xref: /dragonfly/sys/vfs/hammer2/hammer2_freemap.c (revision fae225dc)
1 /*
2  * Copyright (c) 2011-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/fcntl.h>
39 #include <sys/buf.h>
40 #include <sys/proc.h>
41 #include <sys/namei.h>
42 #include <sys/mount.h>
43 #include <sys/vnode.h>
44 #include <sys/mountctl.h>
45 
46 #include "hammer2.h"
47 
48 #define FREEMAP_DEBUG	0
49 
50 struct hammer2_fiterate {
51 	hammer2_off_t	bpref;
52 	hammer2_off_t	bnext;
53 	int		loops;
54 };
55 
56 typedef struct hammer2_fiterate hammer2_fiterate_t;
57 
58 static int hammer2_freemap_try_alloc(hammer2_chain_t **parentp,
59 			hammer2_blockref_t *bref, int radix,
60 			hammer2_fiterate_t *iter, hammer2_tid_t mtid);
61 static void hammer2_freemap_init(hammer2_dev_t *hmp,
62 			hammer2_key_t key, hammer2_chain_t *chain);
63 static int hammer2_bmap_alloc(hammer2_dev_t *hmp,
64 			hammer2_bmap_data_t *bmap, uint16_t class,
65 			int n, int radix, hammer2_key_t *basep);
66 static int hammer2_freemap_iterate(hammer2_chain_t **parentp,
67 			hammer2_chain_t **chainp,
68 			hammer2_fiterate_t *iter);
69 
70 static __inline
71 int
72 hammer2_freemapradix(int radix)
73 {
74 	return(radix);
75 }
76 
77 /*
78  * Calculate the device offset for the specified FREEMAP_NODE or FREEMAP_LEAF
79  * bref.  Return a combined media offset and physical size radix.  Freemap
80  * chains use fixed storage offsets in the 4MB reserved area at the
81  * beginning of each 2GB zone
82  *
83  * Rotate between four possibilities.  Theoretically this means we have three
84  * good freemaps in case of a crash which we can use as a base for the fixup
85  * scan at mount-time.
86  */
87 #define H2FMBASE(key, radix)	((key) & ~(((hammer2_off_t)1 << (radix)) - 1))
88 #define H2FMSHIFT(radix)	((hammer2_off_t)1 << (radix))
89 
90 static
91 int
92 hammer2_freemap_reserve(hammer2_chain_t *chain, int radix)
93 {
94 	hammer2_blockref_t *bref = &chain->bref;
95 	hammer2_off_t off;
96 	int index;
97 	int index_inc;
98 	size_t bytes;
99 
100 	/*
101 	 * Physical allocation size.
102 	 */
103 	bytes = (size_t)1 << radix;
104 
105 	/*
106 	 * Calculate block selection index 0..7 of current block.  If this
107 	 * is the first allocation of the block (verses a modification of an
108 	 * existing block), we use index 0, otherwise we use the next rotating
109 	 * index.
110 	 */
111 	if ((bref->data_off & ~HAMMER2_OFF_MASK_RADIX) == 0) {
112 		index = 0;
113 	} else {
114 		off = bref->data_off & ~HAMMER2_OFF_MASK_RADIX &
115 		      (((hammer2_off_t)1 <<
116 			HAMMER2_FREEMAP_LEVEL1_RADIX) - 1);
117 		off = off / HAMMER2_PBUFSIZE;
118 		KKASSERT(off >= HAMMER2_ZONE_FREEMAP_00 &&
119 			 off < HAMMER2_ZONE_FREEMAP_END);
120 		index = (int)(off - HAMMER2_ZONE_FREEMAP_00) /
121 			HAMMER2_ZONE_FREEMAP_INC;
122 		KKASSERT(index >= 0 && index < HAMMER2_NFREEMAPS);
123 		if (++index == HAMMER2_NFREEMAPS)
124 			index = 0;
125 	}
126 
127 	/*
128 	 * Calculate the block offset of the reserved block.  This will
129 	 * point into the 4MB reserved area at the base of the appropriate
130 	 * 2GB zone, once added to the FREEMAP_x selection above.
131 	 */
132 	index_inc = index * HAMMER2_ZONE_FREEMAP_INC;
133 
134 	switch(bref->keybits) {
135 	/* case HAMMER2_FREEMAP_LEVEL6_RADIX: not applicable */
136 	case HAMMER2_FREEMAP_LEVEL5_RADIX:	/* 2EB */
137 		KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
138 		KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
139 		off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL5_RADIX) +
140 		      (index_inc + HAMMER2_ZONE_FREEMAP_00 +
141 		       HAMMER2_ZONEFM_LEVEL5) * HAMMER2_PBUFSIZE;
142 		break;
143 	case HAMMER2_FREEMAP_LEVEL4_RADIX:	/* 2EB */
144 		KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
145 		KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
146 		off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL4_RADIX) +
147 		      (index_inc + HAMMER2_ZONE_FREEMAP_00 +
148 		       HAMMER2_ZONEFM_LEVEL4) * HAMMER2_PBUFSIZE;
149 		break;
150 	case HAMMER2_FREEMAP_LEVEL3_RADIX:	/* 2PB */
151 		KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
152 		KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
153 		off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL3_RADIX) +
154 		      (index_inc + HAMMER2_ZONE_FREEMAP_00 +
155 		       HAMMER2_ZONEFM_LEVEL3) * HAMMER2_PBUFSIZE;
156 		break;
157 	case HAMMER2_FREEMAP_LEVEL2_RADIX:	/* 2TB */
158 		KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
159 		KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
160 		off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL2_RADIX) +
161 		      (index_inc + HAMMER2_ZONE_FREEMAP_00 +
162 		       HAMMER2_ZONEFM_LEVEL2) * HAMMER2_PBUFSIZE;
163 		break;
164 	case HAMMER2_FREEMAP_LEVEL1_RADIX:	/* 2GB */
165 		KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_LEAF);
166 		KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
167 		off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
168 		      (index_inc + HAMMER2_ZONE_FREEMAP_00 +
169 		       HAMMER2_ZONEFM_LEVEL1) * HAMMER2_PBUFSIZE;
170 		break;
171 	default:
172 		panic("freemap: bad radix(2) %p %d\n", bref, bref->keybits);
173 		/* NOT REACHED */
174 		off = (hammer2_off_t)-1;
175 		break;
176 	}
177 	bref->data_off = off | radix;
178 #if FREEMAP_DEBUG
179 	kprintf("FREEMAP BLOCK TYPE %d %016jx/%d DATA_OFF=%016jx\n",
180 		bref->type, bref->key, bref->keybits, bref->data_off);
181 #endif
182 	return (0);
183 }
184 
185 /*
186  * Normal freemap allocator
187  *
188  * Use available hints to allocate space using the freemap.  Create missing
189  * freemap infrastructure on-the-fly as needed (including marking initial
190  * allocations using the iterator as allocated, instantiating new 2GB zones,
191  * and dealing with the end-of-media edge case).
192  *
193  * ip and bpref are only used as a heuristic to determine locality of
194  * reference.  bref->key may also be used heuristically.
195  *
196  * This function is a NOP if bytes is 0.
197  */
198 int
199 hammer2_freemap_alloc(hammer2_chain_t *chain, size_t bytes)
200 {
201 	hammer2_dev_t *hmp = chain->hmp;
202 	hammer2_blockref_t *bref = &chain->bref;
203 	hammer2_chain_t *parent;
204 	hammer2_tid_t mtid;
205 	int radix;
206 	int error;
207 	unsigned int hindex;
208 	hammer2_fiterate_t iter;
209 
210 	/*
211 	 * If allocating or downsizing to zero we just get rid of whatever
212 	 * data_off we had.
213 	 */
214 	if (bytes == 0) {
215 		chain->bref.data_off = 0;
216 		return 0;
217 	}
218 
219 	mtid = hammer2_trans_sub(hmp->spmp);
220 
221 	/*
222 	 * Validate the allocation size.  It must be a power of 2.
223 	 *
224 	 * For now require that the caller be aware of the minimum
225 	 * allocation (1K).
226 	 */
227 	radix = hammer2_getradix(bytes);
228 	KKASSERT((size_t)1 << radix == bytes);
229 
230 	if (bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
231 	    bref->type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
232 		/*
233 		 * Freemap blocks themselves are assigned from the reserve
234 		 * area, not allocated from the freemap.
235 		 */
236 		error = hammer2_freemap_reserve(chain, radix);
237 		KKASSERT(error == 0);
238 
239 		return error;
240 	}
241 
242 	KKASSERT(bytes >= HAMMER2_ALLOC_MIN && bytes <= HAMMER2_ALLOC_MAX);
243 
244 	/*
245 	 * Calculate the starting point for our allocation search.
246 	 *
247 	 * Each freemap leaf is dedicated to a specific freemap_radix.
248 	 * The freemap_radix can be more fine-grained than the device buffer
249 	 * radix which results in inodes being grouped together in their
250 	 * own segment, terminal-data (16K or less) and initial indirect
251 	 * block being grouped together, and then full-indirect and full-data
252 	 * blocks (64K) being grouped together.
253 	 *
254 	 * The single most important aspect of this is the inode grouping
255 	 * because that is what allows 'find' and 'ls' and other filesystem
256 	 * topology operations to run fast.
257 	 */
258 #if 0
259 	if (bref->data_off & ~HAMMER2_OFF_MASK_RADIX)
260 		bpref = bref->data_off & ~HAMMER2_OFF_MASK_RADIX;
261 	else if (trans->tmp_bpref)
262 		bpref = trans->tmp_bpref;
263 	else if (trans->tmp_ip)
264 		bpref = trans->tmp_ip->chain->bref.data_off;
265 	else
266 #endif
267 	/*
268 	 * Heuristic tracking index.  We would like one for each distinct
269 	 * bref type if possible.  heur_freemap[] has room for two classes
270 	 * for each type.  At a minimum we have to break-up our heuristic
271 	 * by device block sizes.
272 	 */
273 	hindex = hammer2_devblkradix(radix) - HAMMER2_MINIORADIX;
274 	KKASSERT(hindex < HAMMER2_FREEMAP_HEUR_NRADIX);
275 	hindex += bref->type * HAMMER2_FREEMAP_HEUR_NRADIX;
276 	hindex &= HAMMER2_FREEMAP_HEUR_TYPES * HAMMER2_FREEMAP_HEUR_NRADIX - 1;
277 	KKASSERT(hindex < HAMMER2_FREEMAP_HEUR_SIZE);
278 
279 	iter.bpref = hmp->heur_freemap[hindex];
280 
281 	/*
282 	 * Make sure bpref is in-bounds.  It's ok if bpref covers a zone's
283 	 * reserved area, the try code will iterate past it.
284 	 */
285 	if (iter.bpref > hmp->voldata.volu_size)
286 		iter.bpref = hmp->voldata.volu_size - 1;
287 
288 	/*
289 	 * Iterate the freemap looking for free space before and after.
290 	 */
291 	parent = &hmp->fchain;
292 	hammer2_chain_ref(parent);
293 	hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
294 	error = EAGAIN;
295 	iter.bnext = iter.bpref;
296 	iter.loops = 0;
297 
298 	while (error == EAGAIN) {
299 		error = hammer2_freemap_try_alloc(&parent, bref, radix,
300 						  &iter, mtid);
301 	}
302 	hmp->heur_freemap[hindex] = iter.bnext;
303 	hammer2_chain_unlock(parent);
304 	hammer2_chain_drop(parent);
305 
306 	KKASSERT(error == 0);
307 
308 	return (error);
309 }
310 
311 static int
312 hammer2_freemap_try_alloc(hammer2_chain_t **parentp,
313 			  hammer2_blockref_t *bref, int radix,
314 			  hammer2_fiterate_t *iter, hammer2_tid_t mtid)
315 {
316 	hammer2_dev_t *hmp = (*parentp)->hmp;
317 	hammer2_off_t l0size;
318 	hammer2_off_t l1size;
319 	hammer2_off_t l1mask;
320 	hammer2_key_t key_dummy;
321 	hammer2_chain_t *chain;
322 	hammer2_off_t key;
323 	size_t bytes;
324 	uint16_t class;
325 	int error = 0;
326 	int cache_index = -1;
327 
328 	/*
329 	 * Calculate the number of bytes being allocated, the number
330 	 * of contiguous bits of bitmap being allocated, and the bitmap
331 	 * mask.
332 	 *
333 	 * WARNING! cpu hardware may mask bits == 64 -> 0 and blow up the
334 	 *	    mask calculation.
335 	 */
336 	bytes = (size_t)1 << radix;
337 	class = (bref->type << 8) | hammer2_devblkradix(radix);
338 
339 	/*
340 	 * Lookup the level1 freemap chain, creating and initializing one
341 	 * if necessary.  Intermediate levels will be created automatically
342 	 * when necessary by hammer2_chain_create().
343 	 */
344 	key = H2FMBASE(iter->bnext, HAMMER2_FREEMAP_LEVEL1_RADIX);
345 	l0size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
346 	l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
347 	l1mask = l1size - 1;
348 
349 	chain = hammer2_chain_lookup(parentp, &key_dummy, key, key + l1mask,
350 				     &cache_index,
351 				     HAMMER2_LOOKUP_ALWAYS |
352 				     HAMMER2_LOOKUP_MATCHIND);
353 
354 	if (chain == NULL) {
355 		/*
356 		 * Create the missing leaf, be sure to initialize
357 		 * the auxillary freemap tracking information in
358 		 * the bref.check.freemap structure.
359 		 */
360 #if 0
361 		kprintf("freemap create L1 @ %016jx bpref %016jx\n",
362 			key, iter->bpref);
363 #endif
364 		error = hammer2_chain_create(parentp, &chain,
365 				     hmp->spmp, HAMMER2_METH_DEFAULT,
366 				     key, HAMMER2_FREEMAP_LEVEL1_RADIX,
367 				     HAMMER2_BREF_TYPE_FREEMAP_LEAF,
368 				     HAMMER2_FREEMAP_LEVELN_PSIZE,
369 				     mtid, 0, 0);
370 		KKASSERT(error == 0);
371 		if (error == 0) {
372 			hammer2_chain_modify(chain, mtid, 0, 0);
373 			bzero(&chain->data->bmdata[0],
374 			      HAMMER2_FREEMAP_LEVELN_PSIZE);
375 			chain->bref.check.freemap.bigmask = (uint32_t)-1;
376 			chain->bref.check.freemap.avail = l1size;
377 			/* bref.methods should already be inherited */
378 
379 			hammer2_freemap_init(hmp, key, chain);
380 		}
381 	} else if (chain->error) {
382 		/*
383 		 * Error during lookup.
384 		 */
385 		kprintf("hammer2_freemap_try_alloc: %016jx: error %s\n",
386 			(intmax_t)bref->data_off,
387 			hammer2_error_str(chain->error));
388 		error = EIO;
389 	} else if ((chain->bref.check.freemap.bigmask &
390 		   ((size_t)1 << radix)) == 0) {
391 		/*
392 		 * Already flagged as not having enough space
393 		 */
394 		error = ENOSPC;
395 	} else {
396 		/*
397 		 * Modify existing chain to setup for adjustment.
398 		 */
399 		hammer2_chain_modify(chain, mtid, 0, 0);
400 	}
401 
402 	/*
403 	 * Scan 2MB entries.
404 	 */
405 	if (error == 0) {
406 		hammer2_bmap_data_t *bmap;
407 		hammer2_key_t base_key;
408 		int count;
409 		int start;
410 		int n;
411 
412 		KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF);
413 		start = (int)((iter->bnext - key) >>
414 			      HAMMER2_FREEMAP_LEVEL0_RADIX);
415 		KKASSERT(start >= 0 && start < HAMMER2_FREEMAP_COUNT);
416 		hammer2_chain_modify(chain, mtid, 0, 0);
417 
418 		error = ENOSPC;
419 		for (count = 0; count < HAMMER2_FREEMAP_COUNT; ++count) {
420 			int availchk;
421 
422 			if (start + count >= HAMMER2_FREEMAP_COUNT &&
423 			    start - count < 0) {
424 				break;
425 			}
426 
427 			/*
428 			 * Calculate bmap pointer
429 			 *
430 			 * NOTE: bmap pointer is invalid if n >= FREEMAP_COUNT.
431 			 */
432 			n = start + count;
433 			bmap = &chain->data->bmdata[n];
434 
435 			if (n >= HAMMER2_FREEMAP_COUNT) {
436 				availchk = 0;
437 			} else if (bmap->avail) {
438 				availchk = 1;
439 			} else if (radix < HAMMER2_FREEMAP_BLOCK_RADIX &&
440 			          (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK)) {
441 				availchk = 1;
442 			} else {
443 				availchk = 0;
444 			}
445 
446 			if (availchk &&
447 			    (bmap->class == 0 || bmap->class == class)) {
448 				base_key = key + n * l0size;
449 				error = hammer2_bmap_alloc(hmp, bmap,
450 							   class, n, radix,
451 							   &base_key);
452 				if (error != ENOSPC) {
453 					key = base_key;
454 					break;
455 				}
456 			}
457 
458 			/*
459 			 * Must recalculate after potentially having called
460 			 * hammer2_bmap_alloc() above in case chain was
461 			 * reallocated.
462 			 *
463 			 * NOTE: bmap pointer is invalid if n < 0.
464 			 */
465 			n = start - count;
466 			bmap = &chain->data->bmdata[n];
467 			if (n < 0) {
468 				availchk = 0;
469 			} else if (bmap->avail) {
470 				availchk = 1;
471 			} else if (radix < HAMMER2_FREEMAP_BLOCK_RADIX &&
472 			          (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK)) {
473 				availchk = 1;
474 			} else {
475 				availchk = 0;
476 			}
477 
478 			if (availchk &&
479 			    (bmap->class == 0 || bmap->class == class)) {
480 				base_key = key + n * l0size;
481 				error = hammer2_bmap_alloc(hmp, bmap,
482 							   class, n, radix,
483 							   &base_key);
484 				if (error != ENOSPC) {
485 					key = base_key;
486 					break;
487 				}
488 			}
489 		}
490 		if (error == ENOSPC) {
491 			chain->bref.check.freemap.bigmask &=
492 				(uint32_t)~((size_t)1 << radix);
493 		}
494 		/* XXX also scan down from original count */
495 	}
496 
497 	if (error == 0) {
498 		/*
499 		 * Assert validity.  Must be beyond the static allocator used
500 		 * by newfs_hammer2 (and thus also beyond the aux area),
501 		 * not go past the volume size, and must not be in the
502 		 * reserved segment area for a zone.
503 		 */
504 		KKASSERT(key >= hmp->voldata.allocator_beg &&
505 			 key + bytes <= hmp->voldata.volu_size);
506 		KKASSERT((key & HAMMER2_ZONE_MASK64) >= HAMMER2_ZONE_SEG);
507 		bref->data_off = key | radix;
508 #if 0
509 		kprintf("alloc cp=%p %016jx %016jx using %016jx\n",
510 			chain,
511 			bref->key, bref->data_off, chain->bref.data_off);
512 #endif
513 	} else if (error == ENOSPC) {
514 		/*
515 		 * Return EAGAIN with next iteration in iter->bnext, or
516 		 * return ENOSPC if the allocation map has been exhausted.
517 		 */
518 		error = hammer2_freemap_iterate(parentp, &chain, iter);
519 	}
520 
521 	/*
522 	 * Cleanup
523 	 */
524 	if (chain) {
525 		hammer2_chain_unlock(chain);
526 		hammer2_chain_drop(chain);
527 	}
528 	return (error);
529 }
530 
531 /*
532  * Allocate (1<<radix) bytes from the bmap whos base data offset is (*basep).
533  *
534  * If the linear iterator is mid-block we use it directly (the bitmap should
535  * already be marked allocated), otherwise we search for a block in the bitmap
536  * that fits the allocation request.
537  *
538  * A partial bitmap allocation sets the minimum bitmap granularity (16KB)
539  * to fully allocated and adjusts the linear allocator to allow the
540  * remaining space to be allocated.
541  */
542 static
543 int
544 hammer2_bmap_alloc(hammer2_dev_t *hmp, hammer2_bmap_data_t *bmap,
545 		   uint16_t class, int n, int radix, hammer2_key_t *basep)
546 {
547 	size_t size;
548 	size_t bgsize;
549 	int bmradix;
550 	hammer2_bitmap_t bmmask;
551 	int offset;
552 	int i;
553 	int j;
554 
555 	/*
556 	 * Take into account 2-bits per block when calculating bmradix.
557 	 */
558 	size = (size_t)1 << radix;
559 
560 	if (radix <= HAMMER2_FREEMAP_BLOCK_RADIX) {
561 		bmradix = 2;
562 		/* (16K) 2 bits per allocation block */
563 	} else {
564 		bmradix = (hammer2_bitmap_t)2 <<
565 			  (radix - HAMMER2_FREEMAP_BLOCK_RADIX);
566 		/* (32K-256K) 4, 8, 16, 32 bits per allocation block */
567 	}
568 
569 	/*
570 	 * Use the linear iterator to pack small allocations, otherwise
571 	 * fall-back to finding a free 16KB chunk.  The linear iterator
572 	 * is only valid when *NOT* on a freemap chunking boundary (16KB).
573 	 * If it is the bitmap must be scanned.  It can become invalid
574 	 * once we pack to the boundary.  We adjust it after a bitmap
575 	 * allocation only for sub-16KB allocations (so the perfectly good
576 	 * previous value can still be used for fragments when 16KB+
577 	 * allocations are made).
578 	 *
579 	 * Beware of hardware artifacts when bmradix == 64 (intermediate
580 	 * result can wind up being '1' instead of '0' if hardware masks
581 	 * bit-count & 31).
582 	 *
583 	 * NOTE: j needs to be even in the j= calculation.  As an artifact
584 	 *	 of the /2 division, our bitmask has to clear bit 0.
585 	 *
586 	 * NOTE: TODO this can leave little unallocatable fragments lying
587 	 *	 around.
588 	 */
589 	if (((uint32_t)bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK) + size <=
590 	    HAMMER2_FREEMAP_BLOCK_SIZE &&
591 	    (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK) &&
592 	    bmap->linear < HAMMER2_SEGSIZE) {
593 		KKASSERT(bmap->linear >= 0 &&
594 			 bmap->linear + size <= HAMMER2_SEGSIZE &&
595 			 (bmap->linear & (HAMMER2_ALLOC_MIN - 1)) == 0);
596 		offset = bmap->linear;
597 		i = offset / (HAMMER2_SEGSIZE / 8);
598 		j = (offset / (HAMMER2_FREEMAP_BLOCK_SIZE / 2)) & 30;
599 		bmmask = (bmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ?
600 			 HAMMER2_BMAP_ALLONES :
601 			 ((hammer2_bitmap_t)1 << bmradix) - 1;
602 		bmmask <<= j;
603 		bmap->linear = offset + size;
604 	} else {
605 		for (i = 0; i < HAMMER2_BMAP_ELEMENTS; ++i) {
606 			bmmask = (bmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ?
607 				 HAMMER2_BMAP_ALLONES :
608 				 ((hammer2_bitmap_t)1 << bmradix) - 1;
609 			for (j = 0;
610 			     j < HAMMER2_BMAP_BITS_PER_ELEMENT;
611 			     j += bmradix) {
612 				if ((bmap->bitmapq[i] & bmmask) == 0)
613 					goto success;
614 				bmmask <<= bmradix;
615 			}
616 		}
617 		/*fragments might remain*/
618 		/*KKASSERT(bmap->avail == 0);*/
619 		return (ENOSPC);
620 success:
621 		offset = i * (HAMMER2_SEGSIZE / HAMMER2_BMAP_ELEMENTS) +
622 			 (j * (HAMMER2_FREEMAP_BLOCK_SIZE / 2));
623 		if (size & HAMMER2_FREEMAP_BLOCK_MASK)
624 			bmap->linear = offset + size;
625 	}
626 
627 	/* 8 x (64/2) -> 256 x 16K -> 4MB */
628 	KKASSERT(i >= 0 && i < HAMMER2_BMAP_ELEMENTS);
629 
630 	/*
631 	 * Optimize the buffer cache to avoid unnecessary read-before-write
632 	 * operations.
633 	 *
634 	 * The device block size could be larger than the allocation size
635 	 * so the actual bitmap test is somewhat more involved.  We have
636 	 * to use a compatible buffer size for this operation.
637 	 */
638 	if ((bmap->bitmapq[i] & bmmask) == 0 &&
639 	    hammer2_devblksize(size) != size) {
640 		size_t psize = hammer2_devblksize(size);
641 		hammer2_off_t pmask = (hammer2_off_t)psize - 1;
642 		int pbmradix = (hammer2_bitmap_t)2 <<
643 					(hammer2_devblkradix(radix) -
644 			       HAMMER2_FREEMAP_BLOCK_RADIX);
645 		hammer2_bitmap_t pbmmask;
646 		int pradix = hammer2_getradix(psize);
647 
648 		pbmmask = (pbmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ?
649 			HAMMER2_BMAP_ALLONES :
650 			((hammer2_bitmap_t)1 << pbmradix) - 1;
651 		while ((pbmmask & bmmask) == 0)
652 			pbmmask <<= pbmradix;
653 
654 #if 0
655 		kprintf("%016jx mask %016jx %016jx %016jx (%zd/%zd)\n",
656 			*basep + offset, bmap->bitmapq[i],
657 			pbmmask, bmmask, size, psize);
658 #endif
659 
660 		if ((bmap->bitmapq[i] & pbmmask) == 0) {
661 			hammer2_io_newq(hmp, HAMMER2_BREF_TYPE_FREEMAP_LEAF,
662 					(*basep + (offset & ~pmask)) |
663 					pradix, psize);
664 		}
665 	}
666 
667 #if 0
668 	/*
669 	 * When initializing a new inode segment also attempt to initialize
670 	 * an adjacent segment.  Be careful not to index beyond the array
671 	 * bounds.
672 	 *
673 	 * We do this to try to localize inode accesses to improve
674 	 * directory scan rates.  XXX doesn't improve scan rates.
675 	 */
676 	if (size == HAMMER2_INODE_BYTES) {
677 		if (n & 1) {
678 			if (bmap[-1].radix == 0 && bmap[-1].avail)
679 				bmap[-1].radix = radix;
680 		} else {
681 			if (bmap[1].radix == 0 && bmap[1].avail)
682 				bmap[1].radix = radix;
683 		}
684 	}
685 #endif
686 	/*
687 	 * Calculate the bitmap-granular change in bgsize for the volume
688 	 * header.  We cannot use the fine-grained change here because
689 	 * the bulkfree code can't undo it.  If the bitmap element is already
690 	 * marked allocated it has already been accounted for.
691 	 */
692 	if (radix < HAMMER2_FREEMAP_BLOCK_RADIX) {
693 		if (bmap->bitmapq[i] & bmmask)
694 			bgsize = 0;
695 		else
696 			bgsize = HAMMER2_FREEMAP_BLOCK_SIZE;
697 	} else {
698 		bgsize = size;
699 	}
700 
701 	/*
702 	 * Adjust the bitmap, set the class (it might have been 0),
703 	 * and available bytes, update the allocation offset (*basep)
704 	 * from the L0 base to the actual offset.
705 	 *
706 	 * avail must reflect the bitmap-granular availability.  The allocator
707 	 * tests will also check the linear iterator.
708 	 */
709 	bmap->bitmapq[i] |= bmmask;
710 	bmap->class = class;
711 	bmap->avail -= bgsize;
712 	*basep += offset;
713 
714 	/*
715 	 * Adjust the volume header's allocator_free parameter.  This
716 	 * parameter has to be fixed up by bulkfree which has no way to
717 	 * figure out sub-16K chunking, so it must be adjusted by the
718 	 * bitmap-granular size.
719 	 */
720 	if (bgsize) {
721 		hammer2_voldata_lock(hmp);
722 		hammer2_voldata_modify(hmp);
723 		hmp->voldata.allocator_free -= bgsize;
724 		hammer2_voldata_unlock(hmp);
725 	}
726 
727 	return(0);
728 }
729 
730 static
731 void
732 hammer2_freemap_init(hammer2_dev_t *hmp, hammer2_key_t key,
733 		     hammer2_chain_t *chain)
734 {
735 	hammer2_off_t l1size;
736 	hammer2_off_t lokey;
737 	hammer2_off_t hikey;
738 	hammer2_bmap_data_t *bmap;
739 	int count;
740 
741 	l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
742 
743 	/*
744 	 * Calculate the portion of the 2GB map that should be initialized
745 	 * as free.  Portions below or after will be initialized as allocated.
746 	 * SEGMASK-align the areas so we don't have to worry about sub-scans
747 	 * or endianess when using memset.
748 	 *
749 	 * (1) Ensure that all statically allocated space from newfs_hammer2
750 	 *     is marked allocated.
751 	 *
752 	 * (2) Ensure that the reserved area is marked allocated (typically
753 	 *     the first 4MB of the 2GB area being represented).
754 	 *
755 	 * (3) Ensure that any trailing space at the end-of-volume is marked
756 	 *     allocated.
757 	 *
758 	 * WARNING! It is possible for lokey to be larger than hikey if the
759 	 *	    entire 2GB segment is within the static allocation.
760 	 */
761 	lokey = (hmp->voldata.allocator_beg + HAMMER2_SEGMASK64) &
762 		~HAMMER2_SEGMASK64;
763 
764 	if (lokey < H2FMBASE(key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
765 		  HAMMER2_ZONE_SEG64) {
766 		lokey = H2FMBASE(key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
767 			HAMMER2_ZONE_SEG64;
768 	}
769 
770 	hikey = key + H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
771 	if (hikey > hmp->voldata.volu_size) {
772 		hikey = hmp->voldata.volu_size & ~HAMMER2_SEGMASK64;
773 	}
774 
775 	chain->bref.check.freemap.avail =
776 		H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
777 	bmap = &chain->data->bmdata[0];
778 
779 	for (count = 0; count < HAMMER2_FREEMAP_COUNT; ++count) {
780 		if (key < lokey || key >= hikey) {
781 			memset(bmap->bitmapq, -1,
782 			       sizeof(bmap->bitmapq));
783 			bmap->avail = 0;
784 			bmap->linear = HAMMER2_SEGSIZE;
785 			chain->bref.check.freemap.avail -=
786 				H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
787 		} else {
788 			bmap->avail = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
789 		}
790 		key += H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
791 		++bmap;
792 	}
793 }
794 
795 /*
796  * The current Level 1 freemap has been exhausted, iterate to the next
797  * one, return ENOSPC if no freemaps remain.
798  *
799  * XXX this should rotate back to the beginning to handle freed-up space
800  * XXX or use intermediate entries to locate free space. TODO
801  */
802 static int
803 hammer2_freemap_iterate(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
804 			hammer2_fiterate_t *iter)
805 {
806 	hammer2_dev_t *hmp = (*parentp)->hmp;
807 
808 	iter->bnext &= ~(H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX) - 1);
809 	iter->bnext += H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
810 	if (iter->bnext >= hmp->voldata.volu_size) {
811 		iter->bnext = 0;
812 		if (++iter->loops == 2)
813 			return (ENOSPC);
814 	}
815 	return(EAGAIN);
816 }
817 
818 /*
819  * Adjust the bit-pattern for data in the freemap bitmap according to
820  * (how).  This code is called from on-mount recovery to fixup (mark
821  * as allocated) blocks whos freemap upates might not have been committed
822  * in the last crash and is used by the bulk freemap scan to stage frees.
823  *
824  * WARNING! Cannot be called with a empty-data bref (radix == 0).
825  *
826  * XXX currently disabled when how == 0 (the normal real-time case).  At
827  * the moment we depend on the bulk freescan to actually free blocks.  It
828  * will still call this routine with a non-zero how to stage possible frees
829  * and to do the actual free.
830  */
831 void
832 hammer2_freemap_adjust(hammer2_dev_t *hmp, hammer2_blockref_t *bref,
833 		       int how)
834 {
835 	hammer2_off_t data_off = bref->data_off;
836 	hammer2_chain_t *chain;
837 	hammer2_chain_t *parent;
838 	hammer2_bmap_data_t *bmap;
839 	hammer2_key_t key;
840 	hammer2_key_t key_dummy;
841 	hammer2_off_t l0size;
842 	hammer2_off_t l1size;
843 	hammer2_off_t l1mask;
844 	hammer2_tid_t mtid;
845 	hammer2_bitmap_t *bitmap;
846 	const hammer2_bitmap_t bmmask00 = 0;
847 	hammer2_bitmap_t bmmask01;
848 	hammer2_bitmap_t bmmask10;
849 	hammer2_bitmap_t bmmask11;
850 	size_t bytes;
851 	uint16_t class;
852 	int radix;
853 	int start;
854 	int count;
855 	int modified = 0;
856 	int cache_index = -1;
857 	int error;
858 	size_t bgsize = 0;
859 
860 	KKASSERT(how == HAMMER2_FREEMAP_DORECOVER);
861 
862 	mtid = hammer2_trans_sub(hmp->spmp);
863 
864 	radix = (int)data_off & HAMMER2_OFF_MASK_RADIX;
865 	KKASSERT(radix != 0);
866 	data_off &= ~HAMMER2_OFF_MASK_RADIX;
867 	KKASSERT(radix <= HAMMER2_RADIX_MAX);
868 
869 	if (radix)
870 		bytes = (size_t)1 << radix;
871 	else
872 		bytes = 0;
873 	class = (bref->type << 8) | hammer2_devblkradix(radix);
874 
875 	/*
876 	 * We can't adjust the freemap for data allocations made by
877 	 * newfs_hammer2.
878 	 */
879 	if (data_off < hmp->voldata.allocator_beg)
880 		return;
881 
882 	KKASSERT((data_off & HAMMER2_ZONE_MASK64) >= HAMMER2_ZONE_SEG);
883 
884 	/*
885 	 * Lookup the level1 freemap chain.  The chain must exist.
886 	 */
887 	key = H2FMBASE(data_off, HAMMER2_FREEMAP_LEVEL1_RADIX);
888 	l0size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
889 	l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
890 	l1mask = l1size - 1;
891 
892 	parent = &hmp->fchain;
893 	hammer2_chain_ref(parent);
894 	hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
895 
896 	chain = hammer2_chain_lookup(&parent, &key_dummy, key, key + l1mask,
897 				     &cache_index,
898 				     HAMMER2_LOOKUP_ALWAYS |
899 				     HAMMER2_LOOKUP_MATCHIND);
900 
901 	/*
902 	 * Stop early if we are trying to free something but no leaf exists.
903 	 */
904 	if (chain == NULL && how != HAMMER2_FREEMAP_DORECOVER) {
905 		kprintf("hammer2_freemap_adjust: %016jx: no chain\n",
906 			(intmax_t)bref->data_off);
907 		goto done;
908 	}
909 	if (chain->error) {
910 		kprintf("hammer2_freemap_adjust: %016jx: error %s\n",
911 			(intmax_t)bref->data_off,
912 			hammer2_error_str(chain->error));
913 		hammer2_chain_unlock(chain);
914 		hammer2_chain_drop(chain);
915 		chain = NULL;
916 		goto done;
917 	}
918 
919 	/*
920 	 * Create any missing leaf(s) if we are doing a recovery (marking
921 	 * the block(s) as being allocated instead of being freed).  Be sure
922 	 * to initialize the auxillary freemap tracking info in the
923 	 * bref.check.freemap structure.
924 	 */
925 	if (chain == NULL && how == HAMMER2_FREEMAP_DORECOVER) {
926 		error = hammer2_chain_create(&parent, &chain,
927 				     hmp->spmp, HAMMER2_METH_DEFAULT,
928 				     key, HAMMER2_FREEMAP_LEVEL1_RADIX,
929 				     HAMMER2_BREF_TYPE_FREEMAP_LEAF,
930 				     HAMMER2_FREEMAP_LEVELN_PSIZE,
931 				     mtid, 0, 0);
932 
933 		if (hammer2_debug & 0x0040) {
934 			kprintf("fixup create chain %p %016jx:%d\n",
935 				chain, chain->bref.key, chain->bref.keybits);
936 		}
937 
938 		if (error == 0) {
939 			hammer2_chain_modify(chain, mtid, 0, 0);
940 			bzero(&chain->data->bmdata[0],
941 			      HAMMER2_FREEMAP_LEVELN_PSIZE);
942 			chain->bref.check.freemap.bigmask = (uint32_t)-1;
943 			chain->bref.check.freemap.avail = l1size;
944 			/* bref.methods should already be inherited */
945 
946 			hammer2_freemap_init(hmp, key, chain);
947 		}
948 		/* XXX handle error */
949 	}
950 
951 #if FREEMAP_DEBUG
952 	kprintf("FREEMAP ADJUST TYPE %d %016jx/%d DATA_OFF=%016jx\n",
953 		chain->bref.type, chain->bref.key,
954 		chain->bref.keybits, chain->bref.data_off);
955 #endif
956 
957 	/*
958 	 * Calculate the bitmask (runs in 2-bit pairs).
959 	 */
960 	start = ((int)(data_off >> HAMMER2_FREEMAP_BLOCK_RADIX) & 15) * 2;
961 	bmmask01 = (hammer2_bitmap_t)1 << start;
962 	bmmask10 = (hammer2_bitmap_t)2 << start;
963 	bmmask11 = (hammer2_bitmap_t)3 << start;
964 
965 	/*
966 	 * Fixup the bitmap.  Partial blocks cannot be fully freed unless
967 	 * a bulk scan is able to roll them up.
968 	 */
969 	if (radix < HAMMER2_FREEMAP_BLOCK_RADIX) {
970 		count = 1;
971 		if (how == HAMMER2_FREEMAP_DOREALFREE)
972 			how = HAMMER2_FREEMAP_DOMAYFREE;
973 	} else {
974 		count = 1 << (radix - HAMMER2_FREEMAP_BLOCK_RADIX);
975 	}
976 
977 	/*
978 	 * [re]load the bmap and bitmap pointers.  Each bmap entry covers
979 	 * a 2MB swath.  The bmap itself (LEVEL1) covers 2GB.
980 	 *
981 	 * Be sure to reset the linear iterator to ensure that the adjustment
982 	 * is not ignored.
983 	 */
984 again:
985 	bmap = &chain->data->bmdata[(int)(data_off >> HAMMER2_SEGRADIX) &
986 				    (HAMMER2_FREEMAP_COUNT - 1)];
987 	bitmap = &bmap->bitmapq[(int)(data_off >> (HAMMER2_SEGRADIX - 3)) & 7];
988 
989 	if (modified)
990 		bmap->linear = 0;
991 
992 	while (count) {
993 		KKASSERT(bmmask11);
994 		if (how == HAMMER2_FREEMAP_DORECOVER) {
995 			/*
996 			 * Recovery request, mark as allocated.
997 			 */
998 			if ((*bitmap & bmmask11) != bmmask11) {
999 				if (modified == 0) {
1000 					hammer2_chain_modify(chain, mtid, 0, 0);
1001 					modified = 1;
1002 					goto again;
1003 				}
1004 				if ((*bitmap & bmmask11) == bmmask00) {
1005 					bmap->avail -=
1006 						HAMMER2_FREEMAP_BLOCK_SIZE;
1007 					bgsize += HAMMER2_FREEMAP_BLOCK_SIZE;
1008 				}
1009 				if (bmap->class == 0)
1010 					bmap->class = class;
1011 				*bitmap |= bmmask11;
1012 				if (hammer2_debug & 0x0040) {
1013 					kprintf("hammer2_freemap_recover: "
1014 						"fixup type=%02x "
1015 						"block=%016jx/%zd\n",
1016 						bref->type, data_off, bytes);
1017 				}
1018 			} else {
1019 				/*
1020 				kprintf("hammer2_freemap_recover:  good "
1021 					"type=%02x block=%016jx/%zd\n",
1022 					bref->type, data_off, bytes);
1023 				*/
1024 			}
1025 		}
1026 #if 0
1027 		/*
1028 		 * XXX this stuff doesn't work, avail is miscalculated and
1029 		 * code 10 means something else now.
1030 		 */
1031 		else if ((*bitmap & bmmask11) == bmmask11) {
1032 			/*
1033 			 * Mayfree/Realfree request and bitmap is currently
1034 			 * marked as being fully allocated.
1035 			 */
1036 			if (!modified) {
1037 				hammer2_chain_modify(chain, 0);
1038 				modified = 1;
1039 				goto again;
1040 			}
1041 			if (how == HAMMER2_FREEMAP_DOREALFREE)
1042 				*bitmap &= ~bmmask11;
1043 			else
1044 				*bitmap = (*bitmap & ~bmmask11) | bmmask10;
1045 		} else if ((*bitmap & bmmask11) == bmmask10) {
1046 			/*
1047 			 * Mayfree/Realfree request and bitmap is currently
1048 			 * marked as being possibly freeable.
1049 			 */
1050 			if (how == HAMMER2_FREEMAP_DOREALFREE) {
1051 				if (!modified) {
1052 					hammer2_chain_modify(chain, 0);
1053 					modified = 1;
1054 					goto again;
1055 				}
1056 				*bitmap &= ~bmmask11;
1057 			}
1058 		} else {
1059 			/*
1060 			 * 01 - Not implemented, currently illegal state
1061 			 * 00 - Not allocated at all, illegal free.
1062 			 */
1063 			panic("hammer2_freemap_adjust: "
1064 			      "Illegal state %08x(%08x)",
1065 			      *bitmap, *bitmap & bmmask11);
1066 		}
1067 #endif
1068 		--count;
1069 		bmmask01 <<= 2;
1070 		bmmask10 <<= 2;
1071 		bmmask11 <<= 2;
1072 	}
1073 #if HAMMER2_BMAP_ELEMENTS != 8
1074 #error "hammer2_freemap.c: HAMMER2_BMAP_ELEMENTS expected to be 8"
1075 #endif
1076 	if (how == HAMMER2_FREEMAP_DOREALFREE && modified) {
1077 		bmap->avail += 1 << radix;
1078 		KKASSERT(bmap->avail <= HAMMER2_SEGSIZE);
1079 		if (bmap->avail == HAMMER2_SEGSIZE &&
1080 		    bmap->bitmapq[0] == 0 &&
1081 		    bmap->bitmapq[1] == 0 &&
1082 		    bmap->bitmapq[2] == 0 &&
1083 		    bmap->bitmapq[3] == 0 &&
1084 		    bmap->bitmapq[4] == 0 &&
1085 		    bmap->bitmapq[5] == 0 &&
1086 		    bmap->bitmapq[6] == 0 &&
1087 		    bmap->bitmapq[7] == 0) {
1088 			key = H2FMBASE(data_off, HAMMER2_FREEMAP_LEVEL0_RADIX);
1089 			kprintf("Freeseg %016jx\n", (intmax_t)key);
1090 			bmap->class = 0;
1091 		}
1092 	}
1093 
1094 	/*
1095 	 * chain->bref.check.freemap.bigmask (XXX)
1096 	 *
1097 	 * Setting bigmask is a hint to the allocation code that there might
1098 	 * be something allocatable.  We also set this in recovery... it
1099 	 * doesn't hurt and we might want to use the hint for other validation
1100 	 * operations later on.
1101 	 */
1102 	if (modified)
1103 		chain->bref.check.freemap.bigmask |= 1 << radix;
1104 
1105 	hammer2_chain_unlock(chain);
1106 	hammer2_chain_drop(chain);
1107 done:
1108 	hammer2_chain_unlock(parent);
1109 	hammer2_chain_drop(parent);
1110 
1111 	if (bgsize) {
1112 		hammer2_voldata_lock(hmp);
1113 		hammer2_voldata_modify(hmp);
1114 		hmp->voldata.allocator_free -= bgsize;
1115 		hammer2_voldata_unlock(hmp);
1116 	}
1117 }
1118 
1119 /*
1120  * Validate the freemap, in three stages.
1121  *
1122  * stage-1	ALLOCATED     -> POSSIBLY FREE
1123  *		POSSIBLY FREE -> POSSIBLY FREE (type corrected)
1124  *
1125  *	This transitions bitmap entries from ALLOCATED to POSSIBLY FREE.
1126  *	The POSSIBLY FREE state does not mean that a block is actually free
1127  *	and may be transitioned back to ALLOCATED in stage-2.
1128  *
1129  *	This is typically done during normal filesystem operations when
1130  *	something is deleted or a block is replaced.
1131  *
1132  *	This is done by bulkfree in-bulk after a memory-bounded meta-data
1133  *	scan to try to determine what might be freeable.
1134  *
1135  *	This can be done unconditionally through a freemap scan when the
1136  *	intention is to brute-force recover the proper state of the freemap.
1137  *
1138  * stage-2	POSSIBLY FREE -> ALLOCATED	(scan metadata topology)
1139  *
1140  *	This is done by bulkfree during a meta-data scan to ensure that
1141  *	all blocks still actually allocated by the filesystem are marked
1142  *	as such.
1143  *
1144  *	NOTE! Live filesystem transitions to POSSIBLY FREE can occur while
1145  *	      the bulkfree stage-2 and stage-3 is running.  The live filesystem
1146  *	      will use the alternative POSSIBLY FREE type (2) to prevent
1147  *	      stage-3 from improperly transitioning unvetted possibly-free
1148  *	      blocks to FREE.
1149  *
1150  * stage-3	POSSIBLY FREE (type 1) -> FREE	(scan freemap)
1151  *
1152  *	This is done by bulkfree to finalize POSSIBLY FREE states.
1153  *
1154  */
1155