xref: /dragonfly/sys/vfs/hammer2/hammer2_chain.c (revision d50f9ae3)
1 /*
2  * Copyright (c) 2011-2020 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62 
63 #include <crypto/sha2/sha2.h>
64 
65 #include "hammer2.h"
66 
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68 		hammer2_chain_t *parent,
69 		hammer2_key_t key, int keybits,
70 		hammer2_tid_t mtid, int for_type, int *errorp);
71 static void hammer2_chain_rename_obref(hammer2_chain_t **parentp,
72 		hammer2_chain_t *chain, hammer2_tid_t mtid,
73 		int flags, hammer2_blockref_t *obref);
74 static int hammer2_chain_delete_obref(hammer2_chain_t *parent,
75 		hammer2_chain_t *chain,
76 		hammer2_tid_t mtid, int flags,
77 		hammer2_blockref_t *obref);
78 static hammer2_io_t *hammer2_chain_drop_data(hammer2_chain_t *chain);
79 static hammer2_chain_t *hammer2_combined_find(
80 		hammer2_chain_t *parent,
81 		hammer2_blockref_t *base, int count,
82 		hammer2_key_t *key_nextp,
83 		hammer2_key_t key_beg, hammer2_key_t key_end,
84 		hammer2_blockref_t **bresp);
85 
86 /*
87  * There are many degenerate situations where an extreme rate of console
88  * output can occur from warnings and errors.  Make sure this output does
89  * not impede operations.
90  */
91 static struct krate krate_h2chk = { .freq = 5 };
92 static struct krate krate_h2me = { .freq = 1 };
93 static struct krate krate_h2em = { .freq = 1 };
94 
95 /*
96  * Basic RBTree for chains (core.rbtree).
97  */
98 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
99 
100 int
101 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
102 {
103 	hammer2_key_t c1_beg;
104 	hammer2_key_t c1_end;
105 	hammer2_key_t c2_beg;
106 	hammer2_key_t c2_end;
107 
108 	/*
109 	 * Compare chains.  Overlaps are not supposed to happen and catch
110 	 * any software issues early we count overlaps as a match.
111 	 */
112 	c1_beg = chain1->bref.key;
113 	c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
114 	c2_beg = chain2->bref.key;
115 	c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
116 
117 	if (c1_end < c2_beg)	/* fully to the left */
118 		return(-1);
119 	if (c1_beg > c2_end)	/* fully to the right */
120 		return(1);
121 	return(0);		/* overlap (must not cross edge boundary) */
122 }
123 
124 /*
125  * Assert that a chain has no media data associated with it.
126  */
127 static __inline void
128 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
129 {
130 	KKASSERT(chain->dio == NULL);
131 	if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
132 	    chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
133 	    chain->data) {
134 		panic("hammer2_chain_assert_no_data: chain %p still has data",
135 		    chain);
136 	}
137 }
138 
139 /*
140  * Make a chain visible to the flusher.  The flusher operates using a top-down
141  * recursion based on the ONFLUSH flag.  It locates MODIFIED and UPDATE chains,
142  * flushes them, and updates blocks back to the volume root.
143  *
144  * This routine sets the ONFLUSH flag upward from the triggering chain until
145  * it hits an inode root or the volume root.  Inode chains serve as inflection
146  * points, requiring the flusher to bridge across trees.  Inodes include
147  * regular inodes, PFS roots (pmp->iroot), and the media super root
148  * (spmp->iroot).
149  */
150 void
151 hammer2_chain_setflush(hammer2_chain_t *chain)
152 {
153 	hammer2_chain_t *parent;
154 
155 	if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
156 		hammer2_spin_sh(&chain->core.spin);
157 		while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
158 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
159 			if (chain->bref.type == HAMMER2_BREF_TYPE_INODE)
160 				break;
161 			if ((parent = chain->parent) == NULL)
162 				break;
163 			hammer2_spin_sh(&parent->core.spin);
164 			hammer2_spin_unsh(&chain->core.spin);
165 			chain = parent;
166 		}
167 		hammer2_spin_unsh(&chain->core.spin);
168 	}
169 }
170 
171 /*
172  * Allocate a new disconnected chain element representing the specified
173  * bref.  chain->refs is set to 1 and the passed bref is copied to
174  * chain->bref.  chain->bytes is derived from the bref.
175  *
176  * chain->pmp inherits pmp unless the chain is an inode (other than the
177  * super-root inode).
178  *
179  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
180  */
181 hammer2_chain_t *
182 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
183 		    hammer2_blockref_t *bref)
184 {
185 	hammer2_chain_t *chain;
186 	u_int bytes;
187 
188 	/*
189 	 * Special case - radix of 0 indicates a chain that does not
190 	 * need a data reference (context is completely embedded in the
191 	 * bref).
192 	 */
193 	if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
194 		bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
195 	else
196 		bytes = 0;
197 
198 	atomic_add_long(&hammer2_chain_allocs, 1);
199 
200 	/*
201 	 * Construct the appropriate system structure.
202 	 */
203 	switch(bref->type) {
204 	case HAMMER2_BREF_TYPE_DIRENT:
205 	case HAMMER2_BREF_TYPE_INODE:
206 	case HAMMER2_BREF_TYPE_INDIRECT:
207 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
208 	case HAMMER2_BREF_TYPE_DATA:
209 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
210 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
211 		break;
212 	case HAMMER2_BREF_TYPE_VOLUME:
213 	case HAMMER2_BREF_TYPE_FREEMAP:
214 		/*
215 		 * Only hammer2_chain_bulksnap() calls this function with these
216 		 * types.
217 		 */
218 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
219 		break;
220 	default:
221 		chain = NULL;
222 		panic("hammer2_chain_alloc: unrecognized blockref type: %d",
223 		      bref->type);
224 	}
225 
226 	/*
227 	 * Initialize the new chain structure.  pmp must be set to NULL for
228 	 * chains belonging to the super-root topology of a device mount.
229 	 */
230 	if (pmp == hmp->spmp)
231 		chain->pmp = NULL;
232 	else
233 		chain->pmp = pmp;
234 
235 	chain->hmp = hmp;
236 	chain->bref = *bref;
237 	chain->bytes = bytes;
238 	chain->refs = 1;
239 	chain->flags = HAMMER2_CHAIN_ALLOCATED;
240 	lockinit(&chain->diolk, "chdio", 0, 0);
241 
242 	/*
243 	 * Set the PFS boundary flag if this chain represents a PFS root.
244 	 */
245 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
246 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
247 	hammer2_chain_core_init(chain);
248 
249 	return (chain);
250 }
251 
252 /*
253  * Initialize a chain's core structure.  This structure used to be allocated
254  * but is now embedded.
255  *
256  * The core is not locked.  No additional refs on the chain are made.
257  * (trans) must not be NULL if (core) is not NULL.
258  */
259 void
260 hammer2_chain_core_init(hammer2_chain_t *chain)
261 {
262 	/*
263 	 * Fresh core under nchain (no multi-homing of ochain's
264 	 * sub-tree).
265 	 */
266 	RB_INIT(&chain->core.rbtree);	/* live chains */
267 	hammer2_mtx_init(&chain->lock, "h2chain");
268 }
269 
270 /*
271  * Add a reference to a chain element, preventing its destruction.
272  *
273  * (can be called with spinlock held)
274  */
275 void
276 hammer2_chain_ref(hammer2_chain_t *chain)
277 {
278 	if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
279 		/*
280 		 * Just flag that the chain was used and should be recycled
281 		 * on the LRU if it encounters it later.
282 		 */
283 		if (chain->flags & HAMMER2_CHAIN_ONLRU)
284 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
285 
286 #if 0
287 		/*
288 		 * REMOVED - reduces contention, lru_list is more heuristical
289 		 * now.
290 		 *
291 		 * 0->non-zero transition must ensure that chain is removed
292 		 * from the LRU list.
293 		 *
294 		 * NOTE: Already holding lru_spin here so we cannot call
295 		 *	 hammer2_chain_ref() to get it off lru_list, do
296 		 *	 it manually.
297 		 */
298 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
299 			hammer2_pfs_t *pmp = chain->pmp;
300 			hammer2_spin_ex(&pmp->lru_spin);
301 			if (chain->flags & HAMMER2_CHAIN_ONLRU) {
302 				atomic_add_int(&pmp->lru_count, -1);
303 				atomic_clear_int(&chain->flags,
304 						 HAMMER2_CHAIN_ONLRU);
305 				TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
306 			}
307 			hammer2_spin_unex(&pmp->lru_spin);
308 		}
309 #endif
310 	}
311 }
312 
313 /*
314  * Ref a locked chain and force the data to be held across an unlock.
315  * Chain must be currently locked.  The user of the chain who desires
316  * to release the hold must call hammer2_chain_lock_unhold() to relock
317  * and unhold the chain, then unlock normally, or may simply call
318  * hammer2_chain_drop_unhold() (which is safer against deadlocks).
319  */
320 void
321 hammer2_chain_ref_hold(hammer2_chain_t *chain)
322 {
323 	atomic_add_int(&chain->lockcnt, 1);
324 	hammer2_chain_ref(chain);
325 }
326 
327 /*
328  * Insert the chain in the core rbtree.
329  *
330  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
331  * chain is a special case used by the flush code that is placed on the
332  * unstaged deleted list to avoid confusing the live view.
333  */
334 #define HAMMER2_CHAIN_INSERT_SPIN	0x0001
335 #define HAMMER2_CHAIN_INSERT_LIVE	0x0002
336 #define HAMMER2_CHAIN_INSERT_RACE	0x0004
337 
338 static
339 int
340 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
341 		     int flags, int generation)
342 {
343 	hammer2_chain_t *xchain;
344 	int error = 0;
345 
346 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
347 		hammer2_spin_ex(&parent->core.spin);
348 
349 	/*
350 	 * Interlocked by spinlock, check for race
351 	 */
352 	if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
353 	    parent->core.generation != generation) {
354 		error = HAMMER2_ERROR_EAGAIN;
355 		goto failed;
356 	}
357 
358 	/*
359 	 * Insert chain
360 	 */
361 	xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
362 	KASSERT(xchain == NULL,
363 		("hammer2_chain_insert: collision %p %p (key=%016jx)",
364 		chain, xchain, chain->bref.key));
365 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
366 	chain->parent = parent;
367 	++parent->core.chain_count;
368 	++parent->core.generation;	/* XXX incs for _get() too, XXX */
369 
370 	/*
371 	 * We have to keep track of the effective live-view blockref count
372 	 * so the create code knows when to push an indirect block.
373 	 */
374 	if (flags & HAMMER2_CHAIN_INSERT_LIVE)
375 		atomic_add_int(&parent->core.live_count, 1);
376 failed:
377 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
378 		hammer2_spin_unex(&parent->core.spin);
379 	return error;
380 }
381 
382 /*
383  * Drop the caller's reference to the chain.  When the ref count drops to
384  * zero this function will try to disassociate the chain from its parent and
385  * deallocate it, then recursely drop the parent using the implied ref
386  * from the chain's chain->parent.
387  *
388  * Nobody should own chain's mutex on the 1->0 transition, unless this drop
389  * races an acquisition by another cpu.  Therefore we can loop if we are
390  * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
391  * race against another drop.
392  */
393 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
394 				int depth);
395 static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
396 
397 void
398 hammer2_chain_drop(hammer2_chain_t *chain)
399 {
400 	u_int refs;
401 
402 	KKASSERT(chain->refs > 0);
403 
404 	while (chain) {
405 		refs = chain->refs;
406 		cpu_ccfence();
407 		KKASSERT(refs > 0);
408 
409 		if (refs == 1) {
410 			if (hammer2_mtx_ex_try(&chain->lock) == 0)
411 				chain = hammer2_chain_lastdrop(chain, 0);
412 			/* retry the same chain, or chain from lastdrop */
413 		} else {
414 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
415 				break;
416 			/* retry the same chain */
417 		}
418 		cpu_pause();
419 	}
420 }
421 
422 /*
423  * Unhold a held and probably not-locked chain, ensure that the data is
424  * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
425  * lock and then simply unlocking the chain.
426  */
427 void
428 hammer2_chain_unhold(hammer2_chain_t *chain)
429 {
430 	u_int lockcnt;
431 	int iter = 0;
432 
433 	for (;;) {
434 		lockcnt = chain->lockcnt;
435 		cpu_ccfence();
436 		if (lockcnt > 1) {
437 			if (atomic_cmpset_int(&chain->lockcnt,
438 					      lockcnt, lockcnt - 1)) {
439 				break;
440 			}
441 		} else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
442 			hammer2_chain_unlock(chain);
443 			break;
444 		} else {
445 			/*
446 			 * This situation can easily occur on SMP due to
447 			 * the gap inbetween the 1->0 transition and the
448 			 * final unlock.  We cannot safely block on the
449 			 * mutex because lockcnt might go above 1.
450 			 *
451 			 * XXX Sleep for one tick if it takes too long.
452 			 */
453 			if (++iter > 1000) {
454 				if (iter > 1000 + hz) {
455 					kprintf("hammer2: h2race1 %p\n", chain);
456 					iter = 1000;
457 				}
458 				tsleep(&iter, 0, "h2race1", 1);
459 			}
460 			cpu_pause();
461 		}
462 	}
463 }
464 
465 void
466 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
467 {
468 	hammer2_chain_unhold(chain);
469 	hammer2_chain_drop(chain);
470 }
471 
472 void
473 hammer2_chain_rehold(hammer2_chain_t *chain)
474 {
475 	hammer2_chain_lock(chain, HAMMER2_RESOLVE_SHARED);
476 	atomic_add_int(&chain->lockcnt, 1);
477 	hammer2_chain_unlock(chain);
478 }
479 
480 /*
481  * Handles the (potential) last drop of chain->refs from 1->0.  Called with
482  * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
483  * possible against refs and lockcnt.  We must dispose of the mutex on chain.
484  *
485  * This function returns an unlocked chain for recursive drop or NULL.  It
486  * can return the same chain if it determines it has raced another ref.
487  *
488  * --
489  *
490  * When two chains need to be recursively dropped we use the chain we
491  * would otherwise free to placehold the additional chain.  It's a bit
492  * convoluted but we can't just recurse without potentially blowing out
493  * the kernel stack.
494  *
495  * The chain cannot be freed if it has any children.
496  * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
497  * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
498  * Any dedup registration can remain intact.
499  *
500  * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
501  */
502 static
503 hammer2_chain_t *
504 hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
505 {
506 	hammer2_pfs_t *pmp;
507 	hammer2_dev_t *hmp;
508 	hammer2_chain_t *parent;
509 	hammer2_chain_t *rdrop;
510 
511 	/*
512 	 * We need chain's spinlock to interlock the sub-tree test.
513 	 * We already have chain's mutex, protecting chain->parent.
514 	 *
515 	 * Remember that chain->refs can be in flux.
516 	 */
517 	hammer2_spin_ex(&chain->core.spin);
518 
519 	if (chain->parent != NULL) {
520 		/*
521 		 * If the chain has a parent the UPDATE bit prevents scrapping
522 		 * as the chain is needed to properly flush the parent.  Try
523 		 * to complete the 1->0 transition and return NULL.  Retry
524 		 * (return chain) if we are unable to complete the 1->0
525 		 * transition, else return NULL (nothing more to do).
526 		 *
527 		 * If the chain has a parent the MODIFIED bit prevents
528 		 * scrapping.
529 		 *
530 		 * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
531 		 */
532 		if (chain->flags & (HAMMER2_CHAIN_UPDATE |
533 				    HAMMER2_CHAIN_MODIFIED)) {
534 			if (atomic_cmpset_int(&chain->refs, 1, 0)) {
535 				hammer2_spin_unex(&chain->core.spin);
536 				hammer2_chain_assert_no_data(chain);
537 				hammer2_mtx_unlock(&chain->lock);
538 				chain = NULL;
539 			} else {
540 				hammer2_spin_unex(&chain->core.spin);
541 				hammer2_mtx_unlock(&chain->lock);
542 			}
543 			return (chain);
544 		}
545 		/* spinlock still held */
546 	} else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
547 		   chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
548 		/*
549 		 * Retain the static vchain and fchain.  Clear bits that
550 		 * are not relevant.  Do not clear the MODIFIED bit,
551 		 * and certainly do not put it on the delayed-flush queue.
552 		 */
553 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
554 	} else {
555 		/*
556 		 * The chain has no parent and can be flagged for destruction.
557 		 * Since it has no parent, UPDATE can also be cleared.
558 		 */
559 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
560 		if (chain->flags & HAMMER2_CHAIN_UPDATE)
561 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
562 
563 		/*
564 		 * If the chain has children we must propagate the DESTROY
565 		 * flag downward and rip the disconnected topology apart.
566 		 * This is accomplished by calling hammer2_flush() on the
567 		 * chain.
568 		 *
569 		 * Any dedup is already handled by the underlying DIO, so
570 		 * we do not have to specifically flush it here.
571 		 */
572 		if (chain->core.chain_count) {
573 			hammer2_spin_unex(&chain->core.spin);
574 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
575 					     HAMMER2_FLUSH_ALL);
576 			hammer2_mtx_unlock(&chain->lock);
577 
578 			return(chain);	/* retry drop */
579 		}
580 
581 		/*
582 		 * Otherwise we can scrap the MODIFIED bit if it is set,
583 		 * and continue along the freeing path.
584 		 *
585 		 * Be sure to clean-out any dedup bits.  Without a parent
586 		 * this chain will no longer be visible to the flush code.
587 		 * Easy check data_off to avoid the volume root.
588 		 */
589 		if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
590 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
591 			atomic_add_long(&hammer2_count_modified_chains, -1);
592 			if (chain->pmp)
593 				hammer2_pfs_memory_wakeup(chain->pmp, -1);
594 		}
595 		/* spinlock still held */
596 	}
597 
598 	/* spinlock still held */
599 
600 	/*
601 	 * If any children exist we must leave the chain intact with refs == 0.
602 	 * They exist because chains are retained below us which have refs or
603 	 * may require flushing.
604 	 *
605 	 * Retry (return chain) if we fail to transition the refs to 0, else
606 	 * return NULL indication nothing more to do.
607 	 *
608 	 * Chains with children are NOT put on the LRU list.
609 	 */
610 	if (chain->core.chain_count) {
611 		if (atomic_cmpset_int(&chain->refs, 1, 0)) {
612 			hammer2_spin_unex(&chain->core.spin);
613 			hammer2_chain_assert_no_data(chain);
614 			hammer2_mtx_unlock(&chain->lock);
615 			chain = NULL;
616 		} else {
617 			hammer2_spin_unex(&chain->core.spin);
618 			hammer2_mtx_unlock(&chain->lock);
619 		}
620 		return (chain);
621 	}
622 	/* spinlock still held */
623 	/* no chains left under us */
624 
625 	/*
626 	 * chain->core has no children left so no accessors can get to our
627 	 * chain from there.  Now we have to lock the parent core to interlock
628 	 * remaining possible accessors that might bump chain's refs before
629 	 * we can safely drop chain's refs with intent to free the chain.
630 	 */
631 	hmp = chain->hmp;
632 	pmp = chain->pmp;	/* can be NULL */
633 	rdrop = NULL;
634 
635 	parent = chain->parent;
636 
637 	/*
638 	 * WARNING! chain's spin lock is still held here, and other spinlocks
639 	 *	    will be acquired and released in the code below.  We
640 	 *	    cannot be making fancy procedure calls!
641 	 */
642 
643 	/*
644 	 * We can cache the chain if it is associated with a pmp
645 	 * and not flagged as being destroyed or requesting a full
646 	 * release.  In this situation the chain is not removed
647 	 * from its parent, i.e. it can still be looked up.
648 	 *
649 	 * We intentionally do not cache DATA chains because these
650 	 * were likely used to load data into the logical buffer cache
651 	 * and will not be accessed again for some time.
652 	 */
653 	if ((chain->flags &
654 	     (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
655 	    chain->pmp &&
656 	    chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
657 		if (parent)
658 			hammer2_spin_ex(&parent->core.spin);
659 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
660 			/*
661 			 * 1->0 transition failed, retry.  Do not drop
662 			 * the chain's data yet!
663 			 */
664 			if (parent)
665 				hammer2_spin_unex(&parent->core.spin);
666 			hammer2_spin_unex(&chain->core.spin);
667 			hammer2_mtx_unlock(&chain->lock);
668 
669 			return(chain);
670 		}
671 
672 		/*
673 		 * Success
674 		 */
675 		hammer2_chain_assert_no_data(chain);
676 
677 		/*
678 		 * Make sure we are on the LRU list, clean up excessive
679 		 * LRU entries.  We can only really drop one but there might
680 		 * be other entries that we can remove from the lru_list
681 		 * without dropping.
682 		 *
683 		 * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
684 		 *	 chain->core.spin AND pmp->lru_spin are held, but
685 		 *	 can be safely cleared only holding pmp->lru_spin.
686 		 */
687 		if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
688 			hammer2_spin_ex(&pmp->lru_spin);
689 			if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
690 				atomic_set_int(&chain->flags,
691 					       HAMMER2_CHAIN_ONLRU);
692 				TAILQ_INSERT_TAIL(&pmp->lru_list,
693 						  chain, lru_node);
694 				atomic_add_int(&pmp->lru_count, 1);
695 			}
696 			if (pmp->lru_count < HAMMER2_LRU_LIMIT)
697 				depth = 1;	/* disable lru_list flush */
698 			hammer2_spin_unex(&pmp->lru_spin);
699 		} else {
700 			/* disable lru flush */
701 			depth = 1;
702 		}
703 
704 		if (parent) {
705 			hammer2_spin_unex(&parent->core.spin);
706 			parent = NULL;	/* safety */
707 		}
708 		hammer2_spin_unex(&chain->core.spin);
709 		hammer2_mtx_unlock(&chain->lock);
710 
711 		/*
712 		 * lru_list hysteresis (see above for depth overrides).
713 		 * Note that depth also prevents excessive lastdrop recursion.
714 		 */
715 		if (depth == 0)
716 			hammer2_chain_lru_flush(pmp);
717 
718 		return NULL;
719 		/* NOT REACHED */
720 	}
721 
722 	/*
723 	 * Make sure we are not on the LRU list.
724 	 */
725 	if (chain->flags & HAMMER2_CHAIN_ONLRU) {
726 		hammer2_spin_ex(&pmp->lru_spin);
727 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
728 			atomic_add_int(&pmp->lru_count, -1);
729 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
730 			TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
731 		}
732 		hammer2_spin_unex(&pmp->lru_spin);
733 	}
734 
735 	/*
736 	 * Spinlock the parent and try to drop the last ref on chain.
737 	 * On success determine if we should dispose of the chain
738 	 * (remove the chain from its parent, etc).
739 	 *
740 	 * (normal core locks are top-down recursive but we define
741 	 * core spinlocks as bottom-up recursive, so this is safe).
742 	 */
743 	if (parent) {
744 		hammer2_spin_ex(&parent->core.spin);
745 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
746 			/*
747 			 * 1->0 transition failed, retry.
748 			 */
749 			hammer2_spin_unex(&parent->core.spin);
750 			hammer2_spin_unex(&chain->core.spin);
751 			hammer2_mtx_unlock(&chain->lock);
752 
753 			return(chain);
754 		}
755 
756 		/*
757 		 * 1->0 transition successful, parent spin held to prevent
758 		 * new lookups, chain spinlock held to protect parent field.
759 		 * Remove chain from the parent.
760 		 *
761 		 * If the chain is being removed from the parent's btree but
762 		 * is not bmapped, we have to adjust live_count downward.  If
763 		 * it is bmapped then the blockref is retained in the parent
764 		 * as is its associated live_count.  This case can occur when
765 		 * a chain added to the topology is unable to flush and is
766 		 * then later deleted.
767 		 */
768 		if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
769 			if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
770 			    (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
771 				atomic_add_int(&parent->core.live_count, -1);
772 			}
773 			RB_REMOVE(hammer2_chain_tree,
774 				  &parent->core.rbtree, chain);
775 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
776 			--parent->core.chain_count;
777 			chain->parent = NULL;
778 		}
779 
780 		/*
781 		 * If our chain was the last chain in the parent's core the
782 		 * core is now empty and its parent might have to be
783 		 * re-dropped if it has 0 refs.
784 		 */
785 		if (parent->core.chain_count == 0) {
786 			rdrop = parent;
787 			atomic_add_int(&rdrop->refs, 1);
788 			/*
789 			if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
790 				rdrop = NULL;
791 			*/
792 		}
793 		hammer2_spin_unex(&parent->core.spin);
794 		parent = NULL;	/* safety */
795 		/* FALL THROUGH */
796 	} else {
797 		/*
798 		 * No-parent case.
799 		 */
800 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
801 			/*
802 			 * 1->0 transition failed, retry.
803 			 */
804 			hammer2_spin_unex(&parent->core.spin);
805 			hammer2_spin_unex(&chain->core.spin);
806 			hammer2_mtx_unlock(&chain->lock);
807 
808 			return(chain);
809 		}
810 	}
811 
812 	/*
813 	 * Successful 1->0 transition, no parent, no children... no way for
814 	 * anyone to ref this chain any more.  We can clean-up and free it.
815 	 *
816 	 * We still have the core spinlock, and core's chain_count is 0.
817 	 * Any parent spinlock is gone.
818 	 */
819 	hammer2_spin_unex(&chain->core.spin);
820 	hammer2_chain_assert_no_data(chain);
821 	hammer2_mtx_unlock(&chain->lock);
822 	KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
823 		 chain->core.chain_count == 0);
824 
825 	/*
826 	 * All locks are gone, no pointers remain to the chain, finish
827 	 * freeing it.
828 	 */
829 	KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
830 				  HAMMER2_CHAIN_MODIFIED)) == 0);
831 
832 	/*
833 	 * Once chain resources are gone we can use the now dead chain
834 	 * structure to placehold what might otherwise require a recursive
835 	 * drop, because we have potentially two things to drop and can only
836 	 * return one directly.
837 	 */
838 	if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
839 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
840 		chain->hmp = NULL;
841 		kfree(chain, hmp->mchain);
842 	}
843 
844 	/*
845 	 * Possible chaining loop when parent re-drop needed.
846 	 */
847 	return(rdrop);
848 }
849 
850 /*
851  * Heuristical flush of the LRU, try to reduce the number of entries
852  * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3).  This procedure is called
853  * only when lru_count exceeds HAMMER2_LRU_LIMIT.
854  */
855 static
856 void
857 hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
858 {
859 	hammer2_chain_t *chain;
860 
861 again:
862 	chain = NULL;
863 	hammer2_spin_ex(&pmp->lru_spin);
864 	while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
865 		/*
866 		 * Pick a chain off the lru_list, just recycle it quickly
867 		 * if LRUHINT is set (the chain was ref'd but left on
868 		 * the lru_list, so cycle to the end).
869 		 */
870 		chain = TAILQ_FIRST(&pmp->lru_list);
871 		TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
872 
873 		if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
874 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
875 			TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
876 			chain = NULL;
877 			continue;
878 		}
879 
880 		/*
881 		 * Ok, we are off the LRU.  We must adjust refs before we
882 		 * can safely clear the ONLRU flag.
883 		 */
884 		atomic_add_int(&pmp->lru_count, -1);
885 		if (atomic_cmpset_int(&chain->refs, 0, 1)) {
886 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
887 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
888 			break;
889 		}
890 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
891 		chain = NULL;
892 	}
893 	hammer2_spin_unex(&pmp->lru_spin);
894 	if (chain == NULL)
895 		return;
896 
897 	/*
898 	 * If we picked a chain off the lru list we may be able to lastdrop
899 	 * it.  Use a depth of 1 to prevent excessive lastdrop recursion.
900 	 */
901 	while (chain) {
902 		u_int refs;
903 
904 		refs = chain->refs;
905 		cpu_ccfence();
906 		KKASSERT(refs > 0);
907 
908 		if (refs == 1) {
909 			if (hammer2_mtx_ex_try(&chain->lock) == 0)
910 				chain = hammer2_chain_lastdrop(chain, 1);
911 			/* retry the same chain, or chain from lastdrop */
912 		} else {
913 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
914 				break;
915 			/* retry the same chain */
916 		}
917 		cpu_pause();
918 	}
919 	goto again;
920 }
921 
922 /*
923  * On last lock release.
924  */
925 static hammer2_io_t *
926 hammer2_chain_drop_data(hammer2_chain_t *chain)
927 {
928 	hammer2_io_t *dio;
929 
930 	if ((dio = chain->dio) != NULL) {
931 		chain->dio = NULL;
932 		chain->data = NULL;
933 	} else {
934 		switch(chain->bref.type) {
935 		case HAMMER2_BREF_TYPE_VOLUME:
936 		case HAMMER2_BREF_TYPE_FREEMAP:
937 			break;
938 		default:
939 			if (chain->data != NULL) {
940 				hammer2_spin_unex(&chain->core.spin);
941 				panic("chain data not null: "
942 				      "chain %p bref %016jx.%02x "
943 				      "refs %d parent %p dio %p data %p",
944 				      chain, chain->bref.data_off,
945 				      chain->bref.type, chain->refs,
946 				      chain->parent,
947 				      chain->dio, chain->data);
948 			}
949 			KKASSERT(chain->data == NULL);
950 			break;
951 		}
952 	}
953 	return dio;
954 }
955 
956 /*
957  * Lock a referenced chain element, acquiring its data with I/O if necessary,
958  * and specify how you would like the data to be resolved.
959  *
960  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
961  *
962  * The lock is allowed to recurse, multiple locking ops will aggregate
963  * the requested resolve types.  Once data is assigned it will not be
964  * removed until the last unlock.
965  *
966  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
967  *			   (typically used to avoid device/logical buffer
968  *			    aliasing for data)
969  *
970  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
971  *			   the INITIAL-create state (indirect blocks only).
972  *
973  *			   Do not resolve data elements for DATA chains.
974  *			   (typically used to avoid device/logical buffer
975  *			    aliasing for data)
976  *
977  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
978  *
979  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
980  *			   it will be locked exclusive.
981  *
982  * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking.  If
983  *			   the lock fails, EAGAIN is returned.
984  *
985  * NOTE: Embedded elements (volume header, inodes) are always resolved
986  *	 regardless.
987  *
988  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
989  *	 element will instantiate and zero its buffer, and flush it on
990  *	 release.
991  *
992  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
993  *	 so as not to instantiate a device buffer, which could alias against
994  *	 a logical file buffer.  However, if ALWAYS is specified the
995  *	 device buffer will be instantiated anyway.
996  *
997  * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
998  *	 case it can be either 0 or EAGAIN.
999  *
1000  * WARNING! This function blocks on I/O if data needs to be fetched.  This
1001  *	    blocking can run concurrent with other compatible lock holders
1002  *	    who do not need data returning.  The lock is not upgraded to
1003  *	    exclusive during a data fetch, a separate bit is used to
1004  *	    interlock I/O.  However, an exclusive lock holder can still count
1005  *	    on being interlocked against an I/O fetch managed by a shared
1006  *	    lock holder.
1007  */
1008 int
1009 hammer2_chain_lock(hammer2_chain_t *chain, int how)
1010 {
1011 	KKASSERT(chain->refs > 0);
1012 
1013 	if (how & HAMMER2_RESOLVE_NONBLOCK) {
1014 		/*
1015 		 * We still have to bump lockcnt before acquiring the lock,
1016 		 * even for non-blocking operation, because the unlock code
1017 		 * live-loops on lockcnt == 1 when dropping the last lock.
1018 		 *
1019 		 * If the non-blocking operation fails we have to use an
1020 		 * unhold sequence to undo the mess.
1021 		 *
1022 		 * NOTE: LOCKAGAIN must always succeed without blocking,
1023 		 *	 even if NONBLOCK is specified.
1024 		 */
1025 		atomic_add_int(&chain->lockcnt, 1);
1026 		if (how & HAMMER2_RESOLVE_SHARED) {
1027 			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1028 				hammer2_mtx_sh_again(&chain->lock);
1029 			} else {
1030 				if (hammer2_mtx_sh_try(&chain->lock) != 0) {
1031 					hammer2_chain_unhold(chain);
1032 					return EAGAIN;
1033 				}
1034 			}
1035 		} else {
1036 			if (hammer2_mtx_ex_try(&chain->lock) != 0) {
1037 				hammer2_chain_unhold(chain);
1038 				return EAGAIN;
1039 			}
1040 		}
1041 	} else {
1042 		/*
1043 		 * Get the appropriate lock.  If LOCKAGAIN is flagged with
1044 		 * SHARED the caller expects a shared lock to already be
1045 		 * present and we are giving it another ref.  This case must
1046 		 * importantly not block if there is a pending exclusive lock
1047 		 * request.
1048 		 */
1049 		atomic_add_int(&chain->lockcnt, 1);
1050 		if (how & HAMMER2_RESOLVE_SHARED) {
1051 			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1052 				hammer2_mtx_sh_again(&chain->lock);
1053 			} else {
1054 				hammer2_mtx_sh(&chain->lock);
1055 			}
1056 		} else {
1057 			hammer2_mtx_ex(&chain->lock);
1058 		}
1059 	}
1060 
1061 	/*
1062 	 * If we already have a valid data pointer make sure the data is
1063 	 * synchronized to the current cpu, and then no further action is
1064 	 * necessary.
1065 	 */
1066 	if (chain->data) {
1067 		if (chain->dio)
1068 			hammer2_io_bkvasync(chain->dio);
1069 		return 0;
1070 	}
1071 
1072 	/*
1073 	 * Do we have to resolve the data?  This is generally only
1074 	 * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1075 	 * Other BREF types expects the data to be there.
1076 	 */
1077 	switch(how & HAMMER2_RESOLVE_MASK) {
1078 	case HAMMER2_RESOLVE_NEVER:
1079 		return 0;
1080 	case HAMMER2_RESOLVE_MAYBE:
1081 		if (chain->flags & HAMMER2_CHAIN_INITIAL)
1082 			return 0;
1083 		if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1084 			return 0;
1085 #if 0
1086 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1087 			return 0;
1088 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1089 			return 0;
1090 #endif
1091 		/* fall through */
1092 	case HAMMER2_RESOLVE_ALWAYS:
1093 	default:
1094 		break;
1095 	}
1096 
1097 	/*
1098 	 * Caller requires data
1099 	 */
1100 	hammer2_chain_load_data(chain);
1101 
1102 	return 0;
1103 }
1104 
1105 /*
1106  * Lock the chain, retain the hold, and drop the data persistence count.
1107  * The data should remain valid because we never transitioned lockcnt
1108  * through 0.
1109  */
1110 void
1111 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1112 {
1113 	hammer2_chain_lock(chain, how);
1114 	atomic_add_int(&chain->lockcnt, -1);
1115 }
1116 
1117 #if 0
1118 /*
1119  * Downgrade an exclusive chain lock to a shared chain lock.
1120  *
1121  * NOTE: There is no upgrade equivalent due to the ease of
1122  *	 deadlocks in that direction.
1123  */
1124 void
1125 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1126 {
1127 	hammer2_mtx_downgrade(&chain->lock);
1128 }
1129 #endif
1130 
1131 /*
1132  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1133  * may be of any type.
1134  *
1135  * Once chain->data is set it cannot be disposed of until all locks are
1136  * released.
1137  *
1138  * Make sure the data is synchronized to the current cpu.
1139  */
1140 void
1141 hammer2_chain_load_data(hammer2_chain_t *chain)
1142 {
1143 	hammer2_blockref_t *bref;
1144 	hammer2_dev_t *hmp;
1145 	hammer2_io_t *dio;
1146 	char *bdata;
1147 	int error;
1148 
1149 	/*
1150 	 * Degenerate case, data already present, or chain has no media
1151 	 * reference to load.
1152 	 */
1153 	KKASSERT(chain->lock.mtx_lock & MTX_MASK);
1154 	if (chain->data) {
1155 		if (chain->dio)
1156 			hammer2_io_bkvasync(chain->dio);
1157 		return;
1158 	}
1159 	if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1160 		return;
1161 
1162 	hmp = chain->hmp;
1163 	KKASSERT(hmp != NULL);
1164 
1165 	/*
1166 	 * Gain the IOINPROG bit, interlocked block.
1167 	 */
1168 	for (;;) {
1169 		u_int oflags;
1170 		u_int nflags;
1171 
1172 		oflags = chain->flags;
1173 		cpu_ccfence();
1174 		if (oflags & HAMMER2_CHAIN_IOINPROG) {
1175 			nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1176 			tsleep_interlock(&chain->flags, 0);
1177 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1178 				tsleep(&chain->flags, PINTERLOCKED,
1179 					"h2iocw", 0);
1180 			}
1181 			/* retry */
1182 		} else {
1183 			nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1184 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1185 				break;
1186 			}
1187 			/* retry */
1188 		}
1189 	}
1190 
1191 	/*
1192 	 * We own CHAIN_IOINPROG
1193 	 *
1194 	 * Degenerate case if we raced another load.
1195 	 */
1196 	if (chain->data) {
1197 		if (chain->dio)
1198 			hammer2_io_bkvasync(chain->dio);
1199 		goto done;
1200 	}
1201 
1202 	/*
1203 	 * We must resolve to a device buffer, either by issuing I/O or
1204 	 * by creating a zero-fill element.  We do not mark the buffer
1205 	 * dirty when creating a zero-fill element (the hammer2_chain_modify()
1206 	 * API must still be used to do that).
1207 	 *
1208 	 * The device buffer is variable-sized in powers of 2 down
1209 	 * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1210 	 * chunk always contains buffers of the same size. (XXX)
1211 	 *
1212 	 * The minimum physical IO size may be larger than the variable
1213 	 * block size.
1214 	 */
1215 	bref = &chain->bref;
1216 
1217 	/*
1218 	 * The getblk() optimization can only be used on newly created
1219 	 * elements if the physical block size matches the request.
1220 	 */
1221 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1222 		error = hammer2_io_new(hmp, bref->type,
1223 				       bref->data_off, chain->bytes,
1224 				       &chain->dio);
1225 	} else {
1226 		error = hammer2_io_bread(hmp, bref->type,
1227 					 bref->data_off, chain->bytes,
1228 					 &chain->dio);
1229 		hammer2_adjreadcounter(chain->bref.type, chain->bytes);
1230 	}
1231 	if (error) {
1232 		chain->error = HAMMER2_ERROR_EIO;
1233 		kprintf("hammer2_chain_load_data: I/O error %016jx: %d\n",
1234 			(intmax_t)bref->data_off, error);
1235 		hammer2_io_bqrelse(&chain->dio);
1236 		goto done;
1237 	}
1238 	chain->error = 0;
1239 
1240 	/*
1241 	 * This isn't perfect and can be ignored on OSs which do not have
1242 	 * an indication as to whether a buffer is coming from cache or
1243 	 * if I/O was actually issued for the read.  TESTEDGOOD will work
1244 	 * pretty well without the B_IOISSUED logic because chains are
1245 	 * cached, but in that situation (without B_IOISSUED) it will not
1246 	 * detect whether a re-read via I/O is corrupted verses the original
1247 	 * read.
1248 	 *
1249 	 * We can't re-run the CRC on every fresh lock.  That would be
1250 	 * insanely expensive.
1251 	 *
1252 	 * If the underlying kernel buffer covers the entire chain we can
1253 	 * use the B_IOISSUED indication to determine if we have to re-run
1254 	 * the CRC on chain data for chains that managed to stay cached
1255 	 * across the kernel disposal of the original buffer.
1256 	 */
1257 	if ((dio = chain->dio) != NULL && dio->bp) {
1258 		struct buf *bp = dio->bp;
1259 
1260 		if (dio->psize == chain->bytes &&
1261 		    (bp->b_flags & B_IOISSUED)) {
1262 			atomic_clear_int(&chain->flags,
1263 					 HAMMER2_CHAIN_TESTEDGOOD);
1264 			bp->b_flags &= ~B_IOISSUED;
1265 		}
1266 	}
1267 
1268 	/*
1269 	 * NOTE: A locked chain's data cannot be modified without first
1270 	 *	 calling hammer2_chain_modify().
1271 	 */
1272 
1273 	/*
1274 	 * NOTE: hammer2_io_data() call issues bkvasync()
1275 	 */
1276 	bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1277 
1278 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1279 		/*
1280 		 * Clear INITIAL.  In this case we used io_new() and the
1281 		 * buffer has been zero'd and marked dirty.
1282 		 *
1283 		 * CHAIN_MODIFIED has not been set yet, and we leave it
1284 		 * that way for now.  Set a temporary CHAIN_NOTTESTED flag
1285 		 * to prevent hammer2_chain_testcheck() from trying to match
1286 		 * a check code that has not yet been generated.  This bit
1287 		 * should NOT end up on the actual media.
1288 		 */
1289 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1290 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
1291 	} else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1292 		/*
1293 		 * check data not currently synchronized due to
1294 		 * modification.  XXX assumes data stays in the buffer
1295 		 * cache, which might not be true (need biodep on flush
1296 		 * to calculate crc?  or simple crc?).
1297 		 */
1298 	} else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1299 		if (hammer2_chain_testcheck(chain, bdata) == 0) {
1300 			chain->error = HAMMER2_ERROR_CHECK;
1301 		} else {
1302 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1303 		}
1304 	}
1305 
1306 	/*
1307 	 * Setup the data pointer, either pointing it to an embedded data
1308 	 * structure and copying the data from the buffer, or pointing it
1309 	 * into the buffer.
1310 	 *
1311 	 * The buffer is not retained when copying to an embedded data
1312 	 * structure in order to avoid potential deadlocks or recursions
1313 	 * on the same physical buffer.
1314 	 *
1315 	 * WARNING! Other threads can start using the data the instant we
1316 	 *	    set chain->data non-NULL.
1317 	 */
1318 	switch (bref->type) {
1319 	case HAMMER2_BREF_TYPE_VOLUME:
1320 	case HAMMER2_BREF_TYPE_FREEMAP:
1321 		/*
1322 		 * Copy data from bp to embedded buffer
1323 		 */
1324 		panic("hammer2_chain_load_data: unresolved volume header");
1325 		break;
1326 	case HAMMER2_BREF_TYPE_DIRENT:
1327 		KKASSERT(chain->bytes != 0);
1328 		/* fall through */
1329 	case HAMMER2_BREF_TYPE_INODE:
1330 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1331 	case HAMMER2_BREF_TYPE_INDIRECT:
1332 	case HAMMER2_BREF_TYPE_DATA:
1333 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1334 	default:
1335 		/*
1336 		 * Point data at the device buffer and leave dio intact.
1337 		 */
1338 		chain->data = (void *)bdata;
1339 		break;
1340 	}
1341 
1342 	/*
1343 	 * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1344 	 */
1345 done:
1346 	for (;;) {
1347 		u_int oflags;
1348 		u_int nflags;
1349 
1350 		oflags = chain->flags;
1351 		nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1352 				    HAMMER2_CHAIN_IOSIGNAL);
1353 		KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1354 		if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1355 			if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1356 				wakeup(&chain->flags);
1357 			break;
1358 		}
1359 	}
1360 }
1361 
1362 /*
1363  * Unlock and deref a chain element.
1364  *
1365  * Remember that the presence of children under chain prevent the chain's
1366  * destruction but do not add additional references, so the dio will still
1367  * be dropped.
1368  */
1369 void
1370 hammer2_chain_unlock(hammer2_chain_t *chain)
1371 {
1372 	hammer2_io_t *dio;
1373 	u_int lockcnt;
1374 	int iter = 0;
1375 
1376 	/*
1377 	 * If multiple locks are present (or being attempted) on this
1378 	 * particular chain we can just unlock, drop refs, and return.
1379 	 *
1380 	 * Otherwise fall-through on the 1->0 transition.
1381 	 */
1382 	for (;;) {
1383 		lockcnt = chain->lockcnt;
1384 		KKASSERT(lockcnt > 0);
1385 		cpu_ccfence();
1386 		if (lockcnt > 1) {
1387 			if (atomic_cmpset_int(&chain->lockcnt,
1388 					      lockcnt, lockcnt - 1)) {
1389 				hammer2_mtx_unlock(&chain->lock);
1390 				return;
1391 			}
1392 		} else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1393 			/* while holding the mutex exclusively */
1394 			if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1395 				break;
1396 		} else {
1397 			/*
1398 			 * This situation can easily occur on SMP due to
1399 			 * the gap inbetween the 1->0 transition and the
1400 			 * final unlock.  We cannot safely block on the
1401 			 * mutex because lockcnt might go above 1.
1402 			 *
1403 			 * XXX Sleep for one tick if it takes too long.
1404 			 */
1405 			if (++iter > 1000) {
1406 				if (iter > 1000 + hz) {
1407 					kprintf("hammer2: h2race2 %p\n", chain);
1408 					iter = 1000;
1409 				}
1410 				tsleep(&iter, 0, "h2race2", 1);
1411 			}
1412 			cpu_pause();
1413 		}
1414 		/* retry */
1415 	}
1416 
1417 	/*
1418 	 * Last unlock / mutex upgraded to exclusive.  Drop the data
1419 	 * reference.
1420 	 */
1421 	dio = hammer2_chain_drop_data(chain);
1422 	if (dio)
1423 		hammer2_io_bqrelse(&dio);
1424 	hammer2_mtx_unlock(&chain->lock);
1425 }
1426 
1427 /*
1428  * Unlock and hold chain data intact
1429  */
1430 void
1431 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1432 {
1433 	atomic_add_int(&chain->lockcnt, 1);
1434 	hammer2_chain_unlock(chain);
1435 }
1436 
1437 /*
1438  * Helper to obtain the blockref[] array base and count for a chain.
1439  *
1440  * XXX Not widely used yet, various use cases need to be validated and
1441  *     converted to use this function.
1442  */
1443 static
1444 hammer2_blockref_t *
1445 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1446 {
1447 	hammer2_blockref_t *base;
1448 	int count;
1449 
1450 	if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1451 		base = NULL;
1452 
1453 		switch(parent->bref.type) {
1454 		case HAMMER2_BREF_TYPE_INODE:
1455 			count = HAMMER2_SET_COUNT;
1456 			break;
1457 		case HAMMER2_BREF_TYPE_INDIRECT:
1458 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1459 			count = parent->bytes / sizeof(hammer2_blockref_t);
1460 			break;
1461 		case HAMMER2_BREF_TYPE_VOLUME:
1462 			count = HAMMER2_SET_COUNT;
1463 			break;
1464 		case HAMMER2_BREF_TYPE_FREEMAP:
1465 			count = HAMMER2_SET_COUNT;
1466 			break;
1467 		default:
1468 			panic("hammer2_chain_base_and_count: "
1469 			      "unrecognized blockref type: %d",
1470 			      parent->bref.type);
1471 			count = 0;
1472 			break;
1473 		}
1474 	} else {
1475 		switch(parent->bref.type) {
1476 		case HAMMER2_BREF_TYPE_INODE:
1477 			base = &parent->data->ipdata.u.blockset.blockref[0];
1478 			count = HAMMER2_SET_COUNT;
1479 			break;
1480 		case HAMMER2_BREF_TYPE_INDIRECT:
1481 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1482 			base = &parent->data->npdata[0];
1483 			count = parent->bytes / sizeof(hammer2_blockref_t);
1484 			break;
1485 		case HAMMER2_BREF_TYPE_VOLUME:
1486 			base = &parent->data->voldata.
1487 					sroot_blockset.blockref[0];
1488 			count = HAMMER2_SET_COUNT;
1489 			break;
1490 		case HAMMER2_BREF_TYPE_FREEMAP:
1491 			base = &parent->data->blkset.blockref[0];
1492 			count = HAMMER2_SET_COUNT;
1493 			break;
1494 		default:
1495 			panic("hammer2_chain_base_and_count: "
1496 			      "unrecognized blockref type: %d",
1497 			      parent->bref.type);
1498 			count = 0;
1499 			break;
1500 		}
1501 	}
1502 	*countp = count;
1503 
1504 	return base;
1505 }
1506 
1507 /*
1508  * This counts the number of live blockrefs in a block array and
1509  * also calculates the point at which all remaining blockrefs are empty.
1510  * This routine can only be called on a live chain.
1511  *
1512  * Caller holds the chain locked, but possibly with a shared lock.  We
1513  * must use an exclusive spinlock to prevent corruption.
1514  *
1515  * NOTE: Flag is not set until after the count is complete, allowing
1516  *	 callers to test the flag without holding the spinlock.
1517  *
1518  * NOTE: If base is NULL the related chain is still in the INITIAL
1519  *	 state and there are no blockrefs to count.
1520  *
1521  * NOTE: live_count may already have some counts accumulated due to
1522  *	 creation and deletion and could even be initially negative.
1523  */
1524 void
1525 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1526 			 hammer2_blockref_t *base, int count)
1527 {
1528 	hammer2_spin_ex(&chain->core.spin);
1529         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1530 		if (base) {
1531 			while (--count >= 0) {
1532 				if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1533 					break;
1534 			}
1535 			chain->core.live_zero = count + 1;
1536 			while (count >= 0) {
1537 				if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1538 					atomic_add_int(&chain->core.live_count,
1539 						       1);
1540 				--count;
1541 			}
1542 		} else {
1543 			chain->core.live_zero = 0;
1544 		}
1545 		/* else do not modify live_count */
1546 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1547 	}
1548 	hammer2_spin_unex(&chain->core.spin);
1549 }
1550 
1551 /*
1552  * Resize the chain's physical storage allocation in-place.  This function does
1553  * not usually adjust the data pointer and must be followed by (typically) a
1554  * hammer2_chain_modify() call to copy any old data over and adjust the
1555  * data pointer.
1556  *
1557  * Chains can be resized smaller without reallocating the storage.  Resizing
1558  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1559  * asynchronously at a later time.
1560  *
1561  * An nradix value of 0 is special-cased to mean that the storage should
1562  * be disassociated, that is the chain is being resized to 0 bytes (not 1
1563  * byte).
1564  *
1565  * Must be passed an exclusively locked parent and chain.
1566  *
1567  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1568  * to avoid instantiating a device buffer that conflicts with the vnode data
1569  * buffer.  However, because H2 can compress or encrypt data, the chain may
1570  * have a dio assigned to it in those situations, and they do not conflict.
1571  *
1572  * XXX return error if cannot resize.
1573  */
1574 int
1575 hammer2_chain_resize(hammer2_chain_t *chain,
1576 		     hammer2_tid_t mtid, hammer2_off_t dedup_off,
1577 		     int nradix, int flags)
1578 {
1579 	hammer2_dev_t *hmp;
1580 	size_t obytes;
1581 	size_t nbytes;
1582 	int error;
1583 
1584 	hmp = chain->hmp;
1585 
1586 	/*
1587 	 * Only data and indirect blocks can be resized for now.
1588 	 * (The volu root, inodes, and freemap elements use a fixed size).
1589 	 */
1590 	KKASSERT(chain != &hmp->vchain);
1591 	KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1592 		 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1593 		 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1594 
1595 	/*
1596 	 * Nothing to do if the element is already the proper size
1597 	 */
1598 	obytes = chain->bytes;
1599 	nbytes = (nradix) ? (1U << nradix) : 0;
1600 	if (obytes == nbytes)
1601 		return (chain->error);
1602 
1603 	/*
1604 	 * Make sure the old data is instantiated so we can copy it.  If this
1605 	 * is a data block, the device data may be superfluous since the data
1606 	 * might be in a logical block, but compressed or encrypted data is
1607 	 * another matter.
1608 	 *
1609 	 * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1610 	 */
1611 	error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1612 	if (error)
1613 		return error;
1614 
1615 	/*
1616 	 * Reallocate the block, even if making it smaller (because different
1617 	 * block sizes may be in different regions).
1618 	 *
1619 	 * NOTE: Operation does not copy the data and may only be used
1620 	 *	 to resize data blocks in-place, or directory entry blocks
1621 	 *	 which are about to be modified in some manner.
1622 	 */
1623 	error = hammer2_freemap_alloc(chain, nbytes);
1624 	if (error)
1625 		return error;
1626 
1627 	chain->bytes = nbytes;
1628 
1629 	/*
1630 	 * We don't want the followup chain_modify() to try to copy data
1631 	 * from the old (wrong-sized) buffer.  It won't know how much to
1632 	 * copy.  This case should only occur during writes when the
1633 	 * originator already has the data to write in-hand.
1634 	 */
1635 	if (chain->dio) {
1636 		KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1637 			 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1638 		hammer2_io_brelse(&chain->dio);
1639 		chain->data = NULL;
1640 	}
1641 	return (chain->error);
1642 }
1643 
1644 /*
1645  * Set the chain modified so its data can be changed by the caller, or
1646  * install deduplicated data.  The caller must call this routine for each
1647  * set of modifications it makes, even if the chain is already flagged
1648  * MODIFIED.
1649  *
1650  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1651  * is a CLC (cluster level change) field and is not updated by parent
1652  * propagation during a flush.
1653  *
1654  * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1655  * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1656  * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1657  * remains unmodified with its old data ref intact and chain->error
1658  * unchanged.
1659  *
1660  *				 Dedup Handling
1661  *
1662  * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1663  * even if the chain is still flagged MODIFIED.  In this case the chain's
1664  * DEDUPABLE flag will be cleared once the new storage has been assigned.
1665  *
1666  * If the caller passes a non-zero dedup_off we will use it to assign the
1667  * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1668  * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1669  * must not modify the data content upon return.
1670  */
1671 int
1672 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1673 		     hammer2_off_t dedup_off, int flags)
1674 {
1675 	hammer2_blockref_t obref;
1676 	hammer2_dev_t *hmp;
1677 	hammer2_io_t *dio;
1678 	int error;
1679 	int wasinitial;
1680 	int setmodified;
1681 	int setupdate;
1682 	int newmod;
1683 	char *bdata;
1684 
1685 	hmp = chain->hmp;
1686 	obref = chain->bref;
1687 	KKASSERT(chain->lock.mtx_lock & MTX_EXCLUSIVE);
1688 
1689 	/*
1690 	 * Data is not optional for freemap chains (we must always be sure
1691 	 * to copy the data on COW storage allocations).
1692 	 */
1693 	if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1694 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1695 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1696 			 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1697 	}
1698 
1699 	/*
1700 	 * Data must be resolved if already assigned, unless explicitly
1701 	 * flagged otherwise.  If we cannot safety load the data the
1702 	 * modification fails and we return early.
1703 	 */
1704 	if (chain->data == NULL && chain->bytes != 0 &&
1705 	    (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1706 	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1707 		hammer2_chain_load_data(chain);
1708 		if (chain->error)
1709 			return (chain->error);
1710 	}
1711 	error = 0;
1712 
1713 	/*
1714 	 * Set MODIFIED to indicate that the chain has been modified.  A new
1715 	 * allocation is required when modifying a chain.
1716 	 *
1717 	 * Set UPDATE to ensure that the blockref is updated in the parent.
1718 	 *
1719 	 * If MODIFIED is already set determine if we can reuse the assigned
1720 	 * data block or if we need a new data block.
1721 	 */
1722 	if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1723 		/*
1724 		 * Must set modified bit.
1725 		 */
1726 		atomic_add_long(&hammer2_count_modified_chains, 1);
1727 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1728 		hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1729 		setmodified = 1;
1730 
1731 		/*
1732 		 * We may be able to avoid a copy-on-write if the chain's
1733 		 * check mode is set to NONE and the chain's current
1734 		 * modify_tid is beyond the last explicit snapshot tid.
1735 		 *
1736 		 * This implements HAMMER2's overwrite-in-place feature.
1737 		 *
1738 		 * NOTE! This data-block cannot be used as a de-duplication
1739 		 *	 source when the check mode is set to NONE.
1740 		 */
1741 		if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1742 		     chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1743 		    (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1744 		    (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1745 		    HAMMER2_DEC_CHECK(chain->bref.methods) ==
1746 		     HAMMER2_CHECK_NONE &&
1747 		    chain->pmp &&
1748 		    chain->bref.modify_tid >
1749 		     chain->pmp->iroot->meta.pfs_lsnap_tid) {
1750 			/*
1751 			 * Sector overwrite allowed.
1752 			 */
1753 			newmod = 0;
1754 		} else if ((hmp->hflags & HMNT2_EMERG) &&
1755 			   chain->pmp &&
1756 			   chain->bref.modify_tid >
1757 			    chain->pmp->iroot->meta.pfs_lsnap_tid) {
1758 			/*
1759 			 * If in emergency delete mode then do a modify-in-
1760 			 * place on any chain type belonging to the PFS as
1761 			 * long as it doesn't mess up a snapshot.  We might
1762 			 * be forced to do this anyway a little further down
1763 			 * in the code if the allocation fails.
1764 			 *
1765 			 * Also note that in emergency mode, these modify-in-
1766 			 * place operations are NOT SAFE.  A storage failure,
1767 			 * power failure, or panic can corrupt the filesystem.
1768 			 */
1769 			newmod = 0;
1770 		} else {
1771 			/*
1772 			 * Sector overwrite not allowed, must copy-on-write.
1773 			 */
1774 			newmod = 1;
1775 		}
1776 	} else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1777 		/*
1778 		 * If the modified chain was registered for dedup we need
1779 		 * a new allocation.  This only happens for delayed-flush
1780 		 * chains (i.e. which run through the front-end buffer
1781 		 * cache).
1782 		 */
1783 		newmod = 1;
1784 		setmodified = 0;
1785 	} else {
1786 		/*
1787 		 * Already flagged modified, no new allocation is needed.
1788 		 */
1789 		newmod = 0;
1790 		setmodified = 0;
1791 	}
1792 
1793 	/*
1794 	 * Flag parent update required.
1795 	 */
1796 	if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1797 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1798 		setupdate = 1;
1799 	} else {
1800 		setupdate = 0;
1801 	}
1802 
1803 	/*
1804 	 * The XOP code returns held but unlocked focus chains.  This
1805 	 * prevents the chain from being destroyed but does not prevent
1806 	 * it from being modified.  diolk is used to interlock modifications
1807 	 * against XOP frontend accesses to the focus.
1808 	 *
1809 	 * This allows us to theoretically avoid deadlocking the frontend
1810 	 * if one of the backends lock up by not formally locking the
1811 	 * focused chain in the frontend.  In addition, the synchronization
1812 	 * code relies on this mechanism to avoid deadlocking concurrent
1813 	 * synchronization threads.
1814 	 */
1815 	lockmgr(&chain->diolk, LK_EXCLUSIVE);
1816 
1817 	/*
1818 	 * The modification or re-modification requires an allocation and
1819 	 * possible COW.  If an error occurs, the previous content and data
1820 	 * reference is retained and the modification fails.
1821 	 *
1822 	 * If dedup_off is non-zero, the caller is requesting a deduplication
1823 	 * rather than a modification.  The MODIFIED bit is not set and the
1824 	 * data offset is set to the deduplication offset.  The data cannot
1825 	 * be modified.
1826 	 *
1827 	 * NOTE: The dedup offset is allowed to be in a partially free state
1828 	 *	 and we must be sure to reset it to a fully allocated state
1829 	 *	 to force two bulkfree passes to free it again.
1830 	 *
1831 	 * NOTE: Only applicable when chain->bytes != 0.
1832 	 *
1833 	 * XXX can a chain already be marked MODIFIED without a data
1834 	 * assignment?  If not, assert here instead of testing the case.
1835 	 */
1836 	if (chain != &hmp->vchain && chain != &hmp->fchain &&
1837 	    chain->bytes) {
1838 		if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1839 		    newmod
1840 		) {
1841 			/*
1842 			 * NOTE: We do not have to remove the dedup
1843 			 *	 registration because the area is still
1844 			 *	 allocated and the underlying DIO will
1845 			 *	 still be flushed.
1846 			 */
1847 			if (dedup_off) {
1848 				chain->bref.data_off = dedup_off;
1849 				chain->bytes = 1 << (dedup_off &
1850 						     HAMMER2_OFF_MASK_RADIX);
1851 				chain->error = 0;
1852 				atomic_clear_int(&chain->flags,
1853 						 HAMMER2_CHAIN_MODIFIED);
1854 				atomic_add_long(&hammer2_count_modified_chains,
1855 						-1);
1856 				if (chain->pmp) {
1857 					hammer2_pfs_memory_wakeup(
1858 						chain->pmp, -1);
1859 				}
1860 				hammer2_freemap_adjust(hmp, &chain->bref,
1861 						HAMMER2_FREEMAP_DORECOVER);
1862 				atomic_set_int(&chain->flags,
1863 						HAMMER2_CHAIN_DEDUPABLE);
1864 			} else {
1865 				error = hammer2_freemap_alloc(chain,
1866 							      chain->bytes);
1867 				atomic_clear_int(&chain->flags,
1868 						HAMMER2_CHAIN_DEDUPABLE);
1869 
1870 				/*
1871 				 * If we are unable to allocate a new block
1872 				 * but we are in emergency mode, issue a
1873 				 * warning to the console and reuse the same
1874 				 * block.
1875 				 *
1876 				 * We behave as if the allocation were
1877 				 * successful.
1878 				 *
1879 				 * THIS IS IMPORTANT: These modifications
1880 				 * are virtually guaranteed to corrupt any
1881 				 * snapshots related to this filesystem.
1882 				 */
1883 				if (error && (hmp->hflags & HMNT2_EMERG)) {
1884 					error = 0;
1885 					chain->bref.flags |=
1886 						HAMMER2_BREF_FLAG_EMERG_MIP;
1887 
1888 					krateprintf(&krate_h2em,
1889 					    "hammer2: Emergency Mode WARNING: "
1890 					    "Operation will likely corrupt "
1891 					    "related snapshot: "
1892 					    "%016jx.%02x key=%016jx\n",
1893 					    chain->bref.data_off,
1894 					    chain->bref.type,
1895 					    chain->bref.key);
1896 				} else if (error == 0) {
1897 					chain->bref.flags &=
1898 						~HAMMER2_BREF_FLAG_EMERG_MIP;
1899 				}
1900 			}
1901 		}
1902 	}
1903 
1904 	/*
1905 	 * Stop here if error.  We have to undo any flag bits we might
1906 	 * have set above.
1907 	 */
1908 	if (error) {
1909 		if (setmodified) {
1910 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1911 			atomic_add_long(&hammer2_count_modified_chains, -1);
1912 			if (chain->pmp)
1913 				hammer2_pfs_memory_wakeup(chain->pmp, -1);
1914 		}
1915 		if (setupdate) {
1916 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1917 		}
1918 		lockmgr(&chain->diolk, LK_RELEASE);
1919 
1920 		return error;
1921 	}
1922 
1923 	/*
1924 	 * Update mirror_tid and modify_tid.  modify_tid is only updated
1925 	 * if not passed as zero (during flushes, parent propagation passes
1926 	 * the value 0).
1927 	 *
1928 	 * NOTE: chain->pmp could be the device spmp.
1929 	 */
1930 	chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1931 	if (mtid)
1932 		chain->bref.modify_tid = mtid;
1933 
1934 	/*
1935 	 * Set BMAPUPD to tell the flush code that an existing blockmap entry
1936 	 * requires updating as well as to tell the delete code that the
1937 	 * chain's blockref might not exactly match (in terms of physical size
1938 	 * or block offset) the one in the parent's blocktable.  The base key
1939 	 * of course will still match.
1940 	 */
1941 	if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1942 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1943 
1944 	/*
1945 	 * Short-cut data block handling when the caller does not need an
1946 	 * actual data reference to (aka OPTDATA), as long as the chain does
1947 	 * not already have a data pointer to the data and no de-duplication
1948 	 * occurred.
1949 	 *
1950 	 * This generally means that the modifications are being done via the
1951 	 * logical buffer cache.
1952 	 *
1953 	 * NOTE: If deduplication occurred we have to run through the data
1954 	 *	 stuff to clear INITIAL, and the caller will likely want to
1955 	 *	 assign the check code anyway.  Leaving INITIAL set on a
1956 	 *	 dedup can be deadly (it can cause the block to be zero'd!).
1957 	 *
1958 	 * This code also handles bytes == 0 (most dirents).
1959 	 */
1960 	if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1961 	    (flags & HAMMER2_MODIFY_OPTDATA) &&
1962 	    chain->data == NULL) {
1963 		if (dedup_off == 0) {
1964 			KKASSERT(chain->dio == NULL);
1965 			goto skip2;
1966 		}
1967 	}
1968 
1969 	/*
1970 	 * Clearing the INITIAL flag (for indirect blocks) indicates that
1971 	 * we've processed the uninitialized storage allocation.
1972 	 *
1973 	 * If this flag is already clear we are likely in a copy-on-write
1974 	 * situation but we have to be sure NOT to bzero the storage if
1975 	 * no data is present.
1976 	 *
1977 	 * Clearing of NOTTESTED is allowed if the MODIFIED bit is set,
1978 	 */
1979 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1980 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1981 		wasinitial = 1;
1982 	} else {
1983 		wasinitial = 0;
1984 	}
1985 
1986 	/*
1987 	 * Instantiate data buffer and possibly execute COW operation
1988 	 */
1989 	switch(chain->bref.type) {
1990 	case HAMMER2_BREF_TYPE_VOLUME:
1991 	case HAMMER2_BREF_TYPE_FREEMAP:
1992 		/*
1993 		 * The data is embedded, no copy-on-write operation is
1994 		 * needed.
1995 		 */
1996 		KKASSERT(chain->dio == NULL);
1997 		break;
1998 	case HAMMER2_BREF_TYPE_DIRENT:
1999 		/*
2000 		 * The data might be fully embedded.
2001 		 */
2002 		if (chain->bytes == 0) {
2003 			KKASSERT(chain->dio == NULL);
2004 			break;
2005 		}
2006 		/* fall through */
2007 	case HAMMER2_BREF_TYPE_INODE:
2008 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2009 	case HAMMER2_BREF_TYPE_DATA:
2010 	case HAMMER2_BREF_TYPE_INDIRECT:
2011 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2012 		/*
2013 		 * Perform the copy-on-write operation
2014 		 *
2015 		 * zero-fill or copy-on-write depending on whether
2016 		 * chain->data exists or not and set the dirty state for
2017 		 * the new buffer.  hammer2_io_new() will handle the
2018 		 * zero-fill.
2019 		 *
2020 		 * If a dedup_off was supplied this is an existing block
2021 		 * and no COW, copy, or further modification is required.
2022 		 */
2023 		KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
2024 
2025 		if (wasinitial && dedup_off == 0) {
2026 			error = hammer2_io_new(hmp, chain->bref.type,
2027 					       chain->bref.data_off,
2028 					       chain->bytes, &dio);
2029 		} else {
2030 			error = hammer2_io_bread(hmp, chain->bref.type,
2031 						 chain->bref.data_off,
2032 						 chain->bytes, &dio);
2033 		}
2034 		hammer2_adjreadcounter(chain->bref.type, chain->bytes);
2035 
2036 		/*
2037 		 * If an I/O error occurs make sure callers cannot accidently
2038 		 * modify the old buffer's contents and corrupt the filesystem.
2039 		 *
2040 		 * NOTE: hammer2_io_data() call issues bkvasync()
2041 		 */
2042 		if (error) {
2043 			kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
2044 				hmp);
2045 			chain->error = HAMMER2_ERROR_EIO;
2046 			hammer2_io_brelse(&dio);
2047 			hammer2_io_brelse(&chain->dio);
2048 			chain->data = NULL;
2049 			break;
2050 		}
2051 		chain->error = 0;
2052 		bdata = hammer2_io_data(dio, chain->bref.data_off);
2053 
2054 		if (chain->data) {
2055 			/*
2056 			 * COW (unless a dedup).
2057 			 */
2058 			KKASSERT(chain->dio != NULL);
2059 			if (chain->data != (void *)bdata && dedup_off == 0) {
2060 				bcopy(chain->data, bdata, chain->bytes);
2061 			}
2062 		} else if (wasinitial == 0 && dedup_off == 0) {
2063 			/*
2064 			 * We have a problem.  We were asked to COW but
2065 			 * we don't have any data to COW with!
2066 			 */
2067 			panic("hammer2_chain_modify: having a COW %p\n",
2068 			      chain);
2069 		}
2070 
2071 		/*
2072 		 * Retire the old buffer, replace with the new.  Dirty or
2073 		 * redirty the new buffer.
2074 		 *
2075 		 * WARNING! The system buffer cache may have already flushed
2076 		 *	    the buffer, so we must be sure to [re]dirty it
2077 		 *	    for further modification.
2078 		 *
2079 		 *	    If dedup_off was supplied, the caller is not
2080 		 *	    expected to make any further modification to the
2081 		 *	    buffer.
2082 		 *
2083 		 * WARNING! hammer2_get_gdata() assumes dio never transitions
2084 		 *	    through NULL in order to optimize away unnecessary
2085 		 *	    diolk operations.
2086 		 */
2087 		{
2088 			hammer2_io_t *tio;
2089 
2090 			if ((tio = chain->dio) != NULL)
2091 				hammer2_io_bqrelse(&tio);
2092 			chain->data = (void *)bdata;
2093 			chain->dio = dio;
2094 			if (dedup_off == 0)
2095 				hammer2_io_setdirty(dio);
2096 		}
2097 		break;
2098 	default:
2099 		panic("hammer2_chain_modify: illegal non-embedded type %d",
2100 		      chain->bref.type);
2101 		break;
2102 
2103 	}
2104 skip2:
2105 	/*
2106 	 * setflush on parent indicating that the parent must recurse down
2107 	 * to us.  Do not call on chain itself which might already have it
2108 	 * set.
2109 	 */
2110 	if (chain->parent)
2111 		hammer2_chain_setflush(chain->parent);
2112 	lockmgr(&chain->diolk, LK_RELEASE);
2113 
2114 	return (chain->error);
2115 }
2116 
2117 /*
2118  * Modify the chain associated with an inode.
2119  */
2120 int
2121 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2122 			hammer2_tid_t mtid, int flags)
2123 {
2124 	int error;
2125 
2126 	hammer2_inode_modify(ip);
2127 	error = hammer2_chain_modify(chain, mtid, 0, flags);
2128 
2129 	return error;
2130 }
2131 
2132 /*
2133  * Volume header data locks
2134  */
2135 void
2136 hammer2_voldata_lock(hammer2_dev_t *hmp)
2137 {
2138 	lockmgr(&hmp->vollk, LK_EXCLUSIVE);
2139 }
2140 
2141 void
2142 hammer2_voldata_unlock(hammer2_dev_t *hmp)
2143 {
2144 	lockmgr(&hmp->vollk, LK_RELEASE);
2145 }
2146 
2147 void
2148 hammer2_voldata_modify(hammer2_dev_t *hmp)
2149 {
2150 	if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
2151 		atomic_add_long(&hammer2_count_modified_chains, 1);
2152 		atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
2153 		hammer2_pfs_memory_inc(hmp->vchain.pmp);
2154 	}
2155 }
2156 
2157 /*
2158  * This function returns the chain at the nearest key within the specified
2159  * range.  The returned chain will be referenced but not locked.
2160  *
2161  * This function will recurse through chain->rbtree as necessary and will
2162  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
2163  * the iteration value is less than the current value of *key_nextp.
2164  *
2165  * The caller should use (*key_nextp) to calculate the actual range of
2166  * the returned element, which will be (key_beg to *key_nextp - 1), because
2167  * there might be another element which is superior to the returned element
2168  * and overlaps it.
2169  *
2170  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2171  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
2172  * it will wind up being (key_end + 1).
2173  *
2174  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
2175  *	     held through the operation.
2176  */
2177 struct hammer2_chain_find_info {
2178 	hammer2_chain_t		*best;
2179 	hammer2_key_t		key_beg;
2180 	hammer2_key_t		key_end;
2181 	hammer2_key_t		key_next;
2182 };
2183 
2184 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2185 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2186 
2187 static
2188 hammer2_chain_t *
2189 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2190 			  hammer2_key_t key_beg, hammer2_key_t key_end)
2191 {
2192 	struct hammer2_chain_find_info info;
2193 
2194 	info.best = NULL;
2195 	info.key_beg = key_beg;
2196 	info.key_end = key_end;
2197 	info.key_next = *key_nextp;
2198 
2199 	RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2200 		hammer2_chain_find_cmp, hammer2_chain_find_callback,
2201 		&info);
2202 	*key_nextp = info.key_next;
2203 #if 0
2204 	kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2205 		parent, key_beg, key_end, *key_nextp);
2206 #endif
2207 
2208 	return (info.best);
2209 }
2210 
2211 static
2212 int
2213 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2214 {
2215 	struct hammer2_chain_find_info *info = data;
2216 	hammer2_key_t child_beg;
2217 	hammer2_key_t child_end;
2218 
2219 	child_beg = child->bref.key;
2220 	child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2221 
2222 	if (child_end < info->key_beg)
2223 		return(-1);
2224 	if (child_beg > info->key_end)
2225 		return(1);
2226 	return(0);
2227 }
2228 
2229 static
2230 int
2231 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2232 {
2233 	struct hammer2_chain_find_info *info = data;
2234 	hammer2_chain_t *best;
2235 	hammer2_key_t child_end;
2236 
2237 	/*
2238 	 * WARNING! Layerq is scanned forwards, exact matches should keep
2239 	 *	    the existing info->best.
2240 	 */
2241 	if ((best = info->best) == NULL) {
2242 		/*
2243 		 * No previous best.  Assign best
2244 		 */
2245 		info->best = child;
2246 	} else if (best->bref.key <= info->key_beg &&
2247 		   child->bref.key <= info->key_beg) {
2248 		/*
2249 		 * Illegal overlap.
2250 		 */
2251 		KKASSERT(0);
2252 		/*info->best = child;*/
2253 	} else if (child->bref.key < best->bref.key) {
2254 		/*
2255 		 * Child has a nearer key and best is not flush with key_beg.
2256 		 * Set best to child.  Truncate key_next to the old best key.
2257 		 */
2258 		info->best = child;
2259 		if (info->key_next > best->bref.key || info->key_next == 0)
2260 			info->key_next = best->bref.key;
2261 	} else if (child->bref.key == best->bref.key) {
2262 		/*
2263 		 * If our current best is flush with the child then this
2264 		 * is an illegal overlap.
2265 		 *
2266 		 * key_next will automatically be limited to the smaller of
2267 		 * the two end-points.
2268 		 */
2269 		KKASSERT(0);
2270 		info->best = child;
2271 	} else {
2272 		/*
2273 		 * Keep the current best but truncate key_next to the child's
2274 		 * base.
2275 		 *
2276 		 * key_next will also automatically be limited to the smaller
2277 		 * of the two end-points (probably not necessary for this case
2278 		 * but we do it anyway).
2279 		 */
2280 		if (info->key_next > child->bref.key || info->key_next == 0)
2281 			info->key_next = child->bref.key;
2282 	}
2283 
2284 	/*
2285 	 * Always truncate key_next based on child's end-of-range.
2286 	 */
2287 	child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2288 	if (child_end && (info->key_next > child_end || info->key_next == 0))
2289 		info->key_next = child_end;
2290 
2291 	return(0);
2292 }
2293 
2294 /*
2295  * Retrieve the specified chain from a media blockref, creating the
2296  * in-memory chain structure which reflects it.  The returned chain is
2297  * held and locked according to (how) (HAMMER2_RESOLVE_*).  The caller must
2298  * handle crc-checks and so forth, and should check chain->error before
2299  * assuming that the data is good.
2300  *
2301  * To handle insertion races pass the INSERT_RACE flag along with the
2302  * generation number of the core.  NULL will be returned if the generation
2303  * number changes before we have a chance to insert the chain.  Insert
2304  * races can occur because the parent might be held shared.
2305  *
2306  * Caller must hold the parent locked shared or exclusive since we may
2307  * need the parent's bref array to find our block.
2308  *
2309  * WARNING! chain->pmp is always set to NULL for any chain representing
2310  *	    part of the super-root topology.
2311  */
2312 hammer2_chain_t *
2313 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2314 		  hammer2_blockref_t *bref, int how)
2315 {
2316 	hammer2_dev_t *hmp = parent->hmp;
2317 	hammer2_chain_t *chain;
2318 	int error;
2319 
2320 	/*
2321 	 * Allocate a chain structure representing the existing media
2322 	 * entry.  Resulting chain has one ref and is not locked.
2323 	 */
2324 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2325 		chain = hammer2_chain_alloc(hmp, NULL, bref);
2326 	else
2327 		chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2328 	/* ref'd chain returned */
2329 
2330 	/*
2331 	 * Flag that the chain is in the parent's blockmap so delete/flush
2332 	 * knows what to do with it.
2333 	 */
2334 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2335 
2336 	/*
2337 	 * chain must be locked to avoid unexpected ripouts
2338 	 */
2339 	hammer2_chain_lock(chain, how);
2340 
2341 	/*
2342 	 * Link the chain into its parent.  A spinlock is required to safely
2343 	 * access the RBTREE, and it is possible to collide with another
2344 	 * hammer2_chain_get() operation because the caller might only hold
2345 	 * a shared lock on the parent.
2346 	 *
2347 	 * NOTE: Get races can occur quite often when we distribute
2348 	 *	 asynchronous read-aheads across multiple threads.
2349 	 */
2350 	KKASSERT(parent->refs > 0);
2351 	error = hammer2_chain_insert(parent, chain,
2352 				     HAMMER2_CHAIN_INSERT_SPIN |
2353 				     HAMMER2_CHAIN_INSERT_RACE,
2354 				     generation);
2355 	if (error) {
2356 		KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2357 		/*kprintf("chain %p get race\n", chain);*/
2358 		hammer2_chain_unlock(chain);
2359 		hammer2_chain_drop(chain);
2360 		chain = NULL;
2361 	} else {
2362 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2363 	}
2364 
2365 	/*
2366 	 * Return our new chain referenced but not locked, or NULL if
2367 	 * a race occurred.
2368 	 */
2369 	return (chain);
2370 }
2371 
2372 /*
2373  * Lookup initialization/completion API
2374  */
2375 hammer2_chain_t *
2376 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2377 {
2378 	hammer2_chain_ref(parent);
2379 	if (flags & HAMMER2_LOOKUP_SHARED) {
2380 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2381 					   HAMMER2_RESOLVE_SHARED);
2382 	} else {
2383 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2384 	}
2385 	return (parent);
2386 }
2387 
2388 void
2389 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2390 {
2391 	if (parent) {
2392 		hammer2_chain_unlock(parent);
2393 		hammer2_chain_drop(parent);
2394 	}
2395 }
2396 
2397 /*
2398  * Take the locked chain and return a locked parent.  The chain remains
2399  * locked on return, but may have to be temporarily unlocked to acquire
2400  * the parent.  Because of this, (chain) must be stable and cannot be
2401  * deleted while it was temporarily unlocked (typically means that (chain)
2402  * is an inode).
2403  *
2404  * Pass HAMMER2_RESOLVE_* flags in flags.
2405  *
2406  * This will work even if the chain is errored, and the caller can check
2407  * parent->error on return if desired since the parent will be locked.
2408  *
2409  * This function handles the lock order reversal.
2410  */
2411 hammer2_chain_t *
2412 hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2413 {
2414 	hammer2_chain_t *parent;
2415 
2416 	/*
2417 	 * Be careful of order, chain must be unlocked before parent
2418 	 * is locked below to avoid a deadlock.  Try it trivially first.
2419 	 */
2420 	parent = chain->parent;
2421 	if (parent == NULL)
2422 		panic("hammer2_chain_getparent: no parent");
2423 	hammer2_chain_ref(parent);
2424 	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2425 		return parent;
2426 
2427 	for (;;) {
2428 		hammer2_chain_unlock(chain);
2429 		hammer2_chain_lock(parent, flags);
2430 		hammer2_chain_lock(chain, flags);
2431 
2432 		/*
2433 		 * Parent relinking races are quite common.  We have to get
2434 		 * it right or we will blow up the block table.
2435 		 */
2436 		if (chain->parent == parent)
2437 			break;
2438 		hammer2_chain_unlock(parent);
2439 		hammer2_chain_drop(parent);
2440 		cpu_ccfence();
2441 		parent = chain->parent;
2442 		if (parent == NULL)
2443 			panic("hammer2_chain_getparent: no parent");
2444 		hammer2_chain_ref(parent);
2445 	}
2446 	return parent;
2447 }
2448 
2449 /*
2450  * Take the locked chain and return a locked parent.  The chain is unlocked
2451  * and dropped.  *chainp is set to the returned parent as a convenience.
2452  * Pass HAMMER2_RESOLVE_* flags in flags.
2453  *
2454  * This will work even if the chain is errored, and the caller can check
2455  * parent->error on return if desired since the parent will be locked.
2456  *
2457  * The chain does NOT need to be stable.  We use a tracking structure
2458  * to track the expected parent if the chain is deleted out from under us.
2459  *
2460  * This function handles the lock order reversal.
2461  */
2462 hammer2_chain_t *
2463 hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2464 {
2465 	hammer2_chain_t *chain;
2466 	hammer2_chain_t *parent;
2467 	struct hammer2_reptrack reptrack;
2468 	struct hammer2_reptrack **repp;
2469 
2470 	/*
2471 	 * Be careful of order, chain must be unlocked before parent
2472 	 * is locked below to avoid a deadlock.  Try it trivially first.
2473 	 */
2474 	chain = *chainp;
2475 	parent = chain->parent;
2476 	if (parent == NULL) {
2477 		hammer2_spin_unex(&chain->core.spin);
2478 		panic("hammer2_chain_repparent: no parent");
2479 	}
2480 	hammer2_chain_ref(parent);
2481 	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2482 		hammer2_chain_unlock(chain);
2483 		hammer2_chain_drop(chain);
2484 		*chainp = parent;
2485 
2486 		return parent;
2487 	}
2488 
2489 	/*
2490 	 * Ok, now it gets a bit nasty.  There are multiple situations where
2491 	 * the parent might be in the middle of a deletion, or where the child
2492 	 * (chain) might be deleted the instant we let go of its lock.
2493 	 * We can potentially end up in a no-win situation!
2494 	 *
2495 	 * In particular, the indirect_maintenance() case can cause these
2496 	 * situations.
2497 	 *
2498 	 * To deal with this we install a reptrack structure in the parent
2499 	 * This reptrack structure 'owns' the parent ref and will automatically
2500 	 * migrate to the parent's parent if the parent is deleted permanently.
2501 	 */
2502 	hammer2_spin_init(&reptrack.spin, "h2reptrk");
2503 	reptrack.chain = parent;
2504 	hammer2_chain_ref(parent);		/* for the reptrack */
2505 
2506 	hammer2_spin_ex(&parent->core.spin);
2507 	reptrack.next = parent->core.reptrack;
2508 	parent->core.reptrack = &reptrack;
2509 	hammer2_spin_unex(&parent->core.spin);
2510 
2511 	hammer2_chain_unlock(chain);
2512 	hammer2_chain_drop(chain);
2513 	chain = NULL;	/* gone */
2514 
2515 	/*
2516 	 * At the top of this loop, chain is gone and parent is refd both
2517 	 * by us explicitly AND via our reptrack.  We are attempting to
2518 	 * lock parent.
2519 	 */
2520 	for (;;) {
2521 		hammer2_chain_lock(parent, flags);
2522 
2523 		if (reptrack.chain == parent)
2524 			break;
2525 		hammer2_chain_unlock(parent);
2526 		hammer2_chain_drop(parent);
2527 
2528 		kprintf("hammer2: debug REPTRACK %p->%p\n",
2529 			parent, reptrack.chain);
2530 		hammer2_spin_ex(&reptrack.spin);
2531 		parent = reptrack.chain;
2532 		hammer2_chain_ref(parent);
2533 		hammer2_spin_unex(&reptrack.spin);
2534 	}
2535 
2536 	/*
2537 	 * Once parent is locked and matches our reptrack, our reptrack
2538 	 * will be stable and we have our parent.  We can unlink our
2539 	 * reptrack.
2540 	 *
2541 	 * WARNING!  Remember that the chain lock might be shared.  Chains
2542 	 *	     locked shared have stable parent linkages.
2543 	 */
2544 	hammer2_spin_ex(&parent->core.spin);
2545 	repp = &parent->core.reptrack;
2546 	while (*repp != &reptrack)
2547 		repp = &(*repp)->next;
2548 	*repp = reptrack.next;
2549 	hammer2_spin_unex(&parent->core.spin);
2550 
2551 	hammer2_chain_drop(parent);	/* reptrack ref */
2552 	*chainp = parent;		/* return parent lock+ref */
2553 
2554 	return parent;
2555 }
2556 
2557 /*
2558  * Dispose of any linked reptrack structures in (chain) by shifting them to
2559  * (parent).  Both (chain) and (parent) must be exclusively locked.
2560  *
2561  * This is interlocked against any children of (chain) on the other side.
2562  * No children so remain as-of when this is called so we can test
2563  * core.reptrack without holding the spin-lock.
2564  *
2565  * Used whenever the caller intends to permanently delete chains related
2566  * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2567  * where the chains underneath the node being deleted are given a new parent
2568  * above the node being deleted.
2569  */
2570 static
2571 void
2572 hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2573 {
2574 	struct hammer2_reptrack *reptrack;
2575 
2576 	KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2577 	while (chain->core.reptrack) {
2578 		hammer2_spin_ex(&parent->core.spin);
2579 		hammer2_spin_ex(&chain->core.spin);
2580 		reptrack = chain->core.reptrack;
2581 		if (reptrack == NULL) {
2582 			hammer2_spin_unex(&chain->core.spin);
2583 			hammer2_spin_unex(&parent->core.spin);
2584 			break;
2585 		}
2586 		hammer2_spin_ex(&reptrack->spin);
2587 		chain->core.reptrack = reptrack->next;
2588 		reptrack->chain = parent;
2589 		reptrack->next = parent->core.reptrack;
2590 		parent->core.reptrack = reptrack;
2591 		hammer2_chain_ref(parent);		/* reptrack */
2592 
2593 		hammer2_spin_unex(&chain->core.spin);
2594 		hammer2_spin_unex(&parent->core.spin);
2595 		kprintf("hammer2: debug repchange %p %p->%p\n",
2596 			reptrack, chain, parent);
2597 		hammer2_chain_drop(chain);		/* reptrack */
2598 	}
2599 }
2600 
2601 /*
2602  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2603  * (*parentp) typically points to an inode but can also point to a related
2604  * indirect block and this function will recurse upwards and find the inode
2605  * or the nearest undeleted indirect block covering the key range.
2606  *
2607  * This function unconditionally sets *errorp, replacing any previous value.
2608  *
2609  * (*parentp) must be exclusive or shared locked (depending on flags) and
2610  * referenced and can be an inode or an existing indirect block within the
2611  * inode.
2612  *
2613  * If (*parent) is errored out, this function will not attempt to recurse
2614  * the radix tree and will return NULL along with an appropriate *errorp.
2615  * If NULL is returned and *errorp is 0, the requested lookup could not be
2616  * located.
2617  *
2618  * On return (*parentp) will be modified to point at the deepest parent chain
2619  * element encountered during the search, as a helper for an insertion or
2620  * deletion.
2621  *
2622  * The new (*parentp) will be locked shared or exclusive (depending on flags),
2623  * and referenced, and the old will be unlocked and dereferenced (no change
2624  * if they are both the same).  This is particularly important if the caller
2625  * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2626  * is returned, as long as no error occurred.
2627  *
2628  * The matching chain will be returned locked according to flags.
2629  *
2630  * --
2631  *
2632  * NULL is returned if no match was found, but (*parentp) will still
2633  * potentially be adjusted.
2634  *
2635  * On return (*key_nextp) will point to an iterative value for key_beg.
2636  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2637  *
2638  * This function will also recurse up the chain if the key is not within the
2639  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2640  * can simply allow (*parentp) to float inside the loop.
2641  *
2642  * NOTE!  chain->data is not always resolved.  By default it will not be
2643  *	  resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2644  *	  HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2645  *	  BREF_TYPE_DATA as the device buffer can alias the logical file
2646  *	  buffer).
2647  */
2648 
2649 hammer2_chain_t *
2650 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2651 		     hammer2_key_t key_beg, hammer2_key_t key_end,
2652 		     int *errorp, int flags)
2653 {
2654 	hammer2_dev_t *hmp;
2655 	hammer2_chain_t *parent;
2656 	hammer2_chain_t *chain;
2657 	hammer2_blockref_t *base;
2658 	hammer2_blockref_t *bref;
2659 	hammer2_blockref_t bsave;
2660 	hammer2_key_t scan_beg;
2661 	hammer2_key_t scan_end;
2662 	int count = 0;
2663 	int how_always = HAMMER2_RESOLVE_ALWAYS;
2664 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
2665 	int how;
2666 	int generation;
2667 	int maxloops = 300000;
2668 	volatile hammer2_mtx_t save_mtx;
2669 
2670 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
2671 		how_maybe = how_always;
2672 		how = HAMMER2_RESOLVE_ALWAYS;
2673 	} else if (flags & HAMMER2_LOOKUP_NODATA) {
2674 		how = HAMMER2_RESOLVE_NEVER;
2675 	} else {
2676 		how = HAMMER2_RESOLVE_MAYBE;
2677 	}
2678 	if (flags & HAMMER2_LOOKUP_SHARED) {
2679 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2680 		how_always |= HAMMER2_RESOLVE_SHARED;
2681 		how |= HAMMER2_RESOLVE_SHARED;
2682 	}
2683 
2684 	/*
2685 	 * Recurse (*parentp) upward if necessary until the parent completely
2686 	 * encloses the key range or we hit the inode.
2687 	 *
2688 	 * Handle races against the flusher deleting indirect nodes on its
2689 	 * way back up by continuing to recurse upward past the deletion.
2690 	 */
2691 	parent = *parentp;
2692 	hmp = parent->hmp;
2693 	*errorp = 0;
2694 
2695 	while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2696 	       parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2697 		scan_beg = parent->bref.key;
2698 		scan_end = scan_beg +
2699 			   ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2700 		if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2701 			if (key_beg >= scan_beg && key_end <= scan_end)
2702 				break;
2703 		}
2704 		parent = hammer2_chain_repparent(parentp, how_maybe);
2705 	}
2706 again:
2707 	if (--maxloops == 0)
2708 		panic("hammer2_chain_lookup: maxloops");
2709 
2710 	/*
2711 	 * MATCHIND case that does not require parent->data (do prior to
2712 	 * parent->error check).
2713 	 */
2714 	switch(parent->bref.type) {
2715 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2716 	case HAMMER2_BREF_TYPE_INDIRECT:
2717 		if (flags & HAMMER2_LOOKUP_MATCHIND) {
2718 			scan_beg = parent->bref.key;
2719 			scan_end = scan_beg +
2720 			       ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2721 			if (key_beg == scan_beg && key_end == scan_end) {
2722 				chain = parent;
2723 				hammer2_chain_ref(chain);
2724 				hammer2_chain_lock(chain, how_maybe);
2725 				*key_nextp = scan_end + 1;
2726 				goto done;
2727 			}
2728 		}
2729 		break;
2730 	default:
2731 		break;
2732 	}
2733 
2734 	/*
2735 	 * No lookup is possible if the parent is errored.  We delayed
2736 	 * this check as long as we could to ensure that the parent backup,
2737 	 * embedded data, and MATCHIND code could still execute.
2738 	 */
2739 	if (parent->error) {
2740 		*errorp = parent->error;
2741 		return NULL;
2742 	}
2743 
2744 	/*
2745 	 * Locate the blockref array.  Currently we do a fully associative
2746 	 * search through the array.
2747 	 */
2748 	switch(parent->bref.type) {
2749 	case HAMMER2_BREF_TYPE_INODE:
2750 		/*
2751 		 * Special shortcut for embedded data returns the inode
2752 		 * itself.  Callers must detect this condition and access
2753 		 * the embedded data (the strategy code does this for us).
2754 		 *
2755 		 * This is only applicable to regular files and softlinks.
2756 		 *
2757 		 * We need a second lock on parent.  Since we already have
2758 		 * a lock we must pass LOCKAGAIN to prevent unexpected
2759 		 * blocking (we don't want to block on a second shared
2760 		 * ref if an exclusive lock is pending)
2761 		 */
2762 		if (parent->data->ipdata.meta.op_flags &
2763 		    HAMMER2_OPFLAG_DIRECTDATA) {
2764 			if (flags & HAMMER2_LOOKUP_NODIRECT) {
2765 				chain = NULL;
2766 				*key_nextp = key_end + 1;
2767 				goto done;
2768 			}
2769 			hammer2_chain_ref(parent);
2770 			hammer2_chain_lock(parent, how_always |
2771 						   HAMMER2_RESOLVE_LOCKAGAIN);
2772 			*key_nextp = key_end + 1;
2773 			return (parent);
2774 		}
2775 		base = &parent->data->ipdata.u.blockset.blockref[0];
2776 		count = HAMMER2_SET_COUNT;
2777 		break;
2778 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2779 	case HAMMER2_BREF_TYPE_INDIRECT:
2780 		/*
2781 		 * Optimize indirect blocks in the INITIAL state to avoid
2782 		 * I/O.
2783 		 *
2784 		 * Debugging: Enter permanent wait state instead of
2785 		 * panicing on unexpectedly NULL data for the moment.
2786 		 */
2787 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2788 			base = NULL;
2789 		} else {
2790 			if (parent->data == NULL) {
2791 				kprintf("hammer2: unexpected NULL data "
2792 					"on %p\n", parent);
2793 				while (1)
2794 					tsleep(parent, 0, "xxx", 0);
2795 			}
2796 			base = &parent->data->npdata[0];
2797 		}
2798 		count = parent->bytes / sizeof(hammer2_blockref_t);
2799 		break;
2800 	case HAMMER2_BREF_TYPE_VOLUME:
2801 		base = &parent->data->voldata.sroot_blockset.blockref[0];
2802 		count = HAMMER2_SET_COUNT;
2803 		break;
2804 	case HAMMER2_BREF_TYPE_FREEMAP:
2805 		base = &parent->data->blkset.blockref[0];
2806 		count = HAMMER2_SET_COUNT;
2807 		break;
2808 	default:
2809 		kprintf("hammer2_chain_lookup: unrecognized "
2810 			"blockref(B) type: %d",
2811 			parent->bref.type);
2812 		while (1)
2813 			tsleep(&base, 0, "dead", 0);
2814 		panic("hammer2_chain_lookup: unrecognized "
2815 		      "blockref(B) type: %d",
2816 		      parent->bref.type);
2817 		base = NULL;	/* safety */
2818 		count = 0;	/* safety */
2819 	}
2820 
2821 	/*
2822 	 * Merged scan to find next candidate.
2823 	 *
2824 	 * hammer2_base_*() functions require the parent->core.live_* fields
2825 	 * to be synchronized.
2826 	 *
2827 	 * We need to hold the spinlock to access the block array and RB tree
2828 	 * and to interlock chain creation.
2829 	 */
2830 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2831 		hammer2_chain_countbrefs(parent, base, count);
2832 
2833 	/*
2834 	 * Combined search
2835 	 */
2836 	hammer2_spin_ex(&parent->core.spin);
2837 	chain = hammer2_combined_find(parent, base, count,
2838 				      key_nextp,
2839 				      key_beg, key_end,
2840 				      &bref);
2841 	generation = parent->core.generation;
2842 
2843 	/*
2844 	 * Exhausted parent chain, iterate.
2845 	 */
2846 	if (bref == NULL) {
2847 		KKASSERT(chain == NULL);
2848 		hammer2_spin_unex(&parent->core.spin);
2849 		if (key_beg == key_end)	/* short cut single-key case */
2850 			return (NULL);
2851 
2852 		/*
2853 		 * Stop if we reached the end of the iteration.
2854 		 */
2855 		if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2856 		    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2857 			return (NULL);
2858 		}
2859 
2860 		/*
2861 		 * Calculate next key, stop if we reached the end of the
2862 		 * iteration, otherwise go up one level and loop.
2863 		 */
2864 		key_beg = parent->bref.key +
2865 			  ((hammer2_key_t)1 << parent->bref.keybits);
2866 		if (key_beg == 0 || key_beg > key_end)
2867 			return (NULL);
2868 		parent = hammer2_chain_repparent(parentp, how_maybe);
2869 		goto again;
2870 	}
2871 
2872 	/*
2873 	 * Selected from blockref or in-memory chain.
2874 	 */
2875 	bsave = *bref;
2876 	if (chain == NULL) {
2877 		hammer2_spin_unex(&parent->core.spin);
2878 		if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2879 		    bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2880 			chain = hammer2_chain_get(parent, generation,
2881 						  &bsave, how_maybe);
2882 		} else {
2883 			chain = hammer2_chain_get(parent, generation,
2884 						  &bsave, how);
2885 		}
2886 		if (chain == NULL)
2887 			goto again;
2888 	} else {
2889 		hammer2_chain_ref(chain);
2890 		hammer2_spin_unex(&parent->core.spin);
2891 
2892 		/*
2893 		 * chain is referenced but not locked.  We must lock the
2894 		 * chain to obtain definitive state.
2895 		 */
2896 		if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2897 		    bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2898 			hammer2_chain_lock(chain, how_maybe);
2899 		} else {
2900 			hammer2_chain_lock(chain, how);
2901 		}
2902 		KKASSERT(chain->parent == parent);
2903 	}
2904 	if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
2905 	    chain->parent != parent) {
2906 		hammer2_chain_unlock(chain);
2907 		hammer2_chain_drop(chain);
2908 		chain = NULL;	/* SAFETY */
2909 		goto again;
2910 	}
2911 
2912 
2913 	/*
2914 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2915 	 *
2916 	 * NOTE: Chain's key range is not relevant as there might be
2917 	 *	 one-offs within the range that are not deleted.
2918 	 *
2919 	 * NOTE: Lookups can race delete-duplicate because
2920 	 *	 delete-duplicate does not lock the parent's core
2921 	 *	 (they just use the spinlock on the core).
2922 	 */
2923 	if (chain->flags & HAMMER2_CHAIN_DELETED) {
2924 		kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2925 			chain->bref.data_off, chain->bref.type,
2926 			chain->bref.key);
2927 		hammer2_chain_unlock(chain);
2928 		hammer2_chain_drop(chain);
2929 		chain = NULL;	/* SAFETY */
2930 		key_beg = *key_nextp;
2931 		if (key_beg == 0 || key_beg > key_end)
2932 			return(NULL);
2933 		goto again;
2934 	}
2935 
2936 	/*
2937 	 * If the chain element is an indirect block it becomes the new
2938 	 * parent and we loop on it.  We must maintain our top-down locks
2939 	 * to prevent the flusher from interfering (i.e. doing a
2940 	 * delete-duplicate and leaving us recursing down a deleted chain).
2941 	 *
2942 	 * The parent always has to be locked with at least RESOLVE_MAYBE
2943 	 * so we can access its data.  It might need a fixup if the caller
2944 	 * passed incompatible flags.  Be careful not to cause a deadlock
2945 	 * as a data-load requires an exclusive lock.
2946 	 *
2947 	 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2948 	 * range is within the requested key range we return the indirect
2949 	 * block and do NOT loop.  This is usually only used to acquire
2950 	 * freemap nodes.
2951 	 */
2952 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2953 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2954 		save_mtx = parent->lock;
2955 		hammer2_chain_unlock(parent);
2956 		hammer2_chain_drop(parent);
2957 		*parentp = parent = chain;
2958 		chain = NULL;	/* SAFETY */
2959 		goto again;
2960 	}
2961 done:
2962 	/*
2963 	 * All done, return the locked chain.
2964 	 *
2965 	 * If the caller does not want a locked chain, replace the lock with
2966 	 * a ref.  Perhaps this can eventually be optimized to not obtain the
2967 	 * lock in the first place for situations where the data does not
2968 	 * need to be resolved.
2969 	 *
2970 	 * NOTE! A chain->error must be tested by the caller upon return.
2971 	 *	 *errorp is only set based on issues which occur while
2972 	 *	 trying to reach the chain.
2973 	 */
2974 	return (chain);
2975 }
2976 
2977 /*
2978  * After having issued a lookup we can iterate all matching keys.
2979  *
2980  * If chain is non-NULL we continue the iteration from just after it's index.
2981  *
2982  * If chain is NULL we assume the parent was exhausted and continue the
2983  * iteration at the next parent.
2984  *
2985  * If a fatal error occurs (typically an I/O error), a dummy chain is
2986  * returned with chain->error and error-identifying information set.  This
2987  * chain will assert if you try to do anything fancy with it.
2988  *
2989  * XXX Depending on where the error occurs we should allow continued iteration.
2990  *
2991  * parent must be locked on entry and remains locked throughout.  chain's
2992  * lock status must match flags.  Chain is always at least referenced.
2993  *
2994  * WARNING!  The MATCHIND flag does not apply to this function.
2995  */
2996 hammer2_chain_t *
2997 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2998 		   hammer2_key_t *key_nextp,
2999 		   hammer2_key_t key_beg, hammer2_key_t key_end,
3000 		   int *errorp, int flags)
3001 {
3002 	hammer2_chain_t *parent;
3003 	int how_maybe;
3004 
3005 	/*
3006 	 * Calculate locking flags for upward recursion.
3007 	 */
3008 	how_maybe = HAMMER2_RESOLVE_MAYBE;
3009 	if (flags & HAMMER2_LOOKUP_SHARED)
3010 		how_maybe |= HAMMER2_RESOLVE_SHARED;
3011 
3012 	parent = *parentp;
3013 	*errorp = 0;
3014 
3015 	/*
3016 	 * Calculate the next index and recalculate the parent if necessary.
3017 	 */
3018 	if (chain) {
3019 		key_beg = chain->bref.key +
3020 			  ((hammer2_key_t)1 << chain->bref.keybits);
3021 		hammer2_chain_unlock(chain);
3022 		hammer2_chain_drop(chain);
3023 
3024 		/*
3025 		 * chain invalid past this point, but we can still do a
3026 		 * pointer comparison w/parent.
3027 		 *
3028 		 * Any scan where the lookup returned degenerate data embedded
3029 		 * in the inode has an invalid index and must terminate.
3030 		 */
3031 		if (chain == parent)
3032 			return(NULL);
3033 		if (key_beg == 0 || key_beg > key_end)
3034 			return(NULL);
3035 		chain = NULL;
3036 	} else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
3037 		   parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
3038 		/*
3039 		 * We reached the end of the iteration.
3040 		 */
3041 		return (NULL);
3042 	} else {
3043 		/*
3044 		 * Continue iteration with next parent unless the current
3045 		 * parent covers the range.
3046 		 *
3047 		 * (This also handles the case of a deleted, empty indirect
3048 		 * node).
3049 		 */
3050 		key_beg = parent->bref.key +
3051 			  ((hammer2_key_t)1 << parent->bref.keybits);
3052 		if (key_beg == 0 || key_beg > key_end)
3053 			return (NULL);
3054 		parent = hammer2_chain_repparent(parentp, how_maybe);
3055 	}
3056 
3057 	/*
3058 	 * And execute
3059 	 */
3060 	return (hammer2_chain_lookup(parentp, key_nextp,
3061 				     key_beg, key_end,
3062 				     errorp, flags));
3063 }
3064 
3065 /*
3066  * Caller wishes to iterate chains under parent, loading new chains into
3067  * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
3068  * then call hammer2_chain_scan() repeatedly until a non-zero return.
3069  * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
3070  * with the returned chain for the scan.  The returned *chainp will be
3071  * locked and referenced.  Any prior contents will be unlocked and dropped.
3072  *
3073  * Caller should check the return value.  A normal scan EOF will return
3074  * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
3075  * error trying to access parent data.  Any error in the returned chain
3076  * must be tested separately by the caller.
3077  *
3078  * (*chainp) is dropped on each scan, but will only be set if the returned
3079  * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
3080  * returned via *chainp.  The caller will get their bref only.
3081  *
3082  * The raw scan function is similar to lookup/next but does not seek to a key.
3083  * Blockrefs are iterated via first_bref = (parent, NULL) and
3084  * next_chain = (parent, bref).
3085  *
3086  * The passed-in parent must be locked and its data resolved.  The function
3087  * nominally returns a locked and referenced *chainp != NULL for chains
3088  * the caller might need to recurse on (and will dipose of any *chainp passed
3089  * in).  The caller must check the chain->bref.type either way.
3090  */
3091 int
3092 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3093 		   hammer2_blockref_t *bref, int *firstp,
3094 		   int flags)
3095 {
3096 	hammer2_dev_t *hmp;
3097 	hammer2_blockref_t *base;
3098 	hammer2_blockref_t *bref_ptr;
3099 	hammer2_key_t key;
3100 	hammer2_key_t next_key;
3101 	hammer2_chain_t *chain = NULL;
3102 	int count = 0;
3103 	int how_always = HAMMER2_RESOLVE_ALWAYS;
3104 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
3105 	int how;
3106 	int generation;
3107 	int maxloops = 300000;
3108 	int error;
3109 
3110 	hmp = parent->hmp;
3111 	error = 0;
3112 
3113 	/*
3114 	 * Scan flags borrowed from lookup.
3115 	 */
3116 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
3117 		how_maybe = how_always;
3118 		how = HAMMER2_RESOLVE_ALWAYS;
3119 	} else if (flags & HAMMER2_LOOKUP_NODATA) {
3120 		how = HAMMER2_RESOLVE_NEVER;
3121 	} else {
3122 		how = HAMMER2_RESOLVE_MAYBE;
3123 	}
3124 	if (flags & HAMMER2_LOOKUP_SHARED) {
3125 		how_maybe |= HAMMER2_RESOLVE_SHARED;
3126 		how_always |= HAMMER2_RESOLVE_SHARED;
3127 		how |= HAMMER2_RESOLVE_SHARED;
3128 	}
3129 
3130 	/*
3131 	 * Calculate key to locate first/next element, unlocking the previous
3132 	 * element as we go.  Be careful, the key calculation can overflow.
3133 	 *
3134 	 * (also reset bref to NULL)
3135 	 */
3136 	if (*firstp) {
3137 		key = 0;
3138 		*firstp = 0;
3139 	} else {
3140 		key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3141 		if ((chain = *chainp) != NULL) {
3142 			*chainp = NULL;
3143 			hammer2_chain_unlock(chain);
3144 			hammer2_chain_drop(chain);
3145 			chain = NULL;
3146 		}
3147 		if (key == 0) {
3148 			error |= HAMMER2_ERROR_EOF;
3149 			goto done;
3150 		}
3151 	}
3152 
3153 again:
3154 	if (parent->error) {
3155 		error = parent->error;
3156 		goto done;
3157 	}
3158 	if (--maxloops == 0)
3159 		panic("hammer2_chain_scan: maxloops");
3160 
3161 	/*
3162 	 * Locate the blockref array.  Currently we do a fully associative
3163 	 * search through the array.
3164 	 */
3165 	switch(parent->bref.type) {
3166 	case HAMMER2_BREF_TYPE_INODE:
3167 		/*
3168 		 * An inode with embedded data has no sub-chains.
3169 		 *
3170 		 * WARNING! Bulk scan code may pass a static chain marked
3171 		 *	    as BREF_TYPE_INODE with a copy of the volume
3172 		 *	    root blockset to snapshot the volume.
3173 		 */
3174 		if (parent->data->ipdata.meta.op_flags &
3175 		    HAMMER2_OPFLAG_DIRECTDATA) {
3176 			error |= HAMMER2_ERROR_EOF;
3177 			goto done;
3178 		}
3179 		base = &parent->data->ipdata.u.blockset.blockref[0];
3180 		count = HAMMER2_SET_COUNT;
3181 		break;
3182 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3183 	case HAMMER2_BREF_TYPE_INDIRECT:
3184 		/*
3185 		 * Optimize indirect blocks in the INITIAL state to avoid
3186 		 * I/O.
3187 		 */
3188 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3189 			base = NULL;
3190 		} else {
3191 			if (parent->data == NULL)
3192 				panic("parent->data is NULL");
3193 			base = &parent->data->npdata[0];
3194 		}
3195 		count = parent->bytes / sizeof(hammer2_blockref_t);
3196 		break;
3197 	case HAMMER2_BREF_TYPE_VOLUME:
3198 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3199 		count = HAMMER2_SET_COUNT;
3200 		break;
3201 	case HAMMER2_BREF_TYPE_FREEMAP:
3202 		base = &parent->data->blkset.blockref[0];
3203 		count = HAMMER2_SET_COUNT;
3204 		break;
3205 	default:
3206 		panic("hammer2_chain_scan: unrecognized blockref type: %d",
3207 		      parent->bref.type);
3208 		base = NULL;	/* safety */
3209 		count = 0;	/* safety */
3210 	}
3211 
3212 	/*
3213 	 * Merged scan to find next candidate.
3214 	 *
3215 	 * hammer2_base_*() functions require the parent->core.live_* fields
3216 	 * to be synchronized.
3217 	 *
3218 	 * We need to hold the spinlock to access the block array and RB tree
3219 	 * and to interlock chain creation.
3220 	 */
3221 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3222 		hammer2_chain_countbrefs(parent, base, count);
3223 
3224 	next_key = 0;
3225 	bref_ptr = NULL;
3226 	hammer2_spin_ex(&parent->core.spin);
3227 	chain = hammer2_combined_find(parent, base, count,
3228 				      &next_key,
3229 				      key, HAMMER2_KEY_MAX,
3230 				      &bref_ptr);
3231 	generation = parent->core.generation;
3232 
3233 	/*
3234 	 * Exhausted parent chain, we're done.
3235 	 */
3236 	if (bref_ptr == NULL) {
3237 		hammer2_spin_unex(&parent->core.spin);
3238 		KKASSERT(chain == NULL);
3239 		error |= HAMMER2_ERROR_EOF;
3240 		goto done;
3241 	}
3242 
3243 	/*
3244 	 * Copy into the supplied stack-based blockref.
3245 	 */
3246 	*bref = *bref_ptr;
3247 
3248 	/*
3249 	 * Selected from blockref or in-memory chain.
3250 	 */
3251 	if (chain == NULL) {
3252 		switch(bref->type) {
3253 		case HAMMER2_BREF_TYPE_INODE:
3254 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3255 		case HAMMER2_BREF_TYPE_INDIRECT:
3256 		case HAMMER2_BREF_TYPE_VOLUME:
3257 		case HAMMER2_BREF_TYPE_FREEMAP:
3258 			/*
3259 			 * Recursion, always get the chain
3260 			 */
3261 			hammer2_spin_unex(&parent->core.spin);
3262 			chain = hammer2_chain_get(parent, generation,
3263 						  bref, how);
3264 			if (chain == NULL)
3265 				goto again;
3266 			break;
3267 		default:
3268 			/*
3269 			 * No recursion, do not waste time instantiating
3270 			 * a chain, just iterate using the bref.
3271 			 */
3272 			hammer2_spin_unex(&parent->core.spin);
3273 			break;
3274 		}
3275 	} else {
3276 		/*
3277 		 * Recursion or not we need the chain in order to supply
3278 		 * the bref.
3279 		 */
3280 		hammer2_chain_ref(chain);
3281 		hammer2_spin_unex(&parent->core.spin);
3282 		hammer2_chain_lock(chain, how);
3283 	}
3284 	if (chain &&
3285 	    (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3286 	     chain->parent != parent)) {
3287 		hammer2_chain_unlock(chain);
3288 		hammer2_chain_drop(chain);
3289 		chain = NULL;
3290 		goto again;
3291 	}
3292 
3293 	/*
3294 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3295 	 *
3296 	 * NOTE: chain's key range is not relevant as there might be
3297 	 *	 one-offs within the range that are not deleted.
3298 	 *
3299 	 * NOTE: XXX this could create problems with scans used in
3300 	 *	 situations other than mount-time recovery.
3301 	 *
3302 	 * NOTE: Lookups can race delete-duplicate because
3303 	 *	 delete-duplicate does not lock the parent's core
3304 	 *	 (they just use the spinlock on the core).
3305 	 */
3306 	if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3307 		hammer2_chain_unlock(chain);
3308 		hammer2_chain_drop(chain);
3309 		chain = NULL;
3310 
3311 		key = next_key;
3312 		if (key == 0) {
3313 			error |= HAMMER2_ERROR_EOF;
3314 			goto done;
3315 		}
3316 		goto again;
3317 	}
3318 
3319 done:
3320 	/*
3321 	 * All done, return the bref or NULL, supply chain if necessary.
3322 	 */
3323 	if (chain)
3324 		*chainp = chain;
3325 	return (error);
3326 }
3327 
3328 /*
3329  * Create and return a new hammer2 system memory structure of the specified
3330  * key, type and size and insert it under (*parentp).  This is a full
3331  * insertion, based on the supplied key/keybits, and may involve creating
3332  * indirect blocks and moving other chains around via delete/duplicate.
3333  *
3334  * This call can be made with parent == NULL as long as a non -1 methods
3335  * is supplied.  hmp must also be supplied in this situation (otherwise
3336  * hmp is extracted from the supplied parent).  The chain will be detached
3337  * from the topology.  A later call with both parent and chain can be made
3338  * to attach it.
3339  *
3340  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3341  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3342  * FULL.  This typically means that the caller is creating the chain after
3343  * doing a hammer2_chain_lookup().
3344  *
3345  * (*parentp) must be exclusive locked and may be replaced on return
3346  * depending on how much work the function had to do.
3347  *
3348  * (*parentp) must not be errored or this function will assert.
3349  *
3350  * (*chainp) usually starts out NULL and returns the newly created chain,
3351  * but if the caller desires the caller may allocate a disconnected chain
3352  * and pass it in instead.
3353  *
3354  * This function should NOT be used to insert INDIRECT blocks.  It is
3355  * typically used to create/insert inodes and data blocks.
3356  *
3357  * Caller must pass-in an exclusively locked parent the new chain is to
3358  * be inserted under, and optionally pass-in a disconnected, exclusively
3359  * locked chain to insert (else we create a new chain).  The function will
3360  * adjust (*parentp) as necessary, create or connect the chain, and
3361  * return an exclusively locked chain in *chainp.
3362  *
3363  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3364  * and will be reassigned.
3365  *
3366  * NOTE: returns HAMMER_ERROR_* flags
3367  */
3368 int
3369 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3370 		     hammer2_dev_t *hmp, hammer2_pfs_t *pmp, int methods,
3371 		     hammer2_key_t key, int keybits, int type, size_t bytes,
3372 		     hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3373 {
3374 	hammer2_chain_t *chain;
3375 	hammer2_chain_t *parent;
3376 	hammer2_blockref_t *base;
3377 	hammer2_blockref_t dummy;
3378 	int allocated = 0;
3379 	int error = 0;
3380 	int count;
3381 	int maxloops = 300000;
3382 
3383 	/*
3384 	 * Topology may be crossing a PFS boundary.
3385 	 */
3386 	parent = *parentp;
3387 	if (parent) {
3388 		KKASSERT(hammer2_mtx_owned(&parent->lock));
3389 		KKASSERT(parent->error == 0);
3390 		hmp = parent->hmp;
3391 	}
3392 	chain = *chainp;
3393 
3394 	if (chain == NULL) {
3395 		/*
3396 		 * First allocate media space and construct the dummy bref,
3397 		 * then allocate the in-memory chain structure.  Set the
3398 		 * INITIAL flag for fresh chains which do not have embedded
3399 		 * data.
3400 		 *
3401 		 * XXX for now set the check mode of the child based on
3402 		 *     the parent or, if the parent is an inode, the
3403 		 *     specification in the inode.
3404 		 */
3405 		bzero(&dummy, sizeof(dummy));
3406 		dummy.type = type;
3407 		dummy.key = key;
3408 		dummy.keybits = keybits;
3409 		dummy.data_off = hammer2_getradix(bytes);
3410 
3411 		/*
3412 		 * Inherit methods from parent by default.  Primarily used
3413 		 * for BREF_TYPE_DATA.  Non-data types *must* be set to
3414 		 * a non-NONE check algorithm.
3415 		 */
3416 		if (methods == -1)
3417 			dummy.methods = parent->bref.methods;
3418 		else
3419 			dummy.methods = (uint8_t)methods;
3420 
3421 		if (type != HAMMER2_BREF_TYPE_DATA &&
3422 		    HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3423 			dummy.methods |=
3424 				HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3425 		}
3426 
3427 		chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3428 
3429 		/*
3430 		 * Lock the chain manually, chain_lock will load the chain
3431 		 * which we do NOT want to do.  (note: chain->refs is set
3432 		 * to 1 by chain_alloc() for us, but lockcnt is not).
3433 		 */
3434 		chain->lockcnt = 1;
3435 		hammer2_mtx_ex(&chain->lock);
3436 		allocated = 1;
3437 
3438 		/*
3439 		 * Set INITIAL to optimize I/O.  The flag will generally be
3440 		 * processed when we call hammer2_chain_modify().
3441 		 *
3442 		 * Recalculate bytes to reflect the actual media block
3443 		 * allocation.  Handle special case radix 0 == 0 bytes.
3444 		 */
3445 		bytes = (size_t)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
3446 		if (bytes)
3447 			bytes = (hammer2_off_t)1 << bytes;
3448 		chain->bytes = bytes;
3449 
3450 		switch(type) {
3451 		case HAMMER2_BREF_TYPE_VOLUME:
3452 		case HAMMER2_BREF_TYPE_FREEMAP:
3453 			panic("hammer2_chain_create: called with volume type");
3454 			break;
3455 		case HAMMER2_BREF_TYPE_INDIRECT:
3456 			panic("hammer2_chain_create: cannot be used to"
3457 			      "create indirect block");
3458 			break;
3459 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3460 			panic("hammer2_chain_create: cannot be used to"
3461 			      "create freemap root or node");
3462 			break;
3463 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3464 			KKASSERT(bytes == sizeof(chain->data->bmdata));
3465 			/* fall through */
3466 		case HAMMER2_BREF_TYPE_DIRENT:
3467 		case HAMMER2_BREF_TYPE_INODE:
3468 		case HAMMER2_BREF_TYPE_DATA:
3469 		default:
3470 			/*
3471 			 * leave chain->data NULL, set INITIAL
3472 			 */
3473 			KKASSERT(chain->data == NULL);
3474 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3475 			break;
3476 		}
3477 	} else {
3478 		/*
3479 		 * We are reattaching a previously deleted chain, possibly
3480 		 * under a new parent and possibly with a new key/keybits.
3481 		 * The chain does not have to be in a modified state.  The
3482 		 * UPDATE flag will be set later on in this routine.
3483 		 *
3484 		 * Do NOT mess with the current state of the INITIAL flag.
3485 		 */
3486 		chain->bref.key = key;
3487 		chain->bref.keybits = keybits;
3488 		if (chain->flags & HAMMER2_CHAIN_DELETED)
3489 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3490 		KKASSERT(chain->parent == NULL);
3491 	}
3492 
3493 	/*
3494 	 * Set the appropriate bref flag if requested.
3495 	 *
3496 	 * NOTE! Callers can call this function to move chains without
3497 	 *	 knowing about special flags, so don't clear bref flags
3498 	 *	 here!
3499 	 */
3500 	if (flags & HAMMER2_INSERT_PFSROOT)
3501 		chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3502 
3503 	if (parent == NULL)
3504 		goto skip;
3505 
3506 	/*
3507 	 * Calculate how many entries we have in the blockref array and
3508 	 * determine if an indirect block is required when inserting into
3509 	 * the parent.
3510 	 */
3511 again:
3512 	if (--maxloops == 0)
3513 		panic("hammer2_chain_create: maxloops");
3514 
3515 	switch(parent->bref.type) {
3516 	case HAMMER2_BREF_TYPE_INODE:
3517 		if ((parent->data->ipdata.meta.op_flags &
3518 		     HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3519 			kprintf("hammer2: parent set for direct-data! "
3520 				"pkey=%016jx ckey=%016jx\n",
3521 				parent->bref.key,
3522 				chain->bref.key);
3523 	        }
3524 		KKASSERT((parent->data->ipdata.meta.op_flags &
3525 			  HAMMER2_OPFLAG_DIRECTDATA) == 0);
3526 		KKASSERT(parent->data != NULL);
3527 		base = &parent->data->ipdata.u.blockset.blockref[0];
3528 		count = HAMMER2_SET_COUNT;
3529 		break;
3530 	case HAMMER2_BREF_TYPE_INDIRECT:
3531 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3532 		if (parent->flags & HAMMER2_CHAIN_INITIAL)
3533 			base = NULL;
3534 		else
3535 			base = &parent->data->npdata[0];
3536 		count = parent->bytes / sizeof(hammer2_blockref_t);
3537 		break;
3538 	case HAMMER2_BREF_TYPE_VOLUME:
3539 		KKASSERT(parent->data != NULL);
3540 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3541 		count = HAMMER2_SET_COUNT;
3542 		break;
3543 	case HAMMER2_BREF_TYPE_FREEMAP:
3544 		KKASSERT(parent->data != NULL);
3545 		base = &parent->data->blkset.blockref[0];
3546 		count = HAMMER2_SET_COUNT;
3547 		break;
3548 	default:
3549 		panic("hammer2_chain_create: unrecognized blockref type: %d",
3550 		      parent->bref.type);
3551 		base = NULL;
3552 		count = 0;
3553 		break;
3554 	}
3555 
3556 	/*
3557 	 * Make sure we've counted the brefs
3558 	 */
3559 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3560 		hammer2_chain_countbrefs(parent, base, count);
3561 
3562 	KASSERT(parent->core.live_count >= 0 &&
3563 		parent->core.live_count <= count,
3564 		("bad live_count %d/%d (%02x, %d)",
3565 			parent->core.live_count, count,
3566 			parent->bref.type, parent->bytes));
3567 
3568 	/*
3569 	 * If no free blockref could be found we must create an indirect
3570 	 * block and move a number of blockrefs into it.  With the parent
3571 	 * locked we can safely lock each child in order to delete+duplicate
3572 	 * it without causing a deadlock.
3573 	 *
3574 	 * This may return the new indirect block or the old parent depending
3575 	 * on where the key falls.  NULL is returned on error.
3576 	 */
3577 	if (parent->core.live_count == count) {
3578 		hammer2_chain_t *nparent;
3579 
3580 		KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3581 
3582 		nparent = hammer2_chain_create_indirect(parent, key, keybits,
3583 							mtid, type, &error);
3584 		if (nparent == NULL) {
3585 			if (allocated)
3586 				hammer2_chain_drop(chain);
3587 			chain = NULL;
3588 			goto done;
3589 		}
3590 		if (parent != nparent) {
3591 			hammer2_chain_unlock(parent);
3592 			hammer2_chain_drop(parent);
3593 			parent = *parentp = nparent;
3594 		}
3595 		goto again;
3596 	}
3597 
3598 	/*
3599 	 * fall through if parent, or skip to here if no parent.
3600 	 */
3601 skip:
3602 	if (chain->flags & HAMMER2_CHAIN_DELETED)
3603 		kprintf("Inserting deleted chain @%016jx\n",
3604 			chain->bref.key);
3605 
3606 	/*
3607 	 * Link the chain into its parent.
3608 	 */
3609 	if (chain->parent != NULL)
3610 		panic("hammer2: hammer2_chain_create: chain already connected");
3611 	KKASSERT(chain->parent == NULL);
3612 	if (parent) {
3613 		KKASSERT(parent->core.live_count < count);
3614 		hammer2_chain_insert(parent, chain,
3615 				     HAMMER2_CHAIN_INSERT_SPIN |
3616 				     HAMMER2_CHAIN_INSERT_LIVE,
3617 				     0);
3618 	}
3619 
3620 	if (allocated) {
3621 		/*
3622 		 * Mark the newly created chain modified.  This will cause
3623 		 * UPDATE to be set and process the INITIAL flag.
3624 		 *
3625 		 * Device buffers are not instantiated for DATA elements
3626 		 * as these are handled by logical buffers.
3627 		 *
3628 		 * Indirect and freemap node indirect blocks are handled
3629 		 * by hammer2_chain_create_indirect() and not by this
3630 		 * function.
3631 		 *
3632 		 * Data for all other bref types is expected to be
3633 		 * instantiated (INODE, LEAF).
3634 		 */
3635 		switch(chain->bref.type) {
3636 		case HAMMER2_BREF_TYPE_DATA:
3637 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3638 		case HAMMER2_BREF_TYPE_DIRENT:
3639 		case HAMMER2_BREF_TYPE_INODE:
3640 			error = hammer2_chain_modify(chain, mtid, dedup_off,
3641 						     HAMMER2_MODIFY_OPTDATA);
3642 			break;
3643 		default:
3644 			/*
3645 			 * Remaining types are not supported by this function.
3646 			 * In particular, INDIRECT and LEAF_NODE types are
3647 			 * handled by create_indirect().
3648 			 */
3649 			panic("hammer2_chain_create: bad type: %d",
3650 			      chain->bref.type);
3651 			/* NOT REACHED */
3652 			break;
3653 		}
3654 	} else {
3655 		/*
3656 		 * When reconnecting a chain we must set UPDATE and
3657 		 * setflush so the flush recognizes that it must update
3658 		 * the bref in the parent.
3659 		 */
3660 		if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3661 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3662 	}
3663 
3664 	/*
3665 	 * We must setflush(parent) to ensure that it recurses through to
3666 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3667 	 * already set in the chain (so it won't recurse up to set it in the
3668 	 * parent).
3669 	 */
3670 	if (parent)
3671 		hammer2_chain_setflush(parent);
3672 
3673 done:
3674 	*chainp = chain;
3675 
3676 	return (error);
3677 }
3678 
3679 /*
3680  * Move the chain from its old parent to a new parent.  The chain must have
3681  * already been deleted or already disconnected (or never associated) with
3682  * a parent.  The chain is reassociated with the new parent and the deleted
3683  * flag will be cleared (no longer deleted).  The chain's modification state
3684  * is not altered.
3685  *
3686  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3687  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3688  * FULL.  This typically means that the caller is creating the chain after
3689  * doing a hammer2_chain_lookup().
3690  *
3691  * Neither (parent) or (chain) can be errored.
3692  *
3693  * If (parent) is non-NULL then the chain is inserted under the parent.
3694  *
3695  * If (parent) is NULL then the newly duplicated chain is not inserted
3696  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3697  * passing into hammer2_chain_create() after this function returns).
3698  *
3699  * WARNING! This function calls create which means it can insert indirect
3700  *	    blocks.  This can cause other unrelated chains in the parent to
3701  *	    be moved to a newly inserted indirect block in addition to the
3702  *	    specific chain.
3703  */
3704 void
3705 hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3706 		     hammer2_tid_t mtid, int flags)
3707 {
3708 	hammer2_blockref_t *bref;
3709 	hammer2_dev_t *hmp;
3710 	hammer2_chain_t *parent;
3711 	size_t bytes;
3712 
3713 	/*
3714 	 * WARNING!  We should never resolve DATA to device buffers
3715 	 *	     (XXX allow it if the caller did?), and since
3716 	 *	     we currently do not have the logical buffer cache
3717 	 *	     buffer in-hand to fix its cached physical offset
3718 	 *	     we also force the modify code to not COW it. XXX
3719 	 *
3720 	 * NOTE!     We allow error'd chains to be renamed.  The bref itself
3721 	 *	     is good and can be renamed.  The content, however, may
3722 	 *	     be inaccessible.
3723 	 */
3724 	hmp = chain->hmp;
3725 	KKASSERT(chain->parent == NULL);
3726 	/*KKASSERT(chain->error == 0); allow */
3727 
3728 	/*
3729 	 * Now create a duplicate of the chain structure, associating
3730 	 * it with the same core, making it the same size, pointing it
3731 	 * to the same bref (the same media block).
3732 	 *
3733 	 * NOTE: Handle special radix == 0 case (means 0 bytes).
3734 	 */
3735 	bref = &chain->bref;
3736 	bytes = (size_t)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
3737 	if (bytes)
3738 		bytes = (hammer2_off_t)1 << bytes;
3739 
3740 	/*
3741 	 * If parent is not NULL the duplicated chain will be entered under
3742 	 * the parent and the UPDATE bit set to tell flush to update
3743 	 * the blockref.
3744 	 *
3745 	 * We must setflush(parent) to ensure that it recurses through to
3746 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3747 	 * already set in the chain (so it won't recurse up to set it in the
3748 	 * parent).
3749 	 *
3750 	 * Having both chains locked is extremely important for atomicy.
3751 	 */
3752 	if (parentp && (parent = *parentp) != NULL) {
3753 		KKASSERT(hammer2_mtx_owned(&parent->lock));
3754 		KKASSERT(parent->refs > 0);
3755 		KKASSERT(parent->error == 0);
3756 
3757 		hammer2_chain_create(parentp, &chain, NULL, chain->pmp,
3758 				     HAMMER2_METH_DEFAULT,
3759 				     bref->key, bref->keybits, bref->type,
3760 				     chain->bytes, mtid, 0, flags);
3761 		KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3762 		hammer2_chain_setflush(*parentp);
3763 	}
3764 }
3765 
3766 /*
3767  * This works in tandem with delete_obref() to install a blockref in
3768  * (typically) an indirect block that is associated with the chain being
3769  * moved to *parentp.
3770  *
3771  * The reason we need this function is that the caller needs to maintain
3772  * the blockref as it was, and not generate a new blockref for what might
3773  * be a modified chain.  Otherwise stuff will leak into the flush that
3774  * the flush code's FLUSH_INODE_STOP flag is unable to catch.
3775  *
3776  * It is EXTREMELY important that we properly set CHAIN_BMAPUPD and
3777  * CHAIN_UPDATE.  We must set BMAPUPD if the bref does not match, and
3778  * we must clear CHAIN_UPDATE (that was likely set by the chain_rename) if
3779  * it does.  Otherwise we can end up in a situation where H2 is unable to
3780  * clean up the in-memory chain topology.
3781  *
3782  * The reason for this is that flushes do not generally flush through
3783  * BREF_TYPE_INODE chains and depend on a hammer2_inode_t queued to syncq
3784  * or sideq to properly flush and dispose of the related inode chain's flags.
3785  * Situations where the inode is not actually modified by the frontend,
3786  * but where we have to move the related chains around as we insert or cleanup
3787  * indirect blocks, can leave us with a 'dirty' (non-disposable) in-memory
3788  * inode chain that does not have a hammer2_inode_t associated with it.
3789  */
3790 void
3791 hammer2_chain_rename_obref(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3792 			   hammer2_tid_t mtid, int flags,
3793 			   hammer2_blockref_t *obref)
3794 {
3795 	hammer2_chain_rename(parentp, chain, mtid, flags);
3796 
3797 	if (obref->type != HAMMER2_BREF_TYPE_EMPTY) {
3798 		hammer2_blockref_t *tbase;
3799 		int tcount;
3800 
3801 		KKASSERT((chain->flags & HAMMER2_CHAIN_BMAPPED) == 0);
3802 		hammer2_chain_modify(*parentp, mtid, 0, 0);
3803 		tbase = hammer2_chain_base_and_count(*parentp, &tcount);
3804 		hammer2_base_insert(*parentp, tbase, tcount, chain, obref);
3805 		if (bcmp(obref, &chain->bref, sizeof(chain->bref))) {
3806 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD |
3807 						      HAMMER2_CHAIN_UPDATE);
3808 		} else {
3809 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3810 		}
3811 	}
3812 }
3813 
3814 /*
3815  * Helper function for deleting chains.
3816  *
3817  * The chain is removed from the live view (the RBTREE) as well as the parent's
3818  * blockmap.  Both chain and its parent must be locked.
3819  *
3820  * parent may not be errored.  chain can be errored.
3821  */
3822 static int
3823 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3824 			     hammer2_tid_t mtid, int flags,
3825 			     hammer2_blockref_t *obref)
3826 {
3827 	hammer2_dev_t *hmp;
3828 	int error = 0;
3829 
3830 	KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0);
3831 	KKASSERT(chain->parent == parent);
3832 	hmp = chain->hmp;
3833 
3834 	if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3835 		/*
3836 		 * Chain is blockmapped, so there must be a parent.
3837 		 * Atomically remove the chain from the parent and remove
3838 		 * the blockmap entry.  The parent must be set modified
3839 		 * to remove the blockmap entry.
3840 		 */
3841 		hammer2_blockref_t *base;
3842 		int count;
3843 
3844 		KKASSERT(parent != NULL);
3845 		KKASSERT(parent->error == 0);
3846 		KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3847 		error = hammer2_chain_modify(parent, mtid, 0, 0);
3848 		if (error)
3849 			goto done;
3850 
3851 		/*
3852 		 * Calculate blockmap pointer
3853 		 */
3854 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3855 		hammer2_spin_ex(&chain->core.spin);
3856 		hammer2_spin_ex(&parent->core.spin);
3857 
3858 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3859 		atomic_add_int(&parent->core.live_count, -1);
3860 		++parent->core.generation;
3861 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3862 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3863 		--parent->core.chain_count;
3864 		chain->parent = NULL;
3865 
3866 		switch(parent->bref.type) {
3867 		case HAMMER2_BREF_TYPE_INODE:
3868 			/*
3869 			 * Access the inode's block array.  However, there
3870 			 * is no block array if the inode is flagged
3871 			 * DIRECTDATA.
3872 			 */
3873 			if (parent->data &&
3874 			    (parent->data->ipdata.meta.op_flags &
3875 			     HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3876 				base =
3877 				   &parent->data->ipdata.u.blockset.blockref[0];
3878 			} else {
3879 				base = NULL;
3880 			}
3881 			count = HAMMER2_SET_COUNT;
3882 			break;
3883 		case HAMMER2_BREF_TYPE_INDIRECT:
3884 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3885 			if (parent->data)
3886 				base = &parent->data->npdata[0];
3887 			else
3888 				base = NULL;
3889 			count = parent->bytes / sizeof(hammer2_blockref_t);
3890 			break;
3891 		case HAMMER2_BREF_TYPE_VOLUME:
3892 			base = &parent->data->voldata.
3893 					sroot_blockset.blockref[0];
3894 			count = HAMMER2_SET_COUNT;
3895 			break;
3896 		case HAMMER2_BREF_TYPE_FREEMAP:
3897 			base = &parent->data->blkset.blockref[0];
3898 			count = HAMMER2_SET_COUNT;
3899 			break;
3900 		default:
3901 			base = NULL;
3902 			count = 0;
3903 			panic("_hammer2_chain_delete_helper: "
3904 			      "unrecognized blockref type: %d",
3905 			      parent->bref.type);
3906 		}
3907 
3908 		/*
3909 		 * delete blockmapped chain from its parent.
3910 		 *
3911 		 * The parent is not affected by any statistics in chain
3912 		 * which are pending synchronization.  That is, there is
3913 		 * nothing to undo in the parent since they have not yet
3914 		 * been incorporated into the parent.
3915 		 *
3916 		 * The parent is affected by statistics stored in inodes.
3917 		 * Those have already been synchronized, so they must be
3918 		 * undone.  XXX split update possible w/delete in middle?
3919 		 */
3920 		if (base) {
3921 			hammer2_base_delete(parent, base, count, chain, obref);
3922 		}
3923 		hammer2_spin_unex(&parent->core.spin);
3924 		hammer2_spin_unex(&chain->core.spin);
3925 	} else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3926 		/*
3927 		 * Chain is not blockmapped but a parent is present.
3928 		 * Atomically remove the chain from the parent.  There is
3929 		 * no blockmap entry to remove.
3930 		 *
3931 		 * Because chain was associated with a parent but not
3932 		 * synchronized, the chain's *_count_up fields contain
3933 		 * inode adjustment statistics which must be undone.
3934 		 */
3935 		hammer2_spin_ex(&chain->core.spin);
3936 		hammer2_spin_ex(&parent->core.spin);
3937 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3938 		atomic_add_int(&parent->core.live_count, -1);
3939 		++parent->core.generation;
3940 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3941 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3942 		--parent->core.chain_count;
3943 		chain->parent = NULL;
3944 		hammer2_spin_unex(&parent->core.spin);
3945 		hammer2_spin_unex(&chain->core.spin);
3946 	} else {
3947 		/*
3948 		 * Chain is not blockmapped and has no parent.  This
3949 		 * is a degenerate case.
3950 		 */
3951 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3952 	}
3953 done:
3954 	return error;
3955 }
3956 
3957 /*
3958  * Create an indirect block that covers one or more of the elements in the
3959  * current parent.  Either returns the existing parent with no locking or
3960  * ref changes or returns the new indirect block locked and referenced
3961  * and leaving the original parent lock/ref intact as well.
3962  *
3963  * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3964  *
3965  * The returned chain depends on where the specified key falls.
3966  *
3967  * The key/keybits for the indirect mode only needs to follow three rules:
3968  *
3969  * (1) That all elements underneath it fit within its key space and
3970  *
3971  * (2) That all elements outside it are outside its key space.
3972  *
3973  * (3) When creating the new indirect block any elements in the current
3974  *     parent that fit within the new indirect block's keyspace must be
3975  *     moved into the new indirect block.
3976  *
3977  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3978  *     keyspace the the current parent, but lookup/iteration rules will
3979  *     ensure (and must ensure) that rule (2) for all parents leading up
3980  *     to the nearest inode or the root volume header is adhered to.  This
3981  *     is accomplished by always recursing through matching keyspaces in
3982  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3983  *
3984  * The current implementation calculates the current worst-case keyspace by
3985  * iterating the current parent and then divides it into two halves, choosing
3986  * whichever half has the most elements (not necessarily the half containing
3987  * the requested key).
3988  *
3989  * We can also opt to use the half with the least number of elements.  This
3990  * causes lower-numbered keys (aka logical file offsets) to recurse through
3991  * fewer indirect blocks and higher-numbered keys to recurse through more.
3992  * This also has the risk of not moving enough elements to the new indirect
3993  * block and being forced to create several indirect blocks before the element
3994  * can be inserted.
3995  *
3996  * Must be called with an exclusively locked parent.
3997  *
3998  * NOTE: *errorp set to HAMMER_ERROR_* flags
3999  */
4000 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
4001 				hammer2_key_t *keyp, int keybits,
4002 				hammer2_blockref_t *base, int count);
4003 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
4004 				hammer2_key_t *keyp, int keybits,
4005 				hammer2_blockref_t *base, int count,
4006 				int ncount);
4007 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
4008 				hammer2_key_t *keyp, int keybits,
4009 				hammer2_blockref_t *base, int count,
4010 				int ncount);
4011 static
4012 hammer2_chain_t *
4013 hammer2_chain_create_indirect(hammer2_chain_t *parent,
4014 			      hammer2_key_t create_key, int create_bits,
4015 			      hammer2_tid_t mtid, int for_type, int *errorp)
4016 {
4017 	hammer2_dev_t *hmp;
4018 	hammer2_blockref_t *base;
4019 	hammer2_blockref_t *bref;
4020 	hammer2_blockref_t bsave;
4021 	hammer2_blockref_t dummy;
4022 	hammer2_chain_t *chain;
4023 	hammer2_chain_t *ichain;
4024 	hammer2_key_t key = create_key;
4025 	hammer2_key_t key_beg;
4026 	hammer2_key_t key_end;
4027 	hammer2_key_t key_next;
4028 	int keybits = create_bits;
4029 	int count;
4030 	int ncount;
4031 	int nbytes;
4032 	int loops;
4033 	int error;
4034 	int reason;
4035 	int generation;
4036 	int maxloops = 300000;
4037 
4038 	/*
4039 	 * Calculate the base blockref pointer or NULL if the chain
4040 	 * is known to be empty.  We need to calculate the array count
4041 	 * for RB lookups either way.
4042 	 */
4043 	hmp = parent->hmp;
4044 	KKASSERT(hammer2_mtx_owned(&parent->lock));
4045 
4046 	/*
4047 	 * Pre-modify the parent now to avoid having to deal with error
4048 	 * processing if we tried to later (in the middle of our loop).
4049 	 *
4050 	 * We are going to be moving bref's around, the indirect blocks
4051 	 * cannot be in an initial state.  Do not pass MODIFY_OPTDATA.
4052 	 */
4053 	*errorp = hammer2_chain_modify(parent, mtid, 0, 0);
4054 	if (*errorp) {
4055 		kprintf("hammer2_chain_create_indirect: error %08x %s\n",
4056 			*errorp, hammer2_error_str(*errorp));
4057 		return NULL;
4058 	}
4059 	KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
4060 
4061 	/*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
4062 	base = hammer2_chain_base_and_count(parent, &count);
4063 
4064 	/*
4065 	 * How big should our new indirect block be?  It has to be at least
4066 	 * as large as its parent for splits to work properly.
4067 	 *
4068 	 * The freemap uses a specific indirect block size.  The number of
4069 	 * levels are built dynamically and ultimately depend on the size
4070 	 * volume.  Because freemap blocks are taken from the reserved areas
4071 	 * of the volume our goal is efficiency (fewer levels) and not so
4072 	 * much to save disk space.
4073 	 *
4074 	 * The first indirect block level for a directory usually uses
4075 	 * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
4076 	 * the hash mechanism, this typically gives us a nominal
4077 	 * 32 * 4 entries with one level of indirection.
4078 	 *
4079 	 * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
4080 	 * indirect blocks.  The initial 4 entries in the inode gives us
4081 	 * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
4082 	 * of indirection gives us 137GB, and so forth.  H2 can support
4083 	 * huge file sizes but they are not typical, so we try to stick
4084 	 * with compactness and do not use a larger indirect block size.
4085 	 *
4086 	 * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
4087 	 * due to the way indirect blocks are created this usually winds
4088 	 * up being extremely inefficient for small files.  Even though
4089 	 * 16KB requires more levels of indirection for very large files,
4090 	 * the 16KB records can be ganged together into 64KB DIOs.
4091 	 */
4092 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4093 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4094 		nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
4095 	} else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4096 		if (parent->data->ipdata.meta.type ==
4097 		    HAMMER2_OBJTYPE_DIRECTORY)
4098 			nbytes = HAMMER2_IND_BYTES_MIN;	/* 4KB = 32 entries */
4099 		else
4100 			nbytes = HAMMER2_IND_BYTES_NOM;	/* 16KB = ~8MB file */
4101 
4102 	} else {
4103 		nbytes = HAMMER2_IND_BYTES_NOM;
4104 	}
4105 	if (nbytes < count * sizeof(hammer2_blockref_t)) {
4106 		KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
4107 			 for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
4108 		nbytes = count * sizeof(hammer2_blockref_t);
4109 	}
4110 	ncount = nbytes / sizeof(hammer2_blockref_t);
4111 
4112 	/*
4113 	 * When creating an indirect block for a freemap node or leaf
4114 	 * the key/keybits must be fitted to static radix levels because
4115 	 * particular radix levels use particular reserved blocks in the
4116 	 * related zone.
4117 	 *
4118 	 * This routine calculates the key/radix of the indirect block
4119 	 * we need to create, and whether it is on the high-side or the
4120 	 * low-side.
4121 	 */
4122 	switch(for_type) {
4123 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4124 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4125 		keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
4126 						       base, count);
4127 		break;
4128 	case HAMMER2_BREF_TYPE_DATA:
4129 		keybits = hammer2_chain_indkey_file(parent, &key, keybits,
4130 						    base, count, ncount);
4131 		break;
4132 	case HAMMER2_BREF_TYPE_DIRENT:
4133 	case HAMMER2_BREF_TYPE_INODE:
4134 		keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
4135 						   base, count, ncount);
4136 		break;
4137 	default:
4138 		panic("illegal indirect block for bref type %d", for_type);
4139 		break;
4140 	}
4141 
4142 	/*
4143 	 * Normalize the key for the radix being represented, keeping the
4144 	 * high bits and throwing away the low bits.
4145 	 */
4146 	key &= ~(((hammer2_key_t)1 << keybits) - 1);
4147 
4148 	/*
4149 	 * Ok, create our new indirect block
4150 	 */
4151 	bzero(&dummy, sizeof(dummy));
4152 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4153 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4154 		dummy.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4155 	} else {
4156 		dummy.type = HAMMER2_BREF_TYPE_INDIRECT;
4157 	}
4158 	dummy.key = key;
4159 	dummy.keybits = keybits;
4160 	dummy.data_off = hammer2_getradix(nbytes);
4161 	dummy.methods =
4162 		HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4163 		HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4164 
4165 	ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy);
4166 	atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4167 	hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4168 	/* ichain has one ref at this point */
4169 
4170 	/*
4171 	 * We have to mark it modified to allocate its block, but use
4172 	 * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
4173 	 * it won't be acted upon by the flush code.
4174 	 *
4175 	 * XXX remove OPTDATA, we need a fully initialized indirect block to
4176 	 * be able to move the original blockref.
4177 	 */
4178 	*errorp = hammer2_chain_modify(ichain, mtid, 0, 0);
4179 	if (*errorp) {
4180 		kprintf("hammer2_chain_create_indirect: error %08x %s\n",
4181 			*errorp, hammer2_error_str(*errorp));
4182 		hammer2_chain_unlock(ichain);
4183 		hammer2_chain_drop(ichain);
4184 		return NULL;
4185 	}
4186 	KKASSERT((ichain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4187 
4188 	/*
4189 	 * Iterate the original parent and move the matching brefs into
4190 	 * the new indirect block.
4191 	 *
4192 	 * XXX handle flushes.
4193 	 */
4194 	key_beg = 0;
4195 	key_end = HAMMER2_KEY_MAX;
4196 	key_next = 0;	/* avoid gcc warnings */
4197 	hammer2_spin_ex(&parent->core.spin);
4198 	loops = 0;
4199 	reason = 0;
4200 
4201 	for (;;) {
4202 		/*
4203 		 * Parent may have been modified, relocating its block array.
4204 		 * Reload the base pointer.
4205 		 */
4206 		base = hammer2_chain_base_and_count(parent, &count);
4207 
4208 		if (++loops > 100000) {
4209 		    hammer2_spin_unex(&parent->core.spin);
4210 		    panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4211 			  reason, parent, base, count, key_next);
4212 		}
4213 
4214 		/*
4215 		 * NOTE: spinlock stays intact, returned chain (if not NULL)
4216 		 *	 is not referenced or locked which means that we
4217 		 *	 cannot safely check its flagged / deletion status
4218 		 *	 until we lock it.
4219 		 */
4220 		chain = hammer2_combined_find(parent, base, count,
4221 					      &key_next,
4222 					      key_beg, key_end,
4223 					      &bref);
4224 		generation = parent->core.generation;
4225 		if (bref == NULL)
4226 			break;
4227 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4228 
4229 		/*
4230 		 * Skip keys that are not within the key/radix of the new
4231 		 * indirect block.  They stay in the parent.
4232 		 */
4233 		if (rounddown2(key ^ bref->key, (hammer2_key_t)1 << keybits) != 0) {
4234 			goto next_key_spinlocked;
4235 		}
4236 
4237 		/*
4238 		 * Load the new indirect block by acquiring the related
4239 		 * chains (potentially from media as it might not be
4240 		 * in-memory).  Then move it to the new parent (ichain).
4241 		 *
4242 		 * chain is referenced but not locked.  We must lock the
4243 		 * chain to obtain definitive state.
4244 		 */
4245 		bsave = *bref;
4246 		if (chain) {
4247 			/*
4248 			 * Use chain already present in the RBTREE
4249 			 */
4250 			hammer2_chain_ref(chain);
4251 			hammer2_spin_unex(&parent->core.spin);
4252 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4253 		} else {
4254 			/*
4255 			 * Get chain for blockref element.  _get returns NULL
4256 			 * on insertion race.
4257 			 */
4258 			hammer2_spin_unex(&parent->core.spin);
4259 			chain = hammer2_chain_get(parent, generation, &bsave,
4260 						  HAMMER2_RESOLVE_NEVER);
4261 			if (chain == NULL) {
4262 				reason = 1;
4263 				hammer2_spin_ex(&parent->core.spin);
4264 				continue;
4265 			}
4266 		}
4267 
4268 		/*
4269 		 * This is always live so if the chain has been deleted
4270 		 * we raced someone and we have to retry.
4271 		 *
4272 		 * NOTE: Lookups can race delete-duplicate because
4273 		 *	 delete-duplicate does not lock the parent's core
4274 		 *	 (they just use the spinlock on the core).
4275 		 *
4276 		 *	 (note reversed logic for this one)
4277 		 */
4278 		if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
4279 		    chain->parent != parent ||
4280 		    (chain->flags & HAMMER2_CHAIN_DELETED)) {
4281 			hammer2_chain_unlock(chain);
4282 			hammer2_chain_drop(chain);
4283 			if (hammer2_debug & 0x0040) {
4284 				kprintf("LOST PARENT RETRY "
4285 				"RETRY (%p,%p)->%p %08x\n",
4286 				parent, chain->parent, chain, chain->flags);
4287 			}
4288 			hammer2_spin_ex(&parent->core.spin);
4289 			continue;
4290 		}
4291 
4292 		/*
4293 		 * Shift the chain to the indirect block.
4294 		 *
4295 		 * WARNING! No reason for us to load chain data, pass NOSTATS
4296 		 *	    to prevent delete/insert from trying to access
4297 		 *	    inode stats (and thus asserting if there is no
4298 		 *	    chain->data loaded).
4299 		 *
4300 		 * WARNING! The (parent, chain) deletion may modify the parent
4301 		 *	    and invalidate the base pointer.
4302 		 *
4303 		 * WARNING! Parent must already be marked modified, so we
4304 		 *	    can assume that chain_delete always suceeds.
4305 		 *
4306 		 * WARNING! hammer2_chain_repchange() does not have to be
4307 		 *	    called (and doesn't work anyway because we are
4308 		 *	    only doing a partial shift).  A recursion that is
4309 		 *	    in-progress can continue at the current parent
4310 		 *	    and will be able to properly find its next key.
4311 		 */
4312 		error = hammer2_chain_delete_obref(parent, chain, mtid, 0,
4313 						   &bsave);
4314 		KKASSERT(error == 0);
4315 		hammer2_chain_rename_obref(&ichain, chain, mtid, 0, &bsave);
4316 		hammer2_chain_unlock(chain);
4317 		hammer2_chain_drop(chain);
4318 		KKASSERT(parent->refs > 0);
4319 		chain = NULL;
4320 		base = NULL;	/* safety */
4321 		hammer2_spin_ex(&parent->core.spin);
4322 next_key_spinlocked:
4323 		if (--maxloops == 0)
4324 			panic("hammer2_chain_create_indirect: maxloops");
4325 		reason = 4;
4326 		if (key_next == 0 || key_next > key_end)
4327 			break;
4328 		key_beg = key_next;
4329 		/* loop */
4330 	}
4331 	hammer2_spin_unex(&parent->core.spin);
4332 
4333 	/*
4334 	 * Insert the new indirect block into the parent now that we've
4335 	 * cleared out some entries in the parent.  We calculated a good
4336 	 * insertion index in the loop above (ichain->index).
4337 	 *
4338 	 * We don't have to set UPDATE here because we mark ichain
4339 	 * modified down below (so the normal modified -> flush -> set-moved
4340 	 * sequence applies).
4341 	 *
4342 	 * The insertion shouldn't race as this is a completely new block
4343 	 * and the parent is locked.
4344 	 */
4345 	base = NULL;	/* safety, parent modify may change address */
4346 	KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4347 	KKASSERT(parent->core.live_count < count);
4348 	hammer2_chain_insert(parent, ichain,
4349 			     HAMMER2_CHAIN_INSERT_SPIN |
4350 			     HAMMER2_CHAIN_INSERT_LIVE,
4351 			     0);
4352 
4353 	/*
4354 	 * Make sure flushes propogate after our manual insertion.
4355 	 */
4356 	hammer2_chain_setflush(ichain);
4357 	hammer2_chain_setflush(parent);
4358 
4359 	/*
4360 	 * Figure out what to return.
4361 	 */
4362 	if (rounddown2(create_key ^ key, (hammer2_key_t)1 << keybits)) {
4363 		/*
4364 		 * Key being created is outside the key range,
4365 		 * return the original parent.
4366 		 */
4367 		hammer2_chain_unlock(ichain);
4368 		hammer2_chain_drop(ichain);
4369 	} else {
4370 		/*
4371 		 * Otherwise its in the range, return the new parent.
4372 		 * (leave both the new and old parent locked).
4373 		 */
4374 		parent = ichain;
4375 	}
4376 
4377 	return(parent);
4378 }
4379 
4380 /*
4381  * Do maintenance on an indirect chain.  Both parent and chain are locked.
4382  *
4383  * Returns non-zero if (chain) is deleted, either due to being empty or
4384  * because its children were safely moved into the parent.
4385  */
4386 int
4387 hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4388 				   hammer2_chain_t *chain)
4389 {
4390 	hammer2_blockref_t *chain_base;
4391 	hammer2_blockref_t *base;
4392 	hammer2_blockref_t *bref;
4393 	hammer2_blockref_t bsave;
4394 	hammer2_key_t key_next;
4395 	hammer2_key_t key_beg;
4396 	hammer2_key_t key_end;
4397 	hammer2_chain_t *sub;
4398 	int chain_count;
4399 	int count;
4400 	int error;
4401 	int generation;
4402 
4403 	/*
4404 	 * Make sure we have an accurate live_count
4405 	 */
4406 	if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4407 			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4408 		base = &chain->data->npdata[0];
4409 		count = chain->bytes / sizeof(hammer2_blockref_t);
4410 		hammer2_chain_countbrefs(chain, base, count);
4411 	}
4412 
4413 	/*
4414 	 * If the indirect block is empty we can delete it.
4415 	 * (ignore deletion error)
4416 	 */
4417 	if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4418 		hammer2_chain_delete(parent, chain,
4419 				     chain->bref.modify_tid,
4420 				     HAMMER2_DELETE_PERMANENT);
4421 		hammer2_chain_repchange(parent, chain);
4422 		return 1;
4423 	}
4424 
4425 	base = hammer2_chain_base_and_count(parent, &count);
4426 
4427 	if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4428 			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4429 		hammer2_chain_countbrefs(parent, base, count);
4430 	}
4431 
4432 	/*
4433 	 * Determine if we can collapse chain into parent, calculate
4434 	 * hysteresis for chain emptiness.
4435 	 */
4436 	if (parent->core.live_count + chain->core.live_count - 1 > count)
4437 		return 0;
4438 	chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4439 	if (chain->core.live_count > chain_count * 3 / 4)
4440 		return 0;
4441 
4442 	/*
4443 	 * Ok, theoretically we can collapse chain's contents into
4444 	 * parent.  chain is locked, but any in-memory children of chain
4445 	 * are not.  For this to work, we must be able to dispose of any
4446 	 * in-memory children of chain.
4447 	 *
4448 	 * For now require that there are no in-memory children of chain.
4449 	 *
4450 	 * WARNING! Both chain and parent must remain locked across this
4451 	 *	    entire operation.
4452 	 */
4453 
4454 	/*
4455 	 * Parent must be marked modified.  Don't try to collapse it if we
4456 	 * can't mark it modified.  Once modified, destroy chain to make room
4457 	 * and to get rid of what will be a conflicting key (this is included
4458 	 * in the calculation above).  Finally, move the children of chain
4459 	 * into chain's parent.
4460 	 *
4461 	 * This order creates an accounting problem for bref.embed.stats
4462 	 * because we destroy chain before we remove its children.  Any
4463 	 * elements whos blockref is already synchronized will be counted
4464 	 * twice.  To deal with the problem we clean out chain's stats prior
4465 	 * to deleting it.
4466 	 */
4467 	error = hammer2_chain_modify(parent, 0, 0, 0);
4468 	if (error) {
4469 		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4470 			    hammer2_error_str(error));
4471 		return 0;
4472 	}
4473 	error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4474 	if (error) {
4475 		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4476 			    hammer2_error_str(error));
4477 		return 0;
4478 	}
4479 
4480 	chain->bref.embed.stats.inode_count = 0;
4481 	chain->bref.embed.stats.data_count = 0;
4482 	error = hammer2_chain_delete(parent, chain,
4483 				     chain->bref.modify_tid,
4484 				     HAMMER2_DELETE_PERMANENT);
4485 	KKASSERT(error == 0);
4486 
4487 	/*
4488 	 * The combined_find call requires core.spin to be held.  One would
4489 	 * think there wouldn't be any conflicts since we hold chain
4490 	 * exclusively locked, but the caching mechanism for 0-ref children
4491 	 * does not require a chain lock.
4492 	 */
4493 	hammer2_spin_ex(&chain->core.spin);
4494 
4495 	key_next = 0;
4496 	key_beg = 0;
4497 	key_end = HAMMER2_KEY_MAX;
4498 	for (;;) {
4499 		chain_base = &chain->data->npdata[0];
4500 		chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4501 		sub = hammer2_combined_find(chain, chain_base, chain_count,
4502 					    &key_next,
4503 					    key_beg, key_end,
4504 					    &bref);
4505 		generation = chain->core.generation;
4506 		if (bref == NULL)
4507 			break;
4508 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4509 
4510 		bsave = *bref;
4511 		if (sub) {
4512 			hammer2_chain_ref(sub);
4513 			hammer2_spin_unex(&chain->core.spin);
4514 			hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4515 		} else {
4516 			hammer2_spin_unex(&chain->core.spin);
4517 			sub = hammer2_chain_get(chain, generation, &bsave,
4518 						HAMMER2_RESOLVE_NEVER);
4519 			if (sub == NULL) {
4520 				hammer2_spin_ex(&chain->core.spin);
4521 				continue;
4522 			}
4523 		}
4524 		if (bcmp(&bsave, &sub->bref, sizeof(bsave)) ||
4525 		    sub->parent != chain ||
4526 		    (sub->flags & HAMMER2_CHAIN_DELETED)) {
4527 			hammer2_chain_unlock(sub);
4528 			hammer2_chain_drop(sub);
4529 			hammer2_spin_ex(&chain->core.spin);
4530 			sub = NULL;	/* safety */
4531 			continue;
4532 		}
4533 		error = hammer2_chain_delete_obref(chain, sub,
4534 						   sub->bref.modify_tid, 0,
4535 						   &bsave);
4536 		KKASSERT(error == 0);
4537 		hammer2_chain_rename_obref(&parent, sub,
4538 				     sub->bref.modify_tid,
4539 				     HAMMER2_INSERT_SAMEPARENT, &bsave);
4540 		hammer2_chain_unlock(sub);
4541 		hammer2_chain_drop(sub);
4542 		hammer2_spin_ex(&chain->core.spin);
4543 
4544 		if (key_next == 0)
4545 			break;
4546 		key_beg = key_next;
4547 	}
4548 	hammer2_spin_unex(&chain->core.spin);
4549 
4550 	hammer2_chain_repchange(parent, chain);
4551 
4552 	return 1;
4553 }
4554 
4555 /*
4556  * Freemap indirect blocks
4557  *
4558  * Calculate the keybits and highside/lowside of the freemap node the
4559  * caller is creating.
4560  *
4561  * This routine will specify the next higher-level freemap key/radix
4562  * representing the lowest-ordered set.  By doing so, eventually all
4563  * low-ordered sets will be moved one level down.
4564  *
4565  * We have to be careful here because the freemap reserves a limited
4566  * number of blocks for a limited number of levels.  So we can't just
4567  * push indiscriminately.
4568  */
4569 int
4570 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4571 			     int keybits, hammer2_blockref_t *base, int count)
4572 {
4573 	hammer2_chain_t *chain;
4574 	hammer2_blockref_t *bref;
4575 	hammer2_key_t key;
4576 	hammer2_key_t key_beg;
4577 	hammer2_key_t key_end;
4578 	hammer2_key_t key_next;
4579 	int locount;
4580 	int hicount;
4581 	int maxloops = 300000;
4582 
4583 	key = *keyp;
4584 	locount = 0;
4585 	hicount = 0;
4586 	keybits = 64;
4587 
4588 	/*
4589 	 * Calculate the range of keys in the array being careful to skip
4590 	 * slots which are overridden with a deletion.
4591 	 */
4592 	key_beg = 0;
4593 	key_end = HAMMER2_KEY_MAX;
4594 	hammer2_spin_ex(&parent->core.spin);
4595 
4596 	for (;;) {
4597 		if (--maxloops == 0) {
4598 			panic("indkey_freemap shit %p %p:%d\n",
4599 			      parent, base, count);
4600 		}
4601 		chain = hammer2_combined_find(parent, base, count,
4602 					      &key_next,
4603 					      key_beg, key_end,
4604 					      &bref);
4605 
4606 		/*
4607 		 * Exhausted search
4608 		 */
4609 		if (bref == NULL)
4610 			break;
4611 
4612 		/*
4613 		 * Skip deleted chains.
4614 		 */
4615 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4616 			if (key_next == 0 || key_next > key_end)
4617 				break;
4618 			key_beg = key_next;
4619 			continue;
4620 		}
4621 
4622 		/*
4623 		 * Use the full live (not deleted) element for the scan
4624 		 * iteration.  HAMMER2 does not allow partial replacements.
4625 		 *
4626 		 * XXX should be built into hammer2_combined_find().
4627 		 */
4628 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4629 
4630 		if (keybits > bref->keybits) {
4631 			key = bref->key;
4632 			keybits = bref->keybits;
4633 		} else if (keybits == bref->keybits && bref->key < key) {
4634 			key = bref->key;
4635 		}
4636 		if (key_next == 0)
4637 			break;
4638 		key_beg = key_next;
4639 	}
4640 	hammer2_spin_unex(&parent->core.spin);
4641 
4642 	/*
4643 	 * Return the keybits for a higher-level FREEMAP_NODE covering
4644 	 * this node.
4645 	 */
4646 	switch(keybits) {
4647 	case HAMMER2_FREEMAP_LEVEL0_RADIX:
4648 		keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4649 		break;
4650 	case HAMMER2_FREEMAP_LEVEL1_RADIX:
4651 		keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4652 		break;
4653 	case HAMMER2_FREEMAP_LEVEL2_RADIX:
4654 		keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4655 		break;
4656 	case HAMMER2_FREEMAP_LEVEL3_RADIX:
4657 		keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4658 		break;
4659 	case HAMMER2_FREEMAP_LEVEL4_RADIX:
4660 		keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4661 		break;
4662 	case HAMMER2_FREEMAP_LEVEL5_RADIX:
4663 		panic("hammer2_chain_indkey_freemap: level too high");
4664 		break;
4665 	default:
4666 		panic("hammer2_chain_indkey_freemap: bad radix");
4667 		break;
4668 	}
4669 	*keyp = key;
4670 
4671 	return (keybits);
4672 }
4673 
4674 /*
4675  * File indirect blocks
4676  *
4677  * Calculate the key/keybits for the indirect block to create by scanning
4678  * existing keys.  The key being created is also passed in *keyp and can be
4679  * inside or outside the indirect block.  Regardless, the indirect block
4680  * must hold at least two keys in order to guarantee sufficient space.
4681  *
4682  * We use a modified version of the freemap's fixed radix tree, but taylored
4683  * for file data.  Basically we configure an indirect block encompassing the
4684  * smallest key.
4685  */
4686 static int
4687 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4688 			    int keybits, hammer2_blockref_t *base, int count,
4689 			    int ncount)
4690 {
4691 	hammer2_chain_t *chain;
4692 	hammer2_blockref_t *bref;
4693 	hammer2_key_t key;
4694 	hammer2_key_t key_beg;
4695 	hammer2_key_t key_end;
4696 	hammer2_key_t key_next;
4697 	int nradix;
4698 	int locount;
4699 	int hicount;
4700 	int maxloops = 300000;
4701 
4702 	key = *keyp;
4703 	locount = 0;
4704 	hicount = 0;
4705 	keybits = 64;
4706 
4707 	/*
4708 	 * Calculate the range of keys in the array being careful to skip
4709 	 * slots which are overridden with a deletion.
4710 	 *
4711 	 * Locate the smallest key.
4712 	 */
4713 	key_beg = 0;
4714 	key_end = HAMMER2_KEY_MAX;
4715 	hammer2_spin_ex(&parent->core.spin);
4716 
4717 	for (;;) {
4718 		if (--maxloops == 0) {
4719 			panic("indkey_freemap shit %p %p:%d\n",
4720 			      parent, base, count);
4721 		}
4722 		chain = hammer2_combined_find(parent, base, count,
4723 					      &key_next,
4724 					      key_beg, key_end,
4725 					      &bref);
4726 
4727 		/*
4728 		 * Exhausted search
4729 		 */
4730 		if (bref == NULL)
4731 			break;
4732 
4733 		/*
4734 		 * Skip deleted chains.
4735 		 */
4736 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4737 			if (key_next == 0 || key_next > key_end)
4738 				break;
4739 			key_beg = key_next;
4740 			continue;
4741 		}
4742 
4743 		/*
4744 		 * Use the full live (not deleted) element for the scan
4745 		 * iteration.  HAMMER2 does not allow partial replacements.
4746 		 *
4747 		 * XXX should be built into hammer2_combined_find().
4748 		 */
4749 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4750 
4751 		if (keybits > bref->keybits) {
4752 			key = bref->key;
4753 			keybits = bref->keybits;
4754 		} else if (keybits == bref->keybits && bref->key < key) {
4755 			key = bref->key;
4756 		}
4757 		if (key_next == 0)
4758 			break;
4759 		key_beg = key_next;
4760 	}
4761 	hammer2_spin_unex(&parent->core.spin);
4762 
4763 	/*
4764 	 * Calculate the static keybits for a higher-level indirect block
4765 	 * that contains the key.
4766 	 */
4767 	*keyp = key;
4768 
4769 	switch(ncount) {
4770 	case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4771 		nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4772 		break;
4773 	case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4774 		nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4775 		break;
4776 	case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4777 		nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4778 		break;
4779 	default:
4780 		panic("bad ncount %d\n", ncount);
4781 		nradix = 0;
4782 		break;
4783 	}
4784 
4785 	/*
4786 	 * The largest radix that can be returned for an indirect block is
4787 	 * 63 bits.  (The largest practical indirect block radix is actually
4788 	 * 62 bits because the top-level inode or volume root contains four
4789 	 * entries, but allow 63 to be returned).
4790 	 */
4791 	if (nradix >= 64)
4792 		nradix = 63;
4793 
4794 	return keybits + nradix;
4795 }
4796 
4797 #if 1
4798 
4799 /*
4800  * Directory indirect blocks.
4801  *
4802  * Covers both the inode index (directory of inodes), and directory contents
4803  * (filenames hardlinked to inodes).
4804  *
4805  * Because directory keys are hashed we generally try to cut the space in
4806  * half.  We accomodate the inode index (which tends to have linearly
4807  * increasing inode numbers) by ensuring that the keyspace is at least large
4808  * enough to fill up the indirect block being created.
4809  */
4810 static int
4811 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4812 			 int keybits, hammer2_blockref_t *base, int count,
4813 			 int ncount)
4814 {
4815 	hammer2_blockref_t *bref;
4816 	hammer2_chain_t	*chain;
4817 	hammer2_key_t key_beg;
4818 	hammer2_key_t key_end;
4819 	hammer2_key_t key_next;
4820 	hammer2_key_t key;
4821 	int nkeybits;
4822 	int locount;
4823 	int hicount;
4824 	int maxloops = 300000;
4825 
4826 	/*
4827 	 * NOTE: We can't take a shortcut here anymore for inodes because
4828 	 *	 the root directory can contain a mix of inodes and directory
4829 	 *	 entries (we used to just return 63 if parent->bref.type was
4830 	 *	 HAMMER2_BREF_TYPE_INODE.
4831 	 */
4832 	key = *keyp;
4833 	locount = 0;
4834 	hicount = 0;
4835 
4836 	/*
4837 	 * Calculate the range of keys in the array being careful to skip
4838 	 * slots which are overridden with a deletion.
4839 	 */
4840 	key_beg = 0;
4841 	key_end = HAMMER2_KEY_MAX;
4842 	hammer2_spin_ex(&parent->core.spin);
4843 
4844 	for (;;) {
4845 		if (--maxloops == 0) {
4846 			panic("indkey_freemap shit %p %p:%d\n",
4847 			      parent, base, count);
4848 		}
4849 		chain = hammer2_combined_find(parent, base, count,
4850 					      &key_next,
4851 					      key_beg, key_end,
4852 					      &bref);
4853 
4854 		/*
4855 		 * Exhausted search
4856 		 */
4857 		if (bref == NULL)
4858 			break;
4859 
4860 		/*
4861 		 * Deleted object
4862 		 */
4863 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4864 			if (key_next == 0 || key_next > key_end)
4865 				break;
4866 			key_beg = key_next;
4867 			continue;
4868 		}
4869 
4870 		/*
4871 		 * Use the full live (not deleted) element for the scan
4872 		 * iteration.  HAMMER2 does not allow partial replacements.
4873 		 *
4874 		 * XXX should be built into hammer2_combined_find().
4875 		 */
4876 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4877 
4878 		/*
4879 		 * Expand our calculated key range (key, keybits) to fit
4880 		 * the scanned key.  nkeybits represents the full range
4881 		 * that we will later cut in half (two halves @ nkeybits - 1).
4882 		 */
4883 		nkeybits = keybits;
4884 		if (nkeybits < bref->keybits) {
4885 			if (bref->keybits > 64) {
4886 				kprintf("bad bref chain %p bref %p\n",
4887 					chain, bref);
4888 				Debugger("fubar");
4889 			}
4890 			nkeybits = bref->keybits;
4891 		}
4892 		while (nkeybits < 64 &&
4893 		       rounddown2(key ^ bref->key, (hammer2_key_t)1 << nkeybits) != 0) {
4894 			++nkeybits;
4895 		}
4896 
4897 		/*
4898 		 * If the new key range is larger we have to determine
4899 		 * which side of the new key range the existing keys fall
4900 		 * under by checking the high bit, then collapsing the
4901 		 * locount into the hicount or vise-versa.
4902 		 */
4903 		if (keybits != nkeybits) {
4904 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4905 				hicount += locount;
4906 				locount = 0;
4907 			} else {
4908 				locount += hicount;
4909 				hicount = 0;
4910 			}
4911 			keybits = nkeybits;
4912 		}
4913 
4914 		/*
4915 		 * The newly scanned key will be in the lower half or the
4916 		 * upper half of the (new) key range.
4917 		 */
4918 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4919 			++hicount;
4920 		else
4921 			++locount;
4922 
4923 		if (key_next == 0)
4924 			break;
4925 		key_beg = key_next;
4926 	}
4927 	hammer2_spin_unex(&parent->core.spin);
4928 	bref = NULL;	/* now invalid (safety) */
4929 
4930 	/*
4931 	 * Adjust keybits to represent half of the full range calculated
4932 	 * above (radix 63 max) for our new indirect block.
4933 	 */
4934 	--keybits;
4935 
4936 	/*
4937 	 * Expand keybits to hold at least ncount elements.  ncount will be
4938 	 * a power of 2.  This is to try to completely fill leaf nodes (at
4939 	 * least for keys which are not hashes).
4940 	 *
4941 	 * We aren't counting 'in' or 'out', we are counting 'high side'
4942 	 * and 'low side' based on the bit at (1LL << keybits).  We want
4943 	 * everything to be inside in these cases so shift it all to
4944 	 * the low or high side depending on the new high bit.
4945 	 */
4946 	while (((hammer2_key_t)1 << keybits) < ncount) {
4947 		++keybits;
4948 		if (key & ((hammer2_key_t)1 << keybits)) {
4949 			hicount += locount;
4950 			locount = 0;
4951 		} else {
4952 			locount += hicount;
4953 			hicount = 0;
4954 		}
4955 	}
4956 
4957 	if (hicount > locount)
4958 		key |= (hammer2_key_t)1 << keybits;
4959 	else
4960 		key &= ~(hammer2_key_t)1 << keybits;
4961 
4962 	*keyp = key;
4963 
4964 	return (keybits);
4965 }
4966 
4967 #else
4968 
4969 /*
4970  * Directory indirect blocks.
4971  *
4972  * Covers both the inode index (directory of inodes), and directory contents
4973  * (filenames hardlinked to inodes).
4974  *
4975  * Because directory keys are hashed we generally try to cut the space in
4976  * half.  We accomodate the inode index (which tends to have linearly
4977  * increasing inode numbers) by ensuring that the keyspace is at least large
4978  * enough to fill up the indirect block being created.
4979  */
4980 static int
4981 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4982 			 int keybits, hammer2_blockref_t *base, int count,
4983 			 int ncount)
4984 {
4985 	hammer2_blockref_t *bref;
4986 	hammer2_chain_t	*chain;
4987 	hammer2_key_t key_beg;
4988 	hammer2_key_t key_end;
4989 	hammer2_key_t key_next;
4990 	hammer2_key_t key;
4991 	int nkeybits;
4992 	int locount;
4993 	int hicount;
4994 	int maxloops = 300000;
4995 
4996 	/*
4997 	 * Shortcut if the parent is the inode.  In this situation the
4998 	 * parent has 4+1 directory entries and we are creating an indirect
4999 	 * block capable of holding many more.
5000 	 */
5001 	if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
5002 		return 63;
5003 	}
5004 
5005 	key = *keyp;
5006 	locount = 0;
5007 	hicount = 0;
5008 
5009 	/*
5010 	 * Calculate the range of keys in the array being careful to skip
5011 	 * slots which are overridden with a deletion.
5012 	 */
5013 	key_beg = 0;
5014 	key_end = HAMMER2_KEY_MAX;
5015 	hammer2_spin_ex(&parent->core.spin);
5016 
5017 	for (;;) {
5018 		if (--maxloops == 0) {
5019 			panic("indkey_freemap shit %p %p:%d\n",
5020 			      parent, base, count);
5021 		}
5022 		chain = hammer2_combined_find(parent, base, count,
5023 					      &key_next,
5024 					      key_beg, key_end,
5025 					      &bref);
5026 
5027 		/*
5028 		 * Exhausted search
5029 		 */
5030 		if (bref == NULL)
5031 			break;
5032 
5033 		/*
5034 		 * Deleted object
5035 		 */
5036 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
5037 			if (key_next == 0 || key_next > key_end)
5038 				break;
5039 			key_beg = key_next;
5040 			continue;
5041 		}
5042 
5043 		/*
5044 		 * Use the full live (not deleted) element for the scan
5045 		 * iteration.  HAMMER2 does not allow partial replacements.
5046 		 *
5047 		 * XXX should be built into hammer2_combined_find().
5048 		 */
5049 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
5050 
5051 		/*
5052 		 * Expand our calculated key range (key, keybits) to fit
5053 		 * the scanned key.  nkeybits represents the full range
5054 		 * that we will later cut in half (two halves @ nkeybits - 1).
5055 		 */
5056 		nkeybits = keybits;
5057 		if (nkeybits < bref->keybits) {
5058 			if (bref->keybits > 64) {
5059 				kprintf("bad bref chain %p bref %p\n",
5060 					chain, bref);
5061 				Debugger("fubar");
5062 			}
5063 			nkeybits = bref->keybits;
5064 		}
5065 		while (nkeybits < 64 &&
5066 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
5067 		        (key ^ bref->key)) != 0) {
5068 			++nkeybits;
5069 		}
5070 
5071 		/*
5072 		 * If the new key range is larger we have to determine
5073 		 * which side of the new key range the existing keys fall
5074 		 * under by checking the high bit, then collapsing the
5075 		 * locount into the hicount or vise-versa.
5076 		 */
5077 		if (keybits != nkeybits) {
5078 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
5079 				hicount += locount;
5080 				locount = 0;
5081 			} else {
5082 				locount += hicount;
5083 				hicount = 0;
5084 			}
5085 			keybits = nkeybits;
5086 		}
5087 
5088 		/*
5089 		 * The newly scanned key will be in the lower half or the
5090 		 * upper half of the (new) key range.
5091 		 */
5092 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
5093 			++hicount;
5094 		else
5095 			++locount;
5096 
5097 		if (key_next == 0)
5098 			break;
5099 		key_beg = key_next;
5100 	}
5101 	hammer2_spin_unex(&parent->core.spin);
5102 	bref = NULL;	/* now invalid (safety) */
5103 
5104 	/*
5105 	 * Adjust keybits to represent half of the full range calculated
5106 	 * above (radix 63 max) for our new indirect block.
5107 	 */
5108 	--keybits;
5109 
5110 	/*
5111 	 * Expand keybits to hold at least ncount elements.  ncount will be
5112 	 * a power of 2.  This is to try to completely fill leaf nodes (at
5113 	 * least for keys which are not hashes).
5114 	 *
5115 	 * We aren't counting 'in' or 'out', we are counting 'high side'
5116 	 * and 'low side' based on the bit at (1LL << keybits).  We want
5117 	 * everything to be inside in these cases so shift it all to
5118 	 * the low or high side depending on the new high bit.
5119 	 */
5120 	while (((hammer2_key_t)1 << keybits) < ncount) {
5121 		++keybits;
5122 		if (key & ((hammer2_key_t)1 << keybits)) {
5123 			hicount += locount;
5124 			locount = 0;
5125 		} else {
5126 			locount += hicount;
5127 			hicount = 0;
5128 		}
5129 	}
5130 
5131 	if (hicount > locount)
5132 		key |= (hammer2_key_t)1 << keybits;
5133 	else
5134 		key &= ~(hammer2_key_t)1 << keybits;
5135 
5136 	*keyp = key;
5137 
5138 	return (keybits);
5139 }
5140 
5141 #endif
5142 
5143 /*
5144  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5145  * it exists.
5146  *
5147  * Both parent and chain must be locked exclusively.
5148  *
5149  * This function will modify the parent if the blockref requires removal
5150  * from the parent's block table.
5151  *
5152  * This function is NOT recursive.  Any entity already pushed into the
5153  * chain (such as an inode) may still need visibility into its contents,
5154  * as well as the ability to read and modify the contents.  For example,
5155  * for an unlinked file which is still open.
5156  *
5157  * Also note that the flusher is responsible for cleaning up empty
5158  * indirect blocks.
5159  */
5160 int
5161 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5162 		     hammer2_tid_t mtid, int flags)
5163 {
5164 	int error = 0;
5165 
5166 	KKASSERT(hammer2_mtx_owned(&chain->lock));
5167 
5168 	/*
5169 	 * Nothing to do if already marked.
5170 	 *
5171 	 * We need the spinlock on the core whos RBTREE contains chain
5172 	 * to protect against races.
5173 	 */
5174 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5175 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5176 			 chain->parent == parent);
5177 		error = _hammer2_chain_delete_helper(parent, chain,
5178 						     mtid, flags, NULL);
5179 	}
5180 
5181 	/*
5182 	 * Permanent deletions mark the chain as destroyed.
5183 	 *
5184 	 * NOTE: We do not setflush the chain unless the deletion is
5185 	 *	 permanent, since the deletion of a chain does not actually
5186 	 *	 require it to be flushed.
5187 	 */
5188 	if (error == 0) {
5189 		if (flags & HAMMER2_DELETE_PERMANENT) {
5190 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5191 			hammer2_chain_setflush(chain);
5192 		}
5193 	}
5194 
5195 	return error;
5196 }
5197 
5198 static int
5199 hammer2_chain_delete_obref(hammer2_chain_t *parent, hammer2_chain_t *chain,
5200 		     hammer2_tid_t mtid, int flags,
5201 		     hammer2_blockref_t *obref)
5202 {
5203 	int error = 0;
5204 
5205 	KKASSERT(hammer2_mtx_owned(&chain->lock));
5206 
5207 	/*
5208 	 * Nothing to do if already marked.
5209 	 *
5210 	 * We need the spinlock on the core whos RBTREE contains chain
5211 	 * to protect against races.
5212 	 */
5213 	obref->type = HAMMER2_BREF_TYPE_EMPTY;
5214 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5215 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5216 			 chain->parent == parent);
5217 		error = _hammer2_chain_delete_helper(parent, chain,
5218 						     mtid, flags, obref);
5219 	}
5220 
5221 	/*
5222 	 * Permanent deletions mark the chain as destroyed.
5223 	 *
5224 	 * NOTE: We do not setflush the chain unless the deletion is
5225 	 *	 permanent, since the deletion of a chain does not actually
5226 	 *	 require it to be flushed.
5227 	 */
5228 	if (error == 0) {
5229 		if (flags & HAMMER2_DELETE_PERMANENT) {
5230 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5231 			hammer2_chain_setflush(chain);
5232 		}
5233 	}
5234 
5235 	return error;
5236 }
5237 
5238 /*
5239  * Returns the index of the nearest element in the blockref array >= elm.
5240  * Returns (count) if no element could be found.
5241  *
5242  * Sets *key_nextp to the next key for loop purposes but does not modify
5243  * it if the next key would be higher than the current value of *key_nextp.
5244  * Note that *key_nexp can overflow to 0, which should be tested by the
5245  * caller.
5246  *
5247  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5248  *	     held through the operation.
5249  */
5250 static int
5251 hammer2_base_find(hammer2_chain_t *parent,
5252 		  hammer2_blockref_t *base, int count,
5253 		  hammer2_key_t *key_nextp,
5254 		  hammer2_key_t key_beg, hammer2_key_t key_end)
5255 {
5256 	hammer2_blockref_t *scan;
5257 	hammer2_key_t scan_end;
5258 	int i;
5259 	int limit;
5260 
5261 	/*
5262 	 * Require the live chain's already have their core's counted
5263 	 * so we can optimize operations.
5264 	 */
5265         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5266 
5267 	/*
5268 	 * Degenerate case
5269 	 */
5270 	if (count == 0 || base == NULL)
5271 		return(count);
5272 
5273 	/*
5274 	 * Sequential optimization using parent->cache_index.  This is
5275 	 * the most likely scenario.
5276 	 *
5277 	 * We can avoid trailing empty entries on live chains, otherwise
5278 	 * we might have to check the whole block array.
5279 	 */
5280 	i = parent->cache_index;	/* SMP RACE OK */
5281 	cpu_ccfence();
5282 	limit = parent->core.live_zero;
5283 	if (i >= limit)
5284 		i = limit - 1;
5285 	if (i < 0)
5286 		i = 0;
5287 	KKASSERT(i < count);
5288 
5289 	/*
5290 	 * Search backwards
5291 	 */
5292 	scan = &base[i];
5293 	while (i > 0 && (scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5294 	    scan->key > key_beg)) {
5295 		--scan;
5296 		--i;
5297 	}
5298 	parent->cache_index = i;
5299 
5300 	/*
5301 	 * Search forwards, stop when we find a scan element which
5302 	 * encloses the key or until we know that there are no further
5303 	 * elements.
5304 	 */
5305 	while (i < count) {
5306 		if (scan->type != HAMMER2_BREF_TYPE_EMPTY) {
5307 			scan_end = scan->key +
5308 				   ((hammer2_key_t)1 << scan->keybits) - 1;
5309 			if (scan->key > key_beg || scan_end >= key_beg)
5310 				break;
5311 		}
5312 		if (i >= limit)
5313 			return (count);
5314 		++scan;
5315 		++i;
5316 	}
5317 	if (i != count) {
5318 		parent->cache_index = i;
5319 		if (i >= limit) {
5320 			i = count;
5321 		} else {
5322 			scan_end = scan->key +
5323 				   ((hammer2_key_t)1 << scan->keybits);
5324 			if (scan_end && (*key_nextp > scan_end ||
5325 					 *key_nextp == 0)) {
5326 				*key_nextp = scan_end;
5327 			}
5328 		}
5329 	}
5330 	return (i);
5331 }
5332 
5333 /*
5334  * Do a combined search and return the next match either from the blockref
5335  * array or from the in-memory chain.  Sets *bresp to the returned bref in
5336  * both cases, or sets it to NULL if the search exhausted.  Only returns
5337  * a non-NULL chain if the search matched from the in-memory chain.
5338  *
5339  * When no in-memory chain has been found and a non-NULL bref is returned
5340  * in *bresp.
5341  *
5342  *
5343  * The returned chain is not locked or referenced.  Use the returned bref
5344  * to determine if the search exhausted or not.  Iterate if the base find
5345  * is chosen but matches a deleted chain.
5346  *
5347  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5348  *	     held through the operation.
5349  */
5350 hammer2_chain_t *
5351 hammer2_combined_find(hammer2_chain_t *parent,
5352 		      hammer2_blockref_t *base, int count,
5353 		      hammer2_key_t *key_nextp,
5354 		      hammer2_key_t key_beg, hammer2_key_t key_end,
5355 		      hammer2_blockref_t **bresp)
5356 {
5357 	hammer2_blockref_t *bref;
5358 	hammer2_chain_t *chain;
5359 	int i;
5360 
5361 	/*
5362 	 * Lookup in block array and in rbtree.
5363 	 */
5364 	*key_nextp = key_end + 1;
5365 	i = hammer2_base_find(parent, base, count, key_nextp,
5366 			      key_beg, key_end);
5367 	chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5368 
5369 	/*
5370 	 * Neither matched
5371 	 */
5372 	if (i == count && chain == NULL) {
5373 		*bresp = NULL;
5374 		return(NULL);
5375 	}
5376 
5377 	/*
5378 	 * Only chain matched.
5379 	 */
5380 	if (i == count) {
5381 		bref = &chain->bref;
5382 		goto found;
5383 	}
5384 
5385 	/*
5386 	 * Only blockref matched.
5387 	 */
5388 	if (chain == NULL) {
5389 		bref = &base[i];
5390 		goto found;
5391 	}
5392 
5393 	/*
5394 	 * Both in-memory and blockref matched, select the nearer element.
5395 	 *
5396 	 * If both are flush with the left-hand side or both are the
5397 	 * same distance away, select the chain.  In this situation the
5398 	 * chain must have been loaded from the matching blockmap.
5399 	 */
5400 	if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5401 	    chain->bref.key == base[i].key) {
5402 		KKASSERT(chain->bref.key == base[i].key);
5403 		bref = &chain->bref;
5404 		goto found;
5405 	}
5406 
5407 	/*
5408 	 * Select the nearer key
5409 	 */
5410 	if (chain->bref.key < base[i].key) {
5411 		bref = &chain->bref;
5412 	} else {
5413 		bref = &base[i];
5414 		chain = NULL;
5415 	}
5416 
5417 	/*
5418 	 * If the bref is out of bounds we've exhausted our search.
5419 	 */
5420 found:
5421 	if (bref->key > key_end) {
5422 		*bresp = NULL;
5423 		chain = NULL;
5424 	} else {
5425 		*bresp = bref;
5426 	}
5427 	return(chain);
5428 }
5429 
5430 /*
5431  * Locate the specified block array element and delete it.  The element
5432  * must exist.
5433  *
5434  * The spin lock on the related chain must be held.
5435  *
5436  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5437  *	 need to be adjusted when we commit the media change.
5438  */
5439 void
5440 hammer2_base_delete(hammer2_chain_t *parent,
5441 		    hammer2_blockref_t *base, int count,
5442 		    hammer2_chain_t *chain,
5443 		    hammer2_blockref_t *obref)
5444 {
5445 	hammer2_blockref_t *elm = &chain->bref;
5446 	hammer2_blockref_t *scan;
5447 	hammer2_key_t key_next;
5448 	int i;
5449 
5450 	/*
5451 	 * Delete element.  Expect the element to exist.
5452 	 *
5453 	 * XXX see caller, flush code not yet sophisticated enough to prevent
5454 	 *     re-flushed in some cases.
5455 	 */
5456 	key_next = 0; /* max range */
5457 	i = hammer2_base_find(parent, base, count, &key_next,
5458 			      elm->key, elm->key);
5459 	scan = &base[i];
5460 	if (i == count || scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5461 	    scan->key != elm->key ||
5462 	    ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
5463 	     scan->keybits != elm->keybits)) {
5464 		hammer2_spin_unex(&parent->core.spin);
5465 		panic("delete base %p element not found at %d/%d elm %p\n",
5466 		      base, i, count, elm);
5467 		return;
5468 	}
5469 
5470 	/*
5471 	 * Update stats and zero the entry.
5472 	 *
5473 	 * NOTE: Handle radix == 0 (0 bytes) case.
5474 	 */
5475 	if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5476 		parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5477 				(int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5478 	}
5479 	switch(scan->type) {
5480 	case HAMMER2_BREF_TYPE_INODE:
5481 		--parent->bref.embed.stats.inode_count;
5482 		/* fall through */
5483 	case HAMMER2_BREF_TYPE_DATA:
5484 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5485 			atomic_set_int(&chain->flags,
5486 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5487 		} else {
5488 			if (parent->bref.leaf_count)
5489 				--parent->bref.leaf_count;
5490 		}
5491 		/* fall through */
5492 	case HAMMER2_BREF_TYPE_INDIRECT:
5493 		if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5494 			parent->bref.embed.stats.data_count -=
5495 				scan->embed.stats.data_count;
5496 			parent->bref.embed.stats.inode_count -=
5497 				scan->embed.stats.inode_count;
5498 		}
5499 		if (scan->type == HAMMER2_BREF_TYPE_INODE)
5500 			break;
5501 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5502 			atomic_set_int(&chain->flags,
5503 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5504 		} else {
5505 			if (parent->bref.leaf_count <= scan->leaf_count)
5506 				parent->bref.leaf_count = 0;
5507 			else
5508 				parent->bref.leaf_count -= scan->leaf_count;
5509 		}
5510 		break;
5511 	case HAMMER2_BREF_TYPE_DIRENT:
5512 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5513 			atomic_set_int(&chain->flags,
5514 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5515 		} else {
5516 			if (parent->bref.leaf_count)
5517 				--parent->bref.leaf_count;
5518 		}
5519 	default:
5520 		break;
5521 	}
5522 
5523 	if (obref)
5524 		*obref = *scan;
5525 	bzero(scan, sizeof(*scan));
5526 
5527 	/*
5528 	 * We can only optimize parent->core.live_zero for live chains.
5529 	 */
5530 	if (parent->core.live_zero == i + 1) {
5531 		while (--i >= 0 && base[i].type == HAMMER2_BREF_TYPE_EMPTY)
5532 			;
5533 		parent->core.live_zero = i + 1;
5534 	}
5535 
5536 	/*
5537 	 * Clear appropriate blockmap flags in chain.
5538 	 */
5539 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
5540 					HAMMER2_CHAIN_BMAPUPD);
5541 }
5542 
5543 /*
5544  * Insert the specified element.  The block array must not already have the
5545  * element and must have space available for the insertion.
5546  *
5547  * The spin lock on the related chain must be held.
5548  *
5549  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5550  *	 need to be adjusted when we commit the media change.
5551  */
5552 void
5553 hammer2_base_insert(hammer2_chain_t *parent,
5554 		    hammer2_blockref_t *base, int count,
5555 		    hammer2_chain_t *chain, hammer2_blockref_t *elm)
5556 {
5557 	hammer2_key_t key_next;
5558 	hammer2_key_t xkey;
5559 	int i;
5560 	int j;
5561 	int k;
5562 	int l;
5563 	int u = 1;
5564 
5565 	/*
5566 	 * Insert new element.  Expect the element to not already exist
5567 	 * unless we are replacing it.
5568 	 *
5569 	 * XXX see caller, flush code not yet sophisticated enough to prevent
5570 	 *     re-flushed in some cases.
5571 	 */
5572 	key_next = 0; /* max range */
5573 	i = hammer2_base_find(parent, base, count, &key_next,
5574 			      elm->key, elm->key);
5575 
5576 	/*
5577 	 * Shortcut fill optimization, typical ordered insertion(s) may not
5578 	 * require a search.
5579 	 */
5580 	KKASSERT(i >= 0 && i <= count);
5581 
5582 	/*
5583 	 * Set appropriate blockmap flags in chain (if not NULL)
5584 	 */
5585 	if (chain)
5586 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
5587 
5588 	/*
5589 	 * Update stats and zero the entry
5590 	 */
5591 	if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5592 		parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5593 				(int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5594 	}
5595 	switch(elm->type) {
5596 	case HAMMER2_BREF_TYPE_INODE:
5597 		++parent->bref.embed.stats.inode_count;
5598 		/* fall through */
5599 	case HAMMER2_BREF_TYPE_DATA:
5600 		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5601 			++parent->bref.leaf_count;
5602 		/* fall through */
5603 	case HAMMER2_BREF_TYPE_INDIRECT:
5604 		if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5605 			parent->bref.embed.stats.data_count +=
5606 				elm->embed.stats.data_count;
5607 			parent->bref.embed.stats.inode_count +=
5608 				elm->embed.stats.inode_count;
5609 		}
5610 		if (elm->type == HAMMER2_BREF_TYPE_INODE)
5611 			break;
5612 		if (parent->bref.leaf_count + elm->leaf_count <
5613 		    HAMMER2_BLOCKREF_LEAF_MAX) {
5614 			parent->bref.leaf_count += elm->leaf_count;
5615 		} else {
5616 			parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5617 		}
5618 		break;
5619 	case HAMMER2_BREF_TYPE_DIRENT:
5620 		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5621 			++parent->bref.leaf_count;
5622 		break;
5623 	default:
5624 		break;
5625 	}
5626 
5627 
5628 	/*
5629 	 * We can only optimize parent->core.live_zero for live chains.
5630 	 */
5631 	if (i == count && parent->core.live_zero < count) {
5632 		i = parent->core.live_zero++;
5633 		base[i] = *elm;
5634 		return;
5635 	}
5636 
5637 	xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5638 	if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5639 		hammer2_spin_unex(&parent->core.spin);
5640 		panic("insert base %p overlapping elements at %d elm %p\n",
5641 		      base, i, elm);
5642 	}
5643 
5644 	/*
5645 	 * Try to find an empty slot before or after.
5646 	 */
5647 	j = i;
5648 	k = i;
5649 	while (j > 0 || k < count) {
5650 		--j;
5651 		if (j >= 0 && base[j].type == HAMMER2_BREF_TYPE_EMPTY) {
5652 			if (j == i - 1) {
5653 				base[j] = *elm;
5654 			} else {
5655 				bcopy(&base[j+1], &base[j],
5656 				      (i - j - 1) * sizeof(*base));
5657 				base[i - 1] = *elm;
5658 			}
5659 			goto validate;
5660 		}
5661 		++k;
5662 		if (k < count && base[k].type == HAMMER2_BREF_TYPE_EMPTY) {
5663 			bcopy(&base[i], &base[i+1],
5664 			      (k - i) * sizeof(hammer2_blockref_t));
5665 			base[i] = *elm;
5666 
5667 			/*
5668 			 * We can only update parent->core.live_zero for live
5669 			 * chains.
5670 			 */
5671 			if (parent->core.live_zero <= k)
5672 				parent->core.live_zero = k + 1;
5673 			u = 2;
5674 			goto validate;
5675 		}
5676 	}
5677 	panic("hammer2_base_insert: no room!");
5678 
5679 	/*
5680 	 * Debugging
5681 	 */
5682 validate:
5683 	key_next = 0;
5684 	for (l = 0; l < count; ++l) {
5685 		if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5686 			key_next = base[l].key +
5687 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5688 			break;
5689 		}
5690 	}
5691 	while (++l < count) {
5692 		if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5693 			if (base[l].key <= key_next)
5694 				panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5695 			key_next = base[l].key +
5696 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5697 
5698 		}
5699 	}
5700 
5701 }
5702 
5703 #if 0
5704 
5705 /*
5706  * Sort the blockref array for the chain.  Used by the flush code to
5707  * sort the blockref[] array.
5708  *
5709  * The chain must be exclusively locked AND spin-locked.
5710  */
5711 typedef hammer2_blockref_t *hammer2_blockref_p;
5712 
5713 static
5714 int
5715 hammer2_base_sort_callback(const void *v1, const void *v2)
5716 {
5717 	hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5718 	hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5719 
5720 	/*
5721 	 * Make sure empty elements are placed at the end of the array
5722 	 */
5723 	if (bref1->type == HAMMER2_BREF_TYPE_EMPTY) {
5724 		if (bref2->type == HAMMER2_BREF_TYPE_EMPTY)
5725 			return(0);
5726 		return(1);
5727 	} else if (bref2->type == HAMMER2_BREF_TYPE_EMPTY) {
5728 		return(-1);
5729 	}
5730 
5731 	/*
5732 	 * Sort by key
5733 	 */
5734 	if (bref1->key < bref2->key)
5735 		return(-1);
5736 	if (bref1->key > bref2->key)
5737 		return(1);
5738 	return(0);
5739 }
5740 
5741 void
5742 hammer2_base_sort(hammer2_chain_t *chain)
5743 {
5744 	hammer2_blockref_t *base;
5745 	int count;
5746 
5747 	switch(chain->bref.type) {
5748 	case HAMMER2_BREF_TYPE_INODE:
5749 		/*
5750 		 * Special shortcut for embedded data returns the inode
5751 		 * itself.  Callers must detect this condition and access
5752 		 * the embedded data (the strategy code does this for us).
5753 		 *
5754 		 * This is only applicable to regular files and softlinks.
5755 		 */
5756 		if (chain->data->ipdata.meta.op_flags &
5757 		    HAMMER2_OPFLAG_DIRECTDATA) {
5758 			return;
5759 		}
5760 		base = &chain->data->ipdata.u.blockset.blockref[0];
5761 		count = HAMMER2_SET_COUNT;
5762 		break;
5763 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5764 	case HAMMER2_BREF_TYPE_INDIRECT:
5765 		/*
5766 		 * Optimize indirect blocks in the INITIAL state to avoid
5767 		 * I/O.
5768 		 */
5769 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5770 		base = &chain->data->npdata[0];
5771 		count = chain->bytes / sizeof(hammer2_blockref_t);
5772 		break;
5773 	case HAMMER2_BREF_TYPE_VOLUME:
5774 		base = &chain->data->voldata.sroot_blockset.blockref[0];
5775 		count = HAMMER2_SET_COUNT;
5776 		break;
5777 	case HAMMER2_BREF_TYPE_FREEMAP:
5778 		base = &chain->data->blkset.blockref[0];
5779 		count = HAMMER2_SET_COUNT;
5780 		break;
5781 	default:
5782 		kprintf("hammer2_base_sort: unrecognized "
5783 			"blockref(A) type: %d",
5784 		        chain->bref.type);
5785 		while (1)
5786 			tsleep(&base, 0, "dead", 0);
5787 		panic("hammer2_base_sort: unrecognized "
5788 		      "blockref(A) type: %d",
5789 		      chain->bref.type);
5790 		base = NULL;	/* safety */
5791 		count = 0;	/* safety */
5792 	}
5793 	kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5794 }
5795 
5796 #endif
5797 
5798 /*
5799  * Chain memory management
5800  */
5801 void
5802 hammer2_chain_wait(hammer2_chain_t *chain)
5803 {
5804 	tsleep(chain, 0, "chnflw", 1);
5805 }
5806 
5807 const hammer2_media_data_t *
5808 hammer2_chain_rdata(hammer2_chain_t *chain)
5809 {
5810 	KKASSERT(chain->data != NULL);
5811 	return (chain->data);
5812 }
5813 
5814 hammer2_media_data_t *
5815 hammer2_chain_wdata(hammer2_chain_t *chain)
5816 {
5817 	KKASSERT(chain->data != NULL);
5818 	return (chain->data);
5819 }
5820 
5821 /*
5822  * Set the check data for a chain.  This can be a heavy-weight operation
5823  * and typically only runs on-flush.  For file data check data is calculated
5824  * when the logical buffers are flushed.
5825  */
5826 void
5827 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5828 {
5829 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
5830 
5831 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5832 	case HAMMER2_CHECK_NONE:
5833 		break;
5834 	case HAMMER2_CHECK_DISABLED:
5835 		break;
5836 	case HAMMER2_CHECK_ISCSI32:
5837 		chain->bref.check.iscsi32.value =
5838 			hammer2_icrc32(bdata, chain->bytes);
5839 		break;
5840 	case HAMMER2_CHECK_XXHASH64:
5841 		chain->bref.check.xxhash64.value =
5842 			XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5843 		break;
5844 	case HAMMER2_CHECK_SHA192:
5845 		{
5846 			SHA256_CTX hash_ctx;
5847 			union {
5848 				uint8_t digest[SHA256_DIGEST_LENGTH];
5849 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5850 			} u;
5851 
5852 			SHA256_Init(&hash_ctx);
5853 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5854 			SHA256_Final(u.digest, &hash_ctx);
5855 			u.digest64[2] ^= u.digest64[3];
5856 			bcopy(u.digest,
5857 			      chain->bref.check.sha192.data,
5858 			      sizeof(chain->bref.check.sha192.data));
5859 		}
5860 		break;
5861 	case HAMMER2_CHECK_FREEMAP:
5862 		chain->bref.check.freemap.icrc32 =
5863 			hammer2_icrc32(bdata, chain->bytes);
5864 		break;
5865 	default:
5866 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5867 			chain->bref.methods);
5868 		break;
5869 	}
5870 }
5871 
5872 /*
5873  * Characterize a failed check code and try to trace back to the inode.
5874  */
5875 static void
5876 hammer2_characterize_failed_chain(hammer2_chain_t *chain, uint64_t check,
5877 				  int bits)
5878 {
5879 	hammer2_chain_t *lchain;
5880 	hammer2_chain_t *ochain;
5881 	int did;
5882 
5883 	did = krateprintf(&krate_h2chk,
5884 		"chain %016jx.%02x (%s) meth=%02x CHECK FAIL "
5885 		"(flags=%08x, bref/data ",
5886 		chain->bref.data_off,
5887 		chain->bref.type,
5888 		hammer2_bref_type_str(chain->bref.type),
5889 		chain->bref.methods,
5890 		chain->flags);
5891 	if (did == 0)
5892 		return;
5893 
5894 	if (bits == 32) {
5895 		kprintf("%08x/%08x)\n",
5896 			chain->bref.check.iscsi32.value,
5897 			(uint32_t)check);
5898 	} else {
5899 		kprintf("%016jx/%016jx)\n",
5900 			chain->bref.check.xxhash64.value,
5901 			check);
5902 	}
5903 
5904 	/*
5905 	 * Run up the chains to try to find the governing inode so we
5906 	 * can report it.
5907 	 *
5908 	 * XXX This error reporting is not really MPSAFE
5909 	 */
5910 	ochain = chain;
5911 	lchain = chain;
5912 	while (chain && chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
5913 		lchain = chain;
5914 		chain = chain->parent;
5915 	}
5916 
5917 	if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
5918 	    ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) == 0 ||
5919 	     (lchain->bref.key & HAMMER2_DIRHASH_VISIBLE))) {
5920 		kprintf("   Resides at/in inode %ld\n",
5921 			chain->bref.key);
5922 	} else if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5923 		kprintf("   Resides in inode index - CRITICAL!!!\n");
5924 	} else {
5925 		kprintf("   Resides in root index - CRITICAL!!!\n");
5926 	}
5927 	if (ochain->hmp) {
5928 		const char *pfsname = "UNKNOWN";
5929 		int i;
5930 
5931 		if (ochain->pmp) {
5932 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
5933 				if (ochain->pmp->pfs_hmps[i] == ochain->hmp &&
5934 				    ochain->pmp->pfs_names[i]) {
5935 					pfsname = ochain->pmp->pfs_names[i];
5936 					break;
5937 				}
5938 			}
5939 		}
5940 		kprintf("   In pfs %s on device %s\n",
5941 			pfsname, ochain->hmp->devrepname);
5942 	}
5943 }
5944 
5945 /*
5946  * Returns non-zero on success, 0 on failure.
5947  */
5948 int
5949 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5950 {
5951 	uint32_t check32;
5952 	uint64_t check64;
5953 	int r;
5954 
5955 	if (chain->flags & HAMMER2_CHAIN_NOTTESTED)
5956 		return 1;
5957 
5958 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5959 	case HAMMER2_CHECK_NONE:
5960 		r = 1;
5961 		break;
5962 	case HAMMER2_CHECK_DISABLED:
5963 		r = 1;
5964 		break;
5965 	case HAMMER2_CHECK_ISCSI32:
5966 		check32 = hammer2_icrc32(bdata, chain->bytes);
5967 		r = (chain->bref.check.iscsi32.value == check32);
5968 		if (r == 0) {
5969 			hammer2_characterize_failed_chain(chain, check32, 32);
5970 		}
5971 		hammer2_process_icrc32 += chain->bytes;
5972 		break;
5973 	case HAMMER2_CHECK_XXHASH64:
5974 		check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5975 		r = (chain->bref.check.xxhash64.value == check64);
5976 		if (r == 0) {
5977 			hammer2_characterize_failed_chain(chain, check64, 64);
5978 		}
5979 		hammer2_process_xxhash64 += chain->bytes;
5980 		break;
5981 	case HAMMER2_CHECK_SHA192:
5982 		{
5983 			SHA256_CTX hash_ctx;
5984 			union {
5985 				uint8_t digest[SHA256_DIGEST_LENGTH];
5986 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5987 			} u;
5988 
5989 			SHA256_Init(&hash_ctx);
5990 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5991 			SHA256_Final(u.digest, &hash_ctx);
5992 			u.digest64[2] ^= u.digest64[3];
5993 			if (bcmp(u.digest,
5994 				 chain->bref.check.sha192.data,
5995 			         sizeof(chain->bref.check.sha192.data)) == 0) {
5996 				r = 1;
5997 			} else {
5998 				r = 0;
5999 				krateprintf(&krate_h2chk,
6000 					"chain %016jx.%02x meth=%02x "
6001 					"CHECK FAIL\n",
6002 					chain->bref.data_off,
6003 					chain->bref.type,
6004 					chain->bref.methods);
6005 			}
6006 		}
6007 		break;
6008 	case HAMMER2_CHECK_FREEMAP:
6009 		r = (chain->bref.check.freemap.icrc32 ==
6010 		     hammer2_icrc32(bdata, chain->bytes));
6011 		if (r == 0) {
6012 			int did;
6013 
6014 			did = krateprintf(&krate_h2chk,
6015 					  "chain %016jx.%02x meth=%02x "
6016 					  "CHECK FAIL\n",
6017 					  chain->bref.data_off,
6018 					  chain->bref.type,
6019 					  chain->bref.methods);
6020 			if (did) {
6021 				kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
6022 					chain->bref.check.freemap.icrc32,
6023 					hammer2_icrc32(bdata, chain->bytes),
6024 					chain->bytes);
6025 				if (chain->dio) {
6026 					kprintf("dio %p buf %016jx,%d "
6027 						"bdata %p/%p\n",
6028 						chain->dio,
6029 						chain->dio->bp->b_loffset,
6030 						chain->dio->bp->b_bufsize,
6031 						bdata,
6032 						chain->dio->bp->b_data);
6033 				}
6034 			}
6035 		}
6036 		break;
6037 	default:
6038 		kprintf("hammer2_chain_testcheck: unknown check type %02x\n",
6039 			chain->bref.methods);
6040 		r = 1;
6041 		break;
6042 	}
6043 	return r;
6044 }
6045 
6046 /*
6047  * Acquire the chain and parent representing the specified inode for the
6048  * device at the specified cluster index.
6049  *
6050  * The flags passed in are LOOKUP flags, not RESOLVE flags.
6051  *
6052  * If we are unable to locate the inode, HAMMER2_ERROR_EIO is returned and
6053  * *chainp will be NULL.  *parentp may still be set error or not, or NULL
6054  * if the parent itself could not be resolved.
6055  *
6056  * The caller may pass-in a locked *parentp and/or *chainp, or neither.
6057  * They will be unlocked and released by this function.  The *parentp and
6058  * *chainp representing the located inode are returned locked.
6059  */
6060 int
6061 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
6062 			 int clindex, int flags,
6063 			 hammer2_chain_t **parentp, hammer2_chain_t **chainp)
6064 {
6065 	hammer2_chain_t *parent;
6066 	hammer2_chain_t *rchain;
6067 	hammer2_key_t key_dummy;
6068 	hammer2_inode_t *ip;
6069 	int resolve_flags;
6070 	int error;
6071 
6072 	resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
6073 			HAMMER2_RESOLVE_SHARED : 0;
6074 
6075 	/*
6076 	 * Caller expects us to replace these.
6077 	 */
6078 	if (*chainp) {
6079 		hammer2_chain_unlock(*chainp);
6080 		hammer2_chain_drop(*chainp);
6081 		*chainp = NULL;
6082 	}
6083 	if (*parentp) {
6084 		hammer2_chain_unlock(*parentp);
6085 		hammer2_chain_drop(*parentp);
6086 		*parentp = NULL;
6087 	}
6088 
6089 	/*
6090 	 * Be very careful, this is a backend function and we CANNOT
6091 	 * lock any frontend inode structure we find.  But we have to
6092 	 * look the inode up this way first in case it exists but is
6093 	 * detached from the radix tree.
6094 	 */
6095 	ip = hammer2_inode_lookup(pmp, inum);
6096 	if (ip) {
6097 		*chainp = hammer2_inode_chain_and_parent(ip, clindex,
6098 						       parentp,
6099 						       resolve_flags);
6100 		hammer2_inode_drop(ip);
6101 		if (*chainp)
6102 			return 0;
6103 		hammer2_chain_unlock(*chainp);
6104 		hammer2_chain_drop(*chainp);
6105 		*chainp = NULL;
6106 		if (*parentp) {
6107 			hammer2_chain_unlock(*parentp);
6108 			hammer2_chain_drop(*parentp);
6109 			*parentp = NULL;
6110 		}
6111 	}
6112 
6113 	/*
6114 	 * Inodes hang off of the iroot (bit 63 is clear, differentiating
6115 	 * inodes from root directory entries in the key lookup).
6116 	 */
6117 	parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
6118 	rchain = NULL;
6119 	if (parent) {
6120 		rchain = hammer2_chain_lookup(&parent, &key_dummy,
6121 					      inum, inum,
6122 					      &error, flags);
6123 	} else {
6124 		error = HAMMER2_ERROR_EIO;
6125 	}
6126 	*parentp = parent;
6127 	*chainp = rchain;
6128 
6129 	return error;
6130 }
6131 
6132 /*
6133  * Used by the bulkscan code to snapshot the synchronized storage for
6134  * a volume, allowing it to be scanned concurrently against normal
6135  * operation.
6136  */
6137 hammer2_chain_t *
6138 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
6139 {
6140 	hammer2_chain_t *copy;
6141 
6142 	copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
6143 	copy->data = kmalloc(sizeof(copy->data->voldata),
6144 			     hmp->mchain,
6145 			     M_WAITOK | M_ZERO);
6146 	hammer2_voldata_lock(hmp);
6147 	copy->data->voldata = hmp->volsync;
6148 	hammer2_voldata_unlock(hmp);
6149 
6150 	return copy;
6151 }
6152 
6153 void
6154 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
6155 {
6156 	KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
6157 	KKASSERT(copy->data);
6158 	kfree(copy->data, copy->hmp->mchain);
6159 	copy->data = NULL;
6160 	atomic_add_long(&hammer2_chain_allocs, -1);
6161 	hammer2_chain_drop(copy);
6162 }
6163 
6164 /*
6165  * Returns non-zero if the chain (INODE or DIRENT) matches the
6166  * filename.
6167  */
6168 int
6169 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
6170 			  size_t name_len)
6171 {
6172 	const hammer2_inode_data_t *ripdata;
6173 	const hammer2_dirent_head_t *den;
6174 
6175 	if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
6176 		ripdata = &chain->data->ipdata;
6177 		if (ripdata->meta.name_len == name_len &&
6178 		    bcmp(ripdata->filename, name, name_len) == 0) {
6179 			return 1;
6180 		}
6181 	}
6182 	if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
6183 	   chain->bref.embed.dirent.namlen == name_len) {
6184 		den = &chain->bref.embed.dirent;
6185 		if (name_len > sizeof(chain->bref.check.buf) &&
6186 		    bcmp(chain->data->buf, name, name_len) == 0) {
6187 			return 1;
6188 		}
6189 		if (name_len <= sizeof(chain->bref.check.buf) &&
6190 		    bcmp(chain->bref.check.buf, name, name_len) == 0) {
6191 			return 1;
6192 		}
6193 	}
6194 	return 0;
6195 }
6196