xref: /dragonfly/sys/vfs/hammer2/hammer2_disk.h (revision 0fdb7d01)
1 /*
2  * Copyright (c) 2011-2012 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #ifndef _VFS_HAMMER2_DISK_H_
37 #define _VFS_HAMMER2_DISK_H_
38 
39 #ifndef _SYS_UUID_H_
40 #include <sys/uuid.h>
41 #endif
42 #ifndef _SYS_DMSG_H_
43 #include <sys/dmsg.h>
44 #endif
45 
46 /*
47  * The structures below represent the on-disk media structures for the HAMMER2
48  * filesystem.  Note that all fields for on-disk structures are naturally
49  * aligned.  The host endian format is typically used - compatibility is
50  * possible if the implementation detects reversed endian and adjusts accesses
51  * accordingly.
52  *
53  * HAMMER2 primarily revolves around the directory topology:  inodes,
54  * directory entries, and block tables.  Block device buffer cache buffers
55  * are always 64KB.  Logical file buffers are typically 16KB.  All data
56  * references utilize 64-bit byte offsets.
57  *
58  * Free block management is handled independently using blocks reserved by
59  * the media topology.
60  */
61 
62 /*
63  * The data at the end of a file or directory may be a fragment in order
64  * to optimize storage efficiency.  The minimum fragment size is 1KB.
65  * Since allocations are in powers of 2 fragments must also be sized in
66  * powers of 2 (1024, 2048, ... 65536).
67  *
68  * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K),
69  * which is 2^16.  Larger extents may be supported in the future.  Smaller
70  * fragments might be supported in the future (down to 64 bytes is possible),
71  * but probably will not be.
72  *
73  * A full indirect block use supports 1024 x 64-byte blockrefs in a 64KB
74  * buffer.  Indirect blocks down to 1KB are supported to keep small
75  * directories small.
76  *
77  * A maximally sized file (2^64-1 bytes) requires 5 indirect block levels.
78  * The hammer2_blockset in the volume header or file inode has another 8
79  * entries, giving us 66+3 = 69 bits of address space.  However, some bits
80  * are taken up by (potentially) requests for redundant copies.  HAMMER2
81  * currently supports up to 8 copies, which brings the address space down
82  * to 66 bits and gives us 2 bits of leeway.
83  */
84 #define HAMMER2_MIN_ALLOC	1024	/* minimum allocation size */
85 #define HAMMER2_MIN_RADIX	10	/* minimum allocation size 2^N */
86 #define HAMMER2_MAX_ALLOC	65536	/* maximum allocation size */
87 #define HAMMER2_MAX_RADIX	16	/* maximum allocation size 2^N */
88 #define HAMMER2_KEY_RADIX	64	/* number of bits in key */
89 
90 /*
91  * MINALLOCSIZE		- The minimum allocation size.  This can be smaller
92  *		  	  or larger than the minimum physical IO size.
93  *
94  *			  NOTE: Should not be larger than 1K since inodes
95  *				are 1K.
96  *
97  * MINIOSIZE		- The minimum IO size.  This must be less than
98  *			  or equal to HAMMER2_LBUFSIZE.
99  *
100  * HAMMER2_LBUFSIZE	- Nominal buffer size for I/O rollups.
101  *
102  * HAMMER2_PBUFSIZE	- Topological block size used by files for all
103  *			  blocks except the block straddling EOF.
104  *
105  * HAMMER2_SEGSIZE	- Allocation map segment size, typically 2MB
106  *			  (space represented by a level0 bitmap).
107  */
108 
109 #define HAMMER2_SEGSIZE		(1 << HAMMER2_FREEMAP_LEVEL0_RADIX)
110 #define HAMMER2_SEGRADIX	HAMMER2_FREEMAP_LEVEL0_RADIX
111 
112 #define HAMMER2_PBUFRADIX	16	/* physical buf (1<<16) bytes */
113 #define HAMMER2_PBUFSIZE	65536
114 #define HAMMER2_LBUFRADIX	14	/* logical buf (1<<14) bytes */
115 #define HAMMER2_LBUFSIZE	16384
116 
117 /*
118  * Generally speaking we want to use 16K and 64K I/Os
119  */
120 #define HAMMER2_MINIORADIX	HAMMER2_LBUFRADIX
121 #define HAMMER2_MINIOSIZE	HAMMER2_LBUFSIZE
122 
123 #define HAMMER2_IND_BYTES_MIN	HAMMER2_LBUFSIZE
124 #define HAMMER2_IND_BYTES_MAX	HAMMER2_PBUFSIZE
125 #define HAMMER2_IND_COUNT_MIN	(HAMMER2_IND_BYTES_MIN / \
126 				 sizeof(hammer2_blockref_t))
127 #define HAMMER2_IND_COUNT_MAX	(HAMMER2_IND_BYTES_MAX / \
128 				 sizeof(hammer2_blockref_t))
129 
130 /*
131  * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that
132  * any element can occur at any index and holes can be anywhere.  As a
133  * future optimization we will be able to flag that such arrays are sorted
134  * and thus optimize lookups, but for now we don't.
135  *
136  * Inodes embed either 512 bytes of direct data or an array of 8 blockrefs,
137  * resulting in highly efficient storage for files <= 512 bytes and for files
138  * <= 512KB.  Up to 8 directory entries can be referenced from a directory
139  * without requiring an indirect block.
140  *
141  * Indirect blocks are typically either 4KB (64 blockrefs / ~4MB represented),
142  * or 64KB (1024 blockrefs / ~64MB represented).
143  */
144 #define HAMMER2_SET_COUNT		8	/* direct entries */
145 #define HAMMER2_SET_RADIX		3
146 #define HAMMER2_EMBEDDED_BYTES		512	/* inode blockset/dd size */
147 #define HAMMER2_EMBEDDED_RADIX		9
148 
149 #define HAMMER2_PBUFMASK	(HAMMER2_PBUFSIZE - 1)
150 #define HAMMER2_LBUFMASK	(HAMMER2_LBUFSIZE - 1)
151 #define HAMMER2_SEGMASK		(HAMMER2_SEGSIZE - 1)
152 
153 #define HAMMER2_LBUFMASK64	((hammer2_off_t)HAMMER2_LBUFMASK)
154 #define HAMMER2_PBUFSIZE64	((hammer2_off_t)HAMMER2_PBUFSIZE)
155 #define HAMMER2_PBUFMASK64	((hammer2_off_t)HAMMER2_PBUFMASK)
156 #define HAMMER2_SEGSIZE64	((hammer2_off_t)HAMMER2_SEGSIZE)
157 #define HAMMER2_SEGMASK64	((hammer2_off_t)HAMMER2_SEGMASK)
158 
159 #define HAMMER2_UUID_STRING	"5cbb9ad1-862d-11dc-a94d-01301bb8a9f5"
160 
161 /*
162  * A HAMMER2 filesystem is always sized in multiples of 8MB.
163  *
164  * A 4MB segment is reserved at the beginning of each 2GB zone.  This segment
165  * contains the volume header (or backup volume header), the free block
166  * table, and possibly other information in the future.
167  *
168  * 4MB = 64 x 64K blocks.  Each 4MB segment is broken down as follows:
169  *
170  *	+-----------------------+
171  *      |	Volume Hdr	| block 0	volume header & alternates
172  *	+-----------------------+		(first four zones only)
173  *	|   FreeBlk Section A   | block 1-4
174  *	+-----------------------+
175  *	|   FreeBlk Section B   | block 5-8
176  *	+-----------------------+
177  *	|   FreeBlk Section C   | block 9-12
178  *	+-----------------------+
179  *	|   FreeBlk Section D   | block 13-16
180  *	+-----------------------+
181  *      |			| block 17...63
182  *      |	reserved	|
183  *      |			|
184  *	+-----------------------+
185  *
186  * The first few 2GB zones contain volume headers and volume header backups.
187  * After that the volume header block# is reserved.
188  *
189  *			Freemap (see the FREEMAP document)
190  *
191  * The freemap utilizes blocks #1-16 for now, see the FREEMAP document.
192  * The filesystems rotations through the sections to avoid disturbing the
193  * 'previous' version of the freemap during a flush.
194  *
195  * Each freemap section is 4 x 64K blocks and represents 2GB, 2TB, 2PB,
196  * and 2EB indirect map, plus the volume header has a set of 8 blockrefs
197  * for another 3 bits for a total of 64 bits of address space.  The Level 0
198  * 64KB block representing 2GB of storage is a hammer2_bmap_data[1024].
199  * Each element contains a 128x2 bit bitmap representing 16KB per chunk for
200  * 2MB of storage (x1024 elements = 2GB).  2 bits per chunk:
201  *
202  *	00	Free
203  *	01	(reserved)
204  *	10	Possibly free
205  *	11	Allocated
206  *
207  * One important thing to note here is that the freemap resolution is 16KB,
208  * but the minimuim storage allocation size is 1KB.  The hammer2 vfs keeps
209  * track of sub-allocations in memory (on umount or reboot obvious the whole
210  * 16KB will be considered allocated even if only 1KB is allocated).  It is
211  * possible for fragmentation to build up over time.
212  *
213  * The Second thing to note is that due to the way snapshots and inode
214  * replication works, deleting a file cannot immediately free the related
215  * space.  Instead, the freemap elements transition from 11->10.  The bulk
216  * freeing code which does a complete scan is then responsible for
217  * transitioning the elements to 00 or back to 11 or to 01 for that matter.
218  *
219  * WARNING!  ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX
220  *	     (i.e. a multiple of 2MB).  VOLUME_ALIGN must be >= ZONE_SEG.
221  */
222 #define HAMMER2_VOLUME_ALIGN		(8 * 1024 * 1024)
223 #define HAMMER2_VOLUME_ALIGN64		((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
224 #define HAMMER2_VOLUME_ALIGNMASK	(HAMMER2_VOLUME_ALIGN - 1)
225 #define HAMMER2_VOLUME_ALIGNMASK64     ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK)
226 
227 #define HAMMER2_NEWFS_ALIGN		(HAMMER2_VOLUME_ALIGN)
228 #define HAMMER2_NEWFS_ALIGN64		((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
229 #define HAMMER2_NEWFS_ALIGNMASK		(HAMMER2_VOLUME_ALIGN - 1)
230 #define HAMMER2_NEWFS_ALIGNMASK64	((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK)
231 
232 #define HAMMER2_ZONE_BYTES64		(2LLU * 1024 * 1024 * 1024)
233 #define HAMMER2_ZONE_MASK64		(HAMMER2_ZONE_BYTES64 - 1)
234 #define HAMMER2_ZONE_SEG		(4 * 1024 * 1024)
235 #define HAMMER2_ZONE_SEG64		((hammer2_off_t)HAMMER2_ZONE_SEG)
236 #define HAMMER2_ZONE_BLOCKS_SEG		(HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE)
237 
238 /*
239  * 64 x 64KB blocks are reserved at the base of each 2GB zone.  These blocks
240  * are used to store the volume header or volume header backups, allocation
241  * tree, and other information in the future.
242  *
243  * All specified blocks are not necessarily used in all 2GB zones.  However,
244  * dead areas are reserved for future use and MUST NOT BE USED for other
245  * purposes.
246  *
247  * The freemap is arranged into 15 groups of 4x64KB each.  The 4 sub-groups
248  * are labeled ZONEFM1..4 and representing HAMMER2_FREEMAP_LEVEL{1-4}_RADIX,
249  * for the up to 4 levels of radix tree representing the freemap.  For
250  * simplicity we are reserving all four radix tree layers even though the
251  * higher layers do not require teh reservation at each 2GB mark.  That
252  * space is reserved for future use.
253  *
254  * Freemap blocks are not allocated dynamically but instead rotate through
255  * one of 15 possible copies.  We require 15 copies for several reasons:
256  *
257  * (1) For distinguishing freemap 'allocations' made by the current flush
258  *     verses the concurrently running front-end (at flush_tid + 1).  This
259  *     theoretically requires two copies but the algorithm is greatly
260  *     simplified if we use three.
261  *
262  * (2) There are up to 4 copies of the volume header (iterated on each flush),
263  *     and if the mount code is forced to use an older copy due to corruption
264  *     we must be sure that the state of the freemap AS-OF the earlier copy
265  *     remains valid.
266  *
267  *     This means 3 copies x 4 flushes = 12 copies to be able to mount any
268  *     of the four volume header backups after on boot or after a crash.
269  *
270  * (3) Freemap recovery on-mount eats a copy.  We don't want freemap recovery
271  *     to blow away the copy used by some other volume header in case H2
272  *     crashes during the recovery.  Total is now 13.
273  *
274  * (4) And I want some breathing room to ensure that complex flushes do not
275  *     cause problems.  Also note that bulk block freeing itself must be
276  *     careful so even on a live system, post-mount, the four volume header
277  *     backups effectively represent short-lived snapshots.  And I only
278  *     have room for 15 copies so it works out.
279  *
280  * Preferably I would like to improve the algorithm to only use 2 copies per
281  * volume header (which would be a total of 2 x 4 = 8 + 1 for freemap recovery
282  * + 1 for breathing room = 10 total instead of 15).  For now we use 15.
283  */
284 #define HAMMER2_ZONE_VOLHDR		0	/* volume header or backup */
285 #define HAMMER2_ZONE_FREEMAP_00		1
286 #define HAMMER2_ZONE_FREEMAP_01		5
287 #define HAMMER2_ZONE_FREEMAP_02		9
288 #define HAMMER2_ZONE_FREEMAP_03		13
289 #define HAMMER2_ZONE_FREEMAP_04		17
290 #define HAMMER2_ZONE_FREEMAP_05		21
291 #define HAMMER2_ZONE_FREEMAP_06		25
292 #define HAMMER2_ZONE_FREEMAP_07		29
293 #define HAMMER2_ZONE_FREEMAP_08		33
294 #define HAMMER2_ZONE_FREEMAP_09		37
295 #define HAMMER2_ZONE_FREEMAP_10		41
296 #define HAMMER2_ZONE_FREEMAP_11		45
297 #define HAMMER2_ZONE_FREEMAP_12		49
298 #define HAMMER2_ZONE_FREEMAP_13		53
299 #define HAMMER2_ZONE_FREEMAP_14		57
300 #define HAMMER2_ZONE_FREEMAP_END	61	/* (non-inclusive) */
301 #define HAMMER2_ZONE_UNUSED62		62
302 #define HAMMER2_ZONE_UNUSED63		63
303 
304 #define HAMMER2_ZONE_FREEMAP_COPIES	15
305 						/* relative to FREEMAP_x */
306 #define HAMMER2_ZONEFM_LEVEL1		0	/* 2GB leafmap */
307 #define HAMMER2_ZONEFM_LEVEL2		1	/* 2TB indmap */
308 #define HAMMER2_ZONEFM_LEVEL3		2	/* 2PB indmap */
309 #define HAMMER2_ZONEFM_LEVEL4		3	/* 2EB indmap */
310 /* LEVEL5 is a set of 8 blockrefs in the volume header 16EB */
311 
312 
313 /*
314  * Freemap radii.  Please note that LEVEL 1 blockref array entries
315  * point to 256-byte sections of the bitmap representing 2MB of storage.
316  * Even though the chain structures represent only 256 bytes, they are
317  * mapped using larger 16K or 64K buffer cache buffers.
318  */
319 #define HAMMER2_FREEMAP_LEVEL5_RADIX	64	/* 16EB */
320 #define HAMMER2_FREEMAP_LEVEL4_RADIX	61	/* 2EB */
321 #define HAMMER2_FREEMAP_LEVEL3_RADIX	51	/* 2PB */
322 #define HAMMER2_FREEMAP_LEVEL2_RADIX	41	/* 2TB */
323 #define HAMMER2_FREEMAP_LEVEL1_RADIX	31	/* 2GB */
324 #define HAMMER2_FREEMAP_LEVEL0_RADIX	21	/* 2MB (entry in l-1 leaf) */
325 
326 #define HAMMER2_FREEMAP_LEVELN_PSIZE	65536	/* physical bytes */
327 
328 #define HAMMER2_FREEMAP_COUNT		(int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \
329 					 sizeof(hammer2_bmap_data_t))
330 #define HAMMER2_FREEMAP_BLOCK_RADIX	14
331 #define HAMMER2_FREEMAP_BLOCK_SIZE	(1 << HAMMER2_FREEMAP_BLOCK_RADIX)
332 #define HAMMER2_FREEMAP_BLOCK_MASK	(HAMMER2_FREEMAP_BLOCK_SIZE - 1)
333 
334 /*
335  * Two linear areas can be reserved after the initial 2MB segment in the base
336  * zone (the one starting at offset 0).  These areas are NOT managed by the
337  * block allocator and do not fall under HAMMER2 crc checking rules based
338  * at the volume header (but can be self-CRCd internally, depending).
339  */
340 #define HAMMER2_BOOT_MIN_BYTES		HAMMER2_VOLUME_ALIGN
341 #define HAMMER2_BOOT_NOM_BYTES		(64*1024*1024)
342 #define HAMMER2_BOOT_MAX_BYTES		(256*1024*1024)
343 
344 #define HAMMER2_REDO_MIN_BYTES		HAMMER2_VOLUME_ALIGN
345 #define HAMMER2_REDO_NOM_BYTES		(256*1024*1024)
346 #define HAMMER2_REDO_MAX_BYTES		(1024*1024*1024)
347 
348 /*
349  * Most HAMMER2 types are implemented as unsigned 64-bit integers.
350  * Transaction ids are monotonic.
351  *
352  * We utilize 32-bit iSCSI CRCs.
353  */
354 typedef uint64_t hammer2_tid_t;
355 typedef uint64_t hammer2_off_t;
356 typedef uint64_t hammer2_key_t;
357 typedef uint32_t hammer2_crc32_t;
358 
359 /*
360  * Miscellanious ranges (all are unsigned).
361  */
362 #define HAMMER2_MIN_TID		1ULL
363 #define HAMMER2_MAX_TID		0xFFFFFFFFFFFFFFFFULL
364 #define HAMMER2_MIN_KEY		0ULL
365 #define HAMMER2_MAX_KEY		0xFFFFFFFFFFFFFFFFULL
366 #define HAMMER2_MIN_OFFSET	0ULL
367 #define HAMMER2_MAX_OFFSET	0xFFFFFFFFFFFFFFFFULL
368 
369 /*
370  * HAMMER2 data offset special cases and masking.
371  *
372  * All HAMMER2 data offsets have to be broken down into a 64K buffer base
373  * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO).
374  *
375  * Indexes into physical buffers are always 64-byte aligned.  The low 6 bits
376  * of the data offset field specifies how large the data chunk being pointed
377  * to as a power of 2.  The theoretical minimum radix is thus 6 (The space
378  * needed in the low bits of the data offset field).  However, the practical
379  * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets
380  * HAMMER2_MIN_RADIX to 10.  The maximum radix is currently 16 (64KB), but
381  * we fully intend to support larger extents in the future.
382  */
383 #define HAMMER2_OFF_BAD		((hammer2_off_t)-1)
384 #define HAMMER2_OFF_MASK	0xFFFFFFFFFFFFFFC0ULL
385 #define HAMMER2_OFF_MASK_LO	(HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64)
386 #define HAMMER2_OFF_MASK_HI	(~HAMMER2_PBUFMASK64)
387 #define HAMMER2_OFF_MASK_RADIX	0x000000000000003FULL
388 #define HAMMER2_MAX_COPIES	6
389 
390 /*
391  * HAMMER2 directory support and pre-defined keys
392  */
393 #define HAMMER2_DIRHASH_VISIBLE	0x8000000000000000ULL
394 #define HAMMER2_DIRHASH_USERMSK	0x7FFFFFFFFFFFFFFFULL
395 #define HAMMER2_DIRHASH_LOMASK	0x0000000000007FFFULL
396 #define HAMMER2_DIRHASH_HIMASK	0xFFFFFFFFFFFF0000ULL
397 #define HAMMER2_DIRHASH_FORCED	0x0000000000008000ULL	/* bit forced on */
398 
399 #define HAMMER2_SROOT_KEY	0x0000000000000000ULL	/* volume to sroot */
400 
401 /*
402  * The media block reference structure.  This forms the core of the HAMMER2
403  * media topology recursion.  This 64-byte data structure is embedded in the
404  * volume header, in inodes (which are also directory entries), and in
405  * indirect blocks.
406  *
407  * A blockref references a single media item, which typically can be a
408  * directory entry (aka inode), indirect block, or data block.
409  *
410  * The primary feature a blockref represents is the ability to validate
411  * the entire tree underneath it via its check code.  Any modification to
412  * anything propagates up the blockref tree all the way to the root, replacing
413  * the related blocks.  Propagations can shortcut to the volume root to
414  * implement the 'fast syncing' feature but this only delays the eventual
415  * propagation.
416  *
417  * The check code can be a simple 32-bit iscsi code, a 64-bit crc,
418  * or as complex as a 192 bit cryptographic hash.  192 bits is the maximum
419  * supported check code size, which is not sufficient for unverified dedup
420  * UNLESS one doesn't mind once-in-a-blue-moon data corruption (such as when
421  * farming web data).  HAMMER2 has an unverified dedup feature for just this
422  * purpose.
423  *
424  * --
425  *
426  * NOTE: The range of keys represented by the blockref is (key) to
427  *	 ((key) + (1LL << keybits) - 1).  HAMMER2 usually populates
428  *	 blocks bottom-up, inserting a new root when radix expansion
429  *	 is required.
430  */
431 struct hammer2_blockref {		/* MUST BE EXACTLY 64 BYTES */
432 	uint8_t		type;		/* type of underlying item */
433 	uint8_t		methods;	/* check method & compression method */
434 	uint8_t		copyid;		/* specify which copy this is */
435 	uint8_t		keybits;	/* #of keybits masked off 0=leaf */
436 	uint8_t		vradix;		/* virtual data/meta-data size */
437 	uint8_t		flags;		/* blockref flags */
438 	uint8_t		reserved06;
439 	uint8_t		reserved07;
440 	hammer2_key_t	key;		/* key specification */
441 	hammer2_tid_t	mirror_tid;	/* propagate for mirror scan */
442 	hammer2_tid_t	modify_tid;	/* modifications sans propagation */
443 	hammer2_off_t	data_off;	/* low 6 bits is phys size (radix)*/
444 	union {				/* check info */
445 		char	buf[24];
446 		struct {
447 			uint32_t value;
448 			uint32_t unused[5];
449 		} iscsi32;
450 		struct {
451 			uint64_t value;
452 			uint64_t unused[2];
453 		} crc64;
454 		struct {
455 			char data[24];
456 		} sha192;
457 
458 		/*
459 		 * Freemap hints are embedded in addition to the icrc32.
460 		 *
461 		 * bigmask - Radixes available for allocation (0-31).
462 		 *	     Heuristical (may be permissive but not
463 		 *	     restrictive).  Typically only radix values
464 		 *	     10-16 are used (i.e. (1<<10) through (1<<16)).
465 		 *
466 		 * avail   - Total available space remaining, in bytes
467 		 */
468 		struct {
469 			uint32_t icrc32;
470 			uint32_t bigmask;	/* available radixes */
471 			uint64_t avail;		/* total available bytes */
472 			uint64_t unused;	/* unused must be 0 */
473 		} freemap;
474 
475 		/*
476 		 * Debugging
477 		 */
478 		struct {
479 			hammer2_tid_t sync_tid;
480 		} debug;
481 	} check;
482 };
483 
484 typedef struct hammer2_blockref hammer2_blockref_t;
485 
486 #if 0
487 #define HAMMER2_BREF_SYNC1		0x01	/* modification synchronized */
488 #define HAMMER2_BREF_SYNC2		0x02	/* modification committed */
489 #define HAMMER2_BREF_DESYNCCHLD		0x04	/* desynchronize children */
490 #define HAMMER2_BREF_DELETED		0x80	/* indicates a deletion */
491 #endif
492 
493 #define HAMMER2_BLOCKREF_BYTES		64	/* blockref struct in bytes */
494 
495 /*
496  * On-media and off-media blockref types.
497  */
498 #define HAMMER2_BREF_TYPE_EMPTY		0
499 #define HAMMER2_BREF_TYPE_INODE		1
500 #define HAMMER2_BREF_TYPE_INDIRECT	2
501 #define HAMMER2_BREF_TYPE_DATA		3
502 #define HAMMER2_BREF_TYPE_UNUSED04	4
503 #define HAMMER2_BREF_TYPE_FREEMAP_NODE	5
504 #define HAMMER2_BREF_TYPE_FREEMAP_LEAF	6
505 #define HAMMER2_BREF_TYPE_FREEMAP	254	/* pseudo-type */
506 #define HAMMER2_BREF_TYPE_VOLUME	255	/* pseudo-type */
507 
508 #define HAMMER2_ENC_CHECK(n)		((n) << 4)
509 #define HAMMER2_DEC_CHECK(n)		(((n) >> 4) & 15)
510 
511 #define HAMMER2_CHECK_NONE		0
512 #define HAMMER2_CHECK_ISCSI32		1
513 #define HAMMER2_CHECK_CRC64		2
514 #define HAMMER2_CHECK_SHA192		3
515 #define HAMMER2_CHECK_FREEMAP		4
516 
517 #define HAMMER2_ENC_COMP(n)		(n)
518 #define HAMMER2_ENC_LEVEL(n)		((n) << 4)
519 #define HAMMER2_DEC_COMP(n)		((n) & 15)
520 #define HAMMER2_DEC_LEVEL(n)		(((n) >> 4) & 15)
521 
522 #define HAMMER2_COMP_NONE		0
523 #define HAMMER2_COMP_AUTOZERO		1
524 #define HAMMER2_COMP_LZ4		2
525 #define HAMMER2_COMP_ZLIB		3
526 
527 #define HAMMER2_COMP_NEWFS_DEFAULT	HAMMER2_COMP_LZ4
528 #define HAMMER2_COMP_STRINGS		{ "none", "autozero", "lz4", "zlib" }
529 #define HAMMER2_COMP_STRINGS_COUNT	4
530 
531 
532 /*
533  * HAMMER2 block references are collected into sets of 8 blockrefs.  These
534  * sets are fully associative, meaning the elements making up a set are
535  * not sorted in any way and may contain duplicate entries, holes, or
536  * entries which shortcut multiple levels of indirection.  Sets are used
537  * in various ways:
538  *
539  * (1) When redundancy is desired a set may contain several duplicate
540  *     entries pointing to different copies of the same data.  Up to 8 copies
541  *     are supported but the set structure becomes a bit inefficient once
542  *     you go over 4.
543  *
544  * (2) The blockrefs in a set can shortcut multiple levels of indirections
545  *     within the bounds imposed by the parent of set.
546  *
547  * When a set fills up another level of indirection is inserted, moving
548  * some or all of the set's contents into indirect blocks placed under the
549  * set.  This is a top-down approach in that indirect blocks are not created
550  * until the set actually becomes full (that is, the entries in the set can
551  * shortcut the indirect blocks when the set is not full).  Depending on how
552  * things are filled multiple indirect blocks will eventually be created.
553  *
554  * Indirect blocks are typically 4KB (64 entres) or 64KB (1024 entries) and
555  * are also treated as fully set-associative.
556  */
557 struct hammer2_blockset {
558 	hammer2_blockref_t	blockref[HAMMER2_SET_COUNT];
559 };
560 
561 typedef struct hammer2_blockset hammer2_blockset_t;
562 
563 /*
564  * Catch programmer snafus
565  */
566 #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT
567 #error "hammer2 direct radix is incorrect"
568 #endif
569 #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE
570 #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent"
571 #endif
572 #if (1 << HAMMER2_MIN_RADIX) != HAMMER2_MIN_ALLOC
573 #error "HAMMER2_MIN_RADIX and HAMMER2_MIN_ALLOC are inconsistent"
574 #endif
575 
576 /*
577  * hammer2_bmap_data - A freemap entry in the LEVEL1 block.
578  *
579  * Each 64-byte entry contains the bitmap and meta-data required to manage
580  * a LEVEL0 (2MB) block of storage.  The storage is managed in 128 x 16KB
581  * chunks.  Smaller allocation granularity is supported via a linear iterator
582  * and/or must otherwise be tracked in ram.
583  *
584  * (data structure must be 64 bytes exactly)
585  *
586  * linear  - A BYTE linear allocation offset used for sub-16KB allocations
587  *	     only.  May contain values between 0 and 2MB.  Must be ignored
588  *	     if 16KB-aligned (i.e. force bitmap scan), otherwise may be
589  *	     used to sub-allocate within the 16KB block (which is already
590  *	     marked as allocated in the bitmap).
591  *
592  *	     Sub-allocations need only be 1KB-aligned and do not have to be
593  *	     size-aligned, and 16KB or larger allocations do not update this
594  *	     field, resulting in pretty good packing.
595  *
596  *	     Please note that file data granularity may be limited by
597  *	     other issues such as buffer cache direct-mapping and the
598  *	     desire to support sector sizes up to 16KB (so H2 only issues
599  *	     I/O's in multiples of 16KB anyway).
600  *
601  * class   - Clustering class.  Cleared to 0 only if the entire leaf becomes
602  *	     free.  Used to cluster device buffers so all elements must have
603  *	     the same device block size, but may mix logical sizes.
604  *
605  *	     Typically integrated with the blockref type in the upper 8 bits
606  *	     to localize inodes and indrect blocks, improving bulk free scans
607  *	     and directory scans.
608  *
609  * bitmap  - Two bits per 16KB allocation block arranged in arrays of
610  *	     32-bit elements, 128x2 bits representing ~2MB worth of media
611  *	     storage.  Bit patterns are as follows:
612  *
613  *	     00	Unallocated
614  *	     01 (reserved)
615  *	     10 Possibly free
616  *           11 Allocated
617  */
618 struct hammer2_bmap_data {
619 	int32_t linear;		/* 00 linear sub-granular allocation offset */
620 	uint16_t class;		/* 04-05 clustering class ((type<<8)|radix) */
621 	uint8_t reserved06;	/* 06 */
622 	uint8_t reserved07;	/* 07 */
623 	uint32_t reserved08;	/* 08 */
624 	uint32_t reserved0C;	/* 0C */
625 	uint32_t reserved10;	/* 10 */
626 	uint32_t reserved14;	/* 14 */
627 	uint32_t reserved18;	/* 18 */
628 	uint32_t avail;		/* 1C */
629 	uint32_t bitmap[8];	/* 20-3F 256 bits manages 2MB/16KB/2-bits */
630 };
631 
632 typedef struct hammer2_bmap_data hammer2_bmap_data_t;
633 
634 /*
635  * In HAMMER2 inodes ARE directory entries, with a special exception for
636  * hardlinks.  The inode number is stored in the inode rather than being
637  * based on the location of the inode (since the location moves every time
638  * the inode or anything underneath the inode is modified).
639  *
640  * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes
641  * for the filename, and 512 bytes worth of direct file data OR an embedded
642  * blockset.
643  *
644  * Directories represent one inode per blockref.  Inodes are not laid out
645  * as a file but instead are represented by the related blockrefs.  The
646  * blockrefs, in turn, are indexed by the 64-bit directory hash key.  Remember
647  * that blocksets are fully associative, so a certain degree efficiency is
648  * achieved just from that.
649  *
650  * Up to 512 bytes of direct data can be embedded in an inode, and since
651  * inodes are essentially directory entries this also means that small data
652  * files end up simply being laid out linearly in the directory, resulting
653  * in fewer seeks and highly optimal access.
654  *
655  * The compression mode can be changed at any time in the inode and is
656  * recorded on a blockref-by-blockref basis.
657  *
658  * Hardlinks are supported via the inode map.  Essentially the way a hardlink
659  * works is that all individual directory entries representing the same file
660  * are special cased and specify the same inode number.  The actual file
661  * is placed in the nearest parent directory that is parent to all instances
662  * of the hardlink.  If all hardlinks to a file are in the same directory
663  * the actual file will also be placed in that directory.  This file uses
664  * the inode number as the directory entry key and is invisible to normal
665  * directory scans.  Real directory entry keys are differentiated from the
666  * inode number key via bit 63.  Access to the hardlink silently looks up
667  * the real file and forwards all operations to that file.  Removal of the
668  * last hardlink also removes the real file.
669  *
670  * (attr_tid) is only updated when the inode's specific attributes or regular
671  * file size has changed, and affects path lookups and stat.  (attr_tid)
672  * represents a special cache coherency lock under the inode.  The inode
673  * blockref's modify_tid will always cover it.
674  *
675  * (dirent_tid) is only updated when an entry under a directory inode has
676  * been created, deleted, renamed, or had its attributes change, and affects
677  * directory lookups and scans.  (dirent_tid) represents another special cache
678  * coherency lock under the inode.  The inode blockref's modify_tid will
679  * always cover it.
680  */
681 #define HAMMER2_INODE_BYTES		1024	/* (asserted by code) */
682 #define HAMMER2_INODE_MAXNAME		256	/* maximum name in bytes */
683 #define HAMMER2_INODE_VERSION_ONE	1
684 
685 #define HAMMER2_INODE_HIDDENDIR		16	/* special inode */
686 #define HAMMER2_INODE_START		1024	/* dynamically allocated */
687 
688 struct hammer2_inode_data {
689 	uint16_t	version;	/* 0000 inode data version */
690 	uint16_t	reserved02;	/* 0002 */
691 
692 	/*
693 	 * core inode attributes, inode type, misc flags
694 	 */
695 	uint32_t	uflags;		/* 0004 chflags */
696 	uint32_t	rmajor;		/* 0008 available for device nodes */
697 	uint32_t	rminor;		/* 000C available for device nodes */
698 	uint64_t	ctime;		/* 0010 inode change time */
699 	uint64_t	mtime;		/* 0018 modified time */
700 	uint64_t	atime;		/* 0020 access time (unsupported) */
701 	uint64_t	btime;		/* 0028 birth time */
702 	uuid_t		uid;		/* 0030 uid / degenerate unix uid */
703 	uuid_t		gid;		/* 0040 gid / degenerate unix gid */
704 
705 	uint8_t		type;		/* 0050 object type */
706 	uint8_t		op_flags;	/* 0051 operational flags */
707 	uint16_t	cap_flags;	/* 0052 capability flags */
708 	uint32_t	mode;		/* 0054 unix modes (typ low 16 bits) */
709 
710 	/*
711 	 * inode size, identification, localized recursive configuration
712 	 * for compression and backup copies.
713 	 */
714 	hammer2_tid_t	inum;		/* 0058 inode number */
715 	hammer2_off_t	size;		/* 0060 size of file */
716 	uint64_t	nlinks;		/* 0068 hard links (typ only dirs) */
717 	hammer2_tid_t	iparent;	/* 0070 parent inum (recovery only) */
718 	hammer2_key_t	name_key;	/* 0078 full filename key */
719 	uint16_t	name_len;	/* 0080 filename length */
720 	uint8_t		ncopies;	/* 0082 ncopies to local media */
721 	uint8_t		comp_algo;	/* 0083 compression request & algo */
722 
723 	/*
724 	 * These fields are currently only applicable to PFSROOTs.
725 	 *
726 	 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely
727 	 *	 identify an instance of a PFS in the cluster because
728 	 *	 a mount may contain more than one copy of the PFS as
729 	 *	 a separate node.  {pfs_clid, pfs_fsid} must be used for
730 	 *	 registration in the cluster.
731 	 */
732 	uint8_t		target_type;	/* 0084 hardlink target type */
733 	uint8_t		reserved85;	/* 0085 */
734 	uint8_t		reserved86;	/* 0086 */
735 	uint8_t		pfs_type;	/* 0087 (if PFSROOT) node type */
736 	uint64_t	pfs_inum;	/* 0088 (if PFSROOT) inum allocator */
737 	uuid_t		pfs_clid;	/* 0090 (if PFSROOT) cluster uuid */
738 	uuid_t		pfs_fsid;	/* 00A0 (if PFSROOT) unique uuid */
739 
740 	/*
741 	 * Quotas and cumulative sub-tree counters.
742 	 */
743 	hammer2_key_t	data_quota;	/* 00B0 subtree quota in bytes */
744 	hammer2_key_t	data_count;	/* 00B8 subtree byte count */
745 	hammer2_key_t	inode_quota;	/* 00C0 subtree quota inode count */
746 	hammer2_key_t	inode_count;	/* 00C8 subtree inode count */
747 	hammer2_tid_t	attr_tid;	/* 00D0 attributes changed */
748 	hammer2_tid_t	dirent_tid;	/* 00D8 directory/attr changed */
749 
750 	/*
751 	 * Tracks (possibly degenerate) free areas covering all sub-tree
752 	 * allocations under inode, not counting the inode itself.
753 	 * 0/0 indicates empty entry.  fully set-associative.
754 	 */
755 	hammer2_off_t	freezones[4];	/* 00E0/E8/F0/F8 base|radix */
756 
757 	unsigned char	filename[HAMMER2_INODE_MAXNAME];
758 					/* 0100-01FF (256 char, unterminated) */
759 	union {				/* 0200-03FF (64x8 = 512 bytes) */
760 		struct hammer2_blockset blockset;
761 		char data[HAMMER2_EMBEDDED_BYTES];
762 	} u;
763 };
764 
765 typedef struct hammer2_inode_data hammer2_inode_data_t;
766 
767 #define HAMMER2_OPFLAG_DIRECTDATA	0x01
768 #define HAMMER2_OPFLAG_PFSROOT		0x02
769 #define HAMMER2_OPFLAG_COPYIDS		0x04	/* copyids override parent */
770 
771 #define HAMMER2_OBJTYPE_UNKNOWN		0
772 #define HAMMER2_OBJTYPE_DIRECTORY	1
773 #define HAMMER2_OBJTYPE_REGFILE		2
774 #define HAMMER2_OBJTYPE_FIFO		4
775 #define HAMMER2_OBJTYPE_CDEV		5
776 #define HAMMER2_OBJTYPE_BDEV		6
777 #define HAMMER2_OBJTYPE_SOFTLINK	7
778 #define HAMMER2_OBJTYPE_HARDLINK	8	/* dummy entry for hardlink */
779 #define HAMMER2_OBJTYPE_SOCKET		9
780 #define HAMMER2_OBJTYPE_WHITEOUT	10
781 
782 #define HAMMER2_COPYID_NONE		0
783 #define HAMMER2_COPYID_LOCAL		((uint8_t)-1)
784 
785 /*
786  * PEER types identify connections and help cluster controller filter
787  * out unwanted SPANs.
788  */
789 #define HAMMER2_PEER_NONE		DMSG_PEER_NONE
790 #define HAMMER2_PEER_CLUSTER		DMSG_PEER_CLUSTER
791 #define HAMMER2_PEER_BLOCK		DMSG_PEER_BLOCK
792 #define HAMMER2_PEER_HAMMER2		DMSG_PEER_HAMMER2
793 
794 #define HAMMER2_COPYID_COUNT		DMSG_COPYID_COUNT
795 
796 /*
797  * PFS types identify a PFS on media and in LNK_SPAN messages.
798  */
799 #define HAMMER2_PFSTYPE_NONE		DMSG_PFSTYPE_NONE
800 #define HAMMER2_PFSTYPE_ADMIN		DMSG_PFSTYPE_ADMIN
801 #define HAMMER2_PFSTYPE_CLIENT		DMSG_PFSTYPE_CLIENT
802 #define HAMMER2_PFSTYPE_CACHE		DMSG_PFSTYPE_CACHE
803 #define HAMMER2_PFSTYPE_COPY		DMSG_PFSTYPE_COPY
804 #define HAMMER2_PFSTYPE_SLAVE		DMSG_PFSTYPE_SLAVE
805 #define HAMMER2_PFSTYPE_SOFT_SLAVE	DMSG_PFSTYPE_SOFT_SLAVE
806 #define HAMMER2_PFSTYPE_SOFT_MASTER	DMSG_PFSTYPE_SOFT_MASTER
807 #define HAMMER2_PFSTYPE_MASTER		DMSG_PFSTYPE_MASTER
808 #define HAMMER2_PFSTYPE_SNAPSHOT	DMSG_PFSTYPE_SNAPSHOT
809 #define HAMMER2_PFSTYPE_MAX		DMSG_PFSTYPE_MAX
810 
811 /*
812  *				Allocation Table
813  *
814  */
815 
816 
817 /*
818  * Flags (8 bits) - blockref, for freemap only
819  *
820  * Note that the minimum chunk size is 1KB so we could theoretically have
821  * 10 bits here, but we might have some future extension that allows a
822  * chunk size down to 256 bytes and if so we will need bits 8 and 9.
823  */
824 #define HAMMER2_AVF_SELMASK		0x03	/* select group */
825 #define HAMMER2_AVF_ALL_ALLOC		0x04	/* indicate all allocated */
826 #define HAMMER2_AVF_ALL_FREE		0x08	/* indicate all free */
827 #define HAMMER2_AVF_RESERVED10		0x10
828 #define HAMMER2_AVF_RESERVED20		0x20
829 #define HAMMER2_AVF_RESERVED40		0x40
830 #define HAMMER2_AVF_RESERVED80		0x80
831 #define HAMMER2_AVF_AVMASK32		((uint32_t)0xFFFFFF00LU)
832 #define HAMMER2_AVF_AVMASK64		((uint64_t)0xFFFFFFFFFFFFFF00LLU)
833 
834 #define HAMMER2_AV_SELECT_A		0x00
835 #define HAMMER2_AV_SELECT_B		0x01
836 #define HAMMER2_AV_SELECT_C		0x02
837 #define HAMMER2_AV_SELECT_D		0x03
838 
839 /*
840  * The volume header eats a 64K block.  There is currently an issue where
841  * we want to try to fit all nominal filesystem updates in a 512-byte section
842  * but it may be a lost cause due to the need for a blockset.
843  *
844  * All information is stored in host byte order.  The volume header's magic
845  * number may be checked to determine the byte order.  If you wish to mount
846  * between machines w/ different endian modes you'll need filesystem code
847  * which acts on the media data consistently (either all one way or all the
848  * other).  Our code currently does not do that.
849  *
850  * A read-write mount may have to recover missing allocations by doing an
851  * incremental mirror scan looking for modifications made after alloc_tid.
852  * If alloc_tid == last_tid then no recovery operation is needed.  Recovery
853  * operations are usually very, very fast.
854  *
855  * Read-only mounts do not need to do any recovery, access to the filesystem
856  * topology is always consistent after a crash (is always consistent, period).
857  * However, there may be shortcutted blockref updates present from deep in
858  * the tree which are stored in the volumeh eader and must be tracked on
859  * the fly.
860  *
861  * NOTE: The copyinfo[] array contains the configuration for both the
862  *	 cluster connections and any local media copies.  The volume
863  *	 header will be replicated for each local media copy.
864  *
865  *	 The mount command may specify multiple medias or just one and
866  *	 allow HAMMER2 to pick up the others when it checks the copyinfo[]
867  *	 array on mount.
868  *
869  * NOTE: root_blockref points to the super-root directory, not the root
870  *	 directory.  The root directory will be a subdirectory under the
871  *	 super-root.
872  *
873  *	 The super-root directory contains all root directories and all
874  *	 snapshots (readonly or writable).  It is possible to do a
875  *	 null-mount of the super-root using special path constructions
876  *	 relative to your mounted root.
877  *
878  * NOTE: HAMMER2 allows any subdirectory tree to be managed as if it were
879  *	 a PFS, including mirroring and storage quota operations, and this is
880  *	 prefered over creating discrete PFSs in the super-root.  Instead
881  *	 the super-root is most typically used to create writable snapshots,
882  *	 alternative roots, and so forth.  The super-root is also used by
883  *	 the automatic snapshotting mechanism.
884  */
885 #define HAMMER2_VOLUME_ID_HBO	0x48414d3205172011LLU
886 #define HAMMER2_VOLUME_ID_ABO	0x11201705324d4148LLU
887 
888 struct hammer2_volume_data {
889 	/*
890 	 * sector #0 - 512 bytes
891 	 */
892 	uint64_t	magic;			/* 0000 Signature */
893 	hammer2_off_t	boot_beg;		/* 0008 Boot area (future) */
894 	hammer2_off_t	boot_end;		/* 0010 (size = end - beg) */
895 	hammer2_off_t	aux_beg;		/* 0018 Aux area (future) */
896 	hammer2_off_t	aux_end;		/* 0020 (size = end - beg) */
897 	hammer2_off_t	volu_size;		/* 0028 Volume size, bytes */
898 
899 	uint32_t	version;		/* 0030 */
900 	uint32_t	flags;			/* 0034 */
901 	uint8_t		copyid;			/* 0038 copyid of phys vol */
902 	uint8_t		freemap_version;	/* 0039 freemap algorithm */
903 	uint8_t		peer_type;		/* 003A HAMMER2_PEER_xxx */
904 	uint8_t		reserved003B;		/* 003B */
905 	uint32_t	reserved003C;		/* 003C */
906 
907 	uuid_t		fsid;			/* 0040 */
908 	uuid_t		fstype;			/* 0050 */
909 
910 	/*
911 	 * allocator_size is precalculated at newfs time and does not include
912 	 * reserved blocks, boot, or redo areas.
913 	 *
914 	 * Initial non-reserved-area allocations do not use the freemap
915 	 * but instead adjust alloc_iterator.  Dynamic allocations take
916 	 * over starting at (allocator_beg).  This makes newfs_hammer2's
917 	 * job a lot easier and can also serve as a testing jig.
918 	 */
919 	hammer2_off_t	allocator_size;		/* 0060 Total data space */
920 	hammer2_off_t   allocator_free;		/* 0068	Free space */
921 	hammer2_off_t	allocator_beg;		/* 0070 Initial allocations */
922 	hammer2_tid_t	mirror_tid;		/* 0078 committed tid (vol) */
923 	hammer2_tid_t	alloc_tid;		/* 0080 Alloctable modify tid */
924 	hammer2_tid_t	inode_tid;		/* 0088 Inode allocator tid */
925 	hammer2_tid_t	freemap_tid;		/* 0090 committed tid (fmap) */
926 	hammer2_tid_t	bulkfree_tid;		/* 0098 bulkfree incremental */
927 	hammer2_tid_t	reserved00A0[5];	/* 00A0-00C7 */
928 
929 	/*
930 	 * Copyids are allocated dynamically from the copyexists bitmap.
931 	 * An id from the active copies set (up to 8, see copyinfo later on)
932 	 * may still exist after the copy set has been removed from the
933 	 * volume header and its bit will remain active in the bitmap and
934 	 * cannot be reused until it is 100% removed from the hierarchy.
935 	 */
936 	uint32_t	copyexists[8];		/* 00C8-00E7 copy exists bmap */
937 	char		reserved0140[248];	/* 00E8-01DF */
938 
939 	/*
940 	 * 32 bit CRC array at the end of the first 512 byte sector.
941 	 *
942 	 * icrc_sects[7] - First 512-4 bytes of volume header (including all
943 	 *		   the other icrc's except this one).
944 	 *
945 	 * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is
946 	 *		   the blockset for the root.
947 	 *
948 	 * icrc_sects[5] - Sector 2
949 	 * icrc_sects[4] - Sector 3
950 	 * icrc_sects[3] - Sector 4 (the freemap blockset)
951 	 */
952 	hammer2_crc32_t	icrc_sects[8];		/* 01E0-01FF */
953 
954 	/*
955 	 * sector #1 - 512 bytes
956 	 *
957 	 * The entire sector is used by a blockset.
958 	 */
959 	hammer2_blockset_t sroot_blockset;	/* 0200-03FF Superroot dir */
960 
961 	/*
962 	 * sector #2-7
963 	 */
964 	char	sector2[512];			/* 0400-05FF reserved */
965 	char	sector3[512];			/* 0600-07FF reserved */
966 	hammer2_blockset_t freemap_blockset;	/* 0800-09FF freemap  */
967 	char	sector5[512];			/* 0A00-0BFF reserved */
968 	char	sector6[512];			/* 0C00-0DFF reserved */
969 	char	sector7[512];			/* 0E00-0FFF reserved */
970 
971 	/*
972 	 * sector #8-71	- 32768 bytes
973 	 *
974 	 * Contains the configuration for up to 256 copyinfo targets.  These
975 	 * specify local and remote copies operating as masters or slaves.
976 	 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255
977 	 * indicates the local media).
978 	 *
979 	 * Each inode contains a set of up to 8 copyids, either inherited
980 	 * from its parent or explicitly specified in the inode, which
981 	 * indexes into this array.
982 	 */
983 						/* 1000-8FFF copyinfo config */
984 	dmsg_vol_data_t	copyinfo[HAMMER2_COPYID_COUNT];
985 
986 	/*
987 	 * Remaining sections are reserved for future use.
988 	 */
989 	char		reserved0400[0x6FFC];	/* 9000-FFFB reserved */
990 
991 	/*
992 	 * icrc on entire volume header
993 	 */
994 	hammer2_crc32_t	icrc_volheader;		/* FFFC-FFFF full volume icrc*/
995 };
996 
997 typedef struct hammer2_volume_data hammer2_volume_data_t;
998 
999 /*
1000  * Various parts of the volume header have their own iCRCs.
1001  *
1002  * The first 512 bytes has its own iCRC stored at the end of the 512 bytes
1003  * and not included the icrc calculation.
1004  *
1005  * The second 512 bytes also has its own iCRC but it is stored in the first
1006  * 512 bytes so it covers the entire second 512 bytes.
1007  *
1008  * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes,
1009  * which is where the iCRC for the whole volume is stored.  This is currently
1010  * a catch-all for anything not individually iCRCd.
1011  */
1012 #define HAMMER2_VOL_ICRC_SECT0		7
1013 #define HAMMER2_VOL_ICRC_SECT1		6
1014 
1015 #define HAMMER2_VOLUME_BYTES		65536
1016 
1017 #define HAMMER2_VOLUME_ICRC0_OFF	0
1018 #define HAMMER2_VOLUME_ICRC1_OFF	512
1019 #define HAMMER2_VOLUME_ICRCVH_OFF	0
1020 
1021 #define HAMMER2_VOLUME_ICRC0_SIZE	(512 - 4)
1022 #define HAMMER2_VOLUME_ICRC1_SIZE	(512)
1023 #define HAMMER2_VOLUME_ICRCVH_SIZE	(65536 - 4)
1024 
1025 #define HAMMER2_VOL_VERSION_MIN		1
1026 #define HAMMER2_VOL_VERSION_DEFAULT	1
1027 #define HAMMER2_VOL_VERSION_WIP 	2
1028 
1029 #define HAMMER2_NUM_VOLHDRS		4
1030 
1031 union hammer2_media_data {
1032 	hammer2_volume_data_t	voldata;
1033         hammer2_inode_data_t    ipdata;
1034 	hammer2_blockref_t	npdata[HAMMER2_IND_COUNT_MAX];
1035 	hammer2_bmap_data_t	bmdata[HAMMER2_FREEMAP_COUNT];
1036 	char			buf[HAMMER2_PBUFSIZE];
1037 };
1038 
1039 typedef union hammer2_media_data hammer2_media_data_t;
1040 
1041 #endif /* !_VFS_HAMMER2_DISK_H_ */
1042