xref: /dragonfly/sys/vfs/hammer2/hammer2_chain.c (revision d4ef6694)
1 /*
2  * Copyright (c) 2011-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62 
63 #include <crypto/sha2/sha2.h>
64 
65 #include "hammer2.h"
66 
67 static int hammer2_indirect_optimize;	/* XXX SYSCTL */
68 
69 static hammer2_chain_t *hammer2_chain_create_indirect(
70 		hammer2_trans_t *trans, hammer2_chain_t *parent,
71 		hammer2_key_t key, int keybits, int for_type, int *errorp);
72 static void hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop);
73 static hammer2_chain_t *hammer2_combined_find(
74 		hammer2_chain_t *parent,
75 		hammer2_blockref_t *base, int count,
76 		int *cache_indexp, hammer2_key_t *key_nextp,
77 		hammer2_key_t key_beg, hammer2_key_t key_end,
78 		hammer2_blockref_t **bresp);
79 
80 /*
81  * Basic RBTree for chains (core->rbtree and core->dbtree).  Chains cannot
82  * overlap in the RB trees.  Deleted chains are moved from rbtree to either
83  * dbtree or to dbq.
84  *
85  * Chains in delete-duplicate sequences can always iterate through core_entry
86  * to locate the live version of the chain.
87  */
88 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
89 
90 int
91 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
92 {
93 	hammer2_key_t c1_beg;
94 	hammer2_key_t c1_end;
95 	hammer2_key_t c2_beg;
96 	hammer2_key_t c2_end;
97 
98 	/*
99 	 * Compare chains.  Overlaps are not supposed to happen and catch
100 	 * any software issues early we count overlaps as a match.
101 	 */
102 	c1_beg = chain1->bref.key;
103 	c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
104 	c2_beg = chain2->bref.key;
105 	c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
106 
107 	if (c1_end < c2_beg)	/* fully to the left */
108 		return(-1);
109 	if (c1_beg > c2_end)	/* fully to the right */
110 		return(1);
111 	return(0);		/* overlap (must not cross edge boundary) */
112 }
113 
114 static __inline
115 int
116 hammer2_isclusterable(hammer2_chain_t *chain)
117 {
118 	if (hammer2_cluster_enable) {
119 		if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
120 		    chain->bref.type == HAMMER2_BREF_TYPE_INODE ||
121 		    chain->bref.type == HAMMER2_BREF_TYPE_DATA) {
122 			return(1);
123 		}
124 	}
125 	return(0);
126 }
127 
128 /*
129  * Make a chain visible to the flusher.  The flusher needs to be able to
130  * do flushes of a subdirectory chains or single files so it does a top-down
131  * recursion using the ONFLUSH flag for the recursion.  It locates MODIFIED
132  * or UPDATE chains and flushes back up the chain to the root.
133  */
134 void
135 hammer2_chain_setflush(hammer2_trans_t *trans, hammer2_chain_t *chain)
136 {
137 	hammer2_chain_t *parent;
138 
139 	if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
140 		spin_lock(&chain->core.cst.spin);
141 		while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
142 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
143 			if ((parent = chain->parent) == NULL)
144 				break;
145 			spin_lock(&parent->core.cst.spin);
146 			spin_unlock(&chain->core.cst.spin);
147 			chain = parent;
148 		}
149 		spin_unlock(&chain->core.cst.spin);
150 	}
151 }
152 
153 /*
154  * Allocate a new disconnected chain element representing the specified
155  * bref.  chain->refs is set to 1 and the passed bref is copied to
156  * chain->bref.  chain->bytes is derived from the bref.
157  *
158  * chain->core is NOT allocated and the media data and bp pointers are left
159  * NULL.  The caller must call chain_core_alloc() to allocate or associate
160  * a core with the chain.
161  *
162  * chain->pmp inherits pmp unless the chain is an inode (other than the
163  * super-root inode).
164  *
165  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
166  */
167 hammer2_chain_t *
168 hammer2_chain_alloc(hammer2_mount_t *hmp, hammer2_pfsmount_t *pmp,
169 		    hammer2_trans_t *trans, hammer2_blockref_t *bref)
170 {
171 	hammer2_chain_t *chain;
172 	u_int bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
173 
174 	/*
175 	 * Construct the appropriate system structure.
176 	 */
177 	switch(bref->type) {
178 	case HAMMER2_BREF_TYPE_INODE:
179 	case HAMMER2_BREF_TYPE_INDIRECT:
180 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
181 	case HAMMER2_BREF_TYPE_DATA:
182 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
183 		/*
184 		 * Chain's are really only associated with the hmp but we
185 		 * maintain a pmp association for per-mount memory tracking
186 		 * purposes.  The pmp can be NULL.
187 		 */
188 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
189 		break;
190 	case HAMMER2_BREF_TYPE_VOLUME:
191 	case HAMMER2_BREF_TYPE_FREEMAP:
192 		chain = NULL;
193 		panic("hammer2_chain_alloc volume type illegal for op");
194 	default:
195 		chain = NULL;
196 		panic("hammer2_chain_alloc: unrecognized blockref type: %d",
197 		      bref->type);
198 	}
199 
200 	/*
201 	 * Initialize the new chain structure.
202 	 */
203 	chain->pmp = pmp;
204 	chain->hmp = hmp;
205 	chain->bref = *bref;
206 	chain->bytes = bytes;
207 	chain->refs = 1;
208 	chain->flags = HAMMER2_CHAIN_ALLOCATED;
209 
210 	/*
211 	 * Set the PFS boundary flag if this chain represents a PFS root.
212 	 */
213 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
214 		chain->flags |= HAMMER2_CHAIN_PFSBOUNDARY;
215 
216 	return (chain);
217 }
218 
219 /*
220  * Associate an existing core with the chain or allocate a new core.
221  *
222  * The core is not locked.  No additional refs on the chain are made.
223  * (trans) must not be NULL if (core) is not NULL.
224  *
225  * When chains are delete-duplicated during flushes we insert nchain on
226  * the ownerq after ochain instead of at the end in order to give the
227  * drop code visibility in the correct order, otherwise drops can be missed.
228  */
229 void
230 hammer2_chain_core_alloc(hammer2_trans_t *trans, hammer2_chain_t *chain)
231 {
232 	hammer2_chain_core_t *core = &chain->core;
233 
234 	/*
235 	 * Fresh core under nchain (no multi-homing of ochain's
236 	 * sub-tree).
237 	 */
238 	RB_INIT(&core->rbtree);	/* live chains */
239 	ccms_cst_init(&core->cst, chain);
240 }
241 
242 /*
243  * Add a reference to a chain element, preventing its destruction.
244  *
245  * (can be called with spinlock held)
246  */
247 void
248 hammer2_chain_ref(hammer2_chain_t *chain)
249 {
250 	atomic_add_int(&chain->refs, 1);
251 }
252 
253 /*
254  * Insert the chain in the core rbtree.
255  *
256  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
257  * chain is a special case used by the flush code that is placed on the
258  * unstaged deleted list to avoid confusing the live view.
259  */
260 #define HAMMER2_CHAIN_INSERT_SPIN	0x0001
261 #define HAMMER2_CHAIN_INSERT_LIVE	0x0002
262 #define HAMMER2_CHAIN_INSERT_RACE	0x0004
263 
264 static
265 int
266 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
267 		     int flags, int generation)
268 {
269 	hammer2_chain_t *xchain;
270 	int error = 0;
271 
272 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
273 		spin_lock(&parent->core.cst.spin);
274 
275 	/*
276 	 * Interlocked by spinlock, check for race
277 	 */
278 	if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
279 	    parent->core.generation != generation) {
280 		error = EAGAIN;
281 		goto failed;
282 	}
283 
284 	/*
285 	 * Insert chain
286 	 */
287 	xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
288 	KASSERT(xchain == NULL,
289 		("hammer2_chain_insert: collision %p %p", chain, xchain));
290 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
291 	chain->parent = parent;
292 	++parent->core.chain_count;
293 	++parent->core.generation;	/* XXX incs for _get() too, XXX */
294 
295 	/*
296 	 * We have to keep track of the effective live-view blockref count
297 	 * so the create code knows when to push an indirect block.
298 	 */
299 	if (flags & HAMMER2_CHAIN_INSERT_LIVE)
300 		atomic_add_int(&parent->core.live_count, 1);
301 failed:
302 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
303 		spin_unlock(&parent->core.cst.spin);
304 	return error;
305 }
306 
307 /*
308  * Drop the caller's reference to the chain.  When the ref count drops to
309  * zero this function will try to disassociate the chain from its parent and
310  * deallocate it, then recursely drop the parent using the implied ref
311  * from the chain's chain->parent.
312  */
313 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain);
314 
315 void
316 hammer2_chain_drop(hammer2_chain_t *chain)
317 {
318 	u_int refs;
319 	u_int need = 0;
320 
321 	if (hammer2_debug & 0x200000)
322 		Debugger("drop");
323 
324 	if (chain->flags & HAMMER2_CHAIN_UPDATE)
325 		++need;
326 	if (chain->flags & HAMMER2_CHAIN_MODIFIED)
327 		++need;
328 	KKASSERT(chain->refs > need);
329 
330 	while (chain) {
331 		refs = chain->refs;
332 		cpu_ccfence();
333 		KKASSERT(refs > 0);
334 
335 		if (refs == 1) {
336 			chain = hammer2_chain_lastdrop(chain);
337 		} else {
338 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
339 				break;
340 			/* retry the same chain */
341 		}
342 	}
343 }
344 
345 /*
346  * Safe handling of the 1->0 transition on chain.  Returns a chain for
347  * recursive drop or NULL, possibly returning the same chain if the atomic
348  * op fails.
349  *
350  * Whem two chains need to be recursively dropped we use the chain
351  * we would otherwise free to placehold the additional chain.  It's a bit
352  * convoluted but we can't just recurse without potentially blowing out
353  * the kernel stack.
354  *
355  * The chain cannot be freed if it has a non-empty core (children) or
356  * it is not at the head of ownerq.
357  *
358  * The cst spinlock is allowed nest child-to-parent (not parent-to-child).
359  */
360 static
361 hammer2_chain_t *
362 hammer2_chain_lastdrop(hammer2_chain_t *chain)
363 {
364 	hammer2_pfsmount_t *pmp;
365 	hammer2_mount_t *hmp;
366 	hammer2_chain_t *parent;
367 	hammer2_chain_t *rdrop;
368 
369 	/*
370 	 * Spinlock the core and check to see if it is empty.  If it is
371 	 * not empty we leave chain intact with refs == 0.  The elements
372 	 * in core->rbtree are associated with other chains contemporary
373 	 * with ours but not with our chain directly.
374 	 */
375 	spin_lock(&chain->core.cst.spin);
376 
377 	/*
378 	 * We can't free non-stale chains with children until we are
379 	 * able to free the children because there might be a flush
380 	 * dependency.  Flushes of stale children (which should also
381 	 * have their deleted flag set) short-cut recursive flush
382 	 * dependencies and can be freed here.  Any flushes which run
383 	 * through stale children due to the flush synchronization
384 	 * point should have a FLUSH_* bit set in the chain and not
385 	 * reach lastdrop at this time.
386 	 *
387 	 * NOTE: We return (chain) on failure to retry.
388 	 */
389 	if (chain->core.chain_count) {
390 		if (atomic_cmpset_int(&chain->refs, 1, 0)) {
391 			spin_unlock(&chain->core.cst.spin);
392 			chain = NULL;	/* success */
393 		} else {
394 			spin_unlock(&chain->core.cst.spin);
395 		}
396 		return(chain);
397 	}
398 	/* no chains left under us */
399 
400 	/*
401 	 * chain->core has no children left so no accessors can get to our
402 	 * chain from there.  Now we have to lock the parent core to interlock
403 	 * remaining possible accessors that might bump chain's refs before
404 	 * we can safely drop chain's refs with intent to free the chain.
405 	 */
406 	hmp = chain->hmp;
407 	pmp = chain->pmp;	/* can be NULL */
408 	rdrop = NULL;
409 
410 	/*
411 	 * Spinlock the parent and try to drop the last ref on chain.
412 	 * On success remove chain from its parent, otherwise return NULL.
413 	 *
414 	 * (normal core locks are top-down recursive but we define core
415 	 *  spinlocks as bottom-up recursive, so this is safe).
416 	 */
417 	if ((parent = chain->parent) != NULL) {
418 		spin_lock(&parent->core.cst.spin);
419 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
420 			/* 1->0 transition failed */
421 			spin_unlock(&parent->core.cst.spin);
422 			spin_unlock(&chain->core.cst.spin);
423 			return(chain);	/* retry */
424 		}
425 
426 		/*
427 		 * 1->0 transition successful, remove chain from its
428 		 * above core.
429 		 */
430 		if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
431 			RB_REMOVE(hammer2_chain_tree,
432 				  &parent->core.rbtree, chain);
433 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
434 			--parent->core.chain_count;
435 			chain->parent = NULL;
436 		}
437 
438 		/*
439 		 * If our chain was the last chain in the parent's core the
440 		 * core is now empty and its parent might have to be
441 		 * re-dropped if it has 0 refs.
442 		 */
443 		if (parent->core.chain_count == 0) {
444 			rdrop = parent;
445 			if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0) {
446 				rdrop = NULL;
447 			}
448 		}
449 		spin_unlock(&parent->core.cst.spin);
450 		parent = NULL;	/* safety */
451 	}
452 
453 	/*
454 	 * Successful 1->0 transition and the chain can be destroyed now.
455 	 *
456 	 * We still have the core spinlock, and core's chain_count is 0.
457 	 * Any parent spinlock is gone.
458 	 */
459 	spin_unlock(&chain->core.cst.spin);
460 	KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
461 		 chain->core.chain_count == 0);
462 	KKASSERT(chain->core.cst.count == 0);
463 	KKASSERT(chain->core.cst.upgrade == 0);
464 
465 	/*
466 	 * All spin locks are gone, finish freeing stuff.
467 	 */
468 	KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
469 				  HAMMER2_CHAIN_MODIFIED)) == 0);
470 	hammer2_chain_drop_data(chain, 1);
471 
472 	KKASSERT(chain->dio == NULL);
473 
474 	/*
475 	 * Once chain resources are gone we can use the now dead chain
476 	 * structure to placehold what might otherwise require a recursive
477 	 * drop, because we have potentially two things to drop and can only
478 	 * return one directly.
479 	 */
480 	if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
481 		chain->flags &= ~HAMMER2_CHAIN_ALLOCATED;
482 		chain->hmp = NULL;
483 		kfree(chain, hmp->mchain);
484 	}
485 
486 	/*
487 	 * Possible chaining loop when parent re-drop needed.
488 	 */
489 	return(rdrop);
490 }
491 
492 /*
493  * On either last lock release or last drop
494  */
495 static void
496 hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop)
497 {
498 	/*hammer2_mount_t *hmp = chain->hmp;*/
499 
500 	switch(chain->bref.type) {
501 	case HAMMER2_BREF_TYPE_VOLUME:
502 	case HAMMER2_BREF_TYPE_FREEMAP:
503 		if (lastdrop)
504 			chain->data = NULL;
505 		break;
506 	default:
507 		KKASSERT(chain->data == NULL);
508 		break;
509 	}
510 }
511 
512 /*
513  * Ref and lock a chain element, acquiring its data with I/O if necessary,
514  * and specify how you would like the data to be resolved.
515  *
516  * Returns 0 on success or an error code if the data could not be acquired.
517  * The chain element is locked on return regardless of whether an error
518  * occurred or not.
519  *
520  * The lock is allowed to recurse, multiple locking ops will aggregate
521  * the requested resolve types.  Once data is assigned it will not be
522  * removed until the last unlock.
523  *
524  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
525  *			   (typically used to avoid device/logical buffer
526  *			    aliasing for data)
527  *
528  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
529  *			   the INITIAL-create state (indirect blocks only).
530  *
531  *			   Do not resolve data elements for DATA chains.
532  *			   (typically used to avoid device/logical buffer
533  *			    aliasing for data)
534  *
535  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
536  *
537  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
538  *			   it will be locked exclusive.
539  *
540  * NOTE: Embedded elements (volume header, inodes) are always resolved
541  *	 regardless.
542  *
543  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
544  *	 element will instantiate and zero its buffer, and flush it on
545  *	 release.
546  *
547  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
548  *	 so as not to instantiate a device buffer, which could alias against
549  *	 a logical file buffer.  However, if ALWAYS is specified the
550  *	 device buffer will be instantiated anyway.
551  *
552  * WARNING! If data must be fetched a shared lock will temporarily be
553  *	    upgraded to exclusive.  However, a deadlock can occur if
554  *	    the caller owns more than one shared lock.
555  */
556 int
557 hammer2_chain_lock(hammer2_chain_t *chain, int how)
558 {
559 	hammer2_mount_t *hmp;
560 	hammer2_blockref_t *bref;
561 	ccms_state_t ostate;
562 	char *bdata;
563 	int error;
564 
565 	/*
566 	 * Ref and lock the element.  Recursive locks are allowed.
567 	 */
568 	if ((how & HAMMER2_RESOLVE_NOREF) == 0)
569 		hammer2_chain_ref(chain);
570 	atomic_add_int(&chain->lockcnt, 1);
571 
572 	hmp = chain->hmp;
573 	KKASSERT(hmp != NULL);
574 
575 	/*
576 	 * Get the appropriate lock.
577 	 */
578 	if (how & HAMMER2_RESOLVE_SHARED)
579 		ccms_thread_lock(&chain->core.cst, CCMS_STATE_SHARED);
580 	else
581 		ccms_thread_lock(&chain->core.cst, CCMS_STATE_EXCLUSIVE);
582 
583 	/*
584 	 * If we already have a valid data pointer no further action is
585 	 * necessary.
586 	 */
587 	if (chain->data)
588 		return (0);
589 
590 	/*
591 	 * Do we have to resolve the data?
592 	 */
593 	switch(how & HAMMER2_RESOLVE_MASK) {
594 	case HAMMER2_RESOLVE_NEVER:
595 		return(0);
596 	case HAMMER2_RESOLVE_MAYBE:
597 		if (chain->flags & HAMMER2_CHAIN_INITIAL)
598 			return(0);
599 		if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
600 			return(0);
601 #if 0
602 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
603 			return(0);
604 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
605 			return(0);
606 #endif
607 		/* fall through */
608 	case HAMMER2_RESOLVE_ALWAYS:
609 		break;
610 	}
611 
612 	/*
613 	 * Upgrade to an exclusive lock so we can safely manipulate the
614 	 * buffer cache.  If another thread got to it before us we
615 	 * can just return.
616 	 */
617 	ostate = ccms_thread_lock_upgrade(&chain->core.cst);
618 	if (chain->data) {
619 		ccms_thread_lock_downgrade(&chain->core.cst, ostate);
620 		return (0);
621 	}
622 
623 	/*
624 	 * We must resolve to a device buffer, either by issuing I/O or
625 	 * by creating a zero-fill element.  We do not mark the buffer
626 	 * dirty when creating a zero-fill element (the hammer2_chain_modify()
627 	 * API must still be used to do that).
628 	 *
629 	 * The device buffer is variable-sized in powers of 2 down
630 	 * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
631 	 * chunk always contains buffers of the same size. (XXX)
632 	 *
633 	 * The minimum physical IO size may be larger than the variable
634 	 * block size.
635 	 */
636 	bref = &chain->bref;
637 
638 	/*
639 	 * The getblk() optimization can only be used on newly created
640 	 * elements if the physical block size matches the request.
641 	 */
642 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
643 		error = hammer2_io_new(hmp, bref->data_off, chain->bytes,
644 					&chain->dio);
645 	} else {
646 		error = hammer2_io_bread(hmp, bref->data_off, chain->bytes,
647 					 &chain->dio);
648 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
649 	}
650 
651 	if (error) {
652 		kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
653 			(intmax_t)bref->data_off, error);
654 		hammer2_io_bqrelse(&chain->dio);
655 		ccms_thread_lock_downgrade(&chain->core.cst, ostate);
656 		return (error);
657 	}
658 
659 #if 0
660 	/*
661 	 * No need for this, always require that hammer2_chain_modify()
662 	 * be called before any modifying operations, which ensures that
663 	 * the underlying dio is dirty.
664 	 */
665 	if ((chain->flags & HAMMER2_CHAIN_MODIFIED) &&
666 	    !hammer2_io_isdirty(chain->dio)) {
667 		hammer2_io_setdirty(chain->dio);
668 	}
669 #endif
670 
671 	/*
672 	 * Clear INITIAL.  In this case we used io_new() and the buffer has
673 	 * been zero'd and marked dirty.
674 	 */
675 	bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
676 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
677 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
678 		chain->bref.flags |= HAMMER2_BREF_FLAG_ZERO;
679 	} else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
680 		/*
681 		 * check data not currently synchronized due to
682 		 * modification.  XXX assumes data stays in the buffer
683 		 * cache, which might not be true (need biodep on flush
684 		 * to calculate crc?  or simple crc?).
685 		 */
686 	} else {
687 		if (hammer2_chain_testcheck(chain, bdata) == 0) {
688 			kprintf("chain %016jx.%02x meth=%02x CHECK FAIL %08x (flags=%08x)\n",
689 
690 				chain->bref.data_off,
691 				chain->bref.type,
692 				chain->bref.methods,
693 				hammer2_icrc32(bdata, chain->bytes),
694 				chain->flags);
695 		}
696 	}
697 
698 	/*
699 	 * Setup the data pointer, either pointing it to an embedded data
700 	 * structure and copying the data from the buffer, or pointing it
701 	 * into the buffer.
702 	 *
703 	 * The buffer is not retained when copying to an embedded data
704 	 * structure in order to avoid potential deadlocks or recursions
705 	 * on the same physical buffer.
706 	 */
707 	switch (bref->type) {
708 	case HAMMER2_BREF_TYPE_VOLUME:
709 	case HAMMER2_BREF_TYPE_FREEMAP:
710 		/*
711 		 * Copy data from bp to embedded buffer
712 		 */
713 		panic("hammer2_chain_lock: called on unresolved volume header");
714 		break;
715 	case HAMMER2_BREF_TYPE_INODE:
716 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
717 	case HAMMER2_BREF_TYPE_INDIRECT:
718 	case HAMMER2_BREF_TYPE_DATA:
719 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
720 	default:
721 		/*
722 		 * Point data at the device buffer and leave dio intact.
723 		 */
724 		chain->data = (void *)bdata;
725 		break;
726 	}
727 	ccms_thread_lock_downgrade(&chain->core.cst, ostate);
728 	return (0);
729 }
730 
731 /*
732  * Unlock and deref a chain element.
733  *
734  * On the last lock release any non-embedded data (chain->dio) will be
735  * retired.
736  */
737 void
738 hammer2_chain_unlock(hammer2_chain_t *chain)
739 {
740 	ccms_state_t ostate;
741 	long *counterp;
742 	u_int lockcnt;
743 
744 	/*
745 	 * The core->cst lock can be shared across several chains so we
746 	 * need to track the per-chain lockcnt separately.
747 	 *
748 	 * If multiple locks are present (or being attempted) on this
749 	 * particular chain we can just unlock, drop refs, and return.
750 	 *
751 	 * Otherwise fall-through on the 1->0 transition.
752 	 */
753 	for (;;) {
754 		lockcnt = chain->lockcnt;
755 		KKASSERT(lockcnt > 0);
756 		cpu_ccfence();
757 		if (lockcnt > 1) {
758 			if (atomic_cmpset_int(&chain->lockcnt,
759 					      lockcnt, lockcnt - 1)) {
760 				ccms_thread_unlock(&chain->core.cst);
761 				hammer2_chain_drop(chain);
762 				return;
763 			}
764 		} else {
765 			if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
766 				break;
767 		}
768 		/* retry */
769 	}
770 
771 	/*
772 	 * On the 1->0 transition we upgrade the core lock (if necessary)
773 	 * to exclusive for terminal processing.  If after upgrading we find
774 	 * that lockcnt is non-zero, another thread is racing us and will
775 	 * handle the unload for us later on, so just cleanup and return
776 	 * leaving the data/io intact
777 	 *
778 	 * Otherwise if lockcnt is still 0 it is possible for it to become
779 	 * non-zero and race, but since we hold the core->cst lock
780 	 * exclusively all that will happen is that the chain will be
781 	 * reloaded after we unload it.
782 	 */
783 	ostate = ccms_thread_lock_upgrade(&chain->core.cst);
784 	if (chain->lockcnt) {
785 		ccms_thread_unlock_upgraded(&chain->core.cst, ostate);
786 		hammer2_chain_drop(chain);
787 		return;
788 	}
789 
790 	/*
791 	 * Shortcut the case if the data is embedded or not resolved.
792 	 *
793 	 * Do NOT NULL out chain->data (e.g. inode data), it might be
794 	 * dirty.
795 	 */
796 	if (chain->dio == NULL) {
797 		if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0)
798 			hammer2_chain_drop_data(chain, 0);
799 		ccms_thread_unlock_upgraded(&chain->core.cst, ostate);
800 		hammer2_chain_drop(chain);
801 		return;
802 	}
803 
804 	/*
805 	 * Statistics
806 	 */
807 	if (hammer2_io_isdirty(chain->dio) == 0) {
808 		;
809 	} else if (chain->flags & HAMMER2_CHAIN_IOFLUSH) {
810 		switch(chain->bref.type) {
811 		case HAMMER2_BREF_TYPE_DATA:
812 			counterp = &hammer2_ioa_file_write;
813 			break;
814 		case HAMMER2_BREF_TYPE_INODE:
815 			counterp = &hammer2_ioa_meta_write;
816 			break;
817 		case HAMMER2_BREF_TYPE_INDIRECT:
818 			counterp = &hammer2_ioa_indr_write;
819 			break;
820 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
821 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
822 			counterp = &hammer2_ioa_fmap_write;
823 			break;
824 		default:
825 			counterp = &hammer2_ioa_volu_write;
826 			break;
827 		}
828 		*counterp += chain->bytes;
829 	} else {
830 		switch(chain->bref.type) {
831 		case HAMMER2_BREF_TYPE_DATA:
832 			counterp = &hammer2_iod_file_write;
833 			break;
834 		case HAMMER2_BREF_TYPE_INODE:
835 			counterp = &hammer2_iod_meta_write;
836 			break;
837 		case HAMMER2_BREF_TYPE_INDIRECT:
838 			counterp = &hammer2_iod_indr_write;
839 			break;
840 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
841 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
842 			counterp = &hammer2_iod_fmap_write;
843 			break;
844 		default:
845 			counterp = &hammer2_iod_volu_write;
846 			break;
847 		}
848 		*counterp += chain->bytes;
849 	}
850 
851 	/*
852 	 * Clean out the dio.
853 	 *
854 	 * If a device buffer was used for data be sure to destroy the
855 	 * buffer when we are done to avoid aliases (XXX what about the
856 	 * underlying VM pages?).
857 	 *
858 	 * NOTE: Freemap leaf's use reserved blocks and thus no aliasing
859 	 *	 is possible.
860 	 *
861 	 * NOTE: The isdirty check tracks whether we have to bdwrite() the
862 	 *	 buffer or not.  The buffer might already be dirty.  The
863 	 *	 flag is re-set when chain_modify() is called, even if
864 	 *	 MODIFIED is already set, allowing the OS to retire the
865 	 *	 buffer independent of a hammer2 flush.
866 	 */
867 	chain->data = NULL;
868 	if ((chain->flags & HAMMER2_CHAIN_IOFLUSH) &&
869 	    hammer2_io_isdirty(chain->dio)) {
870 		hammer2_io_bawrite(&chain->dio);
871 	} else {
872 		hammer2_io_bqrelse(&chain->dio);
873 	}
874 	ccms_thread_unlock_upgraded(&chain->core.cst, ostate);
875 	hammer2_chain_drop(chain);
876 }
877 
878 /*
879  * This counts the number of live blockrefs in a block array and
880  * also calculates the point at which all remaining blockrefs are empty.
881  * This routine can only be called on a live chain (DUPLICATED flag not set).
882  *
883  * NOTE: Flag is not set until after the count is complete, allowing
884  *	 callers to test the flag without holding the spinlock.
885  *
886  * NOTE: If base is NULL the related chain is still in the INITIAL
887  *	 state and there are no blockrefs to count.
888  *
889  * NOTE: live_count may already have some counts accumulated due to
890  *	 creation and deletion and could even be initially negative.
891  */
892 void
893 hammer2_chain_countbrefs(hammer2_chain_t *chain,
894 			 hammer2_blockref_t *base, int count)
895 {
896 	spin_lock(&chain->core.cst.spin);
897         if ((chain->core.flags & HAMMER2_CORE_COUNTEDBREFS) == 0) {
898 		if (base) {
899 			while (--count >= 0) {
900 				if (base[count].type)
901 					break;
902 			}
903 			chain->core.live_zero = count + 1;
904 			while (count >= 0) {
905 				if (base[count].type)
906 					atomic_add_int(&chain->core.live_count,
907 						       1);
908 				--count;
909 			}
910 		} else {
911 			chain->core.live_zero = 0;
912 		}
913 		/* else do not modify live_count */
914 		atomic_set_int(&chain->core.flags, HAMMER2_CORE_COUNTEDBREFS);
915 	}
916 	spin_unlock(&chain->core.cst.spin);
917 }
918 
919 /*
920  * Resize the chain's physical storage allocation in-place.  This function does
921  * not adjust the data pointer and must be followed by (typically) a
922  * hammer2_chain_modify() call to copy any old data over and adjust the
923  * data pointer.
924  *
925  * Chains can be resized smaller without reallocating the storage.  Resizing
926  * larger will reallocate the storage.  Excess or prior storage is reclaimed
927  * asynchronously at a later time.
928  *
929  * Must be passed an exclusively locked parent and chain.
930  *
931  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
932  * to avoid instantiating a device buffer that conflicts with the vnode data
933  * buffer.  However, because H2 can compress or encrypt data, the chain may
934  * have a dio assigned to it in those situations, and they do not conflict.
935  *
936  * XXX return error if cannot resize.
937  */
938 void
939 hammer2_chain_resize(hammer2_trans_t *trans, hammer2_inode_t *ip,
940 		     hammer2_chain_t *parent, hammer2_chain_t *chain,
941 		     int nradix, int flags)
942 {
943 	hammer2_mount_t *hmp;
944 	size_t obytes;
945 	size_t nbytes;
946 
947 	hmp = chain->hmp;
948 
949 	/*
950 	 * Only data and indirect blocks can be resized for now.
951 	 * (The volu root, inodes, and freemap elements use a fixed size).
952 	 */
953 	KKASSERT(chain != &hmp->vchain);
954 	KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
955 		 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT);
956 
957 	/*
958 	 * Nothing to do if the element is already the proper size
959 	 */
960 	obytes = chain->bytes;
961 	nbytes = 1U << nradix;
962 	if (obytes == nbytes)
963 		return;
964 	chain->data_count += (ssize_t)(nbytes - obytes);
965 
966 	/*
967 	 * Make sure the old data is instantiated so we can copy it.  If this
968 	 * is a data block, the device data may be superfluous since the data
969 	 * might be in a logical block, but compressed or encrypted data is
970 	 * another matter.
971 	 *
972 	 * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
973 	 */
974 	hammer2_chain_modify(trans, chain, 0);
975 
976 	/*
977 	 * Relocate the block, even if making it smaller (because different
978 	 * block sizes may be in different regions).
979 	 *
980 	 * (data blocks only, we aren't copying the storage here).
981 	 */
982 	hammer2_freemap_alloc(trans, chain, nbytes);
983 	chain->bytes = nbytes;
984 	/*ip->delta_dcount += (ssize_t)(nbytes - obytes);*/ /* XXX atomic */
985 
986 	/*
987 	 * We don't want the followup chain_modify() to try to copy data
988 	 * from the old (wrong-sized) buffer.  It won't know how much to
989 	 * copy.  This case should only occur during writes when the
990 	 * originator already has the data to write in-hand.
991 	 */
992 	if (chain->dio) {
993 		KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA);
994 		hammer2_io_brelse(&chain->dio);
995 		chain->data = NULL;
996 	}
997 }
998 
999 #if 0
1000 
1001 /*
1002  * REMOVED - see cluster code
1003  *
1004  * Set a chain modified, making it read-write and duplicating it if necessary.
1005  * This function will assign a new physical block to the chain if necessary
1006  *
1007  * Duplication of already-modified chains is possible when the modification
1008  * crosses a flush synchronization boundary.
1009  *
1010  * Non-data blocks - The chain should be locked to at least the RESOLVE_MAYBE
1011  *		     level or the COW operation will not work.
1012  *
1013  * Data blocks	   - The chain is usually locked RESOLVE_NEVER so as not to
1014  *		     run the data through the device buffers.
1015  *
1016  * This function may return a different chain than was passed, in which case
1017  * the old chain will be unlocked and the new chain will be locked.
1018  *
1019  * ip->chain may be adjusted by hammer2_chain_modify_ip().
1020  */
1021 hammer2_inode_data_t *
1022 hammer2_chain_modify_ip(hammer2_trans_t *trans, hammer2_inode_t *ip,
1023 			hammer2_chain_t **chainp, int flags)
1024 {
1025 	atomic_set_int(&ip->flags, HAMMER2_INODE_MODIFIED);
1026 	hammer2_chain_modify(trans, chainp, flags);
1027 	if (ip->chain != *chainp)
1028 		hammer2_inode_repoint(ip, NULL, *chainp);
1029 	if (ip->vp)
1030 		vsetisdirty(ip->vp);
1031 	return(&ip->chain->data->ipdata);
1032 }
1033 
1034 #endif
1035 
1036 void
1037 hammer2_chain_modify(hammer2_trans_t *trans, hammer2_chain_t *chain, int flags)
1038 {
1039 	hammer2_blockref_t obref;
1040 	hammer2_mount_t *hmp;
1041 	hammer2_io_t *dio;
1042 	int error;
1043 	int wasinitial;
1044 	int newmod;
1045 	char *bdata;
1046 
1047 	hmp = chain->hmp;
1048 	obref = chain->bref;
1049 
1050 	/*
1051 	 * Data is not optional for freemap chains (we must always be sure
1052 	 * to copy the data on COW storage allocations).
1053 	 */
1054 	if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1055 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1056 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1057 			 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1058 	}
1059 
1060 	/*
1061 	 * Data must be resolved if already assigned unless explicitly
1062 	 * flagged otherwise.
1063 	 */
1064 	if (chain->data == NULL && (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1065 	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1066 		hammer2_chain_lock(chain, HAMMER2_RESOLVE_ALWAYS);
1067 		hammer2_chain_unlock(chain);
1068 	}
1069 
1070 	/*
1071 	 * Otherwise do initial-chain handling.  Set MODIFIED to indicate
1072 	 * that the chain has been modified.  Set UPDATE to ensure that
1073 	 * the blockref is updated in the parent.
1074 	 */
1075 	if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1076 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1077 		hammer2_chain_ref(chain);
1078 		hammer2_pfs_memory_inc(chain->pmp);
1079 		newmod = 1;
1080 	} else {
1081 		newmod = 0;
1082 	}
1083 	if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1084 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1085 		hammer2_chain_ref(chain);
1086 	}
1087 
1088 	/*
1089 	 * The modification or re-modification requires an allocation and
1090 	 * possible COW.
1091 	 *
1092 	 * We normally always allocate new storage here.  If storage exists
1093 	 * and MODIFY_NOREALLOC is passed in, we do not allocate new storage.
1094 	 */
1095 	if (chain != &hmp->vchain && chain != &hmp->fchain) {
1096 		if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1097 		     ((flags & HAMMER2_MODIFY_NOREALLOC) == 0 && newmod)
1098 		) {
1099 			hammer2_freemap_alloc(trans, chain, chain->bytes);
1100 			/* XXX failed allocation */
1101 		}
1102 	}
1103 
1104 	/*
1105 	 * Set BMAPUPD to tell the flush code that an existing blockmap entry
1106 	 * requires updating as well as to tell the delete code that the
1107 	 * chain's blockref might not exactly match (in terms of physical size
1108 	 * or block offset) the one in the parent's blocktable.  The base key
1109 	 * of course will still match.
1110 	 */
1111 	if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1112 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1113 
1114 	/*
1115 	 * Short-cut data blocks which the caller does not need an actual
1116 	 * data reference to (aka OPTDATA), as long as the chain does not
1117 	 * already have a data pointer to the data.  This generally means
1118 	 * that the modifications are being done via the logical buffer cache.
1119 	 * The INITIAL flag relates only to the device data buffer and thus
1120 	 * remains unchange in this situation.
1121 	 */
1122 	if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1123 	    (flags & HAMMER2_MODIFY_OPTDATA) &&
1124 	    chain->data == NULL) {
1125 		goto skip2;
1126 	}
1127 
1128 	/*
1129 	 * Clearing the INITIAL flag (for indirect blocks) indicates that
1130 	 * we've processed the uninitialized storage allocation.
1131 	 *
1132 	 * If this flag is already clear we are likely in a copy-on-write
1133 	 * situation but we have to be sure NOT to bzero the storage if
1134 	 * no data is present.
1135 	 */
1136 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1137 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1138 		wasinitial = 1;
1139 	} else {
1140 		wasinitial = 0;
1141 	}
1142 
1143 	/*
1144 	 * Instantiate data buffer and possibly execute COW operation
1145 	 */
1146 	switch(chain->bref.type) {
1147 	case HAMMER2_BREF_TYPE_VOLUME:
1148 	case HAMMER2_BREF_TYPE_FREEMAP:
1149 		/*
1150 		 * The data is embedded, no copy-on-write operation is
1151 		 * needed.
1152 		 */
1153 		KKASSERT(chain->dio == NULL);
1154 		break;
1155 	case HAMMER2_BREF_TYPE_INODE:
1156 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1157 	case HAMMER2_BREF_TYPE_DATA:
1158 	case HAMMER2_BREF_TYPE_INDIRECT:
1159 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1160 		/*
1161 		 * Perform the copy-on-write operation
1162 		 *
1163 		 * zero-fill or copy-on-write depending on whether
1164 		 * chain->data exists or not and set the dirty state for
1165 		 * the new buffer.  hammer2_io_new() will handle the
1166 		 * zero-fill.
1167 		 */
1168 		KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
1169 
1170 		if (wasinitial) {
1171 			error = hammer2_io_new(hmp, chain->bref.data_off,
1172 					       chain->bytes, &dio);
1173 		} else {
1174 			error = hammer2_io_bread(hmp, chain->bref.data_off,
1175 						 chain->bytes, &dio);
1176 		}
1177 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
1178 		KKASSERT(error == 0);
1179 
1180 		bdata = hammer2_io_data(dio, chain->bref.data_off);
1181 
1182 		if (chain->data) {
1183 			KKASSERT(chain->dio != NULL);
1184 			if (chain->data != (void *)bdata) {
1185 				bcopy(chain->data, bdata, chain->bytes);
1186 			}
1187 		} else if (wasinitial == 0) {
1188 			/*
1189 			 * We have a problem.  We were asked to COW but
1190 			 * we don't have any data to COW with!
1191 			 */
1192 			panic("hammer2_chain_modify: having a COW %p\n",
1193 			      chain);
1194 		}
1195 
1196 		/*
1197 		 * Retire the old buffer, replace with the new.  Dirty or
1198 		 * redirty the new buffer.
1199 		 *
1200 		 * WARNING! The system buffer cache may have already flushed
1201 		 *	    the buffer, so we must be sure to [re]dirty it
1202 		 *	    for further modification.
1203 		 */
1204 		if (chain->dio)
1205 			hammer2_io_brelse(&chain->dio);
1206 		chain->data = (void *)bdata;
1207 		chain->dio = dio;
1208 		hammer2_io_setdirty(dio);	/* modified by bcopy above */
1209 		break;
1210 	default:
1211 		panic("hammer2_chain_modify: illegal non-embedded type %d",
1212 		      chain->bref.type);
1213 		break;
1214 
1215 	}
1216 skip2:
1217 	/*
1218 	 * setflush on parent indicating that the parent must recurse down
1219 	 * to us.  Do not call on chain itself which might already have it
1220 	 * set.
1221 	 */
1222 	if (chain->parent)
1223 		hammer2_chain_setflush(trans, chain->parent);
1224 
1225 	/*
1226 	 * Adjust the freemap bitmap to indicate that the related blocks
1227 	 * MIGHT be freeable.  Bulkfree must still determine that the blocks
1228 	 * are actually freeable.
1229 	 */
1230 	if (obref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
1231 	    obref.type != HAMMER2_BREF_TYPE_FREEMAP_LEAF &&
1232 	    (obref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1233 		hammer2_freemap_adjust(trans, hmp,
1234 				       &obref, HAMMER2_FREEMAP_DOMAYFREE);
1235 	}
1236 }
1237 
1238 /*
1239  * Volume header data locks
1240  */
1241 void
1242 hammer2_voldata_lock(hammer2_mount_t *hmp)
1243 {
1244 	lockmgr(&hmp->vollk, LK_EXCLUSIVE);
1245 }
1246 
1247 void
1248 hammer2_voldata_unlock(hammer2_mount_t *hmp)
1249 {
1250 	lockmgr(&hmp->vollk, LK_RELEASE);
1251 }
1252 
1253 void
1254 hammer2_voldata_modify(hammer2_mount_t *hmp)
1255 {
1256 	if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1257 		atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1258 		hammer2_chain_ref(&hmp->vchain);
1259 		hammer2_pfs_memory_inc(hmp->vchain.pmp);
1260 	}
1261 }
1262 
1263 /*
1264  * This function returns the chain at the nearest key within the specified
1265  * range.  The returned chain will be referenced but not locked.
1266  *
1267  * This function will recurse through chain->rbtree as necessary and will
1268  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
1269  * the iteration value is less than the current value of *key_nextp.
1270  *
1271  * The caller should use (*key_nextp) to calculate the actual range of
1272  * the returned element, which will be (key_beg to *key_nextp - 1), because
1273  * there might be another element which is superior to the returned element
1274  * and overlaps it.
1275  *
1276  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
1277  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
1278  * it will wind up being (key_end + 1).
1279  *
1280  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
1281  *	     held through the operation.
1282  */
1283 struct hammer2_chain_find_info {
1284 	hammer2_chain_t		*best;
1285 	hammer2_key_t		key_beg;
1286 	hammer2_key_t		key_end;
1287 	hammer2_key_t		key_next;
1288 };
1289 
1290 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
1291 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
1292 
1293 static
1294 hammer2_chain_t *
1295 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
1296 			  hammer2_key_t key_beg, hammer2_key_t key_end)
1297 {
1298 	struct hammer2_chain_find_info info;
1299 
1300 	info.best = NULL;
1301 	info.key_beg = key_beg;
1302 	info.key_end = key_end;
1303 	info.key_next = *key_nextp;
1304 
1305 	RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
1306 		hammer2_chain_find_cmp, hammer2_chain_find_callback,
1307 		&info);
1308 	*key_nextp = info.key_next;
1309 #if 0
1310 	kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
1311 		parent, key_beg, key_end, *key_nextp);
1312 #endif
1313 
1314 	return (info.best);
1315 }
1316 
1317 static
1318 int
1319 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
1320 {
1321 	struct hammer2_chain_find_info *info = data;
1322 	hammer2_key_t child_beg;
1323 	hammer2_key_t child_end;
1324 
1325 	child_beg = child->bref.key;
1326 	child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
1327 
1328 	if (child_end < info->key_beg)
1329 		return(-1);
1330 	if (child_beg > info->key_end)
1331 		return(1);
1332 	return(0);
1333 }
1334 
1335 static
1336 int
1337 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
1338 {
1339 	struct hammer2_chain_find_info *info = data;
1340 	hammer2_chain_t *best;
1341 	hammer2_key_t child_end;
1342 
1343 	/*
1344 	 * WARNING! Do not discard DUPLICATED chains, it is possible that
1345 	 *	    we are catching an insertion half-way done.  If a
1346 	 *	    duplicated chain turns out to be the best choice the
1347 	 *	    caller will re-check its flags after locking it.
1348 	 *
1349 	 * WARNING! Layerq is scanned forwards, exact matches should keep
1350 	 *	    the existing info->best.
1351 	 */
1352 	if ((best = info->best) == NULL) {
1353 		/*
1354 		 * No previous best.  Assign best
1355 		 */
1356 		info->best = child;
1357 	} else if (best->bref.key <= info->key_beg &&
1358 		   child->bref.key <= info->key_beg) {
1359 		/*
1360 		 * Illegal overlap.
1361 		 */
1362 		KKASSERT(0);
1363 		/*info->best = child;*/
1364 	} else if (child->bref.key < best->bref.key) {
1365 		/*
1366 		 * Child has a nearer key and best is not flush with key_beg.
1367 		 * Set best to child.  Truncate key_next to the old best key.
1368 		 */
1369 		info->best = child;
1370 		if (info->key_next > best->bref.key || info->key_next == 0)
1371 			info->key_next = best->bref.key;
1372 	} else if (child->bref.key == best->bref.key) {
1373 		/*
1374 		 * If our current best is flush with the child then this
1375 		 * is an illegal overlap.
1376 		 *
1377 		 * key_next will automatically be limited to the smaller of
1378 		 * the two end-points.
1379 		 */
1380 		KKASSERT(0);
1381 		info->best = child;
1382 	} else {
1383 		/*
1384 		 * Keep the current best but truncate key_next to the child's
1385 		 * base.
1386 		 *
1387 		 * key_next will also automatically be limited to the smaller
1388 		 * of the two end-points (probably not necessary for this case
1389 		 * but we do it anyway).
1390 		 */
1391 		if (info->key_next > child->bref.key || info->key_next == 0)
1392 			info->key_next = child->bref.key;
1393 	}
1394 
1395 	/*
1396 	 * Always truncate key_next based on child's end-of-range.
1397 	 */
1398 	child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
1399 	if (child_end && (info->key_next > child_end || info->key_next == 0))
1400 		info->key_next = child_end;
1401 
1402 	return(0);
1403 }
1404 
1405 /*
1406  * Retrieve the specified chain from a media blockref, creating the
1407  * in-memory chain structure which reflects it.
1408  *
1409  * To handle insertion races pass the INSERT_RACE flag along with the
1410  * generation number of the core.  NULL will be returned if the generation
1411  * number changes before we have a chance to insert the chain.  Insert
1412  * races can occur because the parent might be held shared.
1413  *
1414  * Caller must hold the parent locked shared or exclusive since we may
1415  * need the parent's bref array to find our block.
1416  *
1417  * WARNING! chain->pmp is left NULL if the bref represents a PFS mount
1418  *	    point.
1419  */
1420 hammer2_chain_t *
1421 hammer2_chain_get(hammer2_chain_t *parent, int generation,
1422 		  hammer2_blockref_t *bref)
1423 {
1424 	hammer2_mount_t *hmp = parent->hmp;
1425 	hammer2_chain_t *chain;
1426 	int error;
1427 
1428 	/*
1429 	 * Allocate a chain structure representing the existing media
1430 	 * entry.  Resulting chain has one ref and is not locked.
1431 	 */
1432 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
1433 		chain = hammer2_chain_alloc(hmp, NULL, NULL, bref);
1434 	else
1435 		chain = hammer2_chain_alloc(hmp, parent->pmp, NULL, bref);
1436 	hammer2_chain_core_alloc(NULL, chain);
1437 	/* ref'd chain returned */
1438 
1439 	/*
1440 	 * Flag that the chain is in the parent's blockmap so delete/flush
1441 	 * knows what to do with it.
1442 	 */
1443 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
1444 
1445 	/*
1446 	 * Link the chain into its parent.  A spinlock is required to safely
1447 	 * access the RBTREE, and it is possible to collide with another
1448 	 * hammer2_chain_get() operation because the caller might only hold
1449 	 * a shared lock on the parent.
1450 	 */
1451 	KKASSERT(parent->refs > 0);
1452 	error = hammer2_chain_insert(parent, chain,
1453 				     HAMMER2_CHAIN_INSERT_SPIN |
1454 				     HAMMER2_CHAIN_INSERT_RACE,
1455 				     generation);
1456 	if (error) {
1457 		KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
1458 		kprintf("chain %p get race\n", chain);
1459 		hammer2_chain_drop(chain);
1460 		chain = NULL;
1461 	} else {
1462 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
1463 	}
1464 
1465 	/*
1466 	 * Return our new chain referenced but not locked, or NULL if
1467 	 * a race occurred.
1468 	 */
1469 	return (chain);
1470 }
1471 
1472 /*
1473  * Lookup initialization/completion API
1474  */
1475 hammer2_chain_t *
1476 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
1477 {
1478 	if (flags & HAMMER2_LOOKUP_SHARED) {
1479 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
1480 					   HAMMER2_RESOLVE_SHARED);
1481 	} else {
1482 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
1483 	}
1484 	return (parent);
1485 }
1486 
1487 void
1488 hammer2_chain_lookup_done(hammer2_chain_t *parent)
1489 {
1490 	if (parent)
1491 		hammer2_chain_unlock(parent);
1492 }
1493 
1494 static
1495 hammer2_chain_t *
1496 hammer2_chain_getparent(hammer2_chain_t **parentp, int how)
1497 {
1498 	hammer2_chain_t *oparent;
1499 	hammer2_chain_t *nparent;
1500 
1501 	/*
1502 	 * Be careful of order, oparent must be unlocked before nparent
1503 	 * is locked below to avoid a deadlock.
1504 	 */
1505 	oparent = *parentp;
1506 	spin_lock(&oparent->core.cst.spin);
1507 	nparent = oparent->parent;
1508 	hammer2_chain_ref(nparent);
1509 	spin_unlock(&oparent->core.cst.spin);
1510 	if (oparent) {
1511 		hammer2_chain_unlock(oparent);
1512 		oparent = NULL;
1513 	}
1514 
1515 	hammer2_chain_lock(nparent, how | HAMMER2_RESOLVE_NOREF);
1516 	*parentp = nparent;
1517 
1518 	return (nparent);
1519 }
1520 
1521 /*
1522  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
1523  * (*parentp) typically points to an inode but can also point to a related
1524  * indirect block and this function will recurse upwards and find the inode
1525  * again.
1526  *
1527  * (*parentp) must be exclusively locked and referenced and can be an inode
1528  * or an existing indirect block within the inode.
1529  *
1530  * On return (*parentp) will be modified to point at the deepest parent chain
1531  * element encountered during the search, as a helper for an insertion or
1532  * deletion.   The new (*parentp) will be locked and referenced and the old
1533  * will be unlocked and dereferenced (no change if they are both the same).
1534  *
1535  * The matching chain will be returned exclusively locked.  If NOLOCK is
1536  * requested the chain will be returned only referenced.
1537  *
1538  * NULL is returned if no match was found, but (*parentp) will still
1539  * potentially be adjusted.
1540  *
1541  * On return (*key_nextp) will point to an iterative value for key_beg.
1542  * (If NULL is returned (*key_nextp) is set to key_end).
1543  *
1544  * This function will also recurse up the chain if the key is not within the
1545  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
1546  * can simply allow (*parentp) to float inside the loop.
1547  *
1548  * NOTE!  chain->data is not always resolved.  By default it will not be
1549  *	  resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
1550  *	  HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
1551  *	  BREF_TYPE_DATA as the device buffer can alias the logical file
1552  *	  buffer).
1553  */
1554 hammer2_chain_t *
1555 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
1556 		     hammer2_key_t key_beg, hammer2_key_t key_end,
1557 		     int *cache_indexp, int flags, int *ddflagp)
1558 {
1559 	hammer2_mount_t *hmp;
1560 	hammer2_chain_t *parent;
1561 	hammer2_chain_t *chain;
1562 	hammer2_blockref_t *base;
1563 	hammer2_blockref_t *bref;
1564 	hammer2_blockref_t bcopy;
1565 	hammer2_key_t scan_beg;
1566 	hammer2_key_t scan_end;
1567 	int count = 0;
1568 	int how_always = HAMMER2_RESOLVE_ALWAYS;
1569 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
1570 	int how;
1571 	int generation;
1572 	int maxloops = 300000;
1573 
1574 	*ddflagp = 0;
1575 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
1576 		how_maybe = how_always;
1577 		how = HAMMER2_RESOLVE_ALWAYS;
1578 	} else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
1579 		how = HAMMER2_RESOLVE_NEVER;
1580 	} else {
1581 		how = HAMMER2_RESOLVE_MAYBE;
1582 	}
1583 	if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK)) {
1584 		how_maybe |= HAMMER2_RESOLVE_SHARED;
1585 		how_always |= HAMMER2_RESOLVE_SHARED;
1586 		how |= HAMMER2_RESOLVE_SHARED;
1587 	}
1588 
1589 	/*
1590 	 * Recurse (*parentp) upward if necessary until the parent completely
1591 	 * encloses the key range or we hit the inode.
1592 	 *
1593 	 * This function handles races against the flusher doing a delete-
1594 	 * duplicate above us and re-homes the parent to the duplicate in
1595 	 * that case, otherwise we'd wind up recursing down a stale chain.
1596 	 */
1597 	parent = *parentp;
1598 	hmp = parent->hmp;
1599 
1600 	while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1601 	       parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1602 		scan_beg = parent->bref.key;
1603 		scan_end = scan_beg +
1604 			   ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1605 		if (key_beg >= scan_beg && key_end <= scan_end)
1606 			break;
1607 		parent = hammer2_chain_getparent(parentp, how_maybe);
1608 	}
1609 
1610 again:
1611 	if (--maxloops == 0)
1612 		panic("hammer2_chain_lookup: maxloops");
1613 	/*
1614 	 * Locate the blockref array.  Currently we do a fully associative
1615 	 * search through the array.
1616 	 */
1617 	switch(parent->bref.type) {
1618 	case HAMMER2_BREF_TYPE_INODE:
1619 		/*
1620 		 * Special shortcut for embedded data returns the inode
1621 		 * itself.  Callers must detect this condition and access
1622 		 * the embedded data (the strategy code does this for us).
1623 		 *
1624 		 * This is only applicable to regular files and softlinks.
1625 		 */
1626 		if (parent->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
1627 			if (flags & HAMMER2_LOOKUP_NOLOCK)
1628 				hammer2_chain_ref(parent);
1629 			else
1630 				hammer2_chain_lock(parent, how_always);
1631 			*key_nextp = key_end + 1;
1632 			*ddflagp = 1;
1633 			return (parent);
1634 		}
1635 		base = &parent->data->ipdata.u.blockset.blockref[0];
1636 		count = HAMMER2_SET_COUNT;
1637 		break;
1638 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1639 	case HAMMER2_BREF_TYPE_INDIRECT:
1640 		/*
1641 		 * Handle MATCHIND on the parent
1642 		 */
1643 		if (flags & HAMMER2_LOOKUP_MATCHIND) {
1644 			scan_beg = parent->bref.key;
1645 			scan_end = scan_beg +
1646 			       ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1647 			if (key_beg == scan_beg && key_end == scan_end) {
1648 				chain = parent;
1649 				hammer2_chain_lock(chain, how_maybe);
1650 				*key_nextp = scan_end + 1;
1651 				goto done;
1652 			}
1653 		}
1654 		/*
1655 		 * Optimize indirect blocks in the INITIAL state to avoid
1656 		 * I/O.
1657 		 */
1658 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1659 			base = NULL;
1660 		} else {
1661 			if (parent->data == NULL)
1662 				panic("parent->data is NULL");
1663 			base = &parent->data->npdata[0];
1664 		}
1665 		count = parent->bytes / sizeof(hammer2_blockref_t);
1666 		break;
1667 	case HAMMER2_BREF_TYPE_VOLUME:
1668 		base = &hmp->voldata.sroot_blockset.blockref[0];
1669 		count = HAMMER2_SET_COUNT;
1670 		break;
1671 	case HAMMER2_BREF_TYPE_FREEMAP:
1672 		base = &hmp->voldata.freemap_blockset.blockref[0];
1673 		count = HAMMER2_SET_COUNT;
1674 		break;
1675 	default:
1676 		panic("hammer2_chain_lookup: unrecognized blockref type: %d",
1677 		      parent->bref.type);
1678 		base = NULL;	/* safety */
1679 		count = 0;	/* safety */
1680 	}
1681 
1682 	/*
1683 	 * Merged scan to find next candidate.
1684 	 *
1685 	 * hammer2_base_*() functions require the parent->core.live_* fields
1686 	 * to be synchronized.
1687 	 *
1688 	 * We need to hold the spinlock to access the block array and RB tree
1689 	 * and to interlock chain creation.
1690 	 */
1691 	if ((parent->core.flags & HAMMER2_CORE_COUNTEDBREFS) == 0)
1692 		hammer2_chain_countbrefs(parent, base, count);
1693 
1694 	/*
1695 	 * Combined search
1696 	 */
1697 	spin_lock(&parent->core.cst.spin);
1698 	chain = hammer2_combined_find(parent, base, count,
1699 				      cache_indexp, key_nextp,
1700 				      key_beg, key_end,
1701 				      &bref);
1702 	generation = parent->core.generation;
1703 
1704 	/*
1705 	 * Exhausted parent chain, iterate.
1706 	 */
1707 	if (bref == NULL) {
1708 		spin_unlock(&parent->core.cst.spin);
1709 		if (key_beg == key_end)	/* short cut single-key case */
1710 			return (NULL);
1711 
1712 		/*
1713 		 * Stop if we reached the end of the iteration.
1714 		 */
1715 		if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
1716 		    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1717 			return (NULL);
1718 		}
1719 
1720 		/*
1721 		 * Calculate next key, stop if we reached the end of the
1722 		 * iteration, otherwise go up one level and loop.
1723 		 */
1724 		key_beg = parent->bref.key +
1725 			  ((hammer2_key_t)1 << parent->bref.keybits);
1726 		if (key_beg == 0 || key_beg > key_end)
1727 			return (NULL);
1728 		parent = hammer2_chain_getparent(parentp, how_maybe);
1729 		goto again;
1730 	}
1731 
1732 	/*
1733 	 * Selected from blockref or in-memory chain.
1734 	 */
1735 	if (chain == NULL) {
1736 		bcopy = *bref;
1737 		spin_unlock(&parent->core.cst.spin);
1738 		chain = hammer2_chain_get(parent, generation,
1739 					  &bcopy);
1740 		if (chain == NULL) {
1741 			kprintf("retry lookup parent %p keys %016jx:%016jx\n",
1742 				parent, key_beg, key_end);
1743 			goto again;
1744 		}
1745 		if (bcmp(&bcopy, bref, sizeof(bcopy))) {
1746 			hammer2_chain_drop(chain);
1747 			goto again;
1748 		}
1749 	} else {
1750 		hammer2_chain_ref(chain);
1751 		spin_unlock(&parent->core.cst.spin);
1752 	}
1753 
1754 	/*
1755 	 * chain is referenced but not locked.  We must lock the chain
1756 	 * to obtain definitive DUPLICATED/DELETED state
1757 	 */
1758 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1759 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1760 		hammer2_chain_lock(chain, how_maybe | HAMMER2_RESOLVE_NOREF);
1761 	} else {
1762 		hammer2_chain_lock(chain, how | HAMMER2_RESOLVE_NOREF);
1763 	}
1764 
1765 	/*
1766 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
1767 	 *
1768 	 * NOTE: Chain's key range is not relevant as there might be
1769 	 *	 one-offs within the range that are not deleted.
1770 	 *
1771 	 * NOTE: Lookups can race delete-duplicate because
1772 	 *	 delete-duplicate does not lock the parent's core
1773 	 *	 (they just use the spinlock on the core).  We must
1774 	 *	 check for races by comparing the DUPLICATED flag before
1775 	 *	 releasing the spinlock with the flag after locking the
1776 	 *	 chain.
1777 	 */
1778 	if (chain->flags & HAMMER2_CHAIN_DELETED) {
1779 		hammer2_chain_unlock(chain);
1780 		key_beg = *key_nextp;
1781 		if (key_beg == 0 || key_beg > key_end)
1782 			return(NULL);
1783 		goto again;
1784 	}
1785 
1786 	/*
1787 	 * If the chain element is an indirect block it becomes the new
1788 	 * parent and we loop on it.  We must maintain our top-down locks
1789 	 * to prevent the flusher from interfering (i.e. doing a
1790 	 * delete-duplicate and leaving us recursing down a deleted chain).
1791 	 *
1792 	 * The parent always has to be locked with at least RESOLVE_MAYBE
1793 	 * so we can access its data.  It might need a fixup if the caller
1794 	 * passed incompatible flags.  Be careful not to cause a deadlock
1795 	 * as a data-load requires an exclusive lock.
1796 	 *
1797 	 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
1798 	 * range is within the requested key range we return the indirect
1799 	 * block and do NOT loop.  This is usually only used to acquire
1800 	 * freemap nodes.
1801 	 */
1802 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1803 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1804 		hammer2_chain_unlock(parent);
1805 		*parentp = parent = chain;
1806 		goto again;
1807 	}
1808 done:
1809 	/*
1810 	 * All done, return the chain
1811 	 */
1812 	return (chain);
1813 }
1814 
1815 /*
1816  * After having issued a lookup we can iterate all matching keys.
1817  *
1818  * If chain is non-NULL we continue the iteration from just after it's index.
1819  *
1820  * If chain is NULL we assume the parent was exhausted and continue the
1821  * iteration at the next parent.
1822  *
1823  * parent must be locked on entry and remains locked throughout.  chain's
1824  * lock status must match flags.  Chain is always at least referenced.
1825  *
1826  * WARNING!  The MATCHIND flag does not apply to this function.
1827  */
1828 hammer2_chain_t *
1829 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
1830 		   hammer2_key_t *key_nextp,
1831 		   hammer2_key_t key_beg, hammer2_key_t key_end,
1832 		   int *cache_indexp, int flags)
1833 {
1834 	hammer2_chain_t *parent;
1835 	int how_maybe;
1836 	int ddflag;
1837 
1838 	/*
1839 	 * Calculate locking flags for upward recursion.
1840 	 */
1841 	how_maybe = HAMMER2_RESOLVE_MAYBE;
1842 	if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK))
1843 		how_maybe |= HAMMER2_RESOLVE_SHARED;
1844 
1845 	parent = *parentp;
1846 
1847 	/*
1848 	 * Calculate the next index and recalculate the parent if necessary.
1849 	 */
1850 	if (chain) {
1851 		key_beg = chain->bref.key +
1852 			  ((hammer2_key_t)1 << chain->bref.keybits);
1853 		if (flags & HAMMER2_LOOKUP_NOLOCK)
1854 			hammer2_chain_drop(chain);
1855 		else
1856 			hammer2_chain_unlock(chain);
1857 
1858 		/*
1859 		 * Any scan where the lookup returned degenerate data embedded
1860 		 * in the inode has an invalid index and must terminate.
1861 		 */
1862 		if (chain == parent)
1863 			return(NULL);
1864 		if (key_beg == 0 || key_beg > key_end)
1865 			return(NULL);
1866 		chain = NULL;
1867 	} else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
1868 		   parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1869 		/*
1870 		 * We reached the end of the iteration.
1871 		 */
1872 		return (NULL);
1873 	} else {
1874 		/*
1875 		 * Continue iteration with next parent unless the current
1876 		 * parent covers the range.
1877 		 */
1878 		key_beg = parent->bref.key +
1879 			  ((hammer2_key_t)1 << parent->bref.keybits);
1880 		if (key_beg == 0 || key_beg > key_end)
1881 			return (NULL);
1882 		parent = hammer2_chain_getparent(parentp, how_maybe);
1883 	}
1884 
1885 	/*
1886 	 * And execute
1887 	 */
1888 	return (hammer2_chain_lookup(parentp, key_nextp,
1889 				     key_beg, key_end,
1890 				     cache_indexp, flags, &ddflag));
1891 }
1892 
1893 /*
1894  * The raw scan function is similar to lookup/next but does not seek to a key.
1895  * Blockrefs are iterated via first_chain = (parent, NULL) and
1896  * next_chain = (parent, chain).
1897  *
1898  * The passed-in parent must be locked and its data resolved.  The returned
1899  * chain will be locked.  Pass chain == NULL to acquire the first sub-chain
1900  * under parent and then iterate with the passed-in chain (which this
1901  * function will unlock).
1902  */
1903 hammer2_chain_t *
1904 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t *chain,
1905 		   int *cache_indexp, int flags)
1906 {
1907 	hammer2_mount_t *hmp;
1908 	hammer2_blockref_t *base;
1909 	hammer2_blockref_t *bref;
1910 	hammer2_blockref_t bcopy;
1911 	hammer2_key_t key;
1912 	hammer2_key_t next_key;
1913 	int count = 0;
1914 	int how_always = HAMMER2_RESOLVE_ALWAYS;
1915 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
1916 	int how;
1917 	int generation;
1918 	int maxloops = 300000;
1919 
1920 	hmp = parent->hmp;
1921 
1922 	/*
1923 	 * Scan flags borrowed from lookup
1924 	 */
1925 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
1926 		how_maybe = how_always;
1927 		how = HAMMER2_RESOLVE_ALWAYS;
1928 	} else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
1929 		how = HAMMER2_RESOLVE_NEVER;
1930 	} else {
1931 		how = HAMMER2_RESOLVE_MAYBE;
1932 	}
1933 	if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK)) {
1934 		how_maybe |= HAMMER2_RESOLVE_SHARED;
1935 		how_always |= HAMMER2_RESOLVE_SHARED;
1936 		how |= HAMMER2_RESOLVE_SHARED;
1937 	}
1938 
1939 	/*
1940 	 * Calculate key to locate first/next element, unlocking the previous
1941 	 * element as we go.  Be careful, the key calculation can overflow.
1942 	 */
1943 	if (chain) {
1944 		key = chain->bref.key +
1945 		      ((hammer2_key_t)1 << chain->bref.keybits);
1946 		hammer2_chain_unlock(chain);
1947 		chain = NULL;
1948 		if (key == 0)
1949 			goto done;
1950 	} else {
1951 		key = 0;
1952 	}
1953 
1954 again:
1955 	if (--maxloops == 0)
1956 		panic("hammer2_chain_scan: maxloops");
1957 	/*
1958 	 * Locate the blockref array.  Currently we do a fully associative
1959 	 * search through the array.
1960 	 */
1961 	switch(parent->bref.type) {
1962 	case HAMMER2_BREF_TYPE_INODE:
1963 		/*
1964 		 * An inode with embedded data has no sub-chains.
1965 		 */
1966 		if (parent->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA)
1967 			goto done;
1968 		base = &parent->data->ipdata.u.blockset.blockref[0];
1969 		count = HAMMER2_SET_COUNT;
1970 		break;
1971 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1972 	case HAMMER2_BREF_TYPE_INDIRECT:
1973 		/*
1974 		 * Optimize indirect blocks in the INITIAL state to avoid
1975 		 * I/O.
1976 		 */
1977 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1978 			base = NULL;
1979 		} else {
1980 			if (parent->data == NULL)
1981 				panic("parent->data is NULL");
1982 			base = &parent->data->npdata[0];
1983 		}
1984 		count = parent->bytes / sizeof(hammer2_blockref_t);
1985 		break;
1986 	case HAMMER2_BREF_TYPE_VOLUME:
1987 		base = &hmp->voldata.sroot_blockset.blockref[0];
1988 		count = HAMMER2_SET_COUNT;
1989 		break;
1990 	case HAMMER2_BREF_TYPE_FREEMAP:
1991 		base = &hmp->voldata.freemap_blockset.blockref[0];
1992 		count = HAMMER2_SET_COUNT;
1993 		break;
1994 	default:
1995 		panic("hammer2_chain_lookup: unrecognized blockref type: %d",
1996 		      parent->bref.type);
1997 		base = NULL;	/* safety */
1998 		count = 0;	/* safety */
1999 	}
2000 
2001 	/*
2002 	 * Merged scan to find next candidate.
2003 	 *
2004 	 * hammer2_base_*() functions require the parent->core.live_* fields
2005 	 * to be synchronized.
2006 	 *
2007 	 * We need to hold the spinlock to access the block array and RB tree
2008 	 * and to interlock chain creation.
2009 	 */
2010 	if ((parent->core.flags & HAMMER2_CORE_COUNTEDBREFS) == 0)
2011 		hammer2_chain_countbrefs(parent, base, count);
2012 
2013 	next_key = 0;
2014 	spin_lock(&parent->core.cst.spin);
2015 	chain = hammer2_combined_find(parent, base, count,
2016 				      cache_indexp, &next_key,
2017 				      key, HAMMER2_KEY_MAX,
2018 				      &bref);
2019 	generation = parent->core.generation;
2020 
2021 	/*
2022 	 * Exhausted parent chain, we're done.
2023 	 */
2024 	if (bref == NULL) {
2025 		spin_unlock(&parent->core.cst.spin);
2026 		KKASSERT(chain == NULL);
2027 		goto done;
2028 	}
2029 
2030 	/*
2031 	 * Selected from blockref or in-memory chain.
2032 	 */
2033 	if (chain == NULL) {
2034 		bcopy = *bref;
2035 		spin_unlock(&parent->core.cst.spin);
2036 		chain = hammer2_chain_get(parent, generation, &bcopy);
2037 		if (chain == NULL) {
2038 			kprintf("retry scan parent %p keys %016jx\n",
2039 				parent, key);
2040 			goto again;
2041 		}
2042 		if (bcmp(&bcopy, bref, sizeof(bcopy))) {
2043 			hammer2_chain_drop(chain);
2044 			chain = NULL;
2045 			goto again;
2046 		}
2047 	} else {
2048 		hammer2_chain_ref(chain);
2049 		spin_unlock(&parent->core.cst.spin);
2050 	}
2051 
2052 	/*
2053 	 * chain is referenced but not locked.  We must lock the chain
2054 	 * to obtain definitive DUPLICATED/DELETED state
2055 	 */
2056 	hammer2_chain_lock(chain, how | HAMMER2_RESOLVE_NOREF);
2057 
2058 	/*
2059 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2060 	 *
2061 	 * NOTE: chain's key range is not relevant as there might be
2062 	 *	 one-offs within the range that are not deleted.
2063 	 *
2064 	 * NOTE: XXX this could create problems with scans used in
2065 	 *	 situations other than mount-time recovery.
2066 	 *
2067 	 * NOTE: Lookups can race delete-duplicate because
2068 	 *	 delete-duplicate does not lock the parent's core
2069 	 *	 (they just use the spinlock on the core).  We must
2070 	 *	 check for races by comparing the DUPLICATED flag before
2071 	 *	 releasing the spinlock with the flag after locking the
2072 	 *	 chain.
2073 	 */
2074 	if (chain->flags & HAMMER2_CHAIN_DELETED) {
2075 		hammer2_chain_unlock(chain);
2076 		chain = NULL;
2077 
2078 		key = next_key;
2079 		if (key == 0)
2080 			goto done;
2081 		goto again;
2082 	}
2083 
2084 done:
2085 	/*
2086 	 * All done, return the chain or NULL
2087 	 */
2088 	return (chain);
2089 }
2090 
2091 /*
2092  * Create and return a new hammer2 system memory structure of the specified
2093  * key, type and size and insert it under (*parentp).  This is a full
2094  * insertion, based on the supplied key/keybits, and may involve creating
2095  * indirect blocks and moving other chains around via delete/duplicate.
2096  *
2097  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
2098  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
2099  * FULL.  This typically means that the caller is creating the chain after
2100  * doing a hammer2_chain_lookup().
2101  *
2102  * (*parentp) must be exclusive locked and may be replaced on return
2103  * depending on how much work the function had to do.
2104  *
2105  * (*chainp) usually starts out NULL and returns the newly created chain,
2106  * but if the caller desires the caller may allocate a disconnected chain
2107  * and pass it in instead.
2108  *
2109  * This function should NOT be used to insert INDIRECT blocks.  It is
2110  * typically used to create/insert inodes and data blocks.
2111  *
2112  * Caller must pass-in an exclusively locked parent the new chain is to
2113  * be inserted under, and optionally pass-in a disconnected, exclusively
2114  * locked chain to insert (else we create a new chain).  The function will
2115  * adjust (*parentp) as necessary, create or connect the chain, and
2116  * return an exclusively locked chain in *chainp.
2117  */
2118 int
2119 hammer2_chain_create(hammer2_trans_t *trans, hammer2_chain_t **parentp,
2120 		     hammer2_chain_t **chainp, hammer2_pfsmount_t *pmp,
2121 		     hammer2_key_t key, int keybits, int type, size_t bytes,
2122 		     int flags)
2123 {
2124 	hammer2_mount_t *hmp;
2125 	hammer2_chain_t *chain;
2126 	hammer2_chain_t *parent;
2127 	hammer2_blockref_t *base;
2128 	hammer2_blockref_t dummy;
2129 	int allocated = 0;
2130 	int error = 0;
2131 	int count;
2132 	int maxloops = 300000;
2133 
2134 	/*
2135 	 * Topology may be crossing a PFS boundary.
2136 	 */
2137 	parent = *parentp;
2138 	KKASSERT(ccms_thread_lock_owned(&parent->core.cst));
2139 	hmp = parent->hmp;
2140 	chain = *chainp;
2141 
2142 	if (chain == NULL) {
2143 		/*
2144 		 * First allocate media space and construct the dummy bref,
2145 		 * then allocate the in-memory chain structure.  Set the
2146 		 * INITIAL flag for fresh chains which do not have embedded
2147 		 * data.
2148 		 */
2149 		bzero(&dummy, sizeof(dummy));
2150 		dummy.type = type;
2151 		dummy.key = key;
2152 		dummy.keybits = keybits;
2153 		dummy.data_off = hammer2_getradix(bytes);
2154 		dummy.methods = parent->bref.methods;
2155 		chain = hammer2_chain_alloc(hmp, pmp, trans, &dummy);
2156 		hammer2_chain_core_alloc(trans, chain);
2157 
2158 		/*
2159 		 * Lock the chain manually, chain_lock will load the chain
2160 		 * which we do NOT want to do.  (note: chain->refs is set
2161 		 * to 1 by chain_alloc() for us, but lockcnt is not).
2162 		 */
2163 		chain->lockcnt = 1;
2164 		ccms_thread_lock(&chain->core.cst, CCMS_STATE_EXCLUSIVE);
2165 		allocated = 1;
2166 
2167 		/*
2168 		 * We do NOT set INITIAL here (yet).  INITIAL is only
2169 		 * used for indirect blocks.
2170 		 *
2171 		 * Recalculate bytes to reflect the actual media block
2172 		 * allocation.
2173 		 */
2174 		bytes = (hammer2_off_t)1 <<
2175 			(int)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
2176 		chain->bytes = bytes;
2177 
2178 		switch(type) {
2179 		case HAMMER2_BREF_TYPE_VOLUME:
2180 		case HAMMER2_BREF_TYPE_FREEMAP:
2181 			panic("hammer2_chain_create: called with volume type");
2182 			break;
2183 		case HAMMER2_BREF_TYPE_INDIRECT:
2184 			panic("hammer2_chain_create: cannot be used to"
2185 			      "create indirect block");
2186 			break;
2187 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2188 			panic("hammer2_chain_create: cannot be used to"
2189 			      "create freemap root or node");
2190 			break;
2191 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2192 			KKASSERT(bytes == sizeof(chain->data->bmdata));
2193 			/* fall through */
2194 		case HAMMER2_BREF_TYPE_INODE:
2195 		case HAMMER2_BREF_TYPE_DATA:
2196 		default:
2197 			/*
2198 			 * leave chain->data NULL, set INITIAL
2199 			 */
2200 			KKASSERT(chain->data == NULL);
2201 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
2202 			break;
2203 		}
2204 
2205 		/*
2206 		 * Set statistics for pending updates.  These will be
2207 		 * synchronized by the flush code.
2208 		 */
2209 		switch(type) {
2210 		case HAMMER2_BREF_TYPE_INODE:
2211 			chain->inode_count = 1;
2212 			break;
2213 		case HAMMER2_BREF_TYPE_DATA:
2214 		case HAMMER2_BREF_TYPE_INDIRECT:
2215 			chain->data_count = chain->bytes;
2216 			break;
2217 		}
2218 	} else {
2219 		/*
2220 		 * We are reattaching a previously deleted chain, possibly
2221 		 * under a new parent and possibly with a new key/keybits.
2222 		 * The chain does not have to be in a modified state.  The
2223 		 * UPDATE flag will be set later on in this routine.
2224 		 *
2225 		 * Do NOT mess with the current state of the INITIAL flag.
2226 		 */
2227 		chain->bref.key = key;
2228 		chain->bref.keybits = keybits;
2229 		if (chain->flags & HAMMER2_CHAIN_DELETED)
2230 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2231 		KKASSERT(chain->parent == NULL);
2232 	}
2233 
2234 	/*
2235 	 * Calculate how many entries we have in the blockref array and
2236 	 * determine if an indirect block is required.
2237 	 */
2238 again:
2239 	if (--maxloops == 0)
2240 		panic("hammer2_chain_create: maxloops");
2241 
2242 	switch(parent->bref.type) {
2243 	case HAMMER2_BREF_TYPE_INODE:
2244 		KKASSERT((parent->data->ipdata.op_flags &
2245 			  HAMMER2_OPFLAG_DIRECTDATA) == 0);
2246 		KKASSERT(parent->data != NULL);
2247 		base = &parent->data->ipdata.u.blockset.blockref[0];
2248 		count = HAMMER2_SET_COUNT;
2249 		break;
2250 	case HAMMER2_BREF_TYPE_INDIRECT:
2251 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2252 		if (parent->flags & HAMMER2_CHAIN_INITIAL)
2253 			base = NULL;
2254 		else
2255 			base = &parent->data->npdata[0];
2256 		count = parent->bytes / sizeof(hammer2_blockref_t);
2257 		break;
2258 	case HAMMER2_BREF_TYPE_VOLUME:
2259 		KKASSERT(parent->data != NULL);
2260 		base = &hmp->voldata.sroot_blockset.blockref[0];
2261 		count = HAMMER2_SET_COUNT;
2262 		break;
2263 	case HAMMER2_BREF_TYPE_FREEMAP:
2264 		KKASSERT(parent->data != NULL);
2265 		base = &hmp->voldata.freemap_blockset.blockref[0];
2266 		count = HAMMER2_SET_COUNT;
2267 		break;
2268 	default:
2269 		panic("hammer2_chain_create: unrecognized blockref type: %d",
2270 		      parent->bref.type);
2271 		base = NULL;
2272 		count = 0;
2273 		break;
2274 	}
2275 
2276 	/*
2277 	 * Make sure we've counted the brefs
2278 	 */
2279 	if ((parent->core.flags & HAMMER2_CORE_COUNTEDBREFS) == 0)
2280 		hammer2_chain_countbrefs(parent, base, count);
2281 
2282 	KKASSERT(parent->core.live_count >= 0 &&
2283 		 parent->core.live_count <= count);
2284 
2285 	/*
2286 	 * If no free blockref could be found we must create an indirect
2287 	 * block and move a number of blockrefs into it.  With the parent
2288 	 * locked we can safely lock each child in order to delete+duplicate
2289 	 * it without causing a deadlock.
2290 	 *
2291 	 * This may return the new indirect block or the old parent depending
2292 	 * on where the key falls.  NULL is returned on error.
2293 	 */
2294 	if (parent->core.live_count == count) {
2295 		hammer2_chain_t *nparent;
2296 
2297 		nparent = hammer2_chain_create_indirect(trans, parent,
2298 							key, keybits,
2299 							type, &error);
2300 		if (nparent == NULL) {
2301 			if (allocated)
2302 				hammer2_chain_drop(chain);
2303 			chain = NULL;
2304 			goto done;
2305 		}
2306 		if (parent != nparent) {
2307 			hammer2_chain_unlock(parent);
2308 			parent = *parentp = nparent;
2309 		}
2310 		goto again;
2311 	}
2312 
2313 	/*
2314 	 * Link the chain into its parent.
2315 	 */
2316 	if (chain->parent != NULL)
2317 		panic("hammer2: hammer2_chain_create: chain already connected");
2318 	KKASSERT(chain->parent == NULL);
2319 	hammer2_chain_insert(parent, chain,
2320 			     HAMMER2_CHAIN_INSERT_SPIN |
2321 			     HAMMER2_CHAIN_INSERT_LIVE,
2322 			     0);
2323 
2324 	if (allocated) {
2325 		/*
2326 		 * Mark the newly created chain modified.  This will cause
2327 		 * UPDATE to be set.
2328 		 *
2329 		 * Device buffers are not instantiated for DATA elements
2330 		 * as these are handled by logical buffers.
2331 		 *
2332 		 * Indirect and freemap node indirect blocks are handled
2333 		 * by hammer2_chain_create_indirect() and not by this
2334 		 * function.
2335 		 *
2336 		 * Data for all other bref types is expected to be
2337 		 * instantiated (INODE, LEAF).
2338 		 */
2339 		switch(chain->bref.type) {
2340 		case HAMMER2_BREF_TYPE_DATA:
2341 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2342 		case HAMMER2_BREF_TYPE_INODE:
2343 			hammer2_chain_modify(trans, chain,
2344 					     HAMMER2_MODIFY_OPTDATA);
2345 			break;
2346 		default:
2347 			/*
2348 			 * Remaining types are not supported by this function.
2349 			 * In particular, INDIRECT and LEAF_NODE types are
2350 			 * handled by create_indirect().
2351 			 */
2352 			panic("hammer2_chain_create: bad type: %d",
2353 			      chain->bref.type);
2354 			/* NOT REACHED */
2355 			break;
2356 		}
2357 	} else {
2358 		/*
2359 		 * When reconnecting a chain we must set UPDATE and
2360 		 * setflush so the flush recognizes that it must update
2361 		 * the bref in the parent.
2362 		 */
2363 		if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
2364 			hammer2_chain_ref(chain);
2365 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
2366 		}
2367 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
2368 		    (flags & HAMMER2_INSERT_NOSTATS) == 0) {
2369 			KKASSERT(chain->data);
2370 			chain->inode_count_up +=
2371 				chain->data->ipdata.inode_count;
2372 			chain->data_count_up +=
2373 				chain->data->ipdata.data_count;
2374 		}
2375 	}
2376 
2377 	/*
2378 	 * We must setflush(parent) to ensure that it recurses through to
2379 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
2380 	 * already set in the chain (so it won't recurse up to set it in the
2381 	 * parent).
2382 	 */
2383 	hammer2_chain_setflush(trans, parent);
2384 
2385 done:
2386 	*chainp = chain;
2387 
2388 	return (error);
2389 }
2390 
2391 /*
2392  * Move the chain from its old parent to a new parent.  The chain must have
2393  * already been deleted or already disconnected (or never associated) with
2394  * a parent.  The chain is reassociated with the new parent and the deleted
2395  * flag will be cleared (no longer deleted).  The chain's modification state
2396  * is not altered.
2397  *
2398  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
2399  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
2400  * FULL.  This typically means that the caller is creating the chain after
2401  * doing a hammer2_chain_lookup().
2402  *
2403  * A non-NULL bref is typically passed when key and keybits must be overridden.
2404  * Note that hammer2_cluster_duplicate() *ONLY* uses the key and keybits fields
2405  * from a passed-in bref and uses the old chain's bref for everything else.
2406  *
2407  * If (parent) is non-NULL then the new duplicated chain is inserted under
2408  * the parent.
2409  *
2410  * If (parent) is NULL then the newly duplicated chain is not inserted
2411  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
2412  * passing into hammer2_chain_create() after this function returns).
2413  *
2414  * WARNING! This function calls create which means it can insert indirect
2415  *	    blocks.  This can cause other unrelated chains in the parent to
2416  *	    be moved to a newly inserted indirect block in addition to the
2417  *	    specific chain.
2418  */
2419 void
2420 hammer2_chain_rename(hammer2_trans_t *trans, hammer2_blockref_t *bref,
2421 		     hammer2_chain_t **parentp, hammer2_chain_t *chain,
2422 		     int flags)
2423 {
2424 	hammer2_mount_t *hmp;
2425 	hammer2_chain_t *parent;
2426 	size_t bytes;
2427 
2428 	/*
2429 	 * WARNING!  We should never resolve DATA to device buffers
2430 	 *	     (XXX allow it if the caller did?), and since
2431 	 *	     we currently do not have the logical buffer cache
2432 	 *	     buffer in-hand to fix its cached physical offset
2433 	 *	     we also force the modify code to not COW it. XXX
2434 	 */
2435 	hmp = chain->hmp;
2436 	KKASSERT(chain->parent == NULL);
2437 
2438 	/*
2439 	 * Now create a duplicate of the chain structure, associating
2440 	 * it with the same core, making it the same size, pointing it
2441 	 * to the same bref (the same media block).
2442 	 */
2443 	if (bref == NULL)
2444 		bref = &chain->bref;
2445 	bytes = (hammer2_off_t)1 <<
2446 		(int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
2447 
2448 	/*
2449 	 * If parent is not NULL the duplicated chain will be entered under
2450 	 * the parent and the UPDATE bit set to tell flush to update
2451 	 * the blockref.
2452 	 *
2453 	 * We must setflush(parent) to ensure that it recurses through to
2454 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
2455 	 * already set in the chain (so it won't recurse up to set it in the
2456 	 * parent).
2457 	 *
2458 	 * Having both chains locked is extremely important for atomicy.
2459 	 */
2460 	if (parentp && (parent = *parentp) != NULL) {
2461 		KKASSERT(ccms_thread_lock_owned(&parent->core.cst));
2462 		KKASSERT(parent->refs > 0);
2463 
2464 		hammer2_chain_create(trans, parentp, &chain, chain->pmp,
2465 				     bref->key, bref->keybits, bref->type,
2466 				     chain->bytes, flags);
2467 		KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
2468 		hammer2_chain_setflush(trans, *parentp);
2469 	}
2470 }
2471 
2472 /*
2473  * Helper function for deleting chains.
2474  *
2475  * The chain is removed from the live view (the RBTREE) as well as the parent's
2476  * blockmap.  Both chain and its parent must be locked.
2477  */
2478 static void
2479 _hammer2_chain_delete_helper(hammer2_trans_t *trans,
2480 			     hammer2_chain_t *parent, hammer2_chain_t *chain,
2481 			     int flags)
2482 {
2483 	hammer2_mount_t *hmp;
2484 
2485 	KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0);
2486 	hmp = chain->hmp;
2487 
2488 	if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
2489 		/*
2490 		 * Chain is blockmapped, so there must be a parent.
2491 		 * Atomically remove the chain from the parent and remove
2492 		 * the blockmap entry.
2493 		 */
2494 		hammer2_blockref_t *base;
2495 		int count;
2496 
2497 		KKASSERT(parent != NULL);
2498 		KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
2499 		hammer2_chain_modify(trans, parent,
2500 				     HAMMER2_MODIFY_OPTDATA);
2501 
2502 		/*
2503 		 * Calculate blockmap pointer
2504 		 */
2505 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2506 		spin_lock(&parent->core.cst.spin);
2507 
2508 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2509 		atomic_add_int(&parent->core.live_count, -1);
2510 		++parent->core.generation;
2511 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
2512 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
2513 		--parent->core.chain_count;
2514 		chain->parent = NULL;
2515 
2516 		switch(parent->bref.type) {
2517 		case HAMMER2_BREF_TYPE_INODE:
2518 			/*
2519 			 * Access the inode's block array.  However, there
2520 			 * is no block array if the inode is flagged
2521 			 * DIRECTDATA.  The DIRECTDATA case typicaly only
2522 			 * occurs when a hardlink has been shifted up the
2523 			 * tree and the original inode gets replaced with
2524 			 * an OBJTYPE_HARDLINK placeholding inode.
2525 			 */
2526 			if (parent->data &&
2527 			    (parent->data->ipdata.op_flags &
2528 			     HAMMER2_OPFLAG_DIRECTDATA) == 0) {
2529 				base =
2530 				   &parent->data->ipdata.u.blockset.blockref[0];
2531 			} else {
2532 				base = NULL;
2533 			}
2534 			count = HAMMER2_SET_COUNT;
2535 			break;
2536 		case HAMMER2_BREF_TYPE_INDIRECT:
2537 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2538 			if (parent->data)
2539 				base = &parent->data->npdata[0];
2540 			else
2541 				base = NULL;
2542 			count = parent->bytes / sizeof(hammer2_blockref_t);
2543 			break;
2544 		case HAMMER2_BREF_TYPE_VOLUME:
2545 			base = &hmp->voldata.sroot_blockset.blockref[0];
2546 			count = HAMMER2_SET_COUNT;
2547 			break;
2548 		case HAMMER2_BREF_TYPE_FREEMAP:
2549 			base = &parent->data->npdata[0];
2550 			count = HAMMER2_SET_COUNT;
2551 			break;
2552 		default:
2553 			base = NULL;
2554 			count = 0;
2555 			panic("hammer2_flush_pass2: "
2556 			      "unrecognized blockref type: %d",
2557 			      parent->bref.type);
2558 		}
2559 
2560 		/*
2561 		 * delete blockmapped chain from its parent.
2562 		 *
2563 		 * The parent is not affected by any statistics in chain
2564 		 * which are pending synchronization.  That is, there is
2565 		 * nothing to undo in the parent since they have not yet
2566 		 * been incorporated into the parent.
2567 		 *
2568 		 * The parent is affected by statistics stored in inodes.
2569 		 * Those have already been synchronized, so they must be
2570 		 * undone.  XXX split update possible w/delete in middle?
2571 		 */
2572 		if (base) {
2573 			if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
2574 			    (flags & HAMMER2_DELETE_NOSTATS) == 0) {
2575 				KKASSERT(chain->data != NULL);
2576 				parent->data_count -=
2577 					chain->data->ipdata.data_count;
2578 				parent->inode_count -=
2579 					chain->data->ipdata.inode_count;
2580 			}
2581 
2582 			int cache_index = -1;
2583 			hammer2_base_delete(trans, parent, base, count,
2584 					    &cache_index, chain);
2585 		}
2586 		spin_unlock(&parent->core.cst.spin);
2587 	} else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
2588 		/*
2589 		 * Chain is not blockmapped but a parent is present.
2590 		 * Atomically remove the chain from the parent.  There is
2591 		 * no blockmap entry to remove.
2592 		 *
2593 		 * Because chain was associated with a parent but not
2594 		 * synchronized, the chain's *_count_up fields contain
2595 		 * inode adjustment statistics which must be undone.
2596 		 */
2597 		spin_lock(&parent->core.cst.spin);
2598 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
2599 		    (flags & HAMMER2_DELETE_NOSTATS) == 0) {
2600 			KKASSERT(chain->data != NULL);
2601 			chain->data_count_up -=
2602 				chain->data->ipdata.data_count;
2603 			chain->inode_count_up -=
2604 				chain->data->ipdata.inode_count;
2605 		}
2606 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2607 		atomic_add_int(&parent->core.live_count, -1);
2608 		++parent->core.generation;
2609 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
2610 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
2611 		--parent->core.chain_count;
2612 		chain->parent = NULL;
2613 		spin_unlock(&parent->core.cst.spin);
2614 	} else {
2615 		/*
2616 		 * Chain is not blockmapped and has no parent.  This
2617 		 * is a degenerate case.
2618 		 */
2619 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2620 	}
2621 
2622 	/*
2623 	 * If the deletion is permanent (i.e. the chain is not simply being
2624 	 * moved within the topology), adjust the freemap to indicate that
2625 	 * the block *might* be freeable.  bulkfree must still determine
2626 	 * that it is actually freeable.
2627 	 */
2628 	if ((flags & HAMMER2_DELETE_PERMANENT) &&
2629 	    chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
2630 	    chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP_LEAF &&
2631 	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
2632 		hammer2_freemap_adjust(trans, hmp, &chain->bref,
2633 				       HAMMER2_FREEMAP_DOMAYFREE);
2634 	}
2635 }
2636 
2637 /*
2638  * Create an indirect block that covers one or more of the elements in the
2639  * current parent.  Either returns the existing parent with no locking or
2640  * ref changes or returns the new indirect block locked and referenced
2641  * and leaving the original parent lock/ref intact as well.
2642  *
2643  * If an error occurs, NULL is returned and *errorp is set to the error.
2644  *
2645  * The returned chain depends on where the specified key falls.
2646  *
2647  * The key/keybits for the indirect mode only needs to follow three rules:
2648  *
2649  * (1) That all elements underneath it fit within its key space and
2650  *
2651  * (2) That all elements outside it are outside its key space.
2652  *
2653  * (3) When creating the new indirect block any elements in the current
2654  *     parent that fit within the new indirect block's keyspace must be
2655  *     moved into the new indirect block.
2656  *
2657  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
2658  *     keyspace the the current parent, but lookup/iteration rules will
2659  *     ensure (and must ensure) that rule (2) for all parents leading up
2660  *     to the nearest inode or the root volume header is adhered to.  This
2661  *     is accomplished by always recursing through matching keyspaces in
2662  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
2663  *
2664  * The current implementation calculates the current worst-case keyspace by
2665  * iterating the current parent and then divides it into two halves, choosing
2666  * whichever half has the most elements (not necessarily the half containing
2667  * the requested key).
2668  *
2669  * We can also opt to use the half with the least number of elements.  This
2670  * causes lower-numbered keys (aka logical file offsets) to recurse through
2671  * fewer indirect blocks and higher-numbered keys to recurse through more.
2672  * This also has the risk of not moving enough elements to the new indirect
2673  * block and being forced to create several indirect blocks before the element
2674  * can be inserted.
2675  *
2676  * Must be called with an exclusively locked parent.
2677  */
2678 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
2679 				hammer2_key_t *keyp, int keybits,
2680 				hammer2_blockref_t *base, int count);
2681 static int hammer2_chain_indkey_normal(hammer2_chain_t *parent,
2682 				hammer2_key_t *keyp, int keybits,
2683 				hammer2_blockref_t *base, int count);
2684 static
2685 hammer2_chain_t *
2686 hammer2_chain_create_indirect(hammer2_trans_t *trans, hammer2_chain_t *parent,
2687 			      hammer2_key_t create_key, int create_bits,
2688 			      int for_type, int *errorp)
2689 {
2690 	hammer2_mount_t *hmp;
2691 	hammer2_blockref_t *base;
2692 	hammer2_blockref_t *bref;
2693 	hammer2_blockref_t bcopy;
2694 	hammer2_chain_t *chain;
2695 	hammer2_chain_t *ichain;
2696 	hammer2_chain_t dummy;
2697 	hammer2_key_t key = create_key;
2698 	hammer2_key_t key_beg;
2699 	hammer2_key_t key_end;
2700 	hammer2_key_t key_next;
2701 	int keybits = create_bits;
2702 	int count;
2703 	int nbytes;
2704 	int cache_index;
2705 	int loops;
2706 	int reason;
2707 	int generation;
2708 	int maxloops = 300000;
2709 
2710 	/*
2711 	 * Calculate the base blockref pointer or NULL if the chain
2712 	 * is known to be empty.  We need to calculate the array count
2713 	 * for RB lookups either way.
2714 	 */
2715 	hmp = parent->hmp;
2716 	*errorp = 0;
2717 	KKASSERT(ccms_thread_lock_owned(&parent->core.cst));
2718 
2719 	/*hammer2_chain_modify(trans, &parent, HAMMER2_MODIFY_OPTDATA);*/
2720 	if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2721 		base = NULL;
2722 
2723 		switch(parent->bref.type) {
2724 		case HAMMER2_BREF_TYPE_INODE:
2725 			count = HAMMER2_SET_COUNT;
2726 			break;
2727 		case HAMMER2_BREF_TYPE_INDIRECT:
2728 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2729 			count = parent->bytes / sizeof(hammer2_blockref_t);
2730 			break;
2731 		case HAMMER2_BREF_TYPE_VOLUME:
2732 			count = HAMMER2_SET_COUNT;
2733 			break;
2734 		case HAMMER2_BREF_TYPE_FREEMAP:
2735 			count = HAMMER2_SET_COUNT;
2736 			break;
2737 		default:
2738 			panic("hammer2_chain_create_indirect: "
2739 			      "unrecognized blockref type: %d",
2740 			      parent->bref.type);
2741 			count = 0;
2742 			break;
2743 		}
2744 	} else {
2745 		switch(parent->bref.type) {
2746 		case HAMMER2_BREF_TYPE_INODE:
2747 			base = &parent->data->ipdata.u.blockset.blockref[0];
2748 			count = HAMMER2_SET_COUNT;
2749 			break;
2750 		case HAMMER2_BREF_TYPE_INDIRECT:
2751 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2752 			base = &parent->data->npdata[0];
2753 			count = parent->bytes / sizeof(hammer2_blockref_t);
2754 			break;
2755 		case HAMMER2_BREF_TYPE_VOLUME:
2756 			base = &hmp->voldata.sroot_blockset.blockref[0];
2757 			count = HAMMER2_SET_COUNT;
2758 			break;
2759 		case HAMMER2_BREF_TYPE_FREEMAP:
2760 			base = &hmp->voldata.freemap_blockset.blockref[0];
2761 			count = HAMMER2_SET_COUNT;
2762 			break;
2763 		default:
2764 			panic("hammer2_chain_create_indirect: "
2765 			      "unrecognized blockref type: %d",
2766 			      parent->bref.type);
2767 			count = 0;
2768 			break;
2769 		}
2770 	}
2771 
2772 	/*
2773 	 * dummy used in later chain allocation (no longer used for lookups).
2774 	 */
2775 	bzero(&dummy, sizeof(dummy));
2776 
2777 	/*
2778 	 * When creating an indirect block for a freemap node or leaf
2779 	 * the key/keybits must be fitted to static radix levels because
2780 	 * particular radix levels use particular reserved blocks in the
2781 	 * related zone.
2782 	 *
2783 	 * This routine calculates the key/radix of the indirect block
2784 	 * we need to create, and whether it is on the high-side or the
2785 	 * low-side.
2786 	 */
2787 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
2788 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
2789 		keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
2790 						       base, count);
2791 	} else {
2792 		keybits = hammer2_chain_indkey_normal(parent, &key, keybits,
2793 						      base, count);
2794 	}
2795 
2796 	/*
2797 	 * Normalize the key for the radix being represented, keeping the
2798 	 * high bits and throwing away the low bits.
2799 	 */
2800 	key &= ~(((hammer2_key_t)1 << keybits) - 1);
2801 
2802 	/*
2803 	 * How big should our new indirect block be?  It has to be at least
2804 	 * as large as its parent.
2805 	 */
2806 	if (parent->bref.type == HAMMER2_BREF_TYPE_INODE)
2807 		nbytes = HAMMER2_IND_BYTES_MIN;
2808 	else
2809 		nbytes = HAMMER2_IND_BYTES_MAX;
2810 	if (nbytes < count * sizeof(hammer2_blockref_t))
2811 		nbytes = count * sizeof(hammer2_blockref_t);
2812 
2813 	/*
2814 	 * Ok, create our new indirect block
2815 	 */
2816 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
2817 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
2818 		dummy.bref.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
2819 	} else {
2820 		dummy.bref.type = HAMMER2_BREF_TYPE_INDIRECT;
2821 	}
2822 	dummy.bref.key = key;
2823 	dummy.bref.keybits = keybits;
2824 	dummy.bref.data_off = hammer2_getradix(nbytes);
2825 	dummy.bref.methods = parent->bref.methods;
2826 
2827 	ichain = hammer2_chain_alloc(hmp, parent->pmp, trans, &dummy.bref);
2828 	atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
2829 	hammer2_chain_core_alloc(trans, ichain);
2830 	hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
2831 	hammer2_chain_drop(ichain);	/* excess ref from alloc */
2832 
2833 	/*
2834 	 * We have to mark it modified to allocate its block, but use
2835 	 * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
2836 	 * it won't be acted upon by the flush code.
2837 	 */
2838 	hammer2_chain_modify(trans, ichain, HAMMER2_MODIFY_OPTDATA);
2839 
2840 	/*
2841 	 * Iterate the original parent and move the matching brefs into
2842 	 * the new indirect block.
2843 	 *
2844 	 * XXX handle flushes.
2845 	 */
2846 	key_beg = 0;
2847 	key_end = HAMMER2_KEY_MAX;
2848 	cache_index = 0;
2849 	spin_lock(&parent->core.cst.spin);
2850 	loops = 0;
2851 	reason = 0;
2852 
2853 	for (;;) {
2854 		if (++loops > 100000) {
2855 		    spin_unlock(&parent->core.cst.spin);
2856 		    panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
2857 			  reason, parent, base, count, key_next);
2858 		}
2859 
2860 		/*
2861 		 * NOTE: spinlock stays intact, returned chain (if not NULL)
2862 		 *	 is not referenced or locked which means that we
2863 		 *	 cannot safely check its flagged / deletion status
2864 		 *	 until we lock it.
2865 		 */
2866 		chain = hammer2_combined_find(parent, base, count,
2867 					      &cache_index, &key_next,
2868 					      key_beg, key_end,
2869 					      &bref);
2870 		generation = parent->core.generation;
2871 		if (bref == NULL)
2872 			break;
2873 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
2874 
2875 		/*
2876 		 * Skip keys that are not within the key/radix of the new
2877 		 * indirect block.  They stay in the parent.
2878 		 */
2879 		if ((~(((hammer2_key_t)1 << keybits) - 1) &
2880 		    (key ^ bref->key)) != 0) {
2881 			goto next_key_spinlocked;
2882 		}
2883 
2884 		/*
2885 		 * Load the new indirect block by acquiring the related
2886 		 * chains (potentially from media as it might not be
2887 		 * in-memory).  Then move it to the new parent (ichain)
2888 		 * via DELETE-DUPLICATE.
2889 		 *
2890 		 * chain is referenced but not locked.  We must lock the
2891 		 * chain to obtain definitive DUPLICATED/DELETED state
2892 		 */
2893 		if (chain) {
2894 			/*
2895 			 * Use chain already present in the RBTREE
2896 			 */
2897 			hammer2_chain_ref(chain);
2898 			spin_unlock(&parent->core.cst.spin);
2899 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER |
2900 						  HAMMER2_RESOLVE_NOREF);
2901 		} else {
2902 			/*
2903 			 * Get chain for blockref element.  _get returns NULL
2904 			 * on insertion race.
2905 			 */
2906 			bcopy = *bref;
2907 			spin_unlock(&parent->core.cst.spin);
2908 			chain = hammer2_chain_get(parent, generation, &bcopy);
2909 			if (chain == NULL) {
2910 				reason = 1;
2911 				spin_lock(&parent->core.cst.spin);
2912 				continue;
2913 			}
2914 			if (bcmp(&bcopy, bref, sizeof(bcopy))) {
2915 				kprintf("REASON 2\n");
2916 				reason = 2;
2917 				hammer2_chain_drop(chain);
2918 				spin_lock(&parent->core.cst.spin);
2919 				continue;
2920 			}
2921 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER |
2922 						  HAMMER2_RESOLVE_NOREF);
2923 		}
2924 
2925 		/*
2926 		 * This is always live so if the chain has been deleted
2927 		 * we raced someone and we have to retry.
2928 		 *
2929 		 * NOTE: Lookups can race delete-duplicate because
2930 		 *	 delete-duplicate does not lock the parent's core
2931 		 *	 (they just use the spinlock on the core).  We must
2932 		 *	 check for races by comparing the DUPLICATED flag before
2933 		 *	 releasing the spinlock with the flag after locking the
2934 		 *	 chain.
2935 		 *
2936 		 *	 (note reversed logic for this one)
2937 		 */
2938 		if (chain->flags & HAMMER2_CHAIN_DELETED) {
2939 			hammer2_chain_unlock(chain);
2940 			goto next_key;
2941 		}
2942 
2943 		/*
2944 		 * Shift the chain to the indirect block.
2945 		 *
2946 		 * WARNING! No reason for us to load chain data, pass NOSTATS
2947 		 *	    to prevent delete/insert from trying to access
2948 		 *	    inode stats (and thus asserting if there is no
2949 		 *	    chain->data loaded).
2950 		 */
2951 		hammer2_chain_delete(trans, parent, chain,
2952 				     HAMMER2_DELETE_NOSTATS);
2953 		hammer2_chain_rename(trans, NULL, &ichain, chain,
2954 				     HAMMER2_INSERT_NOSTATS);
2955 		hammer2_chain_unlock(chain);
2956 		KKASSERT(parent->refs > 0);
2957 		chain = NULL;
2958 next_key:
2959 		spin_lock(&parent->core.cst.spin);
2960 next_key_spinlocked:
2961 		if (--maxloops == 0)
2962 			panic("hammer2_chain_create_indirect: maxloops");
2963 		reason = 4;
2964 		if (key_next == 0 || key_next > key_end)
2965 			break;
2966 		key_beg = key_next;
2967 		/* loop */
2968 	}
2969 	spin_unlock(&parent->core.cst.spin);
2970 
2971 	/*
2972 	 * Insert the new indirect block into the parent now that we've
2973 	 * cleared out some entries in the parent.  We calculated a good
2974 	 * insertion index in the loop above (ichain->index).
2975 	 *
2976 	 * We don't have to set UPDATE here because we mark ichain
2977 	 * modified down below (so the normal modified -> flush -> set-moved
2978 	 * sequence applies).
2979 	 *
2980 	 * The insertion shouldn't race as this is a completely new block
2981 	 * and the parent is locked.
2982 	 */
2983 	KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2984 	hammer2_chain_insert(parent, ichain,
2985 			     HAMMER2_CHAIN_INSERT_SPIN |
2986 			     HAMMER2_CHAIN_INSERT_LIVE,
2987 			     0);
2988 
2989 	/*
2990 	 * Make sure flushes propogate after our manual insertion.
2991 	 */
2992 	hammer2_chain_setflush(trans, ichain);
2993 	hammer2_chain_setflush(trans, parent);
2994 
2995 	/*
2996 	 * Figure out what to return.
2997 	 */
2998 	if (~(((hammer2_key_t)1 << keybits) - 1) &
2999 		   (create_key ^ key)) {
3000 		/*
3001 		 * Key being created is outside the key range,
3002 		 * return the original parent.
3003 		 */
3004 		hammer2_chain_unlock(ichain);
3005 	} else {
3006 		/*
3007 		 * Otherwise its in the range, return the new parent.
3008 		 * (leave both the new and old parent locked).
3009 		 */
3010 		parent = ichain;
3011 	}
3012 
3013 	return(parent);
3014 }
3015 
3016 /*
3017  * Calculate the keybits and highside/lowside of the freemap node the
3018  * caller is creating.
3019  *
3020  * This routine will specify the next higher-level freemap key/radix
3021  * representing the lowest-ordered set.  By doing so, eventually all
3022  * low-ordered sets will be moved one level down.
3023  *
3024  * We have to be careful here because the freemap reserves a limited
3025  * number of blocks for a limited number of levels.  So we can't just
3026  * push indiscriminately.
3027  */
3028 int
3029 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
3030 			     int keybits, hammer2_blockref_t *base, int count)
3031 {
3032 	hammer2_chain_t *chain;
3033 	hammer2_blockref_t *bref;
3034 	hammer2_key_t key;
3035 	hammer2_key_t key_beg;
3036 	hammer2_key_t key_end;
3037 	hammer2_key_t key_next;
3038 	int cache_index;
3039 	int locount;
3040 	int hicount;
3041 	int maxloops = 300000;
3042 
3043 	key = *keyp;
3044 	locount = 0;
3045 	hicount = 0;
3046 	keybits = 64;
3047 
3048 	/*
3049 	 * Calculate the range of keys in the array being careful to skip
3050 	 * slots which are overridden with a deletion.
3051 	 */
3052 	key_beg = 0;
3053 	key_end = HAMMER2_KEY_MAX;
3054 	cache_index = 0;
3055 	spin_lock(&parent->core.cst.spin);
3056 
3057 	for (;;) {
3058 		if (--maxloops == 0) {
3059 			panic("indkey_freemap shit %p %p:%d\n",
3060 			      parent, base, count);
3061 		}
3062 		chain = hammer2_combined_find(parent, base, count,
3063 					      &cache_index, &key_next,
3064 					      key_beg, key_end,
3065 					      &bref);
3066 
3067 		/*
3068 		 * Exhausted search
3069 		 */
3070 		if (bref == NULL)
3071 			break;
3072 
3073 		/*
3074 		 * Skip deleted chains.
3075 		 */
3076 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3077 			if (key_next == 0 || key_next > key_end)
3078 				break;
3079 			key_beg = key_next;
3080 			continue;
3081 		}
3082 
3083 		/*
3084 		 * Use the full live (not deleted) element for the scan
3085 		 * iteration.  HAMMER2 does not allow partial replacements.
3086 		 *
3087 		 * XXX should be built into hammer2_combined_find().
3088 		 */
3089 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3090 
3091 		if (keybits > bref->keybits) {
3092 			key = bref->key;
3093 			keybits = bref->keybits;
3094 		} else if (keybits == bref->keybits && bref->key < key) {
3095 			key = bref->key;
3096 		}
3097 		if (key_next == 0)
3098 			break;
3099 		key_beg = key_next;
3100 	}
3101 	spin_unlock(&parent->core.cst.spin);
3102 
3103 	/*
3104 	 * Return the keybits for a higher-level FREEMAP_NODE covering
3105 	 * this node.
3106 	 */
3107 	switch(keybits) {
3108 	case HAMMER2_FREEMAP_LEVEL0_RADIX:
3109 		keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
3110 		break;
3111 	case HAMMER2_FREEMAP_LEVEL1_RADIX:
3112 		keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
3113 		break;
3114 	case HAMMER2_FREEMAP_LEVEL2_RADIX:
3115 		keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
3116 		break;
3117 	case HAMMER2_FREEMAP_LEVEL3_RADIX:
3118 		keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
3119 		break;
3120 	case HAMMER2_FREEMAP_LEVEL4_RADIX:
3121 		panic("hammer2_chain_indkey_freemap: level too high");
3122 		break;
3123 	default:
3124 		panic("hammer2_chain_indkey_freemap: bad radix");
3125 		break;
3126 	}
3127 	*keyp = key;
3128 
3129 	return (keybits);
3130 }
3131 
3132 /*
3133  * Calculate the keybits and highside/lowside of the indirect block the
3134  * caller is creating.
3135  */
3136 static int
3137 hammer2_chain_indkey_normal(hammer2_chain_t *parent, hammer2_key_t *keyp,
3138 			    int keybits, hammer2_blockref_t *base, int count)
3139 {
3140 	hammer2_blockref_t *bref;
3141 	hammer2_chain_t	*chain;
3142 	hammer2_key_t key_beg;
3143 	hammer2_key_t key_end;
3144 	hammer2_key_t key_next;
3145 	hammer2_key_t key;
3146 	int nkeybits;
3147 	int locount;
3148 	int hicount;
3149 	int cache_index;
3150 	int maxloops = 300000;
3151 
3152 	key = *keyp;
3153 	locount = 0;
3154 	hicount = 0;
3155 
3156 	/*
3157 	 * Calculate the range of keys in the array being careful to skip
3158 	 * slots which are overridden with a deletion.  Once the scan
3159 	 * completes we will cut the key range in half and shift half the
3160 	 * range into the new indirect block.
3161 	 */
3162 	key_beg = 0;
3163 	key_end = HAMMER2_KEY_MAX;
3164 	cache_index = 0;
3165 	spin_lock(&parent->core.cst.spin);
3166 
3167 	for (;;) {
3168 		if (--maxloops == 0) {
3169 			panic("indkey_freemap shit %p %p:%d\n",
3170 			      parent, base, count);
3171 		}
3172 		chain = hammer2_combined_find(parent, base, count,
3173 					      &cache_index, &key_next,
3174 					      key_beg, key_end,
3175 					      &bref);
3176 
3177 		/*
3178 		 * Exhausted search
3179 		 */
3180 		if (bref == NULL)
3181 			break;
3182 
3183 		/*
3184 		 * NOTE: No need to check DUPLICATED here because we do
3185 		 *	 not release the spinlock.
3186 		 */
3187 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3188 			if (key_next == 0 || key_next > key_end)
3189 				break;
3190 			key_beg = key_next;
3191 			continue;
3192 		}
3193 
3194 		/*
3195 		 * Use the full live (not deleted) element for the scan
3196 		 * iteration.  HAMMER2 does not allow partial replacements.
3197 		 *
3198 		 * XXX should be built into hammer2_combined_find().
3199 		 */
3200 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3201 
3202 		/*
3203 		 * Expand our calculated key range (key, keybits) to fit
3204 		 * the scanned key.  nkeybits represents the full range
3205 		 * that we will later cut in half (two halves @ nkeybits - 1).
3206 		 */
3207 		nkeybits = keybits;
3208 		if (nkeybits < bref->keybits) {
3209 			if (bref->keybits > 64) {
3210 				kprintf("bad bref chain %p bref %p\n",
3211 					chain, bref);
3212 				Debugger("fubar");
3213 			}
3214 			nkeybits = bref->keybits;
3215 		}
3216 		while (nkeybits < 64 &&
3217 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
3218 		        (key ^ bref->key)) != 0) {
3219 			++nkeybits;
3220 		}
3221 
3222 		/*
3223 		 * If the new key range is larger we have to determine
3224 		 * which side of the new key range the existing keys fall
3225 		 * under by checking the high bit, then collapsing the
3226 		 * locount into the hicount or vise-versa.
3227 		 */
3228 		if (keybits != nkeybits) {
3229 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
3230 				hicount += locount;
3231 				locount = 0;
3232 			} else {
3233 				locount += hicount;
3234 				hicount = 0;
3235 			}
3236 			keybits = nkeybits;
3237 		}
3238 
3239 		/*
3240 		 * The newly scanned key will be in the lower half or the
3241 		 * upper half of the (new) key range.
3242 		 */
3243 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
3244 			++hicount;
3245 		else
3246 			++locount;
3247 
3248 		if (key_next == 0)
3249 			break;
3250 		key_beg = key_next;
3251 	}
3252 	spin_unlock(&parent->core.cst.spin);
3253 	bref = NULL;	/* now invalid (safety) */
3254 
3255 	/*
3256 	 * Adjust keybits to represent half of the full range calculated
3257 	 * above (radix 63 max)
3258 	 */
3259 	--keybits;
3260 
3261 	/*
3262 	 * Select whichever half contains the most elements.  Theoretically
3263 	 * we can select either side as long as it contains at least one
3264 	 * element (in order to ensure that a free slot is present to hold
3265 	 * the indirect block).
3266 	 */
3267 	if (hammer2_indirect_optimize) {
3268 		/*
3269 		 * Insert node for least number of keys, this will arrange
3270 		 * the first few blocks of a large file or the first few
3271 		 * inodes in a directory with fewer indirect blocks when
3272 		 * created linearly.
3273 		 */
3274 		if (hicount < locount && hicount != 0)
3275 			key |= (hammer2_key_t)1 << keybits;
3276 		else
3277 			key &= ~(hammer2_key_t)1 << keybits;
3278 	} else {
3279 		/*
3280 		 * Insert node for most number of keys, best for heavily
3281 		 * fragmented files.
3282 		 */
3283 		if (hicount > locount)
3284 			key |= (hammer2_key_t)1 << keybits;
3285 		else
3286 			key &= ~(hammer2_key_t)1 << keybits;
3287 	}
3288 	*keyp = key;
3289 
3290 	return (keybits);
3291 }
3292 
3293 /*
3294  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
3295  * it exists.
3296  *
3297  * Both parent and chain must be locked exclusively.
3298  *
3299  * This function will modify the parent if the blockref requires removal
3300  * from the parent's block table.
3301  *
3302  * This function is NOT recursive.  Any entity already pushed into the
3303  * chain (such as an inode) may still need visibility into its contents,
3304  * as well as the ability to read and modify the contents.  For example,
3305  * for an unlinked file which is still open.
3306  */
3307 void
3308 hammer2_chain_delete(hammer2_trans_t *trans, hammer2_chain_t *parent,
3309 		     hammer2_chain_t *chain, int flags)
3310 {
3311 	KKASSERT(ccms_thread_lock_owned(&chain->core.cst));
3312 
3313 	/*
3314 	 * Nothing to do if already marked.
3315 	 *
3316 	 * We need the spinlock on the core whos RBTREE contains chain
3317 	 * to protect against races.
3318 	 */
3319 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
3320 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
3321 			 chain->parent == parent);
3322 		_hammer2_chain_delete_helper(trans, parent, chain, flags);
3323 	}
3324 
3325 	if (flags & HAMMER2_DELETE_PERMANENT) {
3326 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
3327 		hammer2_flush(trans, chain);
3328 	} else {
3329 		/* XXX might not be needed */
3330 		hammer2_chain_setflush(trans, chain);
3331 	}
3332 }
3333 
3334 /*
3335  * Returns the index of the nearest element in the blockref array >= elm.
3336  * Returns (count) if no element could be found.
3337  *
3338  * Sets *key_nextp to the next key for loop purposes but does not modify
3339  * it if the next key would be higher than the current value of *key_nextp.
3340  * Note that *key_nexp can overflow to 0, which should be tested by the
3341  * caller.
3342  *
3343  * (*cache_indexp) is a heuristic and can be any value without effecting
3344  * the result.
3345  *
3346  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
3347  *	     held through the operation.
3348  */
3349 static int
3350 hammer2_base_find(hammer2_chain_t *parent,
3351 		  hammer2_blockref_t *base, int count,
3352 		  int *cache_indexp, hammer2_key_t *key_nextp,
3353 		  hammer2_key_t key_beg, hammer2_key_t key_end)
3354 {
3355 	hammer2_blockref_t *scan;
3356 	hammer2_key_t scan_end;
3357 	int i;
3358 	int limit;
3359 
3360 	/*
3361 	 * Require the live chain's already have their core's counted
3362 	 * so we can optimize operations.
3363 	 */
3364         KKASSERT(parent->core.flags & HAMMER2_CORE_COUNTEDBREFS);
3365 
3366 	/*
3367 	 * Degenerate case
3368 	 */
3369 	if (count == 0 || base == NULL)
3370 		return(count);
3371 
3372 	/*
3373 	 * Sequential optimization using *cache_indexp.  This is the most
3374 	 * likely scenario.
3375 	 *
3376 	 * We can avoid trailing empty entries on live chains, otherwise
3377 	 * we might have to check the whole block array.
3378 	 */
3379 	i = *cache_indexp;
3380 	cpu_ccfence();
3381 	limit = parent->core.live_zero;
3382 	if (i >= limit)
3383 		i = limit - 1;
3384 	if (i < 0)
3385 		i = 0;
3386 	KKASSERT(i < count);
3387 
3388 	/*
3389 	 * Search backwards
3390 	 */
3391 	scan = &base[i];
3392 	while (i > 0 && (scan->type == 0 || scan->key > key_beg)) {
3393 		--scan;
3394 		--i;
3395 	}
3396 	*cache_indexp = i;
3397 
3398 	/*
3399 	 * Search forwards, stop when we find a scan element which
3400 	 * encloses the key or until we know that there are no further
3401 	 * elements.
3402 	 */
3403 	while (i < count) {
3404 		if (scan->type != 0) {
3405 			scan_end = scan->key +
3406 				   ((hammer2_key_t)1 << scan->keybits) - 1;
3407 			if (scan->key > key_beg || scan_end >= key_beg)
3408 				break;
3409 		}
3410 		if (i >= limit)
3411 			return (count);
3412 		++scan;
3413 		++i;
3414 	}
3415 	if (i != count) {
3416 		*cache_indexp = i;
3417 		if (i >= limit) {
3418 			i = count;
3419 		} else {
3420 			scan_end = scan->key +
3421 				   ((hammer2_key_t)1 << scan->keybits);
3422 			if (scan_end && (*key_nextp > scan_end ||
3423 					 *key_nextp == 0)) {
3424 				*key_nextp = scan_end;
3425 			}
3426 		}
3427 	}
3428 	return (i);
3429 }
3430 
3431 /*
3432  * Do a combined search and return the next match either from the blockref
3433  * array or from the in-memory chain.  Sets *bresp to the returned bref in
3434  * both cases, or sets it to NULL if the search exhausted.  Only returns
3435  * a non-NULL chain if the search matched from the in-memory chain.
3436  *
3437  * When no in-memory chain has been found and a non-NULL bref is returned
3438  * in *bresp.
3439  *
3440  *
3441  * The returned chain is not locked or referenced.  Use the returned bref
3442  * to determine if the search exhausted or not.  Iterate if the base find
3443  * is chosen but matches a deleted chain.
3444  *
3445  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
3446  *	     held through the operation.
3447  */
3448 static hammer2_chain_t *
3449 hammer2_combined_find(hammer2_chain_t *parent,
3450 		      hammer2_blockref_t *base, int count,
3451 		      int *cache_indexp, hammer2_key_t *key_nextp,
3452 		      hammer2_key_t key_beg, hammer2_key_t key_end,
3453 		      hammer2_blockref_t **bresp)
3454 {
3455 	hammer2_blockref_t *bref;
3456 	hammer2_chain_t *chain;
3457 	int i;
3458 
3459 	/*
3460 	 * Lookup in block array and in rbtree.
3461 	 */
3462 	*key_nextp = key_end + 1;
3463 	i = hammer2_base_find(parent, base, count, cache_indexp,
3464 			      key_nextp, key_beg, key_end);
3465 	chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
3466 
3467 	/*
3468 	 * Neither matched
3469 	 */
3470 	if (i == count && chain == NULL) {
3471 		*bresp = NULL;
3472 		return(NULL);
3473 	}
3474 
3475 	/*
3476 	 * Only chain matched.
3477 	 */
3478 	if (i == count) {
3479 		bref = &chain->bref;
3480 		goto found;
3481 	}
3482 
3483 	/*
3484 	 * Only blockref matched.
3485 	 */
3486 	if (chain == NULL) {
3487 		bref = &base[i];
3488 		goto found;
3489 	}
3490 
3491 	/*
3492 	 * Both in-memory and blockref matched, select the nearer element.
3493 	 *
3494 	 * If both are flush with the left-hand side or both are the
3495 	 * same distance away, select the chain.  In this situation the
3496 	 * chain must have been loaded from the matching blockmap.
3497 	 */
3498 	if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
3499 	    chain->bref.key == base[i].key) {
3500 		KKASSERT(chain->bref.key == base[i].key);
3501 		bref = &chain->bref;
3502 		goto found;
3503 	}
3504 
3505 	/*
3506 	 * Select the nearer key
3507 	 */
3508 	if (chain->bref.key < base[i].key) {
3509 		bref = &chain->bref;
3510 	} else {
3511 		bref = &base[i];
3512 		chain = NULL;
3513 	}
3514 
3515 	/*
3516 	 * If the bref is out of bounds we've exhausted our search.
3517 	 */
3518 found:
3519 	if (bref->key > key_end) {
3520 		*bresp = NULL;
3521 		chain = NULL;
3522 	} else {
3523 		*bresp = bref;
3524 	}
3525 	return(chain);
3526 }
3527 
3528 /*
3529  * Locate the specified block array element and delete it.  The element
3530  * must exist.
3531  *
3532  * The spin lock on the related chain must be held.
3533  *
3534  * NOTE: live_count was adjusted when the chain was deleted, so it does not
3535  *	 need to be adjusted when we commit the media change.
3536  */
3537 void
3538 hammer2_base_delete(hammer2_trans_t *trans, hammer2_chain_t *parent,
3539 		    hammer2_blockref_t *base, int count,
3540 		    int *cache_indexp, hammer2_chain_t *chain)
3541 {
3542 	hammer2_blockref_t *elm = &chain->bref;
3543 	hammer2_key_t key_next;
3544 	int i;
3545 
3546 	/*
3547 	 * Delete element.  Expect the element to exist.
3548 	 *
3549 	 * XXX see caller, flush code not yet sophisticated enough to prevent
3550 	 *     re-flushed in some cases.
3551 	 */
3552 	key_next = 0; /* max range */
3553 	i = hammer2_base_find(parent, base, count, cache_indexp,
3554 			      &key_next, elm->key, elm->key);
3555 	if (i == count || base[i].type == 0 ||
3556 	    base[i].key != elm->key ||
3557 	    ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
3558 	     base[i].keybits != elm->keybits)) {
3559 		spin_unlock(&parent->core.cst.spin);
3560 		panic("delete base %p element not found at %d/%d elm %p\n",
3561 		      base, i, count, elm);
3562 		return;
3563 	}
3564 	bzero(&base[i], sizeof(*base));
3565 
3566 	/*
3567 	 * We can only optimize parent->core.live_zero for live chains.
3568 	 */
3569 	if (parent->core.live_zero == i + 1) {
3570 		while (--i >= 0 && base[i].type == 0)
3571 			;
3572 		parent->core.live_zero = i + 1;
3573 	}
3574 
3575 	/*
3576 	 * Clear appropriate blockmap flags in chain.
3577 	 */
3578 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
3579 					HAMMER2_CHAIN_BMAPUPD);
3580 }
3581 
3582 /*
3583  * Insert the specified element.  The block array must not already have the
3584  * element and must have space available for the insertion.
3585  *
3586  * The spin lock on the related chain must be held.
3587  *
3588  * NOTE: live_count was adjusted when the chain was deleted, so it does not
3589  *	 need to be adjusted when we commit the media change.
3590  */
3591 void
3592 hammer2_base_insert(hammer2_trans_t *trans __unused, hammer2_chain_t *parent,
3593 		    hammer2_blockref_t *base, int count,
3594 		    int *cache_indexp, hammer2_chain_t *chain)
3595 {
3596 	hammer2_blockref_t *elm = &chain->bref;
3597 	hammer2_key_t key_next;
3598 	hammer2_key_t xkey;
3599 	int i;
3600 	int j;
3601 	int k;
3602 	int l;
3603 	int u = 1;
3604 
3605 	/*
3606 	 * Insert new element.  Expect the element to not already exist
3607 	 * unless we are replacing it.
3608 	 *
3609 	 * XXX see caller, flush code not yet sophisticated enough to prevent
3610 	 *     re-flushed in some cases.
3611 	 */
3612 	key_next = 0; /* max range */
3613 	i = hammer2_base_find(parent, base, count, cache_indexp,
3614 			      &key_next, elm->key, elm->key);
3615 
3616 	/*
3617 	 * Shortcut fill optimization, typical ordered insertion(s) may not
3618 	 * require a search.
3619 	 */
3620 	KKASSERT(i >= 0 && i <= count);
3621 
3622 	/*
3623 	 * Set appropriate blockmap flags in chain.
3624 	 */
3625 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
3626 
3627 	/*
3628 	 * We can only optimize parent->core.live_zero for live chains.
3629 	 */
3630 	if (i == count && parent->core.live_zero < count) {
3631 		i = parent->core.live_zero++;
3632 		base[i] = *elm;
3633 		return;
3634 	}
3635 
3636 	xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
3637 	if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
3638 		spin_unlock(&parent->core.cst.spin);
3639 		panic("insert base %p overlapping elements at %d elm %p\n",
3640 		      base, i, elm);
3641 	}
3642 
3643 	/*
3644 	 * Try to find an empty slot before or after.
3645 	 */
3646 	j = i;
3647 	k = i;
3648 	while (j > 0 || k < count) {
3649 		--j;
3650 		if (j >= 0 && base[j].type == 0) {
3651 			if (j == i - 1) {
3652 				base[j] = *elm;
3653 			} else {
3654 				bcopy(&base[j+1], &base[j],
3655 				      (i - j - 1) * sizeof(*base));
3656 				base[i - 1] = *elm;
3657 			}
3658 			goto validate;
3659 		}
3660 		++k;
3661 		if (k < count && base[k].type == 0) {
3662 			bcopy(&base[i], &base[i+1],
3663 			      (k - i) * sizeof(hammer2_blockref_t));
3664 			base[i] = *elm;
3665 
3666 			/*
3667 			 * We can only update parent->core.live_zero for live
3668 			 * chains.
3669 			 */
3670 			if (parent->core.live_zero <= k)
3671 				parent->core.live_zero = k + 1;
3672 			u = 2;
3673 			goto validate;
3674 		}
3675 	}
3676 	panic("hammer2_base_insert: no room!");
3677 
3678 	/*
3679 	 * Debugging
3680 	 */
3681 validate:
3682 	key_next = 0;
3683 	for (l = 0; l < count; ++l) {
3684 		if (base[l].type) {
3685 			key_next = base[l].key +
3686 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
3687 			break;
3688 		}
3689 	}
3690 	while (++l < count) {
3691 		if (base[l].type) {
3692 			if (base[l].key <= key_next)
3693 				panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
3694 			key_next = base[l].key +
3695 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
3696 
3697 		}
3698 	}
3699 
3700 }
3701 
3702 #if 0
3703 
3704 /*
3705  * Sort the blockref array for the chain.  Used by the flush code to
3706  * sort the blockref[] array.
3707  *
3708  * The chain must be exclusively locked AND spin-locked.
3709  */
3710 typedef hammer2_blockref_t *hammer2_blockref_p;
3711 
3712 static
3713 int
3714 hammer2_base_sort_callback(const void *v1, const void *v2)
3715 {
3716 	hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
3717 	hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
3718 
3719 	/*
3720 	 * Make sure empty elements are placed at the end of the array
3721 	 */
3722 	if (bref1->type == 0) {
3723 		if (bref2->type == 0)
3724 			return(0);
3725 		return(1);
3726 	} else if (bref2->type == 0) {
3727 		return(-1);
3728 	}
3729 
3730 	/*
3731 	 * Sort by key
3732 	 */
3733 	if (bref1->key < bref2->key)
3734 		return(-1);
3735 	if (bref1->key > bref2->key)
3736 		return(1);
3737 	return(0);
3738 }
3739 
3740 void
3741 hammer2_base_sort(hammer2_chain_t *chain)
3742 {
3743 	hammer2_blockref_t *base;
3744 	int count;
3745 
3746 	switch(chain->bref.type) {
3747 	case HAMMER2_BREF_TYPE_INODE:
3748 		/*
3749 		 * Special shortcut for embedded data returns the inode
3750 		 * itself.  Callers must detect this condition and access
3751 		 * the embedded data (the strategy code does this for us).
3752 		 *
3753 		 * This is only applicable to regular files and softlinks.
3754 		 */
3755 		if (chain->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA)
3756 			return;
3757 		base = &chain->data->ipdata.u.blockset.blockref[0];
3758 		count = HAMMER2_SET_COUNT;
3759 		break;
3760 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3761 	case HAMMER2_BREF_TYPE_INDIRECT:
3762 		/*
3763 		 * Optimize indirect blocks in the INITIAL state to avoid
3764 		 * I/O.
3765 		 */
3766 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
3767 		base = &chain->data->npdata[0];
3768 		count = chain->bytes / sizeof(hammer2_blockref_t);
3769 		break;
3770 	case HAMMER2_BREF_TYPE_VOLUME:
3771 		base = &chain->hmp->voldata.sroot_blockset.blockref[0];
3772 		count = HAMMER2_SET_COUNT;
3773 		break;
3774 	case HAMMER2_BREF_TYPE_FREEMAP:
3775 		base = &chain->hmp->voldata.freemap_blockset.blockref[0];
3776 		count = HAMMER2_SET_COUNT;
3777 		break;
3778 	default:
3779 		panic("hammer2_chain_lookup: unrecognized blockref type: %d",
3780 		      chain->bref.type);
3781 		base = NULL;	/* safety */
3782 		count = 0;	/* safety */
3783 	}
3784 	kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
3785 }
3786 
3787 #endif
3788 
3789 /*
3790  * Chain memory management
3791  */
3792 void
3793 hammer2_chain_wait(hammer2_chain_t *chain)
3794 {
3795 	tsleep(chain, 0, "chnflw", 1);
3796 }
3797 
3798 const hammer2_media_data_t *
3799 hammer2_chain_rdata(hammer2_chain_t *chain)
3800 {
3801 	KKASSERT(chain->data != NULL);
3802 	return (chain->data);
3803 }
3804 
3805 hammer2_media_data_t *
3806 hammer2_chain_wdata(hammer2_chain_t *chain)
3807 {
3808 	KKASSERT(chain->data != NULL);
3809 	return (chain->data);
3810 }
3811 
3812 /*
3813  * Set the check data for a chain.  This can be a heavy-weight operation
3814  * and typically only runs on-flush.  For file data check data is calculated
3815  * when the logical buffers are flushed.
3816  */
3817 void
3818 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
3819 {
3820 	chain->bref.flags &= ~HAMMER2_BREF_FLAG_ZERO;
3821 
3822 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
3823 	case HAMMER2_CHECK_NONE:
3824 		break;
3825 	case HAMMER2_CHECK_DISABLED:
3826 		break;
3827 	case HAMMER2_CHECK_ISCSI32:
3828 		chain->bref.check.iscsi32.value =
3829 			hammer2_icrc32(bdata, chain->bytes);
3830 		break;
3831 	case HAMMER2_CHECK_CRC64:
3832 		chain->bref.check.crc64.value = 0;
3833 		/* XXX */
3834 		break;
3835 	case HAMMER2_CHECK_SHA192:
3836 		{
3837 			SHA256_CTX hash_ctx;
3838 			union {
3839 				uint8_t digest[SHA256_DIGEST_LENGTH];
3840 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
3841 			} u;
3842 
3843 			SHA256_Init(&hash_ctx);
3844 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
3845 			SHA256_Final(u.digest, &hash_ctx);
3846 			u.digest64[2] ^= u.digest64[3];
3847 			bcopy(u.digest,
3848 			      chain->bref.check.sha192.data,
3849 			      sizeof(chain->bref.check.sha192.data));
3850 		}
3851 		break;
3852 	case HAMMER2_CHECK_FREEMAP:
3853 		chain->bref.check.freemap.icrc32 =
3854 			hammer2_icrc32(bdata, chain->bytes);
3855 		break;
3856 	default:
3857 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
3858 			chain->bref.methods);
3859 		break;
3860 	}
3861 }
3862 
3863 int
3864 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
3865 {
3866 	int r;
3867 
3868 	if (chain->bref.flags & HAMMER2_BREF_FLAG_ZERO)
3869 		return 1;
3870 
3871 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
3872 	case HAMMER2_CHECK_NONE:
3873 		r = 1;
3874 		break;
3875 	case HAMMER2_CHECK_DISABLED:
3876 		r = 1;
3877 		break;
3878 	case HAMMER2_CHECK_ISCSI32:
3879 		r = (chain->bref.check.iscsi32.value ==
3880 		     hammer2_icrc32(bdata, chain->bytes));
3881 		break;
3882 	case HAMMER2_CHECK_CRC64:
3883 		r = (chain->bref.check.crc64.value == 0);
3884 		/* XXX */
3885 		break;
3886 	case HAMMER2_CHECK_SHA192:
3887 		{
3888 			SHA256_CTX hash_ctx;
3889 			union {
3890 				uint8_t digest[SHA256_DIGEST_LENGTH];
3891 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
3892 			} u;
3893 
3894 			SHA256_Init(&hash_ctx);
3895 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
3896 			SHA256_Final(u.digest, &hash_ctx);
3897 			u.digest64[2] ^= u.digest64[3];
3898 			if (bcmp(u.digest,
3899 				 chain->bref.check.sha192.data,
3900 			         sizeof(chain->bref.check.sha192.data)) == 0) {
3901 				r = 1;
3902 			} else {
3903 				r = 0;
3904 			}
3905 		}
3906 		break;
3907 	case HAMMER2_CHECK_FREEMAP:
3908 		r = (chain->bref.check.freemap.icrc32 ==
3909 		     hammer2_icrc32(bdata, chain->bytes));
3910 		if (r == 0) {
3911 			kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
3912 				chain->bref.check.freemap.icrc32,
3913 				hammer2_icrc32(bdata, chain->bytes), chain->bytes);
3914 			if (chain->dio)
3915 				kprintf("dio %p buf %016jx,%d bdata %p/%p\n",
3916 					chain->dio, chain->dio->bp->b_loffset, chain->dio->bp->b_bufsize, bdata, chain->dio->bp->b_data);
3917 		}
3918 
3919 		break;
3920 	default:
3921 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
3922 			chain->bref.methods);
3923 		r = 1;
3924 		break;
3925 	}
3926 	return r;
3927 }
3928