xref: /dragonfly/sys/vfs/hammer2/hammer2_disk.h (revision 029e6489)
1 /*
2  * Copyright (c) 2011-2019 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #ifndef _VFS_HAMMER2_DISK_H_
37 #define _VFS_HAMMER2_DISK_H_
38 
39 #ifndef _SYS_UUID_H_
40 #include <sys/uuid.h>
41 #endif
42 #ifndef _SYS_DMSG_H_
43 #include <sys/dmsg.h>
44 #endif
45 
46 /*
47  * The structures below represent the on-disk media structures for the HAMMER2
48  * filesystem.  Note that all fields for on-disk structures are naturally
49  * aligned.  The host endian format is typically used - compatibility is
50  * possible if the implementation detects reversed endian and adjusts accesses
51  * accordingly.
52  *
53  * HAMMER2 primarily revolves around the directory topology:  inodes,
54  * directory entries, and block tables.  Block device buffer cache buffers
55  * are always 64KB.  Logical file buffers are typically 16KB.  All data
56  * references utilize 64-bit byte offsets.
57  *
58  * Free block management is handled independently using blocks reserved by
59  * the media topology.
60  */
61 
62 /*
63  * The data at the end of a file or directory may be a fragment in order
64  * to optimize storage efficiency.  The minimum fragment size is 1KB.
65  * Since allocations are in powers of 2 fragments must also be sized in
66  * powers of 2 (1024, 2048, ... 65536).
67  *
68  * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K),
69  * which is 2^16.  Larger extents may be supported in the future.  Smaller
70  * fragments might be supported in the future (down to 64 bytes is possible),
71  * but probably will not be.
72  *
73  * A full indirect block use supports 512 x 128-byte blockrefs in a 64KB
74  * buffer.  Indirect blocks down to 1KB are supported to keep small
75  * directories small.
76  *
77  * A maximally sized file (2^64-1 bytes) requires ~6 indirect block levels
78  * using 64KB indirect blocks (128 byte refs, 512 or radix 9 per indblk).
79  *
80  *	16(datablk) + 9 + 9 + 9 + 9 + 9 + 9 = ~70.
81  *	16(datablk) + 7 + 9 + 9 + 9 + 9 + 9 = ~68.  (smaller top level indblk)
82  *
83  * The actual depth depends on copies redundancy and whether the filesystem
84  * has chosen to use a smaller indirect block size at the top level or not.
85  */
86 #define HAMMER2_ALLOC_MIN	1024	/* minimum allocation size */
87 #define HAMMER2_RADIX_MIN	10	/* minimum allocation size 2^N */
88 #define HAMMER2_ALLOC_MAX	65536	/* maximum allocation size */
89 #define HAMMER2_RADIX_MAX	16	/* maximum allocation size 2^N */
90 #define HAMMER2_RADIX_KEY	64	/* number of bits in key */
91 
92 /*
93  * MINALLOCSIZE		- The minimum allocation size.  This can be smaller
94  *		  	  or larger than the minimum physical IO size.
95  *
96  *			  NOTE: Should not be larger than 1K since inodes
97  *				are 1K.
98  *
99  * MINIOSIZE		- The minimum IO size.  This must be less than
100  *			  or equal to HAMMER2_LBUFSIZE.
101  *
102  * HAMMER2_LBUFSIZE	- Nominal buffer size for I/O rollups.
103  *
104  * HAMMER2_PBUFSIZE	- Topological block size used by files for all
105  *			  blocks except the block straddling EOF.
106  *
107  * HAMMER2_SEGSIZE	- Allocation map segment size, typically 4MB
108  *			  (space represented by a level0 bitmap).
109  */
110 
111 #define HAMMER2_SEGSIZE		(1 << HAMMER2_FREEMAP_LEVEL0_RADIX)
112 #define HAMMER2_SEGRADIX	HAMMER2_FREEMAP_LEVEL0_RADIX
113 
114 #define HAMMER2_PBUFRADIX	16	/* physical buf (1<<16) bytes */
115 #define HAMMER2_PBUFSIZE	65536
116 #define HAMMER2_LBUFRADIX	14	/* logical buf (1<<14) bytes */
117 #define HAMMER2_LBUFSIZE	16384
118 
119 /*
120  * Generally speaking we want to use 16K and 64K I/Os
121  */
122 #define HAMMER2_MINIORADIX	HAMMER2_LBUFRADIX
123 #define HAMMER2_MINIOSIZE	HAMMER2_LBUFSIZE
124 
125 #define HAMMER2_IND_BYTES_MIN	4096
126 #define HAMMER2_IND_BYTES_NOM	HAMMER2_LBUFSIZE
127 #define HAMMER2_IND_BYTES_MAX	HAMMER2_PBUFSIZE
128 #define HAMMER2_IND_RADIX_MIN	12
129 #define HAMMER2_IND_RADIX_NOM	HAMMER2_LBUFRADIX
130 #define HAMMER2_IND_RADIX_MAX	HAMMER2_PBUFRADIX
131 #define HAMMER2_IND_COUNT_MIN	(HAMMER2_IND_BYTES_MIN / \
132 				 sizeof(hammer2_blockref_t))
133 #define HAMMER2_IND_COUNT_MAX	(HAMMER2_IND_BYTES_MAX / \
134 				 sizeof(hammer2_blockref_t))
135 
136 /*
137  * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that
138  * any element can occur at any index and holes can be anywhere.  As a
139  * future optimization we will be able to flag that such arrays are sorted
140  * and thus optimize lookups, but for now we don't.
141  *
142  * Inodes embed either 512 bytes of direct data or an array of 4 blockrefs,
143  * resulting in highly efficient storage for files <= 512 bytes and for files
144  * <= 512KB.  Up to 4 directory entries can be referenced from a directory
145  * without requiring an indirect block.
146  *
147  * Indirect blocks are typically either 4KB (64 blockrefs / ~4MB represented),
148  * or 64KB (1024 blockrefs / ~64MB represented).
149  */
150 #define HAMMER2_SET_RADIX		2	/* radix 2 = 4 entries */
151 #define HAMMER2_SET_COUNT		(1 << HAMMER2_SET_RADIX)
152 #define HAMMER2_EMBEDDED_BYTES		512	/* inode blockset/dd size */
153 #define HAMMER2_EMBEDDED_RADIX		9
154 
155 #define HAMMER2_PBUFMASK	(HAMMER2_PBUFSIZE - 1)
156 #define HAMMER2_LBUFMASK	(HAMMER2_LBUFSIZE - 1)
157 #define HAMMER2_SEGMASK		(HAMMER2_SEGSIZE - 1)
158 
159 #define HAMMER2_LBUFMASK64	((hammer2_off_t)HAMMER2_LBUFMASK)
160 #define HAMMER2_PBUFSIZE64	((hammer2_off_t)HAMMER2_PBUFSIZE)
161 #define HAMMER2_PBUFMASK64	((hammer2_off_t)HAMMER2_PBUFMASK)
162 #define HAMMER2_SEGSIZE64	((hammer2_off_t)HAMMER2_SEGSIZE)
163 #define HAMMER2_SEGMASK64	((hammer2_off_t)HAMMER2_SEGMASK)
164 
165 #define HAMMER2_UUID_STRING	"5cbb9ad1-862d-11dc-a94d-01301bb8a9f5"
166 
167 /*
168  * A 4MB segment is reserved at the beginning of each 2GB zone.  This segment
169  * contains the volume header (or backup volume header), the free block
170  * table, and possibly other information in the future.  A 4MB segment for
171  * freemap is reserved at the beginning of every 1GB.
172  *
173  * 4MB = 64 x 64K blocks.  Each 4MB segment is broken down as follows:
174  *
175  * ==========
176  *  0 volume header (for the first four 2GB zones)
177  *  1 freemap00 level1 FREEMAP_LEAF (256 x 128B bitmap data per 1GB)
178  *  2           level2 FREEMAP_NODE (256 x 128B indirect block per 256GB)
179  *  3           level3 FREEMAP_NODE (256 x 128B indirect block per 64TB)
180  *  4           level4 FREEMAP_NODE (256 x 128B indirect block per 16PB)
181  *  5           level5 FREEMAP_NODE (256 x 128B indirect block per 4EB)
182  *  6 freemap01 level1 (rotation)
183  *  7           level2
184  *  8           level3
185  *  9           level4
186  * 10           level5
187  * 11 freemap02 level1 (rotation)
188  * 12           level2
189  * 13           level3
190  * 14           level4
191  * 15           level5
192  * 16 freemap03 level1 (rotation)
193  * 17           level2
194  * 18           level3
195  * 19           level4
196  * 20           level5
197  * 21 freemap04 level1 (rotation)
198  * 22           level2
199  * 23           level3
200  * 24           level4
201  * 25           level5
202  * 26 freemap05 level1 (rotation)
203  * 27           level2
204  * 28           level3
205  * 29           level4
206  * 30           level5
207  * 31 freemap06 level1 (rotation)
208  * 32           level2
209  * 33           level3
210  * 34           level4
211  * 35           level5
212  * 36 freemap07 level1 (rotation)
213  * 37           level2
214  * 38           level3
215  * 39           level4
216  * 40           level5
217  * 41 unused
218  * .. unused
219  * 63 unused
220  * ==========
221  *
222  * The first four 2GB zones contain volume headers and volume header backups.
223  * After that the volume header block# is reserved for future use.  Similarly,
224  * there are many blocks related to various Freemap levels which are not
225  * used in every segment and those are also reserved for future use.
226  * Note that each FREEMAP_LEAF or FREEMAP_NODE uses 32KB out of 64KB slot.
227  *
228  *			Freemap (see the FREEMAP document)
229  *
230  * The freemap utilizes blocks #1-40 in 8 sets of 5 blocks.  Each block in
231  * a set represents a level of depth in the freemap topology.  Eight sets
232  * exist to prevent live updates from disturbing the state of the freemap
233  * were a crash/reboot to occur.  That is, a live update is not committed
234  * until the update's flush reaches the volume root.  There are FOUR volume
235  * roots representing the last four synchronization points, so the freemap
236  * must be consistent no matter which volume root is chosen by the mount
237  * code.
238  *
239  * Each freemap set is 5 x 64K blocks and represents the 1GB, 256GB, 64TB,
240  * 16PB and 4EB indirect map.  The volume header itself has a set of 4 freemap
241  * blockrefs representing another 2 bits, giving us a total 64 bits of
242  * representable address space.
243  *
244  * The Level 0 64KB block represents 1GB of storage represented by 32KB
245  * (256 x struct hammer2_bmap_data).  Each structure represents 4MB of storage
246  * and has a 512 bit bitmap, using 2 bits to represent a 16KB chunk of
247  * storage.  These 2 bits represent the following states:
248  *
249  *	00	Free
250  *	01	(reserved) (Possibly partially allocated)
251  *	10	Possibly free
252  *	11	Allocated
253  *
254  * One important thing to note here is that the freemap resolution is 16KB,
255  * but the minimum storage allocation size is 1KB.  The hammer2 vfs keeps
256  * track of sub-allocations in memory, which means that on a unmount or reboot
257  * the entire 16KB of a partially allocated block will be considered fully
258  * allocated.  It is possible for fragmentation to build up over time, but
259  * defragmentation is fairly easy to accomplish since all modifications
260  * allocate a new block.
261  *
262  * The Second thing to note is that due to the way snapshots and inode
263  * replication works, deleting a file cannot immediately free the related
264  * space.  Furthermore, deletions often do not bother to traverse the
265  * block subhierarchy being deleted.  And to go even further, whole
266  * sub-directory trees can be deleted simply by deleting the directory inode
267  * at the top.  So even though we have a symbol to represent a 'possibly free'
268  * block (binary 10), only the bulk free scanning code can actually use it.
269  * Normal 'rm's or other deletions do not.
270  *
271  * WARNING!  ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX
272  *	     (i.e. a multiple of 4MB).  VOLUME_ALIGN must be >= ZONE_SEG.
273  *
274  * In Summary:
275  *
276  * (1) Modifications to freemap blocks 'allocate' a new copy (aka use a block
277  *     from the next set).  The new copy is reused until a flush occurs at
278  *     which point the next modification will then rotate to the next set.
279  */
280 #define HAMMER2_VOLUME_ALIGN		(8 * 1024 * 1024)
281 #define HAMMER2_VOLUME_ALIGN64		((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
282 #define HAMMER2_VOLUME_ALIGNMASK	(HAMMER2_VOLUME_ALIGN - 1)
283 #define HAMMER2_VOLUME_ALIGNMASK64     ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK)
284 
285 #define HAMMER2_NEWFS_ALIGN		(HAMMER2_VOLUME_ALIGN)
286 #define HAMMER2_NEWFS_ALIGN64		((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
287 #define HAMMER2_NEWFS_ALIGNMASK		(HAMMER2_VOLUME_ALIGN - 1)
288 #define HAMMER2_NEWFS_ALIGNMASK64	((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK)
289 
290 #define HAMMER2_ZONE_BYTES64		(2LLU * 1024 * 1024 * 1024)
291 #define HAMMER2_ZONE_MASK64		(HAMMER2_ZONE_BYTES64 - 1)
292 #define HAMMER2_ZONE_SEG		(4 * 1024 * 1024)
293 #define HAMMER2_ZONE_SEG64		((hammer2_off_t)HAMMER2_ZONE_SEG)
294 #define HAMMER2_ZONE_BLOCKS_SEG		(HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE)
295 
296 #define HAMMER2_ZONE_FREEMAP_INC	5	/* 5 deep */
297 
298 #define HAMMER2_ZONE_VOLHDR		0	/* volume header or backup */
299 #define HAMMER2_ZONE_FREEMAP_00		1	/* normal freemap rotation */
300 #define HAMMER2_ZONE_FREEMAP_01		6	/* normal freemap rotation */
301 #define HAMMER2_ZONE_FREEMAP_02		11	/* normal freemap rotation */
302 #define HAMMER2_ZONE_FREEMAP_03		16	/* normal freemap rotation */
303 #define HAMMER2_ZONE_FREEMAP_04		21	/* normal freemap rotation */
304 #define HAMMER2_ZONE_FREEMAP_05		26	/* normal freemap rotation */
305 #define HAMMER2_ZONE_FREEMAP_06		31	/* normal freemap rotation */
306 #define HAMMER2_ZONE_FREEMAP_07		36	/* normal freemap rotation */
307 #define HAMMER2_ZONE_FREEMAP_END	41	/* (non-inclusive) */
308 
309 #define HAMMER2_ZONE_UNUSED41		41
310 #define HAMMER2_ZONE_UNUSED42		42
311 #define HAMMER2_ZONE_UNUSED43		43
312 #define HAMMER2_ZONE_UNUSED44		44
313 #define HAMMER2_ZONE_UNUSED45		45
314 #define HAMMER2_ZONE_UNUSED46		46
315 #define HAMMER2_ZONE_UNUSED47		47
316 #define HAMMER2_ZONE_UNUSED48		48
317 #define HAMMER2_ZONE_UNUSED49		49
318 #define HAMMER2_ZONE_UNUSED50		50
319 #define HAMMER2_ZONE_UNUSED51		51
320 #define HAMMER2_ZONE_UNUSED52		52
321 #define HAMMER2_ZONE_UNUSED53		53
322 #define HAMMER2_ZONE_UNUSED54		54
323 #define HAMMER2_ZONE_UNUSED55		55
324 #define HAMMER2_ZONE_UNUSED56		56
325 #define HAMMER2_ZONE_UNUSED57		57
326 #define HAMMER2_ZONE_UNUSED58		58
327 #define HAMMER2_ZONE_UNUSED59		59
328 #define HAMMER2_ZONE_UNUSED60		60
329 #define HAMMER2_ZONE_UNUSED61		61
330 #define HAMMER2_ZONE_UNUSED62		62
331 #define HAMMER2_ZONE_UNUSED63		63
332 #define HAMMER2_ZONE_END		64	/* non-inclusive */
333 
334 #define HAMMER2_NFREEMAPS		8	/* FREEMAP_00 - FREEMAP_07 */
335 
336 						/* relative to FREEMAP_x */
337 #define HAMMER2_ZONEFM_LEVEL1		0	/* 1GB leafmap */
338 #define HAMMER2_ZONEFM_LEVEL2		1	/* 256GB indmap */
339 #define HAMMER2_ZONEFM_LEVEL3		2	/* 64TB indmap */
340 #define HAMMER2_ZONEFM_LEVEL4		3	/* 16PB indmap */
341 #define HAMMER2_ZONEFM_LEVEL5		4	/* 4EB indmap */
342 /* LEVEL6 is a set of 4 blockrefs in the volume header 16EB */
343 
344 /*
345  * Freemap radix.  Assumes a set-count of 4, 128-byte blockrefs,
346  * 32KB indirect block for freemap (LEVELN_PSIZE below).
347  *
348  * Leaf entry represents 4MB of storage broken down into a 512-bit
349  * bitmap, 2-bits per entry.  So course bitmap item represents 16KB.
350  */
351 #if HAMMER2_SET_COUNT != 4
352 #error "hammer2_disk.h - freemap assumes SET_COUNT is 4"
353 #endif
354 #define HAMMER2_FREEMAP_LEVEL6_RADIX	64	/* 16EB (end) */
355 #define HAMMER2_FREEMAP_LEVEL5_RADIX	62	/* 4EB */
356 #define HAMMER2_FREEMAP_LEVEL4_RADIX	54	/* 16PB */
357 #define HAMMER2_FREEMAP_LEVEL3_RADIX	46	/* 64TB */
358 #define HAMMER2_FREEMAP_LEVEL2_RADIX	38	/* 256GB */
359 #define HAMMER2_FREEMAP_LEVEL1_RADIX	30	/* 1GB */
360 #define HAMMER2_FREEMAP_LEVEL0_RADIX	22	/* 4MB (128by in l-1 leaf) */
361 
362 #define HAMMER2_FREEMAP_LEVELN_PSIZE	32768	/* physical bytes */
363 
364 #define HAMMER2_FREEMAP_LEVEL5_SIZE	((hammer2_off_t)1 <<		\
365 					 HAMMER2_FREEMAP_LEVEL5_RADIX)
366 #define HAMMER2_FREEMAP_LEVEL4_SIZE	((hammer2_off_t)1 <<		\
367 					 HAMMER2_FREEMAP_LEVEL4_RADIX)
368 #define HAMMER2_FREEMAP_LEVEL3_SIZE	((hammer2_off_t)1 <<		\
369 					 HAMMER2_FREEMAP_LEVEL3_RADIX)
370 #define HAMMER2_FREEMAP_LEVEL2_SIZE	((hammer2_off_t)1 <<		\
371 					 HAMMER2_FREEMAP_LEVEL2_RADIX)
372 #define HAMMER2_FREEMAP_LEVEL1_SIZE	((hammer2_off_t)1 <<		\
373 					 HAMMER2_FREEMAP_LEVEL1_RADIX)
374 #define HAMMER2_FREEMAP_LEVEL0_SIZE	((hammer2_off_t)1 <<		\
375 					 HAMMER2_FREEMAP_LEVEL0_RADIX)
376 
377 #define HAMMER2_FREEMAP_LEVEL5_MASK	(HAMMER2_FREEMAP_LEVEL5_SIZE - 1)
378 #define HAMMER2_FREEMAP_LEVEL4_MASK	(HAMMER2_FREEMAP_LEVEL4_SIZE - 1)
379 #define HAMMER2_FREEMAP_LEVEL3_MASK	(HAMMER2_FREEMAP_LEVEL3_SIZE - 1)
380 #define HAMMER2_FREEMAP_LEVEL2_MASK	(HAMMER2_FREEMAP_LEVEL2_SIZE - 1)
381 #define HAMMER2_FREEMAP_LEVEL1_MASK	(HAMMER2_FREEMAP_LEVEL1_SIZE - 1)
382 #define HAMMER2_FREEMAP_LEVEL0_MASK	(HAMMER2_FREEMAP_LEVEL0_SIZE - 1)
383 
384 #define HAMMER2_FREEMAP_COUNT		(int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \
385 					 sizeof(hammer2_bmap_data_t))
386 
387 /*
388  * XXX I made a mistake and made the reserved area begin at each LEVEL1 zone,
389  *     which is on a 1GB demark.  This will eat a little more space but for
390  *     now we retain compatibility and make FMZONEBASE every 1GB
391  */
392 #define H2FMZONEBASE(key)	((key) & ~HAMMER2_FREEMAP_LEVEL1_MASK)
393 #define H2FMBASE(key, radix)	rounddown2(key, (hammer2_off_t)1 << (radix))
394 
395 /*
396  * 16KB bitmap granularity (x2 bits per entry).
397  */
398 #define HAMMER2_FREEMAP_BLOCK_RADIX	14
399 #define HAMMER2_FREEMAP_BLOCK_SIZE	(1 << HAMMER2_FREEMAP_BLOCK_RADIX)
400 #define HAMMER2_FREEMAP_BLOCK_MASK	(HAMMER2_FREEMAP_BLOCK_SIZE - 1)
401 
402 /*
403  * bitmap[] structure.  2 bits per HAMMER2_FREEMAP_BLOCK_SIZE.
404  *
405  * 8 x 64-bit elements, 2 bits per block.
406  * 32 blocks (radix 5) per element.
407  * representing INDEX_SIZE bytes worth of storage per element.
408  */
409 
410 typedef uint64_t			hammer2_bitmap_t;
411 
412 #define HAMMER2_BMAP_ALLONES		((hammer2_bitmap_t)-1)
413 #define HAMMER2_BMAP_ELEMENTS		8
414 #define HAMMER2_BMAP_BITS_PER_ELEMENT	64
415 #define HAMMER2_BMAP_INDEX_RADIX	5	/* 32 blocks per element */
416 #define HAMMER2_BMAP_BLOCKS_PER_ELEMENT	(1 << HAMMER2_BMAP_INDEX_RADIX)
417 
418 #define HAMMER2_BMAP_INDEX_SIZE		(HAMMER2_FREEMAP_BLOCK_SIZE * \
419 					 HAMMER2_BMAP_BLOCKS_PER_ELEMENT)
420 #define HAMMER2_BMAP_INDEX_MASK		(HAMMER2_BMAP_INDEX_SIZE - 1)
421 
422 #define HAMMER2_BMAP_SIZE		(HAMMER2_BMAP_INDEX_SIZE * \
423 					 HAMMER2_BMAP_ELEMENTS)
424 #define HAMMER2_BMAP_MASK		(HAMMER2_BMAP_SIZE - 1)
425 
426 /*
427  * Two linear areas can be reserved after the initial 4MB segment in the base
428  * zone (the one starting at offset 0).  These areas are NOT managed by the
429  * block allocator and do not fall under HAMMER2 crc checking rules based
430  * at the volume header (but can be self-CRCd internally, depending).
431  */
432 #define HAMMER2_BOOT_MIN_BYTES		HAMMER2_VOLUME_ALIGN
433 #define HAMMER2_BOOT_NOM_BYTES		(64*1024*1024)
434 #define HAMMER2_BOOT_MAX_BYTES		(256*1024*1024)
435 
436 #define HAMMER2_REDO_MIN_BYTES		HAMMER2_VOLUME_ALIGN
437 #define HAMMER2_REDO_NOM_BYTES		(256*1024*1024)
438 #define HAMMER2_REDO_MAX_BYTES		(1024*1024*1024)
439 
440 /*
441  * Most HAMMER2 types are implemented as unsigned 64-bit integers.
442  * Transaction ids are monotonic.
443  *
444  * We utilize 32-bit iSCSI CRCs.
445  */
446 typedef uint64_t hammer2_tid_t;
447 typedef uint64_t hammer2_off_t;
448 typedef uint64_t hammer2_key_t;
449 typedef uint32_t hammer2_crc32_t;
450 
451 /*
452  * Miscellanious ranges (all are unsigned).
453  */
454 #define HAMMER2_TID_MIN		1ULL
455 #define HAMMER2_TID_MAX		0xFFFFFFFFFFFFFFFFULL
456 #define HAMMER2_KEY_MIN		0ULL
457 #define HAMMER2_KEY_MAX		0xFFFFFFFFFFFFFFFFULL
458 #define HAMMER2_OFFSET_MIN	0ULL
459 #define HAMMER2_OFFSET_MAX	0xFFFFFFFFFFFFFFFFULL
460 
461 /*
462  * HAMMER2 data offset special cases and masking.
463  *
464  * All HAMMER2 data offsets have to be broken down into a 64K buffer base
465  * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO).
466  *
467  * Indexes into physical buffers are always 64-byte aligned.  The low 6 bits
468  * of the data offset field specifies how large the data chunk being pointed
469  * to as a power of 2.  The theoretical minimum radix is thus 6 (The space
470  * needed in the low bits of the data offset field).  However, the practical
471  * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets
472  * HAMMER2_RADIX_MIN to 10.  The maximum radix is currently 16 (64KB), but
473  * we fully intend to support larger extents in the future.
474  *
475  * WARNING! A radix of 0 (such as when data_off is all 0's) is a special
476  *	    case which means no data associated with the blockref, and
477  *	    not the '1 byte' it would otherwise calculate to.
478  */
479 #define HAMMER2_OFF_BAD		((hammer2_off_t)-1)
480 #define HAMMER2_OFF_MASK	0xFFFFFFFFFFFFFFC0ULL
481 #define HAMMER2_OFF_MASK_LO	(HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64)
482 #define HAMMER2_OFF_MASK_HI	(~HAMMER2_PBUFMASK64)
483 #define HAMMER2_OFF_MASK_RADIX	0x000000000000003FULL
484 #define HAMMER2_MAX_COPIES	6
485 
486 /*
487  * HAMMER2 directory support and pre-defined keys
488  */
489 #define HAMMER2_DIRHASH_VISIBLE	0x8000000000000000ULL
490 #define HAMMER2_DIRHASH_USERMSK	0x7FFFFFFFFFFFFFFFULL
491 #define HAMMER2_DIRHASH_LOMASK	0x0000000000007FFFULL
492 #define HAMMER2_DIRHASH_HIMASK	0xFFFFFFFFFFFF0000ULL
493 #define HAMMER2_DIRHASH_FORCED	0x0000000000008000ULL	/* bit forced on */
494 
495 #define HAMMER2_SROOT_KEY	0x0000000000000000ULL	/* volume to sroot */
496 #define HAMMER2_BOOT_KEY	0xd9b36ce135528000ULL	/* sroot to BOOT PFS */
497 
498 /************************************************************************
499  *				DMSG SUPPORT				*
500  ************************************************************************
501  * LNK_VOLCONF
502  *
503  * All HAMMER2 directories directly under the super-root on your local
504  * media can be mounted separately, even if they share the same physical
505  * device.
506  *
507  * When you do a HAMMER2 mount you are effectively tying into a HAMMER2
508  * cluster via local media.  The local media does not have to participate
509  * in the cluster, other than to provide the hammer2_volconf[] array and
510  * root inode for the mount.
511  *
512  * This is important: The mount device path you specify serves to bootstrap
513  * your entry into the cluster, but your mount will make active connections
514  * to ALL copy elements in the hammer2_volconf[] array which match the
515  * PFSID of the directory in the super-root that you specified.  The local
516  * media path does not have to be mentioned in this array but becomes part
517  * of the cluster based on its type and access rights.  ALL ELEMENTS ARE
518  * TREATED ACCORDING TO TYPE NO MATTER WHICH ONE YOU MOUNT FROM.
519  *
520  * The actual cluster may be far larger than the elements you list in the
521  * hammer2_volconf[] array.  You list only the elements you wish to
522  * directly connect to and you are able to access the rest of the cluster
523  * indirectly through those connections.
524  *
525  * WARNING!  This structure must be exactly 128 bytes long for its config
526  *	     array to fit in the volume header.
527  */
528 struct hammer2_volconf {
529 	uint8_t	copyid;		/* 00	 copyid 0-255 (must match slot) */
530 	uint8_t inprog;		/* 01	 operation in progress, or 0 */
531 	uint8_t chain_to;	/* 02	 operation chaining to, or 0 */
532 	uint8_t chain_from;	/* 03	 operation chaining from, or 0 */
533 	uint16_t flags;		/* 04-05 flags field */
534 	uint8_t error;		/* 06	 last operational error */
535 	uint8_t priority;	/* 07	 priority and round-robin flag */
536 	uint8_t remote_pfs_type;/* 08	 probed direct remote PFS type */
537 	uint8_t reserved08[23];	/* 09-1F */
538 	uuid_t	pfs_clid;	/* 20-2F copy target must match this uuid */
539 	uint8_t label[16];	/* 30-3F import/export label */
540 	uint8_t path[64];	/* 40-7F target specification string or key */
541 } __packed;
542 
543 typedef struct hammer2_volconf hammer2_volconf_t;
544 
545 #define DMSG_VOLF_ENABLED	0x0001
546 #define DMSG_VOLF_INPROG	0x0002
547 #define DMSG_VOLF_CONN_RR	0x80	/* round-robin at same priority */
548 #define DMSG_VOLF_CONN_EF	0x40	/* media errors flagged */
549 #define DMSG_VOLF_CONN_PRI	0x0F	/* select priority 0-15 (15=best) */
550 
551 struct dmsg_lnk_hammer2_volconf {
552 	dmsg_hdr_t		head;
553 	hammer2_volconf_t	copy;	/* copy spec */
554 	int32_t			index;
555 	int32_t			unused01;
556 	uuid_t			mediaid;
557 	int64_t			reserved02[32];
558 } __packed;
559 
560 typedef struct dmsg_lnk_hammer2_volconf dmsg_lnk_hammer2_volconf_t;
561 
562 #define DMSG_LNK_HAMMER2_VOLCONF DMSG_LNK(DMSG_LNK_CMD_HAMMER2_VOLCONF, \
563 					  dmsg_lnk_hammer2_volconf)
564 
565 #define H2_LNK_VOLCONF(msg)	((dmsg_lnk_hammer2_volconf_t *)(msg)->any.buf)
566 
567 /*
568  * HAMMER2 directory entry header (embedded in blockref)  exactly 16 bytes
569  */
570 struct hammer2_dirent_head {
571 	hammer2_tid_t		inum;		/* inode number */
572 	uint16_t		namlen;		/* name length */
573 	uint8_t			type;		/* OBJTYPE_*	*/
574 	uint8_t			unused0B;
575 	uint8_t			unused0C[4];
576 } __packed;
577 
578 typedef struct hammer2_dirent_head hammer2_dirent_head_t;
579 
580 /*
581  * The media block reference structure.  This forms the core of the HAMMER2
582  * media topology recursion.  This 128-byte data structure is embedded in the
583  * volume header, in inodes (which are also directory entries), and in
584  * indirect blocks.
585  *
586  * A blockref references a single media item, which typically can be a
587  * directory entry (aka inode), indirect block, or data block.
588  *
589  * The primary feature a blockref represents is the ability to validate
590  * the entire tree underneath it via its check code.  Any modification to
591  * anything propagates up the blockref tree all the way to the root, replacing
592  * the related blocks and compounding the generated check code.
593  *
594  * The check code can be a simple 32-bit iscsi code, a 64-bit crc, or as
595  * complex as a 512 bit cryptographic hash.  I originally used a 64-byte
596  * blockref but later expanded it to 128 bytes to be able to support the
597  * larger check code as well as to embed statistics for quota operation.
598  *
599  * Simple check codes are not sufficient for unverified dedup.  Even with
600  * a maximally-sized check code unverified dedup should only be used in
601  * in subdirectory trees where you do not need 100% data integrity.
602  *
603  * Unverified dedup is deduping based on meta-data only without verifying
604  * that the data blocks are actually identical.  Verified dedup guarantees
605  * integrity but is a far more I/O-expensive operation.
606  *
607  * --
608  *
609  * mirror_tid - per cluster node modified (propagated upward by flush)
610  * modify_tid - clc record modified (not propagated).
611  * update_tid - clc record updated (propagated upward on verification)
612  *
613  * CLC - Stands for 'Cluster Level Change', identifiers which are identical
614  *	 within the topology across all cluster nodes (when fully
615  *	 synchronized).
616  *
617  * NOTE: The range of keys represented by the blockref is (key) to
618  *	 ((key) + (1LL << keybits) - 1).  HAMMER2 usually populates
619  *	 blocks bottom-up, inserting a new root when radix expansion
620  *	 is required.
621  *
622  * leaf_count  - Helps manage leaf collapse calculations when indirect
623  *		 blocks become mostly empty.  This value caps out at
624  *		 HAMMER2_BLOCKREF_LEAF_MAX (65535).
625  *
626  *		 Used by the chain code to determine when to pull leafs up
627  *		 from nearly empty indirect blocks.  For the purposes of this
628  *		 calculation, BREF_TYPE_INODE is considered a leaf, along
629  *		 with DIRENT and DATA.
630  *
631  *				    RESERVED FIELDS
632  *
633  * A number of blockref fields are reserved and should generally be set to
634  * 0 for future compatibility.
635  *
636  *				FUTURE BLOCKREF EXPANSION
637  *
638  * CONTENT ADDRESSABLE INDEXING (future) - Using a 256 or 512-bit check code.
639  */
640 struct hammer2_blockref {		/* MUST BE EXACTLY 64 BYTES */
641 	uint8_t		type;		/* type of underlying item */
642 	uint8_t		methods;	/* check method & compression method */
643 	uint8_t		copyid;		/* specify which copy this is */
644 	uint8_t		keybits;	/* #of keybits masked off 0=leaf */
645 	uint8_t		vradix;		/* virtual data/meta-data size */
646 	uint8_t		flags;		/* blockref flags */
647 	uint16_t	leaf_count;	/* leaf aggregation count */
648 	hammer2_key_t	key;		/* key specification */
649 	hammer2_tid_t	mirror_tid;	/* media flush topology & freemap */
650 	hammer2_tid_t	modify_tid;	/* clc modify (not propagated) */
651 	hammer2_off_t	data_off;	/* low 6 bits is phys size (radix)*/
652 	hammer2_tid_t	update_tid;	/* clc modify (propagated upward) */
653 	union {
654 		char	buf[16];
655 
656 		/*
657 		 * Directory entry header (BREF_TYPE_DIRENT)
658 		 *
659 		 * NOTE: check.buf contains filename if <= 64 bytes.  Longer
660 		 *	 filenames are stored in a data reference of size
661 		 *	 HAMMER2_ALLOC_MIN (at least 256, typically 1024).
662 		 *
663 		 * NOTE: inode structure may contain a copy of a recently
664 		 *	 associated filename, for recovery purposes.
665 		 *
666 		 * NOTE: Superroot entries are INODEs, not DIRENTs.  Code
667 		 *	 allows both cases.
668 		 */
669 		hammer2_dirent_head_t dirent;
670 
671 		/*
672 		 * Statistics aggregation (BREF_TYPE_INODE, BREF_TYPE_INDIRECT)
673 		 */
674 		struct {
675 			hammer2_key_t	data_count;
676 			hammer2_key_t	inode_count;
677 		} stats;
678 	} embed;
679 	union {				/* check info */
680 		char	buf[64];
681 		struct {
682 			uint32_t value;
683 			uint32_t reserved[15];
684 		} iscsi32;
685 		struct {
686 			uint64_t value;
687 			uint64_t reserved[7];
688 		} xxhash64;
689 		struct {
690 			char data[24];
691 			char reserved[40];
692 		} sha192;
693 		struct {
694 			char data[32];
695 			char reserved[32];
696 		} sha256;
697 		struct {
698 			char data[64];
699 		} sha512;
700 
701 		/*
702 		 * Freemap hints are embedded in addition to the icrc32.
703 		 *
704 		 * bigmask - Radixes available for allocation (0-31).
705 		 *	     Heuristical (may be permissive but not
706 		 *	     restrictive).  Typically only radix values
707 		 *	     10-16 are used (i.e. (1<<10) through (1<<16)).
708 		 *
709 		 * avail   - Total available space remaining, in bytes
710 		 */
711 		struct {
712 			uint32_t icrc32;
713 			uint32_t bigmask;	/* available radixes */
714 			uint64_t avail;		/* total available bytes */
715 			char reserved[48];
716 		} freemap;
717 	} check;
718 } __packed;
719 
720 typedef struct hammer2_blockref hammer2_blockref_t;
721 
722 #define HAMMER2_BLOCKREF_BYTES		128	/* blockref struct in bytes */
723 #define HAMMER2_BLOCKREF_RADIX		7
724 
725 #define HAMMER2_BLOCKREF_LEAF_MAX	65535
726 
727 /*
728  * On-media and off-media blockref types.
729  *
730  * types >= 128 are pseudo values that should never be present on-media.
731  */
732 #define HAMMER2_BREF_TYPE_EMPTY		0
733 #define HAMMER2_BREF_TYPE_INODE		1
734 #define HAMMER2_BREF_TYPE_INDIRECT	2
735 #define HAMMER2_BREF_TYPE_DATA		3
736 #define HAMMER2_BREF_TYPE_DIRENT	4
737 #define HAMMER2_BREF_TYPE_FREEMAP_NODE	5
738 #define HAMMER2_BREF_TYPE_FREEMAP_LEAF	6
739 #define HAMMER2_BREF_TYPE_FREEMAP	254	/* pseudo-type */
740 #define HAMMER2_BREF_TYPE_VOLUME	255	/* pseudo-type */
741 
742 #define HAMMER2_BREF_FLAG_PFSROOT	0x01	/* see also related opflag */
743 #define HAMMER2_BREF_FLAG_ZERO		0x02	/* NO LONGER USED */
744 #define HAMMER2_BREF_FLAG_EMERG_MIP	0x04	/* emerg modified-in-place */
745 
746 /*
747  * Encode/decode check mode and compression mode for
748  * bref.methods.  The compression level is not encoded in
749  * bref.methods.
750  */
751 #define HAMMER2_ENC_CHECK(n)		(((n) & 15) << 4)
752 #define HAMMER2_DEC_CHECK(n)		(((n) >> 4) & 15)
753 #define HAMMER2_ENC_COMP(n)		((n) & 15)
754 #define HAMMER2_DEC_COMP(n)		((n) & 15)
755 
756 #define HAMMER2_CHECK_NONE		0
757 #define HAMMER2_CHECK_DISABLED		1
758 #define HAMMER2_CHECK_ISCSI32		2
759 #define HAMMER2_CHECK_XXHASH64		3
760 #define HAMMER2_CHECK_SHA192		4
761 #define HAMMER2_CHECK_FREEMAP		5
762 
763 #define HAMMER2_CHECK_DEFAULT		HAMMER2_CHECK_XXHASH64
764 
765 /* user-specifiable check modes only */
766 #define HAMMER2_CHECK_STRINGS		{ "none", "disabled", "crc32", \
767 					  "xxhash64", "sha192" }
768 #define HAMMER2_CHECK_STRINGS_COUNT	5
769 
770 /*
771  * Encode/decode check or compression algorithm request in
772  * ipdata->meta.check_algo and ipdata->meta.comp_algo.
773  */
774 #define HAMMER2_ENC_ALGO(n)		(n)
775 #define HAMMER2_DEC_ALGO(n)		((n) & 15)
776 #define HAMMER2_ENC_LEVEL(n)		((n) << 4)
777 #define HAMMER2_DEC_LEVEL(n)		(((n) >> 4) & 15)
778 
779 #define HAMMER2_COMP_NONE		0
780 #define HAMMER2_COMP_AUTOZERO		1
781 #define HAMMER2_COMP_LZ4		2
782 #define HAMMER2_COMP_ZLIB		3
783 
784 #define HAMMER2_COMP_NEWFS_DEFAULT	HAMMER2_COMP_LZ4
785 #define HAMMER2_COMP_STRINGS		{ "none", "autozero", "lz4", "zlib" }
786 #define HAMMER2_COMP_STRINGS_COUNT	4
787 
788 /*
789  * Passed to hammer2_chain_create(), causes methods to be inherited from
790  * parent.
791  */
792 #define HAMMER2_METH_DEFAULT		-1
793 
794 /*
795  * HAMMER2 block references are collected into sets of 4 blockrefs.  These
796  * sets are fully associative, meaning the elements making up a set are
797  * not sorted in any way and may contain duplicate entries, holes, or
798  * entries which shortcut multiple levels of indirection.  Sets are used
799  * in various ways:
800  *
801  * (1) When redundancy is desired a set may contain several duplicate
802  *     entries pointing to different copies of the same data.  Up to 4 copies
803  *     are supported.
804  *
805  * (2) The blockrefs in a set can shortcut multiple levels of indirections
806  *     within the bounds imposed by the parent of set.
807  *
808  * When a set fills up another level of indirection is inserted, moving
809  * some or all of the set's contents into indirect blocks placed under the
810  * set.  This is a top-down approach in that indirect blocks are not created
811  * until the set actually becomes full (that is, the entries in the set can
812  * shortcut the indirect blocks when the set is not full).  Depending on how
813  * things are filled multiple indirect blocks will eventually be created.
814  *
815  * Indirect blocks are typically 4KB (64 entres) or 64KB (1024 entries) and
816  * are also treated as fully set-associative.
817  */
818 struct hammer2_blockset {
819 	hammer2_blockref_t	blockref[HAMMER2_SET_COUNT];
820 };
821 
822 typedef struct hammer2_blockset hammer2_blockset_t;
823 
824 /*
825  * Catch programmer snafus
826  */
827 #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT
828 #error "hammer2 direct radix is incorrect"
829 #endif
830 #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE
831 #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent"
832 #endif
833 #if (1 << HAMMER2_RADIX_MIN) != HAMMER2_ALLOC_MIN
834 #error "HAMMER2_RADIX_MIN and HAMMER2_ALLOC_MIN are inconsistent"
835 #endif
836 
837 /*
838  * hammer2_bmap_data - A freemap entry in the LEVEL1 block.
839  *
840  * Each 128-byte entry contains the bitmap and meta-data required to manage
841  * a LEVEL0 (4MB) block of storage.  The storage is managed in 256 x 16KB
842  * chunks.
843  *
844  * A smaller allocation granularity is supported via a linear iterator and/or
845  * must otherwise be tracked in ram.
846  *
847  * (data structure must be 128 bytes exactly)
848  *
849  * linear  - A BYTE linear allocation offset used for sub-16KB allocations
850  *	     only.  May contain values between 0 and 4MB.  Must be ignored
851  *	     if 16KB-aligned (i.e. force bitmap scan), otherwise may be
852  *	     used to sub-allocate within the 16KB block (which is already
853  *	     marked as allocated in the bitmap).
854  *
855  *	     Sub-allocations need only be 1KB-aligned and do not have to be
856  *	     size-aligned, and 16KB or larger allocations do not update this
857  *	     field, resulting in pretty good packing.
858  *
859  *	     Please note that file data granularity may be limited by
860  *	     other issues such as buffer cache direct-mapping and the
861  *	     desire to support sector sizes up to 16KB (so H2 only issues
862  *	     I/O's in multiples of 16KB anyway).
863  *
864  * class   - Clustering class.  Cleared to 0 only if the entire leaf becomes
865  *	     free.  Used to cluster device buffers so all elements must have
866  *	     the same device block size, but may mix logical sizes.
867  *
868  *	     Typically integrated with the blockref type in the upper 8 bits
869  *	     to localize inodes and indrect blocks, improving bulk free scans
870  *	     and directory scans.
871  *
872  * bitmap  - Two bits per 16KB allocation block arranged in arrays of
873  *	     64-bit elements, 256x2 bits representing ~4MB worth of media
874  *	     storage.  Bit patterns are as follows:
875  *
876  *	     00	Unallocated
877  *	     01 (reserved)
878  *	     10 Possibly free
879  *           11 Allocated
880  */
881 struct hammer2_bmap_data {
882 	int32_t linear;		/* 00 linear sub-granular allocation offset */
883 	uint16_t class;		/* 04-05 clustering class ((type<<8)|radix) */
884 	uint8_t reserved06;	/* 06 */
885 	uint8_t reserved07;	/* 07 */
886 	uint32_t reserved08;	/* 08 */
887 	uint32_t reserved0C;	/* 0C */
888 	uint32_t reserved10;	/* 10 */
889 	uint32_t reserved14;	/* 14 */
890 	uint32_t reserved18;	/* 18 */
891 	uint32_t avail;		/* 1C */
892 	uint32_t reserved20[8];	/* 20-3F 256 bits manages 128K/1KB/2-bits */
893 				/* 40-7F 512 bits manages 4MB of storage */
894 	hammer2_bitmap_t bitmapq[HAMMER2_BMAP_ELEMENTS];
895 } __packed;
896 
897 typedef struct hammer2_bmap_data hammer2_bmap_data_t;
898 
899 /*
900  * XXX "Inodes ARE directory entries" is no longer the case.  Hardlinks are
901  * dirents which refer to the same inode#, which is how filesystems usually
902  * implement hardlink.  The following comments need to be updated.
903  *
904  * In HAMMER2 inodes ARE directory entries, with a special exception for
905  * hardlinks.  The inode number is stored in the inode rather than being
906  * based on the location of the inode (since the location moves every time
907  * the inode or anything underneath the inode is modified).
908  *
909  * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes
910  * for the filename, and 512 bytes worth of direct file data OR an embedded
911  * blockset.  The in-memory hammer2_inode structure contains only the mostly-
912  * node-independent meta-data portion (some flags are node-specific and will
913  * not be synchronized).  The rest of the inode is node-specific and chain I/O
914  * is required to obtain it.
915  *
916  * Directories represent one inode per blockref.  Inodes are not laid out
917  * as a file but instead are represented by the related blockrefs.  The
918  * blockrefs, in turn, are indexed by the 64-bit directory hash key.  Remember
919  * that blocksets are fully associative, so a certain degree efficiency is
920  * achieved just from that.
921  *
922  * Up to 512 bytes of direct data can be embedded in an inode, and since
923  * inodes are essentially directory entries this also means that small data
924  * files end up simply being laid out linearly in the directory, resulting
925  * in fewer seeks and highly optimal access.
926  *
927  * The compression mode can be changed at any time in the inode and is
928  * recorded on a blockref-by-blockref basis.
929  *
930  * Hardlinks are supported via the inode map.  Essentially the way a hardlink
931  * works is that all individual directory entries representing the same file
932  * are special cased and specify the same inode number.  The actual file
933  * is placed in the nearest parent directory that is parent to all instances
934  * of the hardlink.  If all hardlinks to a file are in the same directory
935  * the actual file will also be placed in that directory.  This file uses
936  * the inode number as the directory entry key and is invisible to normal
937  * directory scans.  Real directory entry keys are differentiated from the
938  * inode number key via bit 63.  Access to the hardlink silently looks up
939  * the real file and forwards all operations to that file.  Removal of the
940  * last hardlink also removes the real file.
941  */
942 #define HAMMER2_INODE_BYTES		1024	/* (asserted by code) */
943 #define HAMMER2_INODE_MAXNAME		256	/* maximum name in bytes */
944 #define HAMMER2_INODE_VERSION_ONE	1
945 
946 #define HAMMER2_INODE_START		1024	/* dynamically allocated */
947 
948 struct hammer2_inode_meta {
949 	uint16_t	version;	/* 0000 inode data version */
950 	uint8_t		reserved02;	/* 0002 */
951 	uint8_t		pfs_subtype;	/* 0003 pfs sub-type */
952 
953 	/*
954 	 * core inode attributes, inode type, misc flags
955 	 */
956 	uint32_t	uflags;		/* 0004 chflags */
957 	uint32_t	rmajor;		/* 0008 available for device nodes */
958 	uint32_t	rminor;		/* 000C available for device nodes */
959 	uint64_t	ctime;		/* 0010 inode change time */
960 	uint64_t	mtime;		/* 0018 modified time */
961 	uint64_t	atime;		/* 0020 access time (unsupported) */
962 	uint64_t	btime;		/* 0028 birth time */
963 	uuid_t		uid;		/* 0030 uid / degenerate unix uid */
964 	uuid_t		gid;		/* 0040 gid / degenerate unix gid */
965 
966 	uint8_t		type;		/* 0050 object type */
967 	uint8_t		op_flags;	/* 0051 operational flags */
968 	uint16_t	cap_flags;	/* 0052 capability flags */
969 	uint32_t	mode;		/* 0054 unix modes (typ low 16 bits) */
970 
971 	/*
972 	 * inode size, identification, localized recursive configuration
973 	 * for compression and backup copies.
974 	 *
975 	 * NOTE: Nominal parent inode number (iparent) is only applicable
976 	 *	 for directories but can also help for files during
977 	 *	 catastrophic recovery.
978 	 */
979 	hammer2_tid_t	inum;		/* 0058 inode number */
980 	hammer2_off_t	size;		/* 0060 size of file */
981 	uint64_t	nlinks;		/* 0068 hard links (typ only dirs) */
982 	hammer2_tid_t	iparent;	/* 0070 nominal parent inum */
983 	hammer2_key_t	name_key;	/* 0078 full filename key */
984 	uint16_t	name_len;	/* 0080 filename length */
985 	uint8_t		ncopies;	/* 0082 ncopies to local media */
986 	uint8_t		comp_algo;	/* 0083 compression request & algo */
987 
988 	/*
989 	 * These fields are currently only applicable to PFSROOTs.
990 	 *
991 	 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely
992 	 *	 identify an instance of a PFS in the cluster because
993 	 *	 a mount may contain more than one copy of the PFS as
994 	 *	 a separate node.  {pfs_clid, pfs_fsid} must be used for
995 	 *	 registration in the cluster.
996 	 */
997 	uint8_t		target_type;	/* 0084 hardlink target type */
998 	uint8_t		check_algo;	/* 0085 check code request & algo */
999 	uint8_t		pfs_nmasters;	/* 0086 (if PFSROOT) if multi-master */
1000 	uint8_t		pfs_type;	/* 0087 (if PFSROOT) node type */
1001 	hammer2_tid_t	pfs_inum;	/* 0088 (if PFSROOT) inum allocator */
1002 	uuid_t		pfs_clid;	/* 0090 (if PFSROOT) cluster uuid */
1003 	uuid_t		pfs_fsid;	/* 00A0 (if PFSROOT) unique uuid */
1004 
1005 	/*
1006 	 * Quotas and aggregate sub-tree inode and data counters.  Note that
1007 	 * quotas are not replicated downward, they are explicitly set by
1008 	 * the sysop and in-memory structures keep track of inheritance.
1009 	 */
1010 	hammer2_key_t	data_quota;	/* 00B0 subtree quota in bytes */
1011 	hammer2_key_t	unusedB8;	/* 00B8 subtree byte count */
1012 	hammer2_key_t	inode_quota;	/* 00C0 subtree quota inode count */
1013 	hammer2_key_t	unusedC8;	/* 00C8 subtree inode count */
1014 
1015 	/*
1016 	 * The last snapshot tid is tested against modify_tid to determine
1017 	 * when a copy must be made of a data block whos check mode has been
1018 	 * disabled (a disabled check mode allows data blocks to be updated
1019 	 * in place instead of copy-on-write).
1020 	 */
1021 	hammer2_tid_t	pfs_lsnap_tid;	/* 00D0 last snapshot tid */
1022 	hammer2_tid_t	reservedD8;	/* 00D8 (avail) */
1023 
1024 	/*
1025 	 * Tracks (possibly degenerate) free areas covering all sub-tree
1026 	 * allocations under inode, not counting the inode itself.
1027 	 * 0/0 indicates empty entry.  fully set-associative.
1028 	 *
1029 	 * (not yet implemented)
1030 	 */
1031 	uint64_t	decrypt_check;	/* 00E0 decryption validator */
1032 	hammer2_off_t	reservedE0[3];	/* 00E8/F0/F8 */
1033 } __packed;
1034 
1035 typedef struct hammer2_inode_meta hammer2_inode_meta_t;
1036 
1037 struct hammer2_inode_data {
1038 	hammer2_inode_meta_t	meta;	/* 0000-00FF */
1039 	unsigned char	filename[HAMMER2_INODE_MAXNAME];
1040 					/* 0100-01FF (256 char, unterminated) */
1041 	union {				/* 0200-03FF (64x8 = 512 bytes) */
1042 		hammer2_blockset_t blockset;
1043 		char data[HAMMER2_EMBEDDED_BYTES];
1044 	} u;
1045 } __packed;
1046 
1047 typedef struct hammer2_inode_data hammer2_inode_data_t;
1048 
1049 #define HAMMER2_OPFLAG_DIRECTDATA	0x01
1050 #define HAMMER2_OPFLAG_PFSROOT		0x02	/* (see also bref flag) */
1051 #define HAMMER2_OPFLAG_COPYIDS		0x04	/* copyids override parent */
1052 
1053 #define HAMMER2_OBJTYPE_UNKNOWN		0
1054 #define HAMMER2_OBJTYPE_DIRECTORY	1
1055 #define HAMMER2_OBJTYPE_REGFILE		2
1056 #define HAMMER2_OBJTYPE_FIFO		4
1057 #define HAMMER2_OBJTYPE_CDEV		5
1058 #define HAMMER2_OBJTYPE_BDEV		6
1059 #define HAMMER2_OBJTYPE_SOFTLINK	7
1060 #define HAMMER2_OBJTYPE_UNUSED08	8
1061 #define HAMMER2_OBJTYPE_SOCKET		9
1062 #define HAMMER2_OBJTYPE_WHITEOUT	10
1063 
1064 #define HAMMER2_COPYID_NONE		0
1065 #define HAMMER2_COPYID_LOCAL		((uint8_t)-1)
1066 
1067 #define HAMMER2_COPYID_COUNT		256
1068 
1069 /*
1070  * PFS types identify the role of a PFS within a cluster.  The PFS types
1071  * is stored on media and in LNK_SPAN messages and used in other places.
1072  *
1073  * The low 4 bits specify the current active type while the high 4 bits
1074  * specify the transition target if the PFS is being upgraded or downgraded,
1075  * If the upper 4 bits are not zero it may effect how a PFS is used during
1076  * the transition.
1077  *
1078  * Generally speaking, downgrading a MASTER to a SLAVE cannot complete until
1079  * at least all MASTERs have updated their pfs_nmasters field.  And upgrading
1080  * a SLAVE to a MASTER cannot complete until the new prospective master has
1081  * been fully synchronized (though theoretically full synchronization is
1082  * not required if a (new) quorum of other masters are fully synchronized).
1083  *
1084  * It generally does not matter which PFS element you actually mount, you
1085  * are mounting 'the cluster'.  So, for example, a network mount will mount
1086  * a DUMMY PFS type on a memory filesystem.  However, there are two exceptions.
1087  * In order to gain the benefits of a SOFT_MASTER or SOFT_SLAVE, those PFSs
1088  * must be directly mounted.
1089  */
1090 #define HAMMER2_PFSTYPE_NONE		0x00
1091 #define HAMMER2_PFSTYPE_CACHE		0x01
1092 #define HAMMER2_PFSTYPE_UNUSED02	0x02
1093 #define HAMMER2_PFSTYPE_SLAVE		0x03
1094 #define HAMMER2_PFSTYPE_SOFT_SLAVE	0x04
1095 #define HAMMER2_PFSTYPE_SOFT_MASTER	0x05
1096 #define HAMMER2_PFSTYPE_MASTER		0x06
1097 #define HAMMER2_PFSTYPE_UNUSED07	0x07
1098 #define HAMMER2_PFSTYPE_SUPROOT		0x08
1099 #define HAMMER2_PFSTYPE_DUMMY		0x09
1100 #define HAMMER2_PFSTYPE_MAX		16
1101 
1102 #define HAMMER2_PFSTRAN_NONE		0x00	/* no transition in progress */
1103 #define HAMMER2_PFSTRAN_CACHE		0x10
1104 #define HAMMER2_PFSTRAN_UNMUSED20	0x20
1105 #define HAMMER2_PFSTRAN_SLAVE		0x30
1106 #define HAMMER2_PFSTRAN_SOFT_SLAVE	0x40
1107 #define HAMMER2_PFSTRAN_SOFT_MASTER	0x50
1108 #define HAMMER2_PFSTRAN_MASTER		0x60
1109 #define HAMMER2_PFSTRAN_UNUSED70	0x70
1110 #define HAMMER2_PFSTRAN_SUPROOT		0x80
1111 #define HAMMER2_PFSTRAN_DUMMY		0x90
1112 
1113 #define HAMMER2_PFS_DEC(n)		((n) & 0x0F)
1114 #define HAMMER2_PFS_DEC_TRANSITION(n)	(((n) >> 4) & 0x0F)
1115 #define HAMMER2_PFS_ENC_TRANSITION(n)	(((n) & 0x0F) << 4)
1116 
1117 #define HAMMER2_PFSSUBTYPE_NONE		0
1118 #define HAMMER2_PFSSUBTYPE_SNAPSHOT	1	/* manual/managed snapshot */
1119 #define HAMMER2_PFSSUBTYPE_AUTOSNAP	2	/* automatic snapshot */
1120 
1121 /*
1122  * PFS mode of operation is a bitmask.  This is typically not stored
1123  * on-media, but defined here because the field may be used in dmsgs.
1124  */
1125 #define HAMMER2_PFSMODE_QUORUM		0x01
1126 #define HAMMER2_PFSMODE_RW		0x02
1127 
1128 /*
1129  *				Allocation Table
1130  *
1131  */
1132 
1133 
1134 /*
1135  * Flags (8 bits) - blockref, for freemap only
1136  *
1137  * Note that the minimum chunk size is 1KB so we could theoretically have
1138  * 10 bits here, but we might have some future extension that allows a
1139  * chunk size down to 256 bytes and if so we will need bits 8 and 9.
1140  */
1141 #define HAMMER2_AVF_SELMASK		0x03	/* select group */
1142 #define HAMMER2_AVF_ALL_ALLOC		0x04	/* indicate all allocated */
1143 #define HAMMER2_AVF_ALL_FREE		0x08	/* indicate all free */
1144 #define HAMMER2_AVF_RESERVED10		0x10
1145 #define HAMMER2_AVF_RESERVED20		0x20
1146 #define HAMMER2_AVF_RESERVED40		0x40
1147 #define HAMMER2_AVF_RESERVED80		0x80
1148 #define HAMMER2_AVF_AVMASK32		((uint32_t)0xFFFFFF00LU)
1149 #define HAMMER2_AVF_AVMASK64		((uint64_t)0xFFFFFFFFFFFFFF00LLU)
1150 
1151 #define HAMMER2_AV_SELECT_A		0x00
1152 #define HAMMER2_AV_SELECT_B		0x01
1153 #define HAMMER2_AV_SELECT_C		0x02
1154 #define HAMMER2_AV_SELECT_D		0x03
1155 
1156 /*
1157  * The volume header eats a 64K block.  There is currently an issue where
1158  * we want to try to fit all nominal filesystem updates in a 512-byte section
1159  * but it may be a lost cause due to the need for a blockset.
1160  *
1161  * All information is stored in host byte order.  The volume header's magic
1162  * number may be checked to determine the byte order.  If you wish to mount
1163  * between machines w/ different endian modes you'll need filesystem code
1164  * which acts on the media data consistently (either all one way or all the
1165  * other).  Our code currently does not do that.
1166  *
1167  * A read-write mount may have to recover missing allocations by doing an
1168  * incremental mirror scan looking for modifications made after alloc_tid.
1169  * If alloc_tid == last_tid then no recovery operation is needed.  Recovery
1170  * operations are usually very, very fast.
1171  *
1172  * Read-only mounts do not need to do any recovery, access to the filesystem
1173  * topology is always consistent after a crash (is always consistent, period).
1174  * However, there may be shortcutted blockref updates present from deep in
1175  * the tree which are stored in the volumeh eader and must be tracked on
1176  * the fly.
1177  *
1178  * NOTE: The copyinfo[] array contains the configuration for both the
1179  *	 cluster connections and any local media copies.  The volume
1180  *	 header will be replicated for each local media copy.
1181  *
1182  *	 The mount command may specify multiple medias or just one and
1183  *	 allow HAMMER2 to pick up the others when it checks the copyinfo[]
1184  *	 array on mount.
1185  *
1186  * NOTE: root_blockref points to the super-root directory, not the root
1187  *	 directory.  The root directory will be a subdirectory under the
1188  *	 super-root.
1189  *
1190  *	 The super-root directory contains all root directories and all
1191  *	 snapshots (readonly or writable).  It is possible to do a
1192  *	 null-mount of the super-root using special path constructions
1193  *	 relative to your mounted root.
1194  *
1195  * NOTE: HAMMER2 allows any subdirectory tree to be managed as if it were
1196  *	 a PFS, including mirroring and storage quota operations, and this is
1197  *	 prefered over creating discrete PFSs in the super-root.  Instead
1198  *	 the super-root is most typically used to create writable snapshots,
1199  *	 alternative roots, and so forth.  The super-root is also used by
1200  *	 the automatic snapshotting mechanism.
1201  */
1202 #define HAMMER2_VOLUME_ID_HBO	0x48414d3205172011LLU
1203 #define HAMMER2_VOLUME_ID_ABO	0x11201705324d4148LLU
1204 
1205 struct hammer2_volume_data {
1206 	/*
1207 	 * sector #0 - 512 bytes
1208 	 */
1209 	uint64_t	magic;			/* 0000 Signature */
1210 	hammer2_off_t	boot_beg;		/* 0008 Boot area (future) */
1211 	hammer2_off_t	boot_end;		/* 0010 (size = end - beg) */
1212 	hammer2_off_t	aux_beg;		/* 0018 Aux area (future) */
1213 	hammer2_off_t	aux_end;		/* 0020 (size = end - beg) */
1214 	hammer2_off_t	volu_size;		/* 0028 Volume size, bytes */
1215 
1216 	uint32_t	version;		/* 0030 */
1217 	uint32_t	flags;			/* 0034 */
1218 	uint8_t		copyid;			/* 0038 copyid of phys vol */
1219 	uint8_t		freemap_version;	/* 0039 freemap algorithm */
1220 	uint8_t		peer_type;		/* 003A HAMMER2_PEER_xxx */
1221 	uint8_t		reserved003B;		/* 003B */
1222 	uint32_t	reserved003C;		/* 003C */
1223 
1224 	uuid_t		fsid;			/* 0040 */
1225 	uuid_t		fstype;			/* 0050 */
1226 
1227 	/*
1228 	 * allocator_size is precalculated at newfs time and does not include
1229 	 * reserved blocks, boot, or redo areas.
1230 	 *
1231 	 * Initial non-reserved-area allocations do not use the freemap
1232 	 * but instead adjust alloc_iterator.  Dynamic allocations take
1233 	 * over starting at (allocator_beg).  This makes newfs_hammer2's
1234 	 * job a lot easier and can also serve as a testing jig.
1235 	 */
1236 	hammer2_off_t	allocator_size;		/* 0060 Total data space */
1237 	hammer2_off_t   allocator_free;		/* 0068	Free space */
1238 	hammer2_off_t	allocator_beg;		/* 0070 Initial allocations */
1239 
1240 	/*
1241 	 * mirror_tid reflects the highest committed change for this
1242 	 * block device regardless of whether it is to the super-root
1243 	 * or to a PFS or whatever.
1244 	 *
1245 	 * freemap_tid reflects the highest committed freemap change for
1246 	 * this block device.
1247 	 */
1248 	hammer2_tid_t	mirror_tid;		/* 0078 committed tid (vol) */
1249 	hammer2_tid_t	reserved0080;		/* 0080 */
1250 	hammer2_tid_t	reserved0088;		/* 0088 */
1251 	hammer2_tid_t	freemap_tid;		/* 0090 committed tid (fmap) */
1252 	hammer2_tid_t	bulkfree_tid;		/* 0098 bulkfree incremental */
1253 	hammer2_tid_t	reserved00A0[5];	/* 00A0-00C7 */
1254 
1255 	/*
1256 	 * Copyids are allocated dynamically from the copyexists bitmap.
1257 	 * An id from the active copies set (up to 8, see copyinfo later on)
1258 	 * may still exist after the copy set has been removed from the
1259 	 * volume header and its bit will remain active in the bitmap and
1260 	 * cannot be reused until it is 100% removed from the hierarchy.
1261 	 */
1262 	uint32_t	copyexists[8];		/* 00C8-00E7 copy exists bmap */
1263 	char		reserved0140[248];	/* 00E8-01DF */
1264 
1265 	/*
1266 	 * 32 bit CRC array at the end of the first 512 byte sector.
1267 	 *
1268 	 * icrc_sects[7] - First 512-4 bytes of volume header (including all
1269 	 *		   the other icrc's except this one).
1270 	 *
1271 	 * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is
1272 	 *		   the blockset for the root.
1273 	 *
1274 	 * icrc_sects[5] - Sector 2
1275 	 * icrc_sects[4] - Sector 3
1276 	 * icrc_sects[3] - Sector 4 (the freemap blockset)
1277 	 */
1278 	hammer2_crc32_t	icrc_sects[8];		/* 01E0-01FF */
1279 
1280 	/*
1281 	 * sector #1 - 512 bytes
1282 	 *
1283 	 * The entire sector is used by a blockset.
1284 	 */
1285 	hammer2_blockset_t sroot_blockset;	/* 0200-03FF Superroot dir */
1286 
1287 	/*
1288 	 * sector #2-7
1289 	 */
1290 	char	sector2[512];			/* 0400-05FF reserved */
1291 	char	sector3[512];			/* 0600-07FF reserved */
1292 	hammer2_blockset_t freemap_blockset;	/* 0800-09FF freemap  */
1293 	char	sector5[512];			/* 0A00-0BFF reserved */
1294 	char	sector6[512];			/* 0C00-0DFF reserved */
1295 	char	sector7[512];			/* 0E00-0FFF reserved */
1296 
1297 	/*
1298 	 * sector #8-71	- 32768 bytes
1299 	 *
1300 	 * Contains the configuration for up to 256 copyinfo targets.  These
1301 	 * specify local and remote copies operating as masters or slaves.
1302 	 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255
1303 	 * indicates the local media).
1304 	 *
1305 	 * Each inode contains a set of up to 8 copyids, either inherited
1306 	 * from its parent or explicitly specified in the inode, which
1307 	 * indexes into this array.
1308 	 */
1309 						/* 1000-8FFF copyinfo config */
1310 	hammer2_volconf_t copyinfo[HAMMER2_COPYID_COUNT];
1311 
1312 	/*
1313 	 * Remaining sections are reserved for future use.
1314 	 */
1315 	char		reserved0400[0x6FFC];	/* 9000-FFFB reserved */
1316 
1317 	/*
1318 	 * icrc on entire volume header
1319 	 */
1320 	hammer2_crc32_t	icrc_volheader;		/* FFFC-FFFF full volume icrc*/
1321 } __packed;
1322 
1323 typedef struct hammer2_volume_data hammer2_volume_data_t;
1324 
1325 /*
1326  * Various parts of the volume header have their own iCRCs.
1327  *
1328  * The first 512 bytes has its own iCRC stored at the end of the 512 bytes
1329  * and not included the icrc calculation.
1330  *
1331  * The second 512 bytes also has its own iCRC but it is stored in the first
1332  * 512 bytes so it covers the entire second 512 bytes.
1333  *
1334  * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes,
1335  * which is where the iCRC for the whole volume is stored.  This is currently
1336  * a catch-all for anything not individually iCRCd.
1337  */
1338 #define HAMMER2_VOL_ICRC_SECT0		7
1339 #define HAMMER2_VOL_ICRC_SECT1		6
1340 
1341 #define HAMMER2_VOLUME_BYTES		65536
1342 
1343 #define HAMMER2_VOLUME_ICRC0_OFF	0
1344 #define HAMMER2_VOLUME_ICRC1_OFF	512
1345 #define HAMMER2_VOLUME_ICRCVH_OFF	0
1346 
1347 #define HAMMER2_VOLUME_ICRC0_SIZE	(512 - 4)
1348 #define HAMMER2_VOLUME_ICRC1_SIZE	(512)
1349 #define HAMMER2_VOLUME_ICRCVH_SIZE	(65536 - 4)
1350 
1351 #define HAMMER2_VOL_VERSION_MIN		1
1352 #define HAMMER2_VOL_VERSION_DEFAULT	1
1353 #define HAMMER2_VOL_VERSION_WIP 	2
1354 
1355 #define HAMMER2_NUM_VOLHDRS		4
1356 
1357 union hammer2_media_data {
1358 	hammer2_volume_data_t	voldata;
1359         hammer2_inode_data_t    ipdata;
1360 	hammer2_blockset_t	blkset;
1361 	hammer2_blockref_t	npdata[HAMMER2_IND_COUNT_MAX];
1362 	hammer2_bmap_data_t	bmdata[HAMMER2_FREEMAP_COUNT];
1363 	char			buf[HAMMER2_PBUFSIZE];
1364 } __packed;
1365 
1366 typedef union hammer2_media_data hammer2_media_data_t;
1367 
1368 #endif /* !_VFS_HAMMER2_DISK_H_ */
1369