xref: /dragonfly/sys/vfs/hammer2/hammer2_flush.c (revision 279dd846)
1 /*
2  * Copyright (c) 2011-2015 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  *			TRANSACTION AND FLUSH HANDLING
37  *
38  * Deceptively simple but actually fairly difficult to implement properly is
39  * how I would describe it.
40  *
41  * Flushing generally occurs bottom-up but requires a top-down scan to
42  * locate chains with MODIFIED and/or UPDATE bits set.  The ONFLUSH flag
43  * tells how to recurse downward to find these chains.
44  */
45 
46 #include <sys/cdefs.h>
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/types.h>
50 #include <sys/lock.h>
51 #include <sys/uuid.h>
52 
53 #include "hammer2.h"
54 
55 #define FLUSH_DEBUG 0
56 
57 #define HAMMER2_FLUSH_DEPTH_LIMIT       10      /* stack recursion limit */
58 
59 
60 /*
61  * Recursively flush the specified chain.  The chain is locked and
62  * referenced by the caller and will remain so on return.  The chain
63  * will remain referenced throughout but can temporarily lose its
64  * lock during the recursion to avoid unnecessarily stalling user
65  * processes.
66  */
67 struct hammer2_flush_info {
68 	hammer2_chain_t *parent;
69 	int		depth;
70 	int		diddeferral;
71 	int		cache_index;
72 	int		flags;
73 	struct h2_flush_list flushq;
74 	hammer2_chain_t	*debug;
75 };
76 
77 typedef struct hammer2_flush_info hammer2_flush_info_t;
78 
79 static void hammer2_flush_core(hammer2_flush_info_t *info,
80 				hammer2_chain_t *chain, int flags);
81 static int hammer2_flush_recurse(hammer2_chain_t *child, void *data);
82 
83 /*
84  * Any per-pfs transaction initialization goes here.
85  */
86 void
87 hammer2_trans_manage_init(hammer2_pfs_t *pmp)
88 {
89 }
90 
91 /*
92  * Transaction support for any modifying operation.  Transactions are used
93  * in the pmp layer by the frontend and in the spmp layer by the backend.
94  *
95  * 0			- Normal transaction, interlocked against flush
96  *			  transaction.
97  *
98  * TRANS_ISFLUSH	- Flush transaction, interlocked against normal
99  *			  transaction.
100  *
101  * TRANS_BUFCACHE	- Buffer cache transaction, no interlock.
102  *
103  * Initializing a new transaction allocates a transaction ID.  Typically
104  * passed a pmp (hmp passed as NULL), indicating a cluster transaction.  Can
105  * be passed a NULL pmp and non-NULL hmp to indicate a transaction on a single
106  * media target.  The latter mode is used by the recovery code.
107  *
108  * TWO TRANSACTION IDs can run concurrently, where one is a flush and the
109  * other is a set of any number of concurrent filesystem operations.  We
110  * can either have <running_fs_ops> + <waiting_flush> + <blocked_fs_ops>
111  * or we can have <running_flush> + <concurrent_fs_ops>.
112  *
113  * During a flush, new fs_ops are only blocked until the fs_ops prior to
114  * the flush complete.  The new fs_ops can then run concurrent with the flush.
115  *
116  * Buffer-cache transactions operate as fs_ops but never block.  A
117  * buffer-cache flush will run either before or after the current pending
118  * flush depending on its state.
119  */
120 void
121 hammer2_trans_init(hammer2_pfs_t *pmp, uint32_t flags)
122 {
123 	uint32_t oflags;
124 	uint32_t nflags;
125 	int dowait;
126 
127 	for (;;) {
128 		oflags = pmp->trans.flags;
129 		cpu_ccfence();
130 		dowait = 0;
131 
132 		if (flags & HAMMER2_TRANS_ISFLUSH) {
133 			/*
134 			 * Requesting flush transaction.  Wait for all
135 			 * currently running transactions to finish.
136 			 */
137 			if (oflags & HAMMER2_TRANS_MASK) {
138 				nflags = oflags | HAMMER2_TRANS_FPENDING |
139 						  HAMMER2_TRANS_WAITING;
140 				dowait = 1;
141 			} else {
142 				nflags = (oflags | flags) + 1;
143 			}
144 		} else if (flags & HAMMER2_TRANS_BUFCACHE) {
145 			/*
146 			 * Requesting strategy transaction.  Generally
147 			 * allowed in all situations unless a flush
148 			 * is running without the preflush flag.
149 			 */
150 			if ((oflags & (HAMMER2_TRANS_ISFLUSH |
151 				       HAMMER2_TRANS_PREFLUSH)) ==
152 			    HAMMER2_TRANS_ISFLUSH) {
153 				nflags = oflags | HAMMER2_TRANS_WAITING;
154 				dowait = 1;
155 			} else {
156 				nflags = (oflags | flags) + 1;
157 			}
158 		} else {
159 			/*
160 			 * Requesting normal transaction.  Wait for any
161 			 * flush to finish before allowing.
162 			 */
163 			if (oflags & HAMMER2_TRANS_ISFLUSH) {
164 				nflags = oflags | HAMMER2_TRANS_WAITING;
165 				dowait = 1;
166 			} else {
167 				nflags = (oflags | flags) + 1;
168 			}
169 		}
170 		if (dowait)
171 			tsleep_interlock(&pmp->trans.sync_wait, 0);
172 		if (atomic_cmpset_int(&pmp->trans.flags, oflags, nflags)) {
173 			if (dowait == 0)
174 				break;
175 			tsleep(&pmp->trans.sync_wait, PINTERLOCKED,
176 			       "h2trans", hz);
177 		} else {
178 			cpu_pause();
179 		}
180 		/* retry */
181 	}
182 }
183 
184 /*
185  * Start a sub-transaction, there is no 'subdone' function.  This will
186  * issue a new modify_tid (mtid) for the current transaction, which is a
187  * CLC (cluster level change) id and not a per-node id.
188  *
189  * This function must be called for each XOP when multiple XOPs are run in
190  * sequence within a transaction.
191  *
192  * Callers typically update the inode with the transaction mtid manually
193  * to enforce sequencing.
194  */
195 hammer2_tid_t
196 hammer2_trans_sub(hammer2_pfs_t *pmp)
197 {
198 	hammer2_tid_t mtid;
199 
200 	mtid = atomic_fetchadd_64(&pmp->modify_tid, 1);
201 
202 	return (mtid);
203 }
204 
205 /*
206  * Clears the PREFLUSH stage, called during a flush transaction after all
207  * logical buffer I/O has completed.
208  */
209 void
210 hammer2_trans_clear_preflush(hammer2_pfs_t *pmp)
211 {
212 	atomic_clear_int(&pmp->trans.flags, HAMMER2_TRANS_PREFLUSH);
213 }
214 
215 void
216 hammer2_trans_done(hammer2_pfs_t *pmp)
217 {
218 	uint32_t oflags;
219 	uint32_t nflags;
220 
221 	for (;;) {
222 		oflags = pmp->trans.flags;
223 		cpu_ccfence();
224 		KKASSERT(oflags & HAMMER2_TRANS_MASK);
225 		if ((oflags & HAMMER2_TRANS_MASK) == 1) {
226 			/*
227 			 * This was the last transaction
228 			 */
229 			nflags = (oflags - 1) & ~(HAMMER2_TRANS_ISFLUSH |
230 						  HAMMER2_TRANS_BUFCACHE |
231 						  HAMMER2_TRANS_PREFLUSH |
232 						  HAMMER2_TRANS_FPENDING |
233 						  HAMMER2_TRANS_WAITING);
234 		} else {
235 			/*
236 			 * Still transactions pending
237 			 */
238 			nflags = oflags - 1;
239 		}
240 		if (atomic_cmpset_int(&pmp->trans.flags, oflags, nflags)) {
241 			if ((nflags & HAMMER2_TRANS_MASK) == 0 &&
242 			    (oflags & HAMMER2_TRANS_WAITING)) {
243 				wakeup(&pmp->trans.sync_wait);
244 			}
245 			break;
246 		} else {
247 			cpu_pause();
248 		}
249 		/* retry */
250 	}
251 }
252 
253 /*
254  * Obtain new, unique inode number (not serialized by caller).
255  */
256 hammer2_tid_t
257 hammer2_trans_newinum(hammer2_pfs_t *pmp)
258 {
259 	hammer2_tid_t tid;
260 
261 	tid = atomic_fetchadd_64(&pmp->inode_tid, 1);
262 
263 	return tid;
264 }
265 
266 /*
267  * Assert that a strategy call is ok here.  Strategy calls are legal
268  *
269  * (1) In a normal transaction.
270  * (2) In a flush transaction only if PREFLUSH is also set.
271  */
272 void
273 hammer2_trans_assert_strategy(hammer2_pfs_t *pmp)
274 {
275 	KKASSERT((pmp->trans.flags & HAMMER2_TRANS_ISFLUSH) == 0 ||
276 		 (pmp->trans.flags & HAMMER2_TRANS_PREFLUSH));
277 }
278 
279 
280 /*
281  * Chains undergoing destruction are removed from the in-memory topology.
282  * To avoid getting lost these chains are placed on the delayed flush
283  * queue which will properly dispose of them.
284  *
285  * We do this instead of issuing an immediate flush in order to give
286  * recursive deletions (rm -rf, etc) a chance to remove more of the
287  * hierarchy, potentially allowing an enormous amount of write I/O to
288  * be avoided.
289  */
290 void
291 hammer2_delayed_flush(hammer2_chain_t *chain)
292 {
293 	if ((chain->flags & HAMMER2_CHAIN_DELAYED) == 0) {
294 		hammer2_spin_ex(&chain->hmp->list_spin);
295 		if ((chain->flags & (HAMMER2_CHAIN_DELAYED |
296 				     HAMMER2_CHAIN_DEFERRED)) == 0) {
297 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELAYED |
298 						      HAMMER2_CHAIN_DEFERRED);
299 			TAILQ_INSERT_TAIL(&chain->hmp->flushq,
300 					  chain, flush_node);
301 			hammer2_chain_ref(chain);
302 		}
303 		hammer2_spin_unex(&chain->hmp->list_spin);
304 	}
305 }
306 
307 /*
308  * Flush the chain and all modified sub-chains through the specified
309  * synchronization point, propagating blockref updates back up.  As
310  * part of this propagation, mirror_tid and inode/data usage statistics
311  * propagates back upward.
312  *
313  * modify_tid (clc - cluster level change) is not propagated.
314  *
315  * update_tid (clc) is used for validation and is not propagated by this
316  * function.
317  *
318  * This routine can be called from several places but the most important
319  * is from VFS_SYNC (frontend) via hammer2_inode_xop_flush (backend).
320  *
321  * chain is locked on call and will remain locked on return.  The chain's
322  * UPDATE flag indicates that its parent's block table (which is not yet
323  * part of the flush) should be updated.  The chain may be replaced by
324  * the call if it was modified.
325  */
326 void
327 hammer2_flush(hammer2_chain_t *chain, int flags)
328 {
329 	hammer2_chain_t *scan;
330 	hammer2_flush_info_t info;
331 	hammer2_dev_t *hmp;
332 	int loops;
333 
334 	/*
335 	 * Execute the recursive flush and handle deferrals.
336 	 *
337 	 * Chains can be ridiculously long (thousands deep), so to
338 	 * avoid blowing out the kernel stack the recursive flush has a
339 	 * depth limit.  Elements at the limit are placed on a list
340 	 * for re-execution after the stack has been popped.
341 	 */
342 	bzero(&info, sizeof(info));
343 	TAILQ_INIT(&info.flushq);
344 	info.cache_index = -1;
345 	info.flags = flags & ~HAMMER2_FLUSH_TOP;
346 
347 	/*
348 	 * Calculate parent (can be NULL), if not NULL the flush core
349 	 * expects the parent to be referenced so it can easily lock/unlock
350 	 * it without it getting ripped up.
351 	 */
352 	if ((info.parent = chain->parent) != NULL)
353 		hammer2_chain_ref(info.parent);
354 
355 	/*
356 	 * Extra ref needed because flush_core expects it when replacing
357 	 * chain.
358 	 */
359 	hammer2_chain_ref(chain);
360 	hmp = chain->hmp;
361 	loops = 0;
362 
363 	for (;;) {
364 		/*
365 		 * Move hmp->flushq to info.flushq if non-empty so it can
366 		 * be processed.
367 		 */
368 		if (TAILQ_FIRST(&hmp->flushq) != NULL) {
369 			hammer2_spin_ex(&chain->hmp->list_spin);
370 			TAILQ_CONCAT(&info.flushq, &hmp->flushq, flush_node);
371 			hammer2_spin_unex(&chain->hmp->list_spin);
372 		}
373 
374 		/*
375 		 * Unwind deep recursions which had been deferred.  This
376 		 * can leave the FLUSH_* bits set for these chains, which
377 		 * will be handled when we [re]flush chain after the unwind.
378 		 */
379 		while ((scan = TAILQ_FIRST(&info.flushq)) != NULL) {
380 			KKASSERT(scan->flags & HAMMER2_CHAIN_DEFERRED);
381 			TAILQ_REMOVE(&info.flushq, scan, flush_node);
382 			atomic_clear_int(&scan->flags, HAMMER2_CHAIN_DEFERRED |
383 						       HAMMER2_CHAIN_DELAYED);
384 
385 			/*
386 			 * Now that we've popped back up we can do a secondary
387 			 * recursion on the deferred elements.
388 			 *
389 			 * NOTE: hammer2_flush() may replace scan.
390 			 */
391 			if (hammer2_debug & 0x0040)
392 				kprintf("deferred flush %p\n", scan);
393 			hammer2_chain_lock(scan, HAMMER2_RESOLVE_MAYBE);
394 			hammer2_flush(scan, flags & ~HAMMER2_FLUSH_TOP);
395 			hammer2_chain_unlock(scan);
396 			hammer2_chain_drop(scan);	/* ref from deferral */
397 		}
398 
399 		/*
400 		 * [re]flush chain.
401 		 */
402 		info.diddeferral = 0;
403 		hammer2_flush_core(&info, chain, flags);
404 
405 		/*
406 		 * Only loop if deep recursions have been deferred.
407 		 */
408 		if (TAILQ_EMPTY(&info.flushq))
409 			break;
410 
411 		if (++loops % 1000 == 0) {
412 			kprintf("hammer2_flush: excessive loops on %p\n",
413 				chain);
414 			if (hammer2_debug & 0x100000)
415 				Debugger("hell4");
416 		}
417 	}
418 	hammer2_chain_drop(chain);
419 	if (info.parent)
420 		hammer2_chain_drop(info.parent);
421 }
422 
423 /*
424  * This is the core of the chain flushing code.  The chain is locked by the
425  * caller and must also have an extra ref on it by the caller, and remains
426  * locked and will have an extra ref on return.  Upon return, the caller can
427  * test the UPDATE bit on the child to determine if the parent needs updating.
428  *
429  * (1) Determine if this node is a candidate for the flush, return if it is
430  *     not.  fchain and vchain are always candidates for the flush.
431  *
432  * (2) If we recurse too deep the chain is entered onto the deferral list and
433  *     the current flush stack is aborted until after the deferral list is
434  *     run.
435  *
436  * (3) Recursively flush live children (rbtree).  This can create deferrals.
437  *     A successful flush clears the MODIFIED and UPDATE bits on the children
438  *     and typically causes the parent to be marked MODIFIED as the children
439  *     update the parent's block table.  A parent might already be marked
440  *     MODIFIED due to a deletion (whos blocktable update in the parent is
441  *     handled by the frontend), or if the parent itself is modified by the
442  *     frontend for other reasons.
443  *
444  * (4) Permanently disconnected sub-trees are cleaned up by the front-end.
445  *     Deleted-but-open inodes can still be individually flushed via the
446  *     filesystem syncer.
447  *
448  * (5) Note that an unmodified child may still need the block table in its
449  *     parent updated (e.g. rename/move).  The child will have UPDATE set
450  *     in this case.
451  *
452  *			WARNING ON BREF MODIFY_TID/MIRROR_TID
453  *
454  * blockref.modify_tid is consistent only within a PFS, and will not be
455  * consistent during synchronization.  mirror_tid is consistent across the
456  * block device regardless of the PFS.
457  */
458 static void
459 hammer2_flush_core(hammer2_flush_info_t *info, hammer2_chain_t *chain,
460 		   int flags)
461 {
462 	hammer2_chain_t *parent;
463 	hammer2_dev_t *hmp;
464 	int diddeferral;
465 
466 	/*
467 	 * (1) Optimize downward recursion to locate nodes needing action.
468 	 *     Nothing to do if none of these flags are set.
469 	 */
470 	if ((chain->flags & HAMMER2_CHAIN_FLUSH_MASK) == 0) {
471 		if (hammer2_debug & 0x200) {
472 			if (info->debug == NULL)
473 				info->debug = chain;
474 		} else {
475 			return;
476 		}
477 	}
478 
479 	hmp = chain->hmp;
480 	diddeferral = info->diddeferral;
481 	parent = info->parent;		/* can be NULL */
482 
483 	/*
484 	 * Downward search recursion
485 	 */
486 	if (chain->flags & (HAMMER2_CHAIN_DEFERRED | HAMMER2_CHAIN_DELAYED)) {
487 		/*
488 		 * Already deferred.
489 		 */
490 		++info->diddeferral;
491 	} else if ((chain->flags & HAMMER2_CHAIN_PFSBOUNDARY) &&
492 		   (flags & HAMMER2_FLUSH_ALL) == 0 &&
493 		   (flags & HAMMER2_FLUSH_TOP) == 0) {
494 		/*
495 		 * We do not recurse through PFSROOTs.  PFSROOT flushes are
496 		 * handled by the related pmp's (whether mounted or not,
497 		 * including during recovery).
498 		 *
499 		 * But we must still process the PFSROOT chains for block
500 		 * table updates in their parent (which IS part of our flush).
501 		 *
502 		 * Note that the volume root, vchain, does not set this flag.
503 		 * Note the logic here requires that this test be done before
504 		 * the depth-limit test, else it might become the top on a
505 		 * flushq iteration.
506 		 */
507 		;
508 	} else if (info->depth == HAMMER2_FLUSH_DEPTH_LIMIT) {
509 		/*
510 		 * Recursion depth reached.
511 		 */
512 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELAYED) == 0);
513 		hammer2_chain_ref(chain);
514 		TAILQ_INSERT_TAIL(&info->flushq, chain, flush_node);
515 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DEFERRED);
516 		++info->diddeferral;
517 	} else if (chain->flags & HAMMER2_CHAIN_ONFLUSH) {
518 		/*
519 		 * Downward recursion search (actual flush occurs bottom-up).
520 		 * pre-clear ONFLUSH.  It can get set again due to races,
521 		 * which we want so the scan finds us again in the next flush.
522 		 */
523 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
524 		info->parent = chain;
525 		hammer2_spin_ex(&chain->core.spin);
526 		RB_SCAN(hammer2_chain_tree, &chain->core.rbtree,
527 			NULL, hammer2_flush_recurse, info);
528 		hammer2_spin_unex(&chain->core.spin);
529 		info->parent = parent;
530 		if (info->diddeferral)
531 			hammer2_chain_setflush(chain);
532 	}
533 
534 	/*
535 	 * Now we are in the bottom-up part of the recursion.
536 	 *
537 	 * Do not update chain if lower layers were deferred.
538 	 */
539 	if (info->diddeferral)
540 		goto done;
541 
542 	/*
543 	 * Propagate the DESTROY flag downwards.  This dummies up the flush
544 	 * code and tries to invalidate related buffer cache buffers to
545 	 * avoid the disk write.
546 	 */
547 	if (parent && (parent->flags & HAMMER2_CHAIN_DESTROY))
548 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
549 
550 	/*
551 	 * Chain was already modified or has become modified, flush it out.
552 	 */
553 again:
554 	if ((hammer2_debug & 0x200) &&
555 	    info->debug &&
556 	    (chain->flags & (HAMMER2_CHAIN_MODIFIED | HAMMER2_CHAIN_UPDATE))) {
557 		hammer2_chain_t *scan = chain;
558 
559 		kprintf("DISCONNECTED FLUSH %p->%p\n", info->debug, chain);
560 		while (scan) {
561 			kprintf("    chain %p [%08x] bref=%016jx:%02x\n",
562 				scan, scan->flags,
563 				scan->bref.key, scan->bref.type);
564 			if (scan == info->debug)
565 				break;
566 			scan = scan->parent;
567 		}
568 	}
569 
570 	if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
571 		/*
572 		 * Dispose of the modified bit.
573 		 *
574 		 * UPDATE should already be set.
575 		 * bref.mirror_tid should already be set.
576 		 */
577 		KKASSERT((chain->flags & HAMMER2_CHAIN_UPDATE) ||
578 			 chain == &hmp->vchain);
579 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
580 
581 		/*
582 		 * Manage threads waiting for excessive dirty memory to
583 		 * be retired.
584 		 */
585 		if (chain->pmp)
586 			hammer2_pfs_memory_wakeup(chain->pmp);
587 
588 		if ((chain->flags & HAMMER2_CHAIN_UPDATE) ||
589 		    chain == &hmp->vchain ||
590 		    chain == &hmp->fchain) {
591 			/*
592 			 * Drop the ref from the MODIFIED bit we cleared,
593 			 * net -1 ref.
594 			 */
595 			hammer2_chain_drop(chain);
596 		} else {
597 			/*
598 			 * Drop the ref from the MODIFIED bit we cleared and
599 			 * set a ref for the UPDATE bit we are setting.  Net
600 			 * 0 refs.
601 			 */
602 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
603 		}
604 
605 		/*
606 		 * Issue the flush.  This is indirect via the DIO.
607 		 *
608 		 * NOTE: A DELETED node that reaches this point must be
609 		 *	 flushed for synchronization point consistency.
610 		 *
611 		 * NOTE: Even though MODIFIED was already set, the related DIO
612 		 *	 might not be dirty due to a system buffer cache
613 		 *	 flush and must be set dirty if we are going to make
614 		 *	 further modifications to the buffer.  Chains with
615 		 *	 embedded data don't need this.
616 		 */
617 		if (hammer2_debug & 0x1000) {
618 			kprintf("Flush %p.%d %016jx/%d data=%016jx",
619 				chain, chain->bref.type,
620 				(uintmax_t)chain->bref.key,
621 				chain->bref.keybits,
622 				(uintmax_t)chain->bref.data_off);
623 		}
624 		if (hammer2_debug & 0x2000) {
625 			Debugger("Flush hell");
626 		}
627 
628 		/*
629 		 * Update chain CRCs for flush.
630 		 *
631 		 * NOTE: Volume headers are NOT flushed here as they require
632 		 *	 special processing.
633 		 */
634 		switch(chain->bref.type) {
635 		case HAMMER2_BREF_TYPE_FREEMAP:
636 			/*
637 			 * Update the volume header's freemap_tid to the
638 			 * freemap's flushing mirror_tid.
639 			 *
640 			 * (note: embedded data, do not call setdirty)
641 			 */
642 			KKASSERT(hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED);
643 			KKASSERT(chain == &hmp->fchain);
644 			hmp->voldata.freemap_tid = chain->bref.mirror_tid;
645 			if (hammer2_debug & 0x8000) {
646 				/* debug only, avoid syslogd loop */
647 				kprintf("sync freemap mirror_tid %08jx\n",
648 					(intmax_t)chain->bref.mirror_tid);
649 			}
650 
651 			/*
652 			 * The freemap can be flushed independently of the
653 			 * main topology, but for the case where it is
654 			 * flushed in the same transaction, and flushed
655 			 * before vchain (a case we want to allow for
656 			 * performance reasons), make sure modifications
657 			 * made during the flush under vchain use a new
658 			 * transaction id.
659 			 *
660 			 * Otherwise the mount recovery code will get confused.
661 			 */
662 			++hmp->voldata.mirror_tid;
663 			break;
664 		case HAMMER2_BREF_TYPE_VOLUME:
665 			/*
666 			 * The free block table is flushed by
667 			 * hammer2_vfs_sync() before it flushes vchain.
668 			 * We must still hold fchain locked while copying
669 			 * voldata to volsync, however.
670 			 *
671 			 * (note: embedded data, do not call setdirty)
672 			 */
673 			hammer2_chain_lock(&hmp->fchain,
674 					   HAMMER2_RESOLVE_ALWAYS);
675 			hammer2_voldata_lock(hmp);
676 			if (hammer2_debug & 0x8000) {
677 				/* debug only, avoid syslogd loop */
678 				kprintf("sync volume  mirror_tid %08jx\n",
679 					(intmax_t)chain->bref.mirror_tid);
680 			}
681 
682 			/*
683 			 * Update the volume header's mirror_tid to the
684 			 * main topology's flushing mirror_tid.  It is
685 			 * possible that voldata.mirror_tid is already
686 			 * beyond bref.mirror_tid due to the bump we made
687 			 * above in BREF_TYPE_FREEMAP.
688 			 */
689 			if (hmp->voldata.mirror_tid < chain->bref.mirror_tid) {
690 				hmp->voldata.mirror_tid =
691 					chain->bref.mirror_tid;
692 			}
693 
694 			/*
695 			 * The volume header is flushed manually by the
696 			 * syncer, not here.  All we do here is adjust the
697 			 * crc's.
698 			 */
699 			KKASSERT(chain->data != NULL);
700 			KKASSERT(chain->dio == NULL);
701 
702 			hmp->voldata.icrc_sects[HAMMER2_VOL_ICRC_SECT1]=
703 				hammer2_icrc32(
704 					(char *)&hmp->voldata +
705 					 HAMMER2_VOLUME_ICRC1_OFF,
706 					HAMMER2_VOLUME_ICRC1_SIZE);
707 			hmp->voldata.icrc_sects[HAMMER2_VOL_ICRC_SECT0]=
708 				hammer2_icrc32(
709 					(char *)&hmp->voldata +
710 					 HAMMER2_VOLUME_ICRC0_OFF,
711 					HAMMER2_VOLUME_ICRC0_SIZE);
712 			hmp->voldata.icrc_volheader =
713 				hammer2_icrc32(
714 					(char *)&hmp->voldata +
715 					 HAMMER2_VOLUME_ICRCVH_OFF,
716 					HAMMER2_VOLUME_ICRCVH_SIZE);
717 
718 			if (hammer2_debug & 0x8000) {
719 				/* debug only, avoid syslogd loop */
720 				kprintf("syncvolhdr %016jx %016jx\n",
721 					hmp->voldata.mirror_tid,
722 					hmp->vchain.bref.mirror_tid);
723 			}
724 			hmp->volsync = hmp->voldata;
725 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_VOLUMESYNC);
726 			hammer2_voldata_unlock(hmp);
727 			hammer2_chain_unlock(&hmp->fchain);
728 			break;
729 		case HAMMER2_BREF_TYPE_DATA:
730 			/*
731 			 * Data elements have already been flushed via the
732 			 * logical file buffer cache.  Their hash was set in
733 			 * the bref by the vop_write code.  Do not re-dirty.
734 			 *
735 			 * Make sure any device buffer(s) have been flushed
736 			 * out here (there aren't usually any to flush) XXX.
737 			 */
738 			break;
739 		case HAMMER2_BREF_TYPE_INDIRECT:
740 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
741 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
742 			/*
743 			 * Buffer I/O will be cleaned up when the volume is
744 			 * flushed (but the kernel is free to flush it before
745 			 * then, as well).
746 			 */
747 			KKASSERT((chain->flags & HAMMER2_CHAIN_EMBEDDED) == 0);
748 			hammer2_chain_setcheck(chain, chain->data);
749 			break;
750 		case HAMMER2_BREF_TYPE_INODE:
751 			/*
752 			 * NOTE: We must call io_setdirty() to make any late
753 			 *	 changes to the inode data, the system might
754 			 *	 have already flushed the buffer.
755 			 */
756 			if (chain->data->ipdata.meta.op_flags &
757 			    HAMMER2_OPFLAG_PFSROOT) {
758 				/*
759 				 * non-NULL pmp if mounted as a PFS.  We must
760 				 * sync fields cached in the pmp? XXX
761 				 */
762 				hammer2_inode_data_t *ipdata;
763 
764 				hammer2_io_setdirty(chain->dio);
765 				ipdata = &chain->data->ipdata;
766 				if (chain->pmp) {
767 					ipdata->meta.pfs_inum =
768 						chain->pmp->inode_tid;
769 				}
770 			} else {
771 				/* can't be mounted as a PFS */
772 			}
773 
774 			KKASSERT((chain->flags & HAMMER2_CHAIN_EMBEDDED) == 0);
775 			hammer2_chain_setcheck(chain, chain->data);
776 			break;
777 		default:
778 			KKASSERT(chain->flags & HAMMER2_CHAIN_EMBEDDED);
779 			panic("hammer2_flush_core: unsupported "
780 			      "embedded bref %d",
781 			      chain->bref.type);
782 			/* NOT REACHED */
783 		}
784 
785 		/*
786 		 * If the chain was destroyed try to avoid unnecessary I/O.
787 		 * (this only really works if the DIO system buffer is the
788 		 * same size as chain->bytes).
789 		 */
790 		if ((chain->flags & HAMMER2_CHAIN_DESTROY) &&
791 		    (chain->flags & HAMMER2_CHAIN_DEDUP) == 0 &&
792 		    chain->dio) {
793 			hammer2_io_setinval(chain->dio, chain->bytes);
794 		}
795 	}
796 
797 	/*
798 	 * If UPDATE is set the parent block table may need to be updated.
799 	 *
800 	 * NOTE: UPDATE may be set on vchain or fchain in which case
801 	 *	 parent could be NULL.  It's easiest to allow the case
802 	 *	 and test for NULL.  parent can also wind up being NULL
803 	 *	 due to a deletion so we need to handle the case anyway.
804 	 *
805 	 * If no parent exists we can just clear the UPDATE bit.  If the
806 	 * chain gets reattached later on the bit will simply get set
807 	 * again.
808 	 */
809 	if ((chain->flags & HAMMER2_CHAIN_UPDATE) && parent == NULL) {
810 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
811 		hammer2_chain_drop(chain);
812 	}
813 
814 	/*
815 	 * The chain may need its blockrefs updated in the parent.  This
816 	 * requires some fancy footwork.
817 	 */
818 	if (chain->flags & HAMMER2_CHAIN_UPDATE) {
819 		hammer2_blockref_t *base;
820 		int count;
821 
822 		/*
823 		 * Both parent and chain must be locked.  This requires
824 		 * temporarily unlocking the chain.  We have to deal with
825 		 * the case where the chain might be reparented or modified
826 		 * while it was unlocked.
827 		 */
828 		hammer2_chain_unlock(chain);
829 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
830 		hammer2_chain_lock(chain, HAMMER2_RESOLVE_MAYBE);
831 		if (chain->parent != parent) {
832 			kprintf("PARENT MISMATCH ch=%p p=%p/%p\n",
833 				chain, chain->parent, parent);
834 			hammer2_chain_unlock(parent);
835 			goto done;
836 		}
837 
838 		/*
839 		 * Check race condition.  If someone got in and modified
840 		 * it again while it was unlocked, we have to loop up.
841 		 */
842 		if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
843 			hammer2_chain_unlock(parent);
844 			kprintf("hammer2_flush: chain %p flush-mod race\n",
845 				chain);
846 			goto again;
847 		}
848 
849 		/*
850 		 * Clear UPDATE flag, mark parent modified, update its
851 		 * modify_tid if necessary, and adjust the parent blockmap.
852 		 */
853 		if (chain->flags & HAMMER2_CHAIN_UPDATE) {
854 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
855 			hammer2_chain_drop(chain);
856 		}
857 
858 		/*
859 		 * (optional code)
860 		 *
861 		 * Avoid actually modifying and updating the parent if it
862 		 * was flagged for destruction.  This can greatly reduce
863 		 * disk I/O in large tree removals because the
864 		 * hammer2_io_setinval() call in the upward recursion
865 		 * (see MODIFIED code above) can only handle a few cases.
866 		 */
867 		if (parent->flags & HAMMER2_CHAIN_DESTROY) {
868 			if (parent->bref.modify_tid < chain->bref.modify_tid) {
869 				parent->bref.modify_tid =
870 					chain->bref.modify_tid;
871 			}
872 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
873 							HAMMER2_CHAIN_BMAPUPD);
874 			hammer2_chain_unlock(parent);
875 			goto skipupdate;
876 		}
877 
878 		/*
879 		 * We are updating the parent's blockmap, the parent must
880 		 * be set modified.
881 		 */
882 		hammer2_chain_modify(parent, 0, 0, 0);
883 		if (parent->bref.modify_tid < chain->bref.modify_tid)
884 			parent->bref.modify_tid = chain->bref.modify_tid;
885 
886 		/*
887 		 * Calculate blockmap pointer
888 		 */
889 		switch(parent->bref.type) {
890 		case HAMMER2_BREF_TYPE_INODE:
891 			/*
892 			 * Access the inode's block array.  However, there is
893 			 * no block array if the inode is flagged DIRECTDATA.
894 			 */
895 			if (parent->data &&
896 			    (parent->data->ipdata.meta.op_flags &
897 			     HAMMER2_OPFLAG_DIRECTDATA) == 0) {
898 				base = &parent->data->
899 					ipdata.u.blockset.blockref[0];
900 			} else {
901 				base = NULL;
902 			}
903 			count = HAMMER2_SET_COUNT;
904 			break;
905 		case HAMMER2_BREF_TYPE_INDIRECT:
906 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
907 			if (parent->data)
908 				base = &parent->data->npdata[0];
909 			else
910 				base = NULL;
911 			count = parent->bytes / sizeof(hammer2_blockref_t);
912 			break;
913 		case HAMMER2_BREF_TYPE_VOLUME:
914 			base = &chain->hmp->voldata.sroot_blockset.blockref[0];
915 			count = HAMMER2_SET_COUNT;
916 			break;
917 		case HAMMER2_BREF_TYPE_FREEMAP:
918 			base = &parent->data->npdata[0];
919 			count = HAMMER2_SET_COUNT;
920 			break;
921 		default:
922 			base = NULL;
923 			count = 0;
924 			panic("hammer2_flush_core: "
925 			      "unrecognized blockref type: %d",
926 			      parent->bref.type);
927 		}
928 
929 		/*
930 		 * Blocktable updates
931 		 *
932 		 * We synchronize pending statistics at this time.  Delta
933 		 * adjustments designated for the current and upper level
934 		 * are synchronized.
935 		 */
936 		if (base && (chain->flags & HAMMER2_CHAIN_BMAPUPD)) {
937 			if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
938 				hammer2_spin_ex(&parent->core.spin);
939 				hammer2_base_delete(parent, base, count,
940 						    &info->cache_index, chain);
941 				hammer2_spin_unex(&parent->core.spin);
942 				/* base_delete clears both bits */
943 			} else {
944 				atomic_clear_int(&chain->flags,
945 						 HAMMER2_CHAIN_BMAPUPD);
946 			}
947 		}
948 		if (base && (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
949 			hammer2_spin_ex(&parent->core.spin);
950 			hammer2_base_insert(parent, base, count,
951 					    &info->cache_index, chain);
952 			hammer2_spin_unex(&parent->core.spin);
953 			/* base_insert sets BMAPPED */
954 		}
955 		hammer2_chain_unlock(parent);
956 	}
957 skipupdate:
958 	;
959 
960 	/*
961 	 * Final cleanup after flush
962 	 */
963 done:
964 	KKASSERT(chain->refs > 0);
965 	if (hammer2_debug & 0x200) {
966 		if (info->debug == chain)
967 			info->debug = NULL;
968 	}
969 }
970 
971 /*
972  * Flush recursion helper, called from flush_core, calls flush_core.
973  *
974  * Flushes the children of the caller's chain (info->parent), restricted
975  * by sync_tid.  Set info->domodify if the child's blockref must propagate
976  * back up to the parent.
977  *
978  * Ripouts can move child from rbtree to dbtree or dbq but the caller's
979  * flush scan order prevents any chains from being lost.  A child can be
980  * executes more than once.
981  *
982  * WARNING! If we do not call hammer2_flush_core() we must update
983  *	    bref.mirror_tid ourselves to indicate that the flush has
984  *	    processed the child.
985  *
986  * WARNING! parent->core spinlock is held on entry and return.
987  */
988 static int
989 hammer2_flush_recurse(hammer2_chain_t *child, void *data)
990 {
991 	hammer2_flush_info_t *info = data;
992 	hammer2_chain_t *parent = info->parent;
993 
994 	/*
995 	 * (child can never be fchain or vchain so a special check isn't
996 	 *  needed).
997 	 *
998 	 * We must ref the child before unlocking the spinlock.
999 	 *
1000 	 * The caller has added a ref to the parent so we can temporarily
1001 	 * unlock it in order to lock the child.
1002 	 */
1003 	hammer2_chain_ref(child);
1004 	hammer2_spin_unex(&parent->core.spin);
1005 
1006 	hammer2_chain_unlock(parent);
1007 	hammer2_chain_lock(child, HAMMER2_RESOLVE_MAYBE);
1008 
1009 	/*
1010 	 * Recurse and collect deferral data.  We're in the media flush,
1011 	 * this can cross PFS boundaries.
1012 	 */
1013 	if (child->flags & HAMMER2_CHAIN_FLUSH_MASK) {
1014 		++info->depth;
1015 		hammer2_flush_core(info, child, info->flags);
1016 		--info->depth;
1017 	} else if (hammer2_debug & 0x200) {
1018 		if (info->debug == NULL)
1019 			info->debug = child;
1020 		++info->depth;
1021 		hammer2_flush_core(info, child, info->flags);
1022 		--info->depth;
1023 		if (info->debug == child)
1024 			info->debug = NULL;
1025 	}
1026 
1027 	/*
1028 	 * Relock to continue the loop
1029 	 */
1030 	hammer2_chain_unlock(child);
1031 	hammer2_chain_lock(parent, HAMMER2_RESOLVE_MAYBE);
1032 	hammer2_chain_drop(child);
1033 	KKASSERT(info->parent == parent);
1034 	hammer2_spin_ex(&parent->core.spin);
1035 
1036 	return (0);
1037 }
1038 
1039 /*
1040  * flush helper (direct)
1041  *
1042  * Quickly flushes any dirty chains for a device.  This will update our
1043  * concept of the volume root but does NOT flush the actual volume root
1044  * and does not flush dirty device buffers.
1045  *
1046  * This function is primarily used by the bulkfree code to allow it to
1047  * create a snapshot for the pass.  It doesn't care about any pending
1048  * work (dirty vnodes, dirty inodes, dirty logical buffers) for which blocks
1049  * have not yet been allocated.
1050  */
1051 void
1052 hammer2_flush_quick(hammer2_dev_t *hmp)
1053 {
1054 	hammer2_chain_t *chain;
1055 
1056 	hammer2_trans_init(hmp->spmp, HAMMER2_TRANS_ISFLUSH);
1057 
1058 	hammer2_chain_ref(&hmp->vchain);
1059 	hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1060 	if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1061 		chain = &hmp->vchain;
1062 		hammer2_flush(chain, HAMMER2_FLUSH_TOP |
1063 				     HAMMER2_FLUSH_ALL);
1064 		KKASSERT(chain == &hmp->vchain);
1065 	}
1066 	hammer2_chain_unlock(&hmp->vchain);
1067 	hammer2_chain_drop(&hmp->vchain);
1068 
1069 	hammer2_trans_done(hmp->spmp);  /* spmp trans */
1070 }
1071 
1072 /*
1073  * flush helper (backend threaded)
1074  *
1075  * Flushes core chains, issues disk sync, flushes volume roots.
1076  *
1077  * Primarily called from vfs_sync().
1078  */
1079 void
1080 hammer2_inode_xop_flush(hammer2_xop_t *arg, int clindex)
1081 {
1082 	hammer2_xop_flush_t *xop = &arg->xop_flush;
1083 	hammer2_chain_t *chain;
1084 	hammer2_chain_t *parent;
1085 	hammer2_dev_t *hmp;
1086 	int error = 0;
1087 	int total_error = 0;
1088 	int j;
1089 
1090 	/*
1091 	 * Flush core chains
1092 	 */
1093 	chain = hammer2_inode_chain(xop->head.ip1, clindex,
1094 				    HAMMER2_RESOLVE_ALWAYS);
1095 	if (chain) {
1096 		hmp = chain->hmp;
1097 		if (chain->flags & HAMMER2_CHAIN_FLUSH_MASK) {
1098 			hammer2_flush(chain, HAMMER2_FLUSH_TOP);
1099 			parent = chain->parent;
1100 			KKASSERT(chain->pmp != parent->pmp);
1101 			hammer2_chain_setflush(parent);
1102 		}
1103 		hammer2_chain_unlock(chain);
1104 		hammer2_chain_drop(chain);
1105 		chain = NULL;
1106 	} else {
1107 		hmp = NULL;
1108 	}
1109 
1110 	/*
1111 	 * Flush volume roots.  Avoid replication, we only want to
1112 	 * flush each hammer2_dev (hmp) once.
1113 	 */
1114 	for (j = clindex - 1; j >= 0; --j) {
1115 		if ((chain = xop->head.ip1->cluster.array[j].chain) != NULL) {
1116 			if (chain->hmp == hmp) {
1117 				chain = NULL;	/* safety */
1118 				goto skip;
1119 			}
1120 		}
1121 	}
1122 	chain = NULL;	/* safety */
1123 
1124 	/*
1125 	 * spmp transaction.  The super-root is never directly mounted so
1126 	 * there shouldn't be any vnodes, let alone any dirty vnodes
1127 	 * associated with it, so we shouldn't have to mess around with any
1128 	 * vnode flushes here.
1129 	 */
1130 	hammer2_trans_init(hmp->spmp, HAMMER2_TRANS_ISFLUSH);
1131 
1132 	/*
1133 	 * Media mounts have two 'roots', vchain for the topology
1134 	 * and fchain for the free block table.  Flush both.
1135 	 *
1136 	 * Note that the topology and free block table are handled
1137 	 * independently, so the free block table can wind up being
1138 	 * ahead of the topology.  We depend on the bulk free scan
1139 	 * code to deal with any loose ends.
1140 	 */
1141 	hammer2_chain_ref(&hmp->vchain);
1142 	hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1143 	hammer2_chain_ref(&hmp->fchain);
1144 	hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
1145 	if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1146 		/*
1147 		 * This will also modify vchain as a side effect,
1148 		 * mark vchain as modified now.
1149 		 */
1150 		hammer2_voldata_modify(hmp);
1151 		chain = &hmp->fchain;
1152 		hammer2_flush(chain, HAMMER2_FLUSH_TOP);
1153 		KKASSERT(chain == &hmp->fchain);
1154 	}
1155 	hammer2_chain_unlock(&hmp->fchain);
1156 	hammer2_chain_unlock(&hmp->vchain);
1157 	hammer2_chain_drop(&hmp->fchain);
1158 	/* vchain dropped down below */
1159 
1160 	hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1161 	if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1162 		chain = &hmp->vchain;
1163 		hammer2_flush(chain, HAMMER2_FLUSH_TOP);
1164 		KKASSERT(chain == &hmp->vchain);
1165 	}
1166 	hammer2_chain_unlock(&hmp->vchain);
1167 	hammer2_chain_drop(&hmp->vchain);
1168 
1169 	error = 0;
1170 
1171 	/*
1172 	 * We can't safely flush the volume header until we have
1173 	 * flushed any device buffers which have built up.
1174 	 *
1175 	 * XXX this isn't being incremental
1176 	 */
1177 	vn_lock(hmp->devvp, LK_EXCLUSIVE | LK_RETRY);
1178 	error = VOP_FSYNC(hmp->devvp, MNT_WAIT, 0);
1179 	vn_unlock(hmp->devvp);
1180 
1181 	/*
1182 	 * The flush code sets CHAIN_VOLUMESYNC to indicate that the
1183 	 * volume header needs synchronization via hmp->volsync.
1184 	 *
1185 	 * XXX synchronize the flag & data with only this flush XXX
1186 	 */
1187 	if (error == 0 &&
1188 	    (hmp->vchain.flags & HAMMER2_CHAIN_VOLUMESYNC)) {
1189 		struct buf *bp;
1190 
1191 		/*
1192 		 * Synchronize the disk before flushing the volume
1193 		 * header.
1194 		 */
1195 		bp = getpbuf(NULL);
1196 		bp->b_bio1.bio_offset = 0;
1197 		bp->b_bufsize = 0;
1198 		bp->b_bcount = 0;
1199 		bp->b_cmd = BUF_CMD_FLUSH;
1200 		bp->b_bio1.bio_done = biodone_sync;
1201 		bp->b_bio1.bio_flags |= BIO_SYNC;
1202 		vn_strategy(hmp->devvp, &bp->b_bio1);
1203 		biowait(&bp->b_bio1, "h2vol");
1204 		relpbuf(bp, NULL);
1205 
1206 		/*
1207 		 * Then we can safely flush the version of the
1208 		 * volume header synchronized by the flush code.
1209 		 */
1210 		j = hmp->volhdrno + 1;
1211 		if (j >= HAMMER2_NUM_VOLHDRS)
1212 			j = 0;
1213 		if (j * HAMMER2_ZONE_BYTES64 + HAMMER2_SEGSIZE >
1214 		    hmp->volsync.volu_size) {
1215 			j = 0;
1216 		}
1217 		if (hammer2_debug & 0x8000) {
1218 			/* debug only, avoid syslogd loop */
1219 			kprintf("sync volhdr %d %jd\n",
1220 				j, (intmax_t)hmp->volsync.volu_size);
1221 		}
1222 		bp = getblk(hmp->devvp, j * HAMMER2_ZONE_BYTES64,
1223 			    HAMMER2_PBUFSIZE, 0, 0);
1224 		atomic_clear_int(&hmp->vchain.flags,
1225 				 HAMMER2_CHAIN_VOLUMESYNC);
1226 		bcopy(&hmp->volsync, bp->b_data, HAMMER2_PBUFSIZE);
1227 		bawrite(bp);
1228 		hmp->volhdrno = j;
1229 	}
1230 	if (error)
1231 		total_error = error;
1232 
1233 	hammer2_trans_done(hmp->spmp);  /* spmp trans */
1234 skip:
1235 	error = hammer2_xop_feed(&xop->head, NULL, clindex, total_error);
1236 }
1237