xref: /dragonfly/sys/vfs/hammer2/hammer2_flush.c (revision 684cb317)
1 /*
2  * Copyright (c) 2011-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  *			TRANSACTION AND FLUSH HANDLING
37  *
38  * Deceptively simple but actually fairly difficult to implement properly is
39  * how I would describe it.
40  *
41  * The biggest issue is that each PFS may belong to a cluster so its media
42  * modify_tid and mirror_tid fields are in a completely different domain
43  * than the topology related to the super-root.
44  *
45  * Flushing generally occurs bottom-up but requires a top-down scan to
46  * locate chains with MODIFIED and/or UPDATE bits set.  The ONFLUSH flag
47  * tells how to recurse downward to find these chains.
48  */
49 
50 #include <sys/cdefs.h>
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/types.h>
54 #include <sys/lock.h>
55 #include <sys/uuid.h>
56 
57 #include "hammer2.h"
58 
59 #define FLUSH_DEBUG 0
60 
61 #define HAMMER2_FLUSH_DEPTH_LIMIT       10      /* stack recursion limit */
62 
63 
64 /*
65  * Recursively flush the specified chain.  The chain is locked and
66  * referenced by the caller and will remain so on return.  The chain
67  * will remain referenced throughout but can temporarily lose its
68  * lock during the recursion to avoid unnecessarily stalling user
69  * processes.
70  */
71 struct hammer2_flush_info {
72 	hammer2_chain_t *parent;
73 	hammer2_trans_t	*trans;
74 	int		depth;
75 	int		diddeferral;
76 	int		cache_index;
77 	struct h2_flush_list flushq;
78 	hammer2_xid_t	sync_xid;	/* memory synchronization point */
79 	hammer2_chain_t	*debug;
80 };
81 
82 typedef struct hammer2_flush_info hammer2_flush_info_t;
83 
84 static void hammer2_flush_core(hammer2_flush_info_t *info,
85 				hammer2_chain_t *chain, int deleting);
86 static int hammer2_flush_recurse(hammer2_chain_t *child, void *data);
87 
88 /*
89  * For now use a global transaction manager.  What we ultimately want to do
90  * is give each non-overlapping hmp/pmp group its own transaction manager.
91  *
92  * Transactions govern XID tracking on the physical media (the hmp), but they
93  * also govern TID tracking which is per-PFS and thus might cross multiple
94  * hmp's.  So we can't just stuff tmanage into hammer2_mount or
95  * hammer2_pfsmount.
96  */
97 static hammer2_trans_manage_t	tmanage;
98 
99 void
100 hammer2_trans_manage_init(void)
101 {
102 	lockinit(&tmanage.translk, "h2trans", 0, 0);
103 	TAILQ_INIT(&tmanage.transq);
104 	tmanage.flush_xid = 1;
105 	tmanage.alloc_xid = tmanage.flush_xid + 1;
106 }
107 
108 hammer2_xid_t
109 hammer2_trans_newxid(hammer2_pfsmount_t *pmp __unused)
110 {
111 	hammer2_xid_t xid;
112 
113 	for (;;) {
114 		xid = atomic_fetchadd_int(&tmanage.alloc_xid, 1);
115 		if (xid)
116 			break;
117 	}
118 	return xid;
119 }
120 
121 /*
122  * Transaction support functions for writing to the filesystem.
123  *
124  * Initializing a new transaction allocates a transaction ID.  Typically
125  * passed a pmp (hmp passed as NULL), indicating a cluster transaction.  Can
126  * be passed a NULL pmp and non-NULL hmp to indicate a transaction on a single
127  * media target.  The latter mode is used by the recovery code.
128  *
129  * TWO TRANSACTION IDs can run concurrently, where one is a flush and the
130  * other is a set of any number of concurrent filesystem operations.  We
131  * can either have <running_fs_ops> + <waiting_flush> + <blocked_fs_ops>
132  * or we can have <running_flush> + <concurrent_fs_ops>.
133  *
134  * During a flush, new fs_ops are only blocked until the fs_ops prior to
135  * the flush complete.  The new fs_ops can then run concurrent with the flush.
136  *
137  * Buffer-cache transactions operate as fs_ops but never block.  A
138  * buffer-cache flush will run either before or after the current pending
139  * flush depending on its state.
140  */
141 void
142 hammer2_trans_init(hammer2_trans_t *trans, hammer2_pfsmount_t *pmp, int flags)
143 {
144 	hammer2_trans_manage_t *tman;
145 	hammer2_trans_t *head;
146 
147 	tman = &tmanage;
148 
149 	bzero(trans, sizeof(*trans));
150 	trans->pmp = pmp;
151 	trans->flags = flags;
152 	trans->td = curthread;
153 
154 	lockmgr(&tman->translk, LK_EXCLUSIVE);
155 
156 	if (flags & HAMMER2_TRANS_ISFLUSH) {
157 		/*
158 		 * If multiple flushes are trying to run we have to
159 		 * wait until it is our turn.  All flushes are serialized.
160 		 *
161 		 * We queue ourselves and then wait to become the head
162 		 * of the queue, allowing all prior flushes to complete.
163 		 *
164 		 * Multiple normal transactions can share the current
165 		 * transaction id but a flush transaction needs its own
166 		 * unique TID for proper block table update accounting.
167 		 */
168 		++tman->flushcnt;
169 		++pmp->alloc_tid;
170 		pmp->flush_tid = pmp->alloc_tid;
171 		tman->flush_xid = hammer2_trans_newxid(pmp);
172 		trans->sync_xid = tman->flush_xid;
173 		++pmp->alloc_tid;
174 		TAILQ_INSERT_TAIL(&tman->transq, trans, entry);
175 		if (TAILQ_FIRST(&tman->transq) != trans) {
176 			trans->blocked = 1;
177 			while (trans->blocked) {
178 				lksleep(&trans->sync_xid, &tman->translk,
179 					0, "h2multf", hz);
180 			}
181 		}
182 	} else if (tman->flushcnt == 0) {
183 		/*
184 		 * No flushes are pending, we can go.  Use prior flush_xid + 1.
185 		 *
186 		 * WARNING!  Also see hammer2_chain_setflush()
187 		 */
188 		TAILQ_INSERT_TAIL(&tman->transq, trans, entry);
189 		trans->sync_xid = tman->flush_xid + 1;
190 
191 		/* XXX improve/optimize inode allocation */
192 	} else if (trans->flags & HAMMER2_TRANS_BUFCACHE) {
193 		/*
194 		 * A buffer cache transaction is requested while a flush
195 		 * is in progress.  The flush's PREFLUSH flag must be set
196 		 * in this situation.
197 		 *
198 		 * The buffer cache flush takes on the main flush's
199 		 * transaction id.
200 		 */
201 		TAILQ_FOREACH(head, &tman->transq, entry) {
202 			if (head->flags & HAMMER2_TRANS_ISFLUSH)
203 				break;
204 		}
205 		KKASSERT(head);
206 		KKASSERT(head->flags & HAMMER2_TRANS_PREFLUSH);
207 		trans->flags |= HAMMER2_TRANS_PREFLUSH;
208 		TAILQ_INSERT_AFTER(&tman->transq, head, trans, entry);
209 		trans->sync_xid = head->sync_xid;
210 		trans->flags |= HAMMER2_TRANS_CONCURRENT;
211 		/* not allowed to block */
212 	} else {
213 		/*
214 		 * A normal transaction is requested while a flush is in
215 		 * progress.  We insert after the current flush and may
216 		 * block.
217 		 *
218 		 * WARNING!  Also see hammer2_chain_setflush()
219 		 */
220 		TAILQ_FOREACH(head, &tman->transq, entry) {
221 			if (head->flags & HAMMER2_TRANS_ISFLUSH)
222 				break;
223 		}
224 		KKASSERT(head);
225 		TAILQ_INSERT_AFTER(&tman->transq, head, trans, entry);
226 		trans->sync_xid = head->sync_xid + 1;
227 		trans->flags |= HAMMER2_TRANS_CONCURRENT;
228 
229 		/*
230 		 * XXX for now we must block new transactions, synchronous
231 		 * flush mode is on by default.
232 		 *
233 		 * If synchronous flush mode is enabled concurrent
234 		 * frontend transactions during the flush are not
235 		 * allowed (except we don't have a choice for buffer
236 		 * cache ops).
237 		 */
238 		if (hammer2_synchronous_flush > 0 ||
239 		    TAILQ_FIRST(&tman->transq) != head) {
240 			trans->blocked = 1;
241 			while (trans->blocked) {
242 				lksleep(&trans->sync_xid,
243 					&tman->translk, 0,
244 					"h2multf", hz);
245 			}
246 		}
247 	}
248 	if (flags & HAMMER2_TRANS_NEWINODE) {
249 		if (pmp->spmp_hmp) {
250 			/*
251 			 * Super-root transaction, all new inodes have an
252 			 * inode number of 1.  Normal pfs inode cache
253 			 * semantics are not used.
254 			 */
255 			trans->inode_tid = 1;
256 		} else {
257 			/*
258 			 * Normal transaction
259 			 */
260 			if (pmp->inode_tid < HAMMER2_INODE_START)
261 				pmp->inode_tid = HAMMER2_INODE_START;
262 			trans->inode_tid = pmp->inode_tid++;
263 		}
264 	}
265 
266 	lockmgr(&tman->translk, LK_RELEASE);
267 }
268 
269 /*
270  * This may only be called while in a flush transaction.  It's a bit of a
271  * hack but after flushing a PFS we need to flush each volume root as part
272  * of the same transaction.
273  */
274 void
275 hammer2_trans_spmp(hammer2_trans_t *trans, hammer2_pfsmount_t *spmp)
276 {
277 	++spmp->alloc_tid;
278 	spmp->flush_tid = spmp->alloc_tid;
279 	++spmp->alloc_tid;
280 	trans->pmp = spmp;
281 }
282 
283 
284 void
285 hammer2_trans_done(hammer2_trans_t *trans)
286 {
287 	hammer2_trans_manage_t *tman;
288 	hammer2_trans_t *head;
289 	hammer2_trans_t *scan;
290 
291 	tman = &tmanage;
292 
293 	/*
294 	 * Remove.
295 	 */
296 	lockmgr(&tman->translk, LK_EXCLUSIVE);
297 	TAILQ_REMOVE(&tman->transq, trans, entry);
298 	head = TAILQ_FIRST(&tman->transq);
299 
300 	/*
301 	 * Adjust flushcnt if this was a flush, clear TRANS_CONCURRENT
302 	 * up through the next flush.  (If the head is a flush then we
303 	 * stop there, unlike the unblock code following this section).
304 	 */
305 	if (trans->flags & HAMMER2_TRANS_ISFLUSH) {
306 		--tman->flushcnt;
307 		scan = head;
308 		while (scan && (scan->flags & HAMMER2_TRANS_ISFLUSH) == 0) {
309 			atomic_clear_int(&scan->flags,
310 					 HAMMER2_TRANS_CONCURRENT);
311 			scan = TAILQ_NEXT(scan, entry);
312 		}
313 	}
314 
315 	/*
316 	 * Unblock the head of the queue and any additional transactions
317 	 * up to the next flush.  The head can be a flush and it will be
318 	 * unblocked along with the non-flush transactions following it
319 	 * (which are allowed to run concurrently with it).
320 	 *
321 	 * In synchronous flush mode we stop if the head transaction is
322 	 * a flush.
323 	 */
324 	if (head && head->blocked) {
325 		head->blocked = 0;
326 		wakeup(&head->sync_xid);
327 
328 		if (hammer2_synchronous_flush > 0)
329 			scan = head;
330 		else
331 			scan = TAILQ_NEXT(head, entry);
332 		while (scan && (scan->flags & HAMMER2_TRANS_ISFLUSH) == 0) {
333 			if (scan->blocked) {
334 				scan->blocked = 0;
335 				wakeup(&scan->sync_xid);
336 			}
337 			scan = TAILQ_NEXT(scan, entry);
338 		}
339 	}
340 	lockmgr(&tman->translk, LK_RELEASE);
341 }
342 
343 /*
344  * Flush the chain and all modified sub-chains through the specified
345  * synchronization point, propagating parent chain modifications and
346  * mirror_tid updates back up as needed.
347  *
348  * Caller must have interlocked against any non-flush-related modifying
349  * operations in progress whos XXX values are less than or equal
350  * to the passed sync_xid.
351  *
352  * Caller must have already vetted synchronization points to ensure they
353  * are properly flushed.  Only snapshots and cluster flushes can create
354  * these sorts of synchronization points.
355  *
356  * This routine can be called from several places but the most important
357  * is from VFS_SYNC.
358  *
359  * chain is locked on call and will remain locked on return.  The chain's
360  * UPDATE flag indicates that its parent's block table (which is not yet
361  * part of the flush) should be updated.  The chain may be replaced by
362  * the call if it was modified.
363  */
364 void
365 hammer2_flush(hammer2_trans_t *trans, hammer2_chain_t *chain)
366 {
367 	hammer2_chain_t *scan;
368 	hammer2_flush_info_t info;
369 	int loops;
370 
371 	/*
372 	 * Execute the recursive flush and handle deferrals.
373 	 *
374 	 * Chains can be ridiculously long (thousands deep), so to
375 	 * avoid blowing out the kernel stack the recursive flush has a
376 	 * depth limit.  Elements at the limit are placed on a list
377 	 * for re-execution after the stack has been popped.
378 	 */
379 	bzero(&info, sizeof(info));
380 	TAILQ_INIT(&info.flushq);
381 	info.trans = trans;
382 	info.sync_xid = trans->sync_xid;
383 	info.cache_index = -1;
384 
385 	/*
386 	 * Calculate parent (can be NULL), if not NULL the flush core
387 	 * expects the parent to be referenced so it can easily lock/unlock
388 	 * it without it getting ripped up.
389 	 */
390 	if ((info.parent = chain->parent) != NULL)
391 		hammer2_chain_ref(info.parent);
392 
393 	/*
394 	 * Extra ref needed because flush_core expects it when replacing
395 	 * chain.
396 	 */
397 	hammer2_chain_ref(chain);
398 	loops = 0;
399 
400 	for (;;) {
401 		/*
402 		 * Unwind deep recursions which had been deferred.  This
403 		 * can leave the FLUSH_* bits set for these chains, which
404 		 * will be handled when we [re]flush chain after the unwind.
405 		 */
406 		while ((scan = TAILQ_FIRST(&info.flushq)) != NULL) {
407 			KKASSERT(scan->flags & HAMMER2_CHAIN_DEFERRED);
408 			TAILQ_REMOVE(&info.flushq, scan, flush_node);
409 			atomic_clear_int(&scan->flags, HAMMER2_CHAIN_DEFERRED);
410 
411 			/*
412 			 * Now that we've popped back up we can do a secondary
413 			 * recursion on the deferred elements.
414 			 *
415 			 * NOTE: hammer2_flush() may replace scan.
416 			 */
417 			if (hammer2_debug & 0x0040)
418 				kprintf("deferred flush %p\n", scan);
419 			hammer2_chain_lock(scan, HAMMER2_RESOLVE_MAYBE);
420 			hammer2_chain_drop(scan);	/* ref from deferral */
421 			hammer2_flush(trans, scan);
422 			hammer2_chain_unlock(scan);
423 		}
424 
425 		/*
426 		 * [re]flush chain.
427 		 */
428 		info.diddeferral = 0;
429 		hammer2_flush_core(&info, chain, 0);
430 
431 		/*
432 		 * Only loop if deep recursions have been deferred.
433 		 */
434 		if (TAILQ_EMPTY(&info.flushq))
435 			break;
436 
437 		if (++loops % 1000 == 0) {
438 			kprintf("hammer2_flush: excessive loops on %p\n",
439 				chain);
440 			if (hammer2_debug & 0x100000)
441 				Debugger("hell4");
442 		}
443 	}
444 	hammer2_chain_drop(chain);
445 	if (info.parent)
446 		hammer2_chain_drop(info.parent);
447 }
448 
449 /*
450  * This is the core of the chain flushing code.  The chain is locked by the
451  * caller and must also have an extra ref on it by the caller, and remains
452  * locked and will have an extra ref on return.  Upon return, the caller can
453  * test the UPDATE bit on the child to determine if the parent needs updating.
454  *
455  * (1) Determine if this node is a candidate for the flush, return if it is
456  *     not.  fchain and vchain are always candidates for the flush.
457  *
458  * (2) If we recurse too deep the chain is entered onto the deferral list and
459  *     the current flush stack is aborted until after the deferral list is
460  *     run.
461  *
462  * (3) Recursively flush live children (rbtree).  This can create deferrals.
463  *     A successful flush clears the MODIFIED and UPDATE bits on the children
464  *     and typically causes the parent to be marked MODIFIED as the children
465  *     update the parent's block table.  A parent might already be marked
466  *     MODIFIED due to a deletion (whos blocktable update in the parent is
467  *     handled by the frontend), or if the parent itself is modified by the
468  *     frontend for other reasons.
469  *
470  * (4) Permanently disconnected sub-trees are cleaned up by the front-end.
471  *     Deleted-but-open inodes can still be individually flushed via the
472  *     filesystem syncer.
473  *
474  * (5) Note that an unmodified child may still need the block table in its
475  *     parent updated (e.g. rename/move).  The child will have UPDATE set
476  *     in this case.
477  *
478  *			WARNING ON BREF MODIFY_TID/MIRROR_TID
479  *
480  * blockref.modify_tid and blockref.mirror_tid are consistent only within a
481  * PFS.  This is why we cannot cache sync_tid in the transaction structure.
482  * Instead we access it from the pmp.
483  */
484 static void
485 hammer2_flush_core(hammer2_flush_info_t *info, hammer2_chain_t *chain,
486 		   int deleting)
487 {
488 	hammer2_chain_t *parent;
489 	hammer2_mount_t *hmp;
490 	hammer2_pfsmount_t *pmp;
491 	int diddeferral;
492 
493 	/*
494 	 * (1) Optimize downward recursion to locate nodes needing action.
495 	 *     Nothing to do if none of these flags are set.
496 	 */
497 	if ((chain->flags & HAMMER2_CHAIN_FLUSH_MASK) == 0) {
498 		if (hammer2_debug & 0x200) {
499 			if (info->debug == NULL)
500 				info->debug = chain;
501 		} else {
502 			return;
503 		}
504 	}
505 
506 	hmp = chain->hmp;
507 	pmp = chain->pmp;		/* can be NULL */
508 	diddeferral = info->diddeferral;
509 	parent = info->parent;		/* can be NULL */
510 
511 	/*
512 	 * mirror_tid should not be forward-indexed
513 	 */
514 	KKASSERT(pmp == NULL || chain->bref.mirror_tid <= pmp->flush_tid);
515 
516 	/*
517 	 * Downward search recursion
518 	 */
519 	if (chain->flags & HAMMER2_CHAIN_DEFERRED) {
520 		/*
521 		 * Already deferred.
522 		 */
523 		++info->diddeferral;
524 	} else if (info->depth == HAMMER2_FLUSH_DEPTH_LIMIT) {
525 		/*
526 		 * Recursion depth reached.
527 		 */
528 		hammer2_chain_ref(chain);
529 		TAILQ_INSERT_TAIL(&info->flushq, chain, flush_node);
530 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DEFERRED);
531 		++info->diddeferral;
532 	} else if (chain->flags & HAMMER2_CHAIN_ONFLUSH) {
533 		/*
534 		 * Downward recursion search (actual flush occurs bottom-up).
535 		 * pre-clear ONFLUSH.  It can get set again due to races,
536 		 * which we want so the scan finds us again in the next flush.
537 		 */
538 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
539 		info->parent = chain;
540 		spin_lock(&chain->core.cst.spin);
541 		RB_SCAN(hammer2_chain_tree, &chain->core.rbtree,
542 			NULL, hammer2_flush_recurse, info);
543 		spin_unlock(&chain->core.cst.spin);
544 		info->parent = parent;
545 		if (info->diddeferral)
546 			hammer2_chain_setflush(info->trans, chain);
547 	}
548 
549 	/*
550 	 * Now we are in the bottom-up part of the recursion.
551 	 *
552 	 * Do not update chain if lower layers were deferred.
553 	 */
554 	if (info->diddeferral)
555 		goto done;
556 
557 	/*
558 	 * Propagate the DESTROY flag downwards.  This dummies up the flush
559 	 * code and tries to invalidate related buffer cache buffers to
560 	 * avoid the disk write.
561 	 */
562 	if (parent && (parent->flags & HAMMER2_CHAIN_DESTROY))
563 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
564 
565 	/*
566 	 * Chain was already modified or has become modified, flush it out.
567 	 */
568 again:
569 	if ((hammer2_debug & 0x200) &&
570 	    info->debug &&
571 	    (chain->flags & (HAMMER2_CHAIN_MODIFIED | HAMMER2_CHAIN_UPDATE))) {
572 		hammer2_chain_t *scan = chain;
573 
574 		kprintf("DISCONNECTED FLUSH %p->%p\n", info->debug, chain);
575 		while (scan) {
576 			kprintf("    chain %p [%08x] bref=%016jx:%02x\n",
577 				scan, scan->flags,
578 				scan->bref.key, scan->bref.type);
579 			if (scan == info->debug)
580 				break;
581 			scan = scan->parent;
582 		}
583 	}
584 
585 	if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
586 		/*
587 		 * Dispose of the modified bit.  UPDATE should already be
588 		 * set.
589 		 */
590 		KKASSERT((chain->flags & HAMMER2_CHAIN_UPDATE) ||
591 			 chain == &hmp->vchain);
592 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
593 		if (pmp) {
594 			hammer2_pfs_memory_wakeup(pmp);
595 			chain->bref.mirror_tid = pmp->flush_tid;
596 		}
597 
598 		if ((chain->flags & HAMMER2_CHAIN_UPDATE) ||
599 		    chain == &hmp->vchain ||
600 		    chain == &hmp->fchain) {
601 			/*
602 			 * Drop the ref from the MODIFIED bit we cleared,
603 			 * net -1 ref.
604 			 */
605 			hammer2_chain_drop(chain);
606 		} else {
607 			/*
608 			 * Drop the ref from the MODIFIED bit we cleared and
609 			 * set a ref for the UPDATE bit we are setting.  Net
610 			 * 0 refs.
611 			 */
612 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
613 		}
614 
615 		/*
616 		 * Issue the flush.  This is indirect via the DIO.
617 		 *
618 		 * NOTE: A DELETED node that reaches this point must be
619 		 *	 flushed for synchronization point consistency.
620 		 *
621 		 * NOTE: Even though MODIFIED was already set, the related DIO
622 		 *	 might not be dirty due to a system buffer cache
623 		 *	 flush and must be set dirty if we are going to make
624 		 *	 further modifications to the buffer.  Chains with
625 		 *	 embedded data don't need this.
626 		 *
627 		 * Update bref.mirror_tid, clear MODIFIED, and set UPDATE.
628 		 */
629 		if (hammer2_debug & 0x1000) {
630 			kprintf("Flush %p.%d %016jx/%d sync_xid=%08x "
631 				"data=%016jx\n",
632 				chain, chain->bref.type,
633 				chain->bref.key, chain->bref.keybits,
634 				info->sync_xid,
635 				chain->bref.data_off);
636 		}
637 		if (hammer2_debug & 0x2000) {
638 			Debugger("Flush hell");
639 		}
640 
641 		/*
642 		 * Update chain CRCs for flush.
643 		 *
644 		 * NOTE: Volume headers are NOT flushed here as they require
645 		 *	 special processing.
646 		 */
647 		switch(chain->bref.type) {
648 		case HAMMER2_BREF_TYPE_FREEMAP:
649 			/*
650 			 * (note: embedded data, do not call setdirty)
651 			 */
652 			KKASSERT(hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED);
653 			hmp->voldata.freemap_tid = hmp->fchain.bref.mirror_tid;
654 			break;
655 		case HAMMER2_BREF_TYPE_VOLUME:
656 			/*
657 			 * The free block table is flushed by hammer2_vfs_sync()
658 			 * before it flushes vchain.  We must still hold fchain
659 			 * locked while copying voldata to volsync, however.
660 			 *
661 			 * (note: embedded data, do not call setdirty)
662 			 */
663 			hammer2_voldata_lock(hmp);
664 			hammer2_chain_lock(&hmp->fchain,
665 					   HAMMER2_RESOLVE_ALWAYS);
666 			/*
667 			 * There is no parent to our root vchain and fchain to
668 			 * synchronize the bref to, their updated mirror_tid's
669 			 * must be synchronized to the volume header.
670 			 */
671 			hmp->voldata.mirror_tid = chain->bref.mirror_tid;
672 			hmp->voldata.freemap_tid = hmp->fchain.bref.mirror_tid;
673 			kprintf("mirror_tid %08jx\n",
674 				(intmax_t)chain->bref.mirror_tid);
675 
676 			/*
677 			 * The volume header is flushed manually by the
678 			 * syncer, not here.  All we do here is adjust the
679 			 * crc's.
680 			 */
681 			KKASSERT(chain->data != NULL);
682 			KKASSERT(chain->dio == NULL);
683 
684 			hmp->voldata.icrc_sects[HAMMER2_VOL_ICRC_SECT1]=
685 				hammer2_icrc32(
686 					(char *)&hmp->voldata +
687 					 HAMMER2_VOLUME_ICRC1_OFF,
688 					HAMMER2_VOLUME_ICRC1_SIZE);
689 			hmp->voldata.icrc_sects[HAMMER2_VOL_ICRC_SECT0]=
690 				hammer2_icrc32(
691 					(char *)&hmp->voldata +
692 					 HAMMER2_VOLUME_ICRC0_OFF,
693 					HAMMER2_VOLUME_ICRC0_SIZE);
694 			hmp->voldata.icrc_volheader =
695 				hammer2_icrc32(
696 					(char *)&hmp->voldata +
697 					 HAMMER2_VOLUME_ICRCVH_OFF,
698 					HAMMER2_VOLUME_ICRCVH_SIZE);
699 			hmp->volsync = hmp->voldata;
700 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_VOLUMESYNC);
701 			hammer2_chain_unlock(&hmp->fchain);
702 			hammer2_voldata_unlock(hmp);
703 			break;
704 		case HAMMER2_BREF_TYPE_DATA:
705 			/*
706 			 * Data elements have already been flushed via the
707 			 * logical file buffer cache.  Their hash was set in
708 			 * the bref by the vop_write code.  Do not re-dirty.
709 			 *
710 			 * Make sure any device buffer(s) have been flushed
711 			 * out here (there aren't usually any to flush) XXX.
712 			 */
713 			break;
714 		case HAMMER2_BREF_TYPE_INDIRECT:
715 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
716 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
717 			/*
718 			 * Buffer I/O will be cleaned up when the volume is
719 			 * flushed (but the kernel is free to flush it before
720 			 * then, as well).
721 			 */
722 			KKASSERT((chain->flags & HAMMER2_CHAIN_EMBEDDED) == 0);
723 			hammer2_chain_setcheck(chain, chain->data);
724 			break;
725 		case HAMMER2_BREF_TYPE_INODE:
726 			/*
727 			 * NOTE: We must call io_setdirty() to make any late
728 			 *	 changes to the inode data, the system might
729 			 *	 have already flushed the buffer.
730 			 */
731 			if (chain->data->ipdata.op_flags &
732 			    HAMMER2_OPFLAG_PFSROOT) {
733 				/*
734 				 * non-NULL pmp if mounted as a PFS.  We must
735 				 * sync fields cached in the pmp? XXX
736 				 */
737 				hammer2_inode_data_t *ipdata;
738 
739 				hammer2_io_setdirty(chain->dio);
740 				ipdata = &chain->data->ipdata;
741 				if (pmp)
742 					ipdata->pfs_inum = pmp->inode_tid;
743 			} else {
744 				/* can't be mounted as a PFS */
745 			}
746 
747 			/*
748 			 * Update inode statistics.  Pending stats in chain
749 			 * are cleared out on UPDATE so expect that bit to
750 			 * be set here too or the statistics will not be
751 			 * rolled-up properly.
752 			 */
753 			if (chain->data_count || chain->inode_count) {
754 				hammer2_inode_data_t *ipdata;
755 
756 				KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
757 				hammer2_io_setdirty(chain->dio);
758 				ipdata = &chain->data->ipdata;
759 				ipdata->data_count += chain->data_count;
760 				ipdata->inode_count += chain->inode_count;
761 			}
762 			KKASSERT((chain->flags & HAMMER2_CHAIN_EMBEDDED) == 0);
763 			hammer2_chain_setcheck(chain, chain->data);
764 			break;
765 		default:
766 			KKASSERT(chain->flags & HAMMER2_CHAIN_EMBEDDED);
767 			panic("hammer2_flush_core: unsupported "
768 			      "embedded bref %d",
769 			      chain->bref.type);
770 			/* NOT REACHED */
771 		}
772 
773 		/*
774 		 * If the chain was destroyed try to avoid unnecessary I/O.
775 		 * (this only really works if the DIO system buffer is the
776 		 * same size as chain->bytes).
777 		 */
778 		if ((chain->flags & HAMMER2_CHAIN_DESTROY) && chain->dio) {
779 			hammer2_io_setinval(chain->dio, chain->bytes);
780 		}
781 	}
782 
783 	/*
784 	 * If UPDATE is set the parent block table may need to be updated.
785 	 *
786 	 * NOTE: UPDATE may be set on vchain or fchain in which case
787 	 *	 parent could be NULL.  It's easiest to allow the case
788 	 *	 and test for NULL.  parent can also wind up being NULL
789 	 *	 due to a deletion so we need to handle the case anyway.
790 	 *
791 	 * If no parent exists we can just clear the UPDATE bit.  If the
792 	 * chain gets reattached later on the bit will simply get set
793 	 * again.
794 	 */
795 	if ((chain->flags & HAMMER2_CHAIN_UPDATE) && parent == NULL) {
796 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
797 		hammer2_chain_drop(chain);
798 	}
799 
800 	/*
801 	 * The chain may need its blockrefs updated in the parent.  This
802 	 * requires some fancy footwork.
803 	 */
804 	if (chain->flags & HAMMER2_CHAIN_UPDATE) {
805 		hammer2_blockref_t *base;
806 		int count;
807 
808 		/*
809 		 * Both parent and chain must be locked.  This requires
810 		 * temporarily unlocking the chain.  We have to deal with
811 		 * the case where the chain might be reparented or modified
812 		 * while it was unlocked.
813 		 */
814 		hammer2_chain_unlock(chain);
815 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
816 		hammer2_chain_lock(chain, HAMMER2_RESOLVE_MAYBE);
817 		if (chain->parent != parent) {
818 			kprintf("PARENT MISMATCH ch=%p p=%p/%p\n", chain, chain->parent, parent);
819 			hammer2_chain_unlock(parent);
820 			goto done;
821 		}
822 
823 		/*
824 		 * Check race condition.  If someone got in and modified
825 		 * it again while it was unlocked, we have to loop up.
826 		 */
827 		if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
828 			hammer2_chain_unlock(parent);
829 			kprintf("hammer2_flush: chain %p flush-mod race\n",
830 				chain);
831 			goto again;
832 		}
833 
834 		/*
835 		 * Clear UPDATE flag
836 		 */
837 		if (chain->flags & HAMMER2_CHAIN_UPDATE) {
838 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
839 			hammer2_chain_drop(chain);
840 		}
841 		hammer2_chain_modify(info->trans, parent, 0);
842 
843 		/*
844 		 * Calculate blockmap pointer
845 		 */
846 		switch(parent->bref.type) {
847 		case HAMMER2_BREF_TYPE_INODE:
848 			/*
849 			 * Access the inode's block array.  However, there is
850 			 * no block array if the inode is flagged DIRECTDATA.
851 			 */
852 			if (parent->data &&
853 			    (parent->data->ipdata.op_flags &
854 			     HAMMER2_OPFLAG_DIRECTDATA) == 0) {
855 				base = &parent->data->
856 					ipdata.u.blockset.blockref[0];
857 			} else {
858 				base = NULL;
859 			}
860 			count = HAMMER2_SET_COUNT;
861 			break;
862 		case HAMMER2_BREF_TYPE_INDIRECT:
863 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
864 			if (parent->data)
865 				base = &parent->data->npdata[0];
866 			else
867 				base = NULL;
868 			count = parent->bytes / sizeof(hammer2_blockref_t);
869 			break;
870 		case HAMMER2_BREF_TYPE_VOLUME:
871 			base = &chain->hmp->voldata.sroot_blockset.blockref[0];
872 			count = HAMMER2_SET_COUNT;
873 			break;
874 		case HAMMER2_BREF_TYPE_FREEMAP:
875 			base = &parent->data->npdata[0];
876 			count = HAMMER2_SET_COUNT;
877 			break;
878 		default:
879 			base = NULL;
880 			count = 0;
881 			panic("hammer2_flush_core: "
882 			      "unrecognized blockref type: %d",
883 			      parent->bref.type);
884 		}
885 
886 		/*
887 		 * Blocktable updates
888 		 *
889 		 * We synchronize pending statistics at this time.  Delta
890 		 * adjustments designated for the current and upper level
891 		 * are synchronized.
892 		 */
893 		if (base && (chain->flags & HAMMER2_CHAIN_BMAPUPD)) {
894 			if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
895 				hammer2_base_delete(info->trans, parent,
896 						    base, count,
897 						    &info->cache_index, chain);
898 				/* base_delete clears both bits */
899 			} else {
900 				atomic_clear_int(&chain->flags,
901 						 HAMMER2_CHAIN_BMAPUPD);
902 			}
903 		}
904 		if (base && (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
905 			parent->data_count += chain->data_count +
906 					      chain->data_count_up;
907 			parent->inode_count += chain->inode_count +
908 					       chain->inode_count_up;
909 			chain->data_count = 0;
910 			chain->inode_count = 0;
911 			chain->data_count_up = 0;
912 			chain->inode_count_up = 0;
913 			hammer2_base_insert(info->trans, parent,
914 					    base, count,
915 					    &info->cache_index, chain);
916 			/* base_insert sets BMAPPED */
917 		}
918 		hammer2_chain_unlock(parent);
919 	}
920 
921 	/*
922 	 * Final cleanup after flush
923 	 */
924 done:
925 	KKASSERT(chain->refs > 1);
926 	KKASSERT(pmp == NULL ||
927 		 chain->bref.mirror_tid <= chain->pmp->flush_tid);
928 	if (hammer2_debug & 0x200) {
929 		if (info->debug == chain)
930 			info->debug = NULL;
931 	}
932 }
933 
934 /*
935  * Flush recursion helper, called from flush_core, calls flush_core.
936  *
937  * Flushes the children of the caller's chain (info->parent), restricted
938  * by sync_tid.  Set info->domodify if the child's blockref must propagate
939  * back up to the parent.
940  *
941  * Ripouts can move child from rbtree to dbtree or dbq but the caller's
942  * flush scan order prevents any chains from being lost.  A child can be
943  * executes more than once.
944  *
945  * WARNING! If we do not call hammer2_flush_core() we must update
946  *	    bref.mirror_tid ourselves to indicate that the flush has
947  *	    processed the child.
948  *
949  * WARNING! parent->core spinlock is held on entry and return.
950  *
951  * WARNING! Flushes do not cross PFS boundaries.  Specifically, a flush must
952  *	    not cross a pfs-root boundary.
953  */
954 static int
955 hammer2_flush_recurse(hammer2_chain_t *child, void *data)
956 {
957 	hammer2_flush_info_t *info = data;
958 	/*hammer2_trans_t *trans = info->trans;*/
959 	hammer2_chain_t *parent = info->parent;
960 
961 	/*
962 	 * (child can never be fchain or vchain so a special check isn't
963 	 *  needed).
964 	 *
965 	 * We must ref the child before unlocking the spinlock.
966 	 *
967 	 * The caller has added a ref to the parent so we can temporarily
968 	 * unlock it in order to lock the child.
969 	 */
970 	hammer2_chain_ref(child);
971 	spin_unlock(&parent->core.cst.spin);
972 
973 	hammer2_chain_unlock(parent);
974 	hammer2_chain_lock(child, HAMMER2_RESOLVE_MAYBE);
975 
976 	/*
977 	 * Never recurse across a mounted PFS boundary.
978 	 *
979 	 * Recurse and collect deferral data.
980 	 */
981 	if ((child->flags & HAMMER2_CHAIN_PFSBOUNDARY) == 0 ||
982 	    child->pmp == NULL) {
983 		if (child->flags & HAMMER2_CHAIN_FLUSH_MASK) {
984 			++info->depth;
985 			hammer2_flush_core(info, child, 0); /* XXX deleting */
986 			--info->depth;
987 		} else if (hammer2_debug & 0x200) {
988 			if (info->debug == NULL)
989 				info->debug = child;
990 			++info->depth;
991 			hammer2_flush_core(info, child, 0); /* XXX deleting */
992 			--info->depth;
993 			if (info->debug == child)
994 				info->debug = NULL;
995 		}
996 	}
997 
998 	/*
999 	 * Relock to continue the loop
1000 	 */
1001 	hammer2_chain_unlock(child);
1002 	hammer2_chain_lock(parent, HAMMER2_RESOLVE_MAYBE);
1003 	hammer2_chain_drop(child);
1004 	KKASSERT(info->parent == parent);
1005 	spin_lock(&parent->core.cst.spin);
1006 
1007 	return (0);
1008 }
1009