain_ref(chain);
4237 			hammer2_spin_unex(&parent->core.spin);
4238 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4239 		} else {
4240 			/*
4241 			 * Get chain for blockref element.  _get returns NULL
4242 			 * on insertion race.
4243 			 */
4244 			hammer2_spin_unex(&parent->core.spin);
4245 			chain = hammer2_chain_get(parent, generation, &bsave,
4246 						  HAMMER2_RESOLVE_NEVER);
4247 			if (chain == NULL) {
4248 				reason = 1;
4249 				hammer2_spin_ex(&parent->core.spin);
4250 				continue;
4251 			}
4252 		}
4253 
4254 		/*
4255 		 * This is always live so if the chain has been deleted
4256 		 * we raced someone and we have to retry.
4257 		 *
4258 		 * NOTE: Lookups can race delete-duplicate because
4259 		 *	 delete-duplicate does not lock the parent's core
4260 		 *	 (they just use the spinlock on the core).
4261 		 *
4262 		 *	 (note reversed logic for this one)
4263 		 */
4264 		if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
4265 		    chain->parent != parent ||
4266 		    (chain->flags & HAMMER2_CHAIN_DELETED)) {
4267 			hammer2_chain_unlock(chain);
4268 			hammer2_chain_drop(chain);
4269 			if (hammer2_debug & 0x0040) {
4270 				kprintf("LOST PARENT RETRY "
4271 				"RETRY (%p,%p)->%p %08x\n",
4272 				parent, chain->parent, chain, chain->flags);
4273 			}
4274 			hammer2_spin_ex(&parent->core.spin);
4275 			continue;
4276 		}
4277 
4278 		/*
4279 		 * Shift the chain to the indirect block.
4280 		 *
4281 		 * WARNING! No reason for us to load chain data, pass NOSTATS
4282 		 *	    to prevent delete/insert from trying to access
4283 		 *	    inode stats (and thus asserting if there is no
4284 		 *	    chain->data loaded).
4285 		 *
4286 		 * WARNING! The (parent, chain) deletion may modify the parent
4287 		 *	    and invalidate the base pointer.
4288 		 *
4289 		 * WARNING! Parent must already be marked modified, so we
4290 		 *	    can assume that chain_delete always suceeds.
4291 		 *
4292 		 * WARNING! hammer2_chain_repchange() does not have to be
4293 		 *	    called (and doesn't work anyway because we are
4294 		 *	    only doing a partial shift).  A recursion that is
4295 		 *	    in-progress can continue at the current parent
4296 		 *	    and will be able to properly find its next key.
4297 		 */
4298 		error = hammer2_chain_delete_obref(parent, chain, mtid, 0,
4299 						   &bsave);
4300 		KKASSERT(error == 0);
4301 		hammer2_chain_rename_obref(&ichain, chain, mtid, 0, &bsave);
4302 		hammer2_chain_unlock(chain);
4303 		hammer2_chain_drop(chain);
4304 		KKASSERT(parent->refs > 0);
4305 		chain = NULL;
4306 		base = NULL;	/* safety */
4307 		hammer2_spin_ex(&parent->core.spin);
4308 next_key_spinlocked:
4309 		if (--maxloops == 0)
4310 			panic("hammer2_chain_create_indirect: maxloops");
4311 		reason = 4;
4312 		if (key_next == 0 || key_next > key_end)
4313 			break;
4314 		key_beg = key_next;
4315 		/* loop */
4316 	}
4317 	hammer2_spin_unex(&parent->core.spin);
4318 
4319 	/*
4320 	 * Insert the new indirect block into the parent now that we've
4321 	 * cleared out some entries in the parent.  We calculated a good
4322 	 * insertion index in the loop above (ichain->index).
4323 	 *
4324 	 * We don't have to set UPDATE here because we mark ichain
4325 	 * modified down below (so the normal modified -> flush -> set-moved
4326 	 * sequence applies).
4327 	 *
4328 	 * The insertion shouldn't race as this is a completely new block
4329 	 * and the parent is locked.
4330 	 */
4331 	base = NULL;	/* safety, parent modify may change address */
4332 	KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4333 	KKASSERT(parent->core.live_count < count);
4334 	hammer2_chain_insert(parent, ichain,
4335 			     HAMMER2_CHAIN_INSERT_SPIN |
4336 			     HAMMER2_CHAIN_INSERT_LIVE,
4337 			     0);
4338 
4339 	/*
4340 	 * Make sure flushes propogate after our manual insertion.
4341 	 */
4342 	hammer2_chain_setflush(ichain);
4343 	hammer2_chain_setflush(parent);
4344 
4345 	/*
4346 	 * Figure out what to return.
4347 	 */
4348 	if (rounddown2(create_key ^ key, (hammer2_key_t)1 << keybits)) {
4349 		/*
4350 		 * Key being created is outside the key range,
4351 		 * return the original parent.
4352 		 */
4353 		hammer2_chain_unlock(ichain);
4354 		hammer2_chain_drop(ichain);
4355 	} else {
4356 		/*
4357 		 * Otherwise its in the range, return the new parent.
4358 		 * (leave both the new and old parent locked).
4359 		 */
4360 		parent = ichain;
4361 	}
4362 
4363 	return(parent);
4364 }
4365 
4366 /*
4367  * Do maintenance on an indirect chain.  Both parent and chain are locked.
4368  *
4369  * Returns non-zero if (chain) is deleted, either due to being empty or
4370  * because its children were safely moved into the parent.
4371  */
4372 int
4373 hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4374 				   hammer2_chain_t *chain)
4375 {
4376 	hammer2_blockref_t *chain_base;
4377 	hammer2_blockref_t *base;
4378 	hammer2_blockref_t *bref;
4379 	hammer2_blockref_t bsave;
4380 	hammer2_key_t key_next;
4381 	hammer2_key_t key_beg;
4382 	hammer2_key_t key_end;
4383 	hammer2_chain_t *sub;
4384 	int chain_count;
4385 	int count;
4386 	int error;
4387 	int generation;
4388 
4389 	/*
4390 	 * Make sure we have an accurate live_count
4391 	 */
4392 	if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4393 			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4394 		base = &chain->data->npdata[0];
4395 		count = chain->bytes / sizeof(hammer2_blockref_t);
4396 		hammer2_chain_countbrefs(chain, base, count);
4397 	}
4398 
4399 	/*
4400 	 * If the indirect block is empty we can delete it.
4401 	 * (ignore deletion error)
4402 	 */
4403 	if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4404 		hammer2_chain_delete(parent, chain,
4405 				     chain->bref.modify_tid,
4406 				     HAMMER2_DELETE_PERMANENT);
4407 		hammer2_chain_repchange(parent, chain);
4408 		return 1;
4409 	}
4410 
4411 	base = hammer2_chain_base_and_count(parent, &count);
4412 
4413 	if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4414 			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4415 		hammer2_chain_countbrefs(parent, base, count);
4416 	}
4417 
4418 	/*
4419 	 * Determine if we can collapse chain into parent, calculate
4420 	 * hysteresis for chain emptiness.
4421 	 */
4422 	if (parent->core.live_count + chain->core.live_count - 1 > count)
4423 		return 0;
4424 	chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4425 	if (chain->core.live_count > chain_count * 3 / 4)
4426 		return 0;
4427 
4428 	/*
4429 	 * Ok, theoretically we can collapse chain's contents into
4430 	 * parent.  chain is locked, but any in-memory children of chain
4431 	 * are not.  For this to work, we must be able to dispose of any
4432 	 * in-memory children of chain.
4433 	 *
4434 	 * For now require that there are no in-memory children of chain.
4435 	 *
4436 	 * WARNING! Both chain and parent must remain locked across this
4437 	 *	    entire operation.
4438 	 */
4439 
4440 	/*
4441 	 * Parent must be marked modified.  Don't try to collapse it if we
4442 	 * can't mark it modified.  Once modified, destroy chain to make room
4443 	 * and to get rid of what will be a conflicting key (this is included
4444 	 * in the calculation above).  Finally, move the children of chain
4445 	 * into chain's parent.
4446 	 *
4447 	 * This order creates an accounting problem for bref.embed.stats
4448 	 * because we destroy chain before we remove its children.  Any
4449 	 * elements whos blockref is already synchronized will be counted
4450 	 * twice.  To deal with the problem we clean out chain's stats prior
4451 	 * to deleting it.
4452 	 */
4453 	error = hammer2_chain_modify(parent, 0, 0, 0);
4454 	if (error) {
4455 		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4456 			    hammer2_error_str(error));
4457 		return 0;
4458 	}
4459 	error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4460 	if (error) {
4461 		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4462 			    hammer2_error_str(error));
4463 		return 0;
4464 	}
4465 
4466 	chain->bref.embed.stats.inode_count = 0;
4467 	chain->bref.embed.stats.data_count = 0;
4468 	error = hammer2_chain_delete(parent, chain,
4469 				     chain->bref.modify_tid,
4470 				     HAMMER2_DELETE_PERMANENT);
4471 	KKASSERT(error == 0);
4472 
4473 	/*
4474 	 * The combined_find call requires core.spin to be held.  One would
4475 	 * think there wouldn't be any conflicts since we hold chain
4476 	 * exclusively locked, but the caching mechanism for 0-ref children
4477 	 * does not require a chain lock.
4478 	 */
4479 	hammer2_spin_ex(&chain->core.spin);
4480 
4481 	key_next = 0;
4482 	key_beg = 0;
4483 	key_end = HAMMER2_KEY_MAX;
4484 	for (;;) {
4485 		chain_base = &chain->data->npdata[0];
4486 		chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4487 		sub = hammer2_combined_find(chain, chain_base, chain_count,
4488 					    &key_next,
4489 					    key_beg, key_end,
4490 					    &bref);
4491 		generation = chain->core.generation;
4492 		if (bref == NULL)
4493 			break;
4494 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4495 
4496 		bsave = *bref;
4497 		if (sub) {
4498 			hammer2_chain_ref(sub);
4499 			hammer2_spin_unex(&chain->core.spin);
4500 			hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4501 		} else {
4502 			hammer2_spin_unex(&chain->core.spin);
4503 			sub = hammer2_chain_get(chain, generation, &bsave,
4504 						HAMMER2_RESOLVE_NEVER);
4505 			if (sub == NULL) {
4506 				hammer2_spin_ex(&chain->core.spin);
4507 				continue;
4508 			}
4509 		}
4510 		if (bcmp(&bsave, &sub->bref, sizeof(bsave)) ||
4511 		    sub->parent != chain ||
4512 		    (sub->flags & HAMMER2_CHAIN_DELETED)) {
4513 			hammer2_chain_unlock(sub);
4514 			hammer2_chain_drop(sub);
4515 			hammer2_spin_ex(&chain->core.spin);
4516 			sub = NULL;	/* safety */
4517 			continue;
4518 		}
4519 		error = hammer2_chain_delete_obref(chain, sub,
4520 						   sub->bref.modify_tid, 0,
4521 						   &bsave);
4522 		KKASSERT(error == 0);
4523 		hammer2_chain_rename_obref(&parent, sub,
4524 				     sub->bref.modify_tid,
4525 				     HAMMER2_INSERT_SAMEPARENT, &bsave);
4526 		hammer2_chain_unlock(sub);
4527 		hammer2_chain_drop(sub);
4528 		hammer2_spin_ex(&chain->core.spin);
4529 
4530 		if (key_next == 0)
4531 			break;
4532 		key_beg = key_next;
4533 	}
4534 	hammer2_spin_unex(&chain->core.spin);
4535 
4536 	hammer2_chain_repchange(parent, chain);
4537 
4538 	return 1;
4539 }
4540 
4541 /*
4542  * Freemap indirect blocks
4543  *
4544  * Calculate the keybits and highside/lowside of the freemap node the
4545  * caller is creating.
4546  *
4547  * This routine will specify the next higher-level freemap key/radix
4548  * representing the lowest-ordered set.  By doing so, eventually all
4549  * low-ordered sets will be moved one level down.
4550  *
4551  * We have to be careful here because the freemap reserves a limited
4552  * number of blocks for a limited number of levels.  So we can't just
4553  * push indiscriminately.
4554  */
4555 int
4556 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4557 			     int keybits, hammer2_blockref_t *base, int count)
4558 {
4559 	hammer2_chain_t *chain;
4560 	hammer2_blockref_t *bref;
4561 	hammer2_key_t key;
4562 	hammer2_key_t key_beg;
4563 	hammer2_key_t key_end;
4564 	hammer2_key_t key_next;
4565 	int locount;
4566 	int hicount;
4567 	int maxloops = 300000;
4568 
4569 	key = *keyp;
4570 	locount = 0;
4571 	hicount = 0;
4572 	keybits = 64;
4573 
4574 	/*
4575 	 * Calculate the range of keys in the array being careful to skip
4576 	 * slots which are overridden with a deletion.
4577 	 */
4578 	key_beg = 0;
4579 	key_end = HAMMER2_KEY_MAX;
4580 	hammer2_spin_ex(&parent->core.spin);
4581 
4582 	for (;;) {
4583 		if (--maxloops == 0) {
4584 			panic("indkey_freemap shit %p %p:%d\n",
4585 			      parent, base, count);
4586 		}
4587 		chain = hammer2_combined_find(parent, base, count,
4588 					      &key_next,
4589 					      key_beg, key_end,
4590 					      &bref);
4591 
4592 		/*
4593 		 * Exhausted search
4594 		 */
4595 		if (bref == NULL)
4596 			break;
4597 
4598 		/*
4599 		 * Skip deleted chains.
4600 		 */
4601 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4602 			if (key_next == 0 || key_next > key_end)
4603 				break;
4604 			key_beg = key_next;
4605 			continue;
4606 		}
4607 
4608 		/*
4609 		 * Use the full live (not deleted) element for the scan
4610 		 * iteration.  HAMMER2 does not allow partial replacements.
4611 		 *
4612 		 * XXX should be built into hammer2_combined_find().
4613 		 */
4614 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4615 
4616 		if (keybits > bref->keybits) {
4617 			key = bref->key;
4618 			keybits = bref->keybits;
4619 		} else if (keybits == bref->keybits && bref->key < key) {
4620 			key = bref->key;
4621 		}
4622 		if (key_next == 0)
4623 			break;
4624 		key_beg = key_next;
4625 	}
4626 	hammer2_spin_unex(&parent->core.spin);
4627 
4628 	/*
4629 	 * Return the keybits for a higher-level FREEMAP_NODE covering
4630 	 * this node.
4631 	 */
4632 	switch(keybits) {
4633 	case HAMMER2_FREEMAP_LEVEL0_RADIX:
4634 		keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4635 		break;
4636 	case HAMMER2_FREEMAP_LEVEL1_RADIX:
4637 		keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4638 		break;
4639 	case HAMMER2_FREEMAP_LEVEL2_RADIX:
4640 		keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4641 		break;
4642 	case HAMMER2_FREEMAP_LEVEL3_RADIX:
4643 		keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4644 		break;
4645 	case HAMMER2_FREEMAP_LEVEL4_RADIX:
4646 		keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4647 		break;
4648 	case HAMMER2_FREEMAP_LEVEL5_RADIX:
4649 		panic("hammer2_chain_indkey_freemap: level too high");
4650 		break;
4651 	default:
4652 		panic("hammer2_chain_indkey_freemap: bad radix");
4653 		break;
4654 	}
4655 	*keyp = key;
4656 
4657 	return (keybits);
4658 }
4659 
4660 /*
4661  * File indirect blocks
4662  *
4663  * Calculate the key/keybits for the indirect block to create by scanning
4664  * existing keys.  The key being created is also passed in *keyp and can be
4665  * inside or outside the indirect block.  Regardless, the indirect block
4666  * must hold at least two keys in order to guarantee sufficient space.
4667  *
4668  * We use a modified version of the freemap's fixed radix tree, but taylored
4669  * for file data.  Basically we configure an indirect block encompassing the
4670  * smallest key.
4671  */
4672 static int
4673 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4674 			    int keybits, hammer2_blockref_t *base, int count,
4675 			    int ncount)
4676 {
4677 	hammer2_chain_t *chain;
4678 	hammer2_blockref_t *bref;
4679 	hammer2_key_t key;
4680 	hammer2_key_t key_beg;
4681 	hammer2_key_t key_end;
4682 	hammer2_key_t key_next;
4683 	int nradix;
4684 	int locount;
4685 	int hicount;
4686 	int maxloops = 300000;
4687 
4688 	key = *keyp;
4689 	locount = 0;
4690 	hicount = 0;
4691 	keybits = 64;
4692 
4693 	/*
4694 	 * Calculate the range of keys in the array being careful to skip
4695 	 * slots which are overridden with a deletion.
4696 	 *
4697 	 * Locate the smallest key.
4698 	 */
4699 	key_beg = 0;
4700 	key_end = HAMMER2_KEY_MAX;
4701 	hammer2_spin_ex(&parent->core.spin);
4702 
4703 	for (;;) {
4704 		if (--maxloops == 0) {
4705 			panic("indkey_freemap shit %p %p:%d\n",
4706 			      parent, base, count);
4707 		}
4708 		chain = hammer2_combined_find(parent, base, count,
4709 					      &key_next,
4710 					      key_beg, key_end,
4711 					      &bref);
4712 
4713 		/*
4714 		 * Exhausted search
4715 		 */
4716 		if (bref == NULL)
4717 			break;
4718 
4719 		/*
4720 		 * Skip deleted chains.
4721 		 */
4722 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4723 			if (key_next == 0 || key_next > key_end)
4724 				break;
4725 			key_beg = key_next;
4726 			continue;
4727 		}
4728 
4729 		/*
4730 		 * Use the full live (not deleted) element for the scan
4731 		 * iteration.  HAMMER2 does not allow partial replacements.
4732 		 *
4733 		 * XXX should be built into hammer2_combined_find().
4734 		 */
4735 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4736 
4737 		if (keybits > bref->keybits) {
4738 			key = bref->key;
4739 			keybits = bref->keybits;
4740 		} else if (keybits == bref->keybits && bref->key < key) {
4741 			key = bref->key;
4742 		}
4743 		if (key_next == 0)
4744 			break;
4745 		key_beg = key_next;
4746 	}
4747 	hammer2_spin_unex(&parent->core.spin);
4748 
4749 	/*
4750 	 * Calculate the static keybits for a higher-level indirect block
4751 	 * that contains the key.
4752 	 */
4753 	*keyp = key;
4754 
4755 	switch(ncount) {
4756 	case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4757 		nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4758 		break;
4759 	case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4760 		nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4761 		break;
4762 	case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4763 		nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4764 		break;
4765 	default:
4766 		panic("bad ncount %d\n", ncount);
4767 		nradix = 0;
4768 		break;
4769 	}
4770 
4771 	/*
4772 	 * The largest radix that can be returned for an indirect block is
4773 	 * 63 bits.  (The largest practical indirect block radix is actually
4774 	 * 62 bits because the top-level inode or volume root contains four
4775 	 * entries, but allow 63 to be returned).
4776 	 */
4777 	if (nradix >= 64)
4778 		nradix = 63;
4779 
4780 	return keybits + nradix;
4781 }
4782 
4783 #if 1
4784 
4785 /*
4786  * Directory indirect blocks.
4787  *
4788  * Covers both the inode index (directory of inodes), and directory contents
4789  * (filenames hardlinked to inodes).
4790  *
4791  * Because directory keys are hashed we generally try to cut the space in
4792  * half.  We accomodate the inode index (which tends to have linearly
4793  * increasing inode numbers) by ensuring that the keyspace is at least large
4794  * enough to fill up the indirect block being created.
4795  */
4796 static int
4797 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4798 			 int keybits, hammer2_blockref_t *base, int count,
4799 			 int ncount)
4800 {
4801 	hammer2_blockref_t *bref;
4802 	hammer2_chain_t	*chain;
4803 	hammer2_key_t key_beg;
4804 	hammer2_key_t key_end;
4805 	hammer2_key_t key_next;
4806 	hammer2_key_t key;
4807 	int nkeybits;
4808 	int locount;
4809 	int hicount;
4810 	int maxloops = 300000;
4811 
4812 	/*
4813 	 * NOTE: We can't take a shortcut here anymore for inodes because
4814 	 *	 the root directory can contain a mix of inodes and directory
4815 	 *	 entries (we used to just return 63 if parent->bref.type was
4816 	 *	 HAMMER2_BREF_TYPE_INODE.
4817 	 */
4818 	key = *keyp;
4819 	locount = 0;
4820 	hicount = 0;
4821 
4822 	/*
4823 	 * Calculate the range of keys in the array being careful to skip
4824 	 * slots which are overridden with a deletion.
4825 	 */
4826 	key_beg = 0;
4827 	key_end = HAMMER2_KEY_MAX;
4828 	hammer2_spin_ex(&parent->core.spin);
4829 
4830 	for (;;) {
4831 		if (--maxloops == 0) {
4832 			panic("indkey_freemap shit %p %p:%d\n",
4833 			      parent, base, count);
4834 		}
4835 		chain = hammer2_combined_find(parent, base, count,
4836 					      &key_next,
4837 					      key_beg, key_end,
4838 					      &bref);
4839 
4840 		/*
4841 		 * Exhausted search
4842 		 */
4843 		if (bref == NULL)
4844 			break;
4845 
4846 		/*
4847 		 * Deleted object
4848 		 */
4849 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4850 			if (key_next == 0 || key_next > key_end)
4851 				break;
4852 			key_beg = key_next;
4853 			continue;
4854 		}
4855 
4856 		/*
4857 		 * Use the full live (not deleted) element for the scan
4858 		 * iteration.  HAMMER2 does not allow partial replacements.
4859 		 *
4860 		 * XXX should be built into hammer2_combined_find().
4861 		 */
4862 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4863 
4864 		/*
4865 		 * Expand our calculated key range (key, keybits) to fit
4866 		 * the scanned key.  nkeybits represents the full range
4867 		 * that we will later cut in half (two halves @ nkeybits - 1).
4868 		 */
4869 		nkeybits = keybits;
4870 		if (nkeybits < bref->keybits) {
4871 			if (bref->keybits > 64) {
4872 				kprintf("bad bref chain %p bref %p\n",
4873 					chain, bref);
4874 				Debugger("fubar");
4875 			}
4876 			nkeybits = bref->keybits;
4877 		}
4878 		while (nkeybits < 64 &&
4879 		       rounddown2(key ^ bref->key, (hammer2_key_t)1 << nkeybits) != 0) {
4880 			++nkeybits;
4881 		}
4882 
4883 		/*
4884 		 * If the new key range is larger we have to determine
4885 		 * which side of the new key range the existing keys fall
4886 		 * under by checking the high bit, then collapsing the
4887 		 * locount into the hicount or vise-versa.
4888 		 */
4889 		if (keybits != nkeybits) {
4890 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4891 				hicount += locount;
4892 				locount = 0;
4893 			} else {
4894 				locount += hicount;
4895 				hicount = 0;
4896 			}
4897 			keybits = nkeybits;
4898 		}
4899 
4900 		/*
4901 		 * The newly scanned key will be in the lower half or the
4902 		 * upper half of the (new) key range.
4903 		 */
4904 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4905 			++hicount;
4906 		else
4907 			++locount;
4908 
4909 		if (key_next == 0)
4910 			break;
4911 		key_beg = key_next;
4912 	}
4913 	hammer2_spin_unex(&parent->core.spin);
4914 	bref = NULL;	/* now invalid (safety) */
4915 
4916 	/*
4917 	 * Adjust keybits to represent half of the full range calculated
4918 	 * above (radix 63 max) for our new indirect block.
4919 	 */
4920 	--keybits;
4921 
4922 	/*
4923 	 * Expand keybits to hold at least ncount elements.  ncount will be
4924 	 * a power of 2.  This is to try to completely fill leaf nodes (at
4925 	 * least for keys which are not hashes).
4926 	 *
4927 	 * We aren't counting 'in' or 'out', we are counting 'high side'
4928 	 * and 'low side' based on the bit at (1LL << keybits).  We want
4929 	 * everything to be inside in these cases so shift it all to
4930 	 * the low or high side depending on the new high bit.
4931 	 */
4932 	while (((hammer2_key_t)1 << keybits) < ncount) {
4933 		++keybits;
4934 		if (key & ((hammer2_key_t)1 << keybits)) {
4935 			hicount += locount;
4936 			locount = 0;
4937 		} else {
4938 			locount += hicount;
4939 			hicount = 0;
4940 		}
4941 	}
4942 
4943 	if (hicount > locount)
4944 		key |= (hammer2_key_t)1 << keybits;
4945 	else
4946 		key &= ~(hammer2_key_t)1 << keybits;
4947 
4948 	*keyp = key;
4949 
4950 	return (keybits);
4951 }
4952 
4953 #else
4954 
4955 /*
4956  * Directory indirect blocks.
4957  *
4958  * Covers both the inode index (directory of inodes), and directory contents
4959  * (filenames hardlinked to inodes).
4960  *
4961  * Because directory keys are hashed we generally try to cut the space in
4962  * half.  We accomodate the inode index (which tends to have linearly
4963  * increasing inode numbers) by ensuring that the keyspace is at least large
4964  * enough to fill up the indirect block being created.
4965  */
4966 static int
4967 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4968 			 int keybits, hammer2_blockref_t *base, int count,
4969 			 int ncount)
4970 {
4971 	hammer2_blockref_t *bref;
4972 	hammer2_chain_t	*chain;
4973 	hammer2_key_t key_beg;
4974 	hammer2_key_t key_end;
4975 	hammer2_key_t key_next;
4976 	hammer2_key_t key;
4977 	int nkeybits;
4978 	int locount;
4979 	int hicount;
4980 	int maxloops = 300000;
4981 
4982 	/*
4983 	 * Shortcut if the parent is the inode.  In this situation the
4984 	 * parent has 4+1 directory entries and we are creating an indirect
4985 	 * block capable of holding many more.
4986 	 */
4987 	if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4988 		return 63;
4989 	}
4990 
4991 	key = *keyp;
4992 	locount = 0;
4993 	hicount = 0;
4994 
4995 	/*
4996 	 * Calculate the range of keys in the array being careful to skip
4997 	 * slots which are overridden with a deletion.
4998 	 */
4999 	key_beg = 0;
5000 	key_end = HAMMER2_KEY_MAX;
5001 	hammer2_spin_ex(&parent->core.spin);
5002 
5003 	for (;;) {
5004 		if (--maxloops == 0) {
5005 			panic("indkey_freemap shit %p %p:%d\n",
5006 			      parent, base, count);
5007 		}
5008 		chain = hammer2_combined_find(parent, base, count,
5009 					      &key_next,
5010 					      key_beg, key_end,
5011 					      &bref);
5012 
5013 		/*
5014 		 * Exhausted search
5015 		 */
5016 		if (bref == NULL)
5017 			break;
5018 
5019 		/*
5020 		 * Deleted object
5021 		 */
5022 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
5023 			if (key_next == 0 || key_next > key_end)
5024 				break;
5025 			key_beg = key_next;
5026 			continue;
5027 		}
5028 
5029 		/*
5030 		 * Use the full live (not deleted) element for the scan
5031 		 * iteration.  HAMMER2 does not allow partial replacements.
5032 		 *
5033 		 * XXX should be built into hammer2_combined_find().
5034 		 */
5035 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
5036 
5037 		/*
5038 		 * Expand our calculated key range (key, keybits) to fit
5039 		 * the scanned key.  nkeybits represents the full range
5040 		 * that we will later cut in half (two halves @ nkeybits - 1).
5041 		 */
5042 		nkeybits = keybits;
5043 		if (nkeybits < bref->keybits) {
5044 			if (bref->keybits > 64) {
5045 				kprintf("bad bref chain %p bref %p\n",
5046 					chain, bref);
5047 				Debugger("fubar");
5048 			}
5049 			nkeybits = bref->keybits;
5050 		}
5051 		while (nkeybits < 64 &&
5052 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
5053 		        (key ^ bref->key)) != 0) {
5054 			++nkeybits;
5055 		}
5056 
5057 		/*
5058 		 * If the new key range is larger we have to determine
5059 		 * which side of the new key range the existing keys fall
5060 		 * under by checking the high bit, then collapsing the
5061 		 * locount into the hicount or vise-versa.
5062 		 */
5063 		if (keybits != nkeybits) {
5064 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
5065 				hicount += locount;
5066 				locount = 0;
5067 			} else {
5068 				locount += hicount;
5069 				hicount = 0;
5070 			}
5071 			keybits = nkeybits;
5072 		}
5073 
5074 		/*
5075 		 * The newly scanned key will be in the lower half or the
5076 		 * upper half of the (new) key range.
5077 		 */
5078 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
5079 			++hicount;
5080 		else
5081 			++locount;
5082 
5083 		if (key_next == 0)
5084 			break;
5085 		key_beg = key_next;
5086 	}
5087 	hammer2_spin_unex(&parent->core.spin);
5088 	bref = NULL;	/* now invalid (safety) */
5089 
5090 	/*
5091 	 * Adjust keybits to represent half of the full range calculated
5092 	 * above (radix 63 max) for our new indirect block.
5093 	 */
5094 	--keybits;
5095 
5096 	/*
5097 	 * Expand keybits to hold at least ncount elements.  ncount will be
5098 	 * a power of 2.  This is to try to completely fill leaf nodes (at
5099 	 * least for keys which are not hashes).
5100 	 *
5101 	 * We aren't counting 'in' or 'out', we are counting 'high side'
5102 	 * and 'low side' based on the bit at (1LL << keybits).  We want
5103 	 * everything to be inside in these cases so shift it all to
5104 	 * the low or high side depending on the new high bit.
5105 	 */
5106 	while (((hammer2_key_t)1 << keybits) < ncount) {
5107 		++keybits;
5108 		if (key & ((hammer2_key_t)1 << keybits)) {
5109 			hicount += locount;
5110 			locount = 0;
5111 		} else {
5112 			locount += hicount;
5113 			hicount = 0;
5114 		}
5115 	}
5116 
5117 	if (hicount > locount)
5118 		key |= (hammer2_key_t)1 << keybits;
5119 	else
5120 		key &= ~(hammer2_key_t)1 << keybits;
5121 
5122 	*keyp = key;
5123 
5124 	return (keybits);
5125 }
5126 
5127 #endif
5128 
5129 /*
5130  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5131  * it exists.
5132  *
5133  * Both parent and chain must be locked exclusively.
5134  *
5135  * This function will modify the parent if the blockref requires removal
5136  * from the parent's block table.
5137  *
5138  * This function is NOT recursive.  Any entity already pushed into the
5139  * chain (such as an inode) may still need visibility into its contents,
5140  * as well as the ability to read and modify the contents.  For example,
5141  * for an unlinked file which is still open.
5142  *
5143  * Also note that the flusher is responsible for cleaning up empty
5144  * indirect blocks.
5145  */
5146 int
5147 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5148 		     hammer2_tid_t mtid, int flags)
5149 {
5150 	int error = 0;
5151 
5152 	KKASSERT(hammer2_mtx_owned(&chain->lock));
5153 
5154 	/*
5155 	 * Nothing to do if already marked.
5156 	 *
5157 	 * We need the spinlock on the core whos RBTREE contains chain
5158 	 * to protect against races.
5159 	 */
5160 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5161 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5162 			 chain->parent == parent);
5163 		error = _hammer2_chain_delete_helper(parent, chain,
5164 						     mtid, flags, NULL);
5165 	}
5166 
5167 	/*
5168 	 * Permanent deletions mark the chain as destroyed.
5169 	 *
5170 	 * NOTE: We do not setflush the chain unless the deletion is
5171 	 *	 permanent, since the deletion of a chain does not actually
5172 	 *	 require it to be flushed.
5173 	 */
5174 	if (error == 0) {
5175 		if (flags & HAMMER2_DELETE_PERMANENT) {
5176 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5177 			hammer2_chain_setflush(chain);
5178 		}
5179 	}
5180 
5181 	return error;
5182 }
5183 
5184 static int
5185 hammer2_chain_delete_obref(hammer2_chain_t *parent, hammer2_chain_t *chain,
5186 		     hammer2_tid_t mtid, int flags,
5187 		     hammer2_blockref_t *obref)
5188 {
5189 	int error = 0;
5190 
5191 	KKASSERT(hammer2_mtx_owned(&chain->lock));
5192 
5193 	/*
5194 	 * Nothing to do if already marked.
5195 	 *
5196 	 * We need the spinlock on the core whos RBTREE contains chain
5197 	 * to protect against races.
5198 	 */
5199 	obref->type = HAMMER2_BREF_TYPE_EMPTY;
5200 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5201 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5202 			 chain->parent == parent);
5203 		error = _hammer2_chain_delete_helper(parent, chain,
5204 						     mtid, flags, obref);
5205 	}
5206 
5207 	/*
5208 	 * Permanent deletions mark the chain as destroyed.
5209 	 *
5210 	 * NOTE: We do not setflush the chain unless the deletion is
5211 	 *	 permanent, since the deletion of a chain does not actually
5212 	 *	 require it to be flushed.
5213 	 */
5214 	if (error == 0) {
5215 		if (flags & HAMMER2_DELETE_PERMANENT) {
5216 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5217 			hammer2_chain_setflush(chain);
5218 		}
5219 	}
5220 
5221 	return error;
5222 }
5223 
5224 /*
5225  * Returns the index of the nearest element in the blockref array >= elm.
5226  * Returns (count) if no element could be found.
5227  *
5228  * Sets *key_nextp to the next key for loop purposes but does not modify
5229  * it if the next key would be higher than the current value of *key_nextp.
5230  * Note that *key_nexp can overflow to 0, which should be tested by the
5231  * caller.
5232  *
5233  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5234  *	     held through the operation.
5235  */
5236 static int
5237 hammer2_base_find(hammer2_chain_t *parent,
5238 		  hammer2_blockref_t *base, int count,
5239 		  hammer2_key_t *key_nextp,
5240 		  hammer2_key_t key_beg, hammer2_key_t key_end)
5241 {
5242 	hammer2_blockref_t *scan;
5243 	hammer2_key_t scan_end;
5244 	int i;
5245 	int limit;
5246 
5247 	/*
5248 	 * Require the live chain's already have their core's counted
5249 	 * so we can optimize operations.
5250 	 */
5251         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5252 
5253 	/*
5254 	 * Degenerate case
5255 	 */
5256 	if (count == 0 || base == NULL)
5257 		return(count);
5258 
5259 	/*
5260 	 * Sequential optimization using parent->cache_index.  This is
5261 	 * the most likely scenario.
5262 	 *
5263 	 * We can avoid trailing empty entries on live chains, otherwise
5264 	 * we might have to check the whole block array.
5265 	 */
5266 	i = parent->cache_index;	/* SMP RACE OK */
5267 	cpu_ccfence();
5268 	limit = parent->core.live_zero;
5269 	if (i >= limit)
5270 		i = limit - 1;
5271 	if (i < 0)
5272 		i = 0;
5273 	KKASSERT(i < count);
5274 
5275 	/*
5276 	 * Search backwards
5277 	 */
5278 	scan = &base[i];
5279 	while (i > 0 && (scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5280 	    scan->key > key_beg)) {
5281 		--scan;
5282 		--i;
5283 	}
5284 	parent->cache_index = i;
5285 
5286 	/*
5287 	 * Search forwards, stop when we find a scan element which
5288 	 * encloses the key or until we know that there are no further
5289 	 * elements.
5290 	 */
5291 	while (i < count) {
5292 		if (scan->type != HAMMER2_BREF_TYPE_EMPTY) {
5293 			scan_end = scan->key +
5294 				   ((hammer2_key_t)1 << scan->keybits) - 1;
5295 			if (scan->key > key_beg || scan_end >= key_beg)
5296 				break;
5297 		}
5298 		if (i >= limit)
5299 			return (count);
5300 		++scan;
5301 		++i;
5302 	}
5303 	if (i != count) {
5304 		parent->cache_index = i;
5305 		if (i >= limit) {
5306 			i = count;
5307 		} else {
5308 			scan_end = scan->key +
5309 				   ((hammer2_key_t)1 << scan->keybits);
5310 			if (scan_end && (*key_nextp > scan_end ||
5311 					 *key_nextp == 0)) {
5312 				*key_nextp = scan_end;
5313 			}
5314 		}
5315 	}
5316 	return (i);
5317 }
5318 
5319 /*
5320  * Do a combined search and return the next match either from the blockref
5321  * array or from the in-memory chain.  Sets *bresp to the returned bref in
5322  * both cases, or sets it to NULL if the search exhausted.  Only returns
5323  * a non-NULL chain if the search matched from the in-memory chain.
5324  *
5325  * When no in-memory chain has been found and a non-NULL bref is returned
5326  * in *bresp.
5327  *
5328  *
5329  * The returned chain is not locked or referenced.  Use the returned bref
5330  * to determine if the search exhausted or not.  Iterate if the base find
5331  * is chosen but matches a deleted chain.
5332  *
5333  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5334  *	     held through the operation.
5335  */
5336 hammer2_chain_t *
5337 hammer2_combined_find(hammer2_chain_t *parent,
5338 		      hammer2_blockref_t *base, int count,
5339 		      hammer2_key_t *key_nextp,
5340 		      hammer2_key_t key_beg, hammer2_key_t key_end,
5341 		      hammer2_blockref_t **bresp)
5342 {
5343 	hammer2_blockref_t *bref;
5344 	hammer2_chain_t *chain;
5345 	int i;
5346 
5347 	/*
5348 	 * Lookup in block array and in rbtree.
5349 	 */
5350 	*key_nextp = key_end + 1;
5351 	i = hammer2_base_find(parent, base, count, key_nextp,
5352 			      key_beg, key_end);
5353 	chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5354 
5355 	/*
5356 	 * Neither matched
5357 	 */
5358 	if (i == count && chain == NULL) {
5359 		*bresp = NULL;
5360 		return(NULL);
5361 	}
5362 
5363 	/*
5364 	 * Only chain matched.
5365 	 */
5366 	if (i == count) {
5367 		bref = &chain->bref;
5368 		goto found;
5369 	}
5370 
5371 	/*
5372 	 * Only blockref matched.
5373 	 */
5374 	if (chain == NULL) {
5375 		bref = &base[i];
5376 		goto found;
5377 	}
5378 
5379 	/*
5380 	 * Both in-memory and blockref matched, select the nearer element.
5381 	 *
5382 	 * If both are flush with the left-hand side or both are the
5383 	 * same distance away, select the chain.  In this situation the
5384 	 * chain must have been loaded from the matching blockmap.
5385 	 */
5386 	if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5387 	    chain->bref.key == base[i].key) {
5388 		KKASSERT(chain->bref.key == base[i].key);
5389 		bref = &chain->bref;
5390 		goto found;
5391 	}
5392 
5393 	/*
5394 	 * Select the nearer key
5395 	 */
5396 	if (chain->bref.key < base[i].key) {
5397 		bref = &chain->bref;
5398 	} else {
5399 		bref = &base[i];
5400 		chain = NULL;
5401 	}
5402 
5403 	/*
5404 	 * If the bref is out of bounds we've exhausted our search.
5405 	 */
5406 found:
5407 	if (bref->key > key_end) {
5408 		*bresp = NULL;
5409 		chain = NULL;
5410 	} else {
5411 		*bresp = bref;
5412 	}
5413 	return(chain);
5414 }
5415 
5416 /*
5417  * Locate the specified block array element and delete it.  The element
5418  * must exist.
5419  *
5420  * The spin lock on the related chain must be held.
5421  *
5422  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5423  *	 need to be adjusted when we commit the media change.
5424  */
5425 void
5426 hammer2_base_delete(hammer2_chain_t *parent,
5427 		    hammer2_blockref_t *base, int count,
5428 		    hammer2_chain_t *chain,
5429 		    hammer2_blockref_t *obref)
5430 {
5431 	hammer2_blockref_t *elm = &chain->bref;
5432 	hammer2_blockref_t *scan;
5433 	hammer2_key_t key_next;
5434 	int i;
5435 
5436 	/*
5437 	 * Delete element.  Expect the element to exist.
5438 	 *
5439 	 * XXX see caller, flush code not yet sophisticated enough to prevent
5440 	 *     re-flushed in some cases.
5441 	 */
5442 	key_next = 0; /* max range */
5443 	i = hammer2_base_find(parent, base, count, &key_next,
5444 			      elm->key, elm->key);
5445 	scan = &base[i];
5446 	if (i == count || scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5447 	    scan->key != elm->key ||
5448 	    ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
5449 	     scan->keybits != elm->keybits)) {
5450 		hammer2_spin_unex(&parent->core.spin);
5451 		panic("delete base %p element not found at %d/%d elm %p\n",
5452 		      base, i, count, elm);
5453 		return;
5454 	}
5455 
5456 	/*
5457 	 * Update stats and zero the entry.
5458 	 *
5459 	 * NOTE: Handle radix == 0 (0 bytes) case.
5460 	 */
5461 	if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5462 		parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5463 				(int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5464 	}
5465 	switch(scan->type) {
5466 	case HAMMER2_BREF_TYPE_INODE:
5467 		--parent->bref.embed.stats.inode_count;
5468 		/* fall through */
5469 	case HAMMER2_BREF_TYPE_DATA:
5470 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5471 			atomic_set_int(&chain->flags,
5472 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5473 		} else {
5474 			if (parent->bref.leaf_count)
5475 				--parent->bref.leaf_count;
5476 		}
5477 		/* fall through */
5478 	case HAMMER2_BREF_TYPE_INDIRECT:
5479 		if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5480 			parent->bref.embed.stats.data_count -=
5481 				scan->embed.stats.data_count;
5482 			parent->bref.embed.stats.inode_count -=
5483 				scan->embed.stats.inode_count;
5484 		}
5485 		if (scan->type == HAMMER2_BREF_TYPE_INODE)
5486 			break;
5487 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5488 			atomic_set_int(&chain->flags,
5489 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5490 		} else {
5491 			if (parent->bref.leaf_count <= scan->leaf_count)
5492 				parent->bref.leaf_count = 0;
5493 			else
5494 				parent->bref.leaf_count -= scan->leaf_count;
5495 		}
5496 		break;
5497 	case HAMMER2_BREF_TYPE_DIRENT:
5498 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5499 			atomic_set_int(&chain->flags,
5500 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5501 		} else {
5502 			if (parent->bref.leaf_count)
5503 				--parent->bref.leaf_count;
5504 		}
5505 	default:
5506 		break;
5507 	}
5508 
5509 	if (obref)
5510 		*obref = *scan;
5511 	bzero(scan, sizeof(*scan));
5512 
5513 	/*
5514 	 * We can only optimize parent->core.live_zero for live chains.
5515 	 */
5516 	if (parent->core.live_zero == i + 1) {
5517 		while (--i >= 0 && base[i].type == HAMMER2_BREF_TYPE_EMPTY)
5518 			;
5519 		parent->core.live_zero = i + 1;
5520 	}
5521 
5522 	/*
5523 	 * Clear appropriate blockmap flags in chain.
5524 	 */
5525 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
5526 					HAMMER2_CHAIN_BMAPUPD);
5527 }
5528 
5529 /*
5530  * Insert the specified element.  The block array must not already have the
5531  * element and must have space available for the insertion.
5532  *
5533  * The spin lock on the related chain must be held.
5534  *
5535  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5536  *	 need to be adjusted when we commit the media change.
5537  */
5538 void
5539 hammer2_base_insert(hammer2_chain_t *parent,
5540 		    hammer2_blockref_t *base, int count,
5541 		    hammer2_chain_t *chain, hammer2_blockref_t *elm)
5542 {
5543 	hammer2_key_t key_next;
5544 	hammer2_key_t xkey;
5545 	int i;
5546 	int j;
5547 	int k;
5548 	int l;
5549 	int u = 1;
5550 
5551 	/*
5552 	 * Insert new element.  Expect the element to not already exist
5553 	 * unless we are replacing it.
5554 	 *
5555 	 * XXX see caller, flush code not yet sophisticated enough to prevent
5556 	 *     re-flushed in some cases.
5557 	 */
5558 	key_next = 0; /* max range */
5559 	i = hammer2_base_find(parent, base, count, &key_next,
5560 			      elm->key, elm->key);
5561 
5562 	/*
5563 	 * Shortcut fill optimization, typical ordered insertion(s) may not
5564 	 * require a search.
5565 	 */
5566 	KKASSERT(i >= 0 && i <= count);
5567 
5568 	/*
5569 	 * Set appropriate blockmap flags in chain (if not NULL)
5570 	 */
5571 	if (chain)
5572 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
5573 
5574 	/*
5575 	 * Update stats and zero the entry
5576 	 */
5577 	if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5578 		parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5579 				(int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5580 	}
5581 	switch(elm->type) {
5582 	case HAMMER2_BREF_TYPE_INODE:
5583 		++parent->bref.embed.stats.inode_count;
5584 		/* fall through */
5585 	case HAMMER2_BREF_TYPE_DATA:
5586 		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5587 			++parent->bref.leaf_count;
5588 		/* fall through */
5589 	case HAMMER2_BREF_TYPE_INDIRECT:
5590 		if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5591 			parent->bref.embed.stats.data_count +=
5592 				elm->embed.stats.data_count;
5593 			parent->bref.embed.stats.inode_count +=
5594 				elm->embed.stats.inode_count;
5595 		}
5596 		if (elm->type == HAMMER2_BREF_TYPE_INODE)
5597 			break;
5598 		if (parent->bref.leaf_count + elm->leaf_count <
5599 		    HAMMER2_BLOCKREF_LEAF_MAX) {
5600 			parent->bref.leaf_count += elm->leaf_count;
5601 		} else {
5602 			parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5603 		}
5604 		break;
5605 	case HAMMER2_BREF_TYPE_DIRENT:
5606 		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5607 			++parent->bref.leaf_count;
5608 		break;
5609 	default:
5610 		break;
5611 	}
5612 
5613 
5614 	/*
5615 	 * We can only optimize parent->core.live_zero for live chains.
5616 	 */
5617 	if (i == count && parent->core.live_zero < count) {
5618 		i = parent->core.live_zero++;
5619 		base[i] = *elm;
5620 		return;
5621 	}
5622 
5623 	xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5624 	if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5625 		hammer2_spin_unex(&parent->core.spin);
5626 		panic("insert base %p overlapping elements at %d elm %p\n",
5627 		      base, i, elm);
5628 	}
5629 
5630 	/*
5631 	 * Try to find an empty slot before or after.
5632 	 */
5633 	j = i;
5634 	k = i;
5635 	while (j > 0 || k < count) {
5636 		--j;
5637 		if (j >= 0 && base[j].type == HAMMER2_BREF_TYPE_EMPTY) {
5638 			if (j == i - 1) {
5639 				base[j] = *elm;
5640 			} else {
5641 				bcopy(&base[j+1], &base[j],
5642 				      (i - j - 1) * sizeof(*base));
5643 				base[i - 1] = *elm;
5644 			}
5645 			goto validate;
5646 		}
5647 		++k;
5648 		if (k < count && base[k].type == HAMMER2_BREF_TYPE_EMPTY) {
5649 			bcopy(&base[i], &base[i+1],
5650 			      (k - i) * sizeof(hammer2_blockref_t));
5651 			base[i] = *elm;
5652 
5653 			/*
5654 			 * We can only update parent->core.live_zero for live
5655 			 * chains.
5656 			 */
5657 			if (parent->core.live_zero <= k)
5658 				parent->core.live_zero = k + 1;
5659 			u = 2;
5660 			goto validate;
5661 		}
5662 	}
5663 	panic("hammer2_base_insert: no room!");
5664 
5665 	/*
5666 	 * Debugging
5667 	 */
5668 validate:
5669 	key_next = 0;
5670 	for (l = 0; l < count; ++l) {
5671 		if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5672 			key_next = base[l].key +
5673 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5674 			break;
5675 		}
5676 	}
5677 	while (++l < count) {
5678 		if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5679 			if (base[l].key <= key_next)
5680 				panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5681 			key_next = base[l].key +
5682 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5683 
5684 		}
5685 	}
5686 
5687 }
5688 
5689 #if 0
5690 
5691 /*
5692  * Sort the blockref array for the chain.  Used by the flush code to
5693  * sort the blockref[] array.
5694  *
5695  * The chain must be exclusively locked AND spin-locked.
5696  */
5697 typedef hammer2_blockref_t *hammer2_blockref_p;
5698 
5699 static
5700 int
5701 hammer2_base_sort_callback(const void *v1, const void *v2)
5702 {
5703 	hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5704 	hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5705 
5706 	/*
5707 	 * Make sure empty elements are placed at the end of the array
5708 	 */
5709 	if (bref1->type == HAMMER2_BREF_TYPE_EMPTY) {
5710 		if (bref2->type == HAMMER2_BREF_TYPE_EMPTY)
5711 			return(0);
5712 		return(1);
5713 	} else if (bref2->type == HAMMER2_BREF_TYPE_EMPTY) {
5714 		return(-1);
5715 	}
5716 
5717 	/*
5718 	 * Sort by key
5719 	 */
5720 	if (bref1->key < bref2->key)
5721 		return(-1);
5722 	if (bref1->key > bref2->key)
5723 		return(1);
5724 	return(0);
5725 }
5726 
5727 void
5728 hammer2_base_sort(hammer2_chain_t *chain)
5729 {
5730 	hammer2_blockref_t *base;
5731 	int count;
5732 
5733 	switch(chain->bref.type) {
5734 	case HAMMER2_BREF_TYPE_INODE:
5735 		/*
5736 		 * Special shortcut for embedded data returns the inode
5737 		 * itself.  Callers must detect this condition and access
5738 		 * the embedded data (the strategy code does this for us).
5739 		 *
5740 		 * This is only applicable to regular files and softlinks.
5741 		 */
5742 		if (chain->data->ipdata.meta.op_flags &
5743 		    HAMMER2_OPFLAG_DIRECTDATA) {
5744 			return;
5745 		}
5746 		base = &chain->data->ipdata.u.blockset.blockref[0];
5747 		count = HAMMER2_SET_COUNT;
5748 		break;
5749 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5750 	case HAMMER2_BREF_TYPE_INDIRECT:
5751 		/*
5752 		 * Optimize indirect blocks in the INITIAL state to avoid
5753 		 * I/O.
5754 		 */
5755 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5756 		base = &chain->data->npdata[0];
5757 		count = chain->bytes / sizeof(hammer2_blockref_t);
5758 		break;
5759 	case HAMMER2_BREF_TYPE_VOLUME:
5760 		base = &chain->data->voldata.sroot_blockset.blockref[0];
5761 		count = HAMMER2_SET_COUNT;
5762 		break;
5763 	case HAMMER2_BREF_TYPE_FREEMAP:
5764 		base = &chain->data->blkset.blockref[0];
5765 		count = HAMMER2_SET_COUNT;
5766 		break;
5767 	default:
5768 		kprintf("hammer2_chain_lookup: unrecognized "
5769 			"blockref(A) type: %d",
5770 		        chain->bref.type);
5771 		while (1)
5772 			tsleep(&base, 0, "dead", 0);
5773 		panic("hammer2_base_sort: unrecognized "
5774 		      "blockref(A) type: %d",
5775 		      chain->bref.type);
5776 		base = NULL;	/* safety */
5777 		count = 0;	/* safety */
5778 	}
5779 	kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5780 }
5781 
5782 #endif
5783 
5784 /*
5785  * Chain memory management
5786  */
5787 void
5788 hammer2_chain_wait(hammer2_chain_t *chain)
5789 {
5790 	tsleep(chain, 0, "chnflw", 1);
5791 }
5792 
5793 const hammer2_media_data_t *
5794 hammer2_chain_rdata(hammer2_chain_t *chain)
5795 {
5796 	KKASSERT(chain->data != NULL);
5797 	return (chain->data);
5798 }
5799 
5800 hammer2_media_data_t *
5801 hammer2_chain_wdata(hammer2_chain_t *chain)
5802 {
5803 	KKASSERT(chain->data != NULL);
5804 	return (chain->data);
5805 }
5806 
5807 /*
5808  * Set the check data for a chain.  This can be a heavy-weight operation
5809  * and typically only runs on-flush.  For file data check data is calculated
5810  * when the logical buffers are flushed.
5811  */
5812 void
5813 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5814 {
5815 	chain->bref.flags &= ~HAMMER2_BREF_FLAG_ZERO;
5816 
5817 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5818 	case HAMMER2_CHECK_NONE:
5819 		break;
5820 	case HAMMER2_CHECK_DISABLED:
5821 		break;
5822 	case HAMMER2_CHECK_ISCSI32:
5823 		chain->bref.check.iscsi32.value =
5824 			hammer2_icrc32(bdata, chain->bytes);
5825 		break;
5826 	case HAMMER2_CHECK_XXHASH64:
5827 		chain->bref.check.xxhash64.value =
5828 			XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5829 		break;
5830 	case HAMMER2_CHECK_SHA192:
5831 		{
5832 			SHA256_CTX hash_ctx;
5833 			union {
5834 				uint8_t digest[SHA256_DIGEST_LENGTH];
5835 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5836 			} u;
5837 
5838 			SHA256_Init(&hash_ctx);
5839 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5840 			SHA256_Final(u.digest, &hash_ctx);
5841 			u.digest64[2] ^= u.digest64[3];
5842 			bcopy(u.digest,
5843 			      chain->bref.check.sha192.data,
5844 			      sizeof(chain->bref.check.sha192.data));
5845 		}
5846 		break;
5847 	case HAMMER2_CHECK_FREEMAP:
5848 		chain->bref.check.freemap.icrc32 =
5849 			hammer2_icrc32(bdata, chain->bytes);
5850 		break;
5851 	default:
5852 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5853 			chain->bref.methods);
5854 		break;
5855 	}
5856 }
5857 
5858 /*
5859  * Characterize a failed check code and try to trace back to the inode.
5860  */
5861 static void
5862 hammer2_characterize_failed_chain(hammer2_chain_t *chain, uint64_t check,
5863 				  int bits)
5864 {
5865 	hammer2_chain_t *lchain;
5866 	hammer2_chain_t *ochain;
5867 	int did;
5868 
5869 	did = krateprintf(&krate_h2chk,
5870 		"chain %016jx.%02x (%s) meth=%02x CHECK FAIL "
5871 		"(flags=%08x, bref/data ",
5872 		chain->bref.data_off,
5873 		chain->bref.type,
5874 		hammer2_bref_type_str(&chain->bref),
5875 		chain->bref.methods,
5876 		chain->flags);
5877 	if (did == 0)
5878 		return;
5879 
5880 	if (bits == 32) {
5881 		kprintf("%08x/%08x)\n",
5882 			chain->bref.check.iscsi32.value,
5883 			(uint32_t)check);
5884 	} else {
5885 		kprintf("%016jx/%016jx)\n",
5886 			chain->bref.check.xxhash64.value,
5887 			check);
5888 	}
5889 
5890 	/*
5891 	 * Run up the chains to try to find the governing inode so we
5892 	 * can report it.
5893 	 *
5894 	 * XXX This error reporting is not really MPSAFE
5895 	 */
5896 	ochain = chain;
5897 	lchain = chain;
5898 	while (chain && chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
5899 		lchain = chain;
5900 		chain = chain->parent;
5901 	}
5902 
5903 	if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
5904 	    ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) == 0 ||
5905 	     (lchain->bref.key & HAMMER2_DIRHASH_VISIBLE))) {
5906 		kprintf("   Resides at/in inode %ld\n",
5907 			chain->bref.key);
5908 	} else if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5909 		kprintf("   Resides in inode index - CRITICAL!!!\n");
5910 	} else {
5911 		kprintf("   Resides in root index - CRITICAL!!!\n");
5912 	}
5913 	if (ochain->hmp) {
5914 		const char *pfsname = "UNKNOWN";
5915 		int i;
5916 
5917 		if (ochain->pmp) {
5918 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
5919 				if (ochain->pmp->pfs_hmps[i] == ochain->hmp &&
5920 				    ochain->pmp->pfs_names[i]) {
5921 					pfsname = ochain->pmp->pfs_names[i];
5922 					break;
5923 				}
5924 			}
5925 		}
5926 		kprintf("   In pfs %s on device %s\n",
5927 			pfsname, ochain->hmp->devrepname);
5928 	}
5929 }
5930 
5931 /*
5932  * Returns non-zero on success, 0 on failure.
5933  */
5934 int
5935 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5936 {
5937 	uint32_t check32;
5938 	uint64_t check64;
5939 	int r;
5940 
5941 	if (chain->bref.flags & HAMMER2_BREF_FLAG_ZERO)
5942 		return 1;
5943 
5944 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5945 	case HAMMER2_CHECK_NONE:
5946 		r = 1;
5947 		break;
5948 	case HAMMER2_CHECK_DISABLED:
5949 		r = 1;
5950 		break;
5951 	case HAMMER2_CHECK_ISCSI32:
5952 		check32 = hammer2_icrc32(bdata, chain->bytes);
5953 		r = (chain->bref.check.iscsi32.value == check32);
5954 		if (r == 0) {
5955 			hammer2_characterize_failed_chain(chain, check32, 32);
5956 		}
5957 		hammer2_process_icrc32 += chain->bytes;
5958 		break;
5959 	case HAMMER2_CHECK_XXHASH64:
5960 		check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5961 		r = (chain->bref.check.xxhash64.value == check64);
5962 		if (r == 0) {
5963 			hammer2_characterize_failed_chain(chain, check64, 64);
5964 		}
5965 		hammer2_process_xxhash64 += chain->bytes;
5966 		break;
5967 	case HAMMER2_CHECK_SHA192:
5968 		{
5969 			SHA256_CTX hash_ctx;
5970 			union {
5971 				uint8_t digest[SHA256_DIGEST_LENGTH];
5972 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5973 			} u;
5974 
5975 			SHA256_Init(&hash_ctx);
5976 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5977 			SHA256_Final(u.digest, &hash_ctx);
5978 			u.digest64[2] ^= u.digest64[3];
5979 			if (bcmp(u.digest,
5980 				 chain->bref.check.sha192.data,
5981 			         sizeof(chain->bref.check.sha192.data)) == 0) {
5982 				r = 1;
5983 			} else {
5984 				r = 0;
5985 				krateprintf(&krate_h2chk,
5986 					"chain %016jx.%02x meth=%02x "
5987 					"CHECK FAIL\n",
5988 					chain->bref.data_off,
5989 					chain->bref.type,
5990 					chain->bref.methods);
5991 			}
5992 		}
5993 		break;
5994 	case HAMMER2_CHECK_FREEMAP:
5995 		r = (chain->bref.check.freemap.icrc32 ==
5996 		     hammer2_icrc32(bdata, chain->bytes));
5997 		if (r == 0) {
5998 			int did;
5999 
6000 			did = krateprintf(&krate_h2chk,
6001 					  "chain %016jx.%02x meth=%02x "
6002 					  "CHECK FAIL\n",
6003 					  chain->bref.data_off,
6004 					  chain->bref.type,
6005 					  chain->bref.methods);
6006 			if (did) {
6007 				kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
6008 					chain->bref.check.freemap.icrc32,
6009 					hammer2_icrc32(bdata, chain->bytes),
6010 					chain->bytes);
6011 				if (chain->dio) {
6012 					kprintf("dio %p buf %016jx,%d "
6013 						"bdata %p/%p\n",
6014 						chain->dio,
6015 						chain->dio->bp->b_loffset,
6016 						chain->dio->bp->b_bufsize,
6017 						bdata,
6018 						chain->dio->bp->b_data);
6019 				}
6020 			}
6021 		}
6022 		break;
6023 	default:
6024 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
6025 			chain->bref.methods);
6026 		r = 1;
6027 		break;
6028 	}
6029 	return r;
6030 }
6031 
6032 /*
6033  * Acquire the chain and parent representing the specified inode for the
6034  * device at the specified cluster index.
6035  *
6036  * The flags passed in are LOOKUP flags, not RESOLVE flags.
6037  *
6038  * If we are unable to locate the inode, HAMMER2_ERROR_EIO is returned and
6039  * *chainp will be NULL.  *parentp may still be set error or not, or NULL
6040  * if the parent itself could not be resolved.
6041  *
6042  * The caller may pass-in a locked *parentp and/or *chainp, or neither.
6043  * They will be unlocked and released by this function.  The *parentp and
6044  * *chainp representing the located inode are returned locked.
6045  */
6046 int
6047 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
6048 			 int clindex, int flags,
6049 			 hammer2_chain_t **parentp, hammer2_chain_t **chainp)
6050 {
6051 	hammer2_chain_t *parent;
6052 	hammer2_chain_t *rchain;
6053 	hammer2_key_t key_dummy;
6054 	hammer2_inode_t *ip;
6055 	int resolve_flags;
6056 	int error;
6057 
6058 	resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
6059 			HAMMER2_RESOLVE_SHARED : 0;
6060 
6061 	/*
6062 	 * Caller expects us to replace these.
6063 	 */
6064 	if (*chainp) {
6065 		hammer2_chain_unlock(*chainp);
6066 		hammer2_chain_drop(*chainp);
6067 		*chainp = NULL;
6068 	}
6069 	if (*parentp) {
6070 		hammer2_chain_unlock(*parentp);
6071 		hammer2_chain_drop(*parentp);
6072 		*parentp = NULL;
6073 	}
6074 
6075 	/*
6076 	 * Be very careful, this is a backend function and we CANNOT
6077 	 * lock any frontend inode structure we find.  But we have to
6078 	 * look the inode up this way first in case it exists but is
6079 	 * detached from the radix tree.
6080 	 */
6081 	ip = hammer2_inode_lookup(pmp, inum);
6082 	if (ip) {
6083 		*chainp = hammer2_inode_chain_and_parent(ip, clindex,
6084 						       parentp,
6085 						       resolve_flags);
6086 		hammer2_inode_drop(ip);
6087 		if (*chainp)
6088 			return 0;
6089 		hammer2_chain_unlock(*chainp);
6090 		hammer2_chain_drop(*chainp);
6091 		*chainp = NULL;
6092 		if (*parentp) {
6093 			hammer2_chain_unlock(*parentp);
6094 			hammer2_chain_drop(*parentp);
6095 			*parentp = NULL;
6096 		}
6097 	}
6098 
6099 	/*
6100 	 * Inodes hang off of the iroot (bit 63 is clear, differentiating
6101 	 * inodes from root directory entries in the key lookup).
6102 	 */
6103 	parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
6104 	rchain = NULL;
6105 	if (parent) {
6106 		rchain = hammer2_chain_lookup(&parent, &key_dummy,
6107 					      inum, inum,
6108 					      &error, flags);
6109 	} else {
6110 		error = HAMMER2_ERROR_EIO;
6111 	}
6112 	*parentp = parent;
6113 	*chainp = rchain;
6114 
6115 	return error;
6116 }
6117 
6118 /*
6119  * Used by the bulkscan code to snapshot the synchronized storage for
6120  * a volume, allowing it to be scanned concurrently against normal
6121  * operation.
6122  */
6123 hammer2_chain_t *
6124 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
6125 {
6126 	hammer2_chain_t *copy;
6127 
6128 	copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
6129 	copy->data = kmalloc(sizeof(copy->data->voldata),
6130 			     hmp->mchain,
6131 			     M_WAITOK | M_ZERO);
6132 	hammer2_voldata_lock(hmp);
6133 	copy->data->voldata = hmp->volsync;
6134 	hammer2_voldata_unlock(hmp);
6135 
6136 	return copy;
6137 }
6138 
6139 void
6140 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
6141 {
6142 	KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
6143 	KKASSERT(copy->data);
6144 	kfree(copy->data, copy->hmp->mchain);
6145 	copy->data = NULL;
6146 	atomic_add_long(&hammer2_chain_allocs, -1);
6147 	hammer2_chain_drop(copy);
6148 }
6149 
6150 /*
6151  * Returns non-zero if the chain (INODE or DIRENT) matches the
6152  * filename.
6153  */
6154 int
6155 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
6156 			  size_t name_len)
6157 {
6158 	const hammer2_inode_data_t *ripdata;
6159 	const hammer2_dirent_head_t *den;
6160 
6161 	if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
6162 		ripdata = &chain->data->ipdata;
6163 		if (ripdata->meta.name_len == name_len &&
6164 		    bcmp(ripdata->filename, name, name_len) == 0) {
6165 			return 1;
6166 		}
6167 	}
6168 	if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
6169 	   chain->bref.embed.dirent.namlen == name_len) {
6170 		den = &chain->bref.embed.dirent;
6171 		if (name_len > sizeof(chain->bref.check.buf) &&
6172 		    bcmp(chain->data->buf, name, name_len) == 0) {
6173 			return 1;
6174 		}
6175 		if (name_len <= sizeof(chain->bref.check.buf) &&
6176 		    bcmp(chain->bref.check.buf, name, name_len) == 0) {
6177 			return 1;
6178 		}
6179 	}
6180 	return 0;
6181 }
6182