xref: /dragonfly/sys/vfs/hammer2/hammer2_chain.c (revision f9602a12)
1 /*
2  * Copyright (c) 2011-2015 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62 
63 #include <crypto/sha2/sha2.h>
64 
65 #include "hammer2.h"
66 
67 static int hammer2_indirect_optimize;	/* XXX SYSCTL */
68 
69 static hammer2_chain_t *hammer2_chain_create_indirect(
70 		hammer2_chain_t *parent,
71 		hammer2_key_t key, int keybits,
72 		hammer2_tid_t mtid, int for_type, int *errorp);
73 static void hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop);
74 static hammer2_chain_t *hammer2_combined_find(
75 		hammer2_chain_t *parent,
76 		hammer2_blockref_t *base, int count,
77 		int *cache_indexp, hammer2_key_t *key_nextp,
78 		hammer2_key_t key_beg, hammer2_key_t key_end,
79 		hammer2_blockref_t **bresp);
80 
81 /*
82  * Basic RBTree for chains (core->rbtree and core->dbtree).  Chains cannot
83  * overlap in the RB trees.  Deleted chains are moved from rbtree to either
84  * dbtree or to dbq.
85  *
86  * Chains in delete-duplicate sequences can always iterate through core_entry
87  * to locate the live version of the chain.
88  */
89 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
90 
91 int
92 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
93 {
94 	hammer2_key_t c1_beg;
95 	hammer2_key_t c1_end;
96 	hammer2_key_t c2_beg;
97 	hammer2_key_t c2_end;
98 
99 	/*
100 	 * Compare chains.  Overlaps are not supposed to happen and catch
101 	 * any software issues early we count overlaps as a match.
102 	 */
103 	c1_beg = chain1->bref.key;
104 	c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
105 	c2_beg = chain2->bref.key;
106 	c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
107 
108 	if (c1_end < c2_beg)	/* fully to the left */
109 		return(-1);
110 	if (c1_beg > c2_end)	/* fully to the right */
111 		return(1);
112 	return(0);		/* overlap (must not cross edge boundary) */
113 }
114 
115 static __inline
116 int
117 hammer2_isclusterable(hammer2_chain_t *chain)
118 {
119 	if (hammer2_cluster_enable) {
120 		if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
121 		    chain->bref.type == HAMMER2_BREF_TYPE_INODE ||
122 		    chain->bref.type == HAMMER2_BREF_TYPE_DATA) {
123 			return(1);
124 		}
125 	}
126 	return(0);
127 }
128 
129 /*
130  * Make a chain visible to the flusher.  The flusher needs to be able to
131  * do flushes of subdirectory chains or single files so it does a top-down
132  * recursion using the ONFLUSH flag for the recursion.  It locates MODIFIED
133  * or UPDATE chains and flushes back up the chain to the volume root.
134  *
135  * This routine sets ONFLUSH upward until it hits the volume root.  For
136  * simplicity we ignore PFSROOT boundaries whos rules can be complex.
137  * Extra ONFLUSH flagging doesn't hurt the filesystem.
138  */
139 void
140 hammer2_chain_setflush(hammer2_chain_t *chain)
141 {
142 	hammer2_chain_t *parent;
143 
144 	if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
145 		hammer2_spin_sh(&chain->core.spin);
146 		while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
147 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
148 			if ((parent = chain->parent) == NULL)
149 				break;
150 			hammer2_spin_sh(&parent->core.spin);
151 			hammer2_spin_unsh(&chain->core.spin);
152 			chain = parent;
153 		}
154 		hammer2_spin_unsh(&chain->core.spin);
155 	}
156 }
157 
158 /*
159  * Allocate a new disconnected chain element representing the specified
160  * bref.  chain->refs is set to 1 and the passed bref is copied to
161  * chain->bref.  chain->bytes is derived from the bref.
162  *
163  * chain->pmp inherits pmp unless the chain is an inode (other than the
164  * super-root inode).
165  *
166  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
167  */
168 hammer2_chain_t *
169 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
170 		    hammer2_blockref_t *bref)
171 {
172 	hammer2_chain_t *chain;
173 	u_int bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
174 
175 	/*
176 	 * Construct the appropriate system structure.
177 	 */
178 	switch(bref->type) {
179 	case HAMMER2_BREF_TYPE_INODE:
180 	case HAMMER2_BREF_TYPE_INDIRECT:
181 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
182 	case HAMMER2_BREF_TYPE_DATA:
183 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
184 		/*
185 		 * Chain's are really only associated with the hmp but we
186 		 * maintain a pmp association for per-mount memory tracking
187 		 * purposes.  The pmp can be NULL.
188 		 */
189 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
190 		break;
191 	case HAMMER2_BREF_TYPE_VOLUME:
192 	case HAMMER2_BREF_TYPE_FREEMAP:
193 		/*
194 		 * Only hammer2_chain_bulksnap() calls this function with these
195 		 * types.
196 		 */
197 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
198 		break;
199 	default:
200 		chain = NULL;
201 		panic("hammer2_chain_alloc: unrecognized blockref type: %d",
202 		      bref->type);
203 	}
204 
205 	/*
206 	 * Initialize the new chain structure.  pmp must be set to NULL for
207 	 * chains belonging to the super-root topology of a device mount.
208 	 */
209 	if (pmp == hmp->spmp)
210 		chain->pmp = NULL;
211 	else
212 		chain->pmp = pmp;
213 	chain->hmp = hmp;
214 	chain->bref = *bref;
215 	chain->bytes = bytes;
216 	chain->refs = 1;
217 	chain->flags = HAMMER2_CHAIN_ALLOCATED;
218 
219 	/*
220 	 * Set the PFS boundary flag if this chain represents a PFS root.
221 	 */
222 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
223 		chain->flags |= HAMMER2_CHAIN_PFSBOUNDARY;
224 	hammer2_chain_core_init(chain);
225 
226 	return (chain);
227 }
228 
229 /*
230  * Initialize a chain's core structure.  This structure used to be allocated
231  * but is now embedded.
232  *
233  * The core is not locked.  No additional refs on the chain are made.
234  * (trans) must not be NULL if (core) is not NULL.
235  */
236 void
237 hammer2_chain_core_init(hammer2_chain_t *chain)
238 {
239 	/*
240 	 * Fresh core under nchain (no multi-homing of ochain's
241 	 * sub-tree).
242 	 */
243 	RB_INIT(&chain->core.rbtree);	/* live chains */
244 	hammer2_mtx_init(&chain->lock, "h2chain");
245 }
246 
247 /*
248  * Add a reference to a chain element, preventing its destruction.
249  *
250  * (can be called with spinlock held)
251  */
252 void
253 hammer2_chain_ref(hammer2_chain_t *chain)
254 {
255 	atomic_add_int(&chain->refs, 1);
256 #if 0
257 	kprintf("REFC %p %d %08x\n", chain, chain->refs - 1, chain->flags);
258 	print_backtrace(8);
259 #endif
260 }
261 
262 /*
263  * Insert the chain in the core rbtree.
264  *
265  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
266  * chain is a special case used by the flush code that is placed on the
267  * unstaged deleted list to avoid confusing the live view.
268  */
269 #define HAMMER2_CHAIN_INSERT_SPIN	0x0001
270 #define HAMMER2_CHAIN_INSERT_LIVE	0x0002
271 #define HAMMER2_CHAIN_INSERT_RACE	0x0004
272 
273 static
274 int
275 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
276 		     int flags, int generation)
277 {
278 	hammer2_chain_t *xchain;
279 	int error = 0;
280 
281 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
282 		hammer2_spin_ex(&parent->core.spin);
283 
284 	/*
285 	 * Interlocked by spinlock, check for race
286 	 */
287 	if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
288 	    parent->core.generation != generation) {
289 		error = EAGAIN;
290 		goto failed;
291 	}
292 
293 	/*
294 	 * Insert chain
295 	 */
296 	xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
297 	KASSERT(xchain == NULL,
298 		("hammer2_chain_insert: collision %p %p (key=%016jx)",
299 		chain, xchain, chain->bref.key));
300 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
301 	chain->parent = parent;
302 	++parent->core.chain_count;
303 	++parent->core.generation;	/* XXX incs for _get() too, XXX */
304 
305 	/*
306 	 * We have to keep track of the effective live-view blockref count
307 	 * so the create code knows when to push an indirect block.
308 	 */
309 	if (flags & HAMMER2_CHAIN_INSERT_LIVE)
310 		atomic_add_int(&parent->core.live_count, 1);
311 failed:
312 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
313 		hammer2_spin_unex(&parent->core.spin);
314 	return error;
315 }
316 
317 /*
318  * Drop the caller's reference to the chain.  When the ref count drops to
319  * zero this function will try to disassociate the chain from its parent and
320  * deallocate it, then recursely drop the parent using the implied ref
321  * from the chain's chain->parent.
322  */
323 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain);
324 
325 void
326 hammer2_chain_drop(hammer2_chain_t *chain)
327 {
328 	u_int refs;
329 
330 	if (hammer2_debug & 0x200000)
331 		Debugger("drop");
332 #if 0
333 	kprintf("DROP %p %d %08x\n", chain, chain->refs - 1, chain->flags);
334 	print_backtrace(8);
335 #endif
336 
337 	KKASSERT(chain->refs > 0);
338 
339 	while (chain) {
340 		refs = chain->refs;
341 		cpu_ccfence();
342 		KKASSERT(refs > 0);
343 
344 		if (refs == 1) {
345 			chain = hammer2_chain_lastdrop(chain);
346 		} else {
347 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
348 				break;
349 			/* retry the same chain */
350 		}
351 	}
352 }
353 
354 /*
355  * Safe handling of the 1->0 transition on chain.  Returns a chain for
356  * recursive drop or NULL, possibly returning the same chain if the atomic
357  * op fails.
358  *
359  * Whem two chains need to be recursively dropped we use the chain
360  * we would otherwise free to placehold the additional chain.  It's a bit
361  * convoluted but we can't just recurse without potentially blowing out
362  * the kernel stack.
363  *
364  * The chain cannot be freed if it has any children.
365  * The chain cannot be freed if flagged MODIFIED unless we can dispose of that.
366  * The chain cannot be freed if flagged UPDATE unless we can dispose of that.
367  *
368  * The core spinlock is allowed nest child-to-parent (not parent-to-child).
369  */
370 static
371 hammer2_chain_t *
372 hammer2_chain_lastdrop(hammer2_chain_t *chain)
373 {
374 	hammer2_pfs_t *pmp;
375 	hammer2_dev_t *hmp;
376 	hammer2_chain_t *parent;
377 	hammer2_chain_t *rdrop;
378 
379 	/*
380 	 * Critical field access.
381 	 */
382 	hammer2_spin_ex(&chain->core.spin);
383 
384 	if (chain->parent) {
385 		/*
386 		 * If the chain has a parent the UPDATE bit prevents scrapping
387 		 * as the chain is needed to properly flush the parent.  Try
388 		 * to complete the 1->0 transition and return NULL.  Retry
389 		 * (return chain) if we are unable to complete the 1->0
390 		 * transition, else return NULL (nothing more to do).
391 		 *
392 		 * If the chain has a parent the MODIFIED bit prevents
393 		 * scrapping.
394 		 */
395 		if (chain->flags & (HAMMER2_CHAIN_UPDATE |
396 				    HAMMER2_CHAIN_MODIFIED)) {
397 			if (atomic_cmpset_int(&chain->refs, 1, 0)) {
398 				hammer2_spin_unex(&chain->core.spin);
399 				chain = NULL;
400 			} else {
401 				hammer2_spin_unex(&chain->core.spin);
402 			}
403 			return (chain);
404 		}
405 		/* spinlock still held */
406 	} else {
407 		/*
408 		 * The chain has no parent and can be flagged for destruction.
409 		 * Since it has no parent, UPDATE can also be cleared.
410 		 */
411 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
412 		if (chain->flags & HAMMER2_CHAIN_UPDATE)
413 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
414 
415 		/*
416 		 * If the chain has children or if it has been MODIFIED and
417 		 * also recorded for DEDUP, we must still flush the chain.
418 		 *
419 		 * In the case where it has children, the DESTROY flag test
420 		 * in the flush code will prevent unnecessary flushes of
421 		 * MODIFIED chains that are not flagged DEDUP so don't worry
422 		 * about that here.
423 		 */
424 		if (chain->core.chain_count ||
425 		    (chain->flags & (HAMMER2_CHAIN_MODIFIED |
426 				     HAMMER2_CHAIN_DEDUP)) ==
427 		    (HAMMER2_CHAIN_MODIFIED |
428 		     HAMMER2_CHAIN_DEDUP)) {
429 			/*
430 			 * Put on flushq (should ensure refs > 1), retry
431 			 * the drop.
432 			 */
433 			hammer2_spin_unex(&chain->core.spin);
434 			hammer2_delayed_flush(chain);
435 			return(chain);	/* retry drop */
436 		}
437 
438 		/*
439 		 * Otherwise we can scrap the MODIFIED bit if it is set,
440 		 * and continue along the freeing path.
441 		 */
442 		if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
443 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
444 			atomic_add_long(&hammer2_count_modified_chains, -1);
445 		}
446 		/* spinlock still held */
447 	}
448 
449 	/*
450 	 * If any children exist we must leave the chain intact with refs == 0.
451 	 * They exist because chains are retained below us which have refs or
452 	 * may require flushing.  This case can occur when parent != NULL.
453 	 *
454 	 * Retry (return chain) if we fail to transition the refs to 0, else
455 	 * return NULL indication nothing more to do.
456 	 */
457 	if (chain->core.chain_count) {
458 		if (atomic_cmpset_int(&chain->refs, 1, 0)) {
459 			hammer2_spin_unex(&chain->core.spin);
460 			chain = NULL;
461 		} else {
462 			hammer2_spin_unex(&chain->core.spin);
463 		}
464 		return (chain);
465 	}
466 	/* spinlock still held */
467 	/* no chains left under us */
468 
469 	/*
470 	 * chain->core has no children left so no accessors can get to our
471 	 * chain from there.  Now we have to lock the parent core to interlock
472 	 * remaining possible accessors that might bump chain's refs before
473 	 * we can safely drop chain's refs with intent to free the chain.
474 	 */
475 	hmp = chain->hmp;
476 	pmp = chain->pmp;	/* can be NULL */
477 	rdrop = NULL;
478 
479 	/*
480 	 * Spinlock the parent and try to drop the last ref on chain.
481 	 * On success remove chain from its parent, otherwise return NULL.
482 	 *
483 	 * (normal core locks are top-down recursive but we define core
484 	 *  spinlocks as bottom-up recursive, so this is safe).
485 	 */
486 	if ((parent = chain->parent) != NULL) {
487 		hammer2_spin_ex(&parent->core.spin);
488 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
489 			/* 1->0 transition failed, retry */
490 			hammer2_spin_unex(&parent->core.spin);
491 			hammer2_spin_unex(&chain->core.spin);
492 			return(chain);
493 		}
494 
495 		/*
496 		 * 1->0 transition successful, remove chain from the
497 		 * parent.
498 		 */
499 		if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
500 			RB_REMOVE(hammer2_chain_tree,
501 				  &parent->core.rbtree, chain);
502 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
503 			--parent->core.chain_count;
504 			chain->parent = NULL;
505 		}
506 
507 		/*
508 		 * If our chain was the last chain in the parent's core the
509 		 * core is now empty and its parent might have to be
510 		 * re-dropped if it has 0 refs.
511 		 */
512 		if (parent->core.chain_count == 0) {
513 			rdrop = parent;
514 			atomic_add_int(&rdrop->refs, 1);
515 			/*
516 			if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
517 				rdrop = NULL;
518 			*/
519 		}
520 		hammer2_spin_unex(&parent->core.spin);
521 		parent = NULL;	/* safety */
522 	}
523 
524 	/*
525 	 * Successful 1->0 transition and the chain can be destroyed now.
526 	 *
527 	 * We still have the core spinlock, and core's chain_count is 0.
528 	 * Any parent spinlock is gone.
529 	 */
530 	hammer2_spin_unex(&chain->core.spin);
531 	KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
532 		 chain->core.chain_count == 0);
533 
534 	/*
535 	 * All spin locks are gone, no pointers remain to the chain, finish
536 	 * freeing it.
537 	 */
538 	KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
539 				  HAMMER2_CHAIN_MODIFIED)) == 0);
540 	hammer2_chain_drop_data(chain, 1);
541 
542 	KKASSERT(chain->dio == NULL);
543 
544 	/*
545 	 * Once chain resources are gone we can use the now dead chain
546 	 * structure to placehold what might otherwise require a recursive
547 	 * drop, because we have potentially two things to drop and can only
548 	 * return one directly.
549 	 */
550 	if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
551 		chain->flags &= ~HAMMER2_CHAIN_ALLOCATED;
552 		chain->hmp = NULL;
553 		kfree(chain, hmp->mchain);
554 	}
555 
556 	/*
557 	 * Possible chaining loop when parent re-drop needed.
558 	 */
559 	return(rdrop);
560 }
561 
562 /*
563  * On either last lock release or last drop
564  */
565 static void
566 hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop)
567 {
568 	/*hammer2_dev_t *hmp = chain->hmp;*/
569 
570 	switch(chain->bref.type) {
571 	case HAMMER2_BREF_TYPE_VOLUME:
572 	case HAMMER2_BREF_TYPE_FREEMAP:
573 		if (lastdrop)
574 			chain->data = NULL;
575 		break;
576 	default:
577 		KKASSERT(chain->data == NULL);
578 		break;
579 	}
580 }
581 
582 /*
583  * Lock a referenced chain element, acquiring its data with I/O if necessary,
584  * and specify how you would like the data to be resolved.
585  *
586  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
587  *
588  * The lock is allowed to recurse, multiple locking ops will aggregate
589  * the requested resolve types.  Once data is assigned it will not be
590  * removed until the last unlock.
591  *
592  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
593  *			   (typically used to avoid device/logical buffer
594  *			    aliasing for data)
595  *
596  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
597  *			   the INITIAL-create state (indirect blocks only).
598  *
599  *			   Do not resolve data elements for DATA chains.
600  *			   (typically used to avoid device/logical buffer
601  *			    aliasing for data)
602  *
603  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
604  *
605  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
606  *			   it will be locked exclusive.
607  *
608  * NOTE: Embedded elements (volume header, inodes) are always resolved
609  *	 regardless.
610  *
611  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
612  *	 element will instantiate and zero its buffer, and flush it on
613  *	 release.
614  *
615  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
616  *	 so as not to instantiate a device buffer, which could alias against
617  *	 a logical file buffer.  However, if ALWAYS is specified the
618  *	 device buffer will be instantiated anyway.
619  *
620  * WARNING! This function blocks on I/O if data needs to be fetched.  This
621  *	    blocking can run concurrent with other compatible lock holders
622  *	    who do not need data returning.  The lock is not upgraded to
623  *	    exclusive during a data fetch, a separate bit is used to
624  *	    interlock I/O.  However, an exclusive lock holder can still count
625  *	    on being interlocked against an I/O fetch managed by a shared
626  *	    lock holder.
627  */
628 void
629 hammer2_chain_lock(hammer2_chain_t *chain, int how)
630 {
631 	/*
632 	 * Ref and lock the element.  Recursive locks are allowed.
633 	 */
634 	KKASSERT(chain->refs > 0);
635 	atomic_add_int(&chain->lockcnt, 1);
636 
637 	/*
638 	 * Get the appropriate lock.
639 	 */
640 	if (how & HAMMER2_RESOLVE_SHARED)
641 		hammer2_mtx_sh(&chain->lock);
642 	else
643 		hammer2_mtx_ex(&chain->lock);
644 	++curthread->td_tracker;
645 
646 	/*
647 	 * If we already have a valid data pointer no further action is
648 	 * necessary.
649 	 */
650 	if (chain->data)
651 		return;
652 
653 	/*
654 	 * Do we have to resolve the data?
655 	 */
656 	switch(how & HAMMER2_RESOLVE_MASK) {
657 	case HAMMER2_RESOLVE_NEVER:
658 		return;
659 	case HAMMER2_RESOLVE_MAYBE:
660 		if (chain->flags & HAMMER2_CHAIN_INITIAL)
661 			return;
662 		if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
663 			return;
664 #if 0
665 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
666 			return;
667 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
668 			return;
669 #endif
670 		/* fall through */
671 	case HAMMER2_RESOLVE_ALWAYS:
672 	default:
673 		break;
674 	}
675 
676 	/*
677 	 * Caller requires data
678 	 */
679 	hammer2_chain_load_data(chain);
680 }
681 
682 /*
683  * Downgrade an exclusive chain lock to a shared chain lock.
684  *
685  * NOTE: There is no upgrade equivalent due to the ease of
686  *	 deadlocks in that direction.
687  */
688 void
689 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
690 {
691 	hammer2_mtx_downgrade(&chain->lock);
692 }
693 
694 /*
695  * Obtains a second shared lock on the chain, does not account the second
696  * shared lock as being owned by the current thread.
697  *
698  * Caller must already own a shared lock on this chain.
699  *
700  * The lock function is required to obtain the second shared lock without
701  * blocking on pending exclusive requests.
702  */
703 void
704 hammer2_chain_push_shared_lock(hammer2_chain_t *chain)
705 {
706 	hammer2_mtx_sh_again(&chain->lock);
707 	atomic_add_int(&chain->lockcnt, 1);
708 	/* do not count in td_tracker for this thread */
709 }
710 
711 /*
712  * Accounts for a shared lock that was pushed to us as being owned by our
713  * thread.
714  */
715 void
716 hammer2_chain_pull_shared_lock(hammer2_chain_t *chain)
717 {
718 	++curthread->td_tracker;
719 }
720 
721 /*
722  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
723  * may be of any type.
724  *
725  * Once chain->data is set it cannot be disposed of until all locks are
726  * released.
727  */
728 void
729 hammer2_chain_load_data(hammer2_chain_t *chain)
730 {
731 	hammer2_blockref_t *bref;
732 	hammer2_dev_t *hmp;
733 	char *bdata;
734 	int error;
735 
736 	/*
737 	 * Degenerate case, data already present.
738 	 */
739 	if (chain->data)
740 		return;
741 
742 	hmp = chain->hmp;
743 	KKASSERT(hmp != NULL);
744 
745 	/*
746 	 * Gain the IOINPROG bit, interlocked block.
747 	 */
748 	for (;;) {
749 		u_int oflags;
750 		u_int nflags;
751 
752 		oflags = chain->flags;
753 		cpu_ccfence();
754 		if (oflags & HAMMER2_CHAIN_IOINPROG) {
755 			nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
756 			tsleep_interlock(&chain->flags, 0);
757 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
758 				tsleep(&chain->flags, PINTERLOCKED,
759 					"h2iocw", 0);
760 			}
761 			/* retry */
762 		} else {
763 			nflags = oflags | HAMMER2_CHAIN_IOINPROG;
764 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
765 				break;
766 			}
767 			/* retry */
768 		}
769 	}
770 
771 	/*
772 	 * We own CHAIN_IOINPROG
773 	 *
774 	 * Degenerate case if we raced another load.
775 	 */
776 	if (chain->data)
777 		goto done;
778 
779 	/*
780 	 * We must resolve to a device buffer, either by issuing I/O or
781 	 * by creating a zero-fill element.  We do not mark the buffer
782 	 * dirty when creating a zero-fill element (the hammer2_chain_modify()
783 	 * API must still be used to do that).
784 	 *
785 	 * The device buffer is variable-sized in powers of 2 down
786 	 * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
787 	 * chunk always contains buffers of the same size. (XXX)
788 	 *
789 	 * The minimum physical IO size may be larger than the variable
790 	 * block size.
791 	 */
792 	bref = &chain->bref;
793 
794 	/*
795 	 * The getblk() optimization can only be used on newly created
796 	 * elements if the physical block size matches the request.
797 	 */
798 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
799 		error = hammer2_io_new(hmp, bref->data_off, chain->bytes,
800 					&chain->dio);
801 	} else {
802 		error = hammer2_io_bread(hmp, bref->data_off, chain->bytes,
803 					 &chain->dio);
804 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
805 	}
806 	if (error) {
807 		chain->error = HAMMER2_ERROR_IO;
808 		kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
809 			(intmax_t)bref->data_off, error);
810 		hammer2_io_bqrelse(&chain->dio);
811 		goto done;
812 	}
813 	chain->error = 0;
814 
815 	/*
816 	 * NOTE: A locked chain's data cannot be modified without first
817 	 *	 calling hammer2_chain_modify().
818 	 */
819 
820 	/*
821 	 * Clear INITIAL.  In this case we used io_new() and the buffer has
822 	 * been zero'd and marked dirty.
823 	 */
824 	bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
825 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
826 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
827 		chain->bref.flags |= HAMMER2_BREF_FLAG_ZERO;
828 	} else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
829 		/*
830 		 * check data not currently synchronized due to
831 		 * modification.  XXX assumes data stays in the buffer
832 		 * cache, which might not be true (need biodep on flush
833 		 * to calculate crc?  or simple crc?).
834 		 */
835 	} else {
836 		if (hammer2_chain_testcheck(chain, bdata) == 0) {
837 			kprintf("chain %016jx.%02x meth=%02x "
838 				"CHECK FAIL %08x (flags=%08x)\n",
839 				chain->bref.data_off,
840 				chain->bref.type,
841 				chain->bref.methods,
842 				hammer2_icrc32(bdata, chain->bytes),
843 				chain->flags);
844 			chain->error = HAMMER2_ERROR_CHECK;
845 		}
846 	}
847 
848 	/*
849 	 * Setup the data pointer, either pointing it to an embedded data
850 	 * structure and copying the data from the buffer, or pointing it
851 	 * into the buffer.
852 	 *
853 	 * The buffer is not retained when copying to an embedded data
854 	 * structure in order to avoid potential deadlocks or recursions
855 	 * on the same physical buffer.
856 	 *
857 	 * WARNING! Other threads can start using the data the instant we
858 	 *	    set chain->data non-NULL.
859 	 */
860 	switch (bref->type) {
861 	case HAMMER2_BREF_TYPE_VOLUME:
862 	case HAMMER2_BREF_TYPE_FREEMAP:
863 		/*
864 		 * Copy data from bp to embedded buffer
865 		 */
866 		panic("hammer2_chain_lock: called on unresolved volume header");
867 		break;
868 	case HAMMER2_BREF_TYPE_INODE:
869 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
870 	case HAMMER2_BREF_TYPE_INDIRECT:
871 	case HAMMER2_BREF_TYPE_DATA:
872 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
873 	default:
874 		/*
875 		 * Point data at the device buffer and leave dio intact.
876 		 */
877 		chain->data = (void *)bdata;
878 		break;
879 	}
880 
881 	/*
882 	 * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
883 	 */
884 done:
885 	for (;;) {
886 		u_int oflags;
887 		u_int nflags;
888 
889 		oflags = chain->flags;
890 		nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
891 				    HAMMER2_CHAIN_IOSIGNAL);
892 		KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
893 		if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
894 			if (oflags & HAMMER2_CHAIN_IOSIGNAL)
895 				wakeup(&chain->flags);
896 			break;
897 		}
898 	}
899 }
900 
901 /*
902  * Unlock and deref a chain element.
903  *
904  * On the last lock release any non-embedded data (chain->dio) will be
905  * retired.
906  */
907 void
908 hammer2_chain_unlock(hammer2_chain_t *chain)
909 {
910 	hammer2_mtx_state_t ostate;
911 	long *counterp;
912 	u_int lockcnt;
913 
914 	--curthread->td_tracker;
915 	/*
916 	 * If multiple locks are present (or being attempted) on this
917 	 * particular chain we can just unlock, drop refs, and return.
918 	 *
919 	 * Otherwise fall-through on the 1->0 transition.
920 	 */
921 	for (;;) {
922 		lockcnt = chain->lockcnt;
923 		KKASSERT(lockcnt > 0);
924 		cpu_ccfence();
925 		if (lockcnt > 1) {
926 			if (atomic_cmpset_int(&chain->lockcnt,
927 					      lockcnt, lockcnt - 1)) {
928 				hammer2_mtx_unlock(&chain->lock);
929 				return;
930 			}
931 		} else {
932 			if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
933 				break;
934 		}
935 		/* retry */
936 	}
937 
938 	/*
939 	 * On the 1->0 transition we upgrade the core lock (if necessary)
940 	 * to exclusive for terminal processing.  If after upgrading we find
941 	 * that lockcnt is non-zero, another thread is racing us and will
942 	 * handle the unload for us later on, so just cleanup and return
943 	 * leaving the data/io intact
944 	 *
945 	 * Otherwise if lockcnt is still 0 it is possible for it to become
946 	 * non-zero and race, but since we hold the core->lock exclusively
947 	 * all that will happen is that the chain will be reloaded after we
948 	 * unload it.
949 	 */
950 	ostate = hammer2_mtx_upgrade(&chain->lock);
951 	if (chain->lockcnt) {
952 		hammer2_mtx_unlock(&chain->lock);
953 		return;
954 	}
955 
956 	/*
957 	 * Shortcut the case if the data is embedded or not resolved.
958 	 * Only drop non-DIO-based data if the chain is not modified.
959 	 *
960 	 * Do NOT NULL out chain->data (e.g. inode data), it might be
961 	 * dirty.
962 	 */
963 	if (chain->dio == NULL) {
964 		if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0)
965 			hammer2_chain_drop_data(chain, 0);
966 		hammer2_mtx_unlock(&chain->lock);
967 		return;
968 	}
969 
970 	/*
971 	 * Statistics
972 	 */
973 	if (hammer2_io_isdirty(chain->dio)) {
974 		switch(chain->bref.type) {
975 		case HAMMER2_BREF_TYPE_DATA:
976 			counterp = &hammer2_iod_file_write;
977 			break;
978 		case HAMMER2_BREF_TYPE_INODE:
979 			counterp = &hammer2_iod_meta_write;
980 			break;
981 		case HAMMER2_BREF_TYPE_INDIRECT:
982 			counterp = &hammer2_iod_indr_write;
983 			break;
984 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
985 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
986 			counterp = &hammer2_iod_fmap_write;
987 			break;
988 		default:
989 			counterp = &hammer2_iod_volu_write;
990 			break;
991 		}
992 		*counterp += chain->bytes;
993 	}
994 
995 	/*
996 	 * Clean out the dio.
997 	 *
998 	 * NOTE: Freemap leaf's use reserved blocks and thus no aliasing
999 	 *	 is possible.
1000 	 */
1001 	chain->data = NULL;
1002 	hammer2_io_bqrelse(&chain->dio);
1003 	hammer2_mtx_unlock(&chain->lock);
1004 }
1005 
1006 /*
1007  * Helper to obtain the blockref[] array base and count for a chain.
1008  *
1009  * XXX Not widely used yet, various use cases need to be validated and
1010  *     converted to use this function.
1011  */
1012 static
1013 hammer2_blockref_t *
1014 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1015 {
1016 	hammer2_blockref_t *base;
1017 	int count;
1018 
1019 	if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1020 		base = NULL;
1021 
1022 		switch(parent->bref.type) {
1023 		case HAMMER2_BREF_TYPE_INODE:
1024 			count = HAMMER2_SET_COUNT;
1025 			break;
1026 		case HAMMER2_BREF_TYPE_INDIRECT:
1027 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1028 			count = parent->bytes / sizeof(hammer2_blockref_t);
1029 			break;
1030 		case HAMMER2_BREF_TYPE_VOLUME:
1031 			count = HAMMER2_SET_COUNT;
1032 			break;
1033 		case HAMMER2_BREF_TYPE_FREEMAP:
1034 			count = HAMMER2_SET_COUNT;
1035 			break;
1036 		default:
1037 			panic("hammer2_chain_create_indirect: "
1038 			      "unrecognized blockref type: %d",
1039 			      parent->bref.type);
1040 			count = 0;
1041 			break;
1042 		}
1043 	} else {
1044 		switch(parent->bref.type) {
1045 		case HAMMER2_BREF_TYPE_INODE:
1046 			base = &parent->data->ipdata.u.blockset.blockref[0];
1047 			count = HAMMER2_SET_COUNT;
1048 			break;
1049 		case HAMMER2_BREF_TYPE_INDIRECT:
1050 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1051 			base = &parent->data->npdata[0];
1052 			count = parent->bytes / sizeof(hammer2_blockref_t);
1053 			break;
1054 		case HAMMER2_BREF_TYPE_VOLUME:
1055 			base = &parent->data->voldata.
1056 					sroot_blockset.blockref[0];
1057 			count = HAMMER2_SET_COUNT;
1058 			break;
1059 		case HAMMER2_BREF_TYPE_FREEMAP:
1060 			base = &parent->data->blkset.blockref[0];
1061 			count = HAMMER2_SET_COUNT;
1062 			break;
1063 		default:
1064 			panic("hammer2_chain_create_indirect: "
1065 			      "unrecognized blockref type: %d",
1066 			      parent->bref.type);
1067 			count = 0;
1068 			break;
1069 		}
1070 	}
1071 	*countp = count;
1072 
1073 	return base;
1074 }
1075 
1076 /*
1077  * This counts the number of live blockrefs in a block array and
1078  * also calculates the point at which all remaining blockrefs are empty.
1079  * This routine can only be called on a live chain (DUPLICATED flag not set).
1080  *
1081  * NOTE: Flag is not set until after the count is complete, allowing
1082  *	 callers to test the flag without holding the spinlock.
1083  *
1084  * NOTE: If base is NULL the related chain is still in the INITIAL
1085  *	 state and there are no blockrefs to count.
1086  *
1087  * NOTE: live_count may already have some counts accumulated due to
1088  *	 creation and deletion and could even be initially negative.
1089  */
1090 void
1091 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1092 			 hammer2_blockref_t *base, int count)
1093 {
1094 	hammer2_spin_ex(&chain->core.spin);
1095         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1096 		if (base) {
1097 			while (--count >= 0) {
1098 				if (base[count].type)
1099 					break;
1100 			}
1101 			chain->core.live_zero = count + 1;
1102 			while (count >= 0) {
1103 				if (base[count].type)
1104 					atomic_add_int(&chain->core.live_count,
1105 						       1);
1106 				--count;
1107 			}
1108 		} else {
1109 			chain->core.live_zero = 0;
1110 		}
1111 		/* else do not modify live_count */
1112 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1113 	}
1114 	hammer2_spin_unex(&chain->core.spin);
1115 }
1116 
1117 /*
1118  * Resize the chain's physical storage allocation in-place.  This function does
1119  * not adjust the data pointer and must be followed by (typically) a
1120  * hammer2_chain_modify() call to copy any old data over and adjust the
1121  * data pointer.
1122  *
1123  * Chains can be resized smaller without reallocating the storage.  Resizing
1124  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1125  * asynchronously at a later time.
1126  *
1127  * Must be passed an exclusively locked parent and chain.
1128  *
1129  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1130  * to avoid instantiating a device buffer that conflicts with the vnode data
1131  * buffer.  However, because H2 can compress or encrypt data, the chain may
1132  * have a dio assigned to it in those situations, and they do not conflict.
1133  *
1134  * XXX return error if cannot resize.
1135  */
1136 void
1137 hammer2_chain_resize(hammer2_inode_t *ip,
1138 		     hammer2_chain_t *parent, hammer2_chain_t *chain,
1139 		     hammer2_tid_t mtid, hammer2_off_t dedup_off,
1140 		     int nradix, int flags)
1141 {
1142 	hammer2_dev_t *hmp;
1143 	size_t obytes;
1144 	size_t nbytes;
1145 
1146 	hmp = chain->hmp;
1147 
1148 	/*
1149 	 * Only data and indirect blocks can be resized for now.
1150 	 * (The volu root, inodes, and freemap elements use a fixed size).
1151 	 */
1152 	KKASSERT(chain != &hmp->vchain);
1153 	KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1154 		 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT);
1155 	KKASSERT(chain->parent == parent);
1156 
1157 	/*
1158 	 * Nothing to do if the element is already the proper size
1159 	 */
1160 	obytes = chain->bytes;
1161 	nbytes = 1U << nradix;
1162 	if (obytes == nbytes)
1163 		return;
1164 
1165 	/*
1166 	 * Make sure the old data is instantiated so we can copy it.  If this
1167 	 * is a data block, the device data may be superfluous since the data
1168 	 * might be in a logical block, but compressed or encrypted data is
1169 	 * another matter.
1170 	 *
1171 	 * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1172 	 */
1173 	hammer2_chain_modify(chain, mtid, dedup_off, 0);
1174 
1175 	/*
1176 	 * Relocate the block, even if making it smaller (because different
1177 	 * block sizes may be in different regions).
1178 	 *
1179 	 * (data blocks only, we aren't copying the storage here).
1180 	 */
1181 	hammer2_freemap_alloc(chain, nbytes);
1182 	chain->bytes = nbytes;
1183 	/*ip->delta_dcount += (ssize_t)(nbytes - obytes);*/ /* XXX atomic */
1184 
1185 	/*
1186 	 * We don't want the followup chain_modify() to try to copy data
1187 	 * from the old (wrong-sized) buffer.  It won't know how much to
1188 	 * copy.  This case should only occur during writes when the
1189 	 * originator already has the data to write in-hand.
1190 	 */
1191 	if (chain->dio) {
1192 		KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA);
1193 		hammer2_io_brelse(&chain->dio);
1194 		chain->data = NULL;
1195 	}
1196 }
1197 
1198 /*
1199  * Set the chain modified so its data can be changed by the caller.
1200  *
1201  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1202  * is a CLC (cluster level change) field and is not updated by parent
1203  * propagation during a flush.
1204  *
1205  * If the caller passes a non-zero dedup_off we assign data_off to that
1206  * instead of allocating a ne block.  Caller must not modify the data already
1207  * present at the target offset.
1208  */
1209 void
1210 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1211 		     hammer2_off_t dedup_off, int flags)
1212 {
1213 	hammer2_blockref_t obref;
1214 	hammer2_dev_t *hmp;
1215 	hammer2_io_t *dio;
1216 	int error;
1217 	int wasinitial;
1218 	int newmod;
1219 	char *bdata;
1220 
1221 	hmp = chain->hmp;
1222 	obref = chain->bref;
1223 	KKASSERT((chain->flags & HAMMER2_CHAIN_FICTITIOUS) == 0);
1224 
1225 	/*
1226 	 * Data is not optional for freemap chains (we must always be sure
1227 	 * to copy the data on COW storage allocations).
1228 	 */
1229 	if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1230 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1231 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1232 			 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1233 	}
1234 
1235 	/*
1236 	 * Data must be resolved if already assigned, unless explicitly
1237 	 * flagged otherwise.
1238 	 */
1239 	if (chain->data == NULL && (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1240 	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1241 		hammer2_chain_load_data(chain);
1242 	}
1243 
1244 	/*
1245 	 * Set MODIFIED to indicate that the chain has been modified.
1246 	 * Set UPDATE to ensure that the blockref is updated in the parent.
1247 	 */
1248 	if ((chain->flags & (HAMMER2_CHAIN_DEDUP | HAMMER2_CHAIN_MODIFIED)) ==
1249 	    (HAMMER2_CHAIN_DEDUP | HAMMER2_CHAIN_MODIFIED)) {
1250 		/*
1251 		 * Modified already set but a new allocation is needed
1252 		 * anyway because we recorded this data_off for possible
1253 		 * dedup operation.
1254 		 */
1255 		newmod = 1;
1256 	} else if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1257 		/*
1258 		 * Must set modified bit.
1259 		 */
1260 		atomic_add_long(&hammer2_count_modified_chains, 1);
1261 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1262 		hammer2_pfs_memory_inc(chain->pmp);	/* can be NULL */
1263 		newmod = 1;
1264 	} else {
1265 		/*
1266 		 * Already flagged modified, no new allocation is needed.
1267 		 */
1268 		newmod = 0;
1269 	}
1270 
1271 	/*
1272 	 * Flag parent update required, clear DEDUP flag (already processed
1273 	 * above).
1274 	 */
1275 	if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
1276 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1277 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DEDUP);
1278 
1279 	/*
1280 	 * The modification or re-modification requires an allocation and
1281 	 * possible COW.
1282 	 *
1283 	 * If dedup_off is non-zero, caller already has a data offset
1284 	 * containing the caller's desired data.  The dedup offset is
1285 	 * allowed to be in a partially free state and we must be sure
1286 	 * to reset it to a fully allocated state to force two bulkfree
1287 	 * passes to free it again.
1288 	 *
1289 	 * XXX can a chain already be marked MODIFIED without a data
1290 	 * assignment?  If not, assert here instead of testing the case.
1291 	 */
1292 	if (chain != &hmp->vchain && chain != &hmp->fchain) {
1293 		if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1294 		     newmod
1295 		) {
1296 			if (dedup_off) {
1297 				chain->bref.data_off = dedup_off;
1298 				chain->bytes = 1 << (dedup_off &
1299 						     HAMMER2_OFF_MASK_RADIX);
1300 				atomic_set_int(&chain->flags,
1301 					       HAMMER2_CHAIN_DEDUP);
1302 				hammer2_freemap_adjust(hmp, &chain->bref,
1303 						HAMMER2_FREEMAP_DORECOVER);
1304 			} else {
1305 				hammer2_freemap_alloc(chain, chain->bytes);
1306 			}
1307 			/* XXX failed allocation */
1308 		}
1309 	}
1310 
1311 	/*
1312 	 * Update mirror_tid and modify_tid.  modify_tid is only updated
1313 	 * if not passed as zero (during flushes, parent propagation passes
1314 	 * the value 0).
1315 	 *
1316 	 * NOTE: chain->pmp could be the device spmp.
1317 	 */
1318 	chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1319 	if (mtid)
1320 		chain->bref.modify_tid = mtid;
1321 
1322 	/*
1323 	 * Set BMAPUPD to tell the flush code that an existing blockmap entry
1324 	 * requires updating as well as to tell the delete code that the
1325 	 * chain's blockref might not exactly match (in terms of physical size
1326 	 * or block offset) the one in the parent's blocktable.  The base key
1327 	 * of course will still match.
1328 	 */
1329 	if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1330 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1331 
1332 	/*
1333 	 * Short-cut data blocks which the caller does not need an actual
1334 	 * data reference to (aka OPTDATA), as long as the chain does not
1335 	 * already have a data pointer to the data.  This generally means
1336 	 * that the modifications are being done via the logical buffer cache.
1337 	 * The INITIAL flag relates only to the device data buffer and thus
1338 	 * remains unchange in this situation.
1339 	 */
1340 	if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1341 	    (flags & HAMMER2_MODIFY_OPTDATA) &&
1342 	    chain->data == NULL) {
1343 		goto skip2;
1344 	}
1345 
1346 	/*
1347 	 * Clearing the INITIAL flag (for indirect blocks) indicates that
1348 	 * we've processed the uninitialized storage allocation.
1349 	 *
1350 	 * If this flag is already clear we are likely in a copy-on-write
1351 	 * situation but we have to be sure NOT to bzero the storage if
1352 	 * no data is present.
1353 	 */
1354 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1355 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1356 		wasinitial = 1;
1357 	} else {
1358 		wasinitial = 0;
1359 	}
1360 
1361 	/*
1362 	 * Instantiate data buffer and possibly execute COW operation
1363 	 */
1364 	switch(chain->bref.type) {
1365 	case HAMMER2_BREF_TYPE_VOLUME:
1366 	case HAMMER2_BREF_TYPE_FREEMAP:
1367 		/*
1368 		 * The data is embedded, no copy-on-write operation is
1369 		 * needed.
1370 		 */
1371 		KKASSERT(chain->dio == NULL);
1372 		break;
1373 	case HAMMER2_BREF_TYPE_INODE:
1374 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1375 	case HAMMER2_BREF_TYPE_DATA:
1376 	case HAMMER2_BREF_TYPE_INDIRECT:
1377 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1378 		/*
1379 		 * Perform the copy-on-write operation
1380 		 *
1381 		 * zero-fill or copy-on-write depending on whether
1382 		 * chain->data exists or not and set the dirty state for
1383 		 * the new buffer.  hammer2_io_new() will handle the
1384 		 * zero-fill.
1385 		 *
1386 		 * If a dedup_off was supplied this is an existing block
1387 		 * and no COW, copy, or further modification is required.
1388 		 */
1389 		KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
1390 
1391 		if (wasinitial && dedup_off == 0) {
1392 			error = hammer2_io_new(hmp, chain->bref.data_off,
1393 					       chain->bytes, &dio);
1394 		} else {
1395 			error = hammer2_io_bread(hmp, chain->bref.data_off,
1396 						 chain->bytes, &dio);
1397 		}
1398 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
1399 
1400 		/*
1401 		 * If an I/O error occurs make sure callers cannot accidently
1402 		 * modify the old buffer's contents and corrupt the filesystem.
1403 		 */
1404 		if (error) {
1405 			kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
1406 				hmp);
1407 			chain->error = HAMMER2_ERROR_IO;
1408 			hammer2_io_brelse(&dio);
1409 			hammer2_io_brelse(&chain->dio);
1410 			chain->data = NULL;
1411 			break;
1412 		}
1413 		chain->error = 0;
1414 		bdata = hammer2_io_data(dio, chain->bref.data_off);
1415 
1416 		if (chain->data) {
1417 			/*
1418 			 * COW (unless a dedup).
1419 			 */
1420 			KKASSERT(chain->dio != NULL);
1421 			if (chain->data != (void *)bdata && dedup_off == 0) {
1422 				bcopy(chain->data, bdata, chain->bytes);
1423 			}
1424 		} else if (wasinitial == 0) {
1425 			/*
1426 			 * We have a problem.  We were asked to COW but
1427 			 * we don't have any data to COW with!
1428 			 */
1429 			panic("hammer2_chain_modify: having a COW %p\n",
1430 			      chain);
1431 		}
1432 
1433 		/*
1434 		 * Retire the old buffer, replace with the new.  Dirty or
1435 		 * redirty the new buffer.
1436 		 *
1437 		 * WARNING! The system buffer cache may have already flushed
1438 		 *	    the buffer, so we must be sure to [re]dirty it
1439 		 *	    for further modification.
1440 		 *
1441 		 *	    If dedup_off was supplied, the caller is not
1442 		 *	    expected to make any further modification to the
1443 		 *	    buffer.
1444 		 */
1445 		if (chain->dio)
1446 			hammer2_io_bqrelse(&chain->dio);
1447 		chain->data = (void *)bdata;
1448 		chain->dio = dio;
1449 		if (dedup_off == 0)
1450 			hammer2_io_setdirty(dio);
1451 		break;
1452 	default:
1453 		panic("hammer2_chain_modify: illegal non-embedded type %d",
1454 		      chain->bref.type);
1455 		break;
1456 
1457 	}
1458 skip2:
1459 	/*
1460 	 * setflush on parent indicating that the parent must recurse down
1461 	 * to us.  Do not call on chain itself which might already have it
1462 	 * set.
1463 	 */
1464 	if (chain->parent)
1465 		hammer2_chain_setflush(chain->parent);
1466 }
1467 
1468 /*
1469  * Modify the chain associated with an inode.
1470  */
1471 void
1472 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
1473 			hammer2_tid_t mtid, int flags)
1474 {
1475 	hammer2_inode_modify(ip);
1476 	hammer2_chain_modify(chain, mtid, 0, flags);
1477 }
1478 
1479 /*
1480  * Volume header data locks
1481  */
1482 void
1483 hammer2_voldata_lock(hammer2_dev_t *hmp)
1484 {
1485 	lockmgr(&hmp->vollk, LK_EXCLUSIVE);
1486 }
1487 
1488 void
1489 hammer2_voldata_unlock(hammer2_dev_t *hmp)
1490 {
1491 	lockmgr(&hmp->vollk, LK_RELEASE);
1492 }
1493 
1494 void
1495 hammer2_voldata_modify(hammer2_dev_t *hmp)
1496 {
1497 	if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1498 		atomic_add_long(&hammer2_count_modified_chains, 1);
1499 		atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1500 		hammer2_pfs_memory_inc(hmp->vchain.pmp);
1501 	}
1502 }
1503 
1504 /*
1505  * This function returns the chain at the nearest key within the specified
1506  * range.  The returned chain will be referenced but not locked.
1507  *
1508  * This function will recurse through chain->rbtree as necessary and will
1509  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
1510  * the iteration value is less than the current value of *key_nextp.
1511  *
1512  * The caller should use (*key_nextp) to calculate the actual range of
1513  * the returned element, which will be (key_beg to *key_nextp - 1), because
1514  * there might be another element which is superior to the returned element
1515  * and overlaps it.
1516  *
1517  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
1518  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
1519  * it will wind up being (key_end + 1).
1520  *
1521  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
1522  *	     held through the operation.
1523  */
1524 struct hammer2_chain_find_info {
1525 	hammer2_chain_t		*best;
1526 	hammer2_key_t		key_beg;
1527 	hammer2_key_t		key_end;
1528 	hammer2_key_t		key_next;
1529 };
1530 
1531 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
1532 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
1533 
1534 static
1535 hammer2_chain_t *
1536 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
1537 			  hammer2_key_t key_beg, hammer2_key_t key_end)
1538 {
1539 	struct hammer2_chain_find_info info;
1540 
1541 	info.best = NULL;
1542 	info.key_beg = key_beg;
1543 	info.key_end = key_end;
1544 	info.key_next = *key_nextp;
1545 
1546 	RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
1547 		hammer2_chain_find_cmp, hammer2_chain_find_callback,
1548 		&info);
1549 	*key_nextp = info.key_next;
1550 #if 0
1551 	kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
1552 		parent, key_beg, key_end, *key_nextp);
1553 #endif
1554 
1555 	return (info.best);
1556 }
1557 
1558 static
1559 int
1560 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
1561 {
1562 	struct hammer2_chain_find_info *info = data;
1563 	hammer2_key_t child_beg;
1564 	hammer2_key_t child_end;
1565 
1566 	child_beg = child->bref.key;
1567 	child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
1568 
1569 	if (child_end < info->key_beg)
1570 		return(-1);
1571 	if (child_beg > info->key_end)
1572 		return(1);
1573 	return(0);
1574 }
1575 
1576 static
1577 int
1578 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
1579 {
1580 	struct hammer2_chain_find_info *info = data;
1581 	hammer2_chain_t *best;
1582 	hammer2_key_t child_end;
1583 
1584 	/*
1585 	 * WARNING! Do not discard DUPLICATED chains, it is possible that
1586 	 *	    we are catching an insertion half-way done.  If a
1587 	 *	    duplicated chain turns out to be the best choice the
1588 	 *	    caller will re-check its flags after locking it.
1589 	 *
1590 	 * WARNING! Layerq is scanned forwards, exact matches should keep
1591 	 *	    the existing info->best.
1592 	 */
1593 	if ((best = info->best) == NULL) {
1594 		/*
1595 		 * No previous best.  Assign best
1596 		 */
1597 		info->best = child;
1598 	} else if (best->bref.key <= info->key_beg &&
1599 		   child->bref.key <= info->key_beg) {
1600 		/*
1601 		 * Illegal overlap.
1602 		 */
1603 		KKASSERT(0);
1604 		/*info->best = child;*/
1605 	} else if (child->bref.key < best->bref.key) {
1606 		/*
1607 		 * Child has a nearer key and best is not flush with key_beg.
1608 		 * Set best to child.  Truncate key_next to the old best key.
1609 		 */
1610 		info->best = child;
1611 		if (info->key_next > best->bref.key || info->key_next == 0)
1612 			info->key_next = best->bref.key;
1613 	} else if (child->bref.key == best->bref.key) {
1614 		/*
1615 		 * If our current best is flush with the child then this
1616 		 * is an illegal overlap.
1617 		 *
1618 		 * key_next will automatically be limited to the smaller of
1619 		 * the two end-points.
1620 		 */
1621 		KKASSERT(0);
1622 		info->best = child;
1623 	} else {
1624 		/*
1625 		 * Keep the current best but truncate key_next to the child's
1626 		 * base.
1627 		 *
1628 		 * key_next will also automatically be limited to the smaller
1629 		 * of the two end-points (probably not necessary for this case
1630 		 * but we do it anyway).
1631 		 */
1632 		if (info->key_next > child->bref.key || info->key_next == 0)
1633 			info->key_next = child->bref.key;
1634 	}
1635 
1636 	/*
1637 	 * Always truncate key_next based on child's end-of-range.
1638 	 */
1639 	child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
1640 	if (child_end && (info->key_next > child_end || info->key_next == 0))
1641 		info->key_next = child_end;
1642 
1643 	return(0);
1644 }
1645 
1646 /*
1647  * Retrieve the specified chain from a media blockref, creating the
1648  * in-memory chain structure which reflects it.
1649  *
1650  * To handle insertion races pass the INSERT_RACE flag along with the
1651  * generation number of the core.  NULL will be returned if the generation
1652  * number changes before we have a chance to insert the chain.  Insert
1653  * races can occur because the parent might be held shared.
1654  *
1655  * Caller must hold the parent locked shared or exclusive since we may
1656  * need the parent's bref array to find our block.
1657  *
1658  * WARNING! chain->pmp is always set to NULL for any chain representing
1659  *	    part of the super-root topology.
1660  */
1661 hammer2_chain_t *
1662 hammer2_chain_get(hammer2_chain_t *parent, int generation,
1663 		  hammer2_blockref_t *bref)
1664 {
1665 	hammer2_dev_t *hmp = parent->hmp;
1666 	hammer2_chain_t *chain;
1667 	int error;
1668 
1669 	/*
1670 	 * Allocate a chain structure representing the existing media
1671 	 * entry.  Resulting chain has one ref and is not locked.
1672 	 */
1673 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
1674 		chain = hammer2_chain_alloc(hmp, NULL, bref);
1675 	else
1676 		chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
1677 	/* ref'd chain returned */
1678 
1679 	/*
1680 	 * Flag that the chain is in the parent's blockmap so delete/flush
1681 	 * knows what to do with it.
1682 	 */
1683 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
1684 
1685 	/*
1686 	 * Link the chain into its parent.  A spinlock is required to safely
1687 	 * access the RBTREE, and it is possible to collide with another
1688 	 * hammer2_chain_get() operation because the caller might only hold
1689 	 * a shared lock on the parent.
1690 	 */
1691 	KKASSERT(parent->refs > 0);
1692 	error = hammer2_chain_insert(parent, chain,
1693 				     HAMMER2_CHAIN_INSERT_SPIN |
1694 				     HAMMER2_CHAIN_INSERT_RACE,
1695 				     generation);
1696 	if (error) {
1697 		KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
1698 		kprintf("chain %p get race\n", chain);
1699 		hammer2_chain_drop(chain);
1700 		chain = NULL;
1701 	} else {
1702 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
1703 	}
1704 
1705 	/*
1706 	 * Return our new chain referenced but not locked, or NULL if
1707 	 * a race occurred.
1708 	 */
1709 	return (chain);
1710 }
1711 
1712 /*
1713  * Lookup initialization/completion API
1714  */
1715 hammer2_chain_t *
1716 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
1717 {
1718 	hammer2_chain_ref(parent);
1719 	if (flags & HAMMER2_LOOKUP_SHARED) {
1720 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
1721 					   HAMMER2_RESOLVE_SHARED);
1722 	} else {
1723 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
1724 	}
1725 	return (parent);
1726 }
1727 
1728 void
1729 hammer2_chain_lookup_done(hammer2_chain_t *parent)
1730 {
1731 	if (parent) {
1732 		hammer2_chain_unlock(parent);
1733 		hammer2_chain_drop(parent);
1734 	}
1735 }
1736 
1737 hammer2_chain_t *
1738 hammer2_chain_getparent(hammer2_chain_t **parentp, int how)
1739 {
1740 	hammer2_chain_t *oparent;
1741 	hammer2_chain_t *nparent;
1742 
1743 	/*
1744 	 * Be careful of order, oparent must be unlocked before nparent
1745 	 * is locked below to avoid a deadlock.
1746 	 */
1747 	oparent = *parentp;
1748 	hammer2_spin_ex(&oparent->core.spin);
1749 	nparent = oparent->parent;
1750 	hammer2_chain_ref(nparent);
1751 	hammer2_spin_unex(&oparent->core.spin);
1752 	if (oparent) {
1753 		hammer2_chain_unlock(oparent);
1754 		hammer2_chain_drop(oparent);
1755 		oparent = NULL;
1756 	}
1757 
1758 	hammer2_chain_lock(nparent, how);
1759 	*parentp = nparent;
1760 
1761 	return (nparent);
1762 }
1763 
1764 /*
1765  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
1766  * (*parentp) typically points to an inode but can also point to a related
1767  * indirect block and this function will recurse upwards and find the inode
1768  * again.
1769  *
1770  * (*parentp) must be exclusively locked and referenced and can be an inode
1771  * or an existing indirect block within the inode.
1772  *
1773  * On return (*parentp) will be modified to point at the deepest parent chain
1774  * element encountered during the search, as a helper for an insertion or
1775  * deletion.   The new (*parentp) will be locked and referenced and the old
1776  * will be unlocked and dereferenced (no change if they are both the same).
1777  *
1778  * The matching chain will be returned exclusively locked.  If NOLOCK is
1779  * requested the chain will be returned only referenced.  Note that the
1780  * parent chain must always be locked shared or exclusive, matching the
1781  * HAMMER2_LOOKUP_SHARED flag.  We can conceivably lock it SHARED temporarily
1782  * when NOLOCK is specified but that complicates matters if *parentp must
1783  * inherit the chain.
1784  *
1785  * NOLOCK also implies NODATA, since an unlocked chain usually has a NULL
1786  * data pointer or can otherwise be in flux.
1787  *
1788  * NULL is returned if no match was found, but (*parentp) will still
1789  * potentially be adjusted.
1790  *
1791  * If a fatal error occurs (typically an I/O error), a dummy chain is
1792  * returned with chain->error and error-identifying information set.  This
1793  * chain will assert if you try to do anything fancy with it.
1794  *
1795  * XXX Depending on where the error occurs we should allow continued iteration.
1796  *
1797  * On return (*key_nextp) will point to an iterative value for key_beg.
1798  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
1799  *
1800  * This function will also recurse up the chain if the key is not within the
1801  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
1802  * can simply allow (*parentp) to float inside the loop.
1803  *
1804  * NOTE!  chain->data is not always resolved.  By default it will not be
1805  *	  resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
1806  *	  HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
1807  *	  BREF_TYPE_DATA as the device buffer can alias the logical file
1808  *	  buffer).
1809  */
1810 hammer2_chain_t *
1811 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
1812 		     hammer2_key_t key_beg, hammer2_key_t key_end,
1813 		     int *cache_indexp, int flags)
1814 {
1815 	hammer2_dev_t *hmp;
1816 	hammer2_chain_t *parent;
1817 	hammer2_chain_t *chain;
1818 	hammer2_blockref_t *base;
1819 	hammer2_blockref_t *bref;
1820 	hammer2_blockref_t bcopy;
1821 	hammer2_key_t scan_beg;
1822 	hammer2_key_t scan_end;
1823 	int count = 0;
1824 	int how_always = HAMMER2_RESOLVE_ALWAYS;
1825 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
1826 	int how;
1827 	int generation;
1828 	int maxloops = 300000;
1829 
1830 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
1831 		how_maybe = how_always;
1832 		how = HAMMER2_RESOLVE_ALWAYS;
1833 	} else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
1834 		how = HAMMER2_RESOLVE_NEVER;
1835 	} else {
1836 		how = HAMMER2_RESOLVE_MAYBE;
1837 	}
1838 	if (flags & HAMMER2_LOOKUP_SHARED) {
1839 		how_maybe |= HAMMER2_RESOLVE_SHARED;
1840 		how_always |= HAMMER2_RESOLVE_SHARED;
1841 		how |= HAMMER2_RESOLVE_SHARED;
1842 	}
1843 
1844 	/*
1845 	 * Recurse (*parentp) upward if necessary until the parent completely
1846 	 * encloses the key range or we hit the inode.
1847 	 *
1848 	 * This function handles races against the flusher doing a delete-
1849 	 * duplicate above us and re-homes the parent to the duplicate in
1850 	 * that case, otherwise we'd wind up recursing down a stale chain.
1851 	 */
1852 	parent = *parentp;
1853 	hmp = parent->hmp;
1854 
1855 	while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1856 	       parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1857 		scan_beg = parent->bref.key;
1858 		scan_end = scan_beg +
1859 			   ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1860 		if (key_beg >= scan_beg && key_end <= scan_end)
1861 			break;
1862 		parent = hammer2_chain_getparent(parentp, how_maybe);
1863 	}
1864 
1865 again:
1866 	if (--maxloops == 0)
1867 		panic("hammer2_chain_lookup: maxloops");
1868 	/*
1869 	 * Locate the blockref array.  Currently we do a fully associative
1870 	 * search through the array.
1871 	 */
1872 	switch(parent->bref.type) {
1873 	case HAMMER2_BREF_TYPE_INODE:
1874 		/*
1875 		 * Special shortcut for embedded data returns the inode
1876 		 * itself.  Callers must detect this condition and access
1877 		 * the embedded data (the strategy code does this for us).
1878 		 *
1879 		 * This is only applicable to regular files and softlinks.
1880 		 */
1881 		if (parent->data->ipdata.meta.op_flags &
1882 		    HAMMER2_OPFLAG_DIRECTDATA) {
1883 			if (flags & HAMMER2_LOOKUP_NODIRECT) {
1884 				chain = NULL;
1885 				*key_nextp = key_end + 1;
1886 				goto done;
1887 			}
1888 			hammer2_chain_ref(parent);
1889 			if ((flags & HAMMER2_LOOKUP_NOLOCK) == 0)
1890 				hammer2_chain_lock(parent, how_always);
1891 			*key_nextp = key_end + 1;
1892 			return (parent);
1893 		}
1894 		base = &parent->data->ipdata.u.blockset.blockref[0];
1895 		count = HAMMER2_SET_COUNT;
1896 		break;
1897 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1898 	case HAMMER2_BREF_TYPE_INDIRECT:
1899 		/*
1900 		 * Handle MATCHIND on the parent
1901 		 */
1902 		if (flags & HAMMER2_LOOKUP_MATCHIND) {
1903 			scan_beg = parent->bref.key;
1904 			scan_end = scan_beg +
1905 			       ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1906 			if (key_beg == scan_beg && key_end == scan_end) {
1907 				chain = parent;
1908 				hammer2_chain_ref(chain);
1909 				hammer2_chain_lock(chain, how_maybe);
1910 				*key_nextp = scan_end + 1;
1911 				goto done;
1912 			}
1913 		}
1914 		/*
1915 		 * Optimize indirect blocks in the INITIAL state to avoid
1916 		 * I/O.
1917 		 */
1918 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1919 			base = NULL;
1920 		} else {
1921 			if (parent->data == NULL)
1922 				panic("parent->data is NULL");
1923 			base = &parent->data->npdata[0];
1924 		}
1925 		count = parent->bytes / sizeof(hammer2_blockref_t);
1926 		break;
1927 	case HAMMER2_BREF_TYPE_VOLUME:
1928 		base = &parent->data->voldata.sroot_blockset.blockref[0];
1929 		count = HAMMER2_SET_COUNT;
1930 		break;
1931 	case HAMMER2_BREF_TYPE_FREEMAP:
1932 		base = &parent->data->blkset.blockref[0];
1933 		count = HAMMER2_SET_COUNT;
1934 		break;
1935 	default:
1936 		kprintf("hammer2_chain_lookup: unrecognized "
1937 			"blockref(B) type: %d",
1938 			parent->bref.type);
1939 		while (1)
1940 			tsleep(&base, 0, "dead", 0);
1941 		panic("hammer2_chain_lookup: unrecognized "
1942 		      "blockref(B) type: %d",
1943 		      parent->bref.type);
1944 		base = NULL;	/* safety */
1945 		count = 0;	/* safety */
1946 	}
1947 
1948 	/*
1949 	 * Merged scan to find next candidate.
1950 	 *
1951 	 * hammer2_base_*() functions require the parent->core.live_* fields
1952 	 * to be synchronized.
1953 	 *
1954 	 * We need to hold the spinlock to access the block array and RB tree
1955 	 * and to interlock chain creation.
1956 	 */
1957 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
1958 		hammer2_chain_countbrefs(parent, base, count);
1959 
1960 	/*
1961 	 * Combined search
1962 	 */
1963 	hammer2_spin_ex(&parent->core.spin);
1964 	chain = hammer2_combined_find(parent, base, count,
1965 				      cache_indexp, key_nextp,
1966 				      key_beg, key_end,
1967 				      &bref);
1968 	generation = parent->core.generation;
1969 
1970 	/*
1971 	 * Exhausted parent chain, iterate.
1972 	 */
1973 	if (bref == NULL) {
1974 		hammer2_spin_unex(&parent->core.spin);
1975 		if (key_beg == key_end)	/* short cut single-key case */
1976 			return (NULL);
1977 
1978 		/*
1979 		 * Stop if we reached the end of the iteration.
1980 		 */
1981 		if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
1982 		    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1983 			return (NULL);
1984 		}
1985 
1986 		/*
1987 		 * Calculate next key, stop if we reached the end of the
1988 		 * iteration, otherwise go up one level and loop.
1989 		 */
1990 		key_beg = parent->bref.key +
1991 			  ((hammer2_key_t)1 << parent->bref.keybits);
1992 		if (key_beg == 0 || key_beg > key_end)
1993 			return (NULL);
1994 		parent = hammer2_chain_getparent(parentp, how_maybe);
1995 		goto again;
1996 	}
1997 
1998 	/*
1999 	 * Selected from blockref or in-memory chain.
2000 	 */
2001 	if (chain == NULL) {
2002 		bcopy = *bref;
2003 		hammer2_spin_unex(&parent->core.spin);
2004 		chain = hammer2_chain_get(parent, generation,
2005 					  &bcopy);
2006 		if (chain == NULL) {
2007 			kprintf("retry lookup parent %p keys %016jx:%016jx\n",
2008 				parent, key_beg, key_end);
2009 			goto again;
2010 		}
2011 		if (bcmp(&bcopy, bref, sizeof(bcopy))) {
2012 			hammer2_chain_drop(chain);
2013 			goto again;
2014 		}
2015 	} else {
2016 		hammer2_chain_ref(chain);
2017 		hammer2_spin_unex(&parent->core.spin);
2018 	}
2019 
2020 	/*
2021 	 * chain is referenced but not locked.  We must lock the chain
2022 	 * to obtain definitive DUPLICATED/DELETED state
2023 	 */
2024 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2025 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2026 		hammer2_chain_lock(chain, how_maybe);
2027 	} else {
2028 		hammer2_chain_lock(chain, how);
2029 	}
2030 
2031 	/*
2032 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2033 	 *
2034 	 * NOTE: Chain's key range is not relevant as there might be
2035 	 *	 one-offs within the range that are not deleted.
2036 	 *
2037 	 * NOTE: Lookups can race delete-duplicate because
2038 	 *	 delete-duplicate does not lock the parent's core
2039 	 *	 (they just use the spinlock on the core).  We must
2040 	 *	 check for races by comparing the DUPLICATED flag before
2041 	 *	 releasing the spinlock with the flag after locking the
2042 	 *	 chain.
2043 	 */
2044 	if (chain->flags & HAMMER2_CHAIN_DELETED) {
2045 		hammer2_chain_unlock(chain);
2046 		hammer2_chain_drop(chain);
2047 		key_beg = *key_nextp;
2048 		if (key_beg == 0 || key_beg > key_end)
2049 			return(NULL);
2050 		goto again;
2051 	}
2052 
2053 	/*
2054 	 * If the chain element is an indirect block it becomes the new
2055 	 * parent and we loop on it.  We must maintain our top-down locks
2056 	 * to prevent the flusher from interfering (i.e. doing a
2057 	 * delete-duplicate and leaving us recursing down a deleted chain).
2058 	 *
2059 	 * The parent always has to be locked with at least RESOLVE_MAYBE
2060 	 * so we can access its data.  It might need a fixup if the caller
2061 	 * passed incompatible flags.  Be careful not to cause a deadlock
2062 	 * as a data-load requires an exclusive lock.
2063 	 *
2064 	 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2065 	 * range is within the requested key range we return the indirect
2066 	 * block and do NOT loop.  This is usually only used to acquire
2067 	 * freemap nodes.
2068 	 */
2069 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2070 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2071 		hammer2_chain_unlock(parent);
2072 		hammer2_chain_drop(parent);
2073 		*parentp = parent = chain;
2074 		goto again;
2075 	}
2076 done:
2077 	/*
2078 	 * All done, return the chain.
2079 	 *
2080 	 * If the caller does not want a locked chain, replace the lock with
2081 	 * a ref.  Perhaps this can eventually be optimized to not obtain the
2082 	 * lock in the first place for situations where the data does not
2083 	 * need to be resolved.
2084 	 */
2085 	if (chain) {
2086 		if (flags & HAMMER2_LOOKUP_NOLOCK)
2087 			hammer2_chain_unlock(chain);
2088 	}
2089 
2090 	return (chain);
2091 }
2092 
2093 /*
2094  * After having issued a lookup we can iterate all matching keys.
2095  *
2096  * If chain is non-NULL we continue the iteration from just after it's index.
2097  *
2098  * If chain is NULL we assume the parent was exhausted and continue the
2099  * iteration at the next parent.
2100  *
2101  * If a fatal error occurs (typically an I/O error), a dummy chain is
2102  * returned with chain->error and error-identifying information set.  This
2103  * chain will assert if you try to do anything fancy with it.
2104  *
2105  * XXX Depending on where the error occurs we should allow continued iteration.
2106  *
2107  * parent must be locked on entry and remains locked throughout.  chain's
2108  * lock status must match flags.  Chain is always at least referenced.
2109  *
2110  * WARNING!  The MATCHIND flag does not apply to this function.
2111  */
2112 hammer2_chain_t *
2113 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2114 		   hammer2_key_t *key_nextp,
2115 		   hammer2_key_t key_beg, hammer2_key_t key_end,
2116 		   int *cache_indexp, int flags)
2117 {
2118 	hammer2_chain_t *parent;
2119 	int how_maybe;
2120 
2121 	/*
2122 	 * Calculate locking flags for upward recursion.
2123 	 */
2124 	how_maybe = HAMMER2_RESOLVE_MAYBE;
2125 	if (flags & HAMMER2_LOOKUP_SHARED)
2126 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2127 
2128 	parent = *parentp;
2129 
2130 	/*
2131 	 * Calculate the next index and recalculate the parent if necessary.
2132 	 */
2133 	if (chain) {
2134 		key_beg = chain->bref.key +
2135 			  ((hammer2_key_t)1 << chain->bref.keybits);
2136 		if ((flags & (HAMMER2_LOOKUP_NOLOCK |
2137 			      HAMMER2_LOOKUP_NOUNLOCK)) == 0) {
2138 			hammer2_chain_unlock(chain);
2139 		}
2140 		hammer2_chain_drop(chain);
2141 
2142 		/*
2143 		 * chain invalid past this point, but we can still do a
2144 		 * pointer comparison w/parent.
2145 		 *
2146 		 * Any scan where the lookup returned degenerate data embedded
2147 		 * in the inode has an invalid index and must terminate.
2148 		 */
2149 		if (chain == parent)
2150 			return(NULL);
2151 		if (key_beg == 0 || key_beg > key_end)
2152 			return(NULL);
2153 		chain = NULL;
2154 	} else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2155 		   parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2156 		/*
2157 		 * We reached the end of the iteration.
2158 		 */
2159 		return (NULL);
2160 	} else {
2161 		/*
2162 		 * Continue iteration with next parent unless the current
2163 		 * parent covers the range.
2164 		 */
2165 		key_beg = parent->bref.key +
2166 			  ((hammer2_key_t)1 << parent->bref.keybits);
2167 		if (key_beg == 0 || key_beg > key_end)
2168 			return (NULL);
2169 		parent = hammer2_chain_getparent(parentp, how_maybe);
2170 	}
2171 
2172 	/*
2173 	 * And execute
2174 	 */
2175 	return (hammer2_chain_lookup(parentp, key_nextp,
2176 				     key_beg, key_end,
2177 				     cache_indexp, flags));
2178 }
2179 
2180 /*
2181  * The raw scan function is similar to lookup/next but does not seek to a key.
2182  * Blockrefs are iterated via first_bref = (parent, NULL) and
2183  * next_chain = (parent, bref).
2184  *
2185  * The passed-in parent must be locked and its data resolved.  The function
2186  * nominally returns a locked and referenced *chainp != NULL for chains
2187  * the caller might need to recurse on (and will dipose of any *chainp passed
2188  * in).  The caller must check the chain->bref.type either way.
2189  *
2190  * *chainp is not set for leaf elements.
2191  *
2192  * This function takes a pointer to a stack-based bref structure whos
2193  * contents is updated for each iteration.  The same pointer is returned,
2194  * or NULL when the iteration is complete.  *firstp must be set to 1 for
2195  * the first ieration.  This function will set it to 0.
2196  */
2197 hammer2_blockref_t *
2198 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
2199 		   hammer2_blockref_t *bref, int *firstp,
2200 		   int *cache_indexp, int flags)
2201 {
2202 	hammer2_dev_t *hmp;
2203 	hammer2_blockref_t *base;
2204 	hammer2_blockref_t *bref_ptr;
2205 	hammer2_key_t key;
2206 	hammer2_key_t next_key;
2207 	hammer2_chain_t *chain = NULL;
2208 	int count = 0;
2209 	int how_always = HAMMER2_RESOLVE_ALWAYS;
2210 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
2211 	int how;
2212 	int generation;
2213 	int maxloops = 300000;
2214 
2215 	hmp = parent->hmp;
2216 
2217 	/*
2218 	 * Scan flags borrowed from lookup.
2219 	 */
2220 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
2221 		how_maybe = how_always;
2222 		how = HAMMER2_RESOLVE_ALWAYS;
2223 	} else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
2224 		how = HAMMER2_RESOLVE_NEVER;
2225 	} else {
2226 		how = HAMMER2_RESOLVE_MAYBE;
2227 	}
2228 	if (flags & HAMMER2_LOOKUP_SHARED) {
2229 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2230 		how_always |= HAMMER2_RESOLVE_SHARED;
2231 		how |= HAMMER2_RESOLVE_SHARED;
2232 	}
2233 
2234 	/*
2235 	 * Calculate key to locate first/next element, unlocking the previous
2236 	 * element as we go.  Be careful, the key calculation can overflow.
2237 	 *
2238 	 * (also reset bref to NULL)
2239 	 */
2240 	if (*firstp) {
2241 		key = 0;
2242 		*firstp = 0;
2243 	} else {
2244 		key = bref->key + ((hammer2_key_t)1 << bref->keybits);
2245 		if ((chain = *chainp) != NULL) {
2246 			*chainp = NULL;
2247 			hammer2_chain_unlock(chain);
2248 			hammer2_chain_drop(chain);
2249 			chain = NULL;
2250 		}
2251 		if (key == 0) {
2252 			bref = NULL;
2253 			goto done;
2254 		}
2255 	}
2256 
2257 again:
2258 	KKASSERT(parent->error == 0);	/* XXX case not handled yet */
2259 	if (--maxloops == 0)
2260 		panic("hammer2_chain_scan: maxloops");
2261 	/*
2262 	 * Locate the blockref array.  Currently we do a fully associative
2263 	 * search through the array.
2264 	 */
2265 	switch(parent->bref.type) {
2266 	case HAMMER2_BREF_TYPE_INODE:
2267 		/*
2268 		 * An inode with embedded data has no sub-chains.
2269 		 *
2270 		 * WARNING! Bulk scan code may pass a static chain marked
2271 		 *	    as BREF_TYPE_INODE with a copy of the volume
2272 		 *	    root blockset to snapshot the volume.
2273 		 */
2274 		if (parent->data->ipdata.meta.op_flags &
2275 		    HAMMER2_OPFLAG_DIRECTDATA) {
2276 			bref = NULL;
2277 			goto done;
2278 		}
2279 		base = &parent->data->ipdata.u.blockset.blockref[0];
2280 		count = HAMMER2_SET_COUNT;
2281 		break;
2282 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2283 	case HAMMER2_BREF_TYPE_INDIRECT:
2284 		/*
2285 		 * Optimize indirect blocks in the INITIAL state to avoid
2286 		 * I/O.
2287 		 */
2288 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2289 			base = NULL;
2290 		} else {
2291 			if (parent->data == NULL)
2292 				panic("parent->data is NULL");
2293 			base = &parent->data->npdata[0];
2294 		}
2295 		count = parent->bytes / sizeof(hammer2_blockref_t);
2296 		break;
2297 	case HAMMER2_BREF_TYPE_VOLUME:
2298 		base = &parent->data->voldata.sroot_blockset.blockref[0];
2299 		count = HAMMER2_SET_COUNT;
2300 		break;
2301 	case HAMMER2_BREF_TYPE_FREEMAP:
2302 		base = &parent->data->blkset.blockref[0];
2303 		count = HAMMER2_SET_COUNT;
2304 		break;
2305 	default:
2306 		panic("hammer2_chain_lookup: unrecognized blockref type: %d",
2307 		      parent->bref.type);
2308 		base = NULL;	/* safety */
2309 		count = 0;	/* safety */
2310 	}
2311 
2312 	/*
2313 	 * Merged scan to find next candidate.
2314 	 *
2315 	 * hammer2_base_*() functions require the parent->core.live_* fields
2316 	 * to be synchronized.
2317 	 *
2318 	 * We need to hold the spinlock to access the block array and RB tree
2319 	 * and to interlock chain creation.
2320 	 */
2321 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2322 		hammer2_chain_countbrefs(parent, base, count);
2323 
2324 	next_key = 0;
2325 	bref_ptr = NULL;
2326 	hammer2_spin_ex(&parent->core.spin);
2327 	chain = hammer2_combined_find(parent, base, count,
2328 				      cache_indexp, &next_key,
2329 				      key, HAMMER2_KEY_MAX,
2330 				      &bref_ptr);
2331 	generation = parent->core.generation;
2332 
2333 	/*
2334 	 * Exhausted parent chain, we're done.
2335 	 */
2336 	if (bref_ptr == NULL) {
2337 		hammer2_spin_unex(&parent->core.spin);
2338 		KKASSERT(chain == NULL);
2339 		bref = NULL;
2340 		goto done;
2341 	}
2342 
2343 	/*
2344 	 * Copy into the supplied stack-based blockref.
2345 	 */
2346 	*bref = *bref_ptr;
2347 
2348 	/*
2349 	 * Selected from blockref or in-memory chain.
2350 	 */
2351 	if (chain == NULL) {
2352 		switch(bref->type) {
2353 		case HAMMER2_BREF_TYPE_INODE:
2354 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2355 		case HAMMER2_BREF_TYPE_INDIRECT:
2356 		case HAMMER2_BREF_TYPE_VOLUME:
2357 		case HAMMER2_BREF_TYPE_FREEMAP:
2358 			/*
2359 			 * Recursion, always get the chain
2360 			 */
2361 			hammer2_spin_unex(&parent->core.spin);
2362 			chain = hammer2_chain_get(parent, generation, bref);
2363 			if (chain == NULL) {
2364 				kprintf("retry scan parent %p keys %016jx\n",
2365 					parent, key);
2366 				goto again;
2367 			}
2368 			if (bcmp(bref, bref_ptr, sizeof(*bref))) {
2369 				hammer2_chain_drop(chain);
2370 				chain = NULL;
2371 				goto again;
2372 			}
2373 			break;
2374 		default:
2375 			/*
2376 			 * No recursion, do not waste time instantiating
2377 			 * a chain, just iterate using the bref.
2378 			 */
2379 			hammer2_spin_unex(&parent->core.spin);
2380 			break;
2381 		}
2382 	} else {
2383 		/*
2384 		 * Recursion or not we need the chain in order to supply
2385 		 * the bref.
2386 		 */
2387 		hammer2_chain_ref(chain);
2388 		hammer2_spin_unex(&parent->core.spin);
2389 	}
2390 
2391 	/*
2392 	 * chain is referenced but not locked.  We must lock the chain
2393 	 * to obtain definitive DUPLICATED/DELETED state
2394 	 */
2395 	if (chain)
2396 		hammer2_chain_lock(chain, how);
2397 
2398 	/*
2399 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2400 	 *
2401 	 * NOTE: chain's key range is not relevant as there might be
2402 	 *	 one-offs within the range that are not deleted.
2403 	 *
2404 	 * NOTE: XXX this could create problems with scans used in
2405 	 *	 situations other than mount-time recovery.
2406 	 *
2407 	 * NOTE: Lookups can race delete-duplicate because
2408 	 *	 delete-duplicate does not lock the parent's core
2409 	 *	 (they just use the spinlock on the core).  We must
2410 	 *	 check for races by comparing the DUPLICATED flag before
2411 	 *	 releasing the spinlock with the flag after locking the
2412 	 *	 chain.
2413 	 */
2414 	if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
2415 		hammer2_chain_unlock(chain);
2416 		hammer2_chain_drop(chain);
2417 		chain = NULL;
2418 
2419 		key = next_key;
2420 		if (key == 0) {
2421 			bref = NULL;
2422 			goto done;
2423 		}
2424 		goto again;
2425 	}
2426 
2427 done:
2428 	/*
2429 	 * All done, return the bref or NULL, supply chain if necessary.
2430 	 */
2431 	if (chain)
2432 		*chainp = chain;
2433 	return (bref);
2434 }
2435 
2436 /*
2437  * Create and return a new hammer2 system memory structure of the specified
2438  * key, type and size and insert it under (*parentp).  This is a full
2439  * insertion, based on the supplied key/keybits, and may involve creating
2440  * indirect blocks and moving other chains around via delete/duplicate.
2441  *
2442  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
2443  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
2444  * FULL.  This typically means that the caller is creating the chain after
2445  * doing a hammer2_chain_lookup().
2446  *
2447  * (*parentp) must be exclusive locked and may be replaced on return
2448  * depending on how much work the function had to do.
2449  *
2450  * (*parentp) must not be errored or this function will assert.
2451  *
2452  * (*chainp) usually starts out NULL and returns the newly created chain,
2453  * but if the caller desires the caller may allocate a disconnected chain
2454  * and pass it in instead.
2455  *
2456  * This function should NOT be used to insert INDIRECT blocks.  It is
2457  * typically used to create/insert inodes and data blocks.
2458  *
2459  * Caller must pass-in an exclusively locked parent the new chain is to
2460  * be inserted under, and optionally pass-in a disconnected, exclusively
2461  * locked chain to insert (else we create a new chain).  The function will
2462  * adjust (*parentp) as necessary, create or connect the chain, and
2463  * return an exclusively locked chain in *chainp.
2464  *
2465  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
2466  * and will be reassigned.
2467  */
2468 int
2469 hammer2_chain_create(hammer2_chain_t **parentp,
2470 		     hammer2_chain_t **chainp, hammer2_pfs_t *pmp,
2471 		     hammer2_key_t key, int keybits, int type, size_t bytes,
2472 		     hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
2473 {
2474 	hammer2_dev_t *hmp;
2475 	hammer2_chain_t *chain;
2476 	hammer2_chain_t *parent;
2477 	hammer2_blockref_t *base;
2478 	hammer2_blockref_t dummy;
2479 	int allocated = 0;
2480 	int error = 0;
2481 	int count;
2482 	int maxloops = 300000;
2483 
2484 	/*
2485 	 * Topology may be crossing a PFS boundary.
2486 	 */
2487 	parent = *parentp;
2488 	KKASSERT(hammer2_mtx_owned(&parent->lock));
2489 	KKASSERT(parent->error == 0);
2490 	hmp = parent->hmp;
2491 	chain = *chainp;
2492 
2493 	if (chain == NULL) {
2494 		/*
2495 		 * First allocate media space and construct the dummy bref,
2496 		 * then allocate the in-memory chain structure.  Set the
2497 		 * INITIAL flag for fresh chains which do not have embedded
2498 		 * data.
2499 		 *
2500 		 * XXX for now set the check mode of the child based on
2501 		 *     the parent or, if the parent is an inode, the
2502 		 *     specification in the inode.
2503 		 */
2504 		bzero(&dummy, sizeof(dummy));
2505 		dummy.type = type;
2506 		dummy.key = key;
2507 		dummy.keybits = keybits;
2508 		dummy.data_off = hammer2_getradix(bytes);
2509 		dummy.methods = parent->bref.methods;
2510 		if (parent->bref.type == HAMMER2_BREF_TYPE_INODE &&
2511 		    parent->data) {
2512 			dummy.methods &= ~HAMMER2_ENC_CHECK(-1);
2513 			dummy.methods |= HAMMER2_ENC_CHECK(
2514 					  parent->data->ipdata.meta.check_algo);
2515 		}
2516 
2517 		chain = hammer2_chain_alloc(hmp, pmp, &dummy);
2518 
2519 		/*
2520 		 * Lock the chain manually, chain_lock will load the chain
2521 		 * which we do NOT want to do.  (note: chain->refs is set
2522 		 * to 1 by chain_alloc() for us, but lockcnt is not).
2523 		 */
2524 		chain->lockcnt = 1;
2525 		hammer2_mtx_ex(&chain->lock);
2526 		allocated = 1;
2527 		++curthread->td_tracker;
2528 
2529 		/*
2530 		 * Set INITIAL to optimize I/O.  The flag will generally be
2531 		 * processed when we call hammer2_chain_modify().
2532 		 *
2533 		 * Recalculate bytes to reflect the actual media block
2534 		 * allocation.
2535 		 */
2536 		bytes = (hammer2_off_t)1 <<
2537 			(int)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
2538 		chain->bytes = bytes;
2539 
2540 		switch(type) {
2541 		case HAMMER2_BREF_TYPE_VOLUME:
2542 		case HAMMER2_BREF_TYPE_FREEMAP:
2543 			panic("hammer2_chain_create: called with volume type");
2544 			break;
2545 		case HAMMER2_BREF_TYPE_INDIRECT:
2546 			panic("hammer2_chain_create: cannot be used to"
2547 			      "create indirect block");
2548 			break;
2549 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2550 			panic("hammer2_chain_create: cannot be used to"
2551 			      "create freemap root or node");
2552 			break;
2553 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2554 			KKASSERT(bytes == sizeof(chain->data->bmdata));
2555 			/* fall through */
2556 		case HAMMER2_BREF_TYPE_INODE:
2557 		case HAMMER2_BREF_TYPE_DATA:
2558 		default:
2559 			/*
2560 			 * leave chain->data NULL, set INITIAL
2561 			 */
2562 			KKASSERT(chain->data == NULL);
2563 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
2564 			break;
2565 		}
2566 	} else {
2567 		/*
2568 		 * We are reattaching a previously deleted chain, possibly
2569 		 * under a new parent and possibly with a new key/keybits.
2570 		 * The chain does not have to be in a modified state.  The
2571 		 * UPDATE flag will be set later on in this routine.
2572 		 *
2573 		 * Do NOT mess with the current state of the INITIAL flag.
2574 		 */
2575 		chain->bref.key = key;
2576 		chain->bref.keybits = keybits;
2577 		if (chain->flags & HAMMER2_CHAIN_DELETED)
2578 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2579 		KKASSERT(chain->parent == NULL);
2580 	}
2581 	if (flags & HAMMER2_INSERT_PFSROOT)
2582 		chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
2583 	else
2584 		chain->bref.flags &= ~HAMMER2_BREF_FLAG_PFSROOT;
2585 
2586 	/*
2587 	 * Calculate how many entries we have in the blockref array and
2588 	 * determine if an indirect block is required.
2589 	 */
2590 again:
2591 	if (--maxloops == 0)
2592 		panic("hammer2_chain_create: maxloops");
2593 
2594 	switch(parent->bref.type) {
2595 	case HAMMER2_BREF_TYPE_INODE:
2596 		if ((parent->data->ipdata.meta.op_flags &
2597 		     HAMMER2_OPFLAG_DIRECTDATA) != 0) {
2598 			kprintf("hammer2: parent set for direct-data! "
2599 				"pkey=%016jx ckey=%016jx\n",
2600 				parent->bref.key,
2601 				chain->bref.key);
2602 	        }
2603 		KKASSERT((parent->data->ipdata.meta.op_flags &
2604 			  HAMMER2_OPFLAG_DIRECTDATA) == 0);
2605 		KKASSERT(parent->data != NULL);
2606 		base = &parent->data->ipdata.u.blockset.blockref[0];
2607 		count = HAMMER2_SET_COUNT;
2608 		break;
2609 	case HAMMER2_BREF_TYPE_INDIRECT:
2610 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2611 		if (parent->flags & HAMMER2_CHAIN_INITIAL)
2612 			base = NULL;
2613 		else
2614 			base = &parent->data->npdata[0];
2615 		count = parent->bytes / sizeof(hammer2_blockref_t);
2616 		break;
2617 	case HAMMER2_BREF_TYPE_VOLUME:
2618 		KKASSERT(parent->data != NULL);
2619 		base = &parent->data->voldata.sroot_blockset.blockref[0];
2620 		count = HAMMER2_SET_COUNT;
2621 		break;
2622 	case HAMMER2_BREF_TYPE_FREEMAP:
2623 		KKASSERT(parent->data != NULL);
2624 		base = &parent->data->blkset.blockref[0];
2625 		count = HAMMER2_SET_COUNT;
2626 		break;
2627 	default:
2628 		panic("hammer2_chain_create: unrecognized blockref type: %d",
2629 		      parent->bref.type);
2630 		base = NULL;
2631 		count = 0;
2632 		break;
2633 	}
2634 
2635 	/*
2636 	 * Make sure we've counted the brefs
2637 	 */
2638 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2639 		hammer2_chain_countbrefs(parent, base, count);
2640 
2641 	KKASSERT(parent->core.live_count >= 0 &&
2642 		 parent->core.live_count <= count);
2643 
2644 	/*
2645 	 * If no free blockref could be found we must create an indirect
2646 	 * block and move a number of blockrefs into it.  With the parent
2647 	 * locked we can safely lock each child in order to delete+duplicate
2648 	 * it without causing a deadlock.
2649 	 *
2650 	 * This may return the new indirect block or the old parent depending
2651 	 * on where the key falls.  NULL is returned on error.
2652 	 */
2653 	if (parent->core.live_count == count) {
2654 		hammer2_chain_t *nparent;
2655 
2656 		nparent = hammer2_chain_create_indirect(parent, key, keybits,
2657 							mtid, type, &error);
2658 		if (nparent == NULL) {
2659 			if (allocated)
2660 				hammer2_chain_drop(chain);
2661 			chain = NULL;
2662 			goto done;
2663 		}
2664 		if (parent != nparent) {
2665 			hammer2_chain_unlock(parent);
2666 			hammer2_chain_drop(parent);
2667 			parent = *parentp = nparent;
2668 		}
2669 		goto again;
2670 	}
2671 
2672 	/*
2673 	 * Link the chain into its parent.
2674 	 */
2675 	if (chain->parent != NULL)
2676 		panic("hammer2: hammer2_chain_create: chain already connected");
2677 	KKASSERT(chain->parent == NULL);
2678 	hammer2_chain_insert(parent, chain,
2679 			     HAMMER2_CHAIN_INSERT_SPIN |
2680 			     HAMMER2_CHAIN_INSERT_LIVE,
2681 			     0);
2682 
2683 	if (allocated) {
2684 		/*
2685 		 * Mark the newly created chain modified.  This will cause
2686 		 * UPDATE to be set and process the INITIAL flag.
2687 		 *
2688 		 * Device buffers are not instantiated for DATA elements
2689 		 * as these are handled by logical buffers.
2690 		 *
2691 		 * Indirect and freemap node indirect blocks are handled
2692 		 * by hammer2_chain_create_indirect() and not by this
2693 		 * function.
2694 		 *
2695 		 * Data for all other bref types is expected to be
2696 		 * instantiated (INODE, LEAF).
2697 		 */
2698 		switch(chain->bref.type) {
2699 		case HAMMER2_BREF_TYPE_DATA:
2700 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2701 		case HAMMER2_BREF_TYPE_INODE:
2702 			hammer2_chain_modify(chain, mtid, dedup_off,
2703 					     HAMMER2_MODIFY_OPTDATA);
2704 			break;
2705 		default:
2706 			/*
2707 			 * Remaining types are not supported by this function.
2708 			 * In particular, INDIRECT and LEAF_NODE types are
2709 			 * handled by create_indirect().
2710 			 */
2711 			panic("hammer2_chain_create: bad type: %d",
2712 			      chain->bref.type);
2713 			/* NOT REACHED */
2714 			break;
2715 		}
2716 	} else {
2717 		/*
2718 		 * When reconnecting a chain we must set UPDATE and
2719 		 * setflush so the flush recognizes that it must update
2720 		 * the bref in the parent.
2721 		 */
2722 		if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
2723 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
2724 	}
2725 
2726 	/*
2727 	 * We must setflush(parent) to ensure that it recurses through to
2728 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
2729 	 * already set in the chain (so it won't recurse up to set it in the
2730 	 * parent).
2731 	 */
2732 	hammer2_chain_setflush(parent);
2733 
2734 done:
2735 	*chainp = chain;
2736 
2737 	return (error);
2738 }
2739 
2740 /*
2741  * Move the chain from its old parent to a new parent.  The chain must have
2742  * already been deleted or already disconnected (or never associated) with
2743  * a parent.  The chain is reassociated with the new parent and the deleted
2744  * flag will be cleared (no longer deleted).  The chain's modification state
2745  * is not altered.
2746  *
2747  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
2748  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
2749  * FULL.  This typically means that the caller is creating the chain after
2750  * doing a hammer2_chain_lookup().
2751  *
2752  * A non-NULL bref is typically passed when key and keybits must be overridden.
2753  * Note that hammer2_cluster_duplicate() *ONLY* uses the key and keybits fields
2754  * from a passed-in bref and uses the old chain's bref for everything else.
2755  *
2756  * Neither (parent) or (chain) can be errored.
2757  *
2758  * If (parent) is non-NULL then the new duplicated chain is inserted under
2759  * the parent.
2760  *
2761  * If (parent) is NULL then the newly duplicated chain is not inserted
2762  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
2763  * passing into hammer2_chain_create() after this function returns).
2764  *
2765  * WARNING! This function calls create which means it can insert indirect
2766  *	    blocks.  This can cause other unrelated chains in the parent to
2767  *	    be moved to a newly inserted indirect block in addition to the
2768  *	    specific chain.
2769  */
2770 void
2771 hammer2_chain_rename(hammer2_blockref_t *bref,
2772 		     hammer2_chain_t **parentp, hammer2_chain_t *chain,
2773 		     hammer2_tid_t mtid, int flags)
2774 {
2775 	hammer2_dev_t *hmp;
2776 	hammer2_chain_t *parent;
2777 	size_t bytes;
2778 
2779 	/*
2780 	 * WARNING!  We should never resolve DATA to device buffers
2781 	 *	     (XXX allow it if the caller did?), and since
2782 	 *	     we currently do not have the logical buffer cache
2783 	 *	     buffer in-hand to fix its cached physical offset
2784 	 *	     we also force the modify code to not COW it. XXX
2785 	 */
2786 	hmp = chain->hmp;
2787 	KKASSERT(chain->parent == NULL);
2788 	KKASSERT(chain->error == 0);
2789 
2790 	/*
2791 	 * Now create a duplicate of the chain structure, associating
2792 	 * it with the same core, making it the same size, pointing it
2793 	 * to the same bref (the same media block).
2794 	 */
2795 	if (bref == NULL)
2796 		bref = &chain->bref;
2797 	bytes = (hammer2_off_t)1 <<
2798 		(int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
2799 
2800 	/*
2801 	 * If parent is not NULL the duplicated chain will be entered under
2802 	 * the parent and the UPDATE bit set to tell flush to update
2803 	 * the blockref.
2804 	 *
2805 	 * We must setflush(parent) to ensure that it recurses through to
2806 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
2807 	 * already set in the chain (so it won't recurse up to set it in the
2808 	 * parent).
2809 	 *
2810 	 * Having both chains locked is extremely important for atomicy.
2811 	 */
2812 	if (parentp && (parent = *parentp) != NULL) {
2813 		KKASSERT(hammer2_mtx_owned(&parent->lock));
2814 		KKASSERT(parent->refs > 0);
2815 		KKASSERT(parent->error == 0);
2816 
2817 		hammer2_chain_create(parentp, &chain, chain->pmp,
2818 				     bref->key, bref->keybits, bref->type,
2819 				     chain->bytes, mtid, 0, flags);
2820 		KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
2821 		hammer2_chain_setflush(*parentp);
2822 	}
2823 }
2824 
2825 /*
2826  * Helper function for deleting chains.
2827  *
2828  * The chain is removed from the live view (the RBTREE) as well as the parent's
2829  * blockmap.  Both chain and its parent must be locked.
2830  *
2831  * parent may not be errored.  chain can be errored.
2832  */
2833 static void
2834 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
2835 			     hammer2_tid_t mtid, int flags)
2836 {
2837 	hammer2_dev_t *hmp;
2838 
2839 	KKASSERT((chain->flags & (HAMMER2_CHAIN_DELETED |
2840 				  HAMMER2_CHAIN_FICTITIOUS)) == 0);
2841 	KKASSERT(chain->parent == parent);
2842 	hmp = chain->hmp;
2843 
2844 	if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
2845 		/*
2846 		 * Chain is blockmapped, so there must be a parent.
2847 		 * Atomically remove the chain from the parent and remove
2848 		 * the blockmap entry.  The parent must be set modified
2849 		 * to remove the blockmap entry.
2850 		 */
2851 		hammer2_blockref_t *base;
2852 		int count;
2853 
2854 		KKASSERT(parent != NULL);
2855 		KKASSERT(parent->error == 0);
2856 		KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
2857 		hammer2_chain_modify(parent, mtid, 0, HAMMER2_MODIFY_OPTDATA);
2858 
2859 		/*
2860 		 * Calculate blockmap pointer
2861 		 */
2862 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2863 		hammer2_spin_ex(&parent->core.spin);
2864 
2865 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2866 		atomic_add_int(&parent->core.live_count, -1);
2867 		++parent->core.generation;
2868 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
2869 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
2870 		--parent->core.chain_count;
2871 		chain->parent = NULL;
2872 
2873 		switch(parent->bref.type) {
2874 		case HAMMER2_BREF_TYPE_INODE:
2875 			/*
2876 			 * Access the inode's block array.  However, there
2877 			 * is no block array if the inode is flagged
2878 			 * DIRECTDATA.  The DIRECTDATA case typicaly only
2879 			 * occurs when a hardlink has been shifted up the
2880 			 * tree and the original inode gets replaced with
2881 			 * an OBJTYPE_HARDLINK placeholding inode.
2882 			 */
2883 			if (parent->data &&
2884 			    (parent->data->ipdata.meta.op_flags &
2885 			     HAMMER2_OPFLAG_DIRECTDATA) == 0) {
2886 				base =
2887 				   &parent->data->ipdata.u.blockset.blockref[0];
2888 			} else {
2889 				base = NULL;
2890 			}
2891 			count = HAMMER2_SET_COUNT;
2892 			break;
2893 		case HAMMER2_BREF_TYPE_INDIRECT:
2894 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2895 			if (parent->data)
2896 				base = &parent->data->npdata[0];
2897 			else
2898 				base = NULL;
2899 			count = parent->bytes / sizeof(hammer2_blockref_t);
2900 			break;
2901 		case HAMMER2_BREF_TYPE_VOLUME:
2902 			base = &parent->data->voldata.
2903 					sroot_blockset.blockref[0];
2904 			count = HAMMER2_SET_COUNT;
2905 			break;
2906 		case HAMMER2_BREF_TYPE_FREEMAP:
2907 			base = &parent->data->blkset.blockref[0];
2908 			count = HAMMER2_SET_COUNT;
2909 			break;
2910 		default:
2911 			base = NULL;
2912 			count = 0;
2913 			panic("hammer2_flush_pass2: "
2914 			      "unrecognized blockref type: %d",
2915 			      parent->bref.type);
2916 		}
2917 
2918 		/*
2919 		 * delete blockmapped chain from its parent.
2920 		 *
2921 		 * The parent is not affected by any statistics in chain
2922 		 * which are pending synchronization.  That is, there is
2923 		 * nothing to undo in the parent since they have not yet
2924 		 * been incorporated into the parent.
2925 		 *
2926 		 * The parent is affected by statistics stored in inodes.
2927 		 * Those have already been synchronized, so they must be
2928 		 * undone.  XXX split update possible w/delete in middle?
2929 		 */
2930 		if (base) {
2931 			int cache_index = -1;
2932 			hammer2_base_delete(parent, base, count,
2933 					    &cache_index, chain);
2934 		}
2935 		hammer2_spin_unex(&parent->core.spin);
2936 	} else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
2937 		/*
2938 		 * Chain is not blockmapped but a parent is present.
2939 		 * Atomically remove the chain from the parent.  There is
2940 		 * no blockmap entry to remove.
2941 		 *
2942 		 * Because chain was associated with a parent but not
2943 		 * synchronized, the chain's *_count_up fields contain
2944 		 * inode adjustment statistics which must be undone.
2945 		 */
2946 		hammer2_spin_ex(&parent->core.spin);
2947 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2948 		atomic_add_int(&parent->core.live_count, -1);
2949 		++parent->core.generation;
2950 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
2951 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
2952 		--parent->core.chain_count;
2953 		chain->parent = NULL;
2954 		hammer2_spin_unex(&parent->core.spin);
2955 	} else {
2956 		/*
2957 		 * Chain is not blockmapped and has no parent.  This
2958 		 * is a degenerate case.
2959 		 */
2960 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2961 	}
2962 }
2963 
2964 /*
2965  * Create an indirect block that covers one or more of the elements in the
2966  * current parent.  Either returns the existing parent with no locking or
2967  * ref changes or returns the new indirect block locked and referenced
2968  * and leaving the original parent lock/ref intact as well.
2969  *
2970  * If an error occurs, NULL is returned and *errorp is set to the error.
2971  *
2972  * The returned chain depends on where the specified key falls.
2973  *
2974  * The key/keybits for the indirect mode only needs to follow three rules:
2975  *
2976  * (1) That all elements underneath it fit within its key space and
2977  *
2978  * (2) That all elements outside it are outside its key space.
2979  *
2980  * (3) When creating the new indirect block any elements in the current
2981  *     parent that fit within the new indirect block's keyspace must be
2982  *     moved into the new indirect block.
2983  *
2984  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
2985  *     keyspace the the current parent, but lookup/iteration rules will
2986  *     ensure (and must ensure) that rule (2) for all parents leading up
2987  *     to the nearest inode or the root volume header is adhered to.  This
2988  *     is accomplished by always recursing through matching keyspaces in
2989  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
2990  *
2991  * The current implementation calculates the current worst-case keyspace by
2992  * iterating the current parent and then divides it into two halves, choosing
2993  * whichever half has the most elements (not necessarily the half containing
2994  * the requested key).
2995  *
2996  * We can also opt to use the half with the least number of elements.  This
2997  * causes lower-numbered keys (aka logical file offsets) to recurse through
2998  * fewer indirect blocks and higher-numbered keys to recurse through more.
2999  * This also has the risk of not moving enough elements to the new indirect
3000  * block and being forced to create several indirect blocks before the element
3001  * can be inserted.
3002  *
3003  * Must be called with an exclusively locked parent.
3004  */
3005 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3006 				hammer2_key_t *keyp, int keybits,
3007 				hammer2_blockref_t *base, int count);
3008 static int hammer2_chain_indkey_normal(hammer2_chain_t *parent,
3009 				hammer2_key_t *keyp, int keybits,
3010 				hammer2_blockref_t *base, int count);
3011 static
3012 hammer2_chain_t *
3013 hammer2_chain_create_indirect(hammer2_chain_t *parent,
3014 			      hammer2_key_t create_key, int create_bits,
3015 			      hammer2_tid_t mtid, int for_type, int *errorp)
3016 {
3017 	hammer2_dev_t *hmp;
3018 	hammer2_blockref_t *base;
3019 	hammer2_blockref_t *bref;
3020 	hammer2_blockref_t bcopy;
3021 	hammer2_chain_t *chain;
3022 	hammer2_chain_t *ichain;
3023 	hammer2_chain_t dummy;
3024 	hammer2_key_t key = create_key;
3025 	hammer2_key_t key_beg;
3026 	hammer2_key_t key_end;
3027 	hammer2_key_t key_next;
3028 	int keybits = create_bits;
3029 	int count;
3030 	int nbytes;
3031 	int cache_index;
3032 	int loops;
3033 	int reason;
3034 	int generation;
3035 	int maxloops = 300000;
3036 
3037 	/*
3038 	 * Calculate the base blockref pointer or NULL if the chain
3039 	 * is known to be empty.  We need to calculate the array count
3040 	 * for RB lookups either way.
3041 	 */
3042 	hmp = parent->hmp;
3043 	*errorp = 0;
3044 	KKASSERT(hammer2_mtx_owned(&parent->lock));
3045 
3046 	/*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
3047 	base = hammer2_chain_base_and_count(parent, &count);
3048 
3049 	/*
3050 	 * dummy used in later chain allocation (no longer used for lookups).
3051 	 */
3052 	bzero(&dummy, sizeof(dummy));
3053 
3054 	/*
3055 	 * When creating an indirect block for a freemap node or leaf
3056 	 * the key/keybits must be fitted to static radix levels because
3057 	 * particular radix levels use particular reserved blocks in the
3058 	 * related zone.
3059 	 *
3060 	 * This routine calculates the key/radix of the indirect block
3061 	 * we need to create, and whether it is on the high-side or the
3062 	 * low-side.
3063 	 */
3064 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
3065 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
3066 		keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
3067 						       base, count);
3068 	} else {
3069 		keybits = hammer2_chain_indkey_normal(parent, &key, keybits,
3070 						      base, count);
3071 	}
3072 
3073 	/*
3074 	 * Normalize the key for the radix being represented, keeping the
3075 	 * high bits and throwing away the low bits.
3076 	 */
3077 	key &= ~(((hammer2_key_t)1 << keybits) - 1);
3078 
3079 	/*
3080 	 * How big should our new indirect block be?  It has to be at least
3081 	 * as large as its parent.
3082 	 *
3083 	 * The freemap uses a specific indirect block size.
3084 	 *
3085 	 * The first indirect block level down from an inode typically
3086 	 * uses LBUFSIZE (16384), else it uses PBUFSIZE (65536).
3087 	 */
3088 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
3089 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
3090 		nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
3091 	} else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
3092 		nbytes = HAMMER2_IND_BYTES_MIN;
3093 	} else {
3094 		nbytes = HAMMER2_IND_BYTES_MAX;
3095 	}
3096 	if (nbytes < count * sizeof(hammer2_blockref_t)) {
3097 		KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
3098 			 for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
3099 		nbytes = count * sizeof(hammer2_blockref_t);
3100 	}
3101 
3102 	/*
3103 	 * Ok, create our new indirect block
3104 	 */
3105 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
3106 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
3107 		dummy.bref.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
3108 	} else {
3109 		dummy.bref.type = HAMMER2_BREF_TYPE_INDIRECT;
3110 	}
3111 	dummy.bref.key = key;
3112 	dummy.bref.keybits = keybits;
3113 	dummy.bref.data_off = hammer2_getradix(nbytes);
3114 	dummy.bref.methods = parent->bref.methods;
3115 
3116 	ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy.bref);
3117 	atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
3118 	hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
3119 	/* ichain has one ref at this point */
3120 
3121 	/*
3122 	 * We have to mark it modified to allocate its block, but use
3123 	 * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
3124 	 * it won't be acted upon by the flush code.
3125 	 */
3126 	hammer2_chain_modify(ichain, mtid, 0, HAMMER2_MODIFY_OPTDATA);
3127 
3128 	/*
3129 	 * Iterate the original parent and move the matching brefs into
3130 	 * the new indirect block.
3131 	 *
3132 	 * XXX handle flushes.
3133 	 */
3134 	key_beg = 0;
3135 	key_end = HAMMER2_KEY_MAX;
3136 	cache_index = 0;
3137 	hammer2_spin_ex(&parent->core.spin);
3138 	loops = 0;
3139 	reason = 0;
3140 
3141 	for (;;) {
3142 		/*
3143 		 * Parent may have been modified, relocating its block array.
3144 		 * Reload the base pointer.
3145 		 */
3146 		base = hammer2_chain_base_and_count(parent, &count);
3147 
3148 		if (++loops > 100000) {
3149 		    hammer2_spin_unex(&parent->core.spin);
3150 		    panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
3151 			  reason, parent, base, count, key_next);
3152 		}
3153 
3154 		/*
3155 		 * NOTE: spinlock stays intact, returned chain (if not NULL)
3156 		 *	 is not referenced or locked which means that we
3157 		 *	 cannot safely check its flagged / deletion status
3158 		 *	 until we lock it.
3159 		 */
3160 		chain = hammer2_combined_find(parent, base, count,
3161 					      &cache_index, &key_next,
3162 					      key_beg, key_end,
3163 					      &bref);
3164 		generation = parent->core.generation;
3165 		if (bref == NULL)
3166 			break;
3167 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3168 
3169 		/*
3170 		 * Skip keys that are not within the key/radix of the new
3171 		 * indirect block.  They stay in the parent.
3172 		 */
3173 		if ((~(((hammer2_key_t)1 << keybits) - 1) &
3174 		    (key ^ bref->key)) != 0) {
3175 			goto next_key_spinlocked;
3176 		}
3177 
3178 		/*
3179 		 * Load the new indirect block by acquiring the related
3180 		 * chains (potentially from media as it might not be
3181 		 * in-memory).  Then move it to the new parent (ichain)
3182 		 * via DELETE-DUPLICATE.
3183 		 *
3184 		 * chain is referenced but not locked.  We must lock the
3185 		 * chain to obtain definitive DUPLICATED/DELETED state
3186 		 */
3187 		if (chain) {
3188 			/*
3189 			 * Use chain already present in the RBTREE
3190 			 */
3191 			hammer2_chain_ref(chain);
3192 			hammer2_spin_unex(&parent->core.spin);
3193 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
3194 		} else {
3195 			/*
3196 			 * Get chain for blockref element.  _get returns NULL
3197 			 * on insertion race.
3198 			 */
3199 			bcopy = *bref;
3200 			hammer2_spin_unex(&parent->core.spin);
3201 			chain = hammer2_chain_get(parent, generation, &bcopy);
3202 			if (chain == NULL) {
3203 				reason = 1;
3204 				hammer2_spin_ex(&parent->core.spin);
3205 				continue;
3206 			}
3207 			if (bcmp(&bcopy, bref, sizeof(bcopy))) {
3208 				kprintf("REASON 2\n");
3209 				reason = 2;
3210 				hammer2_chain_drop(chain);
3211 				hammer2_spin_ex(&parent->core.spin);
3212 				continue;
3213 			}
3214 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
3215 		}
3216 
3217 		/*
3218 		 * This is always live so if the chain has been deleted
3219 		 * we raced someone and we have to retry.
3220 		 *
3221 		 * NOTE: Lookups can race delete-duplicate because
3222 		 *	 delete-duplicate does not lock the parent's core
3223 		 *	 (they just use the spinlock on the core).  We must
3224 		 *	 check for races by comparing the DUPLICATED flag before
3225 		 *	 releasing the spinlock with the flag after locking the
3226 		 *	 chain.
3227 		 *
3228 		 *	 (note reversed logic for this one)
3229 		 */
3230 		if (chain->flags & HAMMER2_CHAIN_DELETED) {
3231 			hammer2_chain_unlock(chain);
3232 			hammer2_chain_drop(chain);
3233 			goto next_key;
3234 		}
3235 
3236 		/*
3237 		 * Shift the chain to the indirect block.
3238 		 *
3239 		 * WARNING! No reason for us to load chain data, pass NOSTATS
3240 		 *	    to prevent delete/insert from trying to access
3241 		 *	    inode stats (and thus asserting if there is no
3242 		 *	    chain->data loaded).
3243 		 *
3244 		 * WARNING! The (parent, chain) deletion may modify the parent
3245 		 *	    and invalidate the base pointer.
3246 		 */
3247 		hammer2_chain_delete(parent, chain, mtid, 0);
3248 		hammer2_chain_rename(NULL, &ichain, chain, mtid, 0);
3249 		hammer2_chain_unlock(chain);
3250 		hammer2_chain_drop(chain);
3251 		KKASSERT(parent->refs > 0);
3252 		chain = NULL;
3253 		base = NULL;	/* safety */
3254 next_key:
3255 		hammer2_spin_ex(&parent->core.spin);
3256 next_key_spinlocked:
3257 		if (--maxloops == 0)
3258 			panic("hammer2_chain_create_indirect: maxloops");
3259 		reason = 4;
3260 		if (key_next == 0 || key_next > key_end)
3261 			break;
3262 		key_beg = key_next;
3263 		/* loop */
3264 	}
3265 	hammer2_spin_unex(&parent->core.spin);
3266 
3267 	/*
3268 	 * Insert the new indirect block into the parent now that we've
3269 	 * cleared out some entries in the parent.  We calculated a good
3270 	 * insertion index in the loop above (ichain->index).
3271 	 *
3272 	 * We don't have to set UPDATE here because we mark ichain
3273 	 * modified down below (so the normal modified -> flush -> set-moved
3274 	 * sequence applies).
3275 	 *
3276 	 * The insertion shouldn't race as this is a completely new block
3277 	 * and the parent is locked.
3278 	 */
3279 	base = NULL;	/* safety, parent modify may change address */
3280 	KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
3281 	hammer2_chain_insert(parent, ichain,
3282 			     HAMMER2_CHAIN_INSERT_SPIN |
3283 			     HAMMER2_CHAIN_INSERT_LIVE,
3284 			     0);
3285 
3286 	/*
3287 	 * Make sure flushes propogate after our manual insertion.
3288 	 */
3289 	hammer2_chain_setflush(ichain);
3290 	hammer2_chain_setflush(parent);
3291 
3292 	/*
3293 	 * Figure out what to return.
3294 	 */
3295 	if (~(((hammer2_key_t)1 << keybits) - 1) &
3296 		   (create_key ^ key)) {
3297 		/*
3298 		 * Key being created is outside the key range,
3299 		 * return the original parent.
3300 		 */
3301 		hammer2_chain_unlock(ichain);
3302 		hammer2_chain_drop(ichain);
3303 	} else {
3304 		/*
3305 		 * Otherwise its in the range, return the new parent.
3306 		 * (leave both the new and old parent locked).
3307 		 */
3308 		parent = ichain;
3309 	}
3310 
3311 	return(parent);
3312 }
3313 
3314 /*
3315  * Calculate the keybits and highside/lowside of the freemap node the
3316  * caller is creating.
3317  *
3318  * This routine will specify the next higher-level freemap key/radix
3319  * representing the lowest-ordered set.  By doing so, eventually all
3320  * low-ordered sets will be moved one level down.
3321  *
3322  * We have to be careful here because the freemap reserves a limited
3323  * number of blocks for a limited number of levels.  So we can't just
3324  * push indiscriminately.
3325  */
3326 int
3327 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
3328 			     int keybits, hammer2_blockref_t *base, int count)
3329 {
3330 	hammer2_chain_t *chain;
3331 	hammer2_blockref_t *bref;
3332 	hammer2_key_t key;
3333 	hammer2_key_t key_beg;
3334 	hammer2_key_t key_end;
3335 	hammer2_key_t key_next;
3336 	int cache_index;
3337 	int locount;
3338 	int hicount;
3339 	int maxloops = 300000;
3340 
3341 	key = *keyp;
3342 	locount = 0;
3343 	hicount = 0;
3344 	keybits = 64;
3345 
3346 	/*
3347 	 * Calculate the range of keys in the array being careful to skip
3348 	 * slots which are overridden with a deletion.
3349 	 */
3350 	key_beg = 0;
3351 	key_end = HAMMER2_KEY_MAX;
3352 	cache_index = 0;
3353 	hammer2_spin_ex(&parent->core.spin);
3354 
3355 	for (;;) {
3356 		if (--maxloops == 0) {
3357 			panic("indkey_freemap shit %p %p:%d\n",
3358 			      parent, base, count);
3359 		}
3360 		chain = hammer2_combined_find(parent, base, count,
3361 					      &cache_index, &key_next,
3362 					      key_beg, key_end,
3363 					      &bref);
3364 
3365 		/*
3366 		 * Exhausted search
3367 		 */
3368 		if (bref == NULL)
3369 			break;
3370 
3371 		/*
3372 		 * Skip deleted chains.
3373 		 */
3374 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3375 			if (key_next == 0 || key_next > key_end)
3376 				break;
3377 			key_beg = key_next;
3378 			continue;
3379 		}
3380 
3381 		/*
3382 		 * Use the full live (not deleted) element for the scan
3383 		 * iteration.  HAMMER2 does not allow partial replacements.
3384 		 *
3385 		 * XXX should be built into hammer2_combined_find().
3386 		 */
3387 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3388 
3389 		if (keybits > bref->keybits) {
3390 			key = bref->key;
3391 			keybits = bref->keybits;
3392 		} else if (keybits == bref->keybits && bref->key < key) {
3393 			key = bref->key;
3394 		}
3395 		if (key_next == 0)
3396 			break;
3397 		key_beg = key_next;
3398 	}
3399 	hammer2_spin_unex(&parent->core.spin);
3400 
3401 	/*
3402 	 * Return the keybits for a higher-level FREEMAP_NODE covering
3403 	 * this node.
3404 	 */
3405 	switch(keybits) {
3406 	case HAMMER2_FREEMAP_LEVEL0_RADIX:
3407 		keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
3408 		break;
3409 	case HAMMER2_FREEMAP_LEVEL1_RADIX:
3410 		keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
3411 		break;
3412 	case HAMMER2_FREEMAP_LEVEL2_RADIX:
3413 		keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
3414 		break;
3415 	case HAMMER2_FREEMAP_LEVEL3_RADIX:
3416 		keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
3417 		break;
3418 	case HAMMER2_FREEMAP_LEVEL4_RADIX:
3419 		keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
3420 		break;
3421 	case HAMMER2_FREEMAP_LEVEL5_RADIX:
3422 		panic("hammer2_chain_indkey_freemap: level too high");
3423 		break;
3424 	default:
3425 		panic("hammer2_chain_indkey_freemap: bad radix");
3426 		break;
3427 	}
3428 	*keyp = key;
3429 
3430 	return (keybits);
3431 }
3432 
3433 /*
3434  * Calculate the keybits and highside/lowside of the indirect block the
3435  * caller is creating.
3436  */
3437 static int
3438 hammer2_chain_indkey_normal(hammer2_chain_t *parent, hammer2_key_t *keyp,
3439 			    int keybits, hammer2_blockref_t *base, int count)
3440 {
3441 	hammer2_blockref_t *bref;
3442 	hammer2_chain_t	*chain;
3443 	hammer2_key_t key_beg;
3444 	hammer2_key_t key_end;
3445 	hammer2_key_t key_next;
3446 	hammer2_key_t key;
3447 	int nkeybits;
3448 	int locount;
3449 	int hicount;
3450 	int cache_index;
3451 	int maxloops = 300000;
3452 
3453 	key = *keyp;
3454 	locount = 0;
3455 	hicount = 0;
3456 
3457 	/*
3458 	 * Calculate the range of keys in the array being careful to skip
3459 	 * slots which are overridden with a deletion.  Once the scan
3460 	 * completes we will cut the key range in half and shift half the
3461 	 * range into the new indirect block.
3462 	 */
3463 	key_beg = 0;
3464 	key_end = HAMMER2_KEY_MAX;
3465 	cache_index = 0;
3466 	hammer2_spin_ex(&parent->core.spin);
3467 
3468 	for (;;) {
3469 		if (--maxloops == 0) {
3470 			panic("indkey_freemap shit %p %p:%d\n",
3471 			      parent, base, count);
3472 		}
3473 		chain = hammer2_combined_find(parent, base, count,
3474 					      &cache_index, &key_next,
3475 					      key_beg, key_end,
3476 					      &bref);
3477 
3478 		/*
3479 		 * Exhausted search
3480 		 */
3481 		if (bref == NULL)
3482 			break;
3483 
3484 		/*
3485 		 * NOTE: No need to check DUPLICATED here because we do
3486 		 *	 not release the spinlock.
3487 		 */
3488 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3489 			if (key_next == 0 || key_next > key_end)
3490 				break;
3491 			key_beg = key_next;
3492 			continue;
3493 		}
3494 
3495 		/*
3496 		 * Use the full live (not deleted) element for the scan
3497 		 * iteration.  HAMMER2 does not allow partial replacements.
3498 		 *
3499 		 * XXX should be built into hammer2_combined_find().
3500 		 */
3501 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3502 
3503 		/*
3504 		 * Expand our calculated key range (key, keybits) to fit
3505 		 * the scanned key.  nkeybits represents the full range
3506 		 * that we will later cut in half (two halves @ nkeybits - 1).
3507 		 */
3508 		nkeybits = keybits;
3509 		if (nkeybits < bref->keybits) {
3510 			if (bref->keybits > 64) {
3511 				kprintf("bad bref chain %p bref %p\n",
3512 					chain, bref);
3513 				Debugger("fubar");
3514 			}
3515 			nkeybits = bref->keybits;
3516 		}
3517 		while (nkeybits < 64 &&
3518 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
3519 		        (key ^ bref->key)) != 0) {
3520 			++nkeybits;
3521 		}
3522 
3523 		/*
3524 		 * If the new key range is larger we have to determine
3525 		 * which side of the new key range the existing keys fall
3526 		 * under by checking the high bit, then collapsing the
3527 		 * locount into the hicount or vise-versa.
3528 		 */
3529 		if (keybits != nkeybits) {
3530 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
3531 				hicount += locount;
3532 				locount = 0;
3533 			} else {
3534 				locount += hicount;
3535 				hicount = 0;
3536 			}
3537 			keybits = nkeybits;
3538 		}
3539 
3540 		/*
3541 		 * The newly scanned key will be in the lower half or the
3542 		 * upper half of the (new) key range.
3543 		 */
3544 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
3545 			++hicount;
3546 		else
3547 			++locount;
3548 
3549 		if (key_next == 0)
3550 			break;
3551 		key_beg = key_next;
3552 	}
3553 	hammer2_spin_unex(&parent->core.spin);
3554 	bref = NULL;	/* now invalid (safety) */
3555 
3556 	/*
3557 	 * Adjust keybits to represent half of the full range calculated
3558 	 * above (radix 63 max)
3559 	 */
3560 	--keybits;
3561 
3562 	/*
3563 	 * Select whichever half contains the most elements.  Theoretically
3564 	 * we can select either side as long as it contains at least one
3565 	 * element (in order to ensure that a free slot is present to hold
3566 	 * the indirect block).
3567 	 */
3568 	if (hammer2_indirect_optimize) {
3569 		/*
3570 		 * Insert node for least number of keys, this will arrange
3571 		 * the first few blocks of a large file or the first few
3572 		 * inodes in a directory with fewer indirect blocks when
3573 		 * created linearly.
3574 		 */
3575 		if (hicount < locount && hicount != 0)
3576 			key |= (hammer2_key_t)1 << keybits;
3577 		else
3578 			key &= ~(hammer2_key_t)1 << keybits;
3579 	} else {
3580 		/*
3581 		 * Insert node for most number of keys, best for heavily
3582 		 * fragmented files.
3583 		 */
3584 		if (hicount > locount)
3585 			key |= (hammer2_key_t)1 << keybits;
3586 		else
3587 			key &= ~(hammer2_key_t)1 << keybits;
3588 	}
3589 	*keyp = key;
3590 
3591 	return (keybits);
3592 }
3593 
3594 /*
3595  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
3596  * it exists.
3597  *
3598  * Both parent and chain must be locked exclusively.
3599  *
3600  * This function will modify the parent if the blockref requires removal
3601  * from the parent's block table.
3602  *
3603  * This function is NOT recursive.  Any entity already pushed into the
3604  * chain (such as an inode) may still need visibility into its contents,
3605  * as well as the ability to read and modify the contents.  For example,
3606  * for an unlinked file which is still open.
3607  */
3608 void
3609 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
3610 		     hammer2_tid_t mtid, int flags)
3611 {
3612 	KKASSERT(hammer2_mtx_owned(&chain->lock));
3613 
3614 	/*
3615 	 * Nothing to do if already marked.
3616 	 *
3617 	 * We need the spinlock on the core whos RBTREE contains chain
3618 	 * to protect against races.
3619 	 */
3620 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
3621 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
3622 			 chain->parent == parent);
3623 		_hammer2_chain_delete_helper(parent, chain, mtid, flags);
3624 	}
3625 
3626 	/*
3627 	 * Permanent deletions mark the chain as destroyed.  H
3628 	 */
3629 	if (flags & HAMMER2_DELETE_PERMANENT) {
3630 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
3631 	} else {
3632 		/* XXX might not be needed */
3633 		hammer2_chain_setflush(chain);
3634 	}
3635 }
3636 
3637 /*
3638  * Returns the index of the nearest element in the blockref array >= elm.
3639  * Returns (count) if no element could be found.
3640  *
3641  * Sets *key_nextp to the next key for loop purposes but does not modify
3642  * it if the next key would be higher than the current value of *key_nextp.
3643  * Note that *key_nexp can overflow to 0, which should be tested by the
3644  * caller.
3645  *
3646  * (*cache_indexp) is a heuristic and can be any value without effecting
3647  * the result.
3648  *
3649  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
3650  *	     held through the operation.
3651  */
3652 static int
3653 hammer2_base_find(hammer2_chain_t *parent,
3654 		  hammer2_blockref_t *base, int count,
3655 		  int *cache_indexp, hammer2_key_t *key_nextp,
3656 		  hammer2_key_t key_beg, hammer2_key_t key_end)
3657 {
3658 	hammer2_blockref_t *scan;
3659 	hammer2_key_t scan_end;
3660 	int i;
3661 	int limit;
3662 
3663 	/*
3664 	 * Require the live chain's already have their core's counted
3665 	 * so we can optimize operations.
3666 	 */
3667         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
3668 
3669 	/*
3670 	 * Degenerate case
3671 	 */
3672 	if (count == 0 || base == NULL)
3673 		return(count);
3674 
3675 	/*
3676 	 * Sequential optimization using *cache_indexp.  This is the most
3677 	 * likely scenario.
3678 	 *
3679 	 * We can avoid trailing empty entries on live chains, otherwise
3680 	 * we might have to check the whole block array.
3681 	 */
3682 	i = *cache_indexp;
3683 	cpu_ccfence();
3684 	limit = parent->core.live_zero;
3685 	if (i >= limit)
3686 		i = limit - 1;
3687 	if (i < 0)
3688 		i = 0;
3689 	KKASSERT(i < count);
3690 
3691 	/*
3692 	 * Search backwards
3693 	 */
3694 	scan = &base[i];
3695 	while (i > 0 && (scan->type == 0 || scan->key > key_beg)) {
3696 		--scan;
3697 		--i;
3698 	}
3699 	*cache_indexp = i;
3700 
3701 	/*
3702 	 * Search forwards, stop when we find a scan element which
3703 	 * encloses the key or until we know that there are no further
3704 	 * elements.
3705 	 */
3706 	while (i < count) {
3707 		if (scan->type != 0) {
3708 			scan_end = scan->key +
3709 				   ((hammer2_key_t)1 << scan->keybits) - 1;
3710 			if (scan->key > key_beg || scan_end >= key_beg)
3711 				break;
3712 		}
3713 		if (i >= limit)
3714 			return (count);
3715 		++scan;
3716 		++i;
3717 	}
3718 	if (i != count) {
3719 		*cache_indexp = i;
3720 		if (i >= limit) {
3721 			i = count;
3722 		} else {
3723 			scan_end = scan->key +
3724 				   ((hammer2_key_t)1 << scan->keybits);
3725 			if (scan_end && (*key_nextp > scan_end ||
3726 					 *key_nextp == 0)) {
3727 				*key_nextp = scan_end;
3728 			}
3729 		}
3730 	}
3731 	return (i);
3732 }
3733 
3734 /*
3735  * Do a combined search and return the next match either from the blockref
3736  * array or from the in-memory chain.  Sets *bresp to the returned bref in
3737  * both cases, or sets it to NULL if the search exhausted.  Only returns
3738  * a non-NULL chain if the search matched from the in-memory chain.
3739  *
3740  * When no in-memory chain has been found and a non-NULL bref is returned
3741  * in *bresp.
3742  *
3743  *
3744  * The returned chain is not locked or referenced.  Use the returned bref
3745  * to determine if the search exhausted or not.  Iterate if the base find
3746  * is chosen but matches a deleted chain.
3747  *
3748  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
3749  *	     held through the operation.
3750  */
3751 static hammer2_chain_t *
3752 hammer2_combined_find(hammer2_chain_t *parent,
3753 		      hammer2_blockref_t *base, int count,
3754 		      int *cache_indexp, hammer2_key_t *key_nextp,
3755 		      hammer2_key_t key_beg, hammer2_key_t key_end,
3756 		      hammer2_blockref_t **bresp)
3757 {
3758 	hammer2_blockref_t *bref;
3759 	hammer2_chain_t *chain;
3760 	int i;
3761 
3762 	/*
3763 	 * Lookup in block array and in rbtree.
3764 	 */
3765 	*key_nextp = key_end + 1;
3766 	i = hammer2_base_find(parent, base, count, cache_indexp,
3767 			      key_nextp, key_beg, key_end);
3768 	chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
3769 
3770 	/*
3771 	 * Neither matched
3772 	 */
3773 	if (i == count && chain == NULL) {
3774 		*bresp = NULL;
3775 		return(NULL);
3776 	}
3777 
3778 	/*
3779 	 * Only chain matched.
3780 	 */
3781 	if (i == count) {
3782 		bref = &chain->bref;
3783 		goto found;
3784 	}
3785 
3786 	/*
3787 	 * Only blockref matched.
3788 	 */
3789 	if (chain == NULL) {
3790 		bref = &base[i];
3791 		goto found;
3792 	}
3793 
3794 	/*
3795 	 * Both in-memory and blockref matched, select the nearer element.
3796 	 *
3797 	 * If both are flush with the left-hand side or both are the
3798 	 * same distance away, select the chain.  In this situation the
3799 	 * chain must have been loaded from the matching blockmap.
3800 	 */
3801 	if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
3802 	    chain->bref.key == base[i].key) {
3803 		KKASSERT(chain->bref.key == base[i].key);
3804 		bref = &chain->bref;
3805 		goto found;
3806 	}
3807 
3808 	/*
3809 	 * Select the nearer key
3810 	 */
3811 	if (chain->bref.key < base[i].key) {
3812 		bref = &chain->bref;
3813 	} else {
3814 		bref = &base[i];
3815 		chain = NULL;
3816 	}
3817 
3818 	/*
3819 	 * If the bref is out of bounds we've exhausted our search.
3820 	 */
3821 found:
3822 	if (bref->key > key_end) {
3823 		*bresp = NULL;
3824 		chain = NULL;
3825 	} else {
3826 		*bresp = bref;
3827 	}
3828 	return(chain);
3829 }
3830 
3831 /*
3832  * Locate the specified block array element and delete it.  The element
3833  * must exist.
3834  *
3835  * The spin lock on the related chain must be held.
3836  *
3837  * NOTE: live_count was adjusted when the chain was deleted, so it does not
3838  *	 need to be adjusted when we commit the media change.
3839  */
3840 void
3841 hammer2_base_delete(hammer2_chain_t *parent,
3842 		    hammer2_blockref_t *base, int count,
3843 		    int *cache_indexp, hammer2_chain_t *chain)
3844 {
3845 	hammer2_blockref_t *elm = &chain->bref;
3846 	hammer2_key_t key_next;
3847 	int i;
3848 
3849 	/*
3850 	 * Delete element.  Expect the element to exist.
3851 	 *
3852 	 * XXX see caller, flush code not yet sophisticated enough to prevent
3853 	 *     re-flushed in some cases.
3854 	 */
3855 	key_next = 0; /* max range */
3856 	i = hammer2_base_find(parent, base, count, cache_indexp,
3857 			      &key_next, elm->key, elm->key);
3858 	if (i == count || base[i].type == 0 ||
3859 	    base[i].key != elm->key ||
3860 	    ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
3861 	     base[i].keybits != elm->keybits)) {
3862 		hammer2_spin_unex(&parent->core.spin);
3863 		panic("delete base %p element not found at %d/%d elm %p\n",
3864 		      base, i, count, elm);
3865 		return;
3866 	}
3867 
3868 	/*
3869 	 * Update stats and zero the entry
3870 	 */
3871 	parent->bref.data_count -= base[i].data_count;
3872 	parent->bref.data_count -= (hammer2_off_t)1 <<
3873 			(int)(base[i].data_off & HAMMER2_OFF_MASK_RADIX);
3874 	parent->bref.inode_count -= base[i].inode_count;
3875 	if (base[i].type == HAMMER2_BREF_TYPE_INODE)
3876 		parent->bref.inode_count -= 1;
3877 
3878 	bzero(&base[i], sizeof(*base));
3879 
3880 	/*
3881 	 * We can only optimize parent->core.live_zero for live chains.
3882 	 */
3883 	if (parent->core.live_zero == i + 1) {
3884 		while (--i >= 0 && base[i].type == 0)
3885 			;
3886 		parent->core.live_zero = i + 1;
3887 	}
3888 
3889 	/*
3890 	 * Clear appropriate blockmap flags in chain.
3891 	 */
3892 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
3893 					HAMMER2_CHAIN_BMAPUPD);
3894 }
3895 
3896 /*
3897  * Insert the specified element.  The block array must not already have the
3898  * element and must have space available for the insertion.
3899  *
3900  * The spin lock on the related chain must be held.
3901  *
3902  * NOTE: live_count was adjusted when the chain was deleted, so it does not
3903  *	 need to be adjusted when we commit the media change.
3904  */
3905 void
3906 hammer2_base_insert(hammer2_chain_t *parent,
3907 		    hammer2_blockref_t *base, int count,
3908 		    int *cache_indexp, hammer2_chain_t *chain)
3909 {
3910 	hammer2_blockref_t *elm = &chain->bref;
3911 	hammer2_key_t key_next;
3912 	hammer2_key_t xkey;
3913 	int i;
3914 	int j;
3915 	int k;
3916 	int l;
3917 	int u = 1;
3918 
3919 	/*
3920 	 * Insert new element.  Expect the element to not already exist
3921 	 * unless we are replacing it.
3922 	 *
3923 	 * XXX see caller, flush code not yet sophisticated enough to prevent
3924 	 *     re-flushed in some cases.
3925 	 */
3926 	key_next = 0; /* max range */
3927 	i = hammer2_base_find(parent, base, count, cache_indexp,
3928 			      &key_next, elm->key, elm->key);
3929 
3930 	/*
3931 	 * Shortcut fill optimization, typical ordered insertion(s) may not
3932 	 * require a search.
3933 	 */
3934 	KKASSERT(i >= 0 && i <= count);
3935 
3936 	/*
3937 	 * Set appropriate blockmap flags in chain.
3938 	 */
3939 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
3940 
3941 	/*
3942 	 * Update stats and zero the entry
3943 	 */
3944 	parent->bref.data_count += elm->data_count;
3945 	parent->bref.data_count += (hammer2_off_t)1 <<
3946 			(int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
3947 	parent->bref.inode_count += elm->inode_count;
3948 	if (elm->type == HAMMER2_BREF_TYPE_INODE)
3949 		parent->bref.inode_count += 1;
3950 
3951 
3952 	/*
3953 	 * We can only optimize parent->core.live_zero for live chains.
3954 	 */
3955 	if (i == count && parent->core.live_zero < count) {
3956 		i = parent->core.live_zero++;
3957 		base[i] = *elm;
3958 		return;
3959 	}
3960 
3961 	xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
3962 	if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
3963 		hammer2_spin_unex(&parent->core.spin);
3964 		panic("insert base %p overlapping elements at %d elm %p\n",
3965 		      base, i, elm);
3966 	}
3967 
3968 	/*
3969 	 * Try to find an empty slot before or after.
3970 	 */
3971 	j = i;
3972 	k = i;
3973 	while (j > 0 || k < count) {
3974 		--j;
3975 		if (j >= 0 && base[j].type == 0) {
3976 			if (j == i - 1) {
3977 				base[j] = *elm;
3978 			} else {
3979 				bcopy(&base[j+1], &base[j],
3980 				      (i - j - 1) * sizeof(*base));
3981 				base[i - 1] = *elm;
3982 			}
3983 			goto validate;
3984 		}
3985 		++k;
3986 		if (k < count && base[k].type == 0) {
3987 			bcopy(&base[i], &base[i+1],
3988 			      (k - i) * sizeof(hammer2_blockref_t));
3989 			base[i] = *elm;
3990 
3991 			/*
3992 			 * We can only update parent->core.live_zero for live
3993 			 * chains.
3994 			 */
3995 			if (parent->core.live_zero <= k)
3996 				parent->core.live_zero = k + 1;
3997 			u = 2;
3998 			goto validate;
3999 		}
4000 	}
4001 	panic("hammer2_base_insert: no room!");
4002 
4003 	/*
4004 	 * Debugging
4005 	 */
4006 validate:
4007 	key_next = 0;
4008 	for (l = 0; l < count; ++l) {
4009 		if (base[l].type) {
4010 			key_next = base[l].key +
4011 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
4012 			break;
4013 		}
4014 	}
4015 	while (++l < count) {
4016 		if (base[l].type) {
4017 			if (base[l].key <= key_next)
4018 				panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
4019 			key_next = base[l].key +
4020 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
4021 
4022 		}
4023 	}
4024 
4025 }
4026 
4027 #if 0
4028 
4029 /*
4030  * Sort the blockref array for the chain.  Used by the flush code to
4031  * sort the blockref[] array.
4032  *
4033  * The chain must be exclusively locked AND spin-locked.
4034  */
4035 typedef hammer2_blockref_t *hammer2_blockref_p;
4036 
4037 static
4038 int
4039 hammer2_base_sort_callback(const void *v1, const void *v2)
4040 {
4041 	hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
4042 	hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
4043 
4044 	/*
4045 	 * Make sure empty elements are placed at the end of the array
4046 	 */
4047 	if (bref1->type == 0) {
4048 		if (bref2->type == 0)
4049 			return(0);
4050 		return(1);
4051 	} else if (bref2->type == 0) {
4052 		return(-1);
4053 	}
4054 
4055 	/*
4056 	 * Sort by key
4057 	 */
4058 	if (bref1->key < bref2->key)
4059 		return(-1);
4060 	if (bref1->key > bref2->key)
4061 		return(1);
4062 	return(0);
4063 }
4064 
4065 void
4066 hammer2_base_sort(hammer2_chain_t *chain)
4067 {
4068 	hammer2_blockref_t *base;
4069 	int count;
4070 
4071 	switch(chain->bref.type) {
4072 	case HAMMER2_BREF_TYPE_INODE:
4073 		/*
4074 		 * Special shortcut for embedded data returns the inode
4075 		 * itself.  Callers must detect this condition and access
4076 		 * the embedded data (the strategy code does this for us).
4077 		 *
4078 		 * This is only applicable to regular files and softlinks.
4079 		 */
4080 		if (chain->data->ipdata.meta.op_flags &
4081 		    HAMMER2_OPFLAG_DIRECTDATA) {
4082 			return;
4083 		}
4084 		base = &chain->data->ipdata.u.blockset.blockref[0];
4085 		count = HAMMER2_SET_COUNT;
4086 		break;
4087 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4088 	case HAMMER2_BREF_TYPE_INDIRECT:
4089 		/*
4090 		 * Optimize indirect blocks in the INITIAL state to avoid
4091 		 * I/O.
4092 		 */
4093 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4094 		base = &chain->data->npdata[0];
4095 		count = chain->bytes / sizeof(hammer2_blockref_t);
4096 		break;
4097 	case HAMMER2_BREF_TYPE_VOLUME:
4098 		base = &chain->data->voldata.sroot_blockset.blockref[0];
4099 		count = HAMMER2_SET_COUNT;
4100 		break;
4101 	case HAMMER2_BREF_TYPE_FREEMAP:
4102 		base = &chain->data->blkset.blockref[0];
4103 		count = HAMMER2_SET_COUNT;
4104 		break;
4105 	default:
4106 		kprintf("hammer2_chain_lookup: unrecognized "
4107 			"blockref(A) type: %d",
4108 		        chain->bref.type);
4109 		while (1)
4110 			tsleep(&base, 0, "dead", 0);
4111 		panic("hammer2_chain_lookup: unrecognized "
4112 		      "blockref(A) type: %d",
4113 		      chain->bref.type);
4114 		base = NULL;	/* safety */
4115 		count = 0;	/* safety */
4116 	}
4117 	kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
4118 }
4119 
4120 #endif
4121 
4122 /*
4123  * Chain memory management
4124  */
4125 void
4126 hammer2_chain_wait(hammer2_chain_t *chain)
4127 {
4128 	tsleep(chain, 0, "chnflw", 1);
4129 }
4130 
4131 const hammer2_media_data_t *
4132 hammer2_chain_rdata(hammer2_chain_t *chain)
4133 {
4134 	KKASSERT(chain->data != NULL);
4135 	return (chain->data);
4136 }
4137 
4138 hammer2_media_data_t *
4139 hammer2_chain_wdata(hammer2_chain_t *chain)
4140 {
4141 	KKASSERT(chain->data != NULL);
4142 	return (chain->data);
4143 }
4144 
4145 /*
4146  * Set the check data for a chain.  This can be a heavy-weight operation
4147  * and typically only runs on-flush.  For file data check data is calculated
4148  * when the logical buffers are flushed.
4149  */
4150 void
4151 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
4152 {
4153 	chain->bref.flags &= ~HAMMER2_BREF_FLAG_ZERO;
4154 
4155 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
4156 	case HAMMER2_CHECK_NONE:
4157 		break;
4158 	case HAMMER2_CHECK_DISABLED:
4159 		break;
4160 	case HAMMER2_CHECK_ISCSI32:
4161 		chain->bref.check.iscsi32.value =
4162 			hammer2_icrc32(bdata, chain->bytes);
4163 		break;
4164 	case HAMMER2_CHECK_CRC64:
4165 		chain->bref.check.crc64.value = 0;
4166 		/* XXX */
4167 		break;
4168 	case HAMMER2_CHECK_SHA192:
4169 		{
4170 			SHA256_CTX hash_ctx;
4171 			union {
4172 				uint8_t digest[SHA256_DIGEST_LENGTH];
4173 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
4174 			} u;
4175 
4176 			SHA256_Init(&hash_ctx);
4177 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
4178 			SHA256_Final(u.digest, &hash_ctx);
4179 			u.digest64[2] ^= u.digest64[3];
4180 			bcopy(u.digest,
4181 			      chain->bref.check.sha192.data,
4182 			      sizeof(chain->bref.check.sha192.data));
4183 		}
4184 		break;
4185 	case HAMMER2_CHECK_FREEMAP:
4186 		chain->bref.check.freemap.icrc32 =
4187 			hammer2_icrc32(bdata, chain->bytes);
4188 		break;
4189 	default:
4190 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
4191 			chain->bref.methods);
4192 		break;
4193 	}
4194 }
4195 
4196 int
4197 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
4198 {
4199 	int r;
4200 
4201 	if (chain->bref.flags & HAMMER2_BREF_FLAG_ZERO)
4202 		return 1;
4203 
4204 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
4205 	case HAMMER2_CHECK_NONE:
4206 		r = 1;
4207 		break;
4208 	case HAMMER2_CHECK_DISABLED:
4209 		r = 1;
4210 		break;
4211 	case HAMMER2_CHECK_ISCSI32:
4212 		r = (chain->bref.check.iscsi32.value ==
4213 		     hammer2_icrc32(bdata, chain->bytes));
4214 		break;
4215 	case HAMMER2_CHECK_CRC64:
4216 		r = (chain->bref.check.crc64.value == 0);
4217 		/* XXX */
4218 		break;
4219 	case HAMMER2_CHECK_SHA192:
4220 		{
4221 			SHA256_CTX hash_ctx;
4222 			union {
4223 				uint8_t digest[SHA256_DIGEST_LENGTH];
4224 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
4225 			} u;
4226 
4227 			SHA256_Init(&hash_ctx);
4228 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
4229 			SHA256_Final(u.digest, &hash_ctx);
4230 			u.digest64[2] ^= u.digest64[3];
4231 			if (bcmp(u.digest,
4232 				 chain->bref.check.sha192.data,
4233 			         sizeof(chain->bref.check.sha192.data)) == 0) {
4234 				r = 1;
4235 			} else {
4236 				r = 0;
4237 			}
4238 		}
4239 		break;
4240 	case HAMMER2_CHECK_FREEMAP:
4241 		r = (chain->bref.check.freemap.icrc32 ==
4242 		     hammer2_icrc32(bdata, chain->bytes));
4243 		if (r == 0) {
4244 			kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
4245 				chain->bref.check.freemap.icrc32,
4246 				hammer2_icrc32(bdata, chain->bytes), chain->bytes);
4247 			if (chain->dio)
4248 				kprintf("dio %p buf %016jx,%d bdata %p/%p\n",
4249 					chain->dio, chain->dio->bp->b_loffset, chain->dio->bp->b_bufsize, bdata, chain->dio->bp->b_data);
4250 		}
4251 
4252 		break;
4253 	default:
4254 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
4255 			chain->bref.methods);
4256 		r = 1;
4257 		break;
4258 	}
4259 	return r;
4260 }
4261 
4262 /*
4263  * The caller presents a shared-locked (parent, chain) where the chain
4264  * is of type HAMMER2_OBJTYPE_HARDLINK.  The caller must hold the ip
4265  * structure representing the inode locked to prevent
4266  * consolidation/deconsolidation races.
4267  *
4268  * The flags passed in are LOOKUP flags, not RESOLVE flags.  Only
4269  * HAMMER2_LOOKUP_SHARED is supported.
4270  *
4271  * We locate the hardlink in the current or a common parent directory.
4272  *
4273  * If we are unable to locate the hardlink, EIO is returned and
4274  * (*chainp) is unlocked and dropped.
4275  */
4276 int
4277 hammer2_chain_hardlink_find(hammer2_inode_t *dip,
4278 			hammer2_chain_t **parentp,
4279 			hammer2_chain_t **chainp,
4280 			int flags)
4281 {
4282 	hammer2_chain_t *parent;
4283 	hammer2_chain_t *rchain;
4284 	hammer2_key_t key_dummy;
4285 	hammer2_key_t lhc;
4286 	int cache_index = -1;
4287 	int resolve_flags;
4288 
4289 	resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
4290 			HAMMER2_RESOLVE_SHARED : 0;
4291 
4292 	/*
4293 	 * Obtain the key for the hardlink from *chainp.
4294 	 */
4295 	rchain = *chainp;
4296 	lhc = rchain->data->ipdata.meta.inum;
4297 	hammer2_chain_unlock(rchain);
4298 	hammer2_chain_drop(rchain);
4299 	rchain = NULL;
4300 
4301 	for (;;) {
4302 		int again;
4303 
4304 		rchain = hammer2_chain_lookup(parentp, &key_dummy,
4305 					      lhc, lhc,
4306 					      &cache_index, flags);
4307 		if (rchain)
4308 			break;
4309 
4310 		/*
4311 		 * Iterate parents, handle parent rename races by retrying
4312 		 * the operation.
4313 		 */
4314 		again = 0;
4315 		for (;;) {
4316 			parent = *parentp;
4317 			if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4318 				if (again == 1)
4319 					break;
4320 				++again;
4321 			}
4322 			if (parent->bref.flags & HAMMER2_BREF_FLAG_PFSROOT)
4323 				goto done;
4324 			for (;;) {
4325 				if (parent->parent == NULL)
4326 					goto done;
4327 				parent = parent->parent;
4328 				hammer2_chain_ref(parent);
4329 				hammer2_chain_unlock(*parentp);
4330 				hammer2_chain_lock(parent,
4331 						   HAMMER2_RESOLVE_ALWAYS |
4332 						   resolve_flags);
4333 				if ((*parentp)->parent == parent) {
4334 					hammer2_chain_drop(*parentp);
4335 					*parentp = parent;
4336 					break;
4337 				}
4338 				hammer2_chain_unlock(parent);
4339 				hammer2_chain_drop(parent);
4340 				hammer2_chain_lock(*parentp,
4341 						   HAMMER2_RESOLVE_ALWAYS |
4342 						   resolve_flags);
4343 				parent = *parentp;
4344 			}
4345 		}
4346 	}
4347 done:
4348 
4349 	*chainp = rchain;
4350 	return (rchain ? 0 : EINVAL);
4351 }
4352 
4353 /*
4354  * Used by the bulkscan code to snapshot the synchronized storage for
4355  * a volume, allowing it to be scanned concurrently against normal
4356  * operation.
4357  */
4358 hammer2_chain_t *
4359 hammer2_chain_bulksnap(hammer2_chain_t *chain)
4360 {
4361 	hammer2_chain_t *copy;
4362 
4363 	copy = hammer2_chain_alloc(chain->hmp, chain->pmp, &chain->bref);
4364 	switch(chain->bref.type) {
4365 	case HAMMER2_BREF_TYPE_VOLUME:
4366 		copy->data = kmalloc(sizeof(copy->data->voldata),
4367 				     chain->hmp->mchain,
4368 				     M_WAITOK | M_ZERO);
4369 		hammer2_spin_ex(&chain->core.spin);
4370 		copy->data->voldata = chain->data->voldata;
4371 		hammer2_spin_unex(&chain->core.spin);
4372 		break;
4373 	case HAMMER2_BREF_TYPE_FREEMAP:
4374 		copy->data = kmalloc(sizeof(hammer2_blockset_t),
4375 				     chain->hmp->mchain,
4376 				     M_WAITOK | M_ZERO);
4377 		hammer2_spin_ex(&chain->core.spin);
4378 		copy->data->blkset = chain->data->blkset;
4379 		hammer2_spin_unex(&chain->core.spin);
4380 		break;
4381 	default:
4382 		break;
4383 	}
4384 	return copy;
4385 }
4386 
4387 void
4388 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
4389 {
4390 	switch(copy->bref.type) {
4391 	case HAMMER2_BREF_TYPE_VOLUME:
4392 	case HAMMER2_BREF_TYPE_FREEMAP:
4393 		KKASSERT(copy->data);
4394 		kfree(copy->data, copy->hmp->mchain);
4395 		copy->data = NULL;
4396 	default:
4397 		break;
4398 	}
4399 	hammer2_chain_drop(copy);
4400 }
4401 
4402 /*
4403  * Create a snapshot of the specified {parent, ochain} with the specified
4404  * label.  The originating hammer2_inode must be exclusively locked for
4405  * safety.
4406  *
4407  * The ioctl code has already synced the filesystem.
4408  */
4409 int
4410 hammer2_chain_snapshot(hammer2_chain_t *chain, hammer2_ioc_pfs_t *pmp,
4411 		       hammer2_tid_t mtid)
4412 {
4413 	hammer2_dev_t *hmp;
4414 	const hammer2_inode_data_t *ripdata;
4415 	hammer2_inode_data_t *wipdata;
4416 	hammer2_chain_t *nchain;
4417 	hammer2_inode_t *nip;
4418 	size_t name_len;
4419 	hammer2_key_t lhc;
4420 	struct vattr vat;
4421 #if 0
4422 	uuid_t opfs_clid;
4423 #endif
4424 	int error;
4425 
4426 	kprintf("snapshot %s\n", pmp->name);
4427 
4428 	name_len = strlen(pmp->name);
4429 	lhc = hammer2_dirhash(pmp->name, name_len);
4430 
4431 	/*
4432 	 * Get the clid
4433 	 */
4434 	ripdata = &chain->data->ipdata;
4435 #if 0
4436 	opfs_clid = ripdata->meta.pfs_clid;
4437 #endif
4438 	hmp = chain->hmp;
4439 
4440 	/*
4441 	 * Create the snapshot directory under the super-root
4442 	 *
4443 	 * Set PFS type, generate a unique filesystem id, and generate
4444 	 * a cluster id.  Use the same clid when snapshotting a PFS root,
4445 	 * which theoretically allows the snapshot to be used as part of
4446 	 * the same cluster (perhaps as a cache).
4447 	 *
4448 	 * Copy the (flushed) blockref array.  Theoretically we could use
4449 	 * chain_duplicate() but it becomes difficult to disentangle
4450 	 * the shared core so for now just brute-force it.
4451 	 */
4452 	VATTR_NULL(&vat);
4453 	vat.va_type = VDIR;
4454 	vat.va_mode = 0755;
4455 	nip = hammer2_inode_create(hmp->spmp->iroot, &vat, proc0.p_ucred,
4456 				   pmp->name, name_len, 0,
4457 				   1, 0, 0,
4458 				   HAMMER2_INSERT_PFSROOT, &error);
4459 
4460 	if (nip) {
4461 		hammer2_inode_modify(nip);
4462 		nchain = hammer2_inode_chain(nip, 0, HAMMER2_RESOLVE_ALWAYS);
4463 		hammer2_chain_modify(nchain, mtid, 0, 0);
4464 		wipdata = &nchain->data->ipdata;
4465 
4466 		nip->meta.pfs_type = HAMMER2_PFSTYPE_MASTER;
4467 		nip->meta.pfs_subtype = HAMMER2_PFSSUBTYPE_SNAPSHOT;
4468 		nip->meta.op_flags |= HAMMER2_OPFLAG_PFSROOT;
4469 		kern_uuidgen(&nip->meta.pfs_fsid, 1);
4470 
4471 		/*
4472 		 * Give the snapshot its own private cluster id.  As a
4473 		 * snapshot no further synchronization with the original
4474 		 * cluster will be done.
4475 		 */
4476 #if 0
4477 		if (chain->flags & HAMMER2_CHAIN_PFSBOUNDARY)
4478 			nip->meta.pfs_clid = opfs_clid;
4479 		else
4480 			kern_uuidgen(&nip->meta.pfs_clid, 1);
4481 #endif
4482 		kern_uuidgen(&nip->meta.pfs_clid, 1);
4483 		nchain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
4484 
4485 		/* XXX hack blockset copy */
4486 		/* XXX doesn't work with real cluster */
4487 		wipdata->meta = nip->meta;
4488 		wipdata->u.blockset = ripdata->u.blockset;
4489 		hammer2_flush(nchain, 1);
4490 		hammer2_chain_unlock(nchain);
4491 		hammer2_chain_drop(nchain);
4492 		hammer2_inode_unlock(nip);
4493 	}
4494 	return (error);
4495 }
4496