xref: /dragonfly/sys/vfs/hammer2/hammer2_flush.c (revision 7bcb6caf)
1 /*
2  * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  *			TRANSACTION AND FLUSH HANDLING
37  *
38  * Deceptively simple but actually fairly difficult to implement properly is
39  * how I would describe it.
40  *
41  * Flushing generally occurs bottom-up but requires a top-down scan to
42  * locate chains with MODIFIED and/or UPDATE bits set.  The ONFLUSH flag
43  * tells how to recurse downward to find these chains.
44  */
45 
46 #include <sys/cdefs.h>
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/types.h>
50 #include <sys/lock.h>
51 #include <sys/uuid.h>
52 
53 #include "hammer2.h"
54 
55 #define FLUSH_DEBUG 0
56 
57 #define HAMMER2_FLUSH_DEPTH_LIMIT	60      /* stack recursion limit */
58 
59 
60 /*
61  * Recursively flush the specified chain.  The chain is locked and
62  * referenced by the caller and will remain so on return.  The chain
63  * will remain referenced throughout but can temporarily lose its
64  * lock during the recursion to avoid unnecessarily stalling user
65  * processes.
66  */
67 struct hammer2_flush_info {
68 	hammer2_chain_t *parent;
69 	int		depth;
70 	long		diddeferral;
71 	int		error;			/* cumulative error */
72 	int		flags;
73 #ifdef HAMMER2_SCAN_DEBUG
74 	long		scan_count;
75 	long		scan_mod_count;
76 	long		scan_upd_count;
77 	long		scan_onf_count;
78 	long		scan_del_count;
79 	long		scan_btype[7];
80 	long		flushq_count;
81 #endif
82 	struct h2_flush_list flushq;
83 	hammer2_chain_t	*debug;
84 };
85 
86 typedef struct hammer2_flush_info hammer2_flush_info_t;
87 
88 static void hammer2_flush_core(hammer2_flush_info_t *info,
89 				hammer2_chain_t *chain, int flags);
90 static int hammer2_flush_recurse(hammer2_chain_t *child, void *data);
91 
92 /*
93  * Any per-pfs transaction initialization goes here.
94  */
95 void
96 hammer2_trans_manage_init(hammer2_pfs_t *pmp)
97 {
98 }
99 
100 /*
101  * Transaction support for any modifying operation.  Transactions are used
102  * in the pmp layer by the frontend and in the spmp layer by the backend.
103  *
104  * 0			- Normal transaction, interlocked against flush
105  *			  transaction.
106  *
107  * TRANS_ISFLUSH	- Flush transaction, interlocked against normal
108  *			  transaction.
109  *
110  * TRANS_BUFCACHE	- Buffer cache transaction, no interlock.
111  *
112  * Initializing a new transaction allocates a transaction ID.  Typically
113  * passed a pmp (hmp passed as NULL), indicating a cluster transaction.  Can
114  * be passed a NULL pmp and non-NULL hmp to indicate a transaction on a single
115  * media target.  The latter mode is used by the recovery code.
116  *
117  * TWO TRANSACTION IDs can run concurrently, where one is a flush and the
118  * other is a set of any number of concurrent filesystem operations.  We
119  * can either have <running_fs_ops> + <waiting_flush> + <blocked_fs_ops>
120  * or we can have <running_flush> + <concurrent_fs_ops>.
121  *
122  * During a flush, new fs_ops are only blocked until the fs_ops prior to
123  * the flush complete.  The new fs_ops can then run concurrent with the flush.
124  *
125  * Buffer-cache transactions operate as fs_ops but never block.  A
126  * buffer-cache flush will run either before or after the current pending
127  * flush depending on its state.
128  */
129 void
130 hammer2_trans_init(hammer2_pfs_t *pmp, uint32_t flags)
131 {
132 	uint32_t oflags;
133 	uint32_t nflags;
134 	int dowait;
135 
136 	for (;;) {
137 		oflags = pmp->trans.flags;
138 		cpu_ccfence();
139 		dowait = 0;
140 
141 		if (flags & HAMMER2_TRANS_ISFLUSH) {
142 			/*
143 			 * Requesting flush transaction.  Wait for all
144 			 * currently running transactions to finish.
145 			 * Afterwords, normal transactions will be
146 			 * interlocked.
147 			 */
148 			if (oflags & HAMMER2_TRANS_MASK) {
149 				nflags = oflags | HAMMER2_TRANS_FPENDING |
150 						  HAMMER2_TRANS_WAITING;
151 				dowait = 1;
152 			} else {
153 				nflags = (oflags | flags) + 1;
154 			}
155 		} else if (flags & HAMMER2_TRANS_BUFCACHE) {
156 			/*
157 			 * Requesting strategy transaction from buffer-cache,
158 			 * or a VM getpages/putpages through the buffer cache.
159 			 * We must allow such transactions in all situations
160 			 * to avoid deadlocks.
161 			 */
162 			nflags = (oflags | flags) + 1;
163 #if 0
164 			/*
165 			 * (old) previous code interlocked against the main
166 			 *	 flush pass.
167 			 */
168 			if ((oflags & (HAMMER2_TRANS_ISFLUSH |
169 				       HAMMER2_TRANS_PREFLUSH)) ==
170 			    HAMMER2_TRANS_ISFLUSH) {
171 				nflags = oflags | HAMMER2_TRANS_WAITING;
172 				dowait = 1;
173 			} else {
174 				nflags = (oflags | flags) + 1;
175 			}
176 #endif
177 		} else {
178 			/*
179 			 * Requesting a normal modifying transaction.
180 			 * Waits for any flush to finish before allowing.
181 			 * Multiple modifying transactions can run
182 			 * concurrently.
183 			 *
184 			 * If a flush is pending for more than one second
185 			 * but can't run because many modifying transactions
186 			 * are active, we wait for the flush to be granted.
187 			 *
188 			 * NOTE: Remember that non-modifying operations
189 			 *	 such as read, stat, readdir, etc, do
190 			 *	 not use transactions.
191 			 */
192 			if ((oflags & HAMMER2_TRANS_FPENDING) &&
193 			    (u_int)(ticks - pmp->trans.fticks) >= (u_int)hz) {
194 				nflags = oflags | HAMMER2_TRANS_WAITING;
195 				dowait = 1;
196 			} else if (oflags & HAMMER2_TRANS_ISFLUSH) {
197 				nflags = oflags | HAMMER2_TRANS_WAITING;
198 				dowait = 1;
199 			} else {
200 				nflags = (oflags | flags) + 1;
201 			}
202 		}
203 		if (dowait)
204 			tsleep_interlock(&pmp->trans.sync_wait, 0);
205 		if (atomic_cmpset_int(&pmp->trans.flags, oflags, nflags)) {
206 			if ((oflags & HAMMER2_TRANS_FPENDING) == 0 &&
207 			    (nflags & HAMMER2_TRANS_FPENDING)) {
208 				pmp->trans.fticks = ticks;
209 			}
210 			if (dowait == 0)
211 				break;
212 			tsleep(&pmp->trans.sync_wait, PINTERLOCKED,
213 			       "h2trans", hz);
214 		} else {
215 			cpu_pause();
216 		}
217 		/* retry */
218 	}
219 }
220 
221 /*
222  * Start a sub-transaction, there is no 'subdone' function.  This will
223  * issue a new modify_tid (mtid) for the current transaction, which is a
224  * CLC (cluster level change) id and not a per-node id.
225  *
226  * This function must be called for each XOP when multiple XOPs are run in
227  * sequence within a transaction.
228  *
229  * Callers typically update the inode with the transaction mtid manually
230  * to enforce sequencing.
231  */
232 hammer2_tid_t
233 hammer2_trans_sub(hammer2_pfs_t *pmp)
234 {
235 	hammer2_tid_t mtid;
236 
237 	mtid = atomic_fetchadd_64(&pmp->modify_tid, 1);
238 
239 	return (mtid);
240 }
241 
242 void
243 hammer2_trans_done(hammer2_pfs_t *pmp)
244 {
245 	uint32_t oflags;
246 	uint32_t nflags;
247 
248 	for (;;) {
249 		oflags = pmp->trans.flags;
250 		cpu_ccfence();
251 		KKASSERT(oflags & HAMMER2_TRANS_MASK);
252 		if ((oflags & HAMMER2_TRANS_MASK) == 1) {
253 			/*
254 			 * This was the last transaction
255 			 */
256 			nflags = (oflags - 1) & ~(HAMMER2_TRANS_ISFLUSH |
257 						  HAMMER2_TRANS_BUFCACHE |
258 						  HAMMER2_TRANS_FPENDING |
259 						  HAMMER2_TRANS_WAITING);
260 		} else {
261 			/*
262 			 * Still transactions pending
263 			 */
264 			nflags = oflags - 1;
265 		}
266 		if (atomic_cmpset_int(&pmp->trans.flags, oflags, nflags)) {
267 			if ((nflags & HAMMER2_TRANS_MASK) == 0 &&
268 			    (oflags & HAMMER2_TRANS_WAITING)) {
269 				wakeup(&pmp->trans.sync_wait);
270 			}
271 			break;
272 		} else {
273 			cpu_pause();
274 		}
275 		/* retry */
276 	}
277 }
278 
279 /*
280  * Obtain new, unique inode number (not serialized by caller).
281  */
282 hammer2_tid_t
283 hammer2_trans_newinum(hammer2_pfs_t *pmp)
284 {
285 	hammer2_tid_t tid;
286 
287 	tid = atomic_fetchadd_64(&pmp->inode_tid, 1);
288 
289 	return tid;
290 }
291 
292 /*
293  * Assert that a strategy call is ok here.  Currently we allow strategy
294  * calls in all situations, including during flushes.  Previously:
295  *	(old) (1) In a normal transaction.
296  *	(old) (2) In a flush transaction only if PREFLUSH is also set.
297  */
298 void
299 hammer2_trans_assert_strategy(hammer2_pfs_t *pmp)
300 {
301 #if 0
302 	KKASSERT((pmp->trans.flags & HAMMER2_TRANS_ISFLUSH) == 0 ||
303 		 (pmp->trans.flags & HAMMER2_TRANS_PREFLUSH));
304 #endif
305 }
306 
307 
308 /*
309  * Chains undergoing destruction are removed from the in-memory topology.
310  * To avoid getting lost these chains are placed on the delayed flush
311  * queue which will properly dispose of them.
312  *
313  * We do this instead of issuing an immediate flush in order to give
314  * recursive deletions (rm -rf, etc) a chance to remove more of the
315  * hierarchy, potentially allowing an enormous amount of write I/O to
316  * be avoided.
317  *
318  * NOTE: The flush code tests HAMMER2_CHAIN_DESTROY to differentiate
319  *	 between these chains and the deep-recursion requeue.
320  */
321 void
322 hammer2_delayed_flush(hammer2_chain_t *chain)
323 {
324 	if ((chain->flags & HAMMER2_CHAIN_DELAYED) == 0) {
325 		hammer2_spin_ex(&chain->hmp->list_spin);
326 		if ((chain->flags & (HAMMER2_CHAIN_DELAYED |
327 				     HAMMER2_CHAIN_DEFERRED)) == 0) {
328 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELAYED |
329 						      HAMMER2_CHAIN_DEFERRED);
330 			TAILQ_INSERT_TAIL(&chain->hmp->flushq,
331 					  chain, flush_node);
332 			hammer2_chain_ref(chain);
333 		}
334 		hammer2_spin_unex(&chain->hmp->list_spin);
335 		hammer2_voldata_modify(chain->hmp);
336 	}
337 }
338 
339 /*
340  * Flush the chain and all modified sub-chains through the specified
341  * synchronization point, propagating blockref updates back up.  As
342  * part of this propagation, mirror_tid and inode/data usage statistics
343  * propagates back upward.
344  *
345  * Returns a HAMMER2 error code, 0 if no error.  Note that I/O errors from
346  * buffers dirtied during the flush operation can occur later.
347  *
348  * modify_tid (clc - cluster level change) is not propagated.
349  *
350  * update_tid (clc) is used for validation and is not propagated by this
351  * function.
352  *
353  * This routine can be called from several places but the most important
354  * is from VFS_SYNC (frontend) via hammer2_inode_xop_flush (backend).
355  *
356  * chain is locked on call and will remain locked on return.  The chain's
357  * UPDATE flag indicates that its parent's block table (which is not yet
358  * part of the flush) should be updated.
359  *
360  * flags:
361  *	HAMMER2_FLUSH_TOP	Indicates that this is the top of the flush.
362  *				Is cleared for the recursion.
363  *
364  *	HAMMER2_FLUSH_ALL	Recurse everything
365  *
366  *	HAMMER2_FLUSH_INODE_STOP
367  *				Stop at PFS inode or normal inode boundary
368  */
369 int
370 hammer2_flush(hammer2_chain_t *chain, int flags)
371 {
372 	hammer2_chain_t *scan;
373 	hammer2_flush_info_t info;
374 	hammer2_dev_t *hmp;
375 	int loops;
376 
377 	/*
378 	 * Execute the recursive flush and handle deferrals.
379 	 *
380 	 * Chains can be ridiculously long (thousands deep), so to
381 	 * avoid blowing out the kernel stack the recursive flush has a
382 	 * depth limit.  Elements at the limit are placed on a list
383 	 * for re-execution after the stack has been popped.
384 	 */
385 	bzero(&info, sizeof(info));
386 	TAILQ_INIT(&info.flushq);
387 	info.flags = flags & ~HAMMER2_FLUSH_TOP;
388 
389 	/*
390 	 * Calculate parent (can be NULL), if not NULL the flush core
391 	 * expects the parent to be referenced so it can easily lock/unlock
392 	 * it without it getting ripped up.
393 	 */
394 	if ((info.parent = chain->parent) != NULL)
395 		hammer2_chain_ref(info.parent);
396 
397 	/*
398 	 * Extra ref needed because flush_core expects it when replacing
399 	 * chain.
400 	 */
401 	hammer2_chain_ref(chain);
402 	hmp = chain->hmp;
403 	loops = 0;
404 
405 	for (;;) {
406 		/*
407 		 * Move hmp->flushq to info.flushq if non-empty so it can
408 		 * be processed.
409 		 */
410 		if (TAILQ_FIRST(&hmp->flushq) != NULL) {
411 			hammer2_spin_ex(&chain->hmp->list_spin);
412 			TAILQ_CONCAT(&info.flushq, &hmp->flushq, flush_node);
413 			hammer2_spin_unex(&chain->hmp->list_spin);
414 		}
415 
416 		/*
417 		 * Unwind deep recursions which had been deferred.  This
418 		 * can leave the FLUSH_* bits set for these chains, which
419 		 * will be handled when we [re]flush chain after the unwind.
420 		 */
421 		while ((scan = TAILQ_FIRST(&info.flushq)) != NULL) {
422 			KKASSERT(scan->flags & HAMMER2_CHAIN_DEFERRED);
423 			TAILQ_REMOVE(&info.flushq, scan, flush_node);
424 #ifdef HAMMER2_SCAN_DEBUG
425 			++info.flushq_count;
426 #endif
427 			atomic_clear_int(&scan->flags, HAMMER2_CHAIN_DEFERRED |
428 						       HAMMER2_CHAIN_DELAYED);
429 
430 			/*
431 			 * Now that we've popped back up we can do a secondary
432 			 * recursion on the deferred elements.
433 			 *
434 			 * NOTE: hmp->flushq chains (marked DESTROY) must be
435 			 *	 handled unconditionally so they can be cleaned
436 			 *	 out.
437 			 *
438 			 * NOTE: hammer2_flush() may replace scan.
439 			 */
440 			if (hammer2_debug & 0x0040)
441 				kprintf("deferred flush %p\n", scan);
442 			hammer2_chain_lock(scan, HAMMER2_RESOLVE_MAYBE);
443 			if (scan->error == 0) {
444 				if (scan->flags & HAMMER2_CHAIN_DESTROY) {
445 					hammer2_flush(scan,
446 						    flags |
447 						    HAMMER2_FLUSH_TOP |
448 						    HAMMER2_FLUSH_ALL);
449 				} else {
450 					hammer2_flush(scan,
451 						    flags & ~HAMMER2_FLUSH_TOP);
452 				}
453 			} else {
454 				info.error |= scan->error;
455 			}
456 			hammer2_chain_unlock(scan);
457 			hammer2_chain_drop(scan);/* ref from defer */
458 		}
459 
460 		/*
461 		 * [re]flush chain as the deep recursion may have generated
462 		 * additional modifications.
463 		 */
464 		info.diddeferral = 0;
465 		if (info.parent != chain->parent) {
466 			if (hammer2_debug & 0x0040) {
467 				kprintf("LOST CHILD4 %p->%p "
468 					"(actual parent %p)\n",
469 					info.parent, chain, chain->parent);
470 			}
471 			hammer2_chain_drop(info.parent);
472 			info.parent = chain->parent;
473 			hammer2_chain_ref(info.parent);
474 		}
475 		hammer2_flush_core(&info, chain, flags);
476 
477 		/*
478 		 * Only loop if deep recursions have been deferred.
479 		 */
480 		if (TAILQ_EMPTY(&info.flushq))
481 			break;
482 
483 		if (++loops % 1000 == 0) {
484 			kprintf("hammer2_flush: excessive loops on %p\n",
485 				chain);
486 			if (hammer2_debug & 0x100000)
487 				Debugger("hell4");
488 		}
489 	}
490 #ifdef HAMMER2_SCAN_DEBUG
491 	if (info.scan_count >= 10)
492 	kprintf("hammer2_flush: scan_count %ld (%ld,%ld,%ld,%ld) "
493 		"bt(%ld,%ld,%ld,%ld,%ld,%ld) flushq %ld\n",
494 		info.scan_count,
495 		info.scan_mod_count,
496 		info.scan_upd_count,
497 		info.scan_onf_count,
498 		info.scan_del_count,
499 		info.scan_btype[1],
500 		info.scan_btype[2],
501 		info.scan_btype[3],
502 		info.scan_btype[4],
503 		info.scan_btype[5],
504 		info.scan_btype[6],
505 		info.flushq_count);
506 #endif
507 	hammer2_chain_drop(chain);
508 	if (info.parent)
509 		hammer2_chain_drop(info.parent);
510 	return (info.error);
511 }
512 
513 /*
514  * This is the core of the chain flushing code.  The chain is locked by the
515  * caller and must also have an extra ref on it by the caller, and remains
516  * locked and will have an extra ref on return.  info.parent is referenced
517  * but not locked.
518  *
519  * Upon return, the caller can test the UPDATE bit on the chain to determine
520  * if the parent needs updating.
521  *
522  * (1) Determine if this node is a candidate for the flush, return if it is
523  *     not.  fchain and vchain are always candidates for the flush.
524  *
525  * (2) If we recurse too deep the chain is entered onto the deferral list and
526  *     the current flush stack is aborted until after the deferral list is
527  *     run.
528  *
529  * (3) Recursively flush live children (rbtree).  This can create deferrals.
530  *     A successful flush clears the MODIFIED and UPDATE bits on the children
531  *     and typically causes the parent to be marked MODIFIED as the children
532  *     update the parent's block table.  A parent might already be marked
533  *     MODIFIED due to a deletion (whos blocktable update in the parent is
534  *     handled by the frontend), or if the parent itself is modified by the
535  *     frontend for other reasons.
536  *
537  * (4) Permanently disconnected sub-trees are cleaned up by the front-end.
538  *     Deleted-but-open inodes can still be individually flushed via the
539  *     filesystem syncer.
540  *
541  * (5) Delete parents on the way back up if they are normal indirect blocks
542  *     and have no children.
543  *
544  * (6) Note that an unmodified child may still need the block table in its
545  *     parent updated (e.g. rename/move).  The child will have UPDATE set
546  *     in this case.
547  *
548  *			WARNING ON BREF MODIFY_TID/MIRROR_TID
549  *
550  * blockref.modify_tid is consistent only within a PFS, and will not be
551  * consistent during synchronization.  mirror_tid is consistent across the
552  * block device regardless of the PFS.
553  */
554 static void
555 hammer2_flush_core(hammer2_flush_info_t *info, hammer2_chain_t *chain,
556 		   int flags)
557 {
558 	hammer2_chain_t *parent;
559 	hammer2_dev_t *hmp;
560 	int save_error;
561 
562 	/*
563 	 * (1) Optimize downward recursion to locate nodes needing action.
564 	 *     Nothing to do if none of these flags are set.
565 	 */
566 	if ((chain->flags & HAMMER2_CHAIN_FLUSH_MASK) == 0) {
567 		if (hammer2_debug & 0x200) {
568 			if (info->debug == NULL)
569 				info->debug = chain;
570 		} else {
571 			return;
572 		}
573 	}
574 
575 	hmp = chain->hmp;
576 
577 	/*
578 	 * NOTE: parent can be NULL, usually due to destroy races.
579 	 */
580 	parent = info->parent;
581 	KKASSERT(chain->parent == parent);
582 
583 	/*
584 	 * Downward search recursion
585 	 *
586 	 * We must be careful on cold stops.  If CHAIN_UPDATE is set and
587 	 * we stop cold (verses a deferral which will re-run the chain later),
588 	 * the update can wind up never being applied.  This situation most
589 	 * typically occurs on inode boundaries due to the way
590 	 * hammer2_vfs_sync() breaks-up the flush.  As a safety, we
591 	 * flush-through such situations.
592 	 */
593 	if (chain->flags & (HAMMER2_CHAIN_DEFERRED | HAMMER2_CHAIN_DELAYED)) {
594 		/*
595 		 * Already deferred.
596 		 */
597 		++info->diddeferral;
598 	} else if ((chain->flags & HAMMER2_CHAIN_PFSBOUNDARY) &&
599 		   (chain->flags & HAMMER2_CHAIN_UPDATE) == 0 &&
600 		   (flags & HAMMER2_FLUSH_ALL) == 0 &&
601 		   (flags & HAMMER2_FLUSH_TOP) == 0 &&
602 		   chain->pmp && chain->pmp->mp) {
603 		/*
604 		 * If FLUSH_ALL is not specified the caller does not want
605 		 * to recurse through PFS roots that have been mounted.
606 		 *
607 		 * (If the PFS has not been mounted there may not be
608 		 *  anything monitoring its chains and its up to us
609 		 *  to flush it).
610 		 *
611 		 * The typical sequence is to flush dirty PFS's starting at
612 		 * their root downward, then flush the device root (vchain).
613 		 * It is this second flush that typically leaves out the
614 		 * ALL flag.
615 		 *
616 		 * However we must still process the PFSROOT chains for block
617 		 * table updates in their parent (which IS part of our flush).
618 		 *
619 		 * NOTE: The volume root, vchain, does not set PFSBOUNDARY.
620 		 *
621 		 * NOTE: This test must be done before the depth-limit test,
622 		 *	 else it might become the top on a flushq iteration.
623 		 *
624 		 * NOTE: We must re-set ONFLUSH in the parent to retain if
625 		 *	 this chain (that we are skipping) requires work.
626 		 */
627 		if (chain->flags & (HAMMER2_CHAIN_ONFLUSH |
628 				    HAMMER2_CHAIN_DESTROY |
629 				    HAMMER2_CHAIN_MODIFIED)) {
630 			hammer2_chain_setflush(parent);
631 		}
632 	} else if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
633 		   (chain->flags & HAMMER2_CHAIN_UPDATE) == 0 &&
634 		   (flags & HAMMER2_FLUSH_INODE_STOP) &&
635 		   (flags & HAMMER2_FLUSH_ALL) == 0 &&
636 		   (flags & HAMMER2_FLUSH_TOP) == 0 &&
637 		   chain->pmp && chain->pmp->mp) {
638 		/*
639 		 * If FLUSH_INODE_STOP is specified and both ALL and TOP
640 		 * are clear, we must not flush the chain.  The chain should
641 		 * have already been flushed and any further ONFLUSH/UPDATE
642 		 * setting will be related to the next flush.
643 		 *
644 		 * This features allows us to flush inodes independently of
645 		 * each other and meta-data above the inodes separately.
646 		 */
647 		if (chain->flags & (HAMMER2_CHAIN_ONFLUSH |
648 				    HAMMER2_CHAIN_DESTROY |
649 				    HAMMER2_CHAIN_MODIFIED)) {
650 			if (parent)
651 				hammer2_chain_setflush(parent);
652 		}
653 	} else if (info->depth == HAMMER2_FLUSH_DEPTH_LIMIT) {
654 		/*
655 		 * Recursion depth reached.
656 		 */
657 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELAYED) == 0);
658 		hammer2_chain_ref(chain);
659 		TAILQ_INSERT_TAIL(&info->flushq, chain, flush_node);
660 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DEFERRED);
661 		++info->diddeferral;
662 	} else if (chain->flags & (HAMMER2_CHAIN_ONFLUSH |
663 				   HAMMER2_CHAIN_DESTROY)) {
664 		/*
665 		 * Downward recursion search (actual flush occurs bottom-up).
666 		 * pre-clear ONFLUSH.  It can get set again due to races or
667 		 * flush errors, which we want so the scan finds us again in
668 		 * the next flush.
669 		 *
670 		 * We must also recurse if DESTROY is set so we can finally
671 		 * get rid of the related children, otherwise the node will
672 		 * just get re-flushed on lastdrop.
673 		 *
674 		 * WARNING!  The recursion will unlock/relock info->parent
675 		 *	     (which is 'chain'), potentially allowing it
676 		 *	     to be ripped up.
677 		 */
678 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
679 		save_error = info->error;
680 		info->error = 0;
681 		info->parent = chain;
682 
683 		/*
684 		 * We may have to do this twice to catch any indirect
685 		 * block maintenance that occurs.  Other conditions which
686 		 * can keep setting ONFLUSH (such as deferrals) ought to
687 		 * be handled by the flushq code.  XXX needs more help
688 		 */
689 		hammer2_spin_ex(&chain->core.spin);
690 		RB_SCAN(hammer2_chain_tree, &chain->core.rbtree,
691 			NULL, hammer2_flush_recurse, info);
692 		if (chain->flags & HAMMER2_CHAIN_ONFLUSH) {
693 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
694 			RB_SCAN(hammer2_chain_tree, &chain->core.rbtree,
695 				NULL, hammer2_flush_recurse, info);
696 		}
697 		hammer2_spin_unex(&chain->core.spin);
698 		info->parent = parent;
699 
700 		/*
701 		 * Re-set the flush bits if the flush was incomplete or
702 		 * an error occurred.  If an error occurs it is typically
703 		 * an allocation error.  Errors do not cause deferrals.
704 		 */
705 		if (info->error)
706 			hammer2_chain_setflush(chain);
707 		info->error |= save_error;
708 		if (info->diddeferral)
709 			hammer2_chain_setflush(chain);
710 
711 		/*
712 		 * If we lost the parent->chain association we have to
713 		 * stop processing this chain because it is no longer
714 		 * in this recursion.  If it moved, it will be handled
715 		 * by the ONFLUSH flag elsewhere.
716 		 */
717 		if (chain->parent != parent) {
718 			kprintf("LOST CHILD2 %p->%p (actual parent %p)\n",
719 				parent, chain, chain->parent);
720 			goto done;
721 		}
722 	}
723 
724 	/*
725 	 * Now we are in the bottom-up part of the recursion.
726 	 *
727 	 * Do not update chain if lower layers were deferred.  We continue
728 	 * to try to update the chain on lower-level errors, but the flush
729 	 * code may decide not to flush the volume root.
730 	 *
731 	 * XXX should we continue to try to update the chain if an error
732 	 *     occurred?
733 	 */
734 	if (info->diddeferral)
735 		goto done;
736 
737 	/*
738 	 * Both parent and chain must be locked in order to flush chain,
739 	 * in order to properly update the parent under certain conditions.
740 	 *
741 	 * In addition, we can't safely unlock/relock the chain once we
742 	 * start flushing the chain itself, which we would have to do later
743 	 * on in order to lock the parent if we didn't do that now.
744 	 */
745 	hammer2_chain_ref_hold(chain);
746 	hammer2_chain_unlock(chain);
747 	if (parent)
748 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
749 	hammer2_chain_lock(chain, HAMMER2_RESOLVE_MAYBE);
750 	hammer2_chain_drop_unhold(chain);
751 
752 	/*
753 	 * Can't process if we can't access their content.
754 	 */
755 	if ((parent && parent->error) || chain->error) {
756 		kprintf("hammer2: chain error during flush\n");
757 		info->error |= chain->error;
758 		if (parent) {
759 			info->error |= parent->error;
760 			hammer2_chain_unlock(parent);
761 		}
762 		goto done;
763 	}
764 
765 	if (chain->parent != parent) {
766 		if (hammer2_debug & 0x0040) {
767 			kprintf("LOST CHILD3 %p->%p (actual parent %p)\n",
768 				parent, chain, chain->parent);
769 		}
770 		KKASSERT(parent != NULL);
771 		hammer2_chain_unlock(parent);
772 		if ((chain->flags & HAMMER2_CHAIN_DELAYED) == 0) {
773 			hammer2_chain_ref(chain);
774 			TAILQ_INSERT_TAIL(&info->flushq, chain, flush_node);
775 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DEFERRED);
776 			++info->diddeferral;
777 		}
778 		goto done;
779 	}
780 
781 	/*
782 	 * Propagate the DESTROY flag downwards.  This dummies up the flush
783 	 * code and tries to invalidate related buffer cache buffers to
784 	 * avoid the disk write.
785 	 */
786 	if (parent && (parent->flags & HAMMER2_CHAIN_DESTROY))
787 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
788 
789 	/*
790 	 * Dispose of the modified bit.
791 	 *
792 	 * If parent is present, the UPDATE bit should already be set.
793 	 * UPDATE should already be set.
794 	 * bref.mirror_tid should already be set.
795 	 */
796 	if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
797 		KKASSERT((chain->flags & HAMMER2_CHAIN_UPDATE) ||
798 			 chain->parent == NULL);
799 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
800 		atomic_add_long(&hammer2_count_modified_chains, -1);
801 
802 		/*
803 		 * Manage threads waiting for excessive dirty memory to
804 		 * be retired.
805 		 */
806 		if (chain->pmp)
807 			hammer2_pfs_memory_wakeup(chain->pmp);
808 
809 #if 0
810 		if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0 &&
811 		    chain != &hmp->vchain &&
812 		    chain != &hmp->fchain) {
813 			/*
814 			 * Set UPDATE bit indicating that the parent block
815 			 * table requires updating.
816 			 */
817 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
818 		}
819 #endif
820 
821 		/*
822 		 * Issue the flush.  This is indirect via the DIO.
823 		 *
824 		 * NOTE: A DELETED node that reaches this point must be
825 		 *	 flushed for synchronization point consistency.
826 		 *
827 		 * NOTE: Even though MODIFIED was already set, the related DIO
828 		 *	 might not be dirty due to a system buffer cache
829 		 *	 flush and must be set dirty if we are going to make
830 		 *	 further modifications to the buffer.  Chains with
831 		 *	 embedded data don't need this.
832 		 */
833 		if (hammer2_debug & 0x1000) {
834 			kprintf("Flush %p.%d %016jx/%d data=%016jx\n",
835 				chain, chain->bref.type,
836 				(uintmax_t)chain->bref.key,
837 				chain->bref.keybits,
838 				(uintmax_t)chain->bref.data_off);
839 		}
840 		if (hammer2_debug & 0x2000) {
841 			Debugger("Flush hell");
842 		}
843 
844 		/*
845 		 * Update chain CRCs for flush.
846 		 *
847 		 * NOTE: Volume headers are NOT flushed here as they require
848 		 *	 special processing.
849 		 */
850 		switch(chain->bref.type) {
851 		case HAMMER2_BREF_TYPE_FREEMAP:
852 			/*
853 			 * Update the volume header's freemap_tid to the
854 			 * freemap's flushing mirror_tid.
855 			 *
856 			 * (note: embedded data, do not call setdirty)
857 			 */
858 			KKASSERT(hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED);
859 			KKASSERT(chain == &hmp->fchain);
860 			hmp->voldata.freemap_tid = chain->bref.mirror_tid;
861 			if (hammer2_debug & 0x8000) {
862 				/* debug only, avoid syslogd loop */
863 				kprintf("sync freemap mirror_tid %08jx\n",
864 					(intmax_t)chain->bref.mirror_tid);
865 			}
866 
867 			/*
868 			 * The freemap can be flushed independently of the
869 			 * main topology, but for the case where it is
870 			 * flushed in the same transaction, and flushed
871 			 * before vchain (a case we want to allow for
872 			 * performance reasons), make sure modifications
873 			 * made during the flush under vchain use a new
874 			 * transaction id.
875 			 *
876 			 * Otherwise the mount recovery code will get confused.
877 			 */
878 			++hmp->voldata.mirror_tid;
879 			break;
880 		case HAMMER2_BREF_TYPE_VOLUME:
881 			/*
882 			 * The free block table is flushed by
883 			 * hammer2_vfs_sync() before it flushes vchain.
884 			 * We must still hold fchain locked while copying
885 			 * voldata to volsync, however.
886 			 *
887 			 * These do not error per-say since their data does
888 			 * not need to be re-read from media on lock.
889 			 *
890 			 * (note: embedded data, do not call setdirty)
891 			 */
892 			hammer2_chain_lock(&hmp->fchain,
893 					   HAMMER2_RESOLVE_ALWAYS);
894 			hammer2_voldata_lock(hmp);
895 			if (hammer2_debug & 0x8000) {
896 				/* debug only, avoid syslogd loop */
897 				kprintf("sync volume  mirror_tid %08jx\n",
898 					(intmax_t)chain->bref.mirror_tid);
899 			}
900 
901 			/*
902 			 * Update the volume header's mirror_tid to the
903 			 * main topology's flushing mirror_tid.  It is
904 			 * possible that voldata.mirror_tid is already
905 			 * beyond bref.mirror_tid due to the bump we made
906 			 * above in BREF_TYPE_FREEMAP.
907 			 */
908 			if (hmp->voldata.mirror_tid < chain->bref.mirror_tid) {
909 				hmp->voldata.mirror_tid =
910 					chain->bref.mirror_tid;
911 			}
912 
913 			/*
914 			 * The volume header is flushed manually by the
915 			 * syncer, not here.  All we do here is adjust the
916 			 * crc's.
917 			 */
918 			KKASSERT(chain->data != NULL);
919 			KKASSERT(chain->dio == NULL);
920 
921 			hmp->voldata.icrc_sects[HAMMER2_VOL_ICRC_SECT1]=
922 				hammer2_icrc32(
923 					(char *)&hmp->voldata +
924 					 HAMMER2_VOLUME_ICRC1_OFF,
925 					HAMMER2_VOLUME_ICRC1_SIZE);
926 			hmp->voldata.icrc_sects[HAMMER2_VOL_ICRC_SECT0]=
927 				hammer2_icrc32(
928 					(char *)&hmp->voldata +
929 					 HAMMER2_VOLUME_ICRC0_OFF,
930 					HAMMER2_VOLUME_ICRC0_SIZE);
931 			hmp->voldata.icrc_volheader =
932 				hammer2_icrc32(
933 					(char *)&hmp->voldata +
934 					 HAMMER2_VOLUME_ICRCVH_OFF,
935 					HAMMER2_VOLUME_ICRCVH_SIZE);
936 
937 			if (hammer2_debug & 0x8000) {
938 				/* debug only, avoid syslogd loop */
939 				kprintf("syncvolhdr %016jx %016jx\n",
940 					hmp->voldata.mirror_tid,
941 					hmp->vchain.bref.mirror_tid);
942 			}
943 			hmp->volsync = hmp->voldata;
944 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_VOLUMESYNC);
945 			hammer2_voldata_unlock(hmp);
946 			hammer2_chain_unlock(&hmp->fchain);
947 			break;
948 		case HAMMER2_BREF_TYPE_DATA:
949 			/*
950 			 * Data elements have already been flushed via the
951 			 * logical file buffer cache.  Their hash was set in
952 			 * the bref by the vop_write code.  Do not re-dirty.
953 			 *
954 			 * Make sure any device buffer(s) have been flushed
955 			 * out here (there aren't usually any to flush) XXX.
956 			 */
957 			break;
958 		case HAMMER2_BREF_TYPE_INDIRECT:
959 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
960 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
961 			/*
962 			 * Buffer I/O will be cleaned up when the volume is
963 			 * flushed (but the kernel is free to flush it before
964 			 * then, as well).
965 			 */
966 			KKASSERT((chain->flags & HAMMER2_CHAIN_EMBEDDED) == 0);
967 			hammer2_chain_setcheck(chain, chain->data);
968 			break;
969 		case HAMMER2_BREF_TYPE_DIRENT:
970 			/*
971 			 * A directory entry can use the check area to store
972 			 * the filename for filenames <= 64 bytes, don't blow
973 			 * it up!
974 			 */
975 			KKASSERT((chain->flags & HAMMER2_CHAIN_EMBEDDED) == 0);
976 			if (chain->bytes)
977 				hammer2_chain_setcheck(chain, chain->data);
978 			break;
979 		case HAMMER2_BREF_TYPE_INODE:
980 			/*
981 			 * NOTE: We must call io_setdirty() to make any late
982 			 *	 changes to the inode data, the system might
983 			 *	 have already flushed the buffer.
984 			 */
985 			if (chain->data->ipdata.meta.op_flags &
986 			    HAMMER2_OPFLAG_PFSROOT) {
987 				/*
988 				 * non-NULL pmp if mounted as a PFS.  We must
989 				 * sync fields cached in the pmp? XXX
990 				 */
991 				hammer2_inode_data_t *ipdata;
992 
993 				hammer2_io_setdirty(chain->dio);
994 				ipdata = &chain->data->ipdata;
995 				if (chain->pmp) {
996 					ipdata->meta.pfs_inum =
997 						chain->pmp->inode_tid;
998 				}
999 			} else {
1000 				/* can't be mounted as a PFS */
1001 			}
1002 
1003 			KKASSERT((chain->flags & HAMMER2_CHAIN_EMBEDDED) == 0);
1004 			hammer2_chain_setcheck(chain, chain->data);
1005 
1006 				hammer2_inode_data_t *ipdata;
1007 			ipdata = &chain->data->ipdata;
1008 			break;
1009 		default:
1010 			KKASSERT(chain->flags & HAMMER2_CHAIN_EMBEDDED);
1011 			panic("hammer2_flush_core: unsupported "
1012 			      "embedded bref %d",
1013 			      chain->bref.type);
1014 			/* NOT REACHED */
1015 		}
1016 
1017 		/*
1018 		 * If the chain was destroyed try to avoid unnecessary I/O
1019 		 * that might not have yet occurred.  Remove the data range
1020 		 * from dedup candidacy and attempt to invalidation that
1021 		 * potentially dirty portion of the I/O buffer.
1022 		 */
1023 		if (chain->flags & HAMMER2_CHAIN_DESTROY) {
1024 			hammer2_io_dedup_delete(hmp,
1025 						chain->bref.type,
1026 						chain->bref.data_off,
1027 						chain->bytes);
1028 #if 0
1029 			hammer2_io_t *dio;
1030 			if (chain->dio) {
1031 				hammer2_io_inval(chain->dio,
1032 						 chain->bref.data_off,
1033 						 chain->bytes);
1034 			} else if ((dio = hammer2_io_getquick(hmp,
1035 						  chain->bref.data_off,
1036 						  chain->bytes,
1037 						  1)) != NULL) {
1038 				hammer2_io_inval(dio,
1039 						 chain->bref.data_off,
1040 						 chain->bytes);
1041 				hammer2_io_putblk(&dio);
1042 			}
1043 #endif
1044 		}
1045 	}
1046 
1047 	/*
1048 	 * If UPDATE is set the parent block table may need to be updated.
1049 	 * This can fail if the hammer2_chain_modify() fails.
1050 	 *
1051 	 * NOTE: UPDATE may be set on vchain or fchain in which case
1052 	 *	 parent could be NULL.  It's easiest to allow the case
1053 	 *	 and test for NULL.  parent can also wind up being NULL
1054 	 *	 due to a deletion so we need to handle the case anyway.
1055 	 *
1056 	 * If no parent exists we can just clear the UPDATE bit.  If the
1057 	 * chain gets reattached later on the bit will simply get set
1058 	 * again.
1059 	 */
1060 	if ((chain->flags & HAMMER2_CHAIN_UPDATE) && parent == NULL)
1061 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1062 
1063 	/*
1064 	 * The chain may need its blockrefs updated in the parent.
1065 	 */
1066 	if (chain->flags & HAMMER2_CHAIN_UPDATE) {
1067 		hammer2_blockref_t *base;
1068 		int count;
1069 
1070 		/*
1071 		 * Clear UPDATE flag, mark parent modified, update its
1072 		 * modify_tid if necessary, and adjust the parent blockmap.
1073 		 */
1074 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1075 
1076 		/*
1077 		 * (optional code)
1078 		 *
1079 		 * Avoid actually modifying and updating the parent if it
1080 		 * was flagged for destruction.  This can greatly reduce
1081 		 * disk I/O in large tree removals because the
1082 		 * hammer2_io_setinval() call in the upward recursion
1083 		 * (see MODIFIED code above) can only handle a few cases.
1084 		 */
1085 		if (parent->flags & HAMMER2_CHAIN_DESTROY) {
1086 			if (parent->bref.modify_tid < chain->bref.modify_tid) {
1087 				parent->bref.modify_tid =
1088 					chain->bref.modify_tid;
1089 			}
1090 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
1091 							HAMMER2_CHAIN_BMAPUPD);
1092 			goto skipupdate;
1093 		}
1094 
1095 		/*
1096 		 * The flusher is responsible for deleting empty indirect
1097 		 * blocks at this point.  If we don't do this, no major harm
1098 		 * will be done but the empty indirect blocks will stay in
1099 		 * the topology and make it a messy and inefficient.
1100 		 *
1101 		 * The flusher is also responsible for collapsing the
1102 		 * content of an indirect block into its parent whenever
1103 		 * possible (with some hysteresis).  Not doing this will also
1104 		 * not harm the topology, but would make it messy and
1105 		 * inefficient.
1106 		 */
1107 		if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT) {
1108 			if (hammer2_chain_indirect_maintenance(parent, chain))
1109 				goto skipupdate;
1110 		}
1111 
1112 		/*
1113 		 * We are updating the parent's blockmap, the parent must
1114 		 * be set modified.  If this fails we re-set the UPDATE flag
1115 		 * in the child.
1116 		 *
1117 		 * NOTE! A modification error can be ENOSPC.  We still want
1118 		 *	 to flush modified chains recursively, not break out,
1119 		 *	 so we just skip the update in this situation and
1120 		 *	 continue.  That is, we still need to try to clean
1121 		 *	 out dirty chains and buffers.
1122 		 *
1123 		 *	 This may not help bulkfree though. XXX
1124 		 */
1125 		save_error = hammer2_chain_modify(parent, 0, 0, 0);
1126 		if (save_error) {
1127 			info->error |= save_error;
1128 			kprintf("hammer2_flush: %016jx.%02x error=%08x\n",
1129 				parent->bref.data_off, parent->bref.type,
1130 				save_error);
1131 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1132 			goto skipupdate;
1133 		}
1134 		if (parent->bref.modify_tid < chain->bref.modify_tid)
1135 			parent->bref.modify_tid = chain->bref.modify_tid;
1136 
1137 		/*
1138 		 * Calculate blockmap pointer
1139 		 */
1140 		switch(parent->bref.type) {
1141 		case HAMMER2_BREF_TYPE_INODE:
1142 			/*
1143 			 * Access the inode's block array.  However, there is
1144 			 * no block array if the inode is flagged DIRECTDATA.
1145 			 */
1146 			if (parent->data &&
1147 			    (parent->data->ipdata.meta.op_flags &
1148 			     HAMMER2_OPFLAG_DIRECTDATA) == 0) {
1149 				base = &parent->data->
1150 					ipdata.u.blockset.blockref[0];
1151 			} else {
1152 				base = NULL;
1153 			}
1154 			count = HAMMER2_SET_COUNT;
1155 			break;
1156 		case HAMMER2_BREF_TYPE_INDIRECT:
1157 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1158 			if (parent->data)
1159 				base = &parent->data->npdata[0];
1160 			else
1161 				base = NULL;
1162 			count = parent->bytes / sizeof(hammer2_blockref_t);
1163 			break;
1164 		case HAMMER2_BREF_TYPE_VOLUME:
1165 			base = &chain->hmp->voldata.sroot_blockset.blockref[0];
1166 			count = HAMMER2_SET_COUNT;
1167 			break;
1168 		case HAMMER2_BREF_TYPE_FREEMAP:
1169 			base = &parent->data->npdata[0];
1170 			count = HAMMER2_SET_COUNT;
1171 			break;
1172 		default:
1173 			base = NULL;
1174 			count = 0;
1175 			panic("hammer2_flush_core: "
1176 			      "unrecognized blockref type: %d",
1177 			      parent->bref.type);
1178 		}
1179 
1180 		/*
1181 		 * Blocktable updates
1182 		 *
1183 		 * We synchronize pending statistics at this time.  Delta
1184 		 * adjustments designated for the current and upper level
1185 		 * are synchronized.
1186 		 */
1187 		if (base && (chain->flags & HAMMER2_CHAIN_BMAPUPD)) {
1188 			if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
1189 				hammer2_spin_ex(&parent->core.spin);
1190 				hammer2_base_delete(parent, base, count, chain);
1191 				hammer2_spin_unex(&parent->core.spin);
1192 				/* base_delete clears both bits */
1193 			} else {
1194 				atomic_clear_int(&chain->flags,
1195 						 HAMMER2_CHAIN_BMAPUPD);
1196 			}
1197 		}
1198 		if (base && (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
1199 			hammer2_spin_ex(&parent->core.spin);
1200 			hammer2_base_insert(parent, base, count,
1201 					    chain, &chain->bref);
1202 			hammer2_spin_unex(&parent->core.spin);
1203 			/* base_insert sets BMAPPED */
1204 		}
1205 	}
1206 skipupdate:
1207 	if (parent)
1208 		hammer2_chain_unlock(parent);
1209 
1210 	/*
1211 	 * Final cleanup after flush
1212 	 */
1213 done:
1214 	KKASSERT(chain->refs > 0);
1215 	if (hammer2_debug & 0x200) {
1216 		if (info->debug == chain)
1217 			info->debug = NULL;
1218 	}
1219 }
1220 
1221 /*
1222  * Flush recursion helper, called from flush_core, calls flush_core.
1223  *
1224  * Flushes the children of the caller's chain (info->parent), restricted
1225  * by sync_tid.  Set info->domodify if the child's blockref must propagate
1226  * back up to the parent.
1227  *
1228  * This function may set info->error as a side effect.
1229  *
1230  * Ripouts can move child from rbtree to dbtree or dbq but the caller's
1231  * flush scan order prevents any chains from being lost.  A child can be
1232  * executes more than once.
1233  *
1234  * WARNING! If we do not call hammer2_flush_core() we must update
1235  *	    bref.mirror_tid ourselves to indicate that the flush has
1236  *	    processed the child.
1237  *
1238  * WARNING! parent->core spinlock is held on entry and return.
1239  */
1240 static int
1241 hammer2_flush_recurse(hammer2_chain_t *child, void *data)
1242 {
1243 	hammer2_flush_info_t *info = data;
1244 	hammer2_chain_t *parent = info->parent;
1245 
1246 #ifdef HAMMER2_SCAN_DEBUG
1247 	++info->scan_count;
1248 	if (child->flags & HAMMER2_CHAIN_MODIFIED)
1249 		++info->scan_mod_count;
1250 	if (child->flags & HAMMER2_CHAIN_UPDATE)
1251 		++info->scan_upd_count;
1252 	if (child->flags & HAMMER2_CHAIN_ONFLUSH)
1253 		++info->scan_onf_count;
1254 #endif
1255 
1256 	/*
1257 	 * (child can never be fchain or vchain so a special check isn't
1258 	 *  needed).
1259 	 *
1260 	 * We must ref the child before unlocking the spinlock.
1261 	 *
1262 	 * The caller has added a ref to the parent so we can temporarily
1263 	 * unlock it in order to lock the child.  However, if it no longer
1264 	 * winds up being the child of the parent we must skip this child.
1265 	 *
1266 	 * NOTE! chain locking errors are fatal.  They are never out-of-space
1267 	 *	 errors.
1268 	 */
1269 	hammer2_chain_ref(child);
1270 	hammer2_spin_unex(&parent->core.spin);
1271 
1272 	hammer2_chain_ref_hold(parent);
1273 	hammer2_chain_unlock(parent);
1274 	hammer2_chain_lock(child, HAMMER2_RESOLVE_MAYBE);
1275 	if (child->parent != parent) {
1276 		kprintf("LOST CHILD1 %p->%p (actual parent %p)\n",
1277 			parent, child, child->parent);
1278 		goto done;
1279 	}
1280 	if (child->error) {
1281 		kprintf("CHILD ERROR DURING FLUSH LOCK %p->%p\n",
1282 			parent, child);
1283 		info->error |= child->error;
1284 		goto done;
1285 	}
1286 
1287 	/*
1288 	 * Must propagate the DESTROY flag downwards, otherwise the
1289 	 * parent could end up never being removed because it will
1290 	 * be requeued to the flusher if it survives this run due to
1291 	 * the flag.
1292 	 */
1293 	if (parent && (parent->flags & HAMMER2_CHAIN_DESTROY))
1294 		atomic_set_int(&child->flags, HAMMER2_CHAIN_DESTROY);
1295 #ifdef HAMMER2_SCAN_DEBUG
1296 	if (child->flags & HAMMER2_CHAIN_DESTROY)
1297 		++info->scan_del_count;
1298 #endif
1299 
1300 	/*
1301 	 * Recurse and collect deferral data.  We're in the media flush,
1302 	 * this can cross PFS boundaries.
1303 	 */
1304 	if (child->flags & HAMMER2_CHAIN_FLUSH_MASK) {
1305 #ifdef HAMMER2_SCAN_DEBUG
1306 		if (child->bref.type < 7)
1307 			++info->scan_btype[child->bref.type];
1308 #endif
1309 		++info->depth;
1310 		hammer2_flush_core(info, child, info->flags);
1311 		--info->depth;
1312 	} else if (hammer2_debug & 0x200) {
1313 		if (info->debug == NULL)
1314 			info->debug = child;
1315 		++info->depth;
1316 		hammer2_flush_core(info, child, info->flags);
1317 		--info->depth;
1318 		if (info->debug == child)
1319 			info->debug = NULL;
1320 	}
1321 
1322 done:
1323 	/*
1324 	 * Relock to continue the loop.
1325 	 */
1326 	hammer2_chain_unlock(child);
1327 	hammer2_chain_lock(parent, HAMMER2_RESOLVE_MAYBE);
1328 	hammer2_chain_drop_unhold(parent);
1329 	if (parent->error) {
1330 		kprintf("PARENT ERROR DURING FLUSH LOCK %p->%p\n",
1331 			parent, child);
1332 		info->error |= parent->error;
1333 	}
1334 	hammer2_chain_drop(child);
1335 	KKASSERT(info->parent == parent);
1336 	hammer2_spin_ex(&parent->core.spin);
1337 
1338 	return (0);
1339 }
1340 
1341 /*
1342  * flush helper (backend threaded)
1343  *
1344  * Flushes chain topology for the specified inode.
1345  *
1346  * If HAMMER2_XOP_FLUSH is set we flush all chains from the current inode
1347  * through but stop at sub-inodes (we flush the inode chains for sub-inodes,
1348  * but do not go further as deeper modifications do not belong to the current
1349  * flush cycle).
1350  *
1351  * If HAMMER2_XOP_FLUSH is not set we flush the current inode's chains only
1352  * and do not recurse through sub-inodes, including not including those
1353  * sub-inodes.
1354  *
1355  * Remember that HAMMER2 is currently using a flat inode model, so directory
1356  * hierarchies do not translate to inode hierarchies.  PFS ROOTs, however,
1357  * do.
1358  *
1359  * chain->parent can be NULL, usually due to destroy races.
1360  *
1361  * Primarily called from vfs_sync().
1362  */
1363 void
1364 hammer2_inode_xop_flush(hammer2_thread_t *thr, hammer2_xop_t *arg)
1365 {
1366 	hammer2_xop_flush_t *xop = &arg->xop_flush;
1367 	hammer2_chain_t *chain;
1368 	hammer2_chain_t *parent;
1369 	hammer2_dev_t *hmp;
1370 	int flush_error = 0;
1371 	int fsync_error = 0;
1372 	int total_error = 0;
1373 	int j;
1374 	int xflags;
1375 	int ispfsroot = 0;
1376 
1377 	xflags = HAMMER2_FLUSH_TOP;
1378 	if (xop->head.flags & HAMMER2_XOP_INODE_STOP)
1379 		xflags |= HAMMER2_FLUSH_INODE_STOP;
1380 
1381 	/*
1382 	 * Flush core chains
1383 	 */
1384 	chain = hammer2_inode_chain(xop->head.ip1, thr->clindex,
1385 				    HAMMER2_RESOLVE_ALWAYS);
1386 	if (chain) {
1387 		hmp = chain->hmp;
1388 		if ((chain->flags & HAMMER2_CHAIN_FLUSH_MASK) ||
1389 		    TAILQ_FIRST(&hmp->flushq) != NULL) {
1390 			hammer2_flush(chain, xflags);
1391 			parent = chain->parent;
1392 			if (parent)
1393 				hammer2_chain_setflush(parent);
1394 		}
1395 		if (chain->flags & HAMMER2_CHAIN_PFSBOUNDARY)
1396 			ispfsroot = 1;
1397 		hammer2_chain_unlock(chain);
1398 		hammer2_chain_drop(chain);
1399 		chain = NULL;
1400 	} else {
1401 		hmp = NULL;
1402 	}
1403 
1404 	/*
1405 	 * Only flush the volume header if asked to, plus the inode must also
1406 	 * be the PFS root.
1407 	 */
1408 	if ((xop->head.flags & HAMMER2_XOP_VOLHDR) == 0)
1409 		goto skip;
1410 	if (ispfsroot == 0)
1411 		goto skip;
1412 
1413 	/*
1414 	 * Flush volume roots.  Avoid replication, we only want to
1415 	 * flush each hammer2_dev (hmp) once.
1416 	 */
1417 	for (j = thr->clindex - 1; j >= 0; --j) {
1418 		if ((chain = xop->head.ip1->cluster.array[j].chain) != NULL) {
1419 			if (chain->hmp == hmp) {
1420 				chain = NULL;	/* safety */
1421 				goto skip;
1422 			}
1423 		}
1424 	}
1425 	chain = NULL;	/* safety */
1426 
1427 	/*
1428 	 * spmp transaction.  The super-root is never directly mounted so
1429 	 * there shouldn't be any vnodes, let alone any dirty vnodes
1430 	 * associated with it, so we shouldn't have to mess around with any
1431 	 * vnode flushes here.
1432 	 */
1433 	hammer2_trans_init(hmp->spmp, HAMMER2_TRANS_ISFLUSH);
1434 
1435 	/*
1436 	 * Media mounts have two 'roots', vchain for the topology
1437 	 * and fchain for the free block table.  Flush both.
1438 	 *
1439 	 * Note that the topology and free block table are handled
1440 	 * independently, so the free block table can wind up being
1441 	 * ahead of the topology.  We depend on the bulk free scan
1442 	 * code to deal with any loose ends.
1443 	 *
1444 	 * vchain and fchain do not error on-lock since their data does
1445 	 * not have to be re-read from media.
1446 	 */
1447 	hammer2_chain_ref(&hmp->vchain);
1448 	hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1449 	hammer2_chain_ref(&hmp->fchain);
1450 	hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
1451 	if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1452 		/*
1453 		 * This will also modify vchain as a side effect,
1454 		 * mark vchain as modified now.
1455 		 */
1456 		hammer2_voldata_modify(hmp);
1457 		chain = &hmp->fchain;
1458 		flush_error |= hammer2_flush(chain, HAMMER2_FLUSH_TOP);
1459 		KKASSERT(chain == &hmp->fchain);
1460 	}
1461 	hammer2_chain_unlock(&hmp->fchain);
1462 	hammer2_chain_unlock(&hmp->vchain);
1463 	hammer2_chain_drop(&hmp->fchain);
1464 	/* vchain dropped down below */
1465 
1466 	hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1467 	if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1468 		chain = &hmp->vchain;
1469 		flush_error |= hammer2_flush(chain, HAMMER2_FLUSH_TOP);
1470 		KKASSERT(chain == &hmp->vchain);
1471 	}
1472 	hammer2_chain_unlock(&hmp->vchain);
1473 	hammer2_chain_drop(&hmp->vchain);
1474 
1475 	/*
1476 	 * We can't safely flush the volume header until we have
1477 	 * flushed any device buffers which have built up.
1478 	 *
1479 	 * XXX this isn't being incremental
1480 	 */
1481 	vn_lock(hmp->devvp, LK_EXCLUSIVE | LK_RETRY);
1482 	fsync_error = VOP_FSYNC(hmp->devvp, MNT_WAIT, 0);
1483 	vn_unlock(hmp->devvp);
1484 	if (fsync_error || flush_error) {
1485 		kprintf("hammer2: sync error fsync=%d h2flush=0x%04x dev=%s\n",
1486 			fsync_error, flush_error, hmp->devrepname);
1487 	}
1488 
1489 	/*
1490 	 * The flush code sets CHAIN_VOLUMESYNC to indicate that the
1491 	 * volume header needs synchronization via hmp->volsync.
1492 	 *
1493 	 * XXX synchronize the flag & data with only this flush XXX
1494 	 */
1495 	if (fsync_error == 0 && flush_error == 0 &&
1496 	    (hmp->vchain.flags & HAMMER2_CHAIN_VOLUMESYNC)) {
1497 		struct buf *bp;
1498 		int vol_error = 0;
1499 
1500 		/*
1501 		 * Synchronize the disk before flushing the volume
1502 		 * header.
1503 		 */
1504 		bp = getpbuf(NULL);
1505 		bp->b_bio1.bio_offset = 0;
1506 		bp->b_bufsize = 0;
1507 		bp->b_bcount = 0;
1508 		bp->b_cmd = BUF_CMD_FLUSH;
1509 		bp->b_bio1.bio_done = biodone_sync;
1510 		bp->b_bio1.bio_flags |= BIO_SYNC;
1511 		vn_strategy(hmp->devvp, &bp->b_bio1);
1512 		fsync_error = biowait(&bp->b_bio1, "h2vol");
1513 		relpbuf(bp, NULL);
1514 
1515 		/*
1516 		 * Then we can safely flush the version of the
1517 		 * volume header synchronized by the flush code.
1518 		 */
1519 		j = hmp->volhdrno + 1;
1520 		if (j < 0)
1521 			j = 0;
1522 		if (j >= HAMMER2_NUM_VOLHDRS)
1523 			j = 0;
1524 		if (j * HAMMER2_ZONE_BYTES64 + HAMMER2_SEGSIZE >
1525 		    hmp->volsync.volu_size) {
1526 			j = 0;
1527 		}
1528 		if (hammer2_debug & 0x8000) {
1529 			/* debug only, avoid syslogd loop */
1530 			kprintf("sync volhdr %d %jd\n",
1531 				j, (intmax_t)hmp->volsync.volu_size);
1532 		}
1533 		bp = getblk(hmp->devvp, j * HAMMER2_ZONE_BYTES64,
1534 			    HAMMER2_PBUFSIZE, GETBLK_KVABIO, 0);
1535 		atomic_clear_int(&hmp->vchain.flags,
1536 				 HAMMER2_CHAIN_VOLUMESYNC);
1537 		bkvasync(bp);
1538 		bcopy(&hmp->volsync, bp->b_data, HAMMER2_PBUFSIZE);
1539 		vol_error = bwrite(bp);
1540 		hmp->volhdrno = j;
1541 		if (vol_error)
1542 			fsync_error = vol_error;
1543 	}
1544 	if (flush_error)
1545 		total_error = flush_error;
1546 	if (fsync_error)
1547 		total_error = hammer2_errno_to_error(fsync_error);
1548 
1549 	hammer2_trans_done(hmp->spmp);  /* spmp trans */
1550 skip:
1551 	hammer2_xop_feed(&xop->head, NULL, thr->clindex, total_error);
1552 }
1553